
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Digital Twins in Networks: A Systematic Survey
Zhiheng Yang

University of Amsterdam, The Netherlands

zhiheng.yang@student.uva.nl

ABSTRACT
This systematic survey explores the burgeoning field of Network

Digital Twins (NDTs), focusing on their role within 5G/6G network

frameworks. The paper delineates the evolution, definitions, ar-

chitectures, and classifications of digital twins, emphasizing their

increasing integration into network operations for enhanced man-

agement and predictive analytics. AmarcoNDTs system is proposed

for academic reference. This paper also discusses the current appli-

cations and developmental stages of NDTs across various sectors,

the current state of development is discussed through a study of

its purpose and how they are deployed. Challenges like security,

standardization, and data management are analyzed to highlight

the complexities of implementing NDTs at scale. The study fore-

casts future trends, including service-oriented architectures and

the integration of blockchain and federated learning technologies

to address security and scalability challenges. This research hopes

to serve as a comprehensive resource, and standardize approaches

and propel forward the practical applications of NDTs in telecom-

munications.

KEYWORDS
Systematic Literature Review, Digital Twins, Network Digital Twins,

5G/6G Networks, Telecommunications, Predictive Analytics, Feder-

ated Learning.

1 INTRODUCTION
In recent years, the significance of Digital Twins (DTs) has grown,

showcasing the potential to transform various industries by provid-

ing detailed simulations of physical systems [47]. These simulations

enhance predictive maintenance strategies, crucially reducing un-

expected equipment failures and extending the life of assets [32].

The concept of the digital twin was first introduced by Michael

Grieves during a Product Lifecycle Management conference in

2002 [55]. He proposed it as a virtual counterpart to the physical

world, presenting an innovative approach to model systems and

processes across their lifecycle [17, 18]. The aerospace sector took

the lead to implement this concept in practical applications. The

U.S. Air Force and NASA have invested in exploring how DT can

be utilized to manage space assets and training flights [63]. In fact,

ideas similar to DT had already appeared in NASA before this

concept was proposed [35]. Now the technology has expanded to

include manufacturing [32, 29], healthcare [25, 51], the automotive

industry[20], urban planning [12], IoT systems [36], aerospace [32],

and the development of 5G/6G networks. Each sector benefits from

the tailored application of digital twins to optimize operations and

enhance predictive analytics.

As the telecommunications industry anticipates the rollout of

5G/6G, which promises substantial improvements in speed, capac-

ity, and latency, the significance of Network Digital Twins (NDTs)

comes into sharper focus [10]. These NDTs are sophisticated vir-

tual replicas of network setups and operational strategies, pivotal

in enhancing real-time monitoring, predictive analytics, and pre-

implementation simulations of network changes. The enhancement

of these capabilities is crucial for meeting the demands of modern

telecommunications, as shown by studies from [38] and [3]. Re-

search on DTs in the network has just begun, and its application is

still in the infancy stage[66]. At present, however, the next scenario

where DTs are likely to be truly applied and fully realize their func-

tions is the 6G network. Wireless communication can be the next

scenario where DTs can be applied to fully realize their functions.

As a new paradigm, 6G holds significant research and application

value when combined with DTs[27].

Keyword Arxiv IEEE ACM DL ScienceDirect
Manufactur(e/ing) 79 685 1,000 1,041

5G 27 179 126 46

6G 57 200 20 19

Wireless 91 244 2,060 64

City 51 275 1,271 196

Industry 214 969 3,465 990

Urban 39 136 - 147

Product 99 438 - 579

Automotive 25 79 - 81

Energy 95 649 - 580

Healthcare 42 176 593 83

Table 1: Total Number of Papers Abstract Related to "Digital
Twin" with Different Keywords By 05-2024

Building on the current foundation of existing adoption and

versatility of DTs across multiple sectors, our research specifically

focuses on exploring the role of NDTs within the context of 5G

and 6G telecommunications technologies networks, represented by

5G/6G networks.

1.1 Main Contributions
Digital Twins have achieved relative maturity in manufacturing

sectors, such as production line management. However, their ap-

plication and evaluation in networks are not as widely discussed

and remain somewhat underdeveloped. Table 1 shows the statistics

of the number of papers with different keywords from different

publishers as of 2024. As shown in Table 1, where reflects that

the current research on DTs is more on Manufacturing and In-

dustry, and there is relatively less research on 5G/6G networks.

Additionally, there is a big gap in people’s understanding of NDTs,

the concepts involved are often more ambiguous and there are

sometimes conflicts in the use of terms. Our research advances the

field of Network Digital Twins (NDTs) through several integrated

contributions:
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Definitions and Architecture: We conduct a survey and com-

parison of common terminologies related to DTs, as well as different

expressions of terms with similar meanings, and we present efforts

towards terminology disambiguation and standardization. We also

compare and summarize the characteristics and explanations of

NDTs, and a more comprehensive and precis definition is finally

given.

Applications and Evaluation: We explore multiple applica-

tions and potential uses of NDTs, supplemented by real-world exam-

ples. Then we selected and presented some the most representative

or well-structured application cases.

Challenges and Future Research Trends: We identify and list

challenges specific to different aspects of NDTs and outline future

research trends that can potentially advance the field of NDTs.

Through these contributions, our study aims to provide a refer-

ence to standardize approaches and enhance the practical deploy-

ment and evaluation of Network Digital Twins (NDTs). By doing

so, we seek to support the development and evolution of NDTs

technologies. Additionally, we hope this article serves as a compre-

hensive guide, enabling researchers to quickly understand and gain

an overview of the NDTs concept.

2 OVERVIEW
In this chapter, we will introduce some common or easily confused

concepts and terms related to DTs and NDTs. We will also explore

DTs through various classification methods. Finally, we will sum-

marize and propose our definition of NDTs based on the current

state of research.

2.1 The Concept
Different interpretations have led to various definitions and tax-

onomies of Digital Twins, and there is no completely unified defini-

tion [8]. Various definitions have been proposed, including "virtual

representation of physical structures with communications" in [18],

"a virtual part act as agents for every physical object" in [43, 15], or

"a reengineering of structural life prediction and management" in

[55].

There are mainly three categories for these definitions. For the

first category, the definition of DT given by Michael Grieves in

[18] is actually in a narrow sense. His idea overly emphasized the

characteristics of digital twins as virtual informational structures,

focusing on a comprehensive description of physical objects. This

approach even tends toward a one-to-one correspondence, demand-

ing an exact match from a microscopic level from the outset. A

representative for the second category is [49], which discusses us-

ing machinery together with simulation techniques to enhance

real-time control and optimization, but mainly concentrating on

the roles of "simulation, optimization algorithms, and computing

power". These two definitions place little emphasis on interaction.

They mainly focus on the transition from physical to virtual, but

lack the reverse relationship, which leads to insufficient integra-

tion. The last category puts more emphasis on interaction and

integration, still represented by NASA [54], which emphasize "an

integrated multi-physics, multi-scale, probabilistic simulation of a

complex product". Different definitions emphasize distinct aspects,

these three categories actually coincide with the classification of DT

in the [24], namely Monitoring, Simulating, and Operational DTs.

Combining these ideas, it can be considered that these all represent

DTs, but they are aimed at different types of DTs.

2.2 The Taxonomy
We investigated some representative taxonomies, as shown in Fig-

ure 1.

Figure 1: Some DTs Taxonomies

2.2.1 By Functions/Purpose. Through these different concepts

(definitions), we identify three types of DTs and invest their usages,

based on their different focused Purposes and functions.

• Monitoring DTs: The main purpose is to view the current

and possible future status of physical objects. Currently, this

method has mature applications in urban planning, which

can be reflected on 3D models, like street space, utility

cadastre, etc [41].

• Simulating DTs: This type of DTs is probably the most

common and is an appropriate practice for measuring costs

versus effectiveness, which puts lots effort on simulaiton

aspect [4]. This type of application has a wide range of

applications in smart manufacturing and transportation

[44].

• Operational DTs: Due to its literal meaning, it is easy

to be misunderstood as the opposite of Simulating DTs,

that is, information and instructions from digital twins to

physical twins. However, the operational also means the

interactive behaviour, which is bidirectional[64]. This is the

ultimate, or ideal, form of DTs because it satisfies the free

flow and synchronization of data and instructions between

the physical and virtual. And this is currently proven to

be suitable for remote surgery [28]. It can also be the most

suitable for NDTs [24]. The NDTs mentioned in this article,

unless otherwise specified, are all such DTs.

In the initial definition of DTs, they are mainly used for monitoring

and reflecting the status of physical entities[18, 55], which largely

favors the application of digital visualization. If the narrow defini-

tion is followed, the first two may not even be applicable in some

cases. However, DTs now have begun to be widely used in data

utilization, prediction and simulation. In this evolution, while the

immediate importance of visualization capabilities has decreased,

the accuracy of simulations and predictions for data-based deci-

sions have become critical. Through the implementation of these

functions, the digital twin can effectively feedback analysis and
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instructions to the physical world to achieve its original design

goals.

2.2.2 By Implementation. DTs servitization is a trend, which

should be able to meet the needs of dynamic creation in the future

(will be introduced later) [58]. Under this trend, NDTs can, also,

be divided into three categories based on deployment methods:

Cloud-based Twins, Edge-based Twins, and Collaborative Twins

[24].

Cloud-based Twins capitalize on the robust computing and stor-

age capacities of the cloud, making them ideal for complex simula-

tions requiring significant data processing. This deployment model

has enhanced scalability and ease of integration with existing cloud

services, though it may suffer from higher latency, which could

compromise real-time data processing. Edge-based Twins, on the

other hand, are deployed closer to data sources and physical pro-

cesses they mirror, significantly enhancing their ability to operate

with reduced latency and improved mobility. However, the primary

challenge for Edge-based Twins lies in resource scheduling, where

they may not perform as efficiently as cloud-based solutions due to

limited computing capabilities.

Collaborative Twins merge the benefits of both cloud and edge

deployments, optimizing resource use by distributing tasks between

the cloud’s powerful computing environment and the edge’s prox-

imity to operational data. However, this approach is also a compro-

mise.

In addition to these classification methods, there are others, such

as in [11], which are divided into pre-digital, digital, adaptive digital

and intelligent digital twins. This article will not go into detail.

2.3 Other Terminologies
At present, the industry has not only a variety of views and research

on the definition of DTs, but also some concepts about DTs are

relatively complicated, and they are mixed in different articles.

Readers are often easily confused about concepts between different

articles. We compare these concepts in the article. This section

focuses on introducing some common concepts and disambiguating

some of the terms so that readers can be aware of the meaning of

the current terms when reading other articles.

2.3.1 Digital Shadow, Digital Model and Digital Twin. Based
on the aforementioned definitions and the explanations provided

by other scholars, we should be able to clearly distinguish the

differences and similarities between simulating, which can be a

function of DTs [19], and DTs. However, another thing that can

easily confuse newcomers is the difference between Digital Shadow

(DS), Digital Model (DM) and DT. In the process of creating DTs,

modelling and simulation tools such as CAD are often used, which

sometimes leads to a blurred distinction between models and DTs.

This confusion can lead to over-hyping and misuse of DTs [62].

While it is important to distinguish these concepts, it must be

acknowledged that they are often used interchangeably, and the

boundaries between different terms are not always strictly defined

[42].

Some scholars argue that when a virtual representation is solely

used to mirror a physical object, it can be classified as a DS [14]. A

digital model is a virtual representation of a physical object, system,

or process. It can take various forms. As we mentioned, 3D models

from computer-aided design files, or algorithms, can be deemed

as DMs. However, according to the broad definition of DTs and

their functional classification, it can be considered that DTs can

include the other two concepts because DTs require data models

and sometimes also need to reflect the form of the virtual world.

Onemethod to distinguish them evaluates based on the following

dimensions: the autonomy of data flow [26], and functionality.

Figure 2 shows the difference in autonomy of data flow in those

three types.

Figure 2: Data Flow in DT, DM, and DS

Without the ability to ensure the two-way flow of data and

instructions, it is difficult to achieve the vision of DTs. Therefore,

although it is sometimes referred to as DT in a broad sense, it is

essentially downgraded to DS or DMs.

2.3.2 Digital Twins and Digital Twins System. In a narrow

sense, DTs should be defined strictly as digital components, ex-

cluding their corresponding physical objects from the definition,

as shown in Figure 3. This definition focuses solely on the virtual

representation, simulation, and analysis capabilities of DTs without

considering the actual physical entities they mirror. Additionally,

components responsible for communication between the physical

and virtual realms—such as sensors, data acquisition systems, and

networking infrastructure—should also be excluded from being

considered part of the DTs, an example can be shown in Figure 4.

Figure 3: The Narrow Scope of "Digital Twins".1

In a broader sense, DTs often refer to the entire Digital Twins

System (DTS), which encompasses the complete ecosystem, includ-

ing digital models, physical counterparts, and the communication

1
Left Original Photo Source: AM4 Amsterdam Science Park exterior mid res
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and data processing infrastructure that connects and supports them.

To avoid being imprecise and make it more rigorous, unless other-

wise specified, we will keep using the term DTs with the narrow

meaning, i.e. DTs only represent the digital parts. When we discuss

the term NDTs, we reflect the whole network digital twins system,

where the physical objects(twins) are also involved.

Figure 4: Comparison of DT and DTN

2.3.3 Network Digital Twins and Digital Twins Network.
Network Digital Twins (NDTs) generally refer to wireless network

DTs, such as 5G/6G and beyond networks. However, Digital Twins

Network (DTN) is generally not always related to NDTs. This con-

cept generally describes the joint collaboration of multiple twins,

including the interaction between physical twins and virtual twins.

A simple Digital Twin System or Digital Twin can be considered a

virtual entity corresponding to a physical entity. After extension,

they can be described as "many to many co-evolution" [63], which

becomes DTN.

2.3.4 DT Prototype, Instance and Aggregate. A digital twin

prototype is an initial, high-level model that is typically used during

the design and testing phases of product or system development.

This prototype represents a general, standardized entity model that

encapsulates the essential characteristics, properties, and function-

alities of a product or system[28]. At this stage, the prototype is

not yet specific to any single instance or individual unit; instead, it

serves as a blueprint or template from which specific instances can

later be created. The digital twin prototype contains generalized

information, such as design specifications, structural features, oper-

ational guidelines, and performance criteria. It allows engineers and

designers to explore various design configurations, test theoretical

performance, and validate design choices in a virtual environment

before moving on to the production of physical objects.

A digital twin instance is a specific, digitized copy of a specific

physical object or system. Each instance has its own unique data

and behavior, which is usually updated in real-time through sensors

and other data collection tools [40]. A digital twin instance can be

created from a digital twin prototype [22]. From this perspective,

DT prototype is similar to the concept of "class" in object-oriented

programming languages, and instance represents a specific object

instance of a class.

A digital twin aggregate refers to a collection of multiple digital

twin instances, often of the same or related types of physical enti-

ties. This aggregation provides a comprehensive, macro-level view

that enables system-wide analysis and optimization. By integrating

data from various instances, a digital twin aggregate allows for the

monitoring and assessment of overall system performance, identifi-

cation of patterns and trends, and informed decision-making for

system-level improvements [65, 22]. Unlike a digital twin network

(DTN), which emphasizes the dynamic interaction and co-evolution

of multiple DTs, including physical-to-virtual interactions, a digi-

tal twin aggregate primarily focuses on the data consolidation and

holistic analysis of grouped instances without necessarily involving

complex inter-twin interactions.

2.4 The Definition
We summarize the background and the different emphases of the

research on DTs, and we propose our candidate definition of DTNs

as follows:

A Network Digital Twin (NDT) represents a virtual twin that mir-
rors, simulates, and operates the life cycle and components of the
physical network [38, 24]. It uses data-driven computational models
to maintain real-time conditions and forecast future states [30]. The
NDTs features bidirectional interfaces that not only update the virtual
twin based on changes in the physical twin but also allow the virtual
twin to issue commands to alter the physical network.

3 ARCHITECTURE/KEY TECHNOLOGIES
Similar to the definition of DTs, due to different understandings

and emphases, as well as different needs. There is currently no, or

hard to have, a unified and standard structure for NDTs system[31].

Currently, the three-layer or four-layer architecture is more com-

mon in the academic [60, 53, 59], but there is no consensus on the

details and structure of each layer. In this section, we proposed

a three-layer general NDTs system structure, including Physical

Twins Layer, Digital Twins Layer, and Application/Service Layer,

the details can be shown in Figure 6. To be noted, in our research,

we deliberately chose not to adopt the term “Physical Layer” from

certain sources[52] to avoid confusion. This decision is made be-

cause the term is frequently used within the context of computer

network architectures, where it specifically refers to the lowest

layer of the OSI model that is responsible for the transmission and

reception of raw data bits over a physical medium. Instead, the

Physical Twins Layer here involves all objects in the physical world

that can be modeled as digital models[52].

3.1 Communication Methods
In order to better understand the subsequent description, it is nec-

essary to explain the three communication methods first.

There aremainly three types of communicationmethods, namely:

Physical-to-physical Communication, Virtual-to-virtual Commu-

nication, and Bidirectional Communication between the physical

and digital worlds. A schematic diagram can be seen in Figure 5.

3.1.1 Physical-to-physical Communication. In NDTs, Physical-
to-physical (P2P) communication is fundamental to the operations

of the Physical Twins Layer in the NDT architecture. This type of

4
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Figure 5: Communication Methods

communication involves direct interaction between physical de-

vices such as sensors, IoT devices, and 5G/6G base stations. The

primary goal is to ensure seamless and efficient transmission of

raw data and control commands across various components of the

physical network. Techniques are employed to achieve high-speed,

reliable connections essential for real-time data processing and

decision-making [63]. This communication also incorporates ad-

vanced encryption and security protocols to maintain data integrity

and prevent unauthorized access, thus safeguarding the founda-

tional communication within the network. To be noted, DNTs do

not need to focus more on how they work or communicate, or in

other words, the physical principle. However, the network hard-

ware within this system must be capable of receiving and executing

instructions, as a consequence, the communication can be changed.

3.1.2 Virtual-to-virtual Communication. In the Virtual Twins

Layer, virtual-to-virtual (V2V) communication plays a critical role

by facilitating interactions between digital representations of phys-

ical entities. This involves the exchange of data and commands

between virtual models and simulations that mirror real-world net-

work components and behaviors. This communication should uti-

lizes data-driven models and algorithms to ensure that the virtual

entities interact in a manner that accurately reflects their phys-

ical counterparts. Communication in this realm should also be

optimized for speed and efficiency, for example, leveraging data

compression and caching techniques to handle large volumes of

information rapidly.

3.1.3 Bidirectional Communication. Bidirectional communi-

cation ensures a continuous and dynamic exchange of information

between the Physical and Virtual Twins layers as well as between

the system and the Application/Service Layer. This type of com-

munication allows for the upward flow of data, for example, the

states and discrete events, from physical devices to virtual models

and the downward transmission of insights or decisions from the

virtual back to the physical devices. For instance, data on network

performance collected from physical devices is processed and ana-

lyzed virtually; the insights generated can then be used to adjust

physical operations in real-time.

3.2 Physical Twins Layer
The Physical Twins Layer is the fundamental building block of the

NDTs system architecture. It’s primarily responsible for gathering

and initially processing data from the physical environment. This

layer includes a wide variety of physical components such as sen-

sors, actuators, and devices that can detect, measure, and affect the

environment. Among these can be state-of-the-art 6G base stations

and a wide range of user equipment, including smartphones, tablets,

wearables, and a comprehensive array of IoT devices.

The main goal of the Physical Twins Layer is to collect and pro-

cess data as accurately and quickly as possible using advanced,

high-speed, low-latency communication technologies. Moreover,

this layer should not only meet the demands of wireless networks,

such as the extreme data rates, enhanced spectral efficiency and

coverage, wide bandwidths, enhanced energy efficiency, ultra-low

latency, and extremely high reliability envisioned in 6G[48]. Addi-

tionally, it should also play a crucial role in maintaining the security

and robustness of data transmission. As the first layer to handle

real-world data, it uses advanced encryption and performs data

integrity checks to safeguard against unauthorized access and data

breaches, ensuring a secure digital twin environment to consolidate

the next processing procedures.

3.3 Digital Twins Layer
The Digital Twins Layer includes digital counterparts of physical

objects but is not limited to these representations.

We propose that this layer should minimally include three core

components (or functionalities): Communication Components, Data

Storage Components, and Computing and Modeling Components.

3.3.1 Communication Components. This component is vital

in the NDTs system architecture, especially the Digital Twins Layer,

acting as the essential link between the physical and virtual objects.

It manages the transmission and transformation of data, ensuring

a fluid and uninterrupted flow. This component converts raw data

into structured formats that the Virtual Twins Layer can readily use,

optimizing compatibility and usability across the system. It also

integrates advanced data processing functions such as mapping

to align real-world elements with their digital counterparts, and

preliminary data analysis techniques like cleansing to remove inac-

curacies and aggregation to combine data points for more complex

analysis. In a boarder sense, the V2V communication functions

should also be implemented and counted in this component.

3.3.2 Data Storage Components. The Data Storage Compo-

nents are for effective data management, encompassing temporary

storage for quick data processing, metadata storage for efficient or-

ganization and retrieval, and robust data security measures. These

measures include data encryption to protect data privacy, access

control to ensure that only authorized users can interact with the

data, and security auditing to monitor and verify compliance with

security protocols. Together, these components should also un-

der a comprehensive system that safeguards data integrity while

facilitating smooth and secure data operations.

3.3.3 Computing and Modeling Components. The Comput-

ing and Modeling Component should be capable of abstracting and

aggregating computing and modeling units of various complexi-

ties and granularities to meet specific requirements. This includes

capabilities for modeling, simulation, and prediction, as well as

conducting ’what-if’ analyses. Additionally, it should incorporate
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Figure 6: NDTs System Architecture

a comprehensive fault detection system capable of swiftly identi-

fying and diagnosing operational issues, alongside robust system

optimization tools that fine-tune performance across diverse net-

work scenarios. Moreover, its predictive maintenance algorithms

proactively suggest repairs and upgrades, significantly reducing

downtime and extending the lifespan of network components.

These advanced functionalities often rely on deep analytics and

machine learning algorithms, which provide substantial support

to the upper Application/Service Layer. These algorithms contin-

uously learn from ongoing operations and simulations, thereby

enhancing their accuracy and efficacy.

3.4 Application & Service Layer
The Application & Service Layer is the uppermost tier of the NDTs

system architecture, where it directly orchestrates services and de-

livers enhanced experiences for end-users. This layer incorporates

a vast array of applications spanning augmented and virtual reality,

autonomous vehicles, smart city technologies, and telemedicine, all

designed to seamlessly integrate with daily human activities and

infrastructural operations. Moreover, the Applications & Service

Layer should be characterized by its Service-oriented Architecture

(SOA) which enables it to offer modularized and reusable services.

This modularity allows for services to be independently deployed,

managed, and scaled, meeting specific user demands without affect-

ing the overall system. Furthermore, it supports isolated operations

where individual services can function in a standalone mode, en-

hancing fault tolerance and reducing dependencies. This isolation is

essential for ensuring that any disruptions in one service do not cas-

cade to others, thereby maintaining the robustness and continuity

of user services. Besides, each service should be both resilient and

precisely tailored to meet evolving user needs and environmental

contexts.

4 NDTS APPLICATIONS
There are not many real applications at present, and most of them

are still in the conceptual stage and academic simulation research

stage. There are few real NDTs reported and combined with hard-

ware. In order to better combine the above proposed NDTs ideas and
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structure for discussion, we selected and summarized several well-

implemented NDTs applications. By investigating and analysing

those existed implementations, we hope to introduce and propose

the most likely important future development trends and emerge

challenges of NDTs.

4.1 Ericsson
Ericsson’s exploration of digital twins in network management ad-

dresses challenges in optimizing and automating 5G networks [61].

By implementing Network Digital Twins, they provide a safe virtual

environment for testing and optimizing network parameters like

radiated power without affecting real-world operations. This ap-

proach not only complies with strict regulatory standards but also

enhances network performance through machine learning tech-

niques, leading to more efficient power usage and improved user

experiences without compromising service quality. This methodol-

ogy exemplifies a strategic use of digital twins to enhance network

reliability and efficiency while adhering to regulatory constraints.

The reason we analyze this case is that it is an NDTs case that

meets the basic design ideas and purposes. Although it is not com-

plex enough, it basically has the structure and functions of NDTs

and also uses AI techniques as a tool. It’s worth mentioning that

the focus of this application case is the use of reinforcement learn-

ing. Despite thousands of rounds of training, the cost is minimal

because the training environment does not affect the real world.

Besides, they used Nvidia’s Omniverse platform for interaction and

visualization [23]. Currently, there are many platforms, but there is

no unified standard, and no one platform is better than the others

in all aspects. However, each platform has different focuses and

advantages. Here, the Omniverse they used has been proven to be

adaptable and recommended for NDTs development in many cases.

4.2 HEAVY.AI
The 6G NDTs system proposed by Lin et al. adopts a layered archi-

tecture approach, including the physical network layer, the twin

layer, and the network application layer. The physical network layer

contains the physical facilities and operating environment of the

6G network. The twin layer is the core of the NDTs, consisting of

the data domain, the model domain, and the management domain.

This layer is a dynamic, accurate, and up-to-date digital mapping

of the physical network. The network application layer uses the

data and insights generated by the twin layer to improve network

operations and management [30].

HEAVY.AI has developed an NDTs application called HeavyRF,

which integrates the SQL backend of Omniverse and HeavyDB,

using the latter for real-time processing of radar and other ter-

rain data and RF propagation simulation. HeavyRF is able to run

real-time RF simulations on extremely high-resolution terrain data,

which is particularly important for 5G and 6G network planning, as

these networks need to be simulated in environments with higher

transmitter density and more obstruction attenuation. By orches-

trating simulations with SQL, HeavyRF can also perform real-time

data extraction, loading, and transformation operations on input

data, and perform rich operations on simulation outputs, such as

associating terrain locations and simulated signal strengths with

building polygons to calculate the minimum, maximum, and av-

erage signal power received by each building [30]. Through this

experiment, they show how DTNs can revolutionize network man-

agement through predictive analytics, real-time simulations, and

AI-driven optimizations. And, the effectiveness and usefulness of

the Omniverse platform are proven.

This example can be considered relatively valuable for reference.

Firstly, this architecture is well adopted and aligns with our pro-

posed three-layer NDTs system architecture concept. Additionally,

its modular design and the scope of its applications are within rea-

sonable limits, adhering to the fundamental principles of NDTs

systems and appropriately designing functions and modules within

different layers.

5 OPEN CHALLENGES
When exploring the application of Digital Twins (DTs) technology

in 5G/6G networks, we are faced with a series of open challenges.

These challenges range from communication, standardization, se-

curity to computing costs and data acquisition. Digital twin tech-

nology provides unprecedented possibilities for the management

and optimization of network systems by creating virtual copies of

physical entities. However, the implementation of this technology

is not without obstacles. we conducted a comprehensive investiga-

tion and identified several critical challenges that currently stand

as the most formidable and pressing issues needing resolution in

the field. This section will introduce these challenges in detail and

explore how they affect the application of digital twins in future

communication networks.

5.1 Uniform Standards and Generalizations
The standardization progress of DTs is significantly behind that of

applications. Most of the current standards are related to produc-

tion. In 2018, the International Organization for Standardization

(ISO) initiated the creation of the ISO 23247 series of standards,

which provide a framework for manufacturing-focused digital twin

systems [52]. However, the development of standards for NDTs has

not yet emerged. The platforms used are varied, but none are specif-

ically designed for NDTs. This lack of a comprehensive platform

results in inconsistencies in standards during the design phase, as

well as challenges in migration and scalability.

One of the primary purposes of NDTs is to create virtual replicas

for network simulation and what-if testing, which can significantly

reduce costs. This also suggests that NDTs can quickly adapt and

generalize from small and simple network instances to complex and

specific network structures [2]. The structural differences between

various physical networks make migration a major issue, resulting

in elevated production and design costs. Graph network structures

offer a promising solution, and some studies are currently being

conducted on this topic [13]. Combining this with DL, especially

deep reinforcement learning, has the potential to be used in an

environment where the network topology changes dramatically

[50, 37].
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5.2 Security
There are many aspects to security issues. Security risks during

communication are one of them. As mentioned above, communica-

tion is mainly divided into three types: P2P, V2V and bidirectional

communication.

Data involved in P2P and bidirectional communication must be

gathered, transmitted, and stored using established communication

protocols. These common techniques are known to have several

security vulnerabilities [39]. V2V can also introduce security issues

because it allows different processes to exchange data, potentially

exposing sensitive information. Key issues include unauthorized

access, data tampering, and privilege escalation. Ensuring secure

IPC requires measures like encryption, authentication, and strict

access controls to prevent these vulnerabilities.

Currently, there is some academic research and effort on the

application of DTs in broader fields and their associated security

risks with cases [1, 21, 56]. It is inappropriate to provide detailed

descriptions and reintroduce every security risk since this is an

abroad topic. However, we reorganize and summarize key points

based on the NDTs architecture we proposed in Figure 7.

5.3 Communications
A major feature of DTs is that communication is bidirectional. The

situation and challenges also vary between different communication

methods. In NDTs, the physical-to-physical communications within

networks follow the physical principle.

5.3.1 Real-time synchronization. Low latency is amust inmany

scenarios, such as Ultra-Reliable Low Latency Communications

(uRLLC). In P2P and bidirectional communication, this challenge is

even more obvious because large and frequent data transfers across

physical media become difficult. Because of the need to cross the

physical medium, large and frequent data transfers become difficult.

6G may reduce latency to less than 5G’s 1 ms [57], maybe be less

than 10 𝜇s [35], and the new generation of network technology is

expected to solve this problem [63]. However, the speed of physical

signal transmission may still not be comparable to the data transfer

under the same medium.

5.3.2 Fault Tolerance. In NDTs system, entities need to be up-

dated and synchronized in real-time. Therefore, any errors in the

synchronization process may be magnified and lead to the collapse

of the entire system. Specifically, when the DT issues an instruction

to an entity, if the status of the two entities is no longer consistent,

the specific instruction may not be able to be executed or result in

serious problems [63]. In addition, disconnection is also common.

Short-term disconnection will not have a significant impact on the

system (that is, the frequency of synchronization can be reduced to

a safe level). However, long-term component disconnection may

result in the loss of historical records and deterioration of data

quality.

Simply using RL agents does not seem to be a direct solution,

thus, other automatic error correction mechanisms are needed.

5.4 Continuous updates and Computing Cost
Continuous updates and computing costs in NDT systems encom-

pass a range of activities such as updating states, predicting future

states, issuing control instructions, and receiving and processing

feedback. Maintaining a fine-grained simulation with continuous

updates imposes significant performance overheads. The frequent

updates, while potentially improving accuracy, also lead to substan-

tial and often unnecessary consumption of computing resources.

In NDTs systems, different physical and virtual objects have

varying levels of impact on the overall system performance. It is

important to avoid the excessive allocation of resources to com-

ponents that yield minimal returns. Hence, the rational allocation

of computing resources, supported by sophisticated algorithms,

becomes imperative to optimize system performance effectively

[16].

The dynamic nature of environmental changes, such as alter-

ations in the locations of objects within the Internet of Things (IoT)

network systems, introduces additional complexity to computa-

tion prioritization. These changes necessitate adaptive strategies

to prioritize calculations based on the current system state and

environmental context. The interplay of multiple factors can pre-

cipitate significant alterations in the system’s environment, thereby

demanding high efficiency and speed in computational processes.

To address these challenges, more efficient, and computing resource-

saving Deep Reinforcement Learning (DRL) algorithms can be a

breakthrough. For instance, [45] used the Proximal Policy Optimiza-

tion (PPO) algorithm, which simplifies the complex computations

involved in Trust Region Policy Optimization (TRPO), making it a

viable approach for handling the computational demands of NDTs

with higher computational efficiency.

5.5 Random Access
NDTs, especially for 6G, have special requirements and application

scenarios. One of the prospective scenarios of 6G is Massive Ma-

chine Type Communications (mMTC). The difference between this

and DTs on the other areas is that the communication here is based

on network protocols. Therefore, it is not easy to manage a large

number of devices, such as IoT devices.

For example, grant-based random access protocols. When a de-

vice wants to connect to the network, it needs to send a preamble

to the base station (or network). The network has a set of unique

preambles (signals) that devices can use. These preambles are de-

signed to be orthogonal, meaning they are distinct and do not

interfere with each other. This is important because if two devices

use the same preamble at the same time, their signals can clash,

causing confusion for the network. Each device randomly selects

one preamble from the pool when it wants to connect. This selection

process is random to distribute the network load and avoid constant

collisions [35]. The limited number of preambles and collisions are

challenges for 6G, because when IoT devices increase dramatically,

higher device management capabilities are also required [7]. At the

same time, 6G NDTs systems will also have synchronization issues.

For DTs and their physical counterparts (PTs) to stay synchronized,

the PTs need to periodically connect to the network using these

preambles. Collisions and delays disrupt this process, leading to

desynchronization between the DTs and PTs.

8



1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

Digital Twins in Networks: A Systematic Survey Literature Study, May 2024, Amsterdam, The Netherlands

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

Figure 7: The Most Likely Risks in Each Layer

5.6 Data Acquisition and Ownership
In the realm of NDTs systems, data acquisition is pivotal due to the

intricate nature of synchronizing physical entities with their digital

counterparts. This involves capturing vast amounts of real-time

data from a multitude of sensors and devices, necessitating ad-

vanced data fusion algorithms and big data analytics. The real-time

data acquisition process is essential for maintaining an up-to-date

and accurate digital representation of the physical network, which

allows for effective monitoring, control, and optimization. One of

the primary challenges in data acquisition for 5G/6G DTs is ensur-

ing the timeliness and accuracy of the data collected. As 5G/6G

networks are expected to support a wide range of applications with

varying requirements, from ultra-reliable low-latency communica-

tions (URLLC) to massive machine-type communications (mMTC),

the DTs must handle heterogeneous data sources and types effi-

ciently. This is further complicated by the sheer scale and coverage

of 5G/6G networks, which necessitate robust data collection mech-

anisms capable of processing and integrating data from diverse

environments and devices.

The issue of data ownership in NDTs is equally critical. Own-

ership pertains to the rights and responsibilities associated with

the data generated and used by the digital twin. In a 5G/6G con-

text, data ownership is complex due to the involvement of multiple

stakeholders, including network operators, service providers, and

end-users. Each of these entities generates and relies on data for

various purposes, from network management and optimization to

personalized user services [46]. Besides, to mitigate transmission

delays, NDTs systems can strategically cache and pre-fetch related

data on the designated device or edge node [59]. By deploying data

closer to the point of use, it brings more serious issue in managing

the data and protect privacy because of more data ownership and

temporary storage.

Until now, it is still difficult tomitigate the acquisition, ownership

or both. The two are also often prone to conflict with each other.

5.7 Granularity
In some other DTs fields outside of the network, high-fidelity mod-

elling is relatively more important because the physical form needs

to be reflected in the digital world asmuch as possible [66]. However,

increased model fidelity comes at the cost of increased computa-

tional load. Detailed models require processing large volumes of

data and performing complex simulations, which can strain com-

putational resources and affect the responsiveness and scalability

of the DTs.

Although NDTs do not need to focus too much on high fidelity

in some cases, they also have a similar problem, which is granu-

larity. Granularity represents a critical and challenging aspect that

fundamentally influences the effectiveness and applicability of the

twin. Granularity, which refers to the level of detail at which a

digital twin simulates and represents its physical counterpart, must

be carefully calibrated to balance between computational feasibility

and the fidelity of the simulation.

The importance of granularity in NDTs stems from its direct

impact on the twin’s ability to provide actionable insights and pre-

cise control over network operations [60]. A higher granularity

level allows for a more detailed and accurate representation of the

network, enabling finer detection of issues, more precise predic-

tions, and more effective optimizations. However, modelling at a

very detailed level requires significant computational resources and

extensive data, which can limit the model’s scalability and respon-

siveness. Conversely, a lower granularity level simplifies the model,

reducing the computational load and data requirements. While this

enhances the model’s scalability and operational efficiency, it may

compromise the accuracy and usefulness of the insights generated.

9



1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

Literature Study, May 2024, Amsterdam, The Netherlands Zhiheng Yang

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

6 THE FUTURE TRENDS
6.1 Service-oriented and Isolated NDTs
The evolution towards 6G necessitates a paradigm shift in how

NDTs technologies are implemented within the IoE. SOA are im-

portant in this transformation, which offers a dynamic and flexible

framework that can adapt to the diverse and rapidly changing needs

of digital twin applications. In a service-oriented design, each com-

ponent of a digital twin is developed as an independent service,

allowing for greater scalability and easier maintenance [24]. This

modularity not only enhances the development process but also

simplifies updating and scaling individual services without disrupt-

ing the entire system. Moreover, SOAs facilitate the integration

of heterogeneous systems and devices, which is essential for the

IoE environments anticipated in 6G networks. By enabling discrete

services to communicate and function interdependently, service-

oriented digital twins can meet specific performance requirements

while maintaining high levels of operational efficiency.

Resource isolation is another needed feature that must be inte-

grated into future NDTs designs to ensure robustness and reliability.

In a shared network environment, where numerous digital twins

operate concurrently, dedicated resource allocation can lead to

substantial inefficiencies. Conversely, effective resource isolation

strategies such as virtualization or containerization allow multiple

twin-based services to coexist on the same physical infrastructure

without interference, thus optimizing resource utilization. This ap-

proach ensures that each digital twin service receives the necessary

computational and communication resources to function optimally

, and secures each service from potential disruptions or security

threats posed by other tenants. The combination of service-oriented

design and stringent resource isolation protocols is thus essential

for sustaining high-performance, secure, and scalable digital twin

operations in the forthcoming 6G networks and is a trend in the

development of NDTs.

6.2 Blockchain-based NDTs System
As mentioned above, NDTs systems face security and privacy chal-

lenges, which is one of the problems that the academic community

is trying to solve. Some scholars believe that blockchain is a viable

solution because it provides decentralization, enhanced security

and transparency [35], and in addition, interaction records should

be traceable and transparently monitored [34].

However, the adoption of blockchain in NDTs system is not

without its hurdles. One of the primary concerns is scalability; tra-

ditional blockchain networks often struggle to handle high transac-

tion volumes efficiently, which can be particularly problematic in

IoT environments where numerous devices frequently interact. This

scalability issue is compounded by the significant energy demands

associated with blockchain operations, which pose a substantial

challenge for IoT devices that typically have limited computing and

power resources. The regulatory environment for blockchain also

varies greatly across different countries, which creates a complex

and often confusing framework for its global implementation. Legal

uncertainties and the absence of standardized regulations can deter

companies from integrating blockchain into DTs solutions, as they

may be wary of adopting a technology that might not align with

future regulatory changes. The positive point is that there are a lot

of studies on this in academia. The academic community remains

optimistic about the potential of blockchain to revolutionize NDTs

system security. Ongoing research is focused on developing more

scalable and energy-efficient blockchain solutions that can be inte-

grated into IoT networks without overwhelming device capabilities.

it may be possible to find a generalized blockchain-based NDTs

systems in the future.

6.3 Federated Learning
Compared with Blockchain, federated learning may have better

application value and lower cost. It also has better and more flexible

advantages in data ownership. Using dispersed federated learning,

such as collaborative federated learning based on local aggrega-

tion at end-devices, ensures privacy on the one hand, and makes it

more difficult for the aggregation server to infer local information

from the local aggregated learning model on the other hand [6,

33]. Reinforcement learning has demonstrated its role in network

optimization, and reinforcement learning combined with federated

learning will be more widely used and more powerful in NDTs sys-

tems [9]. The integration of these two methodologies enables more

effective handling of the decentralized nature of modern networks,

especially in edge computing environments. Reinforcement learn-

ing excels at making sequential decisions and adapting to dynamic

environments through interactions. When combined with federated

learning, which facilitates learning across multiple decentralized

nodes without requiring the sharing of data, the system can opti-

mize network management tasks in real time while maintaining

data privacy. Federated learning allows multiple edge devices to

collaboratively learn a shared prediction model while keeping all

the training data on the device, decentralizing the computation and

protecting user privacy in the DTs [5].

This combination of dynamic adjustment and privacy reserved

scheme can be more important in the future NDTs research.

7 DISCUSSION
In this systematic survey, we explored the evolving field of Net-

work Digital Twins (NDTs) with a focus on their integration within

5G/6G network frameworks. We presented a detailed analysis of the

evolution, definitions, architectures, and classifications of digital

twins. Currently, different reviews and surveys have different fo-

cuses, and there are many complex and mixed concepts which can

cause confusion and misunderstandings easily. Therefore, our work

aims to address these issues to some extent and enable researchers

to quickly understand and get started with the concepts of DTs,

especially NDTs.

Despite the comprehensive nature of this survey, several lim-

itations need to be acknowledged. Firstly, the rapidly evolving

nature of digital twin technology means that some of the latest

developments may not have been fully captured. Additionally, our

reliance on published literature may have excluded some propri-

etary advancements made by private companies. The scope of our

survey, while extensive, may not cover all possible applications of

NDTs, particularly in niche or emerging areas. Lastly, the diversity

in terminologies and classifications of digital twins presented a

challenge in synthesizing a unified framework. Currently, industry-

specific research on NDTs is relatively limited, and we still lack

10



1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

Digital Twins in Networks: A Systematic Survey Literature Study, May 2024, Amsterdam, The Netherlands

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

some relevant information, such as the cost of deploying NDTs,

their practical implementation status, and overall progress. These

areas are critical and could significantly impact the future develop-

ment of NDTs. Moreover, the level of support from development

teams or open-source communities for the expansion of such NDTs,

such as simulators/emulators, is also a concern. Tool-related issues

may not be fully addressed through academic literature or online

resources alone. Therefore, we hope to conduct in-depth hands-

on research in the future, personally testing industry tools, and

attempting to provide some recommendations and guidance.

8 CONCLUSION
Our study provided a comprehensive survey of the current state

and future possibilities of Network Digital Twins within the evolv-

ing telecommunications landscape. By systematically analyzing

the roles, components, challenges, and future prospects of NDTs,

it became evident that these systems play a important role in en-

hancing network performance and reliability in the future and may

provide more breakthrough applications. Our research outlined the

necessity for ongoing development in areas such as security pro-

tocols, integration techniques, and standardization to fully realize

the benefits of NDTs. Future research should focus on overcoming

these challenges and exploring innovative ways to integrate NDTs

more seamlessly across various network scenarios.
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