
Course Web Service and Cloud Systems 2019-2020

Literature study assignment
Coordinators: Saba Amiri, Adam Belloum,

1. Fog Computing And Relation to Cloud Computing - A Review on Fog Computing And Privacy ………………..
2. Infrastructure as Code on DevOps and the effective metrics for continuous delivery……………………………..
3. A review on parallel implementations of DNNs based on distributed algorithms ……………….……………….….
4. Serverless Computing and Function as a Service …………….……………….……………….……………….……………………
5. Big Data and Cloud …………….……………….……………….……………….………………….…………….……………….………………
6. Literature review of selected NoSQL and NewSQL globally-distributed database systems…………….…………
7. IDaaS (Identity as a Service): Challenges and visions for the future…………….……………….…………………………..
8. Intelligence at the edge: A review of Machine Learning in edge computing.……………….…………………………..
9. Mobile clouds: analysis of service models, computation offloading, existing applications
10. Cloud-Based Payment Systems: A Literature Review…………….……………….…………………………..…………….……..
11. Impact of GDPR on Personal Data in the Cloud…………….……………….…………………………..…………….………………
12. Serverless Computing and Serverless Research…………….……………….…………………………..…………….……………..
13. The status of Containers and Unikernels from a cloud perspective…………….……………….………………………….
14. Edge Computing and Relation to Cloud Computing…………….……………….…………………………..…………….……….
15. Cloud Security Practices: Security Operations, Audits, and Compliances…………….……………….………………….
16. High Performance Computing in The Cloud (Group 17) : Literature Study…………….……………….………………..
17. The Business Models for Cloud Computing Literature Study…………….……………….…………………………..………..
18. Cloud-based integration – iPaaS…………….……………….…………………………..…………….…………………………………….
19. MicroVMs and Containers reviewed from a cloud perspective…………….……………….…………………………........
20. Course presentation

Note:
Following are reports of the Literature study assignment part of course “Web Services and
Cloud Systems”1 given in the context of the Joint UvA-VU Computer Science program2. The literature
assignment is worth 35% of the total course grade. Students have to read at least 17 papers and
prepare a (8-10)-page report in a style of a scientific publication3, and give 15 mn presentation at the
end of the course. The literature topics are not covered during the lectures, students use the
knowledge acquired during the lectures to perform the literature study. To introduce the students to
scientific paper analysis, 4 scientific papers are analysed and discussed during the lecture hours.
Reports are checked for plagiarism using Trinity tool integrated in Canvas (similarity score tolerated is
max 20%).

1 https://studiegids.uva.nl/xmlpages/page/2020-2021/zoek-vak/vak/79525
2 https://masters.vu.nl/en/programmes/computer-science-big-data-engineering/index.aspx
3 Formatting requirements: NeurIPS 2019 conference. More information and LaTeX templates can be found
here: https://nips.cc/Conferences/2019/PaperInformation/StyleFiles

Fog Computing And Relation to Cloud Computing -
A Review on Fog Computing And Privacy

Martijn, Lucien
lucienmartijn@gmail.com

12969168

Meijerink, Stijn
s.d.j.meijerink@student.vu.nl

12970247
Herold, Leonard

mail@lherold.me
12854743

Abstract

This literature study researches the state of Fog Computing with a focus on the pri-
vacy aspects. The heterogeneous, geo-distributed, virtualized computing paradigm
is frequently used for real-time applications that require low-latency. This work
identifies seven privacy concepts based on an established research methodology,
each investigated in-depth in order to identify the current privacy issues and the
corresponding state-of-the-art solutions in Fog Computing. Furthermore, multiple
aspects are proposed in which both Fog Computing and Cloud Computing can
benefit in order to achieve improved privacy. As a major finding, it turned out that
there is a significant gap in the existing literature concerning the legal perspective
of Fog Computing. Finally, this work can be used as a starting point to conduct
an exhaustive study on the synergies between the Cloud and Fog, following this
work’s approach.

1 Introduction

The Internet of Things (IoT), according to a PWC study [11], has seen constant growth over the
last decade, and the number of IoT devices deployed in fields such as industry, healthcare, and
the consumer market grew steadily. For example, Gartner forecasts that 5.8 billion IoT devices
will be installed in 2020, a 21% increase from 2019 [22]. Naturally, the massive growth in device
numbers increases the amount of data generated. As IoT devices often have limited resources
available (e.g., computational power), work is offloaded to the Cloud. However, IoT’s real-time
processing requirements and the long distance between the edge and the core of the network where
the Cloud is located causes issues such as high latency and high bandwidth usage, making them both
an unsatisfactory fit.

Fog Computing (FC), a term coined by Cisco in 2012, is a highly virtualized distributed computing
paradigm that extends the reach of the Cloud to the edge of the network. It characterizes low latency,
heterogeneity, mobility, location awareness, and geo-distribution [8]. Since the emergence of FC,
the paradigm has continuously matured, and applications in different fields such as healthcare, smart
homes, and vehicular ad hoc networks have been proposed [20, 23, 39]. In 2015 the OpenFog
Consortium was founded as a global initiative backed by tech companies and academic institutions to
standardize and stimulate the development of FC.

However, as it is an extension of the Cloud, it partly inherits issues present in Cloud Computing (CC),
such as privacy and security. These issues are also relevant for FC. While solutions developed for
CC can be transferred to the new paradigm, FC also introduces new privacy and security challenges.
These issues are caused by the different inherent characteristics of FC, such as mobility, heterogeneity
of Fog Nodes (FNs), and IoT devices. Consequently, the topic of data privacy has been hotly debated

in the last two decades. These discussions and the additional issues unique to FC motivate this work.
Hence, this literature study aims to take a closer look at the current privacy issues in FC, answering
three research questions:

1. What are current privacy concerns in the context of Fog Computing?

2. What are the current state-of-the-art solutions that address the privacy issues in FC and their
respective advantages and drawbacks?

3. Can Cloud Computing adapt advancements made in Fog Computing or vice versa?

For the purpose of answering the research questions posed, this literature review’s structure is as
follows. First, the literature review methodology is presented in Section 2. The background and
related work into FC are provided in Section 3. Section 4 aims to answer the questions posed in a
structured matter, shedding light on the issues, the current state-of-the-art techniques, and solutions
that can be transferred from or to CC. Finally, this work is concluded in Section 5 discussing the
work, elaborating the limitations, and pointing out future challenges in FC.

2 Literature Review Methodology

This section regards the method used to investigate the scientific space concerning the research
questions proposed in Section 1. First, the literature review methodology is presented thoroughly,
including data sources and tooling. This not just aids independent reproducibility but also provides
an understanding of how results were obtained. Next, the results of the literature query and selection
process are presented.

To provide a comprehensive and objective view on the field and to comprehensively answer the
research questions, a systematic literature review search process inspired by Brocke [9] was deemed
beneficial for our research. Brocke divides the process into five steps: definition of review scope, the
conceptualization of the topic, literature search, literature analysis, synthesis, and research agenda.
The first three steps comprise this section, while the others are represented in the remainder of this
work.

Accordingly, we focused our review on the research outcomes and application of FC with the goal of
synthesizing the central issues in the field. The analysis is conducted in a neutral manner, which is
aimed at general and specialized scholars (i.e., students and/or academic staff). Concerning literature
selection, the analysis focused on representative and central works.

At first, the research context was conceptualized before the literature search was carried out, as
suggested by Webster and Watson [40]. For this, the Scopus database was queried to retrieve surveys
and reviews in the field of FC. Consulting the fields’ top highly cited papers [29, 30, 42, 43] of the
last five years provided better understanding, which allowed the formulation of the three research
questions presented in Section 1.

Based on this, the initial Scopus search query returned 538 results without any refinement. Starting
from the search keywords "Fog", "Computing", and "Privacy", we further narrowed the 538 results
with Scopus’ refine results options. We chose for all papers in the years 2012 up to 2020 because the
term Fog computing was introduced in the paper of Bonomi et al. [8]. We further narrowed down by
taking only the subject area Computer science; our main argument here is that the audience of this
literature review is the class of Web Services and Cloud computing class. The publication stage is set
to final, and source type is filtered to include Journal and Conference Proceeding only; hence the
results comprise only peer-reviewed papers. After this process, the Scopus results include 402 results
(see search query in Appendix A.1).

However, the final number of results returned by the search query was too high for a thorough
evaluation. The results also contained papers that did not appear to be relevant to the research of this
work. Thus, a step-by-step process was employed to reduce the number of results further to only
relevant papers. These process steps, displayed in Table 1, included scans from high-level to detailed
assessment. Each step was carried out using columns to indicate relevance in a Google Sheet. As
a final result, 15 relevant papers were found, that during the review process were also assessed by
backward and forward searches when applicable.

2

Table 1: Reduction Steps For Literature Search Results

Filter Action Amount of Papers
Initial results 402
Remove duplicates 400
Remove wrong types
(e.g., Conference Reviews) 368
Title Scan 262
Abstract Scan 62
Paper Scan 15

3 Background And Related Work

During our literature search, it became evident that the field shows ambiguous usage of terms (e.g.,
using FC and Edge Computing (EC) interchangeably). Therefore, this section establishes the relevant
foundational knowledge required for the subsequent analysis and synthesis of the literature assessed
by defining and delineating the required terminology. Furthermore, light is shed on other surveys that
covered privacy-related aspects, and this work’s contribution is highlighted.

3.1 The Computing Continuum - The Relation Between Edge, Fog And Cloud Computing

The computing paradigm landscape has witnessed big changes in the last decade, where data and
compute at the edge of the network by edge resources have increased significantly [7]. There
has been an increasing need to support real-time processing close to the data sources. However,
the edge resources are still relatively limited in computing power and rely on the Cloud for more
complex/heavy processing. Offloading of computation to the Cloud is characterized by shipping
large amounts of data towards the core of the network, which is restrictive for the latency. Ultimately,
this restriction affects the performance of the real-time requirement of applications at the edge of the
network. Naturally, computational resources moved closer to the location, the edge, where it was
needed [32]. With the emergence of Fog Computing (FC) as a new computing paradigm between the
edge and the Cloud, the notion of a Computing Continuum is created. The aim of the Computing
Continuum is to support data-driven applications by realizing an ecosystem where services and
resources are aggregated in an on-demand manner. This work follows the clear distinction between
EC and FC used by different authors [cf. 31, 32]. Edge Computing (EC) is characterized as a low
resource computing paradigm. EC happens close to the end-user and comprises edge devices (i.e.,
smartphones or cars), that connect sensors to the higher level levels.

FC, therefore, is proposed as an extension to CC. By extending the Cloud to the edge, traffic to the
Cloud is reduced, decreasing the latency and improving the Quality-Of-Service of IoT devices overall.
Various concepts of applying FFC to IoT applications used in fields such as healthcare, smart homes,
Software Defined Networking (SDN) and vehicular ad hoc networks have been proposed [20, 23,
39]. FC, as a concept, can be applied to a large range of fields and has a large potential. The need for
standardization was the next logical step in order to improve the paradigm’s security, scalability, and
programmability. In 2015 the OpenFog Consortium was founded by tech companies and academic
institutions from all over the world in order to standardize and stimulate the development of FC. Since
2019, the OpenFog consortium is merged with the Industrial Internet Consortium [25]. Although
FC resolves the latency problem of the Cloud, it still relies on CC for computational and storage
offloading (e.g., batch-processing) [32]. Consequently, FC is a connecting technology bridging EC
and CC with each other, providing low-latency, bandwidth-efficient communication, higher scalability,
and location awareness [2, 19]. The intermediary role of FC is further visualized in Figure 1, which
gives more insight into the device and networking structures of the Computing Continuum.

3.2 Privacy And Security

Similar to the delineation needed between EC and FC, literature shows that distinguishing between
privacy and security is challenging. In fact, security and privacy are closely related and are often
discussed in parallel. However, as this work focuses on the privacy aspect of FC, a clear delineation
is required.

3

Figure 1: Computing Continuum - Fog Computing is bringing the edge and Cloud together, based
on [7, 8, 31, 32]

.

Stojmenovic et al. [37] discuss security and privacy as two separate concepts. The authors discuss
security on the basis of multiple malicious attacks, whereas they argue privacy is identified as the
notion of hiding details. Rauf et al. [33] present a clear overview of security vs. privacy issues. Where
security is always denoted by an evil actor trying to compromise a system, privacy is about which
data is collected by a data processor, and how the data is handled in accordance with user consent.
Other works that were consulted during the review do not distinguish between the two concepts
clearly [cf. 4].

In this literature review, security is defined as the act of defending against attackers that employ
attacks such as attack vectors or man-in-the-middle attacks, whereas other related papers describe
privacy issues with a strong focus on security, mentioned in combination with several attacks. In
contrast to that, this paper’s notion of privacy focuses on the aspects that are centered around handling
the data itself in a secure and reasonable manner.

3.3 Related Work

In this section, related reviews regarding privacy concerns in the field of FC are presented. The most
influential papers were selected with a Scopus search on "Fog Computing Privacy" with the extra
option to only show literature reviews.

Mao et al. [26] present a survey on Mobile Edge Computing (MEC) regarding different aspects.
The authors discuss the challenges (among which privacy is one). The survey mostly focuses on
MEC; however, the authors mention that FC and MEC do have an overlap, and the terminologies are
frequently used interchangeably, as discussed previously.

4

Abbas et al. [1] start their paper ’Mobile Edge Computing a broad range of topics’ by defining the
different computing paradigms and the differences. Several applications are shown in which MEC
can be used and continue with describing the benefits of MEC and how the state-of-the-art related
research focuses on these topics. Most importantly, for this work, the authors touch upon the security
and privacy issues of the computing paradigm, before concluding with the main benefits of MEC.

Hu et al. [21] discuss multiple facets of FC from the architecture to its open issues. First, the
case is being made why FC is preferred above other edge-computing paradigms for real-time or
latency-sensitive applications, and when network bandwidth is a bottleneck. The authors also make
the comparison to CC and EC. Furthermore, the authors discuss the key technologies of FC and its
applications. Relevant for this work is the section about security and privacy issues that are still
ongoing, in which the authors discuss different concepts such as attacks, authentication, and access
control.

Fernández-Caramés and Fraga-Lamas [15] wrote a review on Blockchain-based IoT in combination
with FC. First, blockchains are introduced to the novice reader, and applications are discussed. Also,
challenges and solutions with regard to privacy in Blockchain-based IoT are discussed; the authors
specifically discuss identity certification and access management.

The contributions of this literature review lie in focus on privacy aspects in FC, covering the aspects
more in-depth than previous works. As presented in the earlier paragraphs, the most influential papers
discuss multiple aspects of EC, in which FC is one of the paradigms in the field. Further, these papers
take a broader stance on privacy, e.g., incorporating low-level security aspects, and only briefly touch
on the specifics on privacy.

This literature study, in contrast to the other related reviews, aims at specifically taking the privacy
aspects into account and addressing security only if it is essential for understanding the privacy
aspect.

4 Analysis - Privacy in Fog Computing

This section comprises the analysis regarding privacy in FC and is divided into three subsections
elaborating on the specific research questions specified in Section 1. First, the privacy issues applicable
to FC are presented and discussed. Next, the solutions and approaches found in the literature are
described, while highlighting advantages and disadvantages. Last, it is discussed to which extent FC
can apply approaches from CC, or if FC advances can be adapted.

4.1 Privacy Issues

As previously highlighted, privacy and security are concepts that are intertwined to some extent. Sim-
ilarly, different issues that were identified in the literature needed a structured approach for analysis.
Therefore, the assessment of FC’s issues is presented based on the concept matrix (cf., Table 2),
following Webster and Watson’s recommendation for literature analysis [40]. Consequently, each
area of concern regarding privacy is discussed alongside the concept matrix.

The concept of Identity Management in Table 2 refers to all aspects relevant for distinguishing a
user. Furthermore, it also incorporates access control and trust. The issue of identity management in
FC is of great importance because of multiple aspects. First of all, the leakage of the identity of the
IoT device itself or the end-user can cause problems; this can happen when communicating with a
FN. Most of the time, identity hiding happens through proxies; however, in FC, this makes the latency
problem surface again [2, 24]. Another issue is that many IoT devices are not powerful enough to run
cryptographic algorithms needed for authentication protocols [4, 31]. However, this is dependent
on the application and devices used, as authors [cf. 2, 6, 21, 24] use encryption in combination with
authorization. Other authors pose the problem of trust, where there are no efficient mechanisms to
measure when and how to trust IoT devices [4]. Furthermore, the traditional trust models for CC can
not directly be applied to FC because of the lack of centralized management [31]. Moreover, FC has
vast amounts of shared data that need a fine-grained access control scheme. This is much harder than
in CC [19]. Lastly, there are issues surrounding the distributed nature of FC. One example is that
frequent re-authentication is essential in applications such as vehicular networks [16, 19].

5

Location Privacy is defined as the concept surrounding the leakage of device’s and/or user’s location
data. The location itself consists of information based on the spatial correlation between FNs [cf.
2] and their connected devices or GPS/geospatial data. While in CC, an endpoint (i.e., a device)
requesting a location-based service must explicitly send the location, FC can infer the location due
to FN’s location awareness [19]. Guan et al. [19] argue that FC does improve the location privacy,
while other authors [2, 6, 24] claim that the issue of leakage of location information in FC is still
imminent. In fact, it must be differentiated between the explicit sending of location information and
the inferring of an approximate location. FC can provide location-based services without knowing
the user’s explicit geo-location due to the FN’s location awareness; however, as a result, FC can
suffer from indirect location privacy leakage because the end-devices’ closeness to FNs can disclose
location information of end-users [2, 24, 33].

The concept of Data Confidentiality is comprised of all measures to protect the data against unlawful
access by others. A prime example of this is the data encryption in storage or during communi-
cation between different entities of a FC network [19, 24]. However, FC’s low-latency objective
and decentralized nature pose a challenge to pragmatic ways to secure data against such access
(e.g., eavesdropping) in real-world scenarios such as vehicle to vehicle networks [32, 35]. Further-
more, given the trust issues, as already discussed previously, data stored on FN should be securely
stored (encrypted) [19]. According to Hu et al. [21], such means should provide confidentiality,
integrity, and availability. However, due to the low computational power of devices and sensors,
such encryption seems to pose a challenge [6, 31]; still, Pape and Rannenberg [32] indicate that IoT
devices and large edge devices (e.g., smartphones) become more powerful. Overall, it can be said
that keeping data confidential throughout the entire FC space from the Cloud to the edge is a relevant
issue for FC, requiring low computational cost cryptographic authentication and secure means of
communication [31].

The concept of Usage Behavior centers around usage-patterns that, if accessible by third parties, can
be used for inferring personal habits and sensitive patterns. For example, smart energy meters can be
used to obtain sleeping habits based on power consumption [33]. In FC, this problem is exacerbated,
as multiple entities, such as FNs, participate in providing the service to a user [6, 32]. From a
technical perspective, usage patterns are mainly presented by data being send from end-devices to
nodes in the Fog network [2]. As a result, a range of different usage habits can be disclosed; device
movements, sleeping habits, or if a person is at home or not [1, 32, 33]. The authors that cover Usage
Behavior argue that measures against the leakage of such information are necessary due to FC’s
inherent characteristics.

Table 2: Concept Matrix.

Paper

Id
en

tit
y

M
an

ag
em

en
t

L
oc

at
io

n
Pr

iv
ac

y

D
at

a
C

on
fid

en
tia

lit
y

U
sa

ge
B

eh
av

io
r

D
at

a
M

an
ag

em
en

t

M
al

ic
io

us
A

tt
ac

ks

L
eg

al

Abubaker et al. [2] 7 7 7 7
Alrawais et al. [4] 7
Andrew & Karthikeyan [6] 7 7 7 7 7
Chertchom et al. [10] 7
Cui et al. [13] 7 7
Ferrag et al. [16] 7 7
Garg et al. [17] 7 7
Guan et al. [19] 7 7 7 7
Hu et al. [21] 7 7 7
Li et al. [24] 7 7 7 7
Mukherjee et al. [31] 7 7 7 7
Pape and Rannenberg [32] 7 7 7
Rauf et al. [33] 7 7
Ren et al. [34] 7
Ren et al. [35] 7 7

6

As Stojmenovic et al. discuss, privacy is hiding details. The concept of Data Management taps
into this, as it is involved with splitting and filtering data (at the edge), storing data, and offloading
data. Firstly, IoT devices that are located on the edge in a distributed manner gather vast amounts of
data [10]. However, these resource-limited devices outsource their data and the computing thereof, to
FNs, which can result in privacy leakage [2, 13]. This can be counteracted by using more powerful
IoT devices; however, this is not always feasible [17]. Furthermore, the responsibility of storing
data can be moved from the edge device to the Cloud. Nonetheless, this causes the data-owner to
give up its possibly private data [19]. Auditable secure Cloud data storage techniques are created
to get insight into what happens with the data, but these cannot be applied directly to FC [19, 24].
Lastly, when performing actions such as querying the data or submitting data to the higher layers of
the architecture, end-user’s private data in the form of private parameters or as the data itself for a
computation have the risk of being exposed to others [32, 34]. However, these actions are needed
frequently, as FC is an extension of the Cloud and thus needs the Cloud for its more resource-intensive
computations [21].

Defending against Malicious Attacks in the context of privacy preservation range from techniques
such as intrusion detection systems [16, 31] and decoy technology [31]. If such techniques are not
applied in FC, then there is little resistance against all kinds of attacks, ranging from Man-in-the-
Middle to Sybil attacks. Andrew and Karthikeyan [6] describe many attacks to attack fog systems, but
these attacks are not in the scope of this paper. Essentially, the main problem is that FNs are frequently
susceptible to attacks because FNs, Cloud, and end-users are not in the same trusted domains [16].
However, the stance of this paper is that FNs cannot be fully trusted. This is in the same way as
Mukherjee et al. reason stating: "a compromised node is a legitimate part of the network" [31, p.
19296].

With developments such as the General Data Protection Regulation (GDPR) [14] and the General
Data Protection of the Federal Trade Commission of the United States of America, the Legal aspect
of privacy is impossible to neglect. This new legislation introduces concepts such as personal data,
ownership over data, and roles such as data controller and data processor [17]. FNs are placed closer
to the user for processing the data on their behalf. However, by doing this, the user/IoT device hands
over its local ownership to a (trusted) third party. Under the new legislation, it raises issues such as
data ownership and liability in the case of a data breach [17].

4.2 Approaches And Solutions

Based on the previously identified issues, the following paragraphs discuss possible approaches and
solutions in FC. Consequently, each of the issues is discussed separately to provide sufficient details
that answer the second research question.

As can be seen in Table 2, there are several papers that address the issue of Identity Management.
Namely, Abubaker et al. [2] propose to pair each FN with a Trusted Third Party (TTP) node. The
purpose is to decouple the data (usage information) connected to the identity of the user. The TTP
node holds the identity information, and the FN only holds the public data, which is to be processed.
However, the paper does not describe the scenario in the existence of a rogue TTP node. A rogue TTP
node could find out the identity of the end-user. Cui et al. [13] introduce a permissioned blockchain-
based IoT data management system, where each FN keeps a copy of the ledger and is paired with an
IoT device. Smart contracts stored on the immutable Blockchain (BC) enforce the Access-Control
List rules of the end-user’s device, which works well to defend against unauthorized access by rogue
IoT devices. Similarly, Li et al. [24] propose an efficient and privacy-preserving carpooling scheme
that fully preserves the end-users privacy using a private blockchain-assisted vehicular FC. Here,
the authors’ scheme uses an anonymous authentication scheme in order to authenticate users and
identify malicious users. The private BC is used in order to record carpooling records for auditability
purposes. Hu et al. [21] propose a privacy preservation scheme for FC based face identification. The
full scheme consists of a session key agreement scheme and data encryption scheme to preserve the
end-user’s privacy in the complete communication process from the end-user to the Cloud and back.
With the ever-increasing likelihood that a mature quantum computer will be realized in the distant
future, implementations based on Diffie-Hellman and elliptic curve cryptography will be insecure
and a threat to the end-users privacy [27]. Improvements on this scheme need to be thought out in
order to be made quantum computer resistant.

7

In literature, different approaches for preserving Location Privacy data are proposed. Li et al. [24]
propose a blockchain-assisted vehicular FC for the field of carpooling businesses. Notably, the
location of users is protected as location information is not exposed further than one FN in the
network. By this, the authors argue that the contents of the carpooling relevant messages are protected
from access by the Cloud servers or other entities. However, as carpooling routes are stored on a
permissioned BC, it is possible for the entities participating in the BC to unravel certain travel patterns
of end-users, resulting in weaker location-privacy. Similarly, Abubaker et al.’s [2] approach aims to
hinder other FNs or Cloud instances from inferring the true location of end-devices. A TTP node
results in FNs being unable to retrieve the correct end-device’s location, as it is not aware of the exact
identity of a specific end-device. Further, the authors proposed using so-called mixes, which refer to
collecting incoming messages of an FN and sending them out as a batch. This way, no link between a
FN’s incoming and outgoing message can be made. Consequently, the end-devices location is, based
on the amount of batched messages, harder to infer by someone monitoring the FN.

In terms of Data Confidentiality solutions, it is evident that the limited computing capabilities
provided by end-user devices at the edge require tailored solutions [35, 31]. As such, authors have
proposed offloading the encryption and authentication responsibility to more conventional powerful
devices (i.e., smartphones) [32]. Pape and Rannenberg specifically discuss the personal data store
privacy pattern, that focuses on storing data locally. Based on the computational capabilities of the
IoT device, data is stored on the device or a nearby trusted device (e.g., the home server). If the data
is sensitive, data can also be encrypted so that only trusted devices can access it, and thus access by
the Cloud or FNs is prevented [32]. Such a privacy pattern, however, is significantly based on the
use-case of FC. For example, if FC or CC is required to process the data, this is not applicable. A
popular approach to secure data communication in FC is SDN [6] and allows flexible configuration
of accessibility by different entities in the FC space.

In order to obfuscate the Usage Behavior, a range of solutions that aim to increase the challenge
of interfering patterns exist. These range from data separation to adding dummy data. Pape and
Rannenberg [32] present four solutions based on the privacy patterns they follow: data isolation at
different entities (e.g., an FN), adding noise to communication/measurements, vertical clustering of
FNs and aggregation of data. Isolating the data at different entities in FC is beneficial for privacy,
as it prevents FC from misusing the data as a whole. However, such a solution can handle both
computation and storage, if it is accompanied by a computational engine that can run in a distributed
manner. Further, adding noise to communication is only feasible if its scenario can handle such noise,
as Pape and Rannenberg [32] correctly deduce. However, such limitations reduce the applicability
significantly, as applications like a billing system cannot handle such noise well [32]. Abubaker et
al. [2] propose a similar method by adding dummy tasks when tasks are offloaded [2].

In terms of Data Management and data-sensitive filtering, Chertchom et al. [10] propose a data
management portfolio, containing two different kinds of Fog architectures that handle sensitive data
of the end-users. The filtering of data is based on a 7-rule policy, as not all data is privacy sensitive.
In the first architecture, the data is filtered in the Fog Layer and sent either to a Private Cloud that
contains the privacy-sensitive data or to a Public Cloud that stores the data used for processing the
general data. In the second architecture, the filtering of privacy data is applied at the edge layer, as
certain applications at the edge require real-time processing. This is done by offloading the filtered
data to the fog layer, where each FN is either responsible for processing privacy or general data. Cui
et al. [13] propose an IoT management platform based on a permissioned BC and smart contracts.
The data management model provides decentralized access control and authorization, which are
enforced by means of immutable smart contracts. The policies defined in the smart contracts define
how the data is managed for requests coming from the IoT devices. As the aim of the paper is the
privacy of data in IoT devices in the fog, a permissioned BC does not offer the optimal security.
Namely, even though there is no central server, only permissioned nodes in the BC network can vote.
This does not provide Byzantine Fault Tolerance, which implies the permissioned BC is nothing more
than a time-stamped list of entries [18]. In the privacy-preservation scheme of Hu et al. [21], the
integrity of data is based on the SHA-1 hashing algorithm. However, since February 2017, SHA-1
has been subject to a successful collision attack. In light of this, a more secure hashing algorithm has
to be employed in order to preserve data integrity [36].

Resiliency against Malicious Attacks can be achieved by deploying Intrusion Detection Systems
(IDS) at all levels of the three-tier computing continuum, as proposed by Mukherjee et al. [31]. It is
argued that if an IDS is deployed at just two levels (e.g., Fog and Edge), then there is a possibility of

8

intrusion from malicious software from a vulnerable node to the rest of the system. Coordination
of the different detection components which are distributed over each level of the system is needed
and can be achieved with the deployment of a perimeter IDS [12]. It could be the case that an IDS is
implemented in a faulty manner or that there are software bugs in the code. Given that an attacker
knows this, there is always a possibility of a breach into the system. User behavior profiling is a
beneficial technique to monitor the amount and duration of access to sensitive data. Stolfo et al. [38]
proposed a new approach in order to protect user data in the Fog and Cloud using decoy technology.
The user’s data is profiled, and subsequently, abnormal behavior patterns are detected. If an attack is
suspected, the decoy sends a large amount of garbage data to the attacker. With this technique, the
user’s real sensitive data in the Fog and Cloud is protected. However, profiling user behavior could be
harmful to the privacy of the user. New data regarding user behavior is generated and stored, which
gives rise to the possibility of exploitation of the user’s private data.

Regarding Legal, Garg et al. [17] discuss many recommendations to abide by the General Data
Protection Regulation (GDPR). They focus on GDPR because this is stricter than the US’s regulation.
First of all, they propose that organizations have to adopt a privacy by design approach when an
IoT device collects personal identifiable information [17]. Moreover, a protection officer has to
be appointed to handle the accountability aspect in case of a data breach [17]. Additionally, when
fog devices are being used, storing data in a distributed manner, and thus having multiple copies
of the data, the organization should ensure that these copies are deleted when user consent has
been withdrawn, or when the purpose of the data has become useless [17]. Moreover, Pape and
Rannenberg [32] describe a storage system to store data on the devices. In this way, the data owner
stays in control of its data. This, however, is not applicable to every application. Garg et al. [17]
continue with the notion that pseudonymization should be used when it is crucial to process sensitive
or personal identifiable information. Additionally, the amount of metadata should be kept low, only
so that the tasks needing to be performed can be performed, such as querying [17]. Lastly, in a multi-
tenant situation, the storage and processing of data should be separated both logically and physically.
However, a critical note should be made; Garg et al. [17] discuss all the legal recommendations based
on standardized architectures and use cases, which makes these recommendations no guarantee.

4.3 Synergies Toward Improved Privacy

In the previous two subsections, issues and related solutions in the context of FC are presented. As
FC can be argued to be a related paradigm to CC, this work also aims to evaluate to which extent FC
and CC can profit from each other’s solutions. Specifically, the following paragraphs assess whether
the solutions found in the underlying literature search can be applied, or the shortcomings in FC
can benefit from advancements in CC. Overall, two synergies could be materialized based on the
synthesized literature. However, additional work, as discussed in Section 5, could yield more such
synergies.

Given that CC has been criticized throughout the years [41] regarding privacy, it seems evident that
FC can adopt certain aspects. A prominent case this literature study has identified are the legal issues
of the Cloud that have been addressed by all major commercial players promoting Cloud certifications
as a standard practice [see 3]. However, during the literature review, no evidence was found that
certification is being applied to FC. The usage of such certifications could be beneficial in multiple
aspects. For example, it could resolve trust issues if a user questions whether he or she can trust a
fog provider to store and delete data according to the GDPR. Additionally, such certifications could
certify that diagnostic data that is collected by FNs cannot be used to infer sensitive usage behavior.

Vice versa, Pape and Rannenberg’s [32] presented privacy patterns for FC, which could be an approach
worthwhile assessing for CC. Especially since CC is tightly coupled with FC. The privacy patterns
deemed most promising during the review are Personal Data Store, Data Isolation at Different Entities,
and Added Noise Measurement Obfuscation. Concerning the isolation of data at different entities, it
could be argued that this can be seen as a part of the Hybrid Cloud model. Based on the pattern, this
could be extended to a scenario where data is stored across Public Clouds using a standardized, openly
accessible storage format. For example, unifying the protocol of Amazon’s S3 [5] and Microsoft’s
Azure Storage [28]. Furthermore, the Personal Data Store pattern locks personal data from Cloud
Native applications by keeping personal data on local devices only. This could alleviate concerns
from businesses that currently refrain from using the Cloud due to these privacy issues (i.e., health
care- and banking sector).

9

5 Discussion And Conclusion

The findings of this literature review are three-fold, answering three research questions based on a
systematized literature review.

Based on our concept matrix, the findings show that most literature finds issues revolving around
identity management, data confidentiality, and data management (cf. Section 4.1). As shown
in Section 4.2, these issues can be addressed in most cases by the use of encryption strategies,
authentication schemes using signatures, and data-sensitive filtering in Fog architectures where
the data is split and delegated to separated data providers. When comparing FC and CC’s privacy
solutions, we identified some opportunities for improvement, such as certification. This is a regular
practice in CC, but the literature study has not been able to identify that this is also the case for FC.
Furthermore, it is argued that evaluating a possible application of the privacy patterns described by
Pape and Rannenberg [32] could be beneficial for CC.

However, given the limitations that are elaborated upon below, the findings indicated are also
partly related to security aspects. Therefore, specifically the issues of identity management, data
confidentiality, and malicious attacks can also be seen as security-related, and as such, should be
further discussed with a more in-depth security assessment. Nevertheless, as they do impact privacy
as discussed in Section 4, they were kept to present the entire process of our analysis.

Furthermore, other works have closely assessed the field of privacy and security (e.g., [4, 16, 19]).
The paper at hand contributes to the referenced papers by synthesizing the issues in sole regard to
privacy, while the other authors have intertwined their assessments. This has also shown that existing
literature have difficulty in distinguishing security from privacy and vice versa in their research
findings. This work focused on privacy in FC; however, limitations presented below are present and
can be aided by further research.

The limitations of this literature study are reasoned in the limited resources and the narrowly defined
scope of this work. Several activities required thorough preparation and were time-intensive. Specifi-
cally, defining a well-scoped research topic (i.e., privacy in FC), deciding on an established literature
methodology, and the actual execution of the literature review. Therefore, this work focused only on
the central and pivotal papers that were found. This poses the possibility that relevant literature was
not captured during the review. However, an exhaustive literature search was beyond the scope of this
work.

Nonetheless, this work has shown how an exhaustive literature review with the focus on privacy in
FC can be carried out using a well-established methodology. It also shows that using Webster and
Watson’s [40] concept matrix to guide the reader can be helpful in structuring the evaluation.

To conclude, this literature study answered the three research questions. Overall, seven privacy-related
concepts were identified based on the issues that were highlighted in Section 4.1. Furthermore, a
selection of possible solutions was briefly described, covering possible advantages and drawbacks (cf.
Section 4.2). These concepts were the input for the analysis in Section 4.3 to identify how the two
computing paradigms CC and FC could improve on the basis of privacy. It was shown that solutions
in CC exist and potentially be applied to FC and vice versa.

Consequently, this work indicates that an exhaustive and in-depth review of the privacy concepts in
both paradigms is required, and an assessment of whether FC and CC can benefit from each other’s
solutions is aimed at improving upon the privacy issues present. However, the FC field suffers from a
lack of a legal perspective, and thus a current gap of FC’s privacy has been identified that centers
around legal considerations and certification programs.

10

References
[1] Nasir Abbas et al. “Mobile Edge Computing: A Survey”. In: IEEE Internet of Things Journal

5.1 (Feb. 2018), pp. 450–465. ISSN: 2327-4662. DOI: 10.1109/JIOT.2017.2750180.
[2] Nabil Abubaker, Leonard Dervishi, and Erman Ayday. “Privacy-preserving fog computing

paradigm”. In: 2017 IEEE Conference on Communications and Network Security (CNS). Las
Vegas, NV: IEEE, Oct. 2017, pp. 502–509. ISBN: 9781538606834. DOI: 10.1109/CNS.2017.
8228709.

[3] Cloud Security Alliance. STAR | Cloud Security Alliance. 2020. URL: https : / /
cloudsecurityalliance.org/star/#_registry (visited on 05/27/2020).

[4] Arwa Alrawais et al. “Fog Computing for the Internet of Things: Security and Privacy Issues”.
In: IEEE Internet Computing 21.2 (Mar. 2017), pp. 34–42. ISSN: 1089-7801. DOI: 10.1109/
MIC.2017.37.

[5] Amazon Inc. Amazon S3. 2020. URL: https : / / aws . amazon . com / s3/ (visited on
05/27/2020).

[6] J. Andrew and J. Karthikeyan. “Privacy-Preserving Internet of Things: Techniques and Ap-
plications”. en. In: International Journal of Engineering and Advanced Technology 8.6 (Aug.
2019), pp. 3229–3234. ISSN: 2249-8958. DOI: 10.35940/ijeat.F8830.088619.

[7] L. Atzori, A. Iera, and G. Morabito. “The Internet of Things: A survey”. In: Computer Networks
54.15 (2010), pp. 2787–2805. DOI: 10.1016/j.comnet.2010.05.010.

[8] Flavio Bonomi et al. “Fog computing and its role in the internet of things”. In: Proceedings
of the first edition of the MCC workshop on Mobile cloud computing. 2012, pp. 13–16. DOI:
10.1145/2342509.2342513.

[9] Jan vom Brocke et al. “Reconstructing the giant: On the importance of rigour in documenting
the literature search process”. In: (2009). URL: http://aisel.aisnet.org/ecis2009/
372/.

[10] Prajak Chertchom et al. “Data Management Portfolio for Improvement of Privacy in Fog-
to-cloud Computing Systems”. In: 2019 8th International Congress on Advanced Applied
Informatics (IIAI-AAI). Toyama, Japan: IEEE, July 2019, pp. 884–889. ISBN: 9781728126272.
DOI: 10.1109/IIAI-AAI.2019.00179.

[11] Raman Chitkara et al. The Internet of Things: the next growth engine for the semicon-
ductor industry. 2015. URL: https : / / www . pwc . de / de / technologie - medien -
und-telekommunikation/assets/pwc- studie- prognostiziert-boom-in-der-
halbleiterbranche.pdf (visited on 05/27/2020).

[12] Tiago Cruz et al. “A cybersecurity detection framework for supervisory control and data
acquisition systems”. In: IEEE Transactions on Industrial Informatics 12.6 (2016), pp. 2236–
2246. DOI: 10.1109/TII.2016.2599841.

[13] Hongyan Cui et al. “IoT Data Management and Lineage Traceability: A Blockchain-based
Solution”. In: 2019 IEEE/CIC International Conference on Communications Workshops
in China (ICCC Workshops). Changchun, China: IEEE, Aug. 2019, pp. 239–244. ISBN:
9781728107387. DOI: 10.1109/ICCChinaW.2019.8849969.

[14] EUR-Lex - 32018R1725 - EN - EUR-Lex. May 2018. URL: https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=CELEX:32018R1725 (visited on 05/23/2020).

[15] T. M. Fernández-Caramés and P. Fraga-Lamas. “A Review on the Use of Blockchain for the
Internet of Things”. In: IEEE Access 6 (2018), pp. 32979–33001. DOI: 10.1109/ACCESS.
2018.2842685.

[16] Mohamed Amine Ferrag et al. “Privacy-preserving Schemes for Fog-based IoT Applications:
Threat models, Solutions, and Challenges”. In: 2018 International Conference on Smart
Communications in Network Technologies (SaCoNeT). El Oued: IEEE, Oct. 2018, pp. 37–42.
ISBN: 9781538694930. DOI: 10.1109/SaCoNeT.2018.8585538.

[17] R. Garg, Sz. Varadi, and A. Kertesz. “Legal Considerations of IoT Applications in Fog
and Cloud Environments”. In: 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP). Pavia, Italy: IEEE, Feb. 2019, pp. 193–198.
ISBN: 9781728116440. DOI: 10.1109/EMPDP.2019.8671620.

[18] Vincent Gramoli. “On the danger of private blockchains”. In: Workshop on Distributed Cryp-
tocurrencies and Consensus Ledgers (DCCL’16). 2016.

11

https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1109/CNS.2017.8228709
https://doi.org/10.1109/CNS.2017.8228709
https://cloudsecurityalliance.org/star/#_registry
https://cloudsecurityalliance.org/star/#_registry
https://doi.org/10.1109/MIC.2017.37
https://doi.org/10.1109/MIC.2017.37
https://aws.amazon.com/s3/
https://doi.org/10.35940/ijeat.F8830.088619
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1145/2342509.2342513
http://aisel.aisnet.org/ecis2009/372/
http://aisel.aisnet.org/ecis2009/372/
https://doi.org/10.1109/IIAI-AAI.2019.00179
https://www.pwc.de/de/technologie-medien-und-telekommunikation/assets/pwc-studie-prognostiziert-boom-in-der-halbleiterbranche.pdf
https://www.pwc.de/de/technologie-medien-und-telekommunikation/assets/pwc-studie-prognostiziert-boom-in-der-halbleiterbranche.pdf
https://www.pwc.de/de/technologie-medien-und-telekommunikation/assets/pwc-studie-prognostiziert-boom-in-der-halbleiterbranche.pdf
https://doi.org/10.1109/TII.2016.2599841
https://doi.org/10.1109/ICCChinaW.2019.8849969
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1725
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32018R1725
https://doi.org/10.1109/ACCESS.2018.2842685
https://doi.org/10.1109/ACCESS.2018.2842685
https://doi.org/10.1109/SaCoNeT.2018.8585538
https://doi.org/10.1109/EMPDP.2019.8671620

[19] Y. Guan et al. “Data Security and Privacy in Fog Computing”. In: IEEE Network 32.5 (2018),
pp. 106–111. DOI: 10.1109/MNET.2018.1700250.

[20] Mohammad Aminul Hoque and Ragib Hasan. “Towards an Analysis of the Architecture,
Security, and Privacy Issues in Vehicular Fog Computing”. In: May 2019. DOI: 10.1109/
SoutheastCon42311.2019.9020476.

[21] Pengfei Hu et al. “Survey on fog computing: architecture, key technologies, applications and
open issues”. en. In: Journal of Network and Computer Applications 98 (Nov. 2017), pp. 27–42.
ISSN: 1084-8045. DOI: 10.1016/j.jnca.2017.09.002.

[22] Gartner Inc. Gartner Says 5.8 Billion Enterprise and Automotive IoT Endpoints Will Be in
Use in 2020. 2019. URL: https://www.gartner.com/en/newsroom/press-releases/
2019- 08- 29- gartner- says- 5- 8- billion- enterprise- and- automotive- io
(visited on 05/23/2020).

[23] Jung-Hoon Lee, Sang-Hwa Chung, and Won-Suk Kim. “Fog server deployment technique: An
approach based on computing resource usage”. In: International Journal of Distributed Sensor
Networks 15 (Jan. 2019), p. 155014771882399. DOI: 10.1177/1550147718823994.

[24] M. Li, L. Zhu, and X. Lin. “Efficient and privacy-preserving carpooling using blockchain-
assisted vehicular fog computing”. In: IEEE Internet of Things Journal 6.3 (2019), pp. 4573–
4584. DOI: 10.1109/JIOT.2018.2868076.

[25] Electronics Mags. The Industrial Internet Consortium and OpenFog unite to get momentum
of business internet. 2019. URL: https://electronicsmags.com/the-industrial-
internet- consortium- and- openfog- unite- to- get- momentum- of- business-
internet/ (visited on 05/28/2020).

[26] Yuyi Mao et al. “A Survey on Mobile Edge Computing: The Communication Perspective”. In:
IEEE Communications Surveys Tutorials 19.4 (2017), pp. 2322–2358. ISSN: 1553-877X. DOI:
10.1109/COMST.2017.2745201.

[27] Vasileios Mavroeidis et al. “The impact of quantum computing on present cryptography”. In:
arXiv preprint arXiv:1804.00200 (2018). DOI: 10.14569/IJACSA.2018.090354.

[28] Microsoft Inc. Azure Storage - Secure cloud storage | Microsoft Azure. 2020. URL: https:
//azure.microsoft.com/en-us/services/storage/ (visited on 05/27/2020).

[29] Carla Mouradian et al. “A comprehensive survey on fog computing: State-of-the-art and
research challenges”. In: IEEE Communications Surveys & Tutorials 20.1 (2017), pp. 416–464.
DOI: 10.1109/COMST.2017.2771153.

[30] M. Mukherjee, Lei Shu, and Di Wang. “Survey of fog computing: Fundamental, network
applications, and research challenges”. In: IEEE Communications Surveys & Tutorials 20.3
(2018), pp. 1826–1857. DOI: 10.1109/COMST.2018.2814571.

[31] M. Mukherjee et al. “Security and Privacy in Fog Computing: Challenges”. In: IEEE Access 5
(2017), pp. 19293–19304. DOI: 10.1109/ACCESS.2017.2749422.

[32] S. Pape and K. Rannenberg. “Applying Privacy Patterns to the Internet of Things’ (IoT)
Architecture”. In: Mobile Networks and Applications 24.3 (2019), pp. 925–933. DOI: 10.
1007/s11036-018-1148-2.

[33] A. Rauf, R.A. Shaikh, and A. Shah. “Security and privacy for IoT and fog computing paradigm”.
In: 2018, pp. 96–101. DOI: 10.1109/LT.2018.8368491.

[34] H. Ren et al. “Querying in Internet of Things with Privacy Preserving: Challenges, Solutions
and Opportunities”. In: IEEE Network 32.6 (2018), pp. 144–151. DOI: 10.1109/MNET.2018.
1700374.

[35] J. Ren et al. “A survey on end-edge-cloud orchestrated network computing paradigms: Trans-
parent computing, mobile edge computing, fog computing, and cloudlet”. In: ACM Computing
Surveys 52.6 (2019). DOI: 10.1145/3362031.

[36] Marc Stevens et al. “The first collision for full SHA-1”. In: Annual International Cryptology
Conference. Springer. 2017, pp. 570–596. DOI: 10.1007/978-3-319-63688-7_19.

[37] I. Stojmenovic et al. “An overview of Fog computing and its security issues”. In: Concurrency
Computation 28.10 (2016), pp. 2991–3005. DOI: 10.1002/cpe.3485.

[38] Salvatore Stolfo, Malek Salem, and Angelos Keromytis. “Fog Computing: Mitigating Insider
Data Theft Attacks in the Cloud”. In: May 2012, pp. 125–128. ISBN: 978-1-4673-2157-0. DOI:
10.1109/SPW.2012.19.

12

https://doi.org/10.1109/MNET.2018.1700250
https://doi.org/10.1109/SoutheastCon42311.2019.9020476
https://doi.org/10.1109/SoutheastCon42311.2019.9020476
https://doi.org/10.1016/j.jnca.2017.09.002
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://doi.org/10.1177/1550147718823994
https://doi.org/10.1109/JIOT.2018.2868076
https://electronicsmags.com/the-industrial-internet-consortium-and-openfog-unite-to-get-momentum-of-business-internet/
https://electronicsmags.com/the-industrial-internet-consortium-and-openfog-unite-to-get-momentum-of-business-internet/
https://electronicsmags.com/the-industrial-internet-consortium-and-openfog-unite-to-get-momentum-of-business-internet/
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.14569/IJACSA.2018.090354
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://doi.org/10.1109/COMST.2017.2771153
https://doi.org/10.1109/COMST.2018.2814571
https://doi.org/10.1109/ACCESS.2017.2749422
https://doi.org/10.1007/s11036-018-1148-2
https://doi.org/10.1007/s11036-018-1148-2
https://doi.org/10.1109/LT.2018.8368491
https://doi.org/10.1109/MNET.2018.1700374
https://doi.org/10.1109/MNET.2018.1700374
https://doi.org/10.1145/3362031
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1002/cpe.3485
https://doi.org/10.1109/SPW.2012.19

[39] Wenjuan Tang et al. “Lightweight and Privacy-Preserving Fog-Assisted Information Sharing
Scheme for Health Big Data”. In: Dec. 2017, pp. 1–6. DOI: 10 . 1109 / GLOCOM . 2017 .
8254989.

[40] Jane Webster and Richard T Watson. “Analyzing the past to prepare for the future: Writing a
literature review”. In: MIS quarterly (2002), pp. xiii–xxiii. URL: https://www.jstor.org/
stable/4132319.

[41] Zhifeng Xiao and Yang Xiao. “Security and privacy in cloud computing”. In: IEEE communi-
cations surveys & tutorials 15.2 (2012), pp. 843–859. DOI: 10.1109/SURV.2012.060912.
00182.

[42] Ashkan Yousefpour et al. “All one needs to know about fog computing and related edge
computing paradigms: A complete survey”. In: Journal of Systems Architecture (2019). DOI:
10.1016/j.sysarc.2019.02.009.

[43] PeiYun Zhang, MengChu Zhou, and Giancarlo Fortino. “Security and trust issues in Fog
computing: A survey”. In: Future Generation Computer Systems 88 (2018), pp. 16–27. DOI:
10.1016/j.future.2018.05.008.

13

https://doi.org/10.1109/GLOCOM.2017.8254989
https://doi.org/10.1109/GLOCOM.2017.8254989
https://www.jstor.org/stable/4132319
https://www.jstor.org/stable/4132319
https://doi.org/10.1109/SURV.2012.060912.00182
https://doi.org/10.1109/SURV.2012.060912.00182
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1016/j.future.2018.05.008

A Appendix

A.1 Literature Search Process

Scopus Search query:

TITLE-ABS-KEY (fog AND computing AND privacy)
AND (LIMIT-TO (PUBSTAGE , "final"))
AND (LIMIT-TO (PUBYEAR , 2020)
OR LIMIT-TO (PUBYEAR , 2019)
OR LIMIT-TO (PUBYEAR , 2018)
OR LIMIT-TO (PUBYEAR , 2017)
OR LIMIT-TO (PUBYEAR , 2016)
OR LIMIT-TO (PUBYEAR , 2015)
OR LIMIT-TO (PUBYEAR , 2014)
OR LIMIT-TO (PUBYEAR , 2013)
OR LIMIT-TO (PUBYEAR , 2012))
AND (LIMIT-TO (SUBJAREA , "COMP"))
AND (LIMIT-TO (LANGUAGE , "English"))
AND (LIMIT-TO (SRCTYPE , "j") OR LIMIT-TO (SRCTYPE , "p"))

A.2 Acronyms
BC Blockchain.

CC Cloud Computing.

EC Edge Computing.

FC Fog Computing.

FN Fog Node.

GDPR General Data Protection Regulation.

IDS Intrusion Detection Systems.

IoT Internet of Things.

MEC Mobile Edge Computing.

SDN Software Defined Networking.

TTP Trusted Third Party.

14

B Participation

Table 3: Participation Table.

Section Person(s)
Introduction Leonard, Lucien and Stijn
Methodology Leonard and Stijn
Background Leonard, Lucien and Stijn
Related work Stijn
Privacy issues Leonard, Lucien and Stijn
Privacy solutions Leonard and Lucien
Synergies on Privacy Leonard and Stijn
Discussion Leonard and Stijn
Conclusion Leonard and Stijn

Overall, with a few shifted priorities, work was evenly distributed.

15

Assignment 4: Literature Study
Web Services and Cloud Based System 2020

Lecturer: dr. Adam Belloum, Group 2

Hasine Efetürk
VU ID: 2527299
Vrije Universiteit

h.efeturk@student.vu.nl

Furong Guo
UvA ID: 12577790

Universiteit van Amsterdam
echoguo4826@gmail.com

Yaping Ren
UvA ID: 12985090

Universiteit van Amsterdam
yaping.ren@hotmail.com

June 1, 2020

Abstract

In this literature review, we explore the cycle of DevOps while fo-
cusing on the automation dimension of it. We investigate the impact of
Infrastructure as Code on DevOps and the effective metrics for continuous
delivery. Even so, we briefly discuss the impact of automation using IaC
in relation to performance.

1 Introduction

For this review we will explore Infrastructure as Code, DevOps, metrics asso-
ciated and the impact on business characteristics as latency and performance.
This topic has evolved over the last decade and plays nowadays a crucial role in
the business area of software delivery.

The outline of our literature review’s structure is thematic with DevOps as
a central theme identified where IaC and metrics are subsections that address
different aspects of the central topic. The relevant literature which we collected,
helped us to formalize our main- and sub research questions, as defined as follows

Main research question

What is the impact of Infrastructure as Code on DevOps and the defect
prediction metrics required for a modern software delivery pipeline?

RQ1 What are the characteristics of DevOps?
RQ2 What are the characteristics of IaC?
RQ3 How can IaC contribute to the key features of Devops?
RQ4 How well can IaC perform using cloud service?

1

RQ5 How do we measure performance of DevOps and IaC?

Scope of literature stated coverage of our study and researched topics briefly,
and give a summary on number and resource of the study. Then the next two
chapters tried to answer sub-question 1 and 2 for features of DevOps and Infras-
tructure as code respectively. The following chapter gives a match-making on
their features to show how is IaC important to DevOps. Chapter 6 discussed IaC
deployment using cloud service to find it’s advantage and limitation. Chapter
7 answers the last research question to give suggestions on how to measure and
monitor DevOps and IaC in company. Finally in conclusion we gave a summary
to research findings and presented possible topics of future work.

2 Scope of literature

This chapter describes the literature study to have a better illustration in cov-
erage of our study. As explained in introduction, our research purpose will use
DevOps as umbrella and find the benefit of application of infrastructure as code,
and the metrics to measure the level of success.

Therefore we researched on the core feature of DevOps and its linkage to
infrastructure as code, which is, how IaC could benefit implementation of De-
vOps and what is the expectation to have IaC. As IaC could be implemented
using different services, we researched further on the application of cloud ser-
vices to reveal its advantage and disadvantage to give more practical suggestions
on implementation. As for metrics design, we explored the metrics to measure
implementation quality and maturity level for DevOps. Certain factors which
could be influenced by IaC are also studied to give a deeper evaluation on IaC.

The literature we studied includes core principle and pillars of each concept,
together with real business cases. Because DevOps is not strictly framed, we
would like to discover more in the best practices. As culture building is also
of vital importance, the influence of landing of IaC to company culture is also
discussed.

Our study coverage will be books, published papers, thesis, and web posts.
And in total 20 references are used in this essay. Since the concept of DevOps
is a set of practises and only raised 10 years ago, we will cover literature of all
time but will focus more on the most up-to-date work. Also note that there are
more practical findings on relatively smaller business on web posts, while the
published paper might focus more on IT transition within a bigger organization.
They might take different views in best practice of DevOps and IaC, therefore
we adopted ideas from all resources as references.

In this literature study we will only cover materials written in English, study
in other languages will not be in the research scope.

3 The Feature of DevOps

The general DevOps terminology encapsulates a combination of Development
and Operations. The raise of DevOps is due to the growing need of software
and IT industries. The growth of customers base and market outreach makes it
essential that organizations internal delivery processes are optimized and in line

2

with business expectations. Time and resources are critical constraints in any
business environment. Therefore, businesses are expected to acknowledge mar-
ket needs in a short order whilst ensuring a higher level of quality. Consequently
DevOps has emerged as a paradigm to bring innovative products and features
faster to the market [1]. This is essential because, no organization can afford
to live with manual, error prone and repeated activities in the software deliv-
ery lifecycle [2]. To emphasize, DevOps characterizes practises that streamline
the software delivery process, learns by the feedback flow from production to
development and improves the cycle time, which is the time from inception to
delivery [3].

The movement for DevOps can be crystallized into five dimensions which all
together characterize DevOps. The characteristics and dimensions of DevOps
include collaboration, automation, culture, monitoring and measurement. In
Lwakatare et al. [4] each dimension is explained in more detail. As stated in the
introduction, our first research question is: RQ1 What are the characteristics of
DevOps? To answer this is question, a short description for each characteristic
is covered in the following list.

1. Collaboration: rethinking and reorientation of roles and teams in devel-
opment and operations activities

2. Automation: infrastructure and deployment process automation

3. Culture: empathy, support and good working environment for teams es-
pecially development and operations

4. Monitoring : Instrumenting application and aggregating monitored data
into insights

5. Measurement : different metrics are used to monitor and assess the per-
formance of processes in development and operations activities

The motivation for DevOps has its roots in the underlying conflict of de-
velopment and operations teams which fulfill their core responsibilities in silos.
This is typical for traditional IT where teams are divided by the type of work.
Departments are dedicated only for writing code or solely for code testing. The
incentives may depend on the creation of new features and server uptime /
application response time for the development and operations department re-
spectively. The conflict between the departments raise because the development
department is in a need for change. They want to bring the changes and bug
fixes to production fast. The second conflict is the fear of change of the op-
erations team. They want to have a reliable solution for their end users with
as little downtime as possible and where continuous feedback is provided and
processed and continuous testing in production like environment is done.

To overcome those conflicts and break up the silos, the adoption of Agile
methodologies become more important over time. For the Agile way of working
and DevOps, there are certain stages in common. We identify five stages in
figure. 1.

At the inception part, the system vision is developed, the project scope is
defined and the business case is justified. The elaboration part is where the
requirements are gathered and defined, risk factors are identified and system
architecture is initialized. Subsequently, the software needs to be constructed,

3

Figure 1: The differences and overlap for Traditional-, Agile- and DevOps
methodologies

programmed and tested in the construction phase. When all the testing is done,
the software is delivered to the user in the transition phase. After the software
is live and available for the end user, the maintenance is done by the operations
team in the operations phase [3].

The speed within a business environment is high and it is difficult for Dev/Test
teams to adapt to the quick changes. DevOps allows you to do that by always
having a prioritized product backlog, continuous channel of feedback with cus-
tomers and ability to prioritize the product backlog all the time, directly taking
business angle in consideration. There is a continuous process to plan small
portion – execute - get feedback – react to feedback and adjust plan if needed
and the cycle continues.

Figure 2: DevOps Cycle

4

In figure 2, different phases of the DevOps cycle are distinguished. Continu-
ous integration refers to early integration where changes are not kept locally for
a long period of time but instead are shared with team and validate how code
behaves continuously. The process optimization stage is essential in achieving
automation on a level, such that, as soon as the developer delivers changes, the
build systems detects that. Then triggers a build carries out sanity tests and
posts the build to a repository.

Proceeding, continuous deployment is the core part of DevOps and forms
the critical piece of overall software delivery optimization. Surveys have shown
that in majority of organizations the operations side of delivery is significant
contributor to the delay in software delivery. Setting up the hardware to test
the development build may take time varying from days to weeks. This manual
deployment processes are inconsistent. DevOps principles recommend to au-
tomate the deployment and provisioning of hardware. Various cloud providers
play a crucial role in this field. DevOps approach proposes that entire infras-
tructure provisioning should be maintained as code in source code repository
where this concept is being called Infrastructure as a Code [2].

Prerequisite to continuous testing is to automate every test case. Any pro-
cess that has to be repeated over time – should get automated, there are a lot
of technologies available to meet that goal. Manual testing process must be
evaluated for automation options and in majority of cases there will be ways to
automate the same. This whole principle of continuous testing not only moves
the testing process to early in cycle but also allows the tests to be carried out
on production like system (complemented by continuous deployment) [2].

Continuous Monitoring is crucial for minimizing the downtime and opti-
mizing the performance. As discussed in adoption approaches above, with the
capability to test early on a production like system there is an opportunity to
observe various quality parameters throughout and hence have the ability to
react to any surprises in timely manner [2].

Lastly, as every good leader knows, you cannot improve what you do not
measure, so measuring the software development process and DevOps transfor-
mations is more important than ever. As practitioners and professionals, it is
known that software development and delivery is an increasingly difficult art
and practice, and that managing and improving any process or system requires
insights into that system. Therefore, measurement is paramount to creating an
effective software value stream [5].

4 Infrastructure as Code

Infrastructure as code is a relatively new concept to automate management of IT
infrastructure using modelled files to save human labor and improve deployment
speed. In this section, we are going to discuss the advantages and limitations of
IaC, approaches for implementation and brief introduction of available tools.

IaC provides possibility to automatically update system configuration on
consistent and repeatable routines, which creates a faster and more reliable
change management process [6]. Without the burden of monitoring system con-
figuration changes, maintenance work is lighted for IT operation staff therefore
providing several value adding points compared to traditional infrastructure
solution. The reusable scripts of infrastructure code files would ease the knowl-

5

edge management process to further reduce the cost for new staff training. And
the automated process enables a faster deployment cycle with much less human
errors and security breaches [7].

There are two approaches for IaC programming, one is declarative and the
other is imperative, where declarative approaches describes the logic of compu-
tations and are better at capture business processes while the imperative ones
use statements more and could give better sequential information[8].

There are many tools which could support the implementation of IaC, here
we only researched briefly on three of them for continuous configuration automa-
tion. We selected Puppet, Chef and CFEngine to make a comparison. These
3 tools are implemented in commonly used programming languages, but are
using C++, Ruby and C respectively. Puppet and Chef are more operational
friendly, while CFEngine is more develop friendly. Their learning curves are also
different, the ope-friendly ones are more easy to learn while the other one cost
more to train the staff although having faster speed and less dependency [9].
Although this paper did not cover much tools for comparison, here we only
wanted to demonstrate the complexity and aspects to consider when choosing
the IaC tool.

In the paper of Guerriero et al. [7] studying deployment and challenges of
IaC from industry practical perspective, according to their conducted survey,
there are concerns from both technical and management side. It would be very
hard to test or guarantee system quality when there are a number of tools in
use. More importantly, change of operational process and working culture could
be a challenge worth consideration during IT transition.

There are more challenges on the technical side despite for the features of
different tools during testing [10]. For example, the extra effort to implement
an imperative script in an idempotent way, needs for script resources, execu-
tion issue for multiple instances together when using Chef, and dependency on
external component.

While noting the benefits of adopting IaC, the features and challenges shall
also be considered for real life application. Tool choosing could solve some of the
issues, however IT should identify the root cause for a solution. For instance,
if the business requirements are of high frequency and allow a slower but more
stable deliver. Or system value stability and carefully code audit, the way to
adopt IaC might need a second thought.

5 IaC within DevOps

This section aims to answer how value adding points and features of IaC matches
with the principles of DevOps. The discussion is going to be from a technical
aspect as well as a cultural aspect. After having a better understanding of why
IaC is key to success of DevOps, we are also going to consider whether IaC is
enough for infrastructure management within DevOps.

Technical link

The ability for companies to run micro services on agile infrastructure is made
possible by IaC using configuration files based on text. This allows companies to
better make use of containers and cloud based platforms, which much concern

6

eased for ability to scale in the future. Furthermore, the automated scripts also
allows fast deployment with much administrative labor taken off. Perry [11]
gives a nice summary on the ability of IaC, which are managed configuration via
configuration file, instant deployment, automatic deployment, version control,
best practice applicable directly to all systems and instant roll-back.

The core feature of IaC matches with DevOps in every way, therefore will
not be further discussed here.

Cultural building

Function enabled by IaC also helps with culture building, which is of vital im-
portance to the success of DevOps. To start with, the human efforts saved due to
automation could release intelligent working staff from tedious routine work and
devote more energy to more creative work. The degree of employee satisfaction
and loyalty are measures which are very likely to increase accordingly.

Secondly, the fast and continuous delivery achieved by automated scripts
supports smaller and more constant change. This increases the possibility of
fail-fast [12]. Moreover, when the working process is integrated in time, com-
munication within the team is also more smooth.

Thirdly, version control and ability to roll-back then encourages developers
to go more creative and be more adventurous when the cost of fail is drastically
lowered. What’s more, this would also allow better project management when
there is a development conflict. The more prioritized business needs could get
pass first easily with fast roll-back.

Is IaC enough for DevOps

Mark Robinson marked on IaC that only having the automation could not solve
everything, operators are still required for better understanding of architecture
design and technical process. A technology without human supervision still
might go wrong. Another point that needs attention is that even though we
are trying to combine development and operation together, they should not
be considered as the same. IaC gives the chance to a fully scalable dynamic
infrastructure completely configured by code [13].

Comparison made in this chapter is more based on researches and summaries
from previous two chapters. An automatic deployment system needs to be es-
tablished for DevOps to work [14], and IaC is inseparable with this automation.
Technically IaC provides possibility to achieve agile goal of DevOps, at the same
time, company culture can also be changed with this strong instrument. How-
ever researches on whether DevOps must go with IaC is not available, therefore
not included in this essay.

6 IaC on Cloud and Performance

Deployment pain is a measure of fear and anxiety that engineers and technical
staff feel when they push code into production [15]. It also measures the extent
to which deployments are disruptive rather than easy and pain-free. Where
deployments are most painful, you’ll find the poorest software delivery perfor-
mance, organizational performance, and organizational culture.

7

Teams can reduce deployment pain by implementing key technical capa-
bilities. Those may vary from implementing comprehensive test and deploy-
ment automation, use of continuous integration, including trunk-based devel-
opment, shift left on security, effectively manage test data, use loosely coupled
architectures, ability to work independently, and use version control of every-
thing required to reproduce production environments decrease their deployment
pain [15]. As a result, the technical practices that improve our ability to de-
liver software with both speed and stability also reduce the stress and anxiety
associated with pushing code into production.

The speed within a business environment is high and it is difficult for Dev/Test
teams to adapt to the quick changes. DevOps allows you to do that by always
having a prioritized product backlog, continuous channel of feedback with cus-
tomers and ability to prioritize the product backlog all the time, directly taking
business angle in consideration. There is a continuous process to plan small
portion – execute - get feedback – react to feedback and adjust plan if needed
and the cycle continues.

This chapter is to form an answer to the fifth research question: RQ5 How
do we measure performance of DevOps and IaC? In the next section, we will
dive further into the technical capability of implementing test and deployment
automation with the usage of state-of-the-art tools to achieve a better perfor-
mance.

Performance Optimization with Tools

Continuous delivery is on a large scale enabled by the usage of tools. Tools
are mandatory in automating DevOps. Quality deliveries with short cycle time
need a high degree of automation [1]. There are a lot of tools to test and deploy
code based on your infrastructure. To enhance the business performance, the
right choice of deployment automation tool is crucial to enable a reliable IaC.
The various topologies needed to be tested and create requiring deployment
patterns may be identified by developers. As well as to automate the consecutive
steps related to installation of application stack on the cloud provisioned image,
populating it with test data, triggering the automated test suite and pushing
the results to a central repository.

The choice of the right tool is based on certain criteria set for each DevOps
phase. The build and deployment phases are crucial for a right IaC script. In
the build DevOps phase, the tools must support fast workflows. Build tools help
achieve fast iteration, reducing manual time-consuming tasks. DevOps pushes
automation from the application to the infrastructure. Compared with manual
infrastructure provisioning, configuration management tools can reduce pro-
duction provisioning and configuration maintenance complexity while enabling
recreation of the production system on the development machines. Such tools
are a major DevOps enabler, especially as architecture moves from a monolithic
block of software to a microservices approach[1].

Although researchers have focused considerably on build and deployment to
achieve a better performance, DevOps also impacts infrastructure operations.
So, you need tools to maintain your infrastructure’s stability while ensuring
high performance [1]. For the operational phase of DevOps, the tools could be
divided into logging and monitoring types.

8

Cloud Benchmarking

Another key method to optimize the business performance while diving into
IaC is to have a proper cloud based resource provider. Cloud WorkBench was
designed and implemented to leverage the notion of IaC for cloud benchmarking,
and is used to automate the benchmarking lifecycle from the definition to the
execution of benchmarks. Its extensibility allows to add additional benchmarks
at runtime and support new cloud providers with minimal effort. CWB is used
to execute extensive benchmarks over different cloud providers [16].

Cloud WorkBench differentiates from these other approaches via its strong
IaC core, which makes it easy to define benchmarks based on standard tooling
and concepts, as well as share benchmark definitions. Further, CWB is one of
the few approaches which is known to offer provisioning capabilities. There is
also no solution known that integrates periodic scheduling functionality into a
web-based framework. Furthermore, CWB together with CloudBench are the
only frameworks designed for benchmark extensibility at runtime [16].

7 Metrics design

As we described in previous chapters, the main features of DevOps includ-
ing automation and continuous delivery. Like agile methodology, it encourages
changes incremental and faster. And most importantly, it should serve for a
core purpose - higher quality and business satisfaction. Together with the help
of IaC, how do we know the actual impact of having DevOps and IaC running
in business? How do we measure the mature level of each aspect and how to
measure them? As DeMarco supported, we can not control what we can not
measure [17]. In this chapter we are going to firstly discuss good metrics for
DevOps. Because there are not much direct study on IaC quality metrics, and
knowing the tight relationship between IaC and DevOps, we are going to discuss
on how to put the vital DevOps metrics to use for measuring IaC.

In this book [18] introducing continuously delivery and DevOps, there are
some simple but effective metrics for CD.Mean time between failure (MTBF), for
the frequency of issued in system. This could help to measure the stability and
overall quality of system. Mean time to resolution (MTTR) measures the speed
of bug fixing. Bug escape distance measures the time to locate the issue. Tother
with other metrics such as code complexity, unit test coverage and commit rates,
they construct the core quality metrics of DevOps. The key factors identified
here are effective but might be too simple and general for practice use. As
there are different phases in DevOps pipeline, there should be more detailed or
targeted metrics raised for specific SLA monitoring.

While Cusick [19] also identified MTTR and MTBF plus Mean Time to
Failure(MTTF) as classic measurements to system stability in change manage-
ment. This paper focus more on IT transition from traditional ITIL driven
process to DevOps, but also needs measurements to keep track of SLAs and
uses CT cooperation as an example. Since IaC goes tightly with change man-
agement in DevOps, the metrics identified here could be a stronger reference to
build metrics towards IaC specifically.

There are a lot more metrics which could be categorized to four major as-
pects, which are velocity, quality, performance and satisfaction [20]. It noted

9

that also the traditional metrics are also applicable, it’s worth notice that due to
the quick and incremental feature of DevOps, time to detect and fix the failures
could be longer when there are multiple changed at the same time. This would
make MTBF a useless metrics.

Another set of DevOps metrics are introduced by Forsgren and Kersten[5]
is having system-based metrics and survey-based metrics as complementary as
each other. Using survey measures could give an overview for the value stream
to avoid great gap between IT and business value, while system measures could
make full use of automatically collected tool-based data to make a continuous
view. This set of metrics, like Cusick, also pay much attention to IT transfor-
mation from traditional one to DevOps, therefore their metrics choice would
either focus on keep previous SLAs under monitoring for less shock to working
staff for a more smooth transition, or on carefully and continuous system status
monitoring to avoid major deviation. At the same time, online forums and blogs
like Devopedia and Thoughtworks could be giving suggestions to teams starting
under DevOps with relatively simple business cases therefore does not require
transition phase.

IaC as part of DevOps it can naturally inherit the metrics for certain mon-
itoring purpose, the quality metrics could be monitored using system-based
metrics [5] where data could be generated and correlated for further analysis to
monitor their performance under SLA. However, the choice of metrics should
also be very much rely on the actually need of business and mature level of
IT management. Moreover, combining with the challenges discussed in chapter
4, there shall be metrics targeting weak points identified with consideration of
tools under use.

8 Discussion and Conclusion

The review is addressing a methodology combined with quantitative research be-
cause the implementation of IaC is dependent on certain business requirements
where each business has a roadmap to enable their vision statement. Combining
this from several business areas qualifies for quantitative research.

We used five sub-research questions to support answering the main research
question: What is the impact of Infrastructure as Code on DevOps and the
defect prediction metrics required for a modern software delivery pipeline?

To sum up, Infrastructure as Code is the automation characteristic which
enables a faster time to market, enhances the working culture, enables perfor-
mance optimization and adapt to continuous feedback to improve and streamline
the software delivery process. Which matches with the mindset of DevOps in
all sorts of ways not only technically but also culturally.

IaC metrics could take DevOps metrics as references, there are several set
of metrics we can use, but remember the choice of metrics should also rely on
the real need of business and the maturity level of IT management

Further research could focus on the analysis of DevOps tools and how they
could interoperate to enable an optimal performance.

10

Section Author
Introduction All
Scope of Literature Furong
The Feature of DevOps Hasine
Infrastructure as a Code Yaping
IaC within DevOps Yaping
IaC on Cloud and Performance Hasine
Metrics Design Furong
Discussion & Conclusion All

9 Work distribution

References

[1] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano.
Devops. Ieee Software, 33(3):94–100, 2016.

[2] Manish Virmani. Understanding devops & bridging the gap from contin-
uous integration to continuous delivery. In Fifth International Conference
on the Innovative Computing Technology (INTECH 2015), pages 78–82.
IEEE, 2015.

[3] Michael Hüttermann. DevOps for developers. Apress, 2012.

[4] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. An exploratory
study of devops extending the dimensions of devops with practices. ICSEA
2016, 104, 2016.

[5] Nicole Forsgren and Mik Kersten. Devops metrics. Communications of the
ACM, 61(4):44–48, 2018.

[6] Kief Morris. Infrastructure as code: managing servers in the cloud. ”
O’Reilly Media, Inc.”, 2016.

[7] Michele Guerriero, Martin Garriga, Damian A Tamburri, and Fabio
Palomba. Adoption, support, and challenges of infrastructure-as-code: In-
sights from industry. In 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 580–589. IEEE.

[8] Dirk Fahland, Daniel Lübke, Jan Mendling, Hajo Reijers, Barbara We-
ber, Matthias Weidlich, and Stefan Zugal. Declarative versus imperative
process modeling languages: The issue of understandability. In Enter-
prise, Business-Process and Information Systems Modeling, pages 353–366.
Springer, 2009.

[9] Clauirton Siebra, Rosberg Lacerda, Italo Cerqueira, Jonysberg P Quintino,
Fabiana Florentin, Fabio QB da Silva, and Andre LM Santos. From theory
to practice: the challenges of a devops infrastructure as code implemen-
tation. In Proceedings of the 13 th International Conference on Software
Technologies (ICSOFT), 2018.

11

[10] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and Tamar Eilam.
Testing idempotence for infrastructure as code. In ACM/IFIP/USENIX
International Conference on Distributed Systems Platforms and Open Dis-
tributed Processing, pages 368–388. Springer, 2013.

[11] Yifat Perry. Why you need infrastructure as code to do devops properly,
Jan 2020.

[12] Matt Callanan and Alexandra Spillane. Devops: making it easy to do the
right thing. Ieee Software, 33(3):53–59, 2016.

[13] Team Cloudify. Infrastructure as code - is it really enough for devops?, Jan
2020.

[14] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A software architect’s
perspective. Addison-Wesley Professional, 2015.

[15] Jez Humble and Gene Kim. Accelerate: The science of lean software and
devops: Building and scaling high performing technology organizations. IT
Revolution, 2018.

[16] Joel Scheuner, Philipp Leitner, Jürgen Cito, and Harald Gall. Cloud work
bench–infrastructure-as-code based cloud benchmarking. In 2014 IEEE
6th International Conference on Cloud Computing Technology and Science,
pages 246–253. IEEE, 2014.

[17] Tom DeMarco. Controlling software projects: management, measurement
& estimation, volume 1133. Yourdon Press New York, 1982.

[18] Paul Swartout. Continuous delivery and DevOps: A quickstart guide. Packt
Publishing Ltd, 2012.

[19] James J Cusick. Achieving and managing availability slas with itil driven
processes, devops, and workflow tools. arXiv preprint arXiv:1705.04906,
2017.

[20] lokesh.rawat arvindpdmn. Devops metrics, sep 2019.

12

A review on parallel implementations of DNNs based
on distributed algorithms

Dongqi PU
Vrije Universiteit Amsterdam
Universiteit van Amsterdam
dongqi.pu@gmail.com

Carlijn Nijhuis
Vrije Universiteit Amsterdam
Universiteit van Amsterdam

c.e.nijhuis@student.vu.nl

Juan Agustin Tibaldo
Vrije Universiteit Amsterdam
Universiteit van Amsterdam

tino@ohzi.io

Abstract

In recent years, the research of deep neural networks has been accompanied by
its successful applications in speech recognition, image recognition, and natural
language processing, and has become one of the most hot research topics in the
field of artificial intelligence and machine learning. The rapid development of
neural networks in big data applications has also promoted the development of
parallel processing devices and platforms, including the currently widely used
parallel processing platforms such as Hadoop and Spark, and GPU (Graphics
Processing Unit) hardware devices with general computing capabilities. This
article first introduces the background of deep neural networks and commonly
used calculation models, and then compares and analyzes the commonly used deep
neural network open source software from the perspective of supporting hardware,
parallel interface, and parallel mode. Finally, the future development trends and
challenges of parallel deep neural networks are prospected.

1 Introduction

Today, deep learning has made breakthroughs in many fields[1] and has been widely used, in areas
such as speech processing, computer vision, natural language processing, man-machine games, and
autonomous driving. Here they have achieved unprecedented results. Because deep learning needs
to constantly derive and iteratively update the model to improve its performance, it requires a lot
of calculations, and is a typical calculation-intensive task. Therefore, the training process of these
neural networks is very time-consuming. As the number of data and model parameters increases,
the growth rate of the stand-alone memory (or video memory) will not match it. Therefore, deep
learning training by a single node can no longer meet the requirements. Distributed deep learning
has become an effective method to solve this problem. Due to its good flexibility and scalability,
distributed networks effectively combine stand-alone resources. In recent years, many researchers
and companies have realized the importance of distributed deep learning and have begun to perform
research in this area, aiming to make full use of distributed clusters and clouds to efficiently train
neural network models.

The aim of this paper is to give an overview of the current state of the research on distributing deep
neural networks on the cloud and to identify the problems that still need to be solved, specifying the
road that future research should take.

This article first briefly explains the theory behind deep neural networks (DNN). Then it gives an
overview of the different types of frameworks and open source software for creating and training
DNNs. Before specifying the current techniques to parallelize and distribute DNNs on the cloud
through data and model parallelism and the performance gained through these methods. Finally, the
current challenges and prospects of the research area are discussed.

2 Deep Learning

Deep learning[2] originated from the simulation of the human brain, using logical nodes to represent
neurons, and simulating the input and output of neurons through weights. People first created a
multilayer perceptron (MLP) based on the basic perceptron and combined artificial neurons to fit
complex functions through simple calculations. The hope was that the neural network model could
be used to extract information at a more abstract level. A model contains of an input layer, an output
layer, and multiple hidden layers. As shown in Figure 1, data is passed to the input layer in the
form of vectors, and some operations such as vector matrix calculation and activation function are
passed down layer by layer, and finally the output result is obtained at the output layer. The deep
neural network model can theoretically be fitted to replace any complex function, and has a strong
representation ability.

Figure 1: Fully Connected Neural Network

Compared with traditional machine learning algorithms (LR, SVM, Decision Tree, Random Forest),
the deep learning method can automatically extract high-level features from the input data, such
as the contour and shape of the image, through this type of network model. There is no need for
data scientists to do feature engineering. On this basis, the introduction of complex network models
makes deep learning have the ability to deal with spatial dependence (overall and local) and time
dependence (causal relationship) problems.

3 Parallel programming and neural network framework

This section will introduce the most common parallel programming frameworks and open source
systems for distributed deep neural networks.

3.1 Parallel programming framework

1) CUDA[3] is a parallel programming language, which was launched by NVIDIA in 2007 and
can only run on various types of GPUs of the company. It uses extended C language for GPU
programming. Since the birth of CUDA version 1.0 in 2007, due to greatly reduced difficulty of GPU
general programming, a large number of researchers have tried to use GPU to accelerate algorithms
in various fields. Since then, the CUDA version has iterated rapidly, and the general computing power
has become stronger. The CUDA parallel programming model uses a two-level parallel mechanism,
that is, Block is mapped to stream multiprocessor parallel execution and Thread in the same Block is
mapped to stream multiprocessor CUDA core for concurrent execution.

2

2) OpenCL[4] is a unified programming standard for heterogeneous computing developed by the
Khronos organization, which is supported by companies such as AMD, Apple, Intel, NVIDIA, TI
and so on. It can run on multi-core CPUs, GPUs, DSPs, FPGAs and heterogeneous acceleration
on the processing unit. When the OpenCL calculation model is executed on specific hardware, the
operating environment of each manufacturer has responsible for compiling the code into machine
code and establishing a hardware and software mapping mechanism. When the core kernel executed
by OpenCL is started, a large number of threads will be created to execute at the same time, and
each thread is a work-item to complete the operation defined by the kernel function. When mapped
to OpenCL hardware for execution, a two-level parallel mechanism is used. Work-groups run
concurrently on computing units of heterogeneous computing devices. Multiple work-items in the
same work-group are independent of each other.

3) OpenMP[5] is a parallel programming model based on shared memory and multi-threading. When
using it, programmers need to add keywords for parallel compilation in the part of the program that
can be used for parallelism. The operating environment maps the computing tasks to multi-threaded
parallel execution based on the keywords. The OpenMP parallel technology has good portability,
does not require a large number of modifications to the serial code, has a strong flexibility, and can
be easily adapted to different parallel system configurations. The thread scheduling for executing
parallel tasks is controlled by the OpenMP operating environment, so when the number of threads is
large, the scalability of parallel programs [6] often behaves poor.

4) MPI is a parallel programming based on message passing framework [7]. MPI is mainly used
in cluster computing environments. As a cross-language communication protocol, MPI supports
both point-to-point and broadcast communication methods. When the MPI program is executed,
multiple processes are started on each node of the cluster. The processes between the nodes explicitly
exchange messages through high-speed communication links (such as Ethernet or InfiniBand), and
work together in parallel to complete computing tasks. MPI is widely used in the high-performance
computing industry, but parallel programs based on MPI usually have large changes in algorithms,
difficult programming, and insufficient fault tolerance. If a process fails, the entire application needs
to be recalculated.

5) Spark[8] is a universal parallel computing framework. It extends the widely used MapReduce
computing model, and adds interactive query and stream processing functions. It also supports
Scala, Java, and Python languages. It is easy to use and can work with multiple frameworks such
as Yarn, Mesos, Hive, HBase, HDFS, etc. Spark abstracts all types of data structures into RDD
structures. Based on the characteristics of in-memory computing, it has obvious advantages in
iterative algorithms compared to Hadoop, and the efficient fault tolerance mechanism enables it to
return to normal in the face of failure problems. At present, Spark has been widely used in the field
of big data processing.

Table 1: Comparison of parallel programming frameworks

Framework Announcement date Openness Main supported languages Supported hardware Programming difficulty Supported Deep learning library

CUDA 2007 Private C, C++ NVIDIA GPU Easy Caffe, TensorFlow, MXNet, CNTK, (Py)Torch, Theano
OpenCL 2008 API C, C++ GPU, CPU FPGA, DSP MIC Difficult Caffe, Theano
OpenMP 1997 API C, C++, Fortran CPU, MIC Easy Theano

MPI 1992 API C, C++, Fortran CPU, MIC Difficult CNTK, S-Caffe
Spark 2010 Open source Java, Scala, Python CPU Easy Intel BigDL, SparkNet

Table 1 analyzes and compares the parallel programming frameworks in terms of openness, develop-
ment difficulty, and support for deep learning software.

3.2 Neural network open source software system

Due to the wide application of deep neural networks in various fields, industry and academia have
launched relevant open source software systems, so that researchers can quickly apply deep neural
networks to their own research fields. At present, the open source software systems of deep neural
networks mainly include: Caffe, TensorFlow, MXNet, CNTK, PyTorch, Theano, etc. as shown
in Table 2 These use some similar methods for parallel deep neural networks[9], for instance, use
high-performance multi-threaded libraries on the CPU to train the network, and support cuDNN
libraries on the GPU to accelerate the network. In the implementation of distributed parallel deep
neural networks, data parallelism or model parallelism is used.

3

Table 2: Comparison of open source libraries for neural networks

Framework Announcement date Supported hardware Parallel interface Parallel mechanism Multi node

Caffe 2013 CPU, GPU CUDA, OpenCL Data parallelism Support
Caffe2 2017 CPU, GPU CUDA, OpenCL Data parallelism Support

TensorFlow 2015 CPU, GPU, MIC CUDA Data parallelism, model parallelism Support
TensorFlow2 2019 CPU, GPU, MIC CUDA Data parallelism, model parallelism Support

(Py)Torch 2017 CPU, GPU CUDA Data parallelism, model parallelism No support
Theano 2007 CPU, GPU CUDA, OpenCL Data parallelism No support
MXNet 2015 CPU, GPU CUDA Data parallelism, model parallelism No support
CNTK 2016 CPU, GPU CUDA Data parallelism Support

(1) Caffe[10] supports hardware platforms as CPU and GPU. It uses CPU’s high-performance
multithreading libraries (Altas, OpenBLAS, Intel MKL) to train the network; when using GPU, Caffe
uses cuDNN for training. Data parallelism is used to accelerate the deep neural network, achieving
single-node multi-device data parallelism. The tree topology connection strategy is used to exchange
parameters between multiple GPUs, which can effectively reduce communication overhead.

(2) TensorFlow[11] uses computation graphs to represent machine learning algorithms. To parallelize,
the user first needs to create an abstract TensorFlow cluster object, which is used to execute the
computation graph in a distributed manner. TensorFlow supports two parallel modes for model and
data. For model parallelism, one must define the structure of the computation graph, the configuration
of the cluster, and map the different parts of the model on different computing devices. Each abstract
cluster includes multiple tasks, and each task represents a computing task of the deep neural network.
The user maps the task on different devices. For data parallelism, an abstract cluster can be divided
into multiple jobs. A job is generally divided into a worker job and a parameter job, and a job contains
multiple tasks. In TensorFlow, the worker job is responsible for independent training of a deep neural
network on each node, and the parameter job is responsible for the function of parameter exchange
and gradient update.

(3) MXNet[12] realizes parameter update and data exchange through KVStore, and implements
resource scheduling and task management through the engine. KVStore is a distributed key-value
store based on the parameter server, used for data exchange between multiple devices. The engine is
a resource management and task scheduler, which is used to schedule the execution of KVStore’s
operation and management parameter update mechanism. MXNet adopts a data parallel strategy
with a two-layer architecture. The first layer is to use a parameter server for data parallelism among
multiple devices in a working node, and the second layer is data parallelism between different
working nodes. When training deep neural networks, the parameters on multiple devices of a single
node are first summarized, and then the single node sends the data to the parameter server for
parameter update. Since the communication bandwidth within a single node is much larger than the
communication bandwidth between nodes, the two-level parallel strategy can effectively reduce the
bandwidth requirements.

(4) CNTK[13] represents a neural network as a series of calculation steps through a directed graph.
The leaf nodes of the directed graph represent input values or network parameters, and the other
nodes represent matrix operations on their inputs. CNTK uses a data parallel method to implement a
parameter server that supports synchronous and asynchronous parameter update mechanisms. At
the same time, CNTK can be deployed on heterogeneous clusters on multiple GPUs or CPUs for
distributed training of deep neural networks.

(5) Torch[14] and Torch-based PyTorch support multi-GPU and CPU training. Use OpenMP, Intel
MKL and Pthread on the CPU for multi-thread training, and support cuDNN and OpenCL on the
GPU. Torch supports two strategies of data parallelism and model parallelism. For data parallelism, a
model copy is independently trained on each device. When the parameter is updated, the gradient on
each device is transferred to the parameter device for parameter update. Model parallelism is to copy
the training data to all submodules and run the disjoint parts of the model on different devices.

(6) Theano[15] uses symbolic graphs to describe machine learning algorithms and supports CPU and
GPU for network training. Theano uses OpenMP on the CPU for multi-thread training and cuDNN
on GPU. It adopts a data parallel method and supports a multi-GPU synchronization parameter update
mechanism.

The open source software for deep learning is updated quickly, and the supported hardware architec-
ture and software platforms are also increasing. In particular, support for embedded platforms[16]

4

and Python has become a key development direction. Table 2 compares these open source deep
learning frameworks.

4 DNN on the cloud and edge

4.1 Introduction

There is enough motivation to promote the development of distributed deep neural networks (DDNNs)
in the cloud and the edge. Recently, there has been an exponential increase in the needs of image
recognition due to the universal use of small devices, namely, mobile phones and sensors. Another
drive for this increase in the research in these topics is the need for an increase in speed-up typical
of HPC, which has motivated research on this topic. Although HCP has always had a bottleneck
in memory allocation and inter-computing unit communication, the former requires a smart way to
split the DNN algorithm between the devices, the edge and the cloud and, the latter requires high
bandwidth and good memory allocation and computer power allocation. In the following sections,
we will focus on DDNNs in the cloud and the edge.

4.2 Motivation

There are four major points that motivate the usage of DNN on the cloud:

IoT, increase of techniques using Neural Networks, and high connectivity
There is an evenly increasing number of devices connecting to the Internet every day. Mobile phones
have been mainstream for years, but recently new devices are getting attached to the internet. These
are new types of sensors, appliances such as fridges and washing machines.[17] These devices
generate all kinds of information, and recently they have been requiring the use of Neural Networks
to provide features that were not there before, such as automatic detection of fridge content and
so. Nevertheless, the most common data to be shared on the internet is visual data, namely, video.
Video has been an 80% of a staggering 250 exabytes of data that has been generated in 2018. This is
due to several factors: mobile phone supporting large 4k video, video streaming platform adoption,
IP cameras, and the 24/7 use of mobile phones that are no longer bounded to stay at home to be
connected.[18, 19, 20, 21, 22] This increase of visual data is demanding an evenly increase in the
use of visual recognition. This image analysis requires almost real-time latency, as there is either
a stream of information (IP cameras for example), or there is an end-user waiting in the prediction
pipeline, suffering from communication latency and possible quick drainage of battery power due to
such an intense communication. [19]

DNN usage for Computer Vision
DNN algorithms have become the de facto method of doing computer vision[18]. The current state of
the art for visual recognition included DNN and convolutional NN algorithms, that are designed with
more and more layers and filters as the time pass. They have become more powerful and accurate,
with the cost of more computing power. This means a device, or the edge, might not be able to fully
run the complete DNN algorithm [21].

Advantages of NN processing in the device and edge
Devices have a limited amount of computing power and memory available. This might not allow them
to run a whole DNN model, nevertheless, they can, in some cases, execute some layers of the pipeline.
The same can be said about the Edge. Having layers being executed before reaching the cloud have
clear benefits: reduces the memory bandwidth usage (as there might not be a need for sharing the
whole dataset but only a summary of it), reduces the computing power required on the cloud, and thus
reducing its saturation, reduces latency as all the NN might be run in the device/edge and, privacy, as
it is not required to send raw data that could eventually include sensitive information[21]

Budget
Another thing to note is the fact that a neural network that is fully run on the cloud will require a
larger budget when the service is fully running and providing to a large audience. This is related
to fees cloud providers charge, as most of their services are charged on demand, then the more
computation done on the cloud the more expensive the service is going to be. In some cases, this
might be prohibitive or just high enough to think about a different approach. In this context budget
learning is a concept where the learner tries to use the cloud services as less as possible, based on the
economic constraints.[19]

5

4.3 Infrastructure Stack

Typical HPC vs Cloud/Edge/Device architecture

A Typical DNN architecture is GPU based, has a predefined network interconnection such as high-
speed InfiniBand connection, estimated power consumption, and refrigeration needs, thus creating a
fixed set of capabilities.[23, 24] In contrast, Cloud/edge based Neural Networks have a heterogeneous
architecture composed of devices of various brands, power consumption, power autonomy, protocols,
and computing power. Most of the time we see the same type of device used on the edge, and device
layer, but this is not always the case (IP camera, remote sensors)[20]. This means the code needs
to adapt to the underlying architecture. Another important factor is that this architecture uses the
internet for communication layer, being the internet prone to speed and availability fluctuation and
even eventual disconnection, so the architecture needs to be redundant and tolerant to these events.
[20]

Describing the architecture

The infrastructure of the Cloud and Edge Neural Network is composed of three players: the devices,
the edge/fog, and the cloud. The cloud has been described many times as an on-demand, globally
distributed, with rather uniform latency, convenient, limitless having a pay-as-you-go profitable
structure. They are usually in the middle of big cities and are distributed through the internet by
routers and elements on the edge of the internet. Most of the time it is a cost-efficient alternative to
run a local HPC system.[25] Devices are a heterogeneous group of computers, phones, appliances,
sensors, and so, that are connected to a router and sits on the very end of the network structure,
where the end-user also is.[25] Finally, the edge is what sits at the end of the network before the end
device. The fog is characterized for having low latency and location awareness, for being wide-spread
geographically located, for allowing mobility, for having a very large number of nodes, for having a
predominant role in wireless access, having a strong presence of streaming and real-time applications
and also has wide heterogeneity.[25]

4.4 Cloud algorithm techniques

A GPU is great for DNN, but has clear limitations when the whole dataset does not fit into memory.
To scale these techniques, distributing algorithms can be used. However, creating a distributed
algorithm for NN using regular techniques also presents a challenge, as the more nodes there are, the
bigger the communication cost is.

DistBelief [27] was proposed as a software architecture for handling big datasets on DNN on
distributed clusters. It takes care of communication and synchronization. DistBelief is able to run
both on a single device as a multi-threaded application or on a cluttered distributed architecture. It
uses message passing for communication. It also implements two techniques for running this type of
NN: Downpour SGD implements a distributed version of stochastic gradient descent, a technique
that is mostly used on the contract of DNN. This tool implements a centralized server that centralized
the management of parameters, updating their gradients depending on the gradients generated by the
clusters i.e. the model replicas. These techniques also exploit the Adagrad technique, which allows
adaptive learning rates for the parameter, increasing the overall speedup. Sandblaster L-BFGS is
another technique that allows NN implementation using L-BFGS on very large models. It does not
use a centralized parameter pool, but a coordinator, and it is effective on a low bandwidth system.
[27].

The DistBelief software was proposed for Google Brain and eventually became TensorFlow. [27].
TensorFlow was designed as ‘a flexible data flow-based programming model’[27] capable of handling
the environment where Cloud DNN lives.

4.5 Tools for distributing algorithms on the cloud and the edge

Couper
A tool that has been proposed by one of the authors is Couper [18], this tool allows the model to be

6

sliced and to be run efficiently at the edge infrastructure in a unit called a ’slice’. This process can be
done automatically, best fitting the underlying architecture of the application. Couper can be applied
with arbitrary production models and for different infrastructure configurations. It also provides tools
for adapting to different engines and let the developer tune different parameters in order to create
the ideal slicing for the current application. The end result is a deployment-ready DNN pipeline that
has demonstrated a notable speedup when compared with only cloud or only edge models. This tool
finds breaking points where the NN can be split. These slices can be run on parallel in the case of
filters that can be run in parallel. The tool is able to analyze the network, the memory usage and,
possible drops in latency and modify the breaking points by improving itself. The slices are run using
Kubernetes, and a small overhead for serialization [18].

Containerized DNN
A containerized partition-based runtime adaptive convolutional neural network (CNN) acceleration
framework for the Internet of Things (IoT) has also been proposed [20]. This framework uses spatial
partitioning techniques and layer fusion, creating optimal partitions in a dynamic fashion. These
partitions are created depending on the computing power available for the application and also
depending on the network conditions. Partitions on this application are then containerized, creating
an abstraction that is easy to run no matter what the underlying platform is. This technique uses
Docker and Kubernetes to handle the resources and scheduling of containers these containers. This
Kubernetes wraps one or many layers, and can eventually be run on parallel. [20]

Bracketing
Bracketing is also a proposed technique for dealing with cloud DNN applications [19]. It allows the
architecture to handle the entirety of the machine learning algorithm up to a point where the accuracy
is lower than a point. If the accuracy drops too much, the NN execution is done by a bigger machine
located on the next layer.[19]

5 Performance Analysis

Now that the most common different approaches and frameworks to distribute deep neural networks
on the cloud have been discussed, this section will provide an overview of the different performance
analyses that have been performed on distributed deep neural networks, mentioning the bottlenecks
that were discovered and proposed ways to overcome them.

5.1 Analysis

The paper by Dean et al [26] set the precedent for further investigation on how to distribute deep neural
networks. In their paper, they mention that larger models can dramatically improve performance
and hence it is beneficial to look for ways to efficiently train models with billions of parameters.
Therefore, they propose a software framework called ‘DistBelief’ that can be used on a cluster with
thousands of machines to train large deep neural networks. As already mentioned in section 4.4, the
framework consists of two algorithms: ‘Downpour SGD’ and ‘Sandblaster’. Downpour SGD is an
asynchronous data parallel procedure for stochastic gradient descent (SGD), which is the prominent
method used to train deep neural networks. Sandblaster is a framework for batch optimizations, like
the distributed implementation L-BFGS. Batch is a term used for stochastic gradient descent, where
batches are used to make the algorithm data parallel, where each node gets a part of the training
sample called a minibatch to train upon. They claim that their system is capable of training a deep
neural network that is 30 times larger than tried in previous literature and therefore also achieves
state-of-the art performance on ImageNet, a common metric benchmark for visual recognition tasks.
Furthermore, it also accelerates the training time of speech recognition tasks.

Although the results of Dean et al [26] were very promising, especially their Downpour SGD in
combination with AdaGrad, Seide et al [28] analyze the theoretical efficiency of model and data
parallel SGD. Their conclusion is that the methods do not scale well to more nodes, running into
a bandwidth bottleneck. Important to mention is that Seide et al [28] focus on parallelizing the
plain SGD method through model and data parallelism, as opposed to the asynchronous variant
proposed by Dean et al [26]. They made their conclusion by analyzing the theoretical upper bound
of the parallelizability of SGD, estimating the optimal number of compute nodes to maximize the
efficiency. Seide et al [28] claim that any optimal version of data parallelism entails some form

7

of delayed update as is the case with the Downpour SGD method from Dean et al [26], where the
nodes continue training their version of the model, while the results from previous iterations are
still being communicated across all the nodes. According to them, the optimal training is where the
computation and the communication happens concurrently at the exact same time. A version of this
is Asynchronous SGD (ASGD), but they say that ASGD does not improve the parallelizability much,
since, they say, if deterministic data-buffered data parallelism does not scale well, neither would
ASGD. Their explanation and reasoning for this statement is lacking, not explaining why they think
that ASGD is also linked to the theoretical bound they put on plain SGD, effectively eliminating any
further algorithmic optimization for SGD, saying that in essence SGD is not very good to parallelize.
Furthermore, in the experimental phase, where Seide et al [28] try to prove their theories through
experimentation, they mention that they cannot provide time measurements for data parallelism,
because of lacking an optimized implementation. Therefore, it is only through theoretical statements
that they make that claim, claiming that the best way to speed-up the training process is to inherently
change the training algorithm to allow for greater parallelizability. There is truth to this however,
due to the inherent sequential nature of SGD. Seide et al [28] concur that the efficiency of SGD can
be improved by increasing the minibatch size and compressing the data. Compressing the data is a
method that is analyzed in other papers that will be mentioned later in this section.

Increasing the minibatch size is contradicted by the paper by Keskar et al [29]. Keskar et al [29]
say that increasing the minibatch size leads to a poorer generalization of the model. This is already
touched upon by Seide et al [28] by them mentioning that the increase of the minibatch size is limited
by the training stability. Keskar et al [29] investigate the cause of the poorer generalization and
they come to conclusion that it is due to the fact that large-batch methods tend to converge to a
sharp minimizer, while small-batch methods tend to converge to flat minimizers, meaning that they
generalize better due to the fact that they can be specified with lower precision. The reason that
small-batch methods converge to flat minimizers is explained as being due to the noise in the gradient
estimation of small-batch methods, which is greater than for large-batch methods. This noise allows
small-batch methods to escape the sharp minimizers, as it pushes the iterates out of the minimizers,
encouraging movement towards flat minimizers. The noise has less effect with flatter minimizers.
Keskar et al [29] agree with Seide et al [28] that the speed-up and scalability is limited by the
minibatch sizes. However, increasing the batch size is, according to them, not suitable. They propose
some possible solutions, like data augmentation, conservative training and robust optimization, but
these do not really solve the problem. As an alternative they mention the option of dynamic sampling,
where the batch size is increased gradually after each iteration.

Keuper et al [30] also proceed to analyze the performance from a theoretical point of view. They
begin by specifying the main bottlenecks, according to them, for scaling distributed deep neural
networks. Keuper et al [30] present fixed theoretic constraints that explain the lack of proper scaling
beyond a couple of nodes. The bottlenecks being model distribution overhead (communication),
data parallelized matrix multiplication and training data distribution. The mentioned perfect overlap
of communication and computation by Seide et al [28] is very hard to achieve, especially with
more nodes. Because of the decrease in overall computation time with more nodes, but increased
communication. Therefore, the irony is that the faster and more computation nodes there are, the more
the communication time will exceed the computation time. The training becomes communication
bound, hindering the scaling to more than a few nodes. The limited bandwidth limits the use of a lot
of network traffic, which is needed since for a large model, there are a lot of weights and gradients
that need to be communicated. One of the possible solutions analyzed by Keuper et al [30] is the
increase of the minibatch sizes. However, they come to the same conclusion as Keskar et al [29] that
the increase of the minibatch size decreases the validation accuracy of the model. Therefore, they
propose to try to reduce the model and data size, like Seide et al [28] already argued.

5.2 Improvement

An example of a paper that tries to improve communication through model reduction is the paper by
Strom [31]. The solution, according to them, is to change the rate at which a change of an individual
weight is communicated with other nodes. Normally, all the weights would be communicated
with other nodes equally as much at the same times. But by limiting the number of weights to be
communicated, one can reduce the amount of communication needed. Strom [31] claims that his
method can reduce the communication needed by three orders of magnitude. Since the weight updates
are of the same size as the model, it takes a lot of communication bandwidth to synchronize these

8

weights after each iteration. Strom [31] argues that due to the fact that these sub-gradients are very
sparse and are often even sparser than the weight distribution, only a small fraction of these weights
are required to be updated after each minibatch. He says that elements of the gradient that are near
zero can be delayed longer than the minibatch size. Therefore, he proposes a method that makes
use of a threshold to filter which weight updates to communicate with other nodes and which not.
This is called gradient sparsification. Strom [31] also implements a version of gradient quantization,
which lowers the amount of bits needed to represent a gradient and hence lowering the amount of
data that needs to be send. He has found that 1 bit is enough to represent a gradient. The results
are encouraging in that the method allows for scaling up to 80 nodes, compared to just the 3 and 16
found by Seide et al [28] and Keskar et al [29]. Furthermore, his experiments show that the method
becomes more efficient, the larger the model is. These experiments were run on the AWS cloud
and Strom [31] mentions that the results closest in comparison are from experiments run on HPC
clusters with Infiniband networks, but nevertheless, the results from Strom [31] were unique at the
time. However, the paper does not show a good comparison with other results, just saying that it
is so, and Strom [31] makes the too easy assumption that his solution practically solves the entire
distributed deep neural network training problem without any real comparison and further research
on different types of infrastructures and different types of problems.

Wen et al [32] propose another solution to the communication problem, called ‘TernGrad’. Their
method is a version of gradient quantization. ‘TernGrad’ uses ternary gradients, which requires
only three levels: -1, 0 and 1. This can greatly reduce the communication time by reducing the
overhead caused by gradient synchronization. While proofing the convergence of their method, they
use the assumption of a gradient bound and as shown in the paper by Jiang et al [33], this assumption
might not be a realistic one. Through the experiments they confirm that larger batch sizes cause
accuracy degradation as proven by Keskar et al [29]. However, Wen et al [32] say that the inherent
noise of TernGrad might help large-batch methods to converge to flat minimizers as it does with the
small-batch methods. Their experiments show that TernGrad improves the accuracy of large-batch
methods, which is an asset of TernGrad since often large-batch sizes are required due to their faster
training times.

The two methods by Strom [31] and Wen et al [32] are analyzed by Jiang et al [33], where the
reason for the paper’s existence is the lack of theoretical proof concerning the convergence of the
methods. In previous literature, the methods of gradient sparsification were mainly based on heuristics
and hence there was no guarantee of convergence. According to Jiang et al [33] there was no real
understanding on how gradient sparsification and quantization affects the convergence rate. Their
conclusion is that the asymptotic convergence rate of full-precision SGD (O(1/sqrt(MK))) can be
achieved if the hyperparameters have the right configuration. This rate implies linear speedup across
multiple machines. When analyzing the method proposed by Strom [31], they come to the conclusion
that the threshold does not directly affect the convergence rate. Instead, a larger threshold means
fewer communication through exchanges of gradients, which increases the variance of the parameters
in the different nodes. This leads to a slower convergence rate. Therefore, it is important to change
the threshold adaptively to keep the variance as low as possible. When analyzing TernGrad [10], they
come to the conclusion that, in theory, generally TernGrad does not achieve the linear convergence
rate. However, it can be achieved when the gradient components are more evenly distributed, since
this means that there are fewer quantization levels needed and the three from TernGrad will suffice.

Finally, up to this point, most papers and research have been focused on data parallelism and model
parallelism to parallelize deep neural networks. Jia et al [34] offer an alternative called ‘FlexFlow’
that automatically searches for the most efficient way to parallelize deep neural networks on a certain
machine. It does this by using a randomized guided search (Markov Chain Monte Carlo) through
the SOAP space. Soap stands for sample, operation, attribute and parameter. Operations talks about
the way different operations in a deep neural network are parallelized. The sample and parameter
dimensions describe how the training data and the model parameters are distributed over the different
nodes. The attribute dimension describes the way that different attributes in a sample are divided.
Since the SOAP space is very large, a challenge was to efficiently search through the space. For that
purpose, FlexFlow implements an execution simulator that is much faster than real executions. This
can then be used to estimate the execution times. FlexFlow changes the parallelization optimization
problem into a cost minimizing problem and heuristically searches through the space for the best
strategy. The strategies discovered by FlexFlow reduce the overall communication cost and the
overall task computation time, according to Jia et al [34]. However, they do not thoroughly specify

9

how they came to this conclusion, so this statement should be further investigated. But if it is true, it
shows great promise for the optimization of parallelizing deep neural networks over a lot of nodes.

To conclude this section, at the moment the research on how to best distribute deep neural networks
either using data parallelism and model parallelism is still in need of improvement. Although
solutions have been proposed to solve the communication bottleneck of data parallel SGD, these do
not fully solve the problem yet or need more proof, meaning that at the moment it does not scale
well yet to a lot of nodes. Hence, further research is needed to explore different ways to optimize the
communication, to look at different ways to parallelize SGD or to investigate and design a different
training algorithm for DNNs that is better parallelizable.

6 Discussion and Conclusion

Deep neural networks have brought a new wave of machine learning, and have been widely valued
from academia to industry. With the increase of training data sets and the increasing complexity of the
network scale, the training time of deep neural networks has become longer and longer. Therefore, the
parallelization of deep neural networks is an important basis for accelerating model training. However,
due to the complex process, the number of iterations, and the high computational complexity, there
are some challenges and bottlenecks in the parallelization of deep neural network as seen in section 5.
In this paper, the current deep neural network parallelization technologies were summarized. The
methods for distributing DNNs on the cloud and the performances of DDNNs have been analyzed.
Below we propose some worthy explorations for future research, based on the detected challenges:

(1) Performance portability of parallel deep neural network algorithm

Due to the diversity of development languages, the parallel deep neural network algorithm developed
for a heterogeneous computing hardware must invest a lot of human resources for code rewriting
and performance optimization when running on other parallel computing hardware. One of the
current solutions is to use a cross-platform programming language, like OpenCL. However, due to the
huge differences in the internal structure of heterogeneous computing hardware, the code written by
OpenCL can not achieve performance portability[35]. The performance of the model when running
on some heterogeneous computing hardware is quite different from the peak theoretical calculation
of the hardware. Therefore, the performance portability of parallel deep neural networks urgently
needs to be solved by researchers.

(2) Automatic division of tasks in model parallelism

The existing research results show that the parallelization of the deep neural network model mainly
aims at the designed neural network structure by manually dividing the network and mapping it to
different computing devices. Manually dividing the network may result in an unbalanced load on
the computing nodes due to the inaccurate estimation of the running time of the task load and to a
less efficient parallelization strategy[36]. To realize the automatic division of the network model and
achieve load balancing, it also faces the problem of how to construct an accurate task scheduling
algorithm. FlexFlow [34] is a recent implementation of this and shows great promise, but further
research is needed.

(3) Challenges faced by data parallelism

For the future development of data parallelism, we can proceed in two directions. The first is to design
a distributed stochastic gradient descent algorithm with fast convergence and low communication cost
from the perspective of the algorithm[37]. In other words, try to change the inherent sequential nature
of the algorithm. The second is to solve the communication bottleneck between different nodes in the
cluster[38] as this has not been fully achieved yet.

Finally, it is foreseeable that with the rapid development of heterogeneous computing platforms and
the continuous solution of parallelization technical problems, the long training time of neural network
applications will be solved and hence the path will be paved for DNNs to be successfully applied to
more fields.

10

References

[1] Liu W, Wang Z, Liu X, et al. A survey of deep neural network architectures and their applications[J].
Neurocomputing, 2017, 234: 11-26.

[2] Goodfellow I, Bengio Y, Courville A. Deep learning[M]. MIT press, 2016.

[3] Garland M, Le Grand S, Nickolls J, et al. Parallel computing experiences with CUDA[J]. IEEE micro, 2008,
28(4): 13-27.

[4] Diaz J, Munoz-Caro C, Nino A. A survey of parallel programming models and tools in the multi and
many-core era[J]. IEEE Transactions on parallel and distributed systems, 2012, 23(8): 1369-1386.

[5] Chapman B, Jost G, Van Der Pas R. Using OpenMP: portable shared memory parallel programming[M].
MIT press, 2008.

[6] Iwainsky C, Shudler S, Calotoiu A, et al. How many threads will be too many? On the scalability of OpenMP
implementations[C]//European Conference on Parallel Processing. Springer, Berlin, Heidelberg, 2015: 451-463.

[7] Gropp W, Thakur R, Lusk E. Using MPI-2: Advanced features of the message passing interface[M]. MIT
press, 1999.

[8] Zaharia M, Chowdhury M, Franklin M J, et al. Spark: Cluster computing with working sets[J]. HotCloud,
2010, 10(10-10): 95.

[9] Nguyen G, Dlugolinsky S, Bobák M, et al. Machine Learning and Deep Learning frameworks and libraries
for large-scale data mining: a survey[J]. Artificial Intelligence Review, 2019, 52(1): 77-124.

[10] Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional architecture for fast feature embed-
ding[C]//Proceedings of the 22nd ACM international conference on Multimedia. 2014: 675-678.

[11] Abadi M, Barham P, Chen J, et al. Tensorflow: A system for large-scale machine learning[C]//12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). 2016: 265-283.

[12] Chen T, Li M, Li Y, et al. Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems[J]. arXiv preprint arXiv:1512.01274, 2015.

[13] Seide F, Agarwal A. CNTK: Microsoft’s open-source deep-learning toolkit[C]//Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 2135-2135

[14] Collobert R, Bengio S, Mariéthoz J. Torch: a modular machine learning software library[R]. Idiap, 2002.

[15] Bastien F, Lamblin P, Pascanu R, et al. Theano: new features and speed improvements[J]. arXiv preprint
arXiv:1211.5590, 2012.

[16] Tang J, Sun D, Liu S, et al. Enabling deep learning on IoT devices[J]. Computer, 2017, 50(10): 92-96.

[17] A. Floarea and V. Sgârciu, "Smart refrigerator: A next generation refrigerator connected to the IoT," 2016
8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Ploiesti, 2016, pp.
1-6, doi: 10.1109/ECAI.2016.7861170.

[18] Hsu, Ke-Jou & Bhardwaj, Ketan & Gavrilovska, Ada. (2019). Couper: DNN model slicing for visual
analytics containers at the edge. 179-194. 10.1145/3318216.3363309.

[19] Gangrade, Aditya & Acar, Durmus & Saligrama, Venkatesh. (2020). Budget Learning via Bracketing.

[20] Zhou, Li et al. “Distributing Deep Neural Networks with Containerized Partitions at the Edge.” HotEdge
(2019).

[21] S. Teerapittayanon, B. McDanel and H. T. Kung, "Distributed Deep Neural Networks Over the Cloud, the
Edge and End Devices," 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS),
Atlanta, GA, 2017, pp. 328-339, doi: 10.1109/ICDCS.2017.226.

[22] Lee, In & Lee, Kyoochun. (2015). The Internet of Things (IoT): Applications, investments, and challenges
for enterprises. Business Horizons. 58. 10.1016/j.bushor.2015.03.008.

[23] Iandola, Forrest & Moskewicz, Matthew & Ashraf, Khalid & Keutzer, Kurt. (2016). FireCaffe: Near-Linear
Acceleration of Deep Neural Network Training on Compute Clusters. 2592-2600. 10.1109/CVPR.2016.284.

[24] Shazeer, Noam & Cheng, Youlong & Parmar, Niki & Tran, Dustin & Vaswani, Ashish & Koanantakool,
Penporn & Hawkins, Peter & Lee, HyoukJoong & Hong, Mingsheng & Young, Cliff & Sepassi, Ryan &
Hechtman, Blake. (2018). Mesh-TensorFlow: Deep Learning for Supercomputers.

[25] Bonomi, Flavio & Milito, Rodolfo. (2012). Fog Computing and its Role in the Internet of Things.
Proceedings of the MCC workshop on Mobile Cloud Computing. 10.1145/2342509.2342513.

11

[26] Dean, Jeffrey & Corrado, G.s & Monga, Rajat & Chen, Kai & Devin, Matthieu & Le, Quoc & Mao, Mark &
Ranzato, Aurelio & Senior, Andrew & Tucker, Paul & Yang, Ke & Ng, Andrew. (2012). Large Scale Distributed
Deep Networks. Advances in neural information processing systems.

[27] Abadi, Martin & Agarwal, Ashish & Barham, Paul & Brevdo, Eugene & Chen, Zhifeng & Citro, Craig &
Corrado, G.s & Davis, Andy & Dean, Jeffrey & Devin, Matthieu & Ghemawat, Sanjay & Goodfellow, Ian &
Harp, Andrew & Irving, Geoffrey & Isard, Michael & Jia, Yangqing & Kaiser, Lukasz & Kudlur, Manjunath &
Levenberg, Josh & Zheng, Xiaoqiang. (2015). TensorFlow : Large-Scale Machine Learning on Heterogeneous
Distributed Systems.

[28] Seide, Frank, et al. On parallelizability of stochastic gradient descent for speech DNNs. In: 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. p. 235-239.

[29] Keskar, Nitish Shirish, et al. On large-batch training for deep learning: Generalization gap and sharp
minima. arXiv preprint arXiv:1609.04836, 2016.

[30] Keuper, Janis; Preundt, Franz-Josef. Distributed training of deep neural networks: Theoretical and practical
limits of parallel scalability. In: 2016 2nd Workshop on Machine Learning in HPC Environments (MLHPC).
IEEE, 2016. p. 19-26.

[31] Strom, Nikko. Scalable distributed DNN training using commodity GPU cloud computing. In: Sixteenth
Annual Conference of the International Speech Communication Association. 2015.

[32] Wen, Wei, et al. Terngrad: Ternary gradients to reduce communication in distributed deep learning. In:
Advances in neural information processing systems. 2017. p. 1509-1519.

[33] Jiang, Peng; Agrawal, Gagan. A linear speedup analysis of distributed deep learning with sparse and
quantized communication. In: Advances in Neural Information Processing Systems. 2018. p. 2525-2536.

[34] Jia, Zhihao; Zaharia, Matei; Aiken, Alex. Beyond data and model parallelism for deep neural networks.
arXiv preprint arXiv:1807.05358, 2018.

[35] Zhang Y, Sinclair M, Chien A A. Improving performance portability in OpenCL programs[C]//International
Supercomputing Conference. Springer, Berlin, Heidelberg, 2013: 136-150.

[36] Mirhoseini A, Pham H, Le Q V, et al. Device placement optimization with reinforcement learn-
ing[C]//Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017:
2430-2439.

[37] Xing E P, Ho Q, Xie P, et al. Strategies and principles of distributed machine learning on big data[J].
Engineering, 2016, 2(2): 179-195.

[38] Seide F, Fu H, Droppo J, et al. 1-bit stochastic gradient descent and its application to data-parallel
distributed training of speech dnns[C]//Fifteenth Annual Conference of the International Speech Communication
Association. 2014.

12

7 Contribution

Table 3 shows the contribution of each team member. First, we tried to understand and analyze the expected
result and writing tasks before diving into reading. After reading a few papers, we came up with the thesis
and structure of the report and divided the tasks according to this structure. Specifically, Dongqi was mainly
responsible for writing Deep Learning and Parallel programming and neural network framework. The sections
Abstract, Introduction, Discussion and Conclusions were drafted by Dongqi, and everyone participated in the
revision. DNN on the cloud and edge was completed by Juan, and Carlijn was responsible for the performance
analysis writing.

Table 3: Group member contribution

Task Description Member
Abstract, Introduction All
Deep Learning Dongqi PU
Parallel programming and neural network framework Dongqi PU
DNN on the cloud and edge Juan Agustin Tibaldo
Performance Analysis Carlijn Nijhuis
Discussion and Conclusion All

Throughout the literature study process, we held many online meetings. Although the impact of the Coronavirus
outbreak prevented us from having face-to-face conversations, network tools, like Discord, helped us to connect.
These meeting were to determine the research direction, because the original topic was somewhat general, to
find a more suitable and narrow topic, to find suitable literature to support our study and research and discuss
our findings. To this end, we searched and browsed a large number of papers, and extracted their keywords and
research topics. These were then categorized to get a global overview of the research about DDNNs.

13

Serverless Computing and Function as a Service

Glenn Bond
Faculty of Science

University of Amsterdam
Amsterdam, Science Park 904
glennbond39@gmail.com

Corneliu Soficu
Faculty of Science

University of Amsterdam
Amsterdam, Science Park 904
Corneliu.Soficu@gmail.com

Philip Roeleveld
Faculty of Science

University of Amsterdam
Amsterdam, Science Park 904
philiproeleveld@gmail.com

Abstract

Based on its advantages, will FaaS become the future in the field of serverless
computing? This paper aims to answer that question by means of a literature
study. It contains topics such as the history of Cloud Computing and how FaaS and
Serverless Computing in general originated. It describes how a FaaS architecture
works. It also identifies the largest providers that offer FaaS and gives examples
of Serverless Platforms and Serverless Frameworks. Furthermore, some current
research trends and topics in the field of FaaS are examined, as well as what
problems are currently faced in the field of FaaS. Additionally a review is done of
some performance results relating to FaaS. And finally a look is cast at the future
to discuss how serverless computing and FaaS in paricular will end up.

KEYWORDS

Serverless Computing, Cloud Computing, Service, FaaS

1 Introduction

Nowadays there is more and more development in the field of cloud. From the development of new
platforms to the development of new cloud frameworks. Among these is the interesting evolution
of serverless computing and Function as a Service (FaaS). There has been a lot of interest for this
subject recently, from the scientific community as well as industry leaders, and we have chosen it as
the topic for the literature study.

In order to structure our study, we pose one main question followed by multiple sub-questions. The
main question is: On the basis of its advantages, will FaaS become the future in the field of serverless
computing?

This main question is divided into three sub-questions. The first sub-question is: What are the
pros and cons of FaaS? The second sub-question is: Who are the major providers of serverless
platforms? And the third sub-question is: What are the advantages of migrating a cloud infrastructure
to serverless?

These questions are divided into different subsections. The first section 2 explains how FaaS
originated. What history has taken place in the field of cloud computing such as the rise of IaaS,

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

PaaS and CaaS and the following serverless computing technologies such as FaaS and BaaS. Section
3 explains how FaaS works technically and what providers offer FaaS in industry. A number of
examples of serverless platforms and frameworks are also mentioned. In 4 will be explained what
types of research trends and topics there are regarding serverless at the moment. In 5 the current
problems regarding serverless are discussed. Section 6 zooms in on performance results about
serverless computing. The last section in 7 describes how we see the future of serverless computing.
Finally, the literature study ends with a discussion and a conclusion.

2 Cloud/Serverless Computing and Function as a Service

In order to describe FaaS, we will first explain what history has taken place in the field of cloud
computing to arrive at the serverless paradigm and explain how FaaS relates to other Cloud Computing
services.

In 2006 a new development took place in the field of application hosting. In that year, Amazon’s
subsidiary Amazon Web Services (AWS) developed EC2 (Elastic Compute Cloud). EC2 is seen
as one of the first Infrastructure as a Service (IaaS) platforms. This made it possible to rent out
compute capacity and run server applications over the internet. This development brought many
advantages. For example, the costs were reduced for users because all of the server management work
was handled by the service provider. Risk factors were reduced because when a hardware failure
occurred, a new machine could easily be requested. In this case, the user only had to reinstall the
application. Infrastructure costs were reduced due to the flexibility offered by running hosts for a
short period of time. Another advantage was the flexibility offered by scaling servers up and down.
For example, it was not necessary to purchase a large number of servers for a short period of time.
Another advantage is that when a new application needs to be tested it used to take a long time to get
the server ready, but with EC2 this could be done within a much shorter time (1).

After IaaS came Platform as a Service (PaaS) in which the user only has to take the applications into
account. PaaS layers on top of IaaS. In this case, the provider is responsible for everything else to
keep the platform up and running (1).

Due to recent developments it is now possible to offer containers developed in PaaS work as services.
For this purpose, the cloud service model CaaS can be applied. CaaS creates the opportunity to make
applications independent of the specific underlying platform. The application is disconnected from
that specific environment so that it can be run anywhere. Besides IaaS, PaaS and CaaS are therefore
also seen as techniques for infrastructural outsourcing by outsourcing even more technologies to
others (2).

The big advantage of serverless computing is that it has the same advantages as mentioned before.
Serverless consists of two areas with different technologies, these are Back-end as a Service (BaaS)
and Functions as a Service (FaaS) (1).

BaaS is an approach to connect web and mobile applications to back-end cloud storage and processing.
In addition, BaaS also offers common features so that manual programming is no longer necessary,
e.g. social networking integration. BaaS provides an infrastructure that automatically optimizes with
resources such as data and API driven services. In this way, the development of the back-end can be
accelerated (3). Because BaaS is more focused on replacing components it could also be classified as
Software as a Service (SaaS).

In addition to BaaS, serverless also includes FaaS. FaaS is a serverless solution that services individual
function executions and obscures the fact that the functions are hosted on servers. FaaS is therefore
seen as an independent service (4).

FaaS allows developers to provide code that runs in an isolated environment for every execution. In
doing so, FaaS offers vast scalability, including all the way down to zero, and associated pricing in
a pay-as-you-go model. This scaling is performed on the basis of the incoming events. With FaaS,
separate functions become part of a large application. And a big advantage is that FaaS functions
can be quickly activated and executed on demand (17). We therefore use the following definition of
FaaS: "Function-as-a-Service is a serverless computing platform where the unit of computation is a
function that is executed in response to triggers such as events or HTTP requests" (6).

2

Figure 1: FaaS system architecture. From Leitner et al. (17).

3 How does FaaS work?

Here we will discuss the technical details of FaaS. We describe some providers that offer FaaS.
However, this is limited to only the four largest companies. Next, a number of examples are given
about serverless platforms and serverless frameworks.

First of all, we provide an explanation of the system architecture of FaaS. To this extent, we refer to
the diagram in figure 1.

Functions are created, updated and deleted by users through the use of a function controller. This
is how event triggers, rules and function source code are developed and deployed. The source code
invoked by the functions is uploaded to a function datastore. Triggers and rules are stored separately
in a user/tenant datastore.

The process of function execution starts as follows. Incoming events are processed by the event
controller. The event controller determines when to execute which function based on the triggers
and rule configured in the user/tenant datastore. The event controller generally also handles load
balancing and determines which container runtime (or host) will execute each function. Then the
execution will be queued.

The container runtime in its turn picks up executions from the queue. And each functio is executed in
an isolated container. The execution results are stoerd in the execution datastore and possibly used for
additional functions. Finally, the results are brought back to the clients by the event controller (17).

3.1 Evolution to Serverless

This section will present the underlying technologies and their evolution towards the current paradigm
of serverless. Virtualization abstracts away the physical machine and allows the same physical
resources to be shared between multiple applications and users. With the emergence of the Internet,
virtualization became widespread and it started being used for shared hosting through virtual private
servers. The development of cloud computing also allowed the possibility of making virtual resources
available over the internet. Digital containers were created to offer protection of their content from
external abuse, in a similar fashion to virtual machines. Extending on the works of Linux Containers
(LXC), Docker became a system for convenient container orchestration by offering an ecosystem
based on digital containers. Serverless computing is the later iteration of the long-term process of
virtualization abstractions, by exposing to the user abstract resources (Ex: Functions) that are mapped
to concrete resources such as containers (11).

3

Code as functions is the central point in the serverless paradigm and it evolved from previous
technologies such as the IBM’s Customer Information System (CICS), RPC, stored procedures for
databases or Common Gateway Interface (CGI) for web servers which aimed to bring support for
executing functions to specific domains. Serverless computing aims to provide a full abstraction for
event-driven execution of generic functions, in contrast to these previously described context-specific
implementations (11).

Naming and discovery of services are essential when managing a large cloud infrastructure. Current
approaches for service naming and discovery are based on the Lightweight Directory Access Protocol
(LDAP) and URI. LDAP is used for enabling distributed directory services over TCP/IP. URI has the
role of assigning unique identifiers encoded as character strings to resources. The serverless paradigm
adopts service naming and discovery and extends it with function versioning and aliases. By using
versioning, the developer can use different versions of a function simultaneously and by using aliases
as mutable pointers to a version, a transition of a version between one stage to another can be done
without changing the deployed application (e.g., from development to production) (11).

The concept of functions as computation is also essential to serverless computing. This concept
stems from ever-higher-level abstractions that started with functional programming that departed
from procedural programs where the developer was allowed to manage abstract data types and
control flows instead of controlling specific details about memory and processors. With time, we
evolved to interconnecting services using service-oriented-architecture (SOA) based on REST. These
developments ultimately led to microservices that provide specific functions within self-contained
applications. Considering this, serverless development represents an evolution that is based on the
aforementioned concepts and can be characterised as an hyper-specialization of services (11).

Over the past decades, we have moved to a different form of expressing concurrency, by using a
declarative form where workflows describe the structure of applications and where concrete execution
and synchronization of workflow tasks are left for the runtime system. This model of describing
concurrency using a declarative form has many applications and is successfully applied to serverless
computing. As an example providers such as AWS or Microsoft Azure allow for an easy setup of
concurrency using configuration files. (11).

Event-driven programming represents a basis on which serverless works and has evolved from the
traditional way of developing programs in a synchronous way. With the extended use of high-level
languages and advanced operating systems as well as with the rise in internet usage, event-driven
distributed systems became widely used. Serverless computing leverages this idea by using well-
defined protocols and ways to manage events such as adopting message queues (11).

3.2 Providers

There are many providers that deliver serverless architecture. The largest companies are Amazon,
IBM, Google, and Microsoft.

Amazon offers AWS Lambda. Lambda is one of the largest players in the field of FaaS and is
therefore seen as the meaning of serverless. AWS Lambda offers the largest range of services of any
other provider.

Azure Functions is almost the same service as Amazon. Azure Functions offers about the same
services like Amazon. However, Azure is more focused on Microsoft services.

Google Cloud Functions is the cloud provider of Google. In the early years around 2017, Google
Cloud was the variant that lagged behind the competition. However, Google later managed to keep
up with the competition.

IBM Cloud Functions is one of the newer providers. IBM Cloud Functions offers OpenWhisk and
Apache OpenWhisk. IBM Cloud Functions offers OpenWhisk as a managed infrastructure within
their cloud services. For the use of open-source solutions, the user has the choice to use Apache
OpenWhisk (5).

3.3 Serverless Platforms and Serverless Frameworks

Nowadays there are several serverless platforms and serverless computing frameworks in use. Exam-
ples of open-source serverless computing platforms are OpenLambda and Galactic Fog.

4

OpenLambda is a reference architecture for serverless platforms (9). It is an open-source implemen-
tation of the FaaS paradigm. It uses independent modules that communicate with each other through
APIs. (19) These subsystems manage function execution by coordinating them and distributing them
among available hosts. So these subsystems include execution engine, load balancer and database (7).

Galactic Fog Gestalt Laser also known as Lambda Application Server is Galactic Fog’s serverless
solution. This platform was launched including a CaaS abstraction layer and an enterprise integration
layer. Gestalt is a high-performance serverless engine that supports the most common program-
ming languages (18). The framework includes functions such as policy management and security
capabilities.

Examples of open-source serverless computing frameworks are Kubeless and OpenFaaS. Kubeless
is based on the Kubernetes API, using its Custom Resource Definitions (CRDs). These CRDs are
used to create functions as custom objects in Kubernetes. In this way, native Kubernetes APIs can
interact with functions. The Kubeless controller scans for changes to the function objects and removes
resources when a function object is done executing (8).

OpenFaaS is another open-source serverless framework based on Docker and Kubernetes. The
OpenFaaS CLI is used to develop functions and deploy them on the platform. The CLI ensures that
the function is packaged into a Docker container. This container then exposes an entrypoint such
that the function can be executed within the framework. And an API gateway is used to access these
functions (8).

4 Current research trends and research topics

On the basis of literature research, various trends and research topics were investigated. We have
included the most recent research areas in the paper. This has led to certain research possibilities,
such as how to handle SLA’s (service-level agreements) and using legacy code in serverless.

One of the research possibilities lies in the SLA area, about laying down agreements between the
provider and the customer. This includes the performance and availability of the application. However,
this is quite difficult to document in the area of serverless computing. This is because the application
depends on an ecosystem of services that are beyond the control of the serverless platform, making it
difficult to provide QoS (Quality of Service) guarantees (6). As a result, enforcement needs to be
applied inbetween the functions and APIs. This will require measurements to be made of these types
of services. For example, a third party can be called in, whereby an evaluation system can be used to
examine the bottlenecks.

There are also research opportunities to investigate how to convert existing legacy code into smaller
components and make modifications to fit the serverless framework. This is usually non-trivial
because serverless applications need to be designed and constructed differently from most legacy
applications (6). Research opportunities include identifying ways to prevent starting from scratch and
wasting the time and money spent on development of the legacy code in the process.

5 Current Problems

The serverless paradigm has many advantages and it benefits both consumers and providers but there
are also some disadvantages that must be mentioned. One such drawback from the perspective of the
consumer is that the FaaS model that is offered by the platform might be too constraining for some
applications. As an example, when consumers might want to use the platform, they might discover
that various libraries might not be available or that certain dependencies might not be up to date with
the latest version (9).

From the perspective of the provider offering FaaS capabilities, it has to ensure good reliability of
the product which means managing issues related to the user’s functions life cycle. This implies that
providers must take care of scalability or fault tolerance issues in an application-agnostic manner.
Considering this, it becomes necessary for developers to have a great understanding of the behaviour
of the platform so that they can design applications around these capabilities (9).

Another drawback related to FaaS revolves around the risk of vendor lock-in. This issue stems from
the fact that providers tend to offer an entire ecosystem that can be used in conjunction with the

5

user’s functions. Such auxiliary services that augment the functions are: services for managing the
state, recording and monitoring logs, sending alerts, triggering events or performing authentication or
authorization. These auxiliary services can be attractive to developers and represent an alternative
source of revenue for the cloud provider (9).

We can also argue that FaaS is not very compatible with Distributed Computing. This is because
of the lack of network addressability of serverless functions. In order for two functions to work
together, they have to transfer data using slow and expensive storage. This stymies basic distributed
computing as this field relies on protocols executing fine-grained communication between nodes.
Such communication includes leader election, membership, data consistency or transaction commits
(10).

6 Performance

The goal of this section is not to perform a rigorous quantitative literature study as this would involve
exhaustively finding all reliable sources about the performance results we are interested in. Instead,
this section only aims to provide context and qualitative review about some of the performance
research done about serverless computing.

It should be noted that many studies draw a comparison between serverless computing and other
cloud solutions, but this is usually a comparison about cost instead of performance and thus left open.

Most studies regarding the performance of FaaS solutions consider at least AWS Lambda and Azure
Functions, but many also include Google Cloud Functions and IBM OpenWhisk. Out of these four,
Azure Functions immediately stands out as the only provider based on Windows rather than Linux,
and also the only provider to use dynamic memory allocation rather than user-defined.

To evaluate performance the first step is to define metrics. McGrath and Brenner propose two such
metrics to address elasticity and infrastructure retention/continuous deployment being concurrent
execution performance and cold start latency respectively (12). These metrics were adopted by Lloyd
et al. and expanded upon to consider the effects of load balancing, provisioning variation, and memory
reservations (13). Lee et al. also adopt the elasticity metric but forego the infrastructure retention
metric in favour of more traditional metrics such as CPU, disk, and networking throughput (14).

One well-known variable in measuring the performance of computer systems, in general, is the
distinction between cold and warm starts. This is especially important for FaaS because cold starts are
an important problem faced by serverless computing. Lloyd et al. go as far as to warn the reader that
“the significance of container initialization overhead cannot be overlooked!”, which is also supported
by their findings including a performance degradation of up to 15x between a warm and cold start
(13). See for instance figure 2 illustrating the performance drop brought about by a cold start, and
figure 3 indicating that such a performance drop can become a reality as soon as after 40 minutes of
idle time. Other studies rather divert the attention from this problem of cold execution by controlling
for it in their methodologies, usually performing their analyses exclusively with warm executions.

Another approach is to use micro-benchmarking to compare FaaS solutions. Malawski et al. opt for
CPU-intensive tasks to benchmark the solutions and also demonstrate the difficulty in measuring
performance caused by the heterogeneous nature of FaaS (15). They show a strong correlation
between memory reservation and CPU performance in the case of AWS Lambda and Google Cloud
Functions, but not at all for Azure Functions and Apache OpenWhisk. Figure 4 illustrates what
this correlation looks like in the case of AWS Lambda. Back and Andrikopoulos use well known
algorithmic tasks of varying loads for their microbenchmark (16). Unfortunately, they do not control
for the cold start phenomenon and note a small number of data points as a threat to validity. Despite
this, they do reach the same conclusion about the correlation between memory reservation and
performance.

In general, much work is still to be done for serverless computing when it comes to performance.
Most notably the question which provider to go with for a given use case is largely left unanswered
by the research done so far.

6

Figure 2: The difference between cold and warm execution time for diferent memory sizes on AWS
Lambda. From Lloyd et al. (13).

Figure 3: Container retention percentage for different idle times on AWS Lambda, reaching 100%
new containers after 40 minutes. From Lloyd et al. (13).

7 Future Trends

Based on the problems currently faced by serverless, we can also look towards the future. First of all,
as highlighted by multiple sources (9)(17), we will have to see more and better tooling built around
the concept. Without this FaaS is just not worth the hassle for many businesses if the alternative
coarser cloud solutions such as IaaS do have a lot of support. However, because of the appeal of
pay-as-you-go as well as the interest already demonstrated today, we do think such tooling will be
developed and this hurdle will largely be overcome.

As FaaS matures, we should see an ever-growing list of programming languages and libraries
supported on the major platforms, especially if the demand for serverless increases. Thus problems
such as language support, missing libraries and outdated dependencies should be resolved for most
users. To address the issue of vendor lock-in we might see some unifying standard start to get a
foothold, fulfilling a similar role as Docker has taken in the wider cloud ecosystem.

Some other problems on the other hand are less solvable because they are artifacts of the nature
of serverless. The most prominent example of this is the latency issue. While it is conceivable

7

Figure 4: GFLOPS vs. memory for a Linpack benchmark on AWS Lambda, showing a clear
correlation between the two. From Malawski et al (15).

that this issue will be diminished significantly, the best-case scenario is still worse than that of the
non-serverless alternative. For that reason we do not believe serverless will "take over". Rather we
think it will find it’s a niche in the use cases it excels at. For established services that means cases
with bursty or predominantly idle workloads where elasticity is paramount, and ideally those that
lend themselves to a stateless approach (9). Additionally FaaS is a perfect candidate for prototyping
new ideas, because of the relatively low cost and ease of deployment at a smaller scale. This is also
an attractive prospect for starting businesses. However despite the promise of scalability we think it
is likely that we will see such businesses migrate their services as their needs grow because the cost
of FaaS could start to overshadow that of other possible solutions.

Discussion and Conclusions

We have given an overview of the state of serverless computing, and Functions-as-a-Service in
particular, as well as the research efforts that have been dedicated to it. A history has been sketched
that lead to the onset of serverless from two perspectives. On the one hand, we have recollected the
many precursory as-a-Service proposals that predate FaaS. On the other hand, we have looked at the
many technologies that lead to serverless becoming possible from a technical point of view.

Today, many cloud providers offer a FaaS solution for serverless computing. And furthermore, there
have been some open source initiatives as well such as OpenLambda and OpenFaaS. The increasing
popularity of FaaS, in particular, has been accompanied by interest from the scientific community as
well. On-going research includes such issues as how to manage service-level agreements, and how to
migrate legacy code to this mostly stateless environment in the industry.

The problems currently faced by FaaS are multiple, but not insurmountable. Vendor lock-in and
language support, in particular, are problems that can be overcome in the future. Other problems
are less easily addressed. One of these is the lack of network addressability that hinders serverless
distributed computing. Another is the performance drop after cold starts, which is exacerbated when
infrastructure retention is low. These problems, however, are more indicative of the limitations of
FaaS, and serverless as a whole. Thus the conclusion remains at least for now that serverless has

8

many applications, but is not a silver bullet solution to be applied to any and all use cases. However,
we would like to be proven wrong in this regard. Thus we would welcome any increased interest in
FaaS and serverless computing.

References
[1] Roberts, M., & Chapin, J. (2017). What Is Serverless?. O’Reilly Media, Incorporated.

[2] Hussein, M. K., Mousa, M. H., & Alqarni, M. A. (2019). A placement architecture for a
container as a service (CaaS) in a cloud environment. Journal of Cloud Computing, 8(1), 7.

[3] Lane, K. (2015). Overview of the backend as a service (BaaS) space. API Evangelist.

[4] Fox, G. C., Ishakian, V., Muthusamy, V., & Slominski, A. (2017). Status of serverless computing
and function-as-a-service (faas) in industry and research. arXiv preprint arXiv:1708.08028.

[5] Lobastov, I. (2019, 11 maart). Comparing Serverless Architecture Providers: AWS,
Azure, Google, IBM, and Other FaaS Vendors - DZone Cloud. Retrieved from
https://dzone.com/articles/comparing-serverless-architecture-providers-aws-az

[6] Castro, P., Ishakian, V., Muthusamy, V., & Slominski, A. (2019). The rise of serverless comput-
ing. Communications of the ACM, 62(12), 44-54.

[7] Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau, A. C., & Arpaci-
Dusseau, R. H. (2016). Serverless computation with OpenLambda In 8th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 16).

[8] Mohanty, S. K., Premsankar, G., & Di Francesco, M. (2018, December). An Evaluation of Open
Source Serverless Computing Frameworks. In CloudCom (pp. 115-120).

[9] Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., ... & Suter, P. (2017).
Serverless computing: Current trends and open problems. In Research Advances in Cloud
Computing (pp. 1-20). Springer, Singapore.

[10] Hellerstein, J. M., Faleiro, J., Gonzalez, J. E., Schleier-Smith, J., Sreekanti, V., Tumanov, A.,
& Wu, C. (2018). Serverless computing: One step forward, two steps back. arXiv preprint
arXiv:1812.03651.

[11] Van Eyk, E., Toader, L., Talluri, S., Versluis, L., Ut, ă, A., & Iosup, A. (2018). Serverless is more:
From PaaS to present cloud computing. IEEE Internet Computing, 22(5), 8-17.

[12] McGrath, G., & Brenner, P. R. (2017, June). Serverless computing: Design, implementation, and
performance. In 2017 IEEE 37th International Conference on Distributed Computing Systems
Workshops (ICDCSW) (pp. 405-410).

[13] Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., & Pallickara, S. (2018, April). Serverless
computing: An investigation of factors influencing microservice performance. In 2018 IEEE
International Conference on Cloud Engineering (IC2E) (pp. 159-169).

[14] Lee, H., Satyam, K., & Fox, G. (2018, July). Evaluation of production serverless computing
environments. In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD) (pp.
442-450).

[15] Malawski, M., Figiela, K., Gajek, A., & Zima, A. (2017, August). Benchmarking heterogeneous
cloud functions. In European Conference on Parallel Processing (pp. 415-426). Springer, Cham.

[16] Back, T., & Andrikopoulos, V. (2018, September). Using a microbenchmark to compare function
as a service solutions. In European Conference on Service-Oriented and Cloud Computing (pp.
146-160). Springer, Cham.

[17] Leitner, P., Wittern, E., Spillner, J., & Hummer, W. (2019). A mixed-method empirical study
of Function-as-a-Service software development in industrial practice. Journal of Systems and
Software, 149, 340-359.

9

[18] Lynn, T., Rosati, P., Lejeune, A., & Emeakaroha, V. (2017, December). A preliminary review
of enterprise serverless cloud computing (function-as-a-service) platforms. In 2017 IEEE
International Conference on Cloud Computing Technology and Science (CloudCom) (pp. 162-
169).

[19] HoseinyFarahabady, M. R., Zomaya, A. Y., & Tari, Z. (2017). A model predictive controller for
managing qos enforcements and microarchitecture-level interferences in a lambda platform.
IEEE Transactions on Parallel and Distributed Systems, 29(7), 1442-1455.

A Contribution per Group Member

The following table contains the information about which member was responsible for each section.
It should also be noted that both the collection of sources, as well as the reviewing/proofreading effort
was a joint effort carried out by all three members.

Section Responsibility

Introduction Corneliu
Cloud/Serverless Computing and Function as a Service Glenn

How does FaaS work? Glenn
Evolution to Serverless Corneliu

Providers Glenn
Serverless Platforms and Serverless Farmeworks Glenn

Current Research Trends and Research Topics Glenn
Current problems Corneliu

Performance Philip
Future Trends Philip

Discussion and Conclusions Philip

10

Big Data and Cloud

Yuxue Liu
liuyuxue97@gmail.com

Shane Minnema
s.e.minnema@vu.nl

Mansi Mundra
mansimundra.38@gmail.com

June 1, 2020

Abstract
Big data and cloud computing is an ever-growing field in the computer

science and technology sectors. This paper focuses on explaining what
big data and cloud computing is, and how they relate to each other. We
discuss the core principles of big data, common cloud service platforms,
and compare the performance of several popular big data/cloud computing
frameworks.

1 Introduction
The content of this paper focuses on big data and cloud computing. As two
key points of future development in computer field, there are more and more
people focus on big data and cloud computing. This paper provides a review for
individuals who want to have a brief understanding of those two fields and how
they interact with one another. First, we discuss what big data is and go through
its five V characteristics. Next, we discuss and compare three common types
of cloud computing services, and point out their advantages and disadvantages.
Further, we review big data and cloud computing together by introducing and
comparing the performance of several popular big data frameworks. Finally, we
provide a discussion and conclusion based on our research. For those that do
not have experience in the field of big data and cloud computing, sections three
and four of the paper may be difficult to understand, but we attempt to explain
these as clear as possible. For each section, we also add our own critical analysis
and opinions on the topics discussed.

2 Big Data
Conventional data becomes big data once it reaches a certain size or complexity
to where it becomes problematic or unfeasible to process using traditional

1

hardware/software setups[1]. In these cases, significantly more time is required
if the methods used are not tailored towards processing big data. The act of
accessing and storing large amounts of information for data analytical purposes
is not a particularly new concept, as popularity of the field began to increase
in the early 2000s when Doug Laney first gave his definition big data. His
definition still holds relevance today: “Big data is data that contains greater
variety arriving in increasing volumes and with ever-higher velocity”[2].

Currently, big data plays a role in almost every field and industry in some
way. It is a dominant driving force behind the global performance of companies
and organizations. In the following subsection we discuss big data in more detail
in order to obtain a better understanding of what big data is.

2.1 Three V’s of big data
Along with Doug Laney’s definition, he also provided the three V ’s of big data:
Variety, Velocity, and Volume. Through these characteristics, we can obtain a
better understanding of what big data really is.

2.1.1 Variety

Variety, as the name suggests, refers to different data formats that come from
different sources. Big data includes data which is structured, unstructured, and
semi-structured. Traditional data has been more formal in the past, and is often
from internal data sources. Now, new data is increasingly being sourced exter-
nally, mainly using the internet, with most data being completely unstructured.
Compared to traditional data, such as personal files and documents, newer data
can be in the form of location data, photos, audio, etc.

2.1.2 Velocity

Velocity means data accumulation at high speeds. This is important when
considering the massive amount of data produced every day, an estimated 2.5
quintillion bytes of data, and this figure is only going to increase[3]. This year
it is forecast each person on the planet will produce approximately 1.7MB of
data every second. Velocity plays a major role in a big data society compared to
others. By speeding up, it saves time and money for companies to collect the
data.

2.1.3 Volume

Big data usage indicates the daily creation of enormous volumes of data from
various sources, such as social media platforms, enterprise processes, mobile
devices, networks, human interactions, etc. For example, Twitter generates an
average of approximately 6,000 tweets per second, more than 350,000 tweets a
minute, 500 million monthly, and around 200 billion tweets annually.[4]. Big
data technologies are well suited, and possibly a requirement, for handling such
large quantities of data.

2

2.2 Two new V’s: Value & Veracity
There are two newer additions to the three V ’s mentioned above, namely Value
and Veracity, which were added as key aspects of big data. Value regards the
quality of the data that is stored along with its further use. Veracity stems from
the idea that the consistency of data is sufficient enough for big data[5].

With the growing development of big data, not only does it bring positive
aspects to society, but also raises some questions, such as how truthful the data
is. Data flows are unpredictable and may come from various sources apart from
the rising velocity and variation of the data. Linking, matching, cleaning, and
transforming data across systems can be challenging to achieve for researchers
and businesses. Certain industries must also act responsively towards data. An
example of this could be a media company reporting on the latest trending news.

2.3 Critical Analysis
The emergence of the big data era has forced many entities to transform and
adapt, whether or not they are traditional ones. Ever-increasing amounts of data
leads to big data technologies being constantly updated and iterated over. With
the continuous improvement in the field, the number of talent is also increasing,
and the speed of improving technology is also increasing. It is hard to deny that
the era of big data has encouraged many individuals to devote to this promising
field and harvest spectacular achievements.

3 Cloud Computing
Cloud computing simply provides the internet, or the cloud, with a faster range
of innovation, flexible resources, and economies of scale through computing
services[8]. Examples include servers, storage, databases, networking, software,
analysis, and intelligence services. The early days of cloud computing was based
on simple distributed computing, which helped solve problems with scalability
and combining results. With this technology, tens of thousands of data points
can be processed in a very short time (i.e. several seconds), so as to achieve
powerful network services; however, the advancement of hybrid technologies
today, including utility computing, load balancing, parallel computing, network
storage, hot backup replication and virtualisation, enable cloud services[9]. Cloud
computing is a significant advance. Using cloud computing can help companies
save a lot of money in hardware and software that users do not have to purchase.

3.1 Cloud computing services
The extensively adopted and well-established cloud computing services are
Infrastructure as a Service(IaaS), Platform as a Service(PaaS), and Software as
a Service(SaaS).

3

3.1.1 Infrastructure as a Service

Infrastructure as a Service is a cloud computing solution that provides central
computer components such as virtual servers, storage, and networking devices to
an organization or enterprise. IaaS is a hosting method, evolved from traditional
hosting methods, that does not need any long term commitment and enables
users to provision on-demand resources[10].

Infrastructure as a Service requires wide area connections to the network,
routing, and storage facilities. In general, the IaaS provider provides services such
as the hardware and administration necessary to store applications and to operate
a platform to users using wide area networks. Vendors mostly include facilities
such as bandwidth, memory, and storage devices. Additionally, vendors compete
with competitive service efficiency and pricing. An enterprise or company does
not have to worry about the accommodation, operation, and maintenance of the
infrastructure provided as service provider is responsible for these facilities. IaaS
can be bought on a pay-as-you-go or contract basis. Most buyers regard the
key benefit of IaaS as price stability, as you just have to pay for the resources
needed for your applications. There are some examples of IaaS providers such as
Amazon Web Services Elastic Compute Cloud (EC2) and Secure Storage Service
(S3).

3.1.2 Platform as a Service

Platform as a Service is a cloud computing service owned by a third party in
order to support software development by providing software and hardware
resources over the internet[11]. Generally, software developers take advantage of
this service. The tools and software that developers need to build apps above
them can include middle-ware, data base management, operating systems, and
development tools. These tools and software services are provided by PaaS
service provider over internet to the developer.

Platform as a Service architecture is quite more intricate than architectures of
other cloud computing solutions. Completed and in-progress cloud applications,
both type of development platforms are offered by PaaS service providers to
developers. Mostly PaaS Models consists of the physical infrastructure (i.e. used
to buttress software development), software solutions (i.e. tools required to
develop applications), and graphical user interfaces. Google AppEngine is an
example of PaaS.

3.1.3 Software as a Service

Software as a Service is a model owned by a third party which provides web
applications and software access over the internet to the end-users. It can
accessed by thin client interfaces such as web browser[12].Software as a Service
is a software delivery method which requires good internet connectivity to access
the data available online.

SaaS usually is charged on the basis of use (i.e. subscription basis and on
the basis of the environment of multiple tenants). A software application to be

4

used and purchased upon request in Saas model a software provider license. It
is more acceptable for business users that they do not need to perform the client
installation. Also, users do not require setting up or maintaining the software
and its services, as this task is handled by service provider. Some examples
of SaaS are Microsoft Office 360, Google docs, AppDynamics, Adobe Creative
Cloud, and Google G Suite.[23].

3.2 Pros and Cons of IaaS, PaaS and SaaS
Cloud computing is a topic that covers many concepts regarding internet ter-
ritory. Understanding the advantages and disadvantages of the various cloud
services is quite important in today’s world as it helps us to understand how
business/organisations, developers, and end users would benefit and/or suffer
impediment by opting for cloud computing services[13][14].

3.2.1 Advantages and Disadvantages of IaaS

With the lower infrastructure cost and pay-as-you-go pricing, IaaS is quite cost
effective[15]. It is an economical option for startups as users do not have to worry
about purchasing, maintaining, replacing, or ensuring uptime of any hardware
or networking equipment. On-demand scalability is one of the major advantages
of IaaS. Upgrading of software, hardware, or troubleshoot-equipment problems
is done by the IaaS service provider. IaaS help users to scale-up or scale-down
according to their requirements. Meanwhile, IaaS provides operational flexibility
by allowing employees to access the data and files offsite and on-the-go at
anytime. As a third party service, IaaS can handle the workload of upgrading
and maintaining infrastructure to support business operations. Therefore, it
helps businesses to focus on business growth. Lastly, IaaS is highly reliable as
it runs even if hardware components fail, servers go down, or entire data goes
offline.

Security is one of the main concern in IaaS environment as users do not have
control over their cloud security. Therefore, it might expose sensitive information
if system is compromised. lack of flexibility is one of the crucial drawbacks
of IaaS, as service provider is responsible for upgrading the hardware as well
as software and sometimes they do not upgrade the software for some users.
This might have major impact on the efficiency of the employees. Additionally,
enterprises face some technical problems with IaaS, and this can lead to hindering
the access of companies to data and applications. Opting for IaaS for a company’s
infrastructure leads to over dependency on the service provider for the company’s
data. In IaaS, third parties are responsible for upgrade and maintenance. This can
be drawback if service providers fail to upgrade and maintain their infrastructure
regularly, as this might decrease employees efficiency significantly. Lastly, it uses
virtualization services and also limits user privacy and customisation[15].

5

3.2.2 Advantages and Disadvantages of PaaS

Cost reduction is major advantage of Platform-as-a-service as it not only re-
duces setup costs, but also reduces installation cost and time due to its already
programmed servers loaded on internet[16]. Control and management of archi-
tecture by user is one of the significant benefits of PaaS as user get full control
of developing and deploying software, even though PaaS architecture is provided
by the provider. The software deployment process is achieved easily and speedily
in PaaS as users do not need to create their own hardware/software. PaaS is
quite flexible as users need to only pay for the features they require. Less coding
is required with PaaS due to pre-programmed applications and users not having
to start coding from the beginning.

Provider or vendor lock-in is one of the major limitation of PaaS[16]. Different
providers may have different architecture requirements and they may not use
same language, architecture, libraries, APIs, or OS to build and run applications.
Therefore, it is quite hard to switch Paas vendors. In order to switch vendors,
developers need to heavily alter the application or rebuild it. Data Security is
also an important concern for PaaS users. As the application data or databases
are stored by PaaS provider, it will be hard for users to trust PaaS vendors. A
user’s high dependency on provider might be a cause of concern as a diminutive
change in vendors internal process/infrastructure might affect the functioning and
performance of developers application significantly. Also, if a vendor increases
the prices in their pricing model, then the application may suddenly become
more expensive to use.

3.2.3 Advantages and Disadvantages of Saas

Firstly, as software is already pre-installed with SaaS services, it reduces installa-
tion time and saves memory [17]. Secondly, cost reduction and easy accessibility
can be achieved by opting for SaaS as users have to subscribe the software on a
monthly or yearly basis. Additionally, SaaS reduces maintenance costs as users
do not need to buy external storage devices. Thirdly, less user responsibility
and workload is provided to the user as vendor is responsible for upgrading and
maintaining the software and hardware, thereby removing user’s workload and
responsibility. Lastly, there is a option for data backup or recovery for the users
in case the data is lost, as the service providers install and store the data in the
cloud storage in a remote location.

SaaS has two major limitations. The first limitation of SaaS is that data is
less secure as SaaS applications are provided over internet and data security is
provided by service provider[17]. The second limitation is that users need a good
internet connection to operate the software as the software can only be accessed
over the internet.

3.3 Critical Analysis
Nearly 20 years after the concept of cloud computing was proposed, it overturned
the original IT industry. Cloud computing is further making the computing and

6

storage resources of society convenient and reasonable. Some of the new trends
seen in cloud computing include computing at the edge of the network outside of
centralized data centers, re-designing/re-configuring data centers for optimized
execution of workloads, and using heterogeneous processors (e.g. hardware
accelerators in the cloud) for faster application execution[27]. Meanwhile, 5G
networks with faster speed, stable signal, and secure transmission is constructed
and perfected, it will further accelerate the development of cloud computing.

In the future, due to excessive increase in the five V ’s of big data (variety,
velocity, volume, value, and veracity) and the cloud services operators, the cloud
is going to expand and change significantly. The modified cloud will be more
flexible and scalable than it is today as it will posses more features that will
provide more storage capability, cheaper and improved cloud services, enhanced
internet services, top-notch data security, and control over data centres[28].

4 Big data in cloud computing
There are many big data tools and frameworks that are compatible with the
popular cloud computing platforms of today. Several examples of these frame-
works include those provided by Apache, including Hadoop HDFS/MapReduce,
Spark, and Flink. Some tools such as Impala are based on NoSQL, referring to
non-relational databases. Examples of these are MongoDB and HBase. With
such a large variety of these frameworks available to use online, it may prove dif-
ficult to select one for a particular use case. In this section, we will first describe
and then compare the performance of several popular big data processing tools,
followed by a critical analysis of the results.

4.1 Popular frameworks
4.1.1 Hadoop MapReduce

Hadoop MapReduce[7] allows for the parallel execution of code by using only
two functions, a map function and a reduce function. The map function creates
intermediate key/value pairs based on some initial input, which are also key/value
pairs. The reduce function then takes the intermediate keys and merges them
in order to produce output. An example of a simple MapReduce function is
one that counts the number of occurrences of unique words in a piece of text.
MapReduce is known to be efficient when a single pass over the data is required,
but tends to suffer when multiple passes is needed, or when the situation calls
for real-time data processing[6]. A typical case where multiple iterations of a
data set is common, and where MapReduce is not as effective, is when running
machine learning algorithms.

4.1.2 Apache Spark, Impala, and Hive

MapReduce only operates on data stored on physical disk space, which is known
to be quite slow in comparison to operating on data stores in volatile memory[24].

7

One of the improvements Apache Spark makes over MapReduce is the use of
Resilient Distributed Datasets, which are stored in volatile memory, such as
Random Access Memory. Spark uses a minibatch streaming approach and also
includes many additional built-in functions on top of map and reduce, as well as
API’s for machine learning[6, 18].

Impala and Hive use the Hadoop environment as well as Analytic Database
Management Systems instead of relational ones[6]. The result of this is a boost
in speed due to their ability to handle large volumes of data in parallel.

4.1.3 Apache Flink, Storm, and Samza

Apache Flink is a framework that uses a pure streaming approach, compared
to Spark’s minibatch streaming[18]. It also contains a large set of built-in
functionality like Spark does. Flink works by using JobManagers as a scheduler
and TaskManagers to execute the jobs, with each job being handled by an
individual thread.

Apache Storm is similar to Flink in that it also pure streaming, and contains
master (nimbus) nodes and worker (supervisor) nodes. The nimbus acts as a load-
balancer and monitoring tool while the supervisors execute one or many tasks,
which may also spawn additional tasks. Storm processes data in a streaming
fashion by using sprouts and bolts. Spouts process data gathered by external
data streams, while bolts carry out the processing tasks.

Apache Samza is a streaming tool that uses Hadoop and Apache Kafka.
Samza jobs contain one or more tasks that run in Samza containers. The jobs
also consist of one or more Kafka Topics, which are basically data streams of a
certain related type[18, 19]. For each topic, there exists a log file, which contain
messages from particular Kafka Topics. These messages are set to live for a
pre-determined amount of time.

4.1.4 MongoDB and Apache HBase

These frameworks are two examples of NoSQL databases, and are known for their
security features and ability to efficiently handle large volumes of data[20]. With
MongoDB, sharding and indexing features are a performance booster. Data is
represented in single JSON-like structures and provides flexibility (easier to alter
the schema), polymorphism (supports various data structures), and extensibility
(supports various data models)[21].

Apache HBase is a popular tool for use with big data specifically, as it
uses HDFS and is efficient at processing very large volumes of data[20]. Like
MongoDB, HBase supports sharding of large datasets. It is also specialized for
running applications with heavy random read and write operations.

4.2 Comparing performance
Several papers were reviewed, in addition to the aforementioned papers, in
order to better understand how these frameworks compare to one another. One

8

study in particular compared most of these frameworks to each other[18]. They
concluded that Hadoop MapReduce, which uses HDFS disk storage, worked
considerably well with respect to using high volumes of distributed data. Spark
was found to perform at a high level with iterative/machine learning tasks.
Apache Flink, Storm, and Samza are built primarily for processing real-time
streams of data. Similar to Spark, Flink uses volatile memory, but is also able to
make use of persistent memory to avoid application crashes. Storm was initially
designed with node-scalability in mind, but application performance tends to
suffer during the actual scaling process. Samza was determined to have average
performance overall.

Another study compared the Spark, Impala, and Hive frameworks on both
large and small datasets[6]. They showed that Hive was almost always out-
performed by Spark and Impala, which both performed significantly better in
nearly all test cases and had comparable results to each other. Where Hive
shined was when the amount of available memory was restricted (2GB). In this
case, Hive was the only framework that did not crash; however, this study also
illustrates that given sufficient memory (10GB in this case), Spark fairs better
than both Impala and Hive. In the tests comparing performance while executing
varying levels of concurrent processes, each of the three frameworks maintained
consistency when scaling. Impala was shown to have the best average response
times overall, with nearly no change in latency between one and 13 concurrently
running processes.

Both Spark and Flink are well known competing frameworks[22]. The re-
searchers in this study compared the performance by testing batch workloads
(word count, grep, and tera sort) and iterative workloads (K-means, page rank,
and connected components). It was determined that neither is the best choice
for a given set of constraints. In certain cases, Spark outperformed Flink, and
vice versa. One of the advantages pointed out for using Flink is that it is easier
to set-up, and also uses less resources overall in comparison to Spark.

5 Discussion and Conclusion
As Sandra Harding said in 1991, what science becomes in any historical era
depends on what we make of it[25]. The curiosity of what the analysis and
result of big data in cloud computing will become is allowing individuals and
businesses to continue exploring the field. The emergence of big data is the result
of a combination of massive volumes of data and ever-increasing computing
power. Specifically, mobile internet and the Internet of Things produce a massive
amount of data. Big data computing technologies help solve the problems of
massive data collection, storage, calculation, and analysis.

It can be said that big data and cloud computing work well together; however,
using cloud computing to deal with big data also brings some problems and
challenges. The first is security: if an organization’s data is confidential or
proprietary, or they need to adhere to strict security protocols, there may be
concerns about storing and operating on big data in the cloud. As the cloud

9

is an open platform, it may be maliciously attacked by insiders and outsiders,
thus the need to protect data security and privacy in the cloud has become a
key issue. Second is the ever-increasing number of cloud users. Cloud service
providers must address the issue of making the requested data available to users
to deliver high-quality services[26]. The use of cloud computing refers to the
reliance on these service providers, who may inadvertently limit flexibility and
innovation, or begin to monopolize the market.

When considering which frameworks to choose for running big data tasks in
the cloud, one must carefully consider which is best for their particular use case.
Using Hadoop HDFS-based frameworks might not be a good idea when running
iterative and/or machine learning tasks. If the amount of available memory is
limited, Hive might be the better choice over Spark. When real-time data-stream
processing is required, Flink, Storm, or Samza may be the optimal solution. As
big data and cloud technologies evolve, it is critical to update oneself on the
state of the field in order to choose the right tools and/or frameworks.

According to industry expert Michael Corrado, a World Wide Marketing
Manager with Hewlett Packard, the future of cloud computing will be a hybrid
IT solution (i.e. the unification of cloud-based software services and computation
done on-premise)[29]. This will help private data centers in maintaining the
equilibrium between the scalability and flexibility linked to the cloud, security,
and control. Other industry experts, including Vice President Keff Fisher of
Kemptechnologies, accord with Michael’s prediction of cloud computing. We are
also in assent with Michael Corrado’s prediction as future data will generate
with increasingly high volume, and will become arduous to store with high
levels of security. Therefore, the cloud of the future will provide top-notch
data security and control with scalability and flexibility. Most enterprises and
organizations will need places to store their data and information securely. Cloud
computing services operators are increasing daily and will only increase in the
future. Therefore, there will be large competition between cloud providers for
data centers, and cloud services providers will have to lower their pricing in
order to remain competition. In the future, cloud service providers will need to
provide higher levels of security to prevent cyber-attacks as data becomes even
larger and more intricate than it is today[28].

References

[1] Big Data: What it is and why it matters. https://www.sas.com/en_us/insights/big-
data/what-is-big-data.html

[2] What Is Big Data? https://www.oracle.com/big-data/what-is-big-data.html

[3] Irfan Ahmad. (2018). How Much Data Is Generated Every Minute?
https://www.socialmediatoday.com/news/how-much-data-is-generated-every-
minute-infographic-1/525692/

[4] Twitter Usage Statistics. https://www.internetlivestats.com/twitter-statistics/

10

[5] Alexandru Adrian TOLE.(2013) Big Data Challenges. Database Systems Journal.
vol. IV.31

[6] Ismail F.N., Woodford B.J., Licorish S.A. (2019) Evaluating the Boundaries of
Big Data Environments for Machine Learning. In: Liu J., Bailey J. (eds) AI 2019:
Advances in Artificial Intelligence. AI 2019. Lecture Notes in Computer Science,
vol 11919. Springer, Cham

[7] Hashem, Ibrahim Yaqoob, Ibrar Anuar, Nor Mokhtar, Salimah Gani, Abdullah
Khan, Samee. (2014). The rise of “Big Data” on cloud computing: Review and
open research issues. Information Systems. 47. 98-115. 10.1016/j.is.2014.07.006.

[8] Microsoft Azure. What is cloud computing? https://azure.microsoft.com/en-
us/overview/what-is-cloud-computing/

[9] Sfkp, computer encyclopedia, Cloud Computing Development.
https://developpaper.com/sfkp-computer-encyclopedia-cloud-computing-
development/

[10] Sushil Bhardwaj, Leena Jain, Sandeep Jain. (2010). CLOUD COMPUTING: A
STUDY OF INFRASTRUCTUEW AS A SERVICE(IAAS). International Journal
of Engineering and Information Technology.IJEIT 2010, 2(1),60-63

[11] Santosh Kumar, R.H.Goudar.(2012). Cloud Computing - Research Issues, Chal-
lenges, Architecture, Platforms and Applications: A Survey. International Journal
of Future Computer and Communication, Vol. 1, No. 4, December 2012

[12] J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang and Q. Li. (2009). Comparison of
Several Cloud Computing Platforms. Second International Symposium on Informa-
tion Science and Engineering, Shanghai, 2009, pp. 23-27. doi: 10.1109/ISISE.2009.94

[13] Stephen Watts, Muhammad Raza. (2019). SaaS vs PaaS vs IaaS: What’s The
Difference and How To Choose. https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-
whats-the-difference-and-how-to-choose/

[14] Kelsey Taylor. Advantages and Disadvantages of IaaS.
https://www.hitechnectar.com/blogs/advantages-disadvantages-of-iaas-
explained/

[15] Natallia Sakovich. IaaS vs. PaaS vs. SaaS: What’s the Difference?.
https://avataracloud.com/what-are-the-pros-and-cons-of-iaas/

[16] Tanmay Terkhedkar. (2019). Pros and Cons Of “Platform As A
Service”.https://medium.com/@tanmayct/pros-and-cons-of-platform-as-a-
service-6e740ab07abf

[17] Tanmay Terkhedkar.(2019).Pros and Cons of Software As a Service.
https://medium.com/@tanmayct/pros-and-cons-of-software-as-a-service-
f8e05567afa5

[18] Ullah, Saeed Awan, Muhammad Khiyal, Malik. (2018). Big Data in Cloud
Computing: A Resource Management Perspective. Scientific Programming. 2018.
1-17. 10.1155/2018/5418679.

11

[19] https://techbeacon.com/app-dev-testing/what-apache-kafka-why-it-so-popular-
should-you-use-it

[20] Vishwakarma, Prasant. (2018). Comparitive Performance Analysis of MongoDB
and HBase on YCSB. 10.13140/RG.2.2.15661.95201.

[21] https://www.mongodb.com/collateral/mongodb-architecture-guide

[22] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María S. Pérez-
Hernández. Spark versus Flink: Understanding Performance in Big Data Analytics
Frameworks. Cluster 2016 - The IEEE 2016 International Conference on Cluster
Computing, Sep 2016, Taipei, Taiwan. hal-01347638v2

[23] Nick Cupery. (2020). Complexity as a Service: Let Sanity Solutions help you take
the complexity out of cloud solutions. https://www.sanitysolutions.com/complexity-
as-a-service-let-sanity-solutions-help-you-take-the-complexity-out-of-cloud-
solutions/

[24] https://www.storagereview.com/introduction-to-ram-disks

[25] Harding, Sandra. Whose Science? Whose Knowledge?: Thinking from Women’s
Lives. Cornell University Press, 1991.

[26] Santosh Maijhi, Gyanaranjan Shial. (2015.08). Challenges in Big Data Cloud
Computing And Future Research Prospects: A Review. The Smart Computing
Review. 10.6029/smartcr.2015.04.010

[27] Varghese, B, Netto, M, Llorente, IM, Buyya, R. (2020). New generation cloud
computing. Softw: Pract Exper. 2020; 50: 803– 804.

[28] https://data-flair.training/blogs/future-of-cloud-computing/ , 2019.23.02

[29] https://www.futureofeverything.io/future-of-cloud-computing/

6 Contribution

Table 1: Contribution
Name Tasks

Yuxue Liu Introduction
Big data
Cloud Computing
Discussion and Conclusion

Shane Minnema Big data in cloud computing
Discussion and Conclusion
Proofreading

Mansi Mundra Cloud Computing
Discussion and Conclusion

12

Literature review of selected NoSQL and NewSQL
globally-distributed database systems

Milosz Blaszkiewicz Mostafa Doroodian

Chuyi Tong

Web Services and Cloud Based Systems,
University of Amsterdam

Abstract

This literature review presents the globally-distributed database systems, their
evolution, elementary characteristics and design trade-offs from the scientific per-
spective of published research. This article focuses on introducing selected systems
from their scientific publications and discusses trade-offs among consistency, avail-
ability and latency that are specific to the systems operating on a global scale.
Moreover, a brief discussion of related NewSQL surveys of those systems is also
presented.

1 Introduction

Databases have nearly always been an inherent element of the software architecture landscape. The
capability to store and retrieve data in the most efficient way absorbed some developers, architects,
and researchers already since the mid-1960s when early data models were proposed to handle data
storage.

1.1 Traditional databases

Not long after initial attempts, the first major idea came into existence and has since dominated the
field - the relational database management systems (RDBMSs). The whole idea is based on a notion
of tables and relationships binding them together. However simple it may sound, this proved to be a
very durable and extensible solution, which continues to be a default choice up until nowadays. One
of the main concepts within the relational databases (RDBs) is called a transaction, which is closely
related to the ACID properties (four attributes of transactions performed in the system: atomicity,
consistency, isolation, and durability). Those characteristics assure that the database is coherent and
valid even in the event of errors occurring at system nodes.

Turn of the centuries brought a multitude of new challenges and, perhaps more importantly, ex-
pectations to the computing and software development. Web 2.0 brought a wave of new users and
applications to the field, increasing demand for both storage and processing of large amounts of data.
Those rapid changes ultimately demonstrated the shortcomings of the relational model and forced
companies to look for alternatives that could offer more than the previous standard. One such idea,
although actually not new at all, was a concept called NoSQL.

1.2 NoSQL

NoSQL promises straight-forward scalability, efficiency, and high flexibility. Those characteristics
make this category of systems very suitable to use in clouds environments and certainly more fitting

than traditional RDBs. The term is applied rather broadly and includes various types of databases,
for instance, document-oriented (like MongoDB), graph-based (neo4j), or object-based (ObjectDB).
More specific definitions that were used in the early days were dropped for a more inclusive approach,
which could be summarized in the new meaning of the name: NoSQL would only mean that SQL-type
queries are not as significant as they were in RDBs.

However, what generally binds them together (to various extent) is that all those advantages come
at the price of losing support for full ACID transactions. Lack of these properties rendered these
systems unfit for critical or real-time applications; they also require more work on handling potential
errors. Less strict systems moved more responsibility to their users. These issues, in turn, created
space for yet another approach to databases.

1.3 NewSQL

NewSQL is a fresh approach to relational databases, which promises to deliver the best of both worlds:
high scalability and fault tolerance of NoSQL DBs as well as ACID guarantees of the old RDBs.
This means bringing back the relational and semi-relational model, however, this time, it would also
provide the features to accomodatae scalability and transactional nature of operations at the same
time. Such approach removed the necessity of inconsistency handling from the programmers, as well
as leveraged the advantage of SQL techniques, which were heavily invested in before.

NewSQL systems sometimes do not use relational schemas to store data, but use approaches based
on other models and only share relational abstraction to the users. More strict definition limits the
NewSQL DBs to ones with “lock-free” concurrency control scheme and shared-nothing distributed
architecture (Pavlo and Aslett [2016]).

1.4 CAP theorem and replication

Figure 1: CAP Theorem diagram.

CAP (Consistency, Availability and Partition tolerance) theorem states that in distributed database
systems only two of these three properties may be held simultaneously (Brewer. [2000]). In other
words, in the presence of partition tolerance – i.e., when the system continues to operate in event
of failures of the network and is a required property in distributed systems, designer has to choose
between consistency – as in only the most recent state is returned, and availability – i.e., every
requests receives a response.

The theorem implies that in presence of the network partition, there is no possibility to achieve
both other properties in the same time. Therefore, the designer or software architect must take into
account whether given DBMS prioritizes high availability or data consistency and decide based on
their particular needs.

1.5 Replication

This is one of the key issues of the distributed systems. There are many reasons to introduce data
replicas: an increase in reliability of the system, heightening of fault tolerance and durability of the
system. Generally can be done in following variants: master-slave (designated nodes take writes
and distribute them to slaves which store particular replicas), multi-master (all nodes take writes and
propagate to other maser nodes which hold a replica) and masterless (very similar to multi-master,

2

notion of a "master node" is completely phased out) (Grolinger et al. [2013]). Other differences are
in the ways systems handle synchronization between the nodes. It can be done in an eager way -
when replicated data is propagated before acknowledging success to the user - as well as lazy way -
first user is informed of a successful transaction, then data is replicated (lazy way is popular across
NoSQL systems due to large delays from latency in waiting for acknowledgements).

It’s important to note that replication has to be viewed from different perspectives. I.e., performance
has to be considered, since larger number of replicas, while providing more resilience, will also add
to the complexity and efficiency of the system operations; requirements in the consistency and fault
tolerance layers will impact the ways the replicas are kept in the same state.

1.6 Review scope

In this review, we intent to focus on selected database systems that have been created to accommodate
the needs of a deployment on a global scale, the trade-offs that have to be considered in such systems.
We also want to present a comprehensive survey of existing research on NewSQL systems, which
seem to be well-suited for operations on such a scale.

2 Methods

This section briefly describes how articles for this review were selected, starting from defining the
subset of analysed databases. The we discuss practical assumptions for the querying search engines
for our needs and present a general overview of the identified papers and of the formulated research
questions.

2.1 Databases selected for comparison

A considerable number of available solutions within boundaries of NoSQL and NewSQL categories
makes it necessary to select only the most impactful ones that are designed with for the globally-
distributed deployments. Following the practice already proposed in other reviews, we chose to select
the database management systems that are not only popular but are also visibly present in the existing
scientific research.

As for the popularity metric, we sided with the well-known DB-Engines Ranking1, which provides
a monthly classification of the DBMSs based on the internet mentions, data from search engines,
mentions in the technical discussion boards, job offers and even social networks.

To approximate the interest of the scientific community, we chose to perform initial searches in
the ACM Digital Library and IEEE Xplore databases and use the number of publications as an
indication. On average, the number of articles on the NoSQL databases is significantly larger than
on the NewSQL, hence only lack of research would be considered an obstacle for databases in the
second group.

2.2 Search procedure

Our article query was done in two parts due to the review constraints. First, we wanted to select
at least 10 peer-reviewed articles, therefore we decided to use ACM Digital Library, IEEE Xplore
and Google Scholar search engines to identify potential articles. Keywords used to find articles
in this area include: cloud-native databases, globally-distributed databases, NewSQL, consistency
trade-offs, database replication, Google Spanner, Azure Cosmos DB, VoltDB, CockroachDB, etc.

Initially, we wanted to focus our query only on relatively new papers, created at least after 2016.
Unfortunately, such arrangement excluded many interesting pieces from the first half of the decade,
when many defining articles were published. Therefore, we divided our query into two phases: first,
we looked for the latest research papers, published after 2016 and tried to identify as many useful
articles as possible, only then proceeding to the articles published before 2016.

To obtain the full picture, we also queried sources of less scientific nature, like blog posts, keynote
presentations and web articles through Google search engine. Some interesting voices in the industry

1https://db-engines.com/en/ranking

3

sometimes are only present in the such forms. In this case we used similar strategy as before, focusing
this time on keywords that relate to specific technologies.

2.3 Query results

Results of performed queries display a large variability in the number of existing research pieces
among specific database systems. Such conclusions should not come as a surprise: database systems
deployed on a global scale are a domain of large companies and strictly commercial projects. As
those organizations gradually discover and accept research openness as a valuable aspect of systems
development, more and more often creation of those systems is accompanied by appropriate articles
published in journals or at the conferences. Very often, however, especially in smaller companies, the
priorities are a little different and then available research is much less extensive. For those reasons,
finding appropriate articles was not an easy task, and sometimes was totally unsuccessful.

Scientists developing and exploring these systems apparently not so often describe their findings
or experiments concerning separate, closed systems. Therefore, the base knowledge sometimes
had to be inferred from articles and information published in less scientific ways, such as technical
blogs, general white papers and keynotes at technology-oriented conferences (e.g., CockroachDB or
NuoDB).

Google Spanner, systems built on top of it and even its individual elements have relatively highest
number of publications describing their inner implementations. Authors of the system published their
findings by themselves, and additionally researchers added their perspective in two or three papers
(like Malkhi and Martin [2013] or Agneeswaran [2017]). Other systems are not so well documented –
e.g., queries about CockroachDB yielded no concrete results in research searches).

Interesting publication was an article summarizing efforts to build a database system that would
further optimize operations on the global scale. One such example is Carousel (Yan et al. [2018]),
however there was only one such project, stayed in its research phase and has largely disappeared
since.

Due to the shortage of publications detailing specific systems, significant amount of knowledge
and insights might be inferred from reviews and surveys comparing NoSQL and NewSQL systems.
Section 3 discusses exiting items and highlights potential research gaps.

2.4 Research questions

Finally, we decided on the following two research questions which guide this review:

1. What systems are suitable for the globally-distributed environment and what are the differ-
ences between them?

2. What approach to consistency vs availability trade-off in the NoSQL/NewSQL databases
offers the best results for modern, cloud-based computing?

3. What issues NewSQL databases have to address in terms of replication? What options are
available?

Both questions are already somewhat covered in the previous works. More or less comprehensive
surveys on different levels and relating to different elements are already available in a number of
publications. Our study, however, is focused exclusively on the globally-distributed systems and the
trade-offs among consistency, replication and latency. This review also completes existing studies by
bringing an updated overview of current state-of-the-art in NewSQL solutions.

3 Related surveys

Search queries performed to identify research articles about the NoSQL and NewSQL databases of
interest revealed a number of surveys and papers treating more than one system at the time. In this
section we present a short study of three of them. The deciding factor whether a survey would be
included below was whether a significant part was devoted to the NewSQL systems, which seem to
be more interesting from the perspective of this review.

4

In general, they can be divided into two groups: surveys comparing the systems on their conceptual
or implementational level, and the surveys comparing their performance.

Table 1: List of related surveys of NewSQL databases
No Title Authors Year Note

1 Data management in cloud environments:
NoSQL and NewSQL data stores

K. Grolinger et
al. 2013

Early high-level overview of
cloud-native NewSQL and
NoSQL

2 What’s really new with NewSQL? A. Pavlo et al. 2016 Survey of NewSQL systems

3 Performance evaluation of NewSQL
databases K. Kaur et al. 2017

Quantitative performance com-
parison of the four NewSQL
databases

Grolinger et al. [2013] provide the most comprehensive overview of the cloud-native NoSQL and
NewSQL databases. Special attention is given to the cloud environments and how their growing
presence shapes the requirements for data management systems. It is also the first such survey
including NewSQL systems, which were rather a novelty at the time.

Authors selected 18 database systems (including 4 classified as NewSQL: VoltDB, Spanner, Clustrix
and NuoDB). Comparisons are contained mostly to the conceptual level and are organized in the
following three categories:

• "Querying capabilities"
• "Partitioning, replication, consistency and concurrency control capabilities"
• "Security features"

Each of them are summarized in a neat tables with attached explanations for each attribute.

Another survey in the same category, Pavlo and Aslett [2016], sets a little different task than doing
a general summary of the NewSQL techniques. Both authors are closely involved in the early
development of the concept, and their idea is to examine whether various implementations lived up to
the expectations.

Finally, there are also surveys of database systems that focus on their performance aspects. One of
them, Kaur and Sachdeva [2017], present the results of the performance comparison of four NewSQL
systems: NuoDB, VoltDB, CockroachDB, and MemSQL. Paper briefly describes the evaluated
systems, proposes a methodology to assess their performance, and presents the results. The tests
concern read, write, update, and execution latency separately. On average, NuoDB performs best in
all of them, followed by MemSQL.

The article suffers from several issues though. The scale of the test is rather small and selective.
Certain elements of the testing environment are only briefly described, making the results not easily
reproducible. Moreover, the paper lacks any analysis of the results except for general remarks about
the systems. This is probably the case for most of similar quantitative surveys, since those systems
are not an isolated testing environments.

4 Globally-distributed cloud-native database systems

This section focuses on the differences in the implementations of selected databases, discuss their
driving concepts and components, as well as provide some additional information and context of
modern cloud computing era. For convenience, table 3 lists reviewed papers: articles 1 – 5 describe
Google Spanner, 6 and 7 – CockroachDB, 8 – Carousel and 9 – VoltDB.

4.1 Overview of the globally-distributed database systems

Google Spanner One of the most well-known globally-distributed databases is Google Spanner.
It has been described in Corbett et al. [2013]. The paper introduces the database system as the one
which was designed specifically for the global scale deployment: its availability is analysed in terms
of risks such as regional disasters.

5

Table 2: List of reviewed articles
No Title Authors Year Subject

4 Spanner: Google’s globally distributed
database

J. C. Corbett et
al. 2013 Google Spanner database

5 Spanner’s concurrency control D. Malkhi 2013 Methods to control con-
curency in Spanner

6 Spanner: Becoming a SQL System D. F. Bacon 2017 Updated article about Spanner

7 Google Spanner: Beginning of the end
of the NoSQL World?

V. S. Ag-
neeswaran 2017 ACM Sigmoid article

8 F1: A Distributed SQL Database That
Scales J. Shute et al. 2013 Database system built on top

of Spanner

9 A technical overview of Azure Cosmos
DB D. Shukla 2017 Cosmos DB architectural de-

tails

10 High availability with Azure Cosmos DB Microsoft
Docs 2020

Details on high availability
and consistency in Azure Cos-
mos DB

11 Carousel: Low-latency transaction pro-
cessing for globally-distributed data X. Yan et al. 2018 Carousel

12 A Hybrid Partitioning Strategy for
NewSQL Databases: The VoltDB Case

G. A.
Schreiner 2019 VoltDB Partitioning

In principle, the concept is based on splitting data across multiple sets of Paxos state machines
(introduced in Lamport [1998]). Those machines are physically running inside large datacenters,
located in many locations around the world. Paxos is a collection of consensus protocols among
nodes. Spanner is designed to achieve high availability by replicating data inside or outside a single
continent, so that consistency and availability would always be immune e.g. to natural disasters.

Two features of this database which make it interesting are: replication configuration which enables
management of data locations based on the location of the user who accesses them; another feature is
external consistency for read/write and read-only transactions. Below, we are going through a more
detailed introduction of Spanner features. This is rather unconventional for a review, but we decided to
use those few paragraphs below to explain this defining technology better by combining insights from
two papers: Corbett et al. [2013] and Malkhi and Martin [2013]. The first one is describing general
implementation in the initial configuration and the second one is slightly less detailed, produced by
Microsoft engineers, and provides a more condensed view on the most significant elements of the
system.

Initially, the first Spanner used Bigtable (Chang et al. [2006]) data storage as a base model for Spanner.
After a while, first issues were recognized, mostly from OLTP developers. Those were mostly from
lack of schema system, inconsistency, etc. Google, to tackle this issue, temporally build Megastore
(Baker et al. [2011]) on top of Bigtable. Then because of its semi-relational data model, they have
come up with a new data model that looks like Bigtable while it keeps a timestamp which makes the
data more multi-version instead of a key value data store.

Finally, they came up with an idea to make Spanner a fully-featured SQL database but instead of
using PostgreSQL and other existing technologies, they created their own SQL dialect based on
standard ANSI SQL and named it Standard SQL. While its implementation was not entirely a novel
technique, there were some unique aspects like distributed query execution (query results obtained by
parallel workers), range extraction (which server and what amount of data should be searched), and
query restarts (the database tries to handle the errors internally and do the process again and again to
solve the problems related to distribution).

Spanner finally changed Bigtable and SSTables stack to Ressi as a permanent solution which is better
for both OLTP and OLAP developers.

Figure 2 describe the spanner universe and the figure 3 shows Spanner server software stack. Each
Spanner server is responsible for around 100 or 1000 data structures.

The major problem for implementing a consistent global distributed DB was local time differentiation.
Spanner tackles this issue by attaching a timestamp to each transaction. This means that if a
transaction T1 is committed before T2, then T1 commit timestamp is before T2 in all nodes; it reflects

6

Figure 2: Spanner server organization. Source:
Corbett et al. [2013]

Figure 3: Spanserver software stack.Source: Cor-
bett et al. [2013]

serialization order. To implement the timestamp property in a distributed environment, they needed
to tackle clock uncertainty issue between machines, data centers, etc. So, they implemented an API
named True Time which kept uncertainty at about 10ms using two hardware clock references: GPS
and atomic clocks. They have used these two forms because each have its own failure modes, e.g.,
GPS may have antenna and receiver failures and atomic clocks can experience failures over long
periods of time.

Spanner is known as a transnational database. Atomicity in read write transactions (has data lock) and
read-only transactions (without data lock) are managed with a timestamp that has a lower and upper
bound for transactions regarding to True Time. Spanner use wound-wind method for concurrency
control. In general, committing a transaction has two-phases, preparation and committing, which
means it delays the write lock until transaction is finished and if there is a deadlock – it uses
wound-wind to manage it.

Due to the fact that Spanner does not have data lock for read-only transactions, reading multiple
objects may cause inconsistency. Again timestamp and data versioning but keeping different version
of an object will yield a consistent snapshot.

A database system that is built on top of Spanner is F1, described in detail by Shute et al. [2013].
Their key goals was to provide scalability, availability, consistency and usability for a database system
serving enormous AdWords business needs. In addition to core Spanner, this DBS enabled distributed
SQL queries joining data from external sources, optimistic transactions, consistent secondary indexes
and asynchronous schema changes. Parts of these efforts were also included in the next version of the
Spanner, released in 2017.

Bacon et al. [2017] is a paper which summarizes the evolution of the system that had taken place.
Findings discussed there point to a conclusion that it has to be taken into consideration that since
2017 there were fundamental changes in the system. Their purpose was to make it resemble more a
traditional database, since this seemed to be a popular demand among the users. Agneeswaran [2017]
provides an external perspective on the updated system and asks a rather daring question: whether
Spanner would end NoSQL databases? The answer he seems to be giving is that not exactly yet, but
it has already changed a lot in the database landscape.

Microsoft Azure CosmosDB is the first globally distributed, multi-model database service. The
project was started in 2010 and launched in 2017. The company released an article detailing the
system Shukla [2017]. One of the most important characteristics is that it could be highly-customized
due to the multi-model and multi-API solution and its added consistency choices. The system also
supports low latency, high availability and high throughput, which are implemented with its global
distributed system.

Microsoft Azure CosmosDB makes the tradeoff between consistency, availability, and performance.
It introduces five well-defined choices of consistency instead of the legacy systems’ two options,
which are strong, bounded staleness, session, consistent prefix and eventual modes. Each level would
leads to different availability and performance level.

7

As discussed in Microsoft [2020], the high availability and low latency are not only provided by
appropriate consistency trade-offs level but also the data replica and partition in the same or different
global regions. Figure 4 shows the replica and partition abstractions of the global distribution of
Azure CosmosDB. The replica sets could be considered as physical partition here. A group of
replicas comprise the replica set, realizing data consistency, durability and availability with the
state machine replication approach. Partition set consists of multiple replica sets allocated globally.
The membership of both of the replica set and the partition set fluctuate based on the management
operations for physical partition. For the possible conflicts, including insert conflict, replace conflict
and the delete conflict, Microsoft Azure CosmosDB offers two types of solution police. Solution
Last Write Wins (LWW) is based on the system timestamp property while a custom defined property
is also available. In the insert and replace conflict, the win item would be the one with the highest
property value. In the delete conflict, the deleted version always takes the first priority no matter
what property values the items have. Besides, the custom solution policy is also provided for users to
configure.

Figure 4: A distribution of resource partitions in Azure CosmosDB. Source: Microsoft [2020]

Carousel is one of the additions to the database technologies that were added slightly later than the
rest described in this review. Its first version was released in 2015, and was already a work that aimed
at improving certain aspects of globally-distributed databases. The founding concept of the system is
achieving substantial reduction in the number of network roundtrips, which have to be performed to
commit each transaction and ensure its successful completion. The architectural details and novelties
introduced in this system are discussed extensively in Yan et al. [2018]. Unfortunately, the queries
did not find additional research and project stayed in its research phase.

VoltDB is a commercial version of the H-Store, which was constructed at MIT in 2000s. It is a
distributed in-memory relational database system, which addresses the speed with scalability, and is
suitable for real-time fast data transaction analysis.

For the CAP theorem, VoltDB takes the solution of strong consistency and partition tolerant over
availability, eg. when it encounters network failure it would keep done until being recovered with the
same value for all the replicas. VoltDB also keeps the ACID properties to ensure real transactions.

As explained Schreiner et al. [2019], the data is stored with the in-memory approach to avoid
expensive disk access, with single-threaded engine for data operation. The engine automatically
operates with single-partition transactions. The serialized processing for the single-partition has
ensured the consistency and reduced latency.(see Figure 5(a)) And the system runs in parallels with
automatic data partitions using a logic command router for multi-partition. VoltDB also supports
replication, some small tables could be joined with the stored procedures and the larger tables as well
as keeping the single-partitioned transaction to improve performance (see Figure 5(b)).

4.2 Trade-offs in globally-distributed database system design

In this section we want to reflect on the approaches to consistency trade-offs choices and replication
options across different database systems in a more comparative way.

8

(a) The overview of serialization in VoltDB (b) The overview of replication in VoltDB

Figure 5: Serialization and replication in VoltDB. Source: VoltDB Documentation

Table 3: List of reviewed articles
No Title Authors Year Subject

1 Consistency Tradeoffs in Modern Dis-
tributed Database System Design D. J. Abadi 2012 PACELC theorem

2
Practical Tradeoffs in Google Cloud
Spanner, Azure CosmosDB and Yugabyt-
eDB

S. Choudhury 2018 Blog post from a producer of
another system

3 Proving PACELC W. Golab 2018 Theoretical formulation of the
PACELC theorem

As mentioned earlier, the trade-off between consistency and availability is an obstacle that has to be
dealt with in all database systems. In case of globally-distributed ones, this issue is even more pressing.
One such opinion is provided by Choudhury [2018] from a company creating YugabyteDB, another
database system (not treated in this review due to space constraints and shortage of scientific articles).
Author presents how the CAP theorem looks like in practice. Google Spanner and YugabyteDB are
both classified as strongly consistent and partition-tolerant, while Azure Cosmos DB as configurable,
with both options available. Paper also categorizes these three systems in terms of PACELC (discussed
below): Spanner and YugabyteDB as offering low latency at the cost of lowering consistency, while
Cosmos DB – again configurable. High availability in all cases is achieved through consensus
protocol, which can provide also high availability.

Every database system running on a global scale has to poses the capacity to replicate its data. This,
however, introduces certain additional complexity to the system operations. The way in which
replication is performed, has a significant impact on the system efficiency and performance. Abadi
[2012] argues that what should be actually in focus of database designers is the consistency vs.
latency trade-off. He proposes a formulation of a new PACELC theorem, which integrates issues
of latency added by consistency constraints into the CAP theorem. It can be summarized as: (1)
when failures exist, what is the relation between availability and consistency? (2) When there are no
failures, how much does the system prioritize consistency over latency? The paper lists three main
methods to perform replication operations:

1. Data sent to all replicas at the same time.
2. Data sent to master nodes first, then replicated to the nodes storing replicas (synchronous or

asynchronous).
3. Data sent to one location first and then is propagated to subsequent locations (also syn-

chronous or asynchronous)..

PACELC theorem may indeed be very important in the globally-distributed systems, as the latency
vs. consistency trade-off is unavoidable in systems operating over WAN networks. There is no
denying to the fact that latency has an important role in the performance of systems deployed in
distant datacenters; therefore, PACELC is an extension of the classic CAP theorem which has large
impact on those global systems.

Formulation of the PACELC theorem initially missed an important feature of the CAP theorem: the
practical concept was called a theorem mostly due to parallels drawn to the CAP theorem. More
formal formulation of the theorem was done only in Golab [2018], which places the principle within

9

Table 4: Comparison of the database systems
No Database Type Consistency Replication

1 Google Spanner NewSQL Strong consistency Replicas ordered using global
timestamps, Paxos

2 Azure Cosmos DB NoSQL Configurable, no strong consis-
tency like in Spanner

Replication inside regions,
also configurable by users

3 Cockroach DB NewSQL Strong consistency
Raft consensus protocol,
at least 3 nodes for high-
availability

4 Carousel NewSQL Strong consistency Extended Raft consensus pro-
tocol

5 VoltDB NewSQL Strong consistency Updates executed on every
replica simultaneously

6 NuoDB NewSQL Eventual consistency Logical ordering, MVCC

broad distributed algorithms field and connects it to more theoretical works in distributed objects
communication.

5 Conclusions

Globally-distributed systems emerged already a some time ago. More and more tailored solutions are
being developed and used throughout the database spectrum, and this literature review presents some
of them and also discusses scientific contributions to them. In this review, we provided an overview
of globally-distributed database systems. We also identified the practical trade-offs present in such
distributed databases, the CAP and PACELC theorems, as well as discussed them in terms of selected
databases.

Unfortunately, traditional research into this field is largely limited. There are two main reasons
for why this is the case. First and foremost, databases operating on a global scale are a domain
closed to large companies, where such solutions are commercial projects; therefore, sharing the
insights and findings is much more complicated matter than within academia. Secondly, testing
and experimenting on systems that are running as a part of a large globally-deployed systems, is
guaranteed to be error-prone. Many aspects of those systems are closed and unclear to the outside
parties – i.e., investigating particular aspects of those systems would very often require at least partial
cooperation with the their operators, leading again to the problems mentioned above.

More independent research efforts, for instance Yan et al. [2018], have to, by their nature, be more
small-scale and therefore have to focus on specific issues present in this field. Mentioned paper shows
that such undertakings might be completed successfully and lead to interesting findings.

Another category of articles mentioned in this review are surveys and reviews concerning NoSQL and
NewSQL systems. NoSQL systems, existing for a longer time, are surveyed much more often than
NewSQL ones. Again, this disproportion may be credited to the fact that NewSQL systems are more
often deployed on significantly larger scale and require much more resources, while NoSQL can work
in such environments, but not necessarily have to. As a matter of fact, there are no surveys focusing
on the aspects that are most important in the globally-distributed setting. Our queries found only one
quantitative survey of NewSQL databases, comparing limited number of systems in terms of latency.
There is certainly space for more comparative experiments between those systems. The question,
however, remains, how much such experiments can reveal without using appropriate resources to run
them in a controlled environment on a global scale.

Importance of applications operating on a global scale has been rising drastically already for a
couple of years and seems to continue in the foreseeable future. Database systems play crucial
role for those and thus will have to be developed further. Especially NewSQL systems, combining
the best of relational and NoSQL databases, will most likely continue to attract attention of the
technological community. We cannot underestimate also the progress made in the NoSQL systems,
which perform really well where transactional nature of operations is not so important. What seems
to be of incredible importance is how they cooperate in clouds environment.

10

References
D. Abadi. Consistency tradeoffs in modern distributed database system design: Cap is only part of the

story. Computer, 45(2):37–42, Feb. 2012. ISSN 0018-9162. doi: 10.1109/MC.2012.33. URL https:
//doi.org/10.1109/MC.2012.33.

V. S. Agneeswaran. Google spanner: Beginning of the end of the nosql world?, 2017. URL https://wp.
sigmod.org/?p=2153.

D. F. Bacon, N. Bales, N. Bruno, B. F. Cooper, A. Dickinson, A. Fikes, C. Fraser, A. Gubarev, M. Joshi, E. Kogan,
A. Lloyd, S. Melnik, R. Rao, D. Shue, C. Taylor, M. van der Holst, and D. Woodford. Spanner: Becoming a
sql system. In Proc. SIGMOD 2017, pages 331–343, 2017.

J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage for interactive services. In Proceedings of the
Conference on Innovative Data system Research (CIDR), pages 223–234, 2011. URL http://www.cidrdb.
org/cidr2011/Papers/CIDR11_Paper32.pdf.

E. A. Brewer. Towards robust distributed systems, July 2000. URL https://people.eecs.berkeley.edu/
~brewer/cs262b-2004/PODC-keynote.pdf.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for structured data. In 7th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 205–218, 2006.

S. Choudhury. Practical tradeoffs in google cloud spanner, azure cos-
mos db and yugabytedb, 2018. URL https://blog.yugabyte.com/
practical-tradeoffs-in-google-cloud-spanner-azure-cosmos-db-and-yugabyte-db/.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally
distributed database. ACM Trans. Comput. Syst., 31(3), Aug. 2013. ISSN 0734-2071. doi: 10.1145/2491245.
URL https://doi.org/10.1145/2491245.

W. Golab. Proving pacelc. SIGACT News, 49(1):73–81, Mar. 2018. ISSN 0163-5700. doi: 10.1145/3197406.
3197420. URL https://doi.org/10.1145/3197406.3197420.

K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz. Data management in cloud environments: Nosql
and newsql data stores. J. Cloud Comput., 2(1), Dec. 2013. ISSN 2192-113X. doi: 10.1186/2192-113X-2-22.
URL https://doi.org/10.1186/2192-113X-2-22.

K. Kaur and M. Sachdeva. Performance evaluation of newsql databases. In 2017 International Conference on
Inventive Systems and Control (ICISC), pages 1–5, 2017.

L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May 1998. ISSN 0734-2071.
doi: 10.1145/279227.279229. URL https://doi.org/10.1145/279227.279229.

D. Malkhi and J.-P. Martin. Spanner’s concurrency control. Technical Report MSR-TR-
2013-36, September 2013. URL https://www.microsoft.com/en-us/research/publication/
spanners-concurrency-control/. ACM SIGACT News, Distributed Computing Column 51.

Microsoft. High availability with azure cosmos db, 2020. URL https://docs.microsoft.com/en-us/
azure/cosmos-db/high-availability.

A. Pavlo and M. Aslett. What’s really new with newsql? SIGMOD Rec., 45(2):45–55, Sept. 2016. ISSN
0163-5808. doi: 10.1145/3003665.3003674. URL https://doi.org/10.1145/3003665.3003674.

G. A. Schreiner, D. Duarte, G. Dal Bianco, and R. d. S. Mello. A hybrid partitioning strategy for newsql
databases: The voltdb case. In Proceedings of the 21st International Conference on Information Integration
and Web-Based Applications Services, iiWAS2019, page 353–360, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450371797. doi: 10.1145/3366030.3366062. URL https://doi.
org/10.1145/3366030.3366062.

D. Shukla. A technical overview of azure cosmos db, 2017. URL https://azure.microsoft.com/en-us/
blog/a-technical-overview-of-azure-cosmos-db/.

J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins, M. Oancea, K. Littlefield, D. Menestrina,
S. Ellner, J. Cieslewicz, I. Rae, T. Stancescu, and H. Apte. F1: A distributed sql database that scales. In
VLDB, 2013.

11

https://doi.org/10.1109/MC.2012.33
https://doi.org/10.1109/MC.2012.33
https://wp.sigmod.org/?p=2153
https://wp.sigmod.org/?p=2153
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://blog.yugabyte.com/practical-tradeoffs-in-google-cloud-spanner-azure-cosmos-db-and-yugabyte-db/
https://blog.yugabyte.com/practical-tradeoffs-in-google-cloud-spanner-azure-cosmos-db-and-yugabyte-db/
https://doi.org/10.1145/2491245
https://doi.org/10.1145/3197406.3197420
https://doi.org/10.1186/2192-113X-2-22
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/spanners-concurrency-control/
https://www.microsoft.com/en-us/research/publication/spanners-concurrency-control/
https://docs.microsoft.com/en-us/azure/cosmos-db/high-availability
https://docs.microsoft.com/en-us/azure/cosmos-db/high-availability
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1145/3366030.3366062
https://doi.org/10.1145/3366030.3366062
https://azure.microsoft.com/en-us/blog/a-technical-overview-of-azure-cosmos-db/
https://azure.microsoft.com/en-us/blog/a-technical-overview-of-azure-cosmos-db/

VoltDB Documentation. Voltdb documentation: How voltdb works. URL https://docs.voltdb.com/
UsingVoltDB/IntroHowVoltDBWorks.php.

X. Yan, L. Yang, H. Zhang, X. C. Lin, B. Wong, K. Salem, and T. Brecht. Carousel: Low-latency transaction
processing for globally-distributed data. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD ’18, page 231–243, New York, NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450347037. doi: 10.1145/3183713.3196912. URL https://doi.org/10.1145/3183713.
3196912.

12

https://docs.voltdb.com/UsingVoltDB/IntroHowVoltDBWorks.php
https://docs.voltdb.com/UsingVoltDB/IntroHowVoltDBWorks.php
https://doi.org/10.1145/3183713.3196912
https://doi.org/10.1145/3183713.3196912

Group members contributions to the Review

Table 5: Tasks and people completing them
No Task Person responsible
1 Sharing a broad list of articles in the distributed databases domain Mostafa Doroodian
2 Creating a refined list of research articles on globally-distributed databases Milosz Blaszkiewicz
3 Writing Introduction, Methods, Related Surveys sections Milosz Blaszkiewicz
4 Writing Google Spanner part, contributing to Replication definition Mostafa Doroodian
5 Writing Azure Cosmos DB and VoltDB parts Chuyi Tong

7 Writing Carousel, Trade-offs in globally-distributed database system design
and Conclusions parts Milosz Blaszkiewicz

8 General corrections and coordination Milosz Blaszkiewicz

13

IDaaS (Identity as a Service): Challenges and visions
for the future

Sagnik Aditya [13252836], Milica Ðord̄ević [2667572] and Stijn Veken [12573396]
Department of Computer Science

Universiteit van Amsterdam
Amsterdam

Group 7, Web Services and Cloud Systems. May 2020.

Abstract

In the recent years, with the advent of cloud computing, there has been a
sizeable shift in computing tendencies. Small and Medium Sized Enterprises
are increasingly ditching traditional computing architectures and migrating to
the cloud in order to cut costs, scale easily and maintain their focus on the core
expertise. This shift has resulted in number of services moving to cloud, one such
being identity management. This new concept is known as Identity as a Service
(IDaaS). In this review, we aim to explore challenges in IDaaS and solutions
proposed to address them. There is no solution that addresses all identified
challenges and it does not seem to be even possible. Many solutions are feasible
only in certain settings, while others require trade-offs among different challenges.

Keywords: Identity as a Service(IDaaS), federated identity management,
privacy preserving, identity management, OpenID, Proxy Re-Encryption

1 Introduction

The digital society we live in today is heavily dependent on identities. They are the key enablers
for communication between end-users and service providers. Moreover, identities are becoming
invaluable asset for those in charge of its management. Users identities can be used for the sake
of planning future business ventures, marketing purposes or they can be even sold to third parties.
Therefore, it is no surprise that identity management systems (IMSs) are one of the most commonly
deployed services within organisations’ environments. IMSs primarily serve to protect access to
information and resources that an organisation possesses. Unfortunately, when deployed on-premise,
managing these systems becomes costly and time consuming. It requires specialised applications and
personnel. Cloud computing gave birth to the concept of Identity as a Service (IDaaS) - outsourcing
identity management in the cloud. However, there are a number of challenges that may prevent the
adoption of this relatively new concept, especially regarding privacy of user identities due to the loss
of control over this highly confidential data. [1]

In this review, we aim to explore the main challenges that the field of IDaaS is facing and solutions
proposed so far to overcome them. The solutions are critically inspected on their feasibility with
respect to all entities involved and the settings in which they may be applicable. Identifying challenges
is important for readers that are considering to adopt this relatively immature concept. They shall
be aware of the issues that the adoption imposes. On the other hand, both challenges and possible
solutions may serve as a guidelines for readers who are thinking of providing one such service,
considering both technological and economic feasibility of the proposed solutions. Finally, the
brief history and overview of IDaaS aim to familiarise the general public with this concept. We are
primarily focused on the solutions that address privacy issues. The rest of the review is organized as
follows. We briefly introduce the main functions of a typical IMS, then we overview the important

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

identity models, both traditional ones and the ones in cloud, including the IDaaS model. We explore
the early motivation and the first mentioning of IDaaS concept. We overview both benefits of adopting
IDaaS and its challenges and shortcomings. In the main part of this review, we explore the proposed
solutions for overcoming some of identified challenges, focusing mostly on privacy. Finally, we
discuss some potential directions that the field of IDaaS may head to in the future and we draw the
main conclusions.

2 Identity Management Systems

The main purpose of IMS is to facilitate creation, storage, and usage of identity information. Identities
are used primarily for authentication and access control in order to protect information and resources
that an organisation possesses. IMSs were traditionally designed for internal usage, within the
boundaries of an organisation. However, due to the increased usage of Internet, the number of
interactions that organisations have with external users is dramatically increasing. The scope of
managed identities ranges from employees of an organisation to the entire world population. [1]

A typical IMS consists of processes and technologies that aim to secure an organisation’s resources
and information, but protect users’ identities and profiles at the same time. The number of such
elements may vary. According to the work of Mpofu and Staden [2], the basic elements are:

• Directory: defining and storing users’ identity information.
• Life-cycle management tools: adding, modifying, and deleting identity data from the direc-

tory.
• Regulatory mechanisms: for regulating user access to data, usually via policies and access

privileges.
• Auditing and reporting tools: keeping track of whom and when accessed the system.

However, there is no clear consensus over what IMS shall entail. In the work of Nuñez and Agudo [1],
underlying management protocol is also qualified as essential part of IMS, even though they may be
a variety of different supported protocols. They enlisted authentication and authorisation mechanisms
as important parts of IMS’s functionalities, yet in the same work they proposed the hybrid solution in
which authentication is performed outside of realm of IMS.

3 Identity Models

The entities involved in the IMS are: a service provider (SP) that provides online services to users,
while an identity provider (IP) manages users identities and authenticates them prior to accessing SP’s
services. According to the work of Zwattendorfer et al. [3], traditional identity models are classified
based on the storage location of identity data:

• Central approach: the identity data is managed and stored in the central repositories in IP’s
domain. Prior to using SP’s services, a user has to register at an affiliated IP. User have to be
successfully authenticated at the IP before accessing any application or service offered by
the SP, but they have no control over the stored identity data nor information that is being
transmitted between IP and SP.

• User-centric approach: identity data is stored and managed within the user’s domain (usually
on a smart card) and they always remain the owner of it. SP can request and receive the data
only with the user’s prior consent.

• Federated approach: the user’s identity data is distributed over several IPs that have estab-
lished trust among each other. The trust relationships are usually established at organisational
level and the repositories of IPs are linked for the sake of secure exchange of identity infor-
mation.

With many applications moving to the cloud, new questions regarding identity management have
emerged, primarily regarding the deployment of IP. In IMSs in the cloud, there is an additional entity
involved - cloud service provider (CSP), which hosts the cloud application. Several cloud identity
management models are presented in the same work, all of which have their benefits and drawbacks:

• Identity in the cloud: the CSP acts as an IP. This is the special case of central approach, with
SP and IP being the same entity in the cloud environment. While in this model organisations

2

are unburdened by identity management responsibility, which is transferred to CSP, they
completely lose control over identity data of their users.

• Identity to the cloud: the application is deployed in cloud, but the IP remains on-premise.
This allows organisation to remain in full control over the users identities and reuse their
existing IMSs at the same time. However, interoperability may be an issue if CSP does not
support protocols and technologies that are needed for communication with IP. Interoper-
ability issues are not only of technological, but semantic nature as well. The user attributes
exchanged between IP and CSP may not be understood.

• Identity from the cloud: IP fully resides in cloud, but it is not necessarily hosted by the
same CSP which hosts the application. The IP and the application are hosted and deployed
separately. This is, in fact, IDaaS model, but in IDaaS the application is not necessarily
hosted in the cloud. It can be deployed on-premise as well. The benefits of this model are
cost reduction and less maintenance efforts for an organisation, but also the freedom of
choice of desired IP. However, the organisation loses control over identity data and has to
trust the third party to manage their user identities as agreed.

4 Early Motivation for IDaaS

The first appearance of the term Identity as a Service in scientific papers can be found in the work
of Emig et al. [4], back when migration to service oriented architecture (SOA) was a popular
research topic. Identity management becomes an issue when services need to be composed. Built-in
IMSs in underlying services complicate the integrated view on identity management and impose
interoperability issues. In the SOA spirit of loosely-coupled and independent services, the authors
suggest that identity management should be also isolated in a separate service and consumed as such.
In their proposed architecture, identity management service encapsulates two functionalities that are
offered via interfaces - authentication and authorisation. This allows its complete separation from the
core concern part of SOA. Although the separation of identity management allows the reuse of this
common service in different business processes, there are no details of how such service should be
reused and integrated. Administration of identity data is completely neglected with the excuse of
being usually performed by humans and not automated. Nowadays, the term Identity as a Service is
usually referred to IMS outsourced in cloud, but the initial vision of separation of IMS still remains.

Shortly after that publication, cloud computing emerged as new and promising technology. However,
the highly dynamic environment, where services are provisioned and de-provisioned in real time,
imposes even greater identity management problems. The issue of identity management in the cloud
is explored in the work of Gopalakrishnan [5] and is out of the scope of this review. However, the
author concludes that the shortcomings in identity management solutions in the cloud forced cloud
vendors to consider outsourcing identity management, which gave birth to the concept of IDaaS.

5 Benefits of IDaaS

On-premise delivery of IMS, within the internal infrastructure of an organisation, introduces an
overhead in cost and time [6]. Specific applications and highly skilled personnel are needed for
management, integration and maintenance of such systems [6]. IDaaS offers opportunity to out-
source IMS and deploy it in the cloud. Software management efforts are thus minimized since this
responsibility is referred to IDaaS provider. This is on-demand model where identity management
services are rapidly deployed and payed per use, without additional cost overhead. This utility pricing
model also allows organisations to dynamically and easily scale up and down according to their needs
and number of users whose identities shall be managed [2]. This is not the case with on-premise
model in which organisations have to handle scaling by themselves and may not be able to support
large number of users with their current infrastructure. Additionally, IDaaS providers may have their
services deployed in disperse geographic locations, around the entire world [2]. This will reduce
the communication overhead with geographically distributed users of an organisation’s services,
which they would unlikely solve on their own. Moreover, IDaaS providers are experts in the realm of
identity management and they provide access to advanced and dedicated security tools [2]. Finally,
outsourcing the complicated task of identity management to the external party allows organisations to
focus solely on their core business services [2].

3

6 Challenges in IDaaS

The problems with IDaaS are inherent to cloud computing problems - loss of control over the
outsourced data. However, in case of IDaaS, the data represents user identities which are protected
by specific regulations (for EU by European Data Protection Directive). This raises the issue to
another level. Cloud providers define service level agreements (SLAs) and internal security policies
to address such problems, but nothing stops them from breaking the agreement. Users simply trust
them not to do so. The main challenge in IDaaS is allowing users to enjoy all the benefits of cloud
computing, but keeping them in control of their data and preserve their privacy at the same time. [6]

Privacy is just one of the challenges in IDaaS. There are number of other issues, all triggered by the
issue of trust. These issues are surveyed in the work of Mpofu and Staden [2]. They define trust as
confidence that something will be surely delivered as promised. The issues are further classified as
institutional, character and loss of control issues, based on the source of trust.

Institutional trust issues are related to societal structure of an institution that provides IDaaS (referred
as IP in the rest of this section). These include:

• Competence: the capability of a provider to implement functionalities of IMS. This includes
skills and knowledge for handling and responding to requests for identity management. If
users doubt in competence of IDaaS provider, they will not adopt it.

• Interoperability: there are variety of platforms, protocols and approaches in IMS. Ones pro-
vided by an IP may not be compatible with users needs. The IPs shall support heterogeneity
in different aspects of IMS to satisfy diverse needs of their users.

• Dependability: a dependable IDaaS shall be ready to provide service as specified con-
tinuously, but also undergo modifications according to the changes in the environment.
Dependability spans to different attributes such as availability, reliability and maintainabil-
ity.

• Confidentially: identity information shall not be accessed nor modified by unauthorised
individuals.

• Multi-tenancy: when a single cloud instance of IDaaS is used by different customers, there
should be no leak of identity data among them.

• Auditability and accountability: keeping track of access history in order to know what is
happening with system and who is responsible for it.

Character trust issues are related to the behaviour of IP. These issues are refined to:

• Fairness: confidence of customers that they will not be taken advantage of by IP.
• Credibility: a way in which customer perceives an IP. It is usually based on existing

customers, encounters and familiarity in general, but also perception of IP by other trusted
parties.

• Predictability: consistency in past actions that allow customers to predict how will IP react
and response on the future actions.

Loss of control issues are direct consequences of outsourcing the IMS. These issues include:

• Ownership and control over infrastructure: customers are not sure how secure the infras-
tructure where IDaaS is deployed is.

• Control over identity life-cycle: when, for instance, deletion of certain identity data is
requested by customer, they are not sure whether the data is indeed deleted by IP.

• Vendor lock-in: great efforts shall be made to overcome highly probable incompatibility
with certain IP, which makes it more difficult to switch to another one for whatever reasons.
Standardisation is the only way in overcoming this issue and simultaneously improve
interoperability.

• Notifications and redress: there should be mechanisms for notifying customers in case of
security breaches.

• Access and transparency: open up and inform customers regarding every aspect of manage-
ment of their identity data they wish to know.

The authors made a lot of effort to classify the issues, but many of them are interconnected or overlap.
For instance, there is a clear overlap between interoperability and vendor lock-in issues. The less
diverse the technologies that IP incorporates are, the bigger the chance is of adopters running into a
vendor lock-in issues and vice versa. Moreover, all the issues classified as institutional can be traced

4

back to lack of competence e.g. providers may not be able to handle interoperability and diverse
technologies because they are not competent enough to do so.

7 Solutions

In this section, we aim to explore and critically analyse the solutions proposed so far for overcoming
the challenges regarding user privacy, dependability and interoperability respectfully. We identify the
setting in which the solutions may be applicable, their shortcomings from the tecnical aspect, but also
economic feasibility with respect to IP.

7.1 Solutions for Privacy

Preserving users’ privacy is the main challenge of IDaaS. However, the term privacy is vague and
it is usually referred to as a subset of various concepts. One such concept is data-confidentiality
- the property of not disclosing the data to entities that are not authorised to know the data [1].
The solutions described in this section tackle the problem of data-confidentiality with respect to
IP. The issue that is closely related to data-confidentiality is the fairness of IP. It is assumed that
IP is honest-but-curious - they fulfil the agreed protocol correctly, but they may store and collect
information about users without their consent. If the data can be read by IP, then one shall assume it
will be read [1]. A natural solution for this problem is encrypting the data before sending it to the IP.
Many solutions use proxy re-encryption scheme. This is an asymmetric scheme in which one party
sends a message to the other via third entity, a proxy, but the proxy cannot decipher the message [1].
The proxy only re-encrypts the message using the key that was generated by the sender, while the
receiver can decrypt the message using only their secret key. In the setting of presented solutions, the
identity data is exchanged between a user and a SP, while IP acts as a proxy.

In the work of Nuñez et al. [6], the proposed IDaaS model integrates the proxy re-encryption scheme
into the OpenID Attribute Exchange protocol. This model enables IP to serve requested user attributes
to SP without being able to read their values thus preserving user’s privacy. Open ID is a decentralised
authentication protocol that allows SP to delegate user authentication process to IPs. In the main
flow of OpenID, a user wishes to use SP’s service, but needs to be authenticated prior to that. For
this purpose, the user may choose one of the affiliated IP’s, at which they wish to authenticate at,
and the result of the authentication is transferred to the SP. In case of successful outcome, the user
may use the SP’s services. However, the SP may request additional user attributes (first name, last
name, age etc.). The IP transmits the requested attributes along with the authentication result and
this interaction is defined by OpenID’s extension called Attribute Exchange. The fact that the IP
manages user attributes while being able to read them is a weak point that violets the user’s privacy.
This is why the authors proposed integration of proxy re-encryption scheme. User attributes are
encrypted with their public key and stored at the IP. When SP requests the attributes, the user needs to
transmit re-encryption key to the IP so that IP can perform the re-encryption on requested attributes.
IP delegates the attributes to the SP which can decrypt them using only their secret key. This solution
not only prevents IPs from reading user attributes, but it also prevents them from disclosing this data
to any party other than the SP that user choose to authenticate. The needed re-encryption key is
generated by the users themselves for that specific SP. However, there are a number of design issues
in this model. First, the users shall trust IP to remove the re-encryption key after the authentication,
which they may not do. Second, the proxy re-encryption scheme requires certain public parameters
to be known to all parties prior to authentication. There should be a certified authority that IP, SP and
users trust to transmit the parameters. Third, the users normally interact with SP using web-browser
which are limited in their cryptographic support. This is a serious issue since attribute encryption and
proxy re-encryption key generation are complex tasks that shall be performed at the user’s side. The
transfer of user attributes to the IP prior to described flow is not tackled in this solution. However, the
IP should be at least entitled to see the names of the encrypted attributes so that those requested by SP
would be transmitted. The authors completely ignored the fact that user attributes are encrypted using
their public key which in theory can be done by anyone. IP needs to make sure that received attributes
indeed belong to the user in question and prevent some malicious data being transmitted to SPs. From
the economic aspect, the IP should only incorporate the appropriate cryptographic mechanisms to
perform re-encryption. The authors analysed typical number of requested authentications in a setting
of average IT portfolio and their respective users. The additional yearly costs would yield around

5

1749.29 USD by their estimations, which is more then a reasonable price for a small or medium sized
enterprise. Still, the changes would affect both users and SPs that use their services.

The previous solution was applied to general scenario, where user and SP can be anyone. The design
issues aside, privacy-preserving asset of re-encryption scheme motivated Slamanig et al. [7] to
incorporate it into more specific area - eGovernment. In this field, privacy of highly confidential user
identities, issued by a government’s Registration Authority (RA), is of crucial importance. Their
proposed model is user-centric, the identity data that RA issues to citizens is stored on a smart card
and citizens always remain the owners of their data. The citizen can use this identity data to access
certain SPs with prior authentication at IP. In this setting, the transmission of public parameters
for proxy re-encryption scheme is not an issue. Citizens, SPs and IPs are all known to RA which
can fulfil this role of trusted authority for transmission of public parameters. The usage of proxy
re-encryption prevents IPs from reading citizen attributes, so they can be deployed in environments
that are not regarded as secure from government’s perspective. Public clouds certainly fall into
this category, so other benefits of IDaaS can be enjoyed with this model. However, the issue in
eGovernment field is that identity data is transmitted with all user attributes included to SP when
citizens want to access their services. The identity data is signed by RA as a whole and needs to be
verified as such at SP’s side. The authors propose the usage of additional cryptographic schemes
that will allow citizens to extract only those attributes that they want to disclose with SP without
changing the RA’s signature. The fact that user owns a special device for reading the smart card on
their side (client-side model) or they interact with trusted government’s authority to use their digital
identities (server-side model) eliminates the lack of cryptography support on user’s side that existed
in the previous solution. However, the issue of trusting IP to remove the re-encryption key remains.
The authors argue that their solutions does not require a prior registration at RA of neither IP nor
SP for the usage of government’s identities for user authentication purposes. However, the lack of
registration would remove the benefit of public parameter transmission between parties.

In the work of Nuñez and Agudo [1], proxy re-encryption is used for resolving data confidentiality
issue with respect to IP in another more specific setting - federated identity management. Federated
models aim to resolve the issue of identity fragmentation - the user identities being distributed
over different domains. The users are identified at each SP separately. This decreases usability
with respect to users since they have to manage various credentials imposing security risks due to
password reuse. In a federated model, user identities are transferred across different domains among
organisations that have established relationships of trust. The employees of an organisation want
to access a SP with whom organisation has established trust, but they need to be authenticated at
IP first. The authors propose BlindIdM model which uses SAML as underlying protocol due to its
mechanisms for establishing trust and extensibility. The latter is important because user attributes
are encrypted using strong, symmetric algorithm (e.g. AES) and stored at IP, while the symmetric
key is encrypted using proxy re-encryption scheme. This complex information should be reflected
in response, so SAML’s extensibility is of crucial importance. While size of a user attribute may
vary, the length of a symmetric key is fixed, so the efficiency of proxy re-encryption scheme is
improved. The authors opted for a hybrid IDaaS approach - attributes of employees are stored and
managed at IP, but authentication is held on-premise, by the organisation to which the employee
belongs to. They did not state the reasons for choosing the hybrid approach, but presumably for
improved user privacy with respect to IP. However, the authors neglected that this approach increases
a number of interactions needed for authentication. An employee is redirected from SP to IP, then
from IP to their host organisation which performs authentication, then again to IP for collecting
requested attributes and finally to SP. This certainly has a negative impact on performance despite
the improvement regarding fixed-length key re-encryption. The authors explored additional costs
of incorporating proxy re-encryption scheme at IP and the estimation is the same as in previously
presented OpenID model. The IP needs only additional cryptographic support for re-encryption
purposes. The interesting question that arose is why would an IP even want to implement a BlindIdM
model. They would not only have additional costs, but lose an important asset - user identities, which
they cannot access anymore. IPs can use the data confidentiality attribute as an added value of their
product and gain more appeal to the customers. Additionally, they will be less liable in case of misuse
of user attributes since they are not able to access them in the first place.

The choice of hybrid approach in the previous solution raises a question if authentication and
authorisation should be handled on the application’s side or at the IP. The SPs certainly have more
control if they perform these functionalities themselves, but their operational costs would significantly

6

increase. The SP has to support different number of their expected users which they may not be able
to do with their own infrastructure. This means that SPs lose not only cost benefits of IDaaS, but also
ease of scaling. Moreover, if the IP is in charge of only storage and management of identities, but
not authentication and authorisation, it is not clear if this hybrid approach really improves privacy
to any extent. The IP still has the user identities on their side and the privacy can be diminished
regardless of whether they perform authentication and authorization or not. In the work of Vo et
al. [16], it is proposed to remove the identity propagation out of the application implementation by
putting IDaaS in control of the Authentication and Authorisation Infrastructure (AAI) life cycle (i.e.
Provisioning, Establishment of trust and Termination in a target platform). In contrast to describing
security policy in a platform specific manner, this option makes it platform independent. The security
layer would be added as a separate virtualization layer. This increases adaptability of applications
and reduces the technical knowledge required to implement a security layer in applications. The main
benefits of this solution would be reduced operational expenditure, high scalability and flexibility,
and reduced complexity of the technological stack. However, the issues of up-time, accessibility and
response time are not tackled in this paper. We argue that this can be overcame with the deployment
across multiple data centers in disperse geographical areas. In case that one of the data centers is
attacked, the service could retrieve the relevant data from other active data centers thereby ensuring
up-time and accessibility. Solution for the increased dependability will be discussed in the upcoming
subsection.

7.2 Solutions for Dependability

Dependability challenges are directed towards achieving high availability and resilience to malicious
attacks. IPs store and manage extremely confidential user identity data which makes them single
points of failures and main targets of attacks. If an organisation’s IMS fails, then all their resources
and information become compromised and non-reachable. On the other hand, advanced threats, such
as large scale distributed DDoS attacks and data leakage, are becoming more frequent and more
dangerous. In the work of Kreutz and Feitosa [8], the so called cloud-of-clouds model for deploying
highly dependable and secure IDaaS was proposed to address these challanges. This is one of the rare
works written from the perspective of an IP - it does not treat the IP as a black-box that interacts with
other entities, but discusses its inner design. The authors argue that dependability and security should
be conceptually integrated in the design of an IP, not patched with features in ad-hoc mode when it
may be too late. In the proposed cloud-of-clouds model, the IP’s service components are replicated
and reachable by consumers via gateways. The redundancy enables high availability and resilience to
attacks - in case that one replica fails, others are still reachable. However, the authors emphasise that
the extent of dependability and security is highly dependent on how the components are deployed.

The most serious problem arises when all replicas are deployed in a single physical infrastructure.
A malicious attack at the data-center would affect all replicas, but other incidents may greatly
compromise the availability of IDaaS (e.g. the energy blackout). The alternative is to deploy replicas
among different public cloud providers. There is a very low chance that such incidents would affect
all cloud providers at the same time. However, this solution degrades the performance of IDaaS
since it introduces communication overhead among distant data centres. Deploying replicas among
different data centres of a single cloud provider would reduce performance degradation if the cloud
provider has dedicated and efficient network links that connect its data centres. However, the problem
that IP faces when deploying all replicas in a public cloud is privacy. Malicious sysadmin in the
cloud provider could compromise the confidentiality of their customers’ identities. It is interesting to
notice that IPs face the same privacy issues when deploying their service in public clouds as those
that their customers face with respect to them. If the IP deploys all replicas in their private cloud, the
privacy issue will be resolved, but their capital and operating expenses will increase. Moreover, they
would lose the ease of scaling that public cloud enables. Public cloud vendors have a large pool of
resources that they can use to fight the external security attacks in much efficient way than private
clouds can. A hybrid approach can serve as a compromise: the replicas can be further decomposed
so that the safety-critical components of IDaaS are deployed in the private cloud and the rest in
public clouds. An IP gateway is certainly a safety-critical component that should not be deployed in
a public cloud. Finally, a new type of cloud can also be exploited to address performance issues -
telco cloud. Telecom companies have recently realised their potential of becoming large players in
cloud computing. They own flexible, scalable and dynamic network systems in their data centers that
only rare public cloud providers can compete with. They used this advantage to offer a concept of

7

network-as-a-service (NaaS) with QoS at the network level that can efficiently and securely connect
geographically disperse data centres which would help the IPs in overcoming the performance issues
in the proposed model. From the economic aspect, the authors conclude that full deployment of IDaaS
in private cloud is not a feasible option for small and medium size companies. This is partly due to
increased capital and operating expenses when IPs have to manage the infrastructure by themselves,
but mostly due to high salaries of security experts that are needed to provide re silence. In this
aspect, it is hard for such companies to compete with the likes of Amazon and other public cloud
vendors. Deploying IDaaS replicas in public clouds is the only economically feasible solution for
small and medium size companies and this can be a win-win situation for both them and public cloud
vendors. The authors experimented with cloud-of-clouds model deployment in a single data center
and multiple data centres of a single public cloud vendor. Both better performance and larger number
of supported users resulted in the former option.

7.3 Solutions for Interoperability

The IDaaS model proposed to enhance interoperability is so called identity broker model. The identity
broker is a central entity that acts as a hub during the communication of a SP with various IPs. In this
model, the SP is decoupled from IPs and it communicates exclusively with the identity broker in order
to authenticate its users. The benefit of this model is the aggregation of multiple trust relationships
towards different IPs into only one. Moreover, the broker hinders the technological and protocol
diversities of different IPs and offers a single interface for SPs. Unfortunately, the centralised nature
of this model has one major drawback - the SP is now completely dependent on the broker. If the
broker fails, then all connections to different IPs fail too and the SP does not have a functioning IMS.
Another disadvantage is that both SP and its users are dependant on the same identity broker. If a user
wants to authenticate at IP that the broker does not support, the user cannot access the SP’s services at
all. These disadvantages of identity broker model are explored in the work of Zwattendorfer et al. [3]
and the authors propose an enhancement to overcome these issues. They propose a federated identity
broker model in which different identity brokers would cooperate in order to authenticate SP’s users.
The users can choose a broker they wish to authenticate at and the result of the authentication will be
referred to the broker that SP interacts with. In this model, the SP and its users do not necessarily
depend on the same broker which increases both flexibility and interoperability. However, a lot
of requirements that this model must fulfil are left untackled. First, from the technological aspect,
there should be a protocol for communication between brokers. This protocol must incorporate the
previously established trust relationship between them. Moreover, the common semantics of the
user attributes that are exchanged between brokers should be established so that interoperability
between them is possible. This can be solved with standardization. Second, the relationship of trust
should be tackled from the legal perspective: who is entitled for what and who is liable in case of
incidents. Lastly, from the business perspective, the pricing model should be established to address
the interactions among different brokers. Even thought it is clear that both SPs and users would
benefit from this interoperable, federated model, it is not clear what is brought to the identity broker’s
table other than additional technological costs and legal overheads.

In the work of Zouari and Hamdi [17], an interesting approach to the problem of interoperability is
proposed and named An Identity As A Service Framework (AIDF). The AIDF framework relies on
the two types of accounts; one for IPs and one for SPs. The framework acts as a matchmaker between
the two by helping SPs find a suitable IPs based on their requirements. The IPs list out the type of
identities they handle which helps the SPs make an informed choice. The aim of this service is to
enable SPs to work with multiple IPs that exist out there in a streamlined manner. The service makes
it easier to do so with the feature of single sign in that allows SPs to log in and access all relevant IPs
with a single sign in, instead of having to sign in individually for each of the IPs. The service also
provides claim transformations for the following standards: SAML, OpenID Connect, Oauth and WS
federation. In essence, claims in one standard can be converted into a claim of another standard to
match the requirements of another IP and thereby ensuring interoperability. While this framework
boosts interoperability, we argue that it has some loopholes that are concerting. Presence of malicious
service providers in the system could endanger the contents shared by the IPs. It is thus an imperative
to provide some checks for enitites that can register as a SP. Use of secured channels must also be
ensured to facilitate safe transport of data. Lastly, the IPs should proactively scan for requests that
concern personal information and should have strong policies and guidelines for ensuring that only
the necessary data is sent back to the SP.

8

8 Visions for the Future

The fragmentation of identities is becoming a serious issue. User identities are distributed over
different SPs, they are represented in a way that is not known to users and they are no longer in
control of their data. In the work of Ates et al. [9], it is stressed that the fragmentation problem is the
direct consequence of the current architecture of the Internet. The users are at the periphery, accessing
online services through their browsers, while they should be incorporated inside the architecture itself.
The authors point out that this issue cannot be resolved by patching the current Internet architecture
- the overall change should take place. They propose the total separation between the storage of
identity data from their exploitation by SPs. In the proposed Identity-Centric Internet architecture,
the entities that would act as a mediators in communication between users and their identities on one
side and SPs on the other are called Cloud Agents (CA). The SPs should communicate with personal
CA of a user in order to exploit their outsourced personal data for authentication and authorisation,
but only with the user’s prior consent. The users can access their CA and be in complete control,
any time, of how their personal identity data is represented and used by other parties. The identities
will no longer be fragmented among different SPs. The main challenges in this architecture are:
where the outsourced data should be stored and where the CAs should be hosted. Outsourcing the
identity information implies great security threats, while CAs represent the single points of failure.
The authors argue that CAs should be replicated to be more resilient, but this does not protect users
from unauthorised accesses to their CA. Furthermore, CAs should be highly available at any time,
since the communication between users and SPs is not possible without them. Another issue is the
integration of CAs - how should they be found and reached by SPs in order to access user identities.
This architecture would resolve the fragmentation problem, but besides great security and privacy
threats, it would completely change the way we use Internet today. This shift would require great
efforts, especially at SPs’ side, and should be performed gradually. It would also entail enormous
legislation efforts on a global level for the complete and secure adoption.

An extension of the Identity-Centric Internet has been demonstrated in the work of Dash et al. [10],
where the authors propose a mobile application as a centralized Cloud Agent that handles the identity
management by integrating proxy re-encryption into the widely accepted OpenID Connect protocol.
While the benefits and uses cases are numerous, akin to that of creating a digital passport that could
be used to log into various government and non-government services, it is still largely unclear how
the underlying concerns regarding CAs (as discussed above) would be addressed. As such concerns
are still commonplace, it is yet not suitable for mass usage.

Another core application area in not so distant future for IDaaS could be in Quantum Computing.
As Quantum Computing is slowly beginning to re-imagine computers as we know it, a lot of the
security measures currently in place could be rendered useless due to the computing power and
ability that comes with Quatum Computers. New measures have to be developed to keep up with this
development. This would require a high amount of expertise in the field of both Quantum Computing
and Security Systems (which can be thought of to be a part of IDaaS). In the work of Li et al. [18], an
approach that works for Quantum Computing is suggested and it could be later modified to fit more
common applications that arise of it. The authors discuss two QI-BQCs (Quantum Identification
in Blind Quantum Computing), one based on a single server and the other on a double server. This
improves data integrity and identity verification to a great extent and avoids man-in-the middle or
DoS (Denial of Service) attacks by eliminating unjammable public channels (channels in which data
can be read but not altered) between various entities. However, these protocols cannot be extended to
certain simpler applications, even in the realm of quantum computing, because of the aforementioned
removal of unjammable channels. They might be necessary in few cases (e.g. in communication
between an entity and a Third Trusted Party) that lack other alternatives. This is a question that is
outside the realm and scope of our expertise, but could be looked at with great interest for future
developments.

9 Conclusion

In this review, we aimed to explored the concept of IDaaS, the main challenges in this field and the so
far solutions proposed solutions to address them. The review was intended to familiarize those who
consider outsourcing their IMS in the cloud with the challenges that the adoption imposes, but also
help IPs in addressing these challenges in their IDaaS. All identified challenges stem from the issue

9

of trust - the costumers shall trust the third party to manage their identities in the way it is agreed.
Feasibility of the proposed solutions is explored from both technological and economic aspects. We
conclude that there is no solution that addresses all identified challenges and most likely it will never
exist. Some of the proposed solutions imply certain constraints and they are applicable only in certain
settings, while others require trade-offs among different challenges.

Solutions proposed to address privacy issues (or more precisely, data confidentiality issues) are based
on the proxy re-encryption scheme. The solution in general setting does not seem feasible due to
the lack of cryptographic support on user’s side. The IPs that want to incorporate this feature and
address data-confidentiality should focus on more specific settings. In the realm of eGovernment, data
confidentiality is very important and it can benefit a lot from proxy re-encryption feature. Moreover,
federated models with pre-established trust on the organisational levels are also perfect candidates
for privacy solution. Data confidentiality as an added feature in IDaaS would not require substantial
added costs for IPs, but it would require changes at both user’s and SP’s side which is why it is not
suitable for general scenarios. The proposed solution for dependability is based on the replicas of
IDaaS components and which should be deployed among different data centres. However, this affects
the overall performance of IDaaS and IPs should prioritize which is more important. Telco cloud
can be interesting option for leveraging both challenges. The deployment within the infrastructure of
an IP is economically impractical for small and medium-sized companies, even though the public
cloud deployment imposes privacy issues. Finally, the interoperability issues can be resolved with
federated approaches, but they require co-operation among different IPs. If IDaaS wants to be a part
of such federation, it gains interoperability as an added value to attract more customers, but it also
entails legal and pricing issues that need to addressed.

There seems to be no consensus on which functionalities IDaaS should provide. This can be the
double-edged sword for IPs since it gives them flexibility of choice yet it also can make their IDaaS
less appealing to customers if they do not provide enough to address their needs. We classified the
proposed solutions into the three groups of challenges that they address, yet many other challenges
are left untackled and it can be a basis for future works in this field. Even in the realm of privacy
issues, most of the solutions aim to address data confidentiality as one subset of privacy. The data
privacy during the communication between different entities should be also investigated in some
future works. The fragmentation of user identities is yet another issue that emerged. The adoption of
proposed solutions for Identity-Centric internet and digital passports does not seem to possible in the
near future and there should be more research to investigate the feasibility of these solutions. Finally,
Quatum Computers recently emerged as another way that can help to solve fragmentation problem
and it will be interesting to see how will this idea be refined in the future.

10

References

[1] D. Nuñez and I. Agudo, “BlindIdM: A privacy-preserving approach for identity management as a service,”
International Journal of Information Security, vol. 13, no. 2, pp. 199–215, Jun. 2014.

[2] N. Mpofu and W. J. V. Staden, “A survey of trust issues constraining the growth of Identity Management-as-
a-Service(IdMaaS),” 2014 Information Security for South Africa, 2014.

[3] B. Zwattendorfer, K. Stranacher, and A. Tauber, “Towards a Federated Identity as a Service Model,”
Technology-Enabled Innovation for Democracy, Government and Governance Lecture Notes in Computer
Science, pp. 43–57, 2013.

[4] C. Emig, F. Brandt, S. Kreuzer, and S. Abeck, “Identity as a Service – Towards a Service-Oriented Identity
Management Architecture,” Dependable and Adaptable Networks and Services Lecture Notes in Computer
Science, pp. 1–8, 2007.

[5] A. Gopalakrishnan, “Cloud Computing Identity Management,” SETLabs Briefings, vol. 7, no. 7, pp. 45-55,
2009.

[6] D. Nuñez, I. Agudo, and J. Lopez, “Integrating OpenID with proxy re-encryption to enhance privacy in
cloud-based identity services,” 4th IEEE International Conference on Cloud Computing Technology and
Science Proceedings, 2012.

[7] D. Slamanig, K. Stranacher, and B. Zwattendorfer, “User-centric identity as a service-architecture for eIDs
with selective attribute disclosure,” Proceedings of the 19th ACM symposium on Access control models and
technologies - SACMAT 14, 2014.

[8] D. Kreutz and E. Feitosa, “Identity Providers-as-a-Service built as Cloud-of-Clouds: challenges and
opportunities,” Position Papers of the 2014 Federated Conference on Computer Science and Information
Systems, 2014.

[9] M. Ates, S. Ravet, A. M. Ahmat, and J. Fayolle, “An Identity-Centric Internet: Identity in the Cloud,
Identity as a Service and Other Delights,” 2011 Sixth International Conference on Availability, Reliability
and Security, 2011.

[10] P. Dash, C. Rabensteiner, F. Horandner and S. Roth, "Towards Privacy-Preserving and User-Centric Identity
Management as a Service," Open Identity 2017, Lecture Notes in Informatics (LNI), Gesellschaft fur
Informatik, Bonn, 2017.

[11] I. Gomaa, E. Abd-ElRahman, E. Saad, and A. Ksentini, "Virtual Identity Performance Evaluations of
Anonymous Authentication in IDaaS Framework," Egyptian National Telecommunication 2019 Institute
(NTI), Cairo, Egypt, 2019.

[12] T. H. Vo, W. Fuhrmann, and K.-P. Fischer-Hellmann, "Privacy-preserving user identity in Identity-as-a-
Service," 2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN),
2018.

[13] T. H. Vo, W. Fuhrmann, K.-P. Fischer-Hellmann, and S. Furnell, "An Adaptive Security Infrastructure and
Privacy-Preserving User Identity for the Cloud Environment," Future Internet 2019, 2019.

[14] T. H. Vo, W. Fuhrmann, and K.-P. Fischer-Hellmann, "Identity-as-a-Service (IDaaS): a Missing Gap for
Moving Enterprise Applications in Inter-Cloud," Eleventh International Network Conference (INC 2016),
2016.

[15] N. Mpofu and W. J. C. V. Staden, "Evaluating the Severity of Trust to Identity-Management-as-a-Service,"
2017 Information Security for South Africa (ISSA), 2017.

[16] T. H. Vo, W. Fuhrmann, K. -P. Fischer-Hellmann, and S. Furnell, "Automated trust negotiation for
Cloud applications in Identity-as-a-Service," 2019 International Conference on Advanced Communication
Technologies and Networking (CommNet), 2019.

[17] J. Zouari, and M. Hamdi, "AIDF: An Identity As A Service Framework For The Cloud," 2016 International
Symposium on Networks, Computers and Communications (ISNCC), 2016.

[18] Q. Li, Z. Li, W. H. Chan, S. Zhang, and C. Liu, “Blind quantum computation with identity authentication,”
Physics Letters A, vol. 382, no. 14, pp. 938–941, 2018.

11

Roles and Responsibilities Name of Member

Introduction Stijn Veken

Identity Management Systems Stijn Veken

Identity Models Milica Đorđević

Early Motivation for IDaaS Sagnik Aditya

Benefits of IDaaS Milica Đorđević

Challenges in IDaaS Milica Đorđević

Solutions Sagnik Aditya

Visions for future Sagnik Aditya

Conclusion Sagnik Aditya, Stijn Veken and Milica Đorđević

Presentation Milica Đorđević

Intelligence at the edge: A review of Machine
Learning in edge computing

Jetske Beks
University of Amsterdam

11065249

Willemijn Beks
University of Amsterdam

10775110

Mike Schouw
University of Amsterdam

11268751

Abstract

In recent years the emergence of big data at the edge, brought on by the dramatic
increase in IoT and mobile devices, has given rise to a new field of research into
edge intelligence applications. Many of such applications use deep neural networks
and are traditionally run in the cloud. Recent research looks into the possibilities
of moving these applications to the network edge. In this review paper, we explore
in which cases it is valuable to combine machine learning applications with edge
computing in this way. We discuss when this development can be appropriate within
the framework of latency, scalability, reliability, and privacy/security. We find that
the combination of machine learning solutions and edge computing infrastructure
is often effective when using distributed models or hybrid architectures. However,
there is still a lot of research to be done to optimize the combination between the
two fields for useful applications.

1 Introduction

In recent years there has been an increase in mobile and Internet of Things (IoT) devices worldwide.
The immense amount of data being generated by these devices, combined with a need to analyse
this data, gives rise to a large-scale shift of data storage and computing from cloud data centers to
the network edge (Zhou et al., 2019; Wang et al., 2020). Artificial Intelligence (AI), especially deep
learning, is a useful tool in processing all this data and extracting information from it. Therefore, it is
often used for doing computation at the edge. The combination of these paradigms is called edge
intelligence (Zhou et al., 2019).

To talk about edge intelligence, we will first define what edge is. Shi et al. (2016) describe it as as any
computing or network source between the path of a data source, also called an end device, and cloud
data centers (Shi et al., 2016). When using edge devices to perform computation, usually on data that
is generated in close proximity of the device, this is called edge computing (Xu et al., 2019). As the
field of edge computing has been emerging only in the last five years or so, there is no consensus yet
reached on exactly which paradigms and technologies fall within its scope. Some studies exclude
end devices from their definition of edge computing (Lopez et al., 2015); some studies use the term
fog computing, which seems to be similar to edge computing but not quite the same (Matt, 2018);
and some use other terms altogether, which are sometimes interchangeable (Dolui and Datta, 2017).
In this paper, we will be using the definition from Wang et al., who specify edge computing as
encompassing all technologies for which some amount of computation is done at edge or end devices.

The use of AI in edge computing has multiple benefits, as there is an exchange between them where
both fields improve (Zhou et al., 2019). AI helps edge computing with the copious amounts of
data that now exist at the network edge, which need to be handled by AI to extract the most useful
information from it (Wang et al., 2020; Dey and Mukherjee, 2018), while edge computing can change
and improve AI with new application scenarios (Zhou et al., 2019). Deep learning especially is
valuable in combination with IoT devices, since these devices often generate data from a noisy and

Preprint. Under review.

complex environment. Conventional machine learning approaches get confused by these types of
data, but deep learning seems to be a promising solution for this (Verma et al., 2017). However, the
efficiency of deep learning comes at the price of high computational power and memory requirements
(Chen and Ran, 2019). To leverage the power of deep learning, the cloud is often used, which can
usually satisfy these requirements. But to utilize cloud resources, the data must be moved from the
data source to the cloud infrastructure. This presents various challenges, such as high latency and
issues with privacy. Edge computing can be a viable option to tackle these problems. However,
doing deep learning on the edge is also not without challenges, such as fulfilling high computational
resource requirements on not-so-powerful edge devices (Xu et al., 2019). Storage of data can also be
a problem, especially as it keeps building up. Furthermore, there is a need for coordination between
edge devices and with the cloud to ensure the best performance (Chen and Ran, 2019).

Taking all of this into account, we find that it is vital to discuss the challenges that arise with new
techniques like this among with the possible benefits. The question that we are trying to answer
in this work is, therefore, in which cases is it valuable to combine machine learning applications
with edge computing? Our hope is that the themes we identify within the existing literature will
help to better understand the current state of the field, and push it forward in directions that will be
worthwhile for both researchers and users of edge intelligence.

To better understand the rest of this paper, we will provide in Section 2 a theoretical background on
relevant machine learning theory. Then, we will identify some influential factors in the context of
edge intelligence using recent literature. These are summarized in Section 3. With the help of these
factors, we will examine current applications of machine learning in the network edge in Section
4, analysing their usefulness. Lastly, Section 5 will discuss our general findings and present our
conclusions.

2 Machine learning background

When deciding whether to apply machine learning (ML) in edge computing applications, it is
imperative to understand what exactly the possibilities are that ML offers, why they could work, and
what the constraints are. For this reason we will now discuss the relevant parts of ML in a high-level
way, so that the discussion about different applications can be understood sufficiently.

ML can be understood as having three main categories, which are supervised learning, unsupervised
learning, and reinforcement learning. With unsupervised learning, a model is created that finds a
structure in training data that has not been labelled. Examples of this technique would be something
like a network learning to differentiate between pictures of cats and dogs, not knowing beforehand
which are which. Or a generative adversarial network (GAN) that is used to create new datapoints
based on some dataset, which are representative for the set but anonymized. Supervised learning is
defined by the training of a network through feeding it a labelled dataset, and the model learning to
perform either regression or classification on it. Finally, reinforcement learning works by defining
an agent and a world, with rules for the agent to prosper in that world. By having iterations of the
agent taking actions in the world, the agent receives feedback and uses this to change and improve its
actions. Learning the preferred action of some agent is usually done by neural networks, with models
where the parameter set is quite large. Reinforcement learning is often used for games where the
opponent is managed by an artificial intelligence.

The main ML technique that is used throughout most research in edge computing that we found for
this paper are neural networks (NN), and specifically deep neural networks (DNN). To understand
how these pertain to ML in general we will explain briefly what the different techniques are within
this field.
A neural network is an architecture consisting of multiple layers of nodes that connect in some sense
to the previous and next layer. The first layer is the input layer, the last layer is the output layer, and
all possible layers in between are the hidden layers. A neural network with at least one hidden layer
is called a deep neural network. The nodes calculate their values based on the weighted sum of the
previous nodes that are connected to it. To get a non-linear model, an activation function is used.
This process repeats at every layer and finally, the output is calculated at the output layer (Chen and
Ran, 2019).
The training of such a network happens with stochastic gradient descent (SGD), which applies many
such iterations. First a forward pass through the network is done with a random sample. Then every

2

time an output value is calculated, the result is compared to a known value (supervised) or some other
result measure (unsupervised), and the error is back-propagated through the network and the weights
at each node are updated. This process starts at the final layer of the model and ends at the starting
layer (Chen and Ran, 2019). For each pass, or epoch, a randomly selected ‘mini-batch’ of data is
used to update the gradients so that the training loss is minimized (Ruder, 2016).
Training a network can be done for any preferred amount of iterations. Nonetheless, it is possible to
train too little or too much, which can lead to underfitting or overfitting respectively. Underfitting
refers to a model that does not capture the subtleties of a dataset, while overfitting refers to a model
that also captured the outliers within the test set and thus does not generalise well.
When the training phase is done, the result for a single (new) datapoint can be obtained by entering it
in the trained network; this process is called inference. The type of result depends on whether the
dataset that the NN was trained on modelled regression or classification. There are many different
types of NNs that all have their own domain of application, e.g. convolution neural networks (CNN)
which are used for image processing, or recurrent neural networks (RNN) used for time-series
problems.
To understand how the current challenges in distributed ML techniques came to exist, it is crucial
to know how the current ML applications and research are mostly developed. Until recently, it was
assumed that ML applications would run centralized and offline (Park et al., 2019). This meant
that hardware was assumed to be sufficient, which is a different situation from where we are now
in terms of research. Investigations into edge intelligence change the focus towards lower capacity
hardware and wireless communication, introducing with this development some new challenges. A
prominent part of these new challenges arises while training a ML model. Training is one of the
most expensive parts of a NN in terms of memory, energy, and time. And since distributed training
hinders convergence of the model, this is an important problem (Park et al., 2019). When training
a ML model, a lot of communication happens between each layer, going in both directions due to
back-propagation. To make it feasible to train somewhere else than in the cloud alone, there are some
techniques to facilitate this. Training can be architecturally split, by either splitting the data or the
model; or devices can exchange parameters by using a centralized parallel SGD or an elastic SGD
(Park et al., 2019). There are multiple ways to apply these principles. One such approach, which is
quite successful, is federated learning (Zhou et al., 2019). This approach uses a shared model that is
updated with intermediate results from multiple sources, ensuring privacy by keeping the data itself
on the devices. Likewise, there are more approaches to splitting the training phase or the inference
calculations, which all have different primary focus points. Such focus points are the themes that will
be discussed in the next section.

3 Themes

To discuss the value of different applications of deep learning on edge devices, first some important
factors influencing it are introduced. These factors are used in existing literature to justify moving
applications from cloud to edge environments, but are also considered, often but not always in a
different form, problems in the edge computing context itself. We will discuss these factors from
the perspective of both: these are advantages and disadvantages to consider when deciding where to
place a deep learning application.

Latency The factor that is most often named in edge intelligence application papers is latency,
which is connected to reliability and scalability of the network. If the network is slow, the distance
between the central cloud and the edge device can be crucial: some time-critical applications will
have strict delay requirements that cannot be satisfied with normal cloud computing (Wang et al.,
2020; Zhou et al., 2018). According to Chen and Ran (2019), there can also be additional queuing in
the cloud infrastructure on top of propagation delays, resulting in an even longer end-to-end time.
With the increasing amounts of 5G and IoT connectivity, latency can rise even further with the number
of devices connected to the network (Xu et al., 2019). However, 5G could also provide solutions for
the latency problems with increasing speeds, increasing bandwidth and decreasing network latency
(Ren et al., 2020).

Latency between edge devices is usually not an issue, as these tend to be a lot closer together
physically. However, when distributing models over different devices, the extra communication and
data sharing needed could also introduce undesirable latency (Chen and Ran, 2019; Matt, 2018)

3

Scalability Scalability is closely related with latency, and sometimes used interchangeably in the
literature, as network bandwidth seems to be the main problem in the edge intelligence field. Chen
and Ran (2019) and Xu et al. (2019) cite network access to the cloud as being the bottleneck for deep
learning applications, especially if the cloud server is in a central location. Shi et al. (2016) adds that
a lot of edge devices in one area might challenge current network bandwidth. Lopez et al. (2015)
consider also the storage costs of the data generated by edge devices. The total amount could be up to
850 ZB in 2021, compared to 20 ZB generated by data centers (Zhou et al., 2019). Aggregated data
from an abundance of sources could overwhelm even big data centers. Not only storage capacity of
the cloud could be problematic, but also the associated increase in processing time, especially when
limited finances need to be considered (Lopez et al., 2015; Wang et al., 2020).

On the other hand, scalability is just as complicated in edge devices, if not more so. End devices
such as IoT sensors often have low processing power and storage capabilities (Wang et al., 2020; Qi
and Liu, 2018). On top of that, their energy consumption is often a bottleneck, especially in mobile
devices with small batteries. Running complex applications on these devices quickly depletes their
energy reserves and can lead to dropout (Shi et al., 2016; Li et al., 2018a). Edge servers are not quite
so energy constrained and usually have higher capabilities for computing and caching, but depending
on the type of hardware this could still be prohibitive for deep learning models with large numbers of
parameters and layers (Wang et al., 2020).

Reliability In some cases, constant availability of the application is very important, such as for
health care, autonomous vehicles, or inside factories. Most cloud connections rely on existing network
structure that they have no control over, which is not always reliable enough for these applications
Wang et al. (2020). Cloud outages, which can be caused by power outages or system flaws but also
denial of service attacks, are also cited as a major argument for moving deep learning applications to
the edge (Dey and Mukherjee, 2018; Lopez et al., 2015).

However, edge devices can also be very unreliable due to connection dropout or even node crashes.
Detecting and identifying the reason for these failures could be problematic (Shi et al., 2016). The
mobility of some edge devices is also an issue. Network connectivity varies greatly over regions, and
devices moving too quickly could cause problems when running distributed models. One solution for
this could be to keep all computation on-device (Dey and Mukherjee, 2018).

Privacy & Security Lastly, there are some ethical issues with the centralized aggregating and
storing of personal data in clouds (Lopez et al., 2015). Not only could an attacker get data from
millions of users at once, some users also don’t trust the cloud provider to handle their data well.
Privacy is therefore a significant concern associated with clouds. Especially data required for learning
applications might contain a lot of private information, and applications for smart homes and the like
are very vulnerable (Wang et al., 2020). According to Shi et al. and Li et al., using edge computing
would improve privacy in the way that sensitive data does not need to be processed in a centralized
data store anymore. By keeping the sensitive data local, and only reporting the inference outputs,
edge computing could be a decent method to protect privacy and data security.

However, because edge devices are often so resource-scarce, using some of these resources for
security applications could drastically downgrade their capabilities for machine learning, and current
existing tools might not work or not work as well for these devices (Lopez et al., 2015; Shi et al.,
2016). There is also the problem of user incompetence or unawareness, for example when not
updating default passwords on end devices (Shi et al., 2016).

When using distributed models, including edge nodes or end devices that are not controlled by you
could also carry the risk of security flaws, and some could even be malicious (Lopez et al., 2015).
A solution for that could be a hybrid approach, where parameters or other parts of the model that
do not directly contain any sensitive information are the parts that are communicated, while the raw
data remains on the end devices (Park et al., 2019; Wang et al., 2020). As was mentioned in the ML
background section, there are multiple approaches to ensure privacy when training in a distributed
way.

4

4 Applications

We will now discuss some of the current applications of deep learning in edge, which have various
goals and come from multiple fields. Using the factors covered in the last section, we will attempt
to compare them and evaluate whether the combination of deep learning and edge computing was
actually a valuable one, or whether the cloud might after all be the better option for some applications.

4.1 Image Recognition

An application that is often moved to the edge is image recognition, used for a variety of purposes.
This is usually because the size of the image or video data needed for training a model such as CNN
grows very large very quickly. And of course large image data is also needed for inference. The
shorter the distance all this data needs to travel, the better.

Liu et al. (2018) have developed deep learning based food recognition software using edge computing.
One of their aims was to design a system that can minimize response time and energy consumption.
This was done by splitting the food recognition tasks between edge devices, specifically smartphones
in their proposed use case, and the cloud. Their proposed structure first lets the edge device perform
lightweight image preprocessing tasks, after which the transformed image is transported to the cloud
server, where the heavy computation of deep learning model inference is executed. Their results,
when compared to existing systems, outperform in accuracy and achieve roughly the minimum
response time and energy consumption of the state-of-the-art.
To judge how their edge computing infrastructure improves the results, Liu et al. test their system
against two others with a different infrastructure. One runs computer vision algorithms for food
recognition on the edge device itself, without sending anything to the cloud. The other just sends the
images to the cloud without preprocessing them, and runs a different deep learning model there. Their
proposed infrastructure seems to perform better than these two others. However, these systems are not
good baseline systems to test against. For the first system, it is understandable that in order to be able
to actually compute everything on a resource-scarce edge device, less computation-heavy models are
used. Unfortunately, this is not explained and there is no argument made for why these model types
are the most comparable models in this context. And the second system actually tests three things:
the influence of the deep learning model, the influence of doing data reduction on the edge device
(by way of the preprocessing steps), and the influence of using the preprocessing steps at all. These
things could easily have been disentangled by using more testing systems with one difference each in
infrastructure or model, instead of one completely different system. They also did not include energy
consumption at the server in the measurements, which obviously does not give a fair comparison.
This all means that we do not actually know the influence of using edge computing here, even though
it seems theoretically useful in terms of possible latency and even privacy improvements.

Huang et al. (2018) have developed a mosquito classification system, using a self-built device
including a Raspberry Pi that attracts mosquitoes in the area and photographs them. Edge computing
is used on the device to reduce the size and do some preprocessing on the images before they are sent
to a data center. There, further preprocessing is done and a CNN model classifies the images into
mosquito types.
Huang et al. have tested their system in the wild, where it achieves an accuracy score of 90%.
However, there is no comparison done with a non edge computing implementation, so it is not clear
how much edge computing benefited the system. They do mention that during the development
phase, all preprocessing tasks were done on the device, but this made it too slow to keep filming the
mosquitoes. No argument is made for why any computing should be done on the device at all, and
no time or energy related measures were taken. We theorize that identifying mosquitoes real-time,
so that they can be killed or caught immediately if they are of a certain type, could be a valuable
function of such a device. Nevertheless, this idea is not apparent from the paper, and more research
should be done regarding the edge computing infrastructure before it is workable.

Yang et al. (2020) use deep learning to identify different types of crops growing on a field. They train
two models, SegNet and a version of AlexNet, to differentiate crops based on images. This training
phase is done in the cloud. The resulting model is then put on an edge server. A drone is flown over a
field and takes images of it, which it immediately sends to the edge server over the 4G network. The
server runs the received images through both models, and the inference results are used to adjust the
route of the drone by sending a signal to the controller. How exactly the classification into crop types

5

results in a route adjustment for the drone is not explained; we assume that images capturing a road,
which is also a type of “crop" that can be classified, will cause the drone to be turned back towards
the field in some way.
The accuracy of the classification is about 90%, which is promising. The inference on the remote
server takes less than a second; however, there is still a network latency of 3 to 4 seconds. Yang et al.
note this but say that this latency was not the subject of their study and that possibly 5G will fix the
delay.
Since we don’t know the route adjustment process, it is not clear whether this delay is limiting for
the drone. However, another constraint that is mentioned is the battery time: using a single battery,
the drone can only fly for about 10-13 minutes. This will not be enough for the use cases that Yang
et al. propose, which include possibly classifying crops over the whole of Taiwan. Nevertheless, the
idea is useful and with some more research on latency and energy consumption of the drone, it could
perform quite well.

Summarizing, we see that image recognition systems using edge intelligence employ hybrid ar-
chitectures to deal with the high computing power needed by the deep learning models. Image
preprocessing can be done on the end device, but model training and sometimes also inference is
still done in the cloud. Preprocessing on the end device does reduce the size of the data that is sent
on, which proves useful. We see that filming also uses up a lot of power. Experimenting with better
hardware in the end devices could be useful in these cases.

4.2 Mobile Cloud Sensing

Mobile cloud sensing (MCS) systems use the fact that mobile phones have a lot of interesting sensors
that can be used to measure a variety of things. Most MCS systems rely on a central server which
processes and validates all the data collected from the users before analysing it.

Zhou et al. (2018) have developed a robust mobile cloud sensing (RMCS) system with deep learning
and edge computing. The proposed RMCS system attempts to leverage edge servers for a decrease of
network latency to the central server. Deep learning is implemented at the edge nodes to preprocess
and validate raw data such as images and video, before sending them to the cloud for analysis.
When using the RMCS system for a case study with smart transportation, the system was indeed able
to filter out irrelevant, redundant and invalid data at the edge servers. The results show increased
robustness – the percentage of useful data in the total collected data – up to 94% from 72%. By doing
data validation in the edge servers, Zhou et al. also reduce the amount of data sent on to the cloud
by about 75% in their case study. This indicates that using edge computing for this purpose will
probably reduce latency and network overload quite a lot, even though these things are not measured
separately. The links leading from the mobile devices to edge servers are still burdened with the full
dataset, but the authors cite low energy efficiency of the deep learning model as being prohibitive for
implementing it directly on the mobile device. They do not give any specifications or measurements
on this, however, so maybe more research into this could prove how prohibitive it really is. They also
mention security threats for mobile devices as an open issue. Security issues resulting from malicious
devices sending fake data, however, are resolved quite well already by including a data authentication
step in the deep learning model.

4.3 Security

Edge intelligence can also be used for advancing security in the edge. Tian et al. (2020) has
developed a deep learning system to detect web attacks by use of well-designed URLs. They use
multiple collaborating models for this, including word2vec and CNN, which would run concurrently
on different servers. The models process the URLs and check them for anomalous patterns and
keywords.
Tian et al. test their system with two concurrent models on a device which is not particularly
resource-constrained, and get quite high accuracy scores, which they claim are competitive with other
approaches to this problem. However, it must be noted that they do not test the system in a real-life
edge architecture, and while they cite the goal of the system as being for use in edge devices, there is
no discussion about architectural decisions for the models being made in consideration of this fact.
One would expect that models running on edge servers would need to have lower processing costs,
as they need to run continuously in the background for it to have any effect on the security, and no
mention is being made about communication between models running on different servers.

6

Such a detection system for web attacks does seem useful in the context of edge servers. Although
they are less attractive for attackers because of the small amount of users for whom data can be
found in an edge server, compared to a cloud database it will not be secured as well, as described
in the previous section. Applying deep learning is also useful, as prove the results: the system is
very accurate, more accurate than systems not using deep learning but, for example, regex-based
approaches. The question is though how well it will really perform in an actual edge infrastructure,
instead of the experimental environment with only one server they use.

4.4 Healthcare

Healthcare is a field in which it is especially important that data is kept private, and in some cases
also that applications run real-time. In the case of Hosseini et al. (2017), it is both: they use deep
learning for monitoring, evaluation and regulation of epilepsy. They create multiple models with
different purposes: estimating the location of epilepsy in the brain, using this to decide on a treatment,
and detecting oncoming seizures in the brain. The idea is that edge computing is used in an edge
layer directly connected to biosensors. It would preprocess the large amounts of sensor data before
sending it on to the cloud for further processing and storage, as well as monitor and provide alerts or
stimulation mechanisms based on this data.
Hosseini et al. cite the cost of scalability, privacy issues, and latency as reasons for their choice of
edge computing. Patient health data is better managed and shared locally for privacy reasons, they
argue, and alert systems need to be as low-latency and reliable as possible for the safety of the patient.
This latency is tested by sending the experimental dataset to both the remote cloud and to the edge
devices and comparing the round trip times. They conclude that the latency between sensor to edge
devices is about 10 times smaller. However, except for this isolated field test, all models are tested on
small, curated datasets and in controlled environments. So not only are most of the results theoretical,
the value of using edge devices for this is also yet theoretical. Further research should build on this.

4.5 Smart City

Using IoT devices and other technologies to manage urban areas could optimize the running of
city services, with less manual labor needed to aggregate information and transform it into useful
formats. This concept is called ‘smart city’. In this context, there are a lot of potentially valuable
edge computing applications.

Zhang et al. (2019) implement a ‘urban street cleanliness assessment model’, the goal of which is to
detect garbage on city streets automatically so it can be cleaned up in a timely manner. They cite the
high latency of central cloud as being the relevant factor for deciding to use edge computing for this
problem. Mobile end devices, such as garbage collection vehicles and smartphones of citizens, are
used for taking photos of city streets. This material is sent to edge servers, which are installed all over
the city. The edge servers contain stationary units but also units installed on buses, which are mobile.
The image data is preprocessed there, mostly by doing filtering on road areas and adjusting image
size. The data is then sent to the central cloud for the garbage detection step, where both training and
inference are done.
Zhang et al. explicitly test the performance improvement of using distributed edge computing for
preprocessing over immediately sending all data to the cloud. This improvement is quite large; they
do not discuss this further, but it seems that the time decreases linearly with the amount of devices
doing the preprocessing. However, it is unclear how exactly the preprocessing is done on the edge
servers, especially as these seem to be only NAS units, which usually do not run software other
than what is needed for data storage. There is no algorithm given for the image size adjustment. A
mention is made of having humans manually overlook the material for filtering on roads, but they also
explicitly say that the edge servers handle this step, although no word on how. As it is not clear what
exactly the preprocessing step accomplishes, the performance improvement does unfortunately not
mean anything to us. The hypothesis is sound: using multiple distributed edge servers to preprocess
the image data could indeed improve the end-to-end performance, since the cloud and the network
leading to it need to do less work on less data. This would be a latency and scalability improvement.
However, the question can be asked why it is necessary to do this cleanliness assessment in ‘real-time’,
as they desire, since garbage cleaning is not performed constantly throughout the day.

7

4.6 Intelligent Edge

A field of research that has a lot of overlap with edge intelligence is intelligent edge, as Wang
et al. summarize it. This consists of the application of ML to optimize the performance of edge
computing in various ways. Intelligent ways to split computations between edge and cloud, distribute
models over edge devices, and detect failure preventively are useful tools and can help other ‘basic’
edge intelligence applications to run better and more effectively. We will examine multiple studies
proposing such methods for optimizing edge computing.

Kang et al. (2017) have developed a technique for intelligently dividing a DNN between the cloud
and the network edge, called Neurosurgeon. According to the authors, Neurosurgeon is a lightweight
scheduler that partitions DNN between the cloud and the network edge, at the granularity of network
layers. Their reasoning is that data transfer is becoming a bottleneck for applications on edge devices,
while energy efficiency is increasing in these devices. Consequently, the main questions Kang et al.
answer in this paper are about feasibility of running large-scale intelligent workloads on a mobile
platform, figuring out when the effort of sending large quantities of data through the network for
efficient cloud computing is the better option, and defining the role of mobile edge in ML applications
that require heavy computation.
Kang et al. make an explicit distinction between the different types of layers in the distinct types
of DNN. This is essential for the functioning of Neurosurgeon, since the different types of layers
behave very differently in terms of amounts of input and output data in terms of quantity. This
research also implicitly focuses on execution of the network and not on the training phase, which
might warrant future research. The key observations made by Kang et al. about the behaviour of
different networks are generalized, without theoretical arguments, which should lead to additional
research. Kang et al. find that their scheduler achieves an average latency speedup of 3.1x, with
a best case speedup of 40.7x, has energy reductions between 59.5% and 94.7%, and a throughput
improvement of 1.5x to 6.7x. However, on closer inspection it appears that almost all performances
that differ significantly from the cloud-only approach in terms of latency and energy consumption are
accomplished with the same DNN (Senna, which consists of three layers). Neurosurgeon places the
computation completely at the mobile device in all cases. This is not commented on by Kang et al..
They also do not comment on the possible overhead of neurosurgeon itself, as they have not measured
it. They do explain that it is very fast since it consists of regression functions with different parameters
based on the different DNN layer types. However, in some cases there is no noticeable improvement
in performance from using Neurosurgeon, which might make it worse than the cloud-only approach
in some cases. Neurosurgeon is very useful in some cases like the word-vector DNN (Senna) that
was found to have significantly improved performance. More research should be done on exactly
when Neurosurgeon is useful. Kang et al. have given an insight into how a hybrid approach between
the cloud and the network edge is possible and might sometimes be an optimal solution. However the
training phase of the DNN was excluded, which simplified the problem at hand.

Li et al. (2018b) also presented a scheduling solution, in this case for optimizing deep learning for
IoT in combination with edge computing. In the paper it is mentioned that its main contributions
are defined by introduction of a new elastic model for deep learning methods for IoT into edge
computing, which is claimed to be an innovative application. Li et al. explicitly exclude IoT devices
from their definition of edge computing, since they often have lower capacity chips and will not be
able to process many deep learning calculations. Their NN is trained in the cloud, which does not
diverge from the traditional approach. The focus in performance increase is on the execution instead.
The choice to not include training of the DNN in their research significantly simplifies it, considering
they do not have to include the latency of back propagation communications going from the cloud
to the network edge while training. This means that there is potentially significantly less traffic to
deal with, thus simplifying their problem to a scheduling problem. The main issue becomes finding
the right balance between using powerful, but slower to reach cloud computing, or less powerful but
faster to reach edge computing. They use an offline algorithm that schedules layers of DNNs over
different edge servers, and an online algorithm that actually deploys them, so that they are distributed
in an optimal way considering the difference in available resources of the servers.
Li et al. distinguish themselves from other research by explicitly excluding mobile devices from
their research, enabling them to find results on how efficient it is to use only the network edge in
combination with cloud. They lack a deeper analysis of their results by not making a sufficient
distinction in different types of DNN, only considering a few CNNs, as these could impact the ratio
between cloud and edge computation differently. They also test their scheduler only in a controlled

8

environment that simulates the different servers, and not in a real-world experiment. The positive
results do imply that with more research there could definitely be more merit in their approach. Li
et al. conclude that they showed that their scheduler is able to increase the number of tasks that can
be run on edge servers while maintaining a QoS requirement.

With the introduction of 5G to the world, the scope of coverage of IoT could be increased more
easily. This means that the attraction of doing edge intelligence with IoT grows, resulting also in the
increase of computing power needed for mobile applications (Xu et al., 2019; Taleb et al., 2017). In
order to avoid overloading the edge computing infrastructure and properly balance the offloading
between cloud and edge computing infrastructure, Xu et al. (2019) propose an Heuristic Offloading
Method (HOM) for deep learning edge services in 5G networks. The model is based on a centralized
unit versus distributed unit architecture. This architecture connects multiple mobile devices to a
distributed unit, distributed units to centralized units, and these are connected to the cloud. The
goal is to offload ‘deep learning tasks’ from the mobile devices to either a unit server or the cloud,
minimizing the end-to-end time. Tasks are first moved to the centralized unit that is closest to a
device, which then decides whether to execute the task itself or schedule it to either another unit or
the cloud. These tasks seem to be at a bigger granularity than what we’ve seen before; however, Xu
et al. are not very precise as to what these deep learning tasks consist of exactly, which is unfortunate.
The results of Xu et al. indicate that their HOM method has the lowest latency in all their testing
methods when compared to Cloud Offloading (CO), where everything is offloaded to the cloud,
and Local Offloading (LO), when everything is offloaded to the closest edge server. They, too, use
simulations to test their method, so it is possible that this result does not transfer to real 5G networks,
but it is logical since these networks are not yet widely available to test on.

Another 5G offloading approach is done by Ren et al. (2020). They propose a fine-grained collabo-
rative solution for mobile AR, which partitions DNNs over cloud, edge, and mobile web browser.
More specifically, the offloading approach moves the high performance computation to the cloud
infrastructure, while the rest is placed on the user device. This will reduce cloud computing costs.
They test this collaborative solution on a trial 5G network, comparing it with cloud-based, end-based,
and other offloading algorithms. They pose, however, that because of the increase in network speed
5G brings, these other offloading approaches degraded into cloud-based algorithms. The results
indicate that their collaborative approach has better latency, saves cloud computing costs, and reduces
mobile energy consumption compared with the other approaches. Ren et al. (2020) note that these
efforts are still preliminary attempts and much work remains to be done.

Both Xu et al. (2019) and Ren et al. (2020) have developed different offloading strategies with deep
learning and edge computing in combination with 5G networks and both show improvement on their
performance metrics. However, both offloading methods have not been tested in real life environments.
Therefore it is hard to say what the actual performance improvement of these offloading methods will
be.

5 Discussion and conclusions

In this work we have attempted to define the value of moving deep learning applications from the
cloud towards the edge in terms of scalability, latency, privacy, and reliability. These factors introduce
problems at both the cloud and edge ends in different ways, and have considerable influence on the
difficulties and benefits of doing deep learning at either end.

Reducing latency is cited in all applications we have reviewed as a main reason to move to the edge,
and a lot of the applications indeed see a latency improvement. Additionally, the 5G network could
provide even more latency improvements, for both the cloud and the edge side, even though it could
need different strategies for offloading. However, there are some applications where the need for
lower latency does not seem to be very important to its functioning. In these cases, it is perhaps better
to first weigh the disadvantages of moving to the edge; low latency is nice, but maybe not at the cost
of privacy or reliability.
Scalability seems to be not so much a problem in the cloud as it is in the edge, with multiple techniques
specially designed to get the most out of the low power of edge devices. However, cloud services
do often cost money, and the financial benefit of moving to the edge could offset this disadvantage.
Hybrid architectures, where the initial model is trained in the cloud but then moved to the edge to be
used in applications, seem to be a very promising avenue to take here.

9

Reliability of the cloud is also not often a real problem for applications, but in the cases that it is, a
distributed approach using trusted or self-controlled edge nodes is a good solution. Likewise, for the
edge, distribution is often the best solution when worried about the reliability of a single node. Some
headway is made already into doing this in an effective manner, and we think that with the maturing
of this field, good frameworks for doing this with general ML models will eventually arise.
Lastly, privacy is often a more theoretical issue, but it could have disastrous consequences if it
turns out that it wasn’t protected well enough. For applications in fields like healthcare, the privacy
requirements should weigh heavily in the decision to move to the edge. This works well if you have
control over all the edge devices. Hybrid approaches, where raw data is kept close to the user but
model parameters or other intermediate results are shared with other edge nodes or even cloud centers,
seem again to be a good approach to take here.

We have seen, in general, a lot of hybrid approaches in the literature. It seems that deep learning is
still too resource-heavy to move completely to the edge in most cases. Nonetheless, preprocessing
the raw data on the edge device to reduce the size, remove irrelevant datapoints, and transform it to a
shape that the model can take in, is a very useful step to take. Not only does it reduce latency, it also
sends on purely data that is useful, which reduces storage cost for the server that receives it; and edge
devices are usually capable enough to do this small amount of processing. In practically all use cases
this seems to be worthwhile to do.
Distributing the ML model is also often a valuable approach for multiple reasons. There exist multiple
tools already that try to do this in an optimal way, often at the granularity of network layers, although
not for all types of DNNs. There is also very little regard for security in these cases. As the work
moves from theoretical to real-life use cases, this aspect should be taken into consideration.
Location awareness, which is mentioned in some review papers but never actually used in practice,
is something that also should be considered more. It is useful from a machine learning perspective,
as location awareness can improve results of models a lot, depending on the application. It is not a
challenge that should be solved, but rather a benefit of moving to the edge completely. More research
into its effectiveness specifically for the edge could be very valuable.

The choice for edge or cloud for a machine learning application, as with most things, depends a lot
on its particular context and needs. Consider whether the application has strong privacy or reliability
needs, or has to work in real-time. Take into account the costs of using the cloud, and the amount
of (trusted) edge nodes you have access to. In the end, the decision can only be made for a specific
application in consideration with its specific needs. Nonetheless, we hope that this paper has given a
greater understanding of the current state of the field, and that it has clarified the benefits and costs of
moving an application to the edge.

To conclude our research, the combination of machine learning solutions and edge computing
infrastructure is a very promising prospect and the current research shows encouraging results.
However, there is still a lot of research to be done to optimize the combination between the two fields
for useful applications. Furthermore, a lot of applications that have been proposed by research are
mainly theoretical and are not deployed in the real world yet. Nonetheless, hybrid solutions between
current cloud infrastructure and edge computing infrastructure may be the best solution for the current
problems that we are facing with regards to scalability, latency, reliability, privacy and security.

10

6 Participation

Table 1: Task Division

Name Tasks

Jetske Beks • first draft themes
• read some of the application papers
• wrote summary and evaluation for these papers
• second draft conclusion
• edit other sections

Willemijn Beks • second draft introduction
• machine learning section
• read 2 long review papers referred throughout paper
• read 2 application papers and wrote reviews for them
• first draft abstract

Mike Schouw • first draft introduction
• read multiple application papers
• wrote summary and evaluation for these papers
• first draft conclusion

11

References
Chen, J. and X. Ran (2019). Deep Learning With Edge Computing: A Review. Proceedings of the

IEEE 107(8), 1655–1674.

Dey, S. and A. Mukherjee (2018). Implementing Deep Learning and Inferencing on Fog and
Edge Computing Systems. In 2018 IEEE International Conference on Pervasive Computing and
Communications Workshops, PerCom Workshops 2018, pp. 818–823. IEEE.

Dolui, K. and S. K. Datta (2017). Comparison of edge computing implementations: Fog computing,
cloudlet and mobile edge computing. GIoTS 2017 - Global Internet of Things Summit, Proceedings.

Hosseini, M. P., T. X. Tran, D. Pompili, K. Elisevich, and H. Soltanian-Zadeh (2017). Deep Learning
with Edge Computing for Localization of Epileptogenicity Using Multimodal rs-fMRI and EEG
Big Data. In Proceedings - 2017 IEEE International Conference on Autonomic Computing, ICAC
2017, pp. 83–92.

Huang, L. P., M. H. Hong, C. H. Luo, S. Mahajan, and L. J. Chen (2018). A Vector Mosquitoes
Classification System Based on Edge Computing and Deep Learning. In Proceedings - 2018
Conference on Technologies and Applications of Artificial Intelligence, TAAI 2018, pp. 24–27.
IEEE.

Kang, Y., J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang (2017). Neurosur-
geon: Collaborative intelligence between the cloud and mobile edge. ACM SIGARCH Computer
Architecture News 45(1), 615–629.

Li, H., K. Ota, and M. Dong (2018a). Learning IoT in Edge: Deep Learning for the Internet of Things
with Edge Computing. IEEE Network 32(1), 96–101.

Li, H., K. Ota, and M. Dong (2018b). Learning iot in edge: Deep learning for the internet of things
with edge computing. IEEE network 32(1), 96–101.

Liu, C., Y. Cao, Y. Luo, G. Chen, V. Vokkarane, M. Yunsheng, S. Chen, and P. Hou (2018). A new
deep learning-based food recognition system for dietary assessment on an edge computing service
infrastructure. IEEE Transactions on Services Computing 11(2), 249–261.

Lopez, P. G., A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi, M. Barcellos, P. Felber,
and E. Riviere (2015). Edge-centric computing: Vision and challenges. Computer Communication
Review 45(5), 37–42.

Matt, C. (2018). Fog computing. Business & information systems engineering 60(4), 351–355.

Park, J., S. Samarakoon, M. Bennis, and M. Debbah (2019). Wireless network intelligence at the
edge. Proceedings of the IEEE 107(11), 2204–2239.

Qi, X. and C. Liu (2018). Enabling Deep Learning on IoT Edge: Approaches and Evaluation.
Proceedings - 2018 3rd ACM/IEEE Symposium on Edge Computing, SEC 2018, 367–372.

Ren, P., X. Qiao, Y. Huang, L. Liu, S. Dustdar, and J. Chen (2020). Edge-Assisted Distributed DNN
Collaborative Computing Approach for Mobile Web Augmented Reality in 5G Networks. IEEE
Network 34(2), 254–261.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. Preprint,
arXiv:1609.04747.

Shi, W., J. Cao, Q. Zhang, Y. Li, and L. Xu (2016). Edge Computing: Vision and Challenges. IEEE
Internet of Things Journal 3(5), 637–646.

Taleb, T., K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella (2017). On multi-access edge
computing: A survey of the emerging 5g network edge cloud architecture and orchestration. IEEE
Communications Surveys & Tutorials 19(3), 1657–1681.

Tian, Z., C. Luo, J. Qiu, X. Du, and M. Guizani (2020). A Distributed Deep Learning System
for Web Attack Detection on Edge Devices. IEEE Transactions on Industrial Informatics 16(3),
1963–1971.

12

Verma, S., Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato (2017). A survey on
network methodologies for real-time analytics of massive iot data and open research issues. IEEE
Communications Surveys & Tutorials 19(3), 1457–1477.

Wang, X., Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen (2020). Convergence of Edge
Computing and Deep Learning: A Comprehensive Survey. IEEE Communications Surveys &
Tutorials (c), 1–36.

Xu, X., D. Li, Z. Dai, S. Li, and X. Chen (2019). A heuristic offloading method for deep learning
edge services in 5g networks. IEEE Access 7, 67734–67744.

Yang, M. D., H. H. Tseng, Y. C. Hsu, and W. C. Tseng (2020). Real-time Crop Classification Using
Edge Computing and Deep Learning. In 2020 IEEE 17th Annual Consumer Communications &
Networking Conference (CCNC), pp. 1–4. IEEE.

Zhang, P., Q. Zhao, J. Gao, W. Li, and J. Lu (2019). Urban Street Cleanliness Assessment Using
Mobile Edge Computing and Deep Learning. IEEE Access 7, 63550–63563.

Zhou, Z., X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang (2019). Edge intelligence: Paving the last
mile of artificial intelligence with edge computing. Proceedings of the IEEE 107(8), 1738–1762.

Zhou, Z., H. Liao, B. Gu, K. M. S. Huq, S. Mumtaz, and J. Rodriguez (2018). Robust mobile crowd
sensing: When deep learning meets edge computing. IEEE Network 32(4), 54–60.

13

Mobile clouds: analysis of service models,
computation offloading, existing applications

Group 9
Chang Liu

Chenghan Song
Jiacheng Lu

Abstract

Mobile cloud computing is the application of cloud computing technology to
the mobile Internet, which refers to the usage pattern of getting the required
infrastructure, platform, software, or app in an on-demand, easily scalable way
through mobile networks. This essay introduces the evolution of mobile cloud
computing over time, such as why new service models need to be referenced and
what problems these service models solve. It then embarks on the comparison
and analysis of current research schemes of computation offloading. Finally, we
conduct a survey of some existing mobile cloud computing applications. Take
mobile cloud gaming as a typical case, we analyze and discuss issues and challenges
of mobile cloud application.

1 Introduction

Currently, cloud computing and mobile computing are the two research focus of information technol-
ogy development. Cloud Computing has evolved from distributed computing, parallel Computing and
grid Computing. Cloud computing can provide users with the data they need, services they need, and
even solutions for hardware facilities via the Internet. Mobile computing is a technology developed
with the development of mobile communications, distributed computing, and the Internet. Mobile
computing allows data to be transferred through mobile phone or any other wireless device without
having to be connected to a fixed physical link. It can deliver information to customers anytime and
anywhere, providing users with a ubiquitous mobile computing environment. Those two technologies
have dramatically changed the way people live and work.

Mobile cloud computing is based on cloud computing and mobile computing. On the one hand,
people will choose more convenient mobile devices such as tablets, smartphones, etc. when using
cloud services, rather than being limited to traditional devices such as computers. On the other
hand, mobile cloud computing is an extension of the original mobile computing. In the mobile cloud
computing model, the huge information processing, complex calculations and massive data storage
originally carried out in the smart mobile terminal are transferred to the data center or "cloud", so
the hardware and software requirements of the smart mobile terminal is reduced. So the patterns of
usage and deployment of various mobile apps have changed dramatically. Although divided into two
different areas, smart mobile terminals can combine the benefits of both, together with mobile cloud
computing, to create a field with full potential.

"Mobile cloud computing" has come a long way since it was first proposed in 2010. The definition,
advantages, and disadvantages of a service model for mobile cloud computing have been discussed in
detail in much existing research. For example, the thesis [1] defines the "Device-Channel-Cloud"
model and provides a detailed classification of the mobile cloud computing model. And the thesis
[2] discusses the service model of IaaS in detail. However, the developmental relationships for each
service model layer are not adequately described. Therefore, in the first part of the article, we will

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

explain why each service model layer arises and the problems they reveal in the development of other
technologies. This evolutionary sequence will show us the evolution of mobile cloud computing.

As a core technology of mobile cloud computing, computation offloading is the basic solution
for mobile terminals to obtain flexible and efficient services. Academia has proposed a series of
computation offloading schemes for different optimization goals such as expanding the computing
and storage capabilities of mobile terminals, reducing service delay, and saving terminal energy
consumption. However, with the aim of designing an efficient and reliable computation offloading
service, various measures such as terminal load, task attributes, network status, and application
environment need to be considered. Thus, this essay conducted a comparative analysis of the
most notable computation offloading schemes. In order to point out differences and challenges
of computation offloading, We also evaluated the schemes from the aspects including dynamicity,
granularity, optimization goal, performance and disadvantages. It is found out that the bottleneck of
offloading is mainly the mobile network technology.

This essay also elaborated on the application examples of mobile cloud computing in detail, on this
basis, it deeply analyzes the main problems and solutions in mobile cloud computing application, and
finally looked into the application prospects of mobile cloud computing.

The main goal of this essay is to analyze the related research results and development of mobile cloud
computing from three aspects: service model, computation offloading and application analysis. Thus,
the main contributions are as follows:

• Analyze the reasons for each technical point in mobile cloud computing, explain the prob-
lems it solves, and elaborate on the evolution of mobile cloud computing after a sufficient
development foundation.

• An analysis and evaluation of existing computation offloading schemes. Unlike previous
work, this essay classified the schemes first and analyzed the schemes based on the clas-
sification. The comparative Analysis considers key aspects including optimization target,
granularity, partition, operating platform.

• This essay surveyed the existing mobile cloud computing applications and take mobile
cloud gaming as an example to analyze its characteristics and architecture. Combining
with the status quo, this essay identified three major challenges in developing mobile cloud
applications and suggested possible solutions.

Our essay is organized as follows. Section 2 analyze the evolution and developing trend of mobile
cloud computing. Section 3 performs a survey and compares different computation offloading
schemes. Section 4 analyzes and discusses issues and challenges of mobile cloud application. Finally,
Section 5 provides the conclusions of the essay.

2 From Virtualization to Mobile Cloud Computing

The cloud computing model includes "device", "channel" and "cloud", as shown in the figure 1 [1].
"Device" means any terminal device capable of accessing the "Cloud" and completing information
interactions. "Channel" means the communications network used to complete the transmission of
information. "Cloud" means the infrastructure center, platform and application servers, etc,. "Cloud"
will be the focus area of this section. This section will describe the evolution of cloud services,
starting with virtualization, and will address the reasons why each technology arose and the problems
they solve. Secondly, this section will illustrate that with the development of the three parts of the
"device-channel-cloud" model, mobile cloud computing has become the focus of academic and
business research and has gained astonishing growth in a short period.

2.1 Virtualization

Virtualization is the foundation of cloud computing. Virtualization is defined as a framework or
method for dividing the resources of computer hardware into multiple execution environments by
applying one or more concepts or techniques (e.g., hardware and software partitioning, time division,
partial or complete machine simulation, emulation, quality of service)[3]. On the surface, these
virtual machines are independent servers, but in reality, they share the CPU, memory, hardware,

2

Figure 1: Model of Cloud Computing

network, and other resources of the physical server. The problem of time and space flexibility is
solved by virtualization, but virtualization is no longer able to meet demand as clusters grow in size.

2.2 Iaas, Paas and Saas

As clusters grow in size, the process of manually configuring virtual machines becomes increasingly
complex and time-consuming. In terms of spatial flexibility, the clusters that can be managed
manually are small, and many large companies now have hundreds of thousands servers. It is almost
impossible to configure so many machines manually.

To solve this problem, IaaS(Infrastructure as a service) was created. In the IaaS model, the cloud
provider hosts the infrastructure components that exist in the data center, including servers, storage,
and the virtualization or hypervisor layer. The IaaS provider also provides a range of services to these
infrastructure components. These services are policy-driven, enabling users to implement higher
levels of automation and scheduling for critical infrastructure tasks. For example, users can enforce
policies to drive load balancing to maintain application availability and performance[4].

With IaaS, resource-level flexibility has been achieved, but application-level resilience remains
unrealized. Some services require more servers to be configured at a given time. With IaaS, more
servers can be created quickly, but the servers are created without any applications and can only be
set manually. By the time the server is configured, it’s probably past the time of demand. So there’s
a layer on top of the IaaS for managing application flexibility issues above resources, a layer often
referred to as PaaS (Platform As A Service).

With both of these cloud computing, not all needs can be met. For example, if someone doesn’t know
how to configure a server and just wants to do something with an app, there’s nothing that either
of these cloud computing service models can do. This is where the SaaS(Software as a Service)
layer comes in, where the service provided to the customer is an application running on the cloud
computing infrastructure, and the user can access the interface through the client on a variety of
devices. Consumers do not need to create or control any cloud computing infrastructure. For example,
if a user wants to keep track of the inventory of goods in their supermarket, they can take advantage
of the cargo management app provided by the cloud platform. Just simply set up the warehouse
information, account number, password and other information, they can use the mobile phone to
manage it. There is no need to install the operating system, cargo management software, or complex
configuration.

"Device-channel-cloud" model contains three parts, and only when all three components are developed
to a certain level can the whole cloud computing have its next breakthrough. With the increasing
maturity of SaaS and the continued development of "Device", "channel", mobile cloud computing is
ready to be realized.

3

2.3 mobile computing and mobile cloud computing

Mobile smart terminals (such as smartphones, tablets, etc.) have powerful functions to handle various
tasks. They have good internal network protocol backend, which can easily browse the web, access
email, instant messaging, and map navigation through wireless network technologies. At the same
time, their portability and flexibility are driving the growing demand for cloud services. But pure
mobile computing is limited by its hardware and software resources.

• Processing performance limitations: Although CPU performance in smartphones or tablets
has improved significantly, the microprocessors used in mobile devices are still inadequate
for complex tasks[5].

• Capacity constraints: Most of the storage used in mobile devices is flash memory, which, in
today’s data explosion, it is still not large enough to support users’ vast storage needs.

• Power limitations: batteries have been a key constraint to the development of miniaturization
of smart devices, and ensuring the longevity of mobile devices is always a challenge.

• Data reliability: In an unstable mobile network environment, there is still no reliable solution
to ensure real-time data reliability within mobile terminals.

To address these issues, a new cloud service model - Mobile Cloud Computing (MCC) - has emerged.
The following characteristics of MCC can solve the above shortcomings.

• Move tasks that consume relatively large amounts of computing resources to the cloud for
processing, and transfer data with large amounts of information to a cloud storage center.
Small tasks are handled directly in the mobile client. In contrast, the large tasks only retain a
simple interface, and the mobile client is only responsible for data entry and query of results.

• The cloud has much more data storage capacity compared to a single mobile device. The
emergence of mobile cloud computing can meet the need for mobile users to directly store
or access large amounts of data through a wireless network in their mobile device. For
example, iCloud and OneDrive, can save users a lot of storage space.

• In a mobile cloud environment, mobile devices migrate tasks to the cloud, reducing the load
on the device itself, thereby reducing energy consumption and extending battery life.

• The data is stored in the cloud, and there are usually multiple computers backing up the
data to ensure reliability. Also, a well-established system will often have strong security
protection measures to safeguard the privacy of user data.

While mobile cloud computing has many advantages, it still faces some problems when applied in
practice.

• Stability of wireless connectivity: When users use cloud-provided applications, there is a
possibility of signal outages due to geographic location, or they may not be able to connect
to the cloud for cloud-provided services due to congestion. Therefore, to ensure the mobile
application can continue to provide a stable service experience for users, it is also necessary
to ensure the wireless connection’s stability.

• Mobile cloud computing security is more complicated than traditional cloud computing
security, mainly because mobile terminals have flexible access locations, a higher number
of concurrent users and mobile devices are easier to lose and leak information. To address
these challenges, developing a mobile cloud security strategy and mobile cloud security
services became the new direction of study.

The problem of stability of wireless connectivity can be solved by popularizing 5G technology and
building more mobile base stations. The security issues in mobile cloud computing will be solved
with the general public care about privacy and more advanced encryption methods.

3 Computation Offloading

As the core technology of MCC, computation offloading[6][7] mainly solves the problem of limited
computing and storage resources of mobile terminals. In the form of entire applications[8][9] or

4

part of code/data[10][11], it offloads mobile terminal storage and computing tasks to cloud data
centers. Execution on high-performance servers is a basic method for mobile terminals to obtain
flexible and efficient services. Academia has proposed a series of computation offloading solutions
for different optimization goals, such as expanding the computing and storage capabilities of mobile
terminals, reducing service delay, and saving terminal energy consumption. However, in order to
design an efficient and reliable computation offloading system, various measures such as terminal
load, task attributes, network status, and application environment need to be considered. In recent
years, academia has also paid attention to relevant research.

Computation offloading process mainly contains 5 parts: surrogate discovery, environment awareness,
task division, task scheduling, and execution control[6]. However, not every computation offloading
scheme includes all steps. The most important execution control mainly involves how to connect to a
reliable remote surrogate, pass the required information for execution, execute remotely and return
the result.

Computation offloading schemes are generally classified according to the granularity of division,
mainly including fine-grained computation offloading based on processes and function functions, and
coarse-grained computation offloading based on applications and VMs. Computational offloading
schemes are generally classified according to granularity, mainly including fine-grained computation
offloading based on processes and functions, and coarse-grained computation offloading based on
applications and VMs.

Figure 2: Offloading process overview

3.1 Fine-grained offloading

The fine-grained computation offloading scheme offloads some computationally intensive code or
functions in the application to the cloud to execute. Such schemes require developers to divide the
program in advance by marking and modifying the code. According to different offloading strategy,
fine-grained computing offloading can be classified into two types: static partition and dynamic
partition. The static partition scheme offload according to the programmer’s pre-annotation rule,
while the dynamic partition scheme can dynamically adjust the partition of offload areas according
to real-time changes of system load, network bandwidth, and other factors. Dynamic partition can
relatively improve efficiency and reliability.

3.1.1 Static partition

Most early computation offloading technologies used static partitioning schemes. Programmers have
to divide the application into two parts previously. While running the program, the first part will
be executed on the mobile terminal and the other part will be executed on the remote server. In
Protium[12], the programmer divides the application into a viewer part and a service part. The viewer
part runs on the mobile terminal, and the service part runs on the proxy server with abundant storage
capacity and CPU computing resources. The application can define protocol of communication
between two parts. If the program contains complex cross-state and viewer management, then
the program needs to be rewritten, which increases the burden on programmers. Moreover, it is

5

impossible for the programmer to grasp the dynamically changing network status and the energy
consumption of the program on CPU and memory accurately. Therefore, this static labeling partition
scheme can not guarantee that the energy consumption of program execution is minimized.

The solution proposed by Yang et al.[13] takes the utilization of multiple resources, including CPU,
memory, and communication costs (such as bandwidth resources) into consideration, and seamlessly
offloads some tasks on mobile terminals to surrogates. This user-server offloading structure contains
modules such as monitors and offloading engines. The resource monitor is responsible for monitoring
the usage of various resources such as memory, CPU and current wireless bandwidth. The offloading
engine divides the application into a local part and multiple remote parts. The class method module
converts the class into a method module that can be executed remotely. The scheme divides the
application into (k + 1) divisions, including 1 non-migratable division and k disjoint and migratable
divisions. Then these divisions will be organized into a directed graph, the vertex set represents
the Java class, and the edge set represents interaction between classes. Their algorithm can give a
offloading scheme close to the optimal solution based on the graph.

In order to further improve the execution efficiency of computation offloading , Misco[14] implements
a clustered service and supports the distribution of data to multiple nodes on the network to process
application data in parallel. The master server play the role as a centralized monitor, which is
responsible for the implementation of MapReduce. The application program is statically divided into
two parts: Map and Reduce. The mapping function processes the input data, generates intermediate
key-value pairs, and classifies all generated key-value pairs to form corresponding data block nodes.
All data block nodes produce the final result through the reduction function and return it to the main
server. While developing the application, developers have to confirm map and reduce functions
to provide a distributed platform. However, the system simplified the problem of data locality,
decentralization, and device heterogeneity.

Most of the static partition schemes assume that the communication cost and calculation time can be
obtained by prediction or statistics before processing. Once the partition scheme is determined, it will
remain unchanged. However, due to the differences between mobile terminals and the complexity of
network status, it is predict the cost of calculation and communication accurately.

3.1.2 Dynamic partition

In order to overcome the shortcomings of the static partition, the dynamic partition scheme can
dynamically adjust the partition of the offloading area according to the real-time status of network
bandwidth, system load, etc. Dynamic partition comprehensively considered the available resources
to improve the efficiency and reliability.

The solution proposed by Chun et al.[15]. comprehensively considers the changes of three factors:
mobile terminal power, network connection status, and real-time bandwidth. They provide different
solutions according to different changes of these three factors and design a universal formal model
for the offloading decision problem. However, they do not give any detailed system design or
implementation.

Afterwards, academia proposed a series of computation offloading systems for specific applications.
For example, CogniServe[16] for image recognition and speech recognition applications, Odessa[17]
for environment-aware applications, Sociable Senses[18] for social applications, and Kahawai[19]
for cloud games.

The aim of MAUI[10] is to provide a general dynamic offloading service which can minimize the
burden on developers. Developers do not have to make offloading decision for each program, instead,
they only need to classify the application into local methods and remote methods. Based on the
collected network status and other information, the MAUI event analyzer dynamically decides which
remote methods need to be offloaded to the cloud for execution dynamically. Then the surrogate
execution module executes the corresponding control and data transmission work. This system
evaluates the network status by sending 10KB of data to the server. However, its prediction still needs
to be improved if the wireless network is unstable and changes dramatically.

ThinkAir[11] is also a thread-level dynamic offloading scheme which focuses on enhancing the
server. This system can dynamically allocate resources such as service memory for offloading tasks,
which improves the reliability of system operation. Based on MAUI and ThinkAir, Comet[20] uses
distributed shared memory and VM-synchronization primitive to support multi-threaded parallel

6

offloading, which enables free migration between machines depending on the workload. The
computing offloading system designed by Zhou et al.[21] can make dynamic decisions based on
the context of wireless channels, cloud resources and other contexts when the program is running,
and dynamically select servers in multiple clouds such as micro-clouds and public clouds to achieve
code-level refinement. Granularity calculation offloading. The problem of this offloading decision
algorithm is the intercommunication between different cloud resources.The prototype’s performance
can be further optimized by considering more context parameters.

In order to overcome the mismatch between the demand and offer of computing resources. Shi C et
al.[22] designs and implements the Cosmos system. Cosmos provides computation offloading as a
service to mobile devices. It can allocates and schedules the offloading requests and makes offloading
decisions in a risk-controlled manner. To some extent effectively, Cosmos solves the problems of
uncertainty caused by variable network connectivity and program execution.

From another aspect, fine-grained offloading leads to the consumption of additional partitioning
decisions, so the quality of the partitioning algorithm directly affects the offloading efficiency, and
the optimal solution is not always obtained. In addition, both programmer modify code and remote
execution management will introduce additional overhead. Thus, it is possible to result in more
consumption of CPU energy.

3.2 Coarse-grained offloading

Coarse-grained offloading encapsulates the entire application in a VM and sends it to the cloud server
for execution. In this way,the extra cost of program partition and offloading decision-making can be
reduced.

Cyber Foraging[23] uses nearby computers with strong computing capability as proxy servers to
provide computation offloading services for mobile terminals. Once the application starts running, the
mobile terminal will send a offload request to the service search server. The server returns available
surrogate’s IP and port number. The mobile terminal can then apply to the corresponding agency
service for computing offloading services. Each surrogate runs multiple independent virtual services
to make sure that each application’s virtual service space is isolated. Cyber Foraging utilizes local
area network to provide mobile terminals with efficient computing and offloading services. However,
deployment methods based on surrogate discovery and VM templates cost much time and resource.

Clonecloud[9] also uses VM to establish the operating environment directly in the cloud, without any
additional changes to the operating system and applications. It designed three different offloading
algorithms for different types of applications. In addition to offloading computation-intensive tasks
such as voice recognition and image processing to the cloud, security detection is also migrated to the
cloud server, which reduces the burden on the terminal. However, the strategy based on application
diversity increases the overhead of mobile terminals. The single-thread deployment method also
makes the system unstable.

In order to overcome the disadvantages such as unstable wireless network, Tango[24] deploys multiple
copies to perform calculation tasks simultaneously on the server and mobile terminal, and uses the
fastest execution result as output, which further improves the reliability of the system.

Table 1 shows the overall comparison and analysis of the above computation offloading schemes.

Table 1: Comparison of different computation offloading schemes
Name Operating platform Target Granularity Partition

Misco Mobile cloud node Delay Method Level Static
MAUI Cloud Server Energy Consumption Method Level Dynamic
ThinkAir Cloud Server Delay/Energy consumption Threadlevel Dynamic
Comet Cloud Server Delay Multi-thread Dynamic
CogniServe Locally distributed Performance/Energy consumption Application -
CyberForaging Local-distributed Delay Application -
Clonecloud Cloud Server Performance/Energy Consumption VM Dynamic

7

4 Application Analysis

4.1 Mobile cloud computing applications

In recent years, with the diversification of mobile terminals, especially the prevalence of smartphones,
and the continuous development of mobile cloud computing, many mobile applications have taken
advantage of mobile cloud computing and occupied an increasing share in the mobile market. Mobile
cloud computing allows mobile devices to offload applications to the cloud which improves the
quality of service and meets people’s high demand for availability and mobility. Users can access the
application via the wireless networks with no need for large storage capacity of mobile devices which
overcome the resource limitation[25]. Typical examples of mobile cloud computing applications
include mobile cloud storage and mobile commerce, and mobile cloud computing technologies are
also incorporated into services such as multimedia sharing and mobile learning. Besides, mobile
cloud computing has also been applied in the fields of cloud-based mobile healthcare applications,
mobile gaming, and mobile social networking[26].

• Mobile commerce
Mobile commerce utilize scalable computation and storage in the cloud. Mobile bank-
ing, mobile advertising, mobile ticketing, and e-shopping are typical examples of mobile
commerce[26]. During the process of mobile commerce, security measures are of vital
importance. M-commerce may be interfered by external factors that lead to the leakage of
personal private information and the user’s economic interests can be seriously threatened.
This is a relatively serious problem that needs to be resolved urgently.

• Mobile learning
In traditional mobile learning, instability of transmission rate and high cost of devices
limited the development of e-learning. The implement of mobile cloud has solved these
shortcomings and users are able to easily access learning materials on the cloud via mobile
devices[25]. With the advent of the 5G era, mobile communications can provide faster
speeds as well as more reliable and stable connections. In mobile learning, 5G connections
will further accelerate the connection speed, and slow buffering will become a thing of the
past. We can look forward to the rapid growth of more high-quality audio and video content
streams in mobile learning.

• Mobile Healthcare
The global healthcare industry is undergoing a transformation. Industry convergence,
increased customer expectations, aging population, and complex safety and regulatory
requirements have brought a lot of pressure to the healthcare industry. Mobile cloud
computing plays a very important role in constantly driving industry progress. Mobile
healthcare can store a great amount of data on the cloud instantly. It allows doctors to
have access to the records of patients on mobile phone. With a healthcare monitoring
system which collects patients’ physiological parameters from wireless sensors, doctors can
diagnose and monitor the real-time health status of patients remotely[27].

4.2 Mobile cloud Gaming

The video game industry has changed dramatically in recent years. On the one hand, traditional
computer games have a better performance compared to mobile games. However, the rapid updating
of hardware equipment and high game content fees have greatly increased user costs and affected
the development of the game industry. On the other hand, mobile games have gained a considerable
market in recent years due to their excellent portability. With the increase in the number of mobile
users, many companies have launched their mobile cloud gaming platforms, hoping that mobile cloud
games will combine the high quality of computer games and the portability of mobile games.

Mobile cloud gaming migrates the complex computing of traditional games to the cloud. The cloud
performs tasks of game calculation and data storage, encoding the game into real-time video streaming
to the mobile terminal. This not only greatly expands the execution capabilities of mobile terminals,
but also improves the platform compatibility and the flexibility of upgrade and maintenance of games.
In this section, we will analyze mobile cloud gaming.

8

4.2.1 model of mobile cloud gaming

An overview of design patterns used to host game infrastructure is illustrated in Figure 3, the cloud
server initiates virtual machines (VMs) to simulate the runtime environment of the mobile devices[28].
The virtual machines are composed of game engine servers and game streaming servers. The game
content server will first confirm the connection between the user and the game server. Then it will
initialize the game engine server, the game engine server will load account information of the user
and game data from the content server, and starts to process the game logic and user data to render the
game[28]. The inputs of users are sent to the cloud server and accepted by the content server directly.

Figure 3: Mobile Cloud Gaming

4.2.2 Open challenges

Partition

Mobile cloud gaming systems ought to be divided into components in order to achieve onloading
and offloading. As gaming is process-oriented, dynamic partitioning can be implemented in mobile
cloud gaming[28]. In addition, the components should be adapted to different client systems. How to
partition efficiently is still under research.

Latency and Connectivity

1) Due to the huge amount of information processed in mobile cloud computing, there has been a
certain degree of delay in the calculation process. Mobile cloud computing responds to network
delays quite sensitively. To provide players with a ubiquitous gaming experience, [28] proposed
a solution to implement delay-tolerated mechanisms in game design. Take Draw Something as
an example, users access to the drawings of teammates through network. Once the network is
disconnected, the status will be frozen.

2) With the advent of the 5G era, the problem of latency will be effectively solved. On the one
hand, 5G carries high bandwidth. In the 4G era, Video live broadcasts can be realized. With
the implementation of 5G, applications such as cloud gaming and VR/AR live broadcasting will
breakthrough network bandwidth limitations and will be used on a large scale. On the other hand, 5G
achieves low latency. For mobile cloud gaming, if the delay exceeds 100 milliseconds, the user’s
operating lag will be very strong, which will greatly affect the user’s gaming experience. 5G will
allow the delay to be within 10 milliseconds[29], building the best low-latency environment. But
currently, the global 5G network has just started commercial use, and will take some time before it is
popularized. According to the report from the GSMA Intelligence[30], there are nearly 40 mobile
network operators in the world which have officially commercialized 5G, and the number of global
5G users is only about 5 million.

Cost

1) For cloud application providers, cloud service costs mainly include server, IDC, and bandwidth.
Among them, server costs account for a relatively high proportion. The future cost control focuses
on the software and hardware costs of cloud servers. With the continuous development of cloud

9

gaming technology, the efficiency of hardware utilization will be greatly improved, and the server
will provide more instance concurrent thread services, which will reduce server costs exponentially.

2) The main goal of mobile cloud computing is to save the energy of mobile devices. However, in
some cases, it might cost more energy consumption to offloading a simple task to the cloud than run
it in the mobile device. Thus the concept of Green mobile cloud computing is proposed to improve
energy efficiency. Lu et al.[31] suggested to compress data by excluding redundant data to reduce the
volume of transmitted data. [32] proposed different techniques for green applications. By converging
green cellular networks with the cloud environment, green mobile cloud computing is achievable.

5 Conclusions and future work

With the wide application of wireless data communication and mobile Internet, mobile cloud comput-
ing technology[33] has developed rapidly and has attracted widespread attention from scholars.

This paper introduced the whole evolution process of mobile cloud computing, explains why each
service model layer arises and the problems they reveal in the development of other technologies.
The goal is to help understanding the development trend of mobile cloud computing. Mobile cloud
security will be the next focused areas.

In order to help design an efficient and reliable computation offloading service, we also researched and
analyzed computation offloading, which is the core of mobile cloud computing. The paper classified
the computation offloading schemes first and then comparatively analyzed most mainstream schemes
from aspects such as optimization target,granularity, partition. Through analysis, we concluded the
disadvantages for different kinds of offloading scheme. For fine-grained computation offloading,
programs have to be pre-divided and labeled, and only parts that can save resources by remote
execution will be offloaded. For coarse-grained computation offloading, its applicability has certain
limitations[10]. For example, this kind of scheme cannot apply to programs that has frequent
interactions with users.

Moreover, we presented a survey of existing MCC applications and take mobile cloud gaming as an
example to analyze its characteristics and architecture. In addition, this essay identified three major
challenges in developing mobile cloud applications and suggested possible solutions, hopefully can
provide insights for the future research.

As future work, we intend to survey existing concepts integrating Mobile edge computing functionali-
ties to the mobile networks and make a comparison between MEC and MCC using our methodology.

References
[1] Bo Lang Hanbing Yan Li Ding Jia Li Yu Zhou Xiaochun Yun Weiping Wen. “Cyber Security:

15th International Annual Conference”. In: 2018, pp. 167–168.
[2] Naibo Yu. “Cloud computing IaaS service model explored”. In: 2011.
[3] David Rule Rogier Dittner. “The Best Damn Server Virtualization Book Period”. In: 2007,

Chapter: An Introduction to Virtualization.
[4] Margaret Rouse Michelle Boisvert Stephen J. “Infrastructure as a Service (IaaS)”. In: URL:

https://searchcloudcomputing.techtarget.com/definition/Infrastructure-
as-a-Service-IaaS.

[5] Lee D Huerta-Canepa G. “A virtual cloud computing provider for mobile devices”. In: 2010,
Chapter: Proceedings of Acm Workshop on Mobile Cloud Computing Services.

[6] Mohsen Sharifi, Somayeh Kafaie, and Omid Kashefi. “A Survey and Taxonomy of Cyber
Foraging of Mobile Devices”. In: IEEE Communications Surveys Tutorials 14.4 (2012),
p.1232–1243.

[7] W. L. Zhang et al. “Computation offloading on intelligent mobile terminal”. In: Chinese
Journal of Computers (2016).

[8] Satyanarayanan et al. “The Case for VM-based Cloudlets in Mobile Computing”. In: IEEE
Pervasive Comput (2011).

[9] Byung Gon Chun and Petros Maniatis. “Augmented Smartphone Applications Through Clone
Cloud Execution”. In: Proceedings of HotOS’09: 12th Workshop on Hot Topics in Operating
Systems, May 18-20, 2009, Monte Verità, Switzerland. 2009.

10

https://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-IaaS
https://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-IaaS

[10] Eduardo Cuervo et al. “MAUI: Making smartphones last longer with code offload”. In: Inter-
national Conference on Mobile Systems. 2010.

[11] Sokol Kosta et al. “ThinkAir: Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading”. In: Proceedings IEEE Infocom 945-953 (2012), pp. 945–953.

[12] C. Young et al. “Protium, an infrastructure for partitioned applications”. In: Proceedings Eighth
Workshop on Hot Topics in Operating Systems. 2001, pp. 47–52.

[13] Kuanli Yang, Shumao Ou, and Hsiao-Hwa Chen. “On effective offloading services for resource-
constrained mobile devices running heavier mobile Internet applications”. In: Communications
Magazine, IEEE 46 (Feb. 2008), pp. 56 –63. DOI: 10.1109/MCOM.2008.4427231.

[14] Adam Dou et al. “Misco: A MapReduce Framework for Mobile Systems”. In: Dec. 2010. DOI:
10.1145/1839294.1839332.

[15] Byung Gon Chun and Petros Maniatis. Dynamically Partitioning Applications between Weak
Devices and Clouds. ACM, 2010.

[16] Ravi Iyer et al. “CogniServe: Heterogeneous Server Architecture for Large-Scale Recognition”.
In: Micro, IEEE 31 (July 2011), pp. 20 –31. DOI: 10.1109/MM.2011.37.

[17] Moo Ryong Ra et al. “Odessa: Enabling interactive perception applications on mobile devices”.
In: International Conference on Mobile Systems. 2011.

[18] Kiran K. Rachuri et al. “SociableSense:exploring the trade-offs of adaptive sampling and
computation offloading for social sensing”. In: International Conference on Mobile Computing
Networking. 2011.

[19] Eduardo Cuervo et al. “Kahawai: High-Quality Mobile Gaming Using GPU Offload”. In:
International Conference on Mobile Systems. 2014.

[20] Mark S. Gordon et al. “COMET: Code Offload by Migrating Execution Transparently”. In:
Usenix Conference on Operating Systems Design Implementation. 2012.

[21] Bowen Zhou et al. “A Context Sensitive Offloading Scheme for Mobile Cloud Computing
Service”. In: IEEE CLOUD 2015. 2015.

[22] Cong Shi et al. “COSMOS: computation offloading as a service for mobile devices”. In: Aug.
2014. ISBN: 978-1-4503-2620-9. DOI: 10.1145/2632951.2632958.

[23] S. Goyal and John Carter. “A lightweight secure cyber foraging infrastructure for resource-
constrained devices”. In: Jan. 2005, pp. 186–195. ISBN: 0-7695-2258-0. DOI: 10.1109/MCSA.
2004.2.

[24] Mark S. Gordon et al. “Tango: Accelerating Mobile Applications through Flip-Flop Replica-
tion”. In: Getmobile Mobile Computing Communications (2015).

[25] Debashis De. “MOBILE CLOUD COMPUTING: Architectures, Algorithms and Applica-
tions”. In: 2016, pp. 71–74,303–320.

[26] Wang D C Wang Y Chen R. “A Survey of Mobile Cloud Computing Applications: Perspectives
and Challenges”. In: Wireless Personal Communications 80.4 (2015), pp. 1607–1623.

[27] Loai Tawalbeh et al. “Mobile Cloud Computing Model and Big Data Analysis for Healthcare
Applications”. In: IEEE Access PP (Sept. 2016), pp. 1–1. DOI: 10.1109/ACCESS.2016.
2613278.

[28] W. Cai, V. C. M. Leung, and M. Chen. “Next Generation Mobile Cloud Gaming”. In: 2013 IEEE
Seventh International Symposium on Service-Oriented System Engineering. 2013, pp. 551–560.

[29] China Information, Communication Research Institute, and 5G Cloud Game Industry Alliance.
“Cloud Game Industry Development-5G Helps the Rapid Development of the Cloud Game
Industry”. In: 2019.

[30] GSMA. “2020 The Mobile Economy”. In: URL: https://www.gsma.com/mobileeconomy/
#key_stats.

[31] Y. Wang X. Lu E. Erkip and D. Goodman. “Energy efficient multimedia communication over
wireless channels”. In: IEEE Journal on Selected Areas in Communications. Vol. 21. 10. 2003,
1738–1751.

[32] M. Chen Y. Liu X. Wang A. V. Vasilakos and T. T. Kwon. “A survey of green mobile networks:
Opportunities and challenges”. In: Mobile Networks and Applications. Vol. 17. 1. 2012, pp. 4–
20.

[33] LUO et al. “Mobile Internet: Terminal Devices, Networks and Services”. In: Chinese Journal
of Computers (2011).

11

https://doi.org/10.1109/MCOM.2008.4427231
https://doi.org/10.1145/1839294.1839332
https://doi.org/10.1109/MM.2011.37
https://doi.org/10.1145/2632951.2632958
https://doi.org/10.1109/MCSA.2004.2
https://doi.org/10.1109/MCSA.2004.2
https://doi.org/10.1109/ACCESS.2016.2613278
https://doi.org/10.1109/ACCESS.2016.2613278
https://www.gsma.com/mobileeconomy/#key_stats
https://www.gsma.com/mobileeconomy/#key_stats

Table 2: Division of tasks.
Task Name
Analyze the evolution of mobile cloud computing Chang Liu
Research of service model of mobile cloud Chang Liu
Categorize the current research work of mobile cloud computing Jiacheng Lu
Research of Computation Offloading Jiacheng Lu
Application Analysis of mobile cloud computing Chenghan Song
Research of current problems and possible solutions of MCC applications Chenghan Song

12

Cloud-Based Payment Systems: A Literature
Review

Alex Boyko
Leyu Liu

Yizhen Zhao
University of Amsterdam

June 1, 2020

Abstract

With the evolution of market needs and the increase of business migra-
tions to online environments, there has been a constant demand for new
payment solutions that produce flexible systems that suit customer needs.
Over the years the adoption of the cloud services has been progressing
rather slowly, yet as more and more businesses migrate from legacy sys-
tems to cloud environments, it is apparent that the future of the payment
software relies on cloud services. This paper evaluates the state of cloud-
based payment systems by reviewing and analyzing the leading concepts
of payment services and Cloud Computing. A comprehensive analysis
of the cloud-based payment systems literature consists of a number of
research topics with common ideas shared among papers. A combination
of research topic contributes to forming a broad perspective of cloud-based
payment services. The paper concludes with the answers to three research
questions regarding present and future payment systems that employ cloud
services.

1 Introduction
Throughout history, there are lots of changes in how people would like to pay. The
payment system also goes through migration from offline to online. For a long
time, people preferred to use cash to pay for everything in life. However, recently,
using debit or credit cards has become one of the most popular payment methods.
It shows that around 78% of purchase is done through debit or credit card [1].
With the development of the digital world, people became more interested in
Cloud Computing. By using the Internet’s ability to store more information in
the cloud, service providers could deliver efficient payment services to customers.

The cloud started a few years ago, just like any other new industries, it would
take some time for people to accept it. One of the researches mentioned that
the future of payments is the cloud [2]. The banking clients started their cloud

1

journey by using platforms like Salesforce and Microsoft Dynamics in sales and
marketing. They observed success in using clouds in their business. Moreover,
the rapid growth of cloud-based payments providers like PayPal, Stripe and etc.,
gain higher values than many other major banks. That is one reason why many
banks are trying to use the cloud to support their customer services. Payments
would be on top in the list for "cloudification".

Why clouds become popular in people’s lives? Why using the payment system
in clouds is the future? There are lots of reasons behind [3]. One of the key
advantages is flexibility. Cloud-based payment system could make people’s lives
easier. It allows payments to be made through mobile phones, computers, bank
transfer through the Internet, etc. All of the operations could be paperless
and transaction records could be saved and sent directly to customers’ emails.
Another advantage is that it improves the scalability. Cloud-based payment
stores payment data via the data center, therefore, we do not need to worry
about the capacity issue. This also benefits small or medium-sized businesses, as
they only pay for what they use. With the help of the Internet and cloud, such
smaller businesses could achieve the same efficiency as big businesses, but with
affordable prices. Besides, a cloud-based payment system is also more secure and
easier for data integration. In summary, the key idea of cloud-based payment
system is to enhance customers’ experience in payment.

The main objective of this paper is to conduct a literature review of cloud-
based payment systems, where we intend to find out the current state of cloud-
based payment, the characteristics and main trend of this area, and the possible
future research directions. Thus, we identify the core concepts by literature
classification and analyze existing methods to form a deep understanding of cloud-
based payment. Additionally, we make comparisons from various perspectives
and point out the results, research gaps and further directions.

We organize this paper into four sections. First, we introduce background
information here in the Introduction. In the following, we describe the research
methodology, define the research questions and literature groups, and evaluate
the selected literature in Methodology. Then, in Discussion of Literature,
we classify the literature and conduct a detailed analysis for each literature
group to answer the research questions. Lastly, the discussion about the future
research and the summary of this paper are included in Conclusion.

2 Methodology
A literature review normally summarizes, analyzes, synthesizes and evaluates
the existing literature in a certain research area and provides suggestions for the
future research[4]. The research methodology of this paper follows Webster et
al.[5], Stieninger et al.[6], Novais et al.[7] and Briner et al.[8]. Therefore, this
review has been conducted through the following steps: (1) Define the research
topic and research questions; (2) Select relevant papers and online articles; (3)
Analyze and synthesize the contents of all literature; (4) Classify literature into
groups of topics; (5) Discussion of the literature; (6) Conclude the review and

2

discuss further research opportunities.
The topic we chose for this literature review is "payment systems in clouds

(models used by Cloud Service Providers) and for cloud-based application",
which can be interpreted as the payment systems that use the cloud environment
to operate, in another word, cloud-based payment systems. Therefore, in the
first step, we define our research questions as follows:

• Q1: What is the current state of cloud-based payment?

• Q2: What are the characteristics and current research trends of cloud-based
payment?

• Q3: What are the possible future research directions for cloud-based
payment?

In the second step, to answer the research questions, we selected relevant
literature for 9 scientific publications and 6 credible online articles. For published
papers, we used searching tools, such as Scopus and Google Scholar, to select peer-
reviewed papers that have a relatively large number of citations. The papers were
also selected based on whether they were published on well recognized conferences
and journals including IEEE International Conference on Cloud Computing and
Big Data Analysis, Proceedings of the 3rd International Conference on Business
and Information Management, International Conference on Cloud Networking,
Computer Standards & Interfaces, Computer Law & Security Review, and
Journal of Systems and Software. Apart from it, the dates of the publication
are ranging from year 2015 to year 2019, where we tried to make the findings as
recent as possible to match with the research questions. For online articles, they
were first identified by searching with the keyword "cloud-based payment" and
then we selected those that were highly relevant to cloud-based payment with a
specific focus, such as its importance, popularity, trend and definitions.

In the third step, we analyzed the contents and synthesized the literature
according to the concepts, characteristics and research directions. Then, based on
the results of the analysis and synthesis, we defined the classification groups for
the selected literature, which include Definitions, Popularity and success
factors, Models, Banking in the clouds, Security and privacy issues
and Innovative features. The discussions of relevant findings of the literature
is presented under each specific topic. As for the last step, a conclusion of this
paper is identified where the implications and future research are being addressed
as well.

3 Discussion of Literature
We intend to answer the research questions defined above throughout this
literature review. The selected literature was grouped into 6 topics, where the
analysis of each paper or article under different topics reflects the current state
and characteristics of the cloud-based payment systems(Q1, Q2) and reveals the

3

research gaps, trends and future research directions(Q3) that will be summarised
in conclusion. For definitions, 1 paper and 1 online article were reviewed. Besides,
we analyzed 2 papers and 3 articles that were related to the popularity and
success factors behind cloud-based payment. There are 6 papers which were
selected to describe the models used for cloud-based payment system under
different scenarios. In addition, we found 1 paper and 2 articles under the topic
of banking in the clouds and 5 papers and 1 article focused on the possible
security and privacy issues. Lastly, 2 articles were reviewed that illustrated the
innovative features in cloud-based payment systems.

3.1 Definitions
Clouds have its applications everywhere nowadays. Virtualization is finding
ways to emerge into people’s daily operations. Cloud computing provides a
large capacity of data storage and online access to internet services, as it groups
remote servers and computers. A survey [9] showed that cloud-based payment
system integrates the ability of cloud computing and business’ existing accounting
system. Using a cloud-based payment system allows businesses to deal with
checks, credit cards, cash, etc. It brings better user experience, as it provides
easy to use interface and multi-channel access such as computer and mobile
device. Cloud-based payment systems improve flexibility and scalability. It also
improves security, as it provides different types of authentication methods.

With the rapid development of mobile technology, it also triggers the appear-
ance of mobile commerce (m-commerce). According to Marwah’s [10] research,
m-payment’s aim is to integrate mobile devices with different kinds of billing
system or payment system. Cloud-based mobile payment utilizes cloud com-
puting’s ability such as resource sharing and content sharing. In m-payments,
NFC is wildly used as it leverages the Radio Frequency IDentification (RFID)
technology to enable two devices to exchange information within a short distance.
Mobile cloud moves heavy computing tasks into the cloud, deploys services
and applications on the cloud so that cloud-based payments can have a high
performance and reliability.

3.2 Popularity and success factors
As we mentioned before, cloud-based payment methods are getting popular in
our life. Nowadays, people tend to order food via Uber Eats app and use Apple
Pay to pay for their food. Big companies, such as Google, Facebook and Amazon
started benefiting from the convenience of cloud-based payment systems.

Sulabh Agarwal[2] highly recommends cloud-based payments especially for
banking business, given the reasons that it has the benefits of resilience, scalability,
flexibility and agility. In addition to that, Jessica Travis[1] mentions that unlike
virtual terminal, which is a web-based point-of-sale system for virtual credit card
payments, the payment gateway technologies have higher volume of transactions
and can be integrated to any software. It also allows to avoid manual operations

4

when running a big business remotely, which makes it a better tool under many
circumstances with such convenience and efficiency.

Qin et al. [11] agree that mobile payment has become one of the most
frequently used approaches to provide payment services to the modern society.
In turn mobile payments are highly dependable on the cloud environments, which
offer them the ability of taking over the heavy computation workload from the
resource constrained mobile devices. That is not surprising as the sole purpose
of clouds is to provide a robust environment that is capable of delivering better
performance and scalability for large digital systems. The addition of cloud
services has allowed mobile payments to scale well with the current business
needs, yet it has imposed new security challenges that will be discussed further
as a part of Security and privacy issues.

Ni et al. [12] mention that Cloud-based payment system is changing the
payment market. To some extent, it brings huge convenience to human society.
Mobile payment is a new and modern method of payment that uses a mobile
device. It can be used for goods and services, also for lots of other technologies,
such as internet banking, direct debit transfer, etc. A survey [13] showed that
nearly 64% of consumers have online purchase records in the past 12 months.
Among those digital transactions, nearly 40% is provided by Apple Pay, followed
by PayPal, which takes up 35% of total digital transactions. However, there
are lots of factors that influence people’s acceptance of cloud-based payment,
where the quality of the service might be an important one. Whether this service
provides a good user experience or whether this service is safe to use. The social
influence could be another factor, as the reason why so many people are using
Apple Pay might be because of its popularity and the reputation Apple has on
the market.

3.3 Models
Different types of models are applied in cloud-based payment. Each of them has
its own features and characteristics, and suits for different scenarios.

Ni Zeng[12] introduces four main cloud-based payment models in his research,
including Premium SMS based transactional payments, Direct Mobile Billing,
Mobile Web Payments, and Contactless NFC. The most promising model would
be NFC technology. Payments using NFC enable two electronic devices to
exchange information and complete transactions when they are close to each
other, normally within 4cm. It is estimated that NFC-enabled smart device
shipments will reach 2.2 billion by 2020. For instance, Apple Pay received a
huge success in the public since 2016, which is to leverage the advantages of
cloud-based payment methods.

A payment model proposed by Jem-Ho et al. [14] was applied to handle secu-
rity and privacy issues. The structure is described as follows. First, consumers’
privacy has been protected, since a temporary identity is used to communicate
with the merchant and information about products has been packed using hash
function. Secondly, the client’s payment bank would generate a digital signature
as a proof in case some malicious clients do not pay for the products. Finally,

5

it decreased the computation and communication costs by computing payment
relevant information (i.e. time, date, the amount of money) and packs as a
message, just uses public key to validate the relevant information.

Madhoun et al[15] propose a model to deal with security vulnerabilities for
cloud-based mobile NFC payment, which includes 7 steps for message exchanging
between cloud infrastructure, NFC smartphone and NFC payment terminal. The
first step was for the payment terminal sending to the smartphone authentication
request messages, which used the terminal certificate, acquiring bank’s certificate
and hashed secret key of the terminal to ensure the integrity of the message.
Then the smartphone will send an encrypted text message of the terminal
authentication and session requests to cloud infrastructure, which would decode
the message, try to authenticate payment terminal when the timestamp was
valid and send the authenticity and session confirmations message back to
the smartphone. After the smartphone passed the authentication message to
the terminal, a confirmation message would be sent from the terminal to the
smartphone and then from the smartphone to the cloud infrastructure. After the
payment transaction was confirmed, the payment session would start securely
between the smartphone and payment terminal with the electronic signature to
ensure integrity.

Liao et al[16] introduced a security model to improve Qin et al’s security
protocol[11], where Liao et al.[16] claimed to solve the colluding attack during
the outsourced verification phase. The model includes three phases. First, a
master key and a public key are generated by payment service provider during
the setup, after which a pseudo identity of the customer and a short-time partial
key would be generated. Then during the payment transaction, customer A
could generate a signature upon receiving the payment request from customer B
with the private key and then A would receive and verify the signature-receipt
pair from B. Lastly, customer B would verify the messages sent by the cloud
server verification provider(CSVP) based on the random elements generated by
B during the outsourced verification phase to complete the transaction. Kang
et al.[17] pointed out the potential flaws of Liao et al’s model that a colluding
attack could still happen if the customer used fake payment information and
identity and [16] proposed a new model to prevent such attacks that modified the
outsourced verification phase using random numbers and hash function regarding
the information sending to CSVP.

3.4 Banking in the clouds
As a cloud-based payment system becomes more and more popular, it also finds
a place in the banking industry. Flexibility is a key reason why the cloud-based
payment system is popular in banking. Scalability is also recognized as a major
benefit for the banking system. But there is usually a long way before legacy
system can migrate its services to the cloud.

Marc Sczesnak in his article [18] talks about how the migration of payment
systems to the cloud is becoming more popular due to a number of benefits that
come with using a private cloud environment over in-house data centers. He

6

identifies the key attributes that make cloud environments more appealing for
the banks, such as lowered costs, improved speed to market and catching up
with customer demand for new products and services. Being able to adapt and
provide necessary flexibility is something that is being highly valued not only
among payment services, but for any modern service.

A study done by Kuan Hon et al. [19] gives an in-depth analysis of cloud
adoption among banks. For instance legacy systems could be perceived as both a
driving force or a challenge opposing the adoption of clouds. Cloud services have
clear advantages in terms of security over legacy systems. However migrating
from a legacy system to cloud can be a challenge with a poor system design that
does not support such migration or perhaps untrained employees that do not
have a grasp of modern cloud environments.

The adoption of moving bank services to a cloud has been influenced by
many factors. A study done by Ibrahim [20] illustrates the potential facilitators
and inhibitors. While by combining mobile devices and cloud computing’s ability
provides better services and products for clients, and at the same time, could
reduce the operation costs. Mobile banking could be easier to accept if it provides
certain advantages to clients. For instance, despite its complexity, applying cloud
in banking provides user-friendly interfaces and it is easy to use. Compatibility
is another one, as it allows clients to access services anytime and anywhere, and
the transaction results could be seen without any delay. However, the degree
of risk is the main concern of clients, as well as the privacy and security issues.
Some clients are even afraid that hackers would hack their accounts and get their
PIN code.

3.5 Security and privacy issues
An electronic transaction can happen anywhere and anytime. People use their
mobile devices to deal with the transaction. With more people experiencing the
convenience of e-commerce, certain issues arise.

Jem-Ho et al. [14] proposes a model, as mentioned in Models, which deals
with possible privacy issues and security risks. For service providers, they might
meet a malicious client who denies the transaction. Generally, payment gateway,
message authentication code (MAC) or symmetric key is used to keep consumers’
privacy and the payment information between them to stay unchanged. However,
the computation and communication costs might increase if a client keeps many
different keys for different merchants. Apart from it, there might be attackers.
The proposed model aimed to handle the risks. As anonymous transactions are
used and payment information is protected by a one-way hash function, there
is no way attackers can get the actual information about the client and the
payment. Even if they can, the attack still can not happen as the buying time
of the client is also sent to the payment gateway and the receiver could check
the timestamp. In summary, the proposed model protects users’ privacy and
also on the other side, protects merchants’ rights by involving a payment proof.

As mentioned in Banking in the clouds, cloud-based banking has also
become a popular trend. A major factor that allows banks to switch to cloud

7

environments is the level of security that is offered by the modern cloud services.
Sczesnak[18] identifies 10 cybersecurity practices that help cloud vendors compete
against in-house data centers. The most important is the ‘Network effect’, where
the investments from all the customers of the cloud service are combined to build
and run a highly secure platform. Among these practices are also experience
and in-depth knowledge of how to operate a service in a cloud environment,
something that many industries are still struggling to catch up with. Additionally,
most cloud service providers have obtained various certifications in security and
have trained their employees to specialize in keeping the system protected from
malicious attacks.

Qin et al.[11] focus on different challenges that arise from using cloud envi-
ronments for mobile payments, most importantly in the areas of security and
privacy. Not only they identify the potential security threats, but also formalize
the security requirements that a cloud payment system should adhere to. These
requirements are:
Unforgeability. It is impossible to make a fake payment or submit a fake
receipt by impersonating another user in the system.
Anonymity. Personal user data, including user identities, is kept confidential.
Traceability. Payments can be traced using a unique identifier, which makes it
impossible to deny the sending or receiving of payments.
Non-repudiation. Merchants cannot deny the correctness of the information
on the receipt. Customers cannot deny the correctness of the information about
their confirmed payment.
Small overhead. All the computation and processes that take place on the
mobile device must be limited to a minimum amount of resources, due to mobile
devices having performance and battery efficiency issues.

These requirements are the bare bones of the system, which Qin et al.[11]
introduce later in their paper. Their implementation of a secure and private
mobile payment system is done through incorporating the certificateless digital
signature and pseudo-identity cryptography techniques. Moverover, Liao et
al.[16] and Kang et al[17] fixed some flaws in the security protocol proposed by
Qin et al.[11] to guarantee the forgetability and tracibility mentioned above.

Madhoun et al[15] introduced that NFC payment using EMV(Europay Mas-
tercard Visa) could be risky, as the transaction could be executed in an open
environment and attackers might easily get access to private payment information
using a NFC reader. The addressed issue was solved by using a proposed security
protocol that was proved to be effective when securing mobile NFC payment
transactions.

3.6 Innovative features
Cloud computing has become a mature technology and cloud-based payment is
getting popular now. However, we still need to explore their potentials to enable
further digital business transformations.

Sczesnak[18] points out how being able to bring new innovative features
to market more quickly results in a better performance of the system overall.

8

Cloud providers facilitate the development of such innovative ideas by keeping
their cloud platforms up to date with the modern needs of the market. One of
the examples is when a bank switches from an internal collections website to a
cloud system, which leads to a major improvement in collections performance.
Collections is a complex field that involves numerous debt collecting operations.
Nowadays there exist SaaS solutions that offer lower cost, better performance
and increased compliance for the collecting operations of any business.

From a cloud computing side, there are still different aspects that worth
exploring. A survey [21] shows the next wave of cloud computing will be
combination of machine learning techniques, artificial intelligence and also the
Internet of things (IoT). Combining these three study areas with cloud computing
will bring business competitiveness to the market. Not only it would change
the way businesses operate, but also it could improve the interaction between
businesses and clients. When applying these new features to cloud-based payment
systems, it will lead to a new dimension of innovation and technology.

4 Conclusions
Over the years the evolution of payment systems has brought to the market
new cloud-based payment methods that facilitate a number of fast and secure
payment services available for the customers to use. It also created a number
of challenges that led to new research areas and numerous studies aimed at
improving cloud environments and payment systems in general. The goal of this
paper is to explore modern payment systems by getting a better understanding
of the current state of cloud-based payment, the main trends and research in
this area, as well as possible future implications.

This section presents the answers to the previously identified research ques-
tions. These research questions are helpful in summarizing the conclusions that
have been drawn from the studied literature.

• Q1: What is the current state of cloud-based payment?

Many businesses, including banks have been successfully migrating to the
cloud-based payment systems, yet some of these migrations have been very slow
due to legacy systems not being able to support such migration. However there
are undeniable benefits of switching to a cloud environment.

• Q2: What are the characteristics and current research trends of cloud-based
payment?

Some of the characteristics that have been identified are the success of the
payment systems, as well as high adoption rates. Also major security improve-
ments, highly valuing privacy and anonymity and introduction of innovative
payment methods that facilitate development of new technology.

• Q3: What are the possible future research directions for cloud-based
payment?

9

Future research should include methods to further increase the adoption rates
of cloud-based payment systems, perhaps through expanding the target audience
of new payment methods.

From a business perspective, a possible implication of this study is that it is
usually a correct decision to move to a cloud environment instead of maintaining
an outdated legacy system. Another implication is that exploring different
areas of application of cloud-based payment systems will result in a better
understanding of the current customer needs as well as being able to predict
possible future trends on the market.

From a user perspective a possible implication of this study is that it is wrong
to assume that cloud environments are less secure than private servers, as it
might not hold anymore with the recent developments in Cloud Computing.

4.1 Research gaps
There is some literature that covers various aspects of cloud-based payment
systems , however there are quite a few gaps that are not addressed in any of
the papers. The first research gap is the simplification of cloud-based payment
systems and user-friendliness. It is clear that the further we progress with online
payments the more complex it becomes and the more different it gets from the
usual payment methods, such as paying by cash. Modern payment systems being
too complex is a potential threat to the future developments in the payment
systems field.

In the literature limited attention has been given to alternatives of cloud
computing when it comes to payments. It is important to remember about the
alternative ideas, which in this case are companies setting up and maintaining
their own in-house server. A lot of literature focuses on destroying the stereotype
of modern cloud environments being more vulnerable to malicious attacks. Other
than looking at security it is important to explore further such topics as cost-
efficiency, limited features of clouds or network dependency, which may cause
a large downtime in the system’s functionality. It is also worth exploring the
positives of clouds, such as scalability or flexibility.

Moreover, there is a big lack of published papers/online articles for “Defini-
tions” and “Innovative Features” of cloud-based payment systems.

4.2 Future research
Cloud-based payment is an evolving service that will keep changing constantly
to meet any new demand on the market. New studies can be conducted about
user acceptance of new payment systems or methods to reach out to different
user groups and broadening the user base. Second, payment systems need
more research into alternative solutions to using cloud environments. More
in-depth comparisons will help create a better image of what makes cloud a
better choice for all the businesses who still use legacy systems. Even research
looking into scalability and flexibility of cloud payment services can help speed
up the adoption of newer payment methods.

10

References
[1] “Cloud-based payment solutions. https://ebizcharge.com/2019/12/16/cloud-

based-payment-solutions/.”

[2] “The future of payments is cloud – and now is the time to em-
brace it. https://bankingblog.accenture.com/future-payments-cloud-now-
time-embrace.”

[3] “Six reasons you need to consider a cloud-based payment sys-
tem. https://ipsi.com.au/six-reasons-need-consider-cloud-based-payment-
system/.”

[4] “How to write a literature review. https://www.scribbr.com/dissertation/literature-
review/.”

[5] J. Webster and R. Watson, “Analyzing the past to prepare for the future:
Writing a literature review,” MIS Quarterly, vol. 26, 06 2002.

[6] M. Stieninger and D. Nedbal, “Characteristics of cloud computing in the
business context: A systematic literature review,” Global Journal of Flexible
Systems Management, vol. 15, pp. 59–68, 03 2014.

[7] L. Novais, J. M. Maqueira, and Ángel Ortiz-Bas, “A systematic literature
review of cloud computing use in supply chain integration,” Computers
Industrial Engineering, vol. 129, pp. 296 – 314, 2019.

[8] R. Briner and D. Denyer, Systematic Review and Evidence Synthesis as a
Practice and Scholarship Tool, pp. 112–129. 01 2012.

[9] “Moving payments to the cloud. https://www.ftni.com/blog/moving-
payments-to-the-cloud.”

[10] M. Almasri and H. Alshareef, “Mobile cloud-based e-payment systems in
saudi arabia: a case study,” pp. 5–10, 09 2019.

[11] Z. Qin, J. Sun, A. Wahaballa, W. Zheng, H. Xiong, and Z. Qin, “A secure
and privacy-preserving mobile wallet with outsourced verification in cloud
computing,” Computer Standards Interfaces, vol. 54, pp. 55 – 60, 2017. SI:
CCSP-SR.

[12] Ni Zeng, Shunxi Li, Zhuo Chen, and Cheng Huang, “Technology road map
drawing of cloud-based payment based on bibliometrics approach from
mining the patent and literature,” pp. 237–243, 2016.

[13] “Guess which digital payment method is most popular.
https://www.fool.com/investing/2017/11/01/guess-which-digital-
payment-method-is-most-popular.aspx.”

[14] J.-H. Yang and P.-Y. Lin, “A mobile payment mechanism with anonymity
for cloud computing,” Journal of Systems and Software, vol. 116, 07 2015.

11

[15] N. El Madhoun, F. Guenane, and G. Pujolle, “A cloud-based secure authen-
tication protocol for contactless-nfc payment,” 10 2015.

[16] “Analysis of a mobile payment protocol with outsourced verification in
cloud server and the improvement,” Computer Standards Interfaces, vol. 56,
pp. 101 – 106, 2018.

[17] B. Kang, J. Du, L. Si, and M. Xie, “Analysis and improvement on a mobile
payment protocol with outsourced verification in cloud service,” Wuhan
University Journal of Natural Sciences, vol. 24, pp. 223–228, 06 2019.

[18] M. Sczesnak, “When is processing payments in the cloud more secure?,” Jan
2018.

[19] W. K. Hon and C. Millard, “Banking in the cloud: Part 1 – banks’ use of
cloud services,” Computer Law Security Review, vol. 34, no. 1, pp. 4 – 24,
2018.

[20] “Mobile banking adoption: Application of diffusion of innovation theory,”
Journal of Electronic Commerce Research, vol. 13, pp. 379 – 391, 2012.

[21] “Three trends that define the next phase of cloud computing.
https://medium.com/sap-innovation-spotlight/three-trends-that-define-
the-next-phase-of-cloud-computing-4782d29d15dd.”

12

5 Contributions

Section Contributors
Abstract Alex
Introduction Yizhen & Leyu
Methodology Leyu
Definitions All
Popularity and success factors All
Models All
Banking in the clouds All
Security and privacy issues All
Innovative features All
Conclusions Alex

13

Impact of GDPR on Personal Data in the Cloud

Kailainathan Muthiah Kasinathan
University of Amsterdam

12937827
kailainathan.muthiahkasinathan@student.uva.nl

Haritha Jayaraman
University of Amsterdam

12975052
haritha.jayaraman@student.uva.nl

Richard Bieringa
University of Amsterdam

10691065
richard.bieringa@student.uva.nl

Abstract

Personal data is often subject to threat when it comes to storage and processing in
cloud environments. The General Data Protection Regulation was introduced in
the European Union and one of its purpose was to bring tighter restrictions with
regards to handling personal data in the cloud. This paper aims to provide an ideal
understanding of how these rules impact the safety of personal data in the cloud in
the European Union(EU). The paper also dives into the details of Cloud Forensics
and how it can be averted to an extent without affecting the GDPR.

1 Introduction

Cloud computing is an internet based model that empowers on-demand ease of access to a shared pool
of resources over the Internet through a pay-as-you-go approach[1]. These resources are provided by
cloud providers through different service models such as Infrastructure as a Service (IaaS), Platform
as a Service (Paas) and Software as a Service (SaaS). These models allow users to utilise cloud
resources without having the responsibility to maintain or upgrade these resources which allows the
user to benefit from the massive economies of scale.

One of the main issue regarding adapting to the cloud infrastructure is the challenge of data security.
Security issues start with the type of cloud computing deployment models present. The majority of
distributions for cloud services in small and European companies are hybrid (a federation of public,
private or partner clouds), partner (owned and managed by a trusted partner), or public (owned and
managed by an unrelated business); the smallest portion is private (owned and managed internally)
as reported by the European Union Agency for Network and Information Security[2]. The Data
Protection Directive (DPD) provides a legal framework for data protection in the European Union.
The major change in the DPD was introduced through the Treaty of Lisbon in December 2009 by
which the data protection was given the status of fundamental right[3]. The DPD was not equipped
to manage the explosion of data we have observed in the recent past due to social networking and
high use and demand of cloud computing technology for storage and processing of large amounts
of data[4]. Moreover it was not mandatory for all the member states to follow the same standards,
which led to some of them adopting only the minimum standards, leaving poor data protection and
creating uncertainty for the adoption of cloud computing technology[5]. As per a survey of European
companies named Gallup Survey it is revealed that there is wide heterogeneity in understanding
and implementing the data privacy rules among the member states[6]. Here is where the need of
General Data Protection Regulation (GDPR) regulations come into play. On May 25 May 2018,
GDPR regulations entered force [7] overriding the Directive 95/46/EC[14]. The GDPR maintains a
balance where both the data controller and the data processor share the responsibilities in case of any

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

form of breach while the latter focuses only on the controller. A comparison of the DPD directive
and the changes created by GDPR in [8] gives a clear distinction among the two. In order follow
the new GDPR regulations it is mandatory to understand what it means to be a data controller and a
data processor and their roles and responsibilities which will be discussed in section 2. One more
important thing to know when it comes to GDPR is the data access and data processing. As cloud
computing models are involved, it is also mandatory to know the amount of data each of these models
contain. Among these models, with respect to data access, IaaS instance provides more information
than the other models as this provides the infrastructure where the customers install and set up the
image for security analysis purposes and to execute snapshots of them on the virtual machine[2].
With regards to data processing, SaaS and IaaS technologies reside at the extreme of the same scale
which makes their providers have different roles and responsibilities[2]. The reason is IaaS providers
cannot customize the services as they only provide infrastructure and are completely unaware of its
purpose and usage. On the other hand SaaS services provide a wide range of control in relation to
the data processed by the customer. This makes SaaS providers to provide the needed security level
for each of its services which IaaS cannot because of being unaware of the data involved. All these
information can help in providing more secure personal data and also being complaint to the GDPR.

The paper’s aim is to give a clear understanding of how the GDPR acts in ensuring the safety of
Personal data in the cloud environment. In other words, the research question is "Is Personal data
safe in cloud with the new GDPR regulations?".The paper is structured as follows: Section 2 deals
with the background details which includes the actors involved in the the Cloud Environment before
and after GDPR and also explains the personal data life cycle. Section 3 discusses the new provisions
in GDPR and a detailed explanation of the important characters involved followed by a fictitious
example. The loopholes of GDPR is discussed in Section 4 and a daunting challenge named Cloud
Forensics in Section 5 along with recommendations to overcome the problem. We then discuss the
future work in Section 6 and wind up with the conclusion in Section 7.

2 Background

2.1 Actors in the Cloud Environment

• Data Subject: A Data Subject refers to any person whose data is collected, held or processed
and whose consent plays a very important role in the GDPR. The data subject should also
be given the right to access the data.

• Data controller: A Data controller is the one who controls the procedure and purpose of data
usage. The data gathered is either processed directly by the controller or the controller can
opt to use a third party to do it on their behalf. This does not give the third party control over
the data, the data controller remains the party which decides the amount of data that needs
to be processed. In short, the controller acts as a dictator on how and why data is going to
be used[9].

• Data Processor: Once the data to process is decided by the controller the processor processes
them. They do not own the data which does not allow them to change the purpose and means
of the data used and they are bound to follow the instructions of the data controller. The
process is the third party the controller assigns to process the data[9].

• Data Protection Officer: The primary role of a Data Protection Officer (DPO) is to check if
the organisation in which she/he is working for processes the data subject’s personal data
as per the regulations. According to the Regulation (EU) 2018/1725 , the Data Protection
Regulation, the EU institutions and bodies are obligated to appoint a DPO. And According
to Regulation (EU) 2016/679, it obliges some organizations in the EU countries to appoint
a DPO, which is applicable from 25 May 2018[15]. The DPO officer is also required to
possess expert domain knowledge on data protection rules and also an understanding of
the organization so the officer can also help in providing advice and recommendation in
interpreting the rules and implementing them. Some of the tasks include to ensure that
controllers and data subjects are informed about the data protection rights and the obligations
and responsibilities. They should increase awareness about these rules and in case of failure
to comply bring them to immediate attention to the EU institution. The DPO also ensures
that the EU institution is accountable to the data protection rules compliance. Any queries
or complaints prevailing in the institution are handled by the DPO on her/his own initiative

2

or when a data controller or any other person from the institution requests for it. The DPO
also cooperates with European Data Protection Supervisor (EDPS)[15].

• Data Protection Authority The application of the data protection law by the EU Institutions
and bodies are supervised by the Data Protection Authority (DPA). They are independent
authorities who supervise through their investigative and corrective powers. There is one
DPA for each Member State and they are the main point of contact with any question on
data protection[16].

2.2 Personal Data & Life cycle

The GDPR defines Personal data as "any information relating to an identified or identifiable natural
person".[10]The main objective of the GDPR is to increase the data subject right in terms of dealing
with personal data. The data subject should be more in control of how his/her personal data is
processed. The personal information life cycle as seen in figure 1 consists of the following stages
as defined in [22]: Collection, Storage, Disclosure and Distribution, Use and Retention, and finally
destruction.

Figure 1: Personal Data Life cycle in Cloud

3 GDPR in Cloud Computing

GDPR has a number of significant changes in the area of cloud computing. It brings in a number of
changes in the way personal data is collected and Processed. As referenced in section 2, the two
major roles - Data controller and Data Processor in the cloud are given new responsibilities with
the introduction of the GDPR.This section gives the new changes in the rules and gives a basic
understanding of the storage and processing of personal data in the cloud. The essence of GDPR
when it comes to cloud computing is the new way of looking at it from both the Data controller and
the data processor’s perspective. The previous directive was fully focused on the Controller that lead
to a lot of challenges when it came to processing the personal data.

New provisions in GDPR: The provisions are listed according to [8]

• An Uniform approach to Data Protection Laws in EU: In this provision, it states that all
member states in the EU follow a single set of rules on data protection invalidating the
current DPD. By doing so the standards are improved and perplexity among the member
states are avoided.

• Processor fully Accountable: In the DPD, the controller is solely responsible but in the new
provisions of GDPR both data controller and data processor. By doing so, in the GDPR, the
processor is directly accountable for data processing although they process data for data
controllers and subject to data protection and security rules.

3

• Applicable to Non-EU Companies: In the new GDPR regulation all providers who process
personal data for the EU resident are accountable and should abide by the GDPR rule. This
means that any provider in and outside of the EU extending the territorial scope of the EU
data protection law.

• Appointment of Data Protection Officer(DPO): The law requires an appointment of DPO by
the controller and the data processor where more than 5000 data subjects are being processed
for more than 12 months in a period[11].The DPO acts as a data processor that does not
exists in the EU.

• Data Breach Notification: According to GDPR, any form of personal data breach should be
reported within 72 hours to the authority once the organization is aware of it. The Article
33(3) [12] states the four requirements when reporting such a breach.

• Right to Data Portability: With the GDPR Regulation the data subject is provided the right
to request to move its personal data stored in one controller to another controller. This comes
under the Article 20 of the law.

• ONE-STOP Initiative: This introduces one Data Protection Agency for all EU residents and
different data processor and controllers[12]. This means that irrespective of the organization,
all of them in each member state will have a DPA in the established country. This also
creates uniformity among all the member states of the European Union.

• Serious Penalties for Negligence Breach: When a data breach happens due to a negligence
and leads to data and privacy loss the law proposes a fine up to 5% of the annual revenue and
maximum up to 100 million euros[13]. Unjust Enrichment[8] is a potential offence which
happens when a company has saved money and does not apply adequate security measures
which can lead to serious consequences to the data breach.

• Right to be forgotten: The right to be forgotten states that if any EU resident no longer want
their data to be processed or stored, they can request for the complete removal of data.

3.1 Data Processors and their Importance

GDPR states that the term Processing is "any operation or set of operation that is performed on
personal data or sets of personal data, whether or not by automated means"[2]. The GDPR also
states that processing of “personal data revealing racial or ethnic origin, political opinions, religious
or philosophical beliefs, or trade union membership,” as well as “genetic data, bio-metric data for
the purpose of uniquely identifying a natural person, data concerning health, or data concerning a
natural person’s sex life or sexual orientation" is prohibited[2]. These considerations make the data
processors role very important when it comes to handling personal data. This is the reason why
GDPR details the rules for Data processors and also lays down in-detail explanation to sub contracted
data processors and also joint controllers. Furthermore, in the event of a security issue the data
processor is more suited to handle that than the controller which further reiterates the importance of
data controllers.

3.2 What does GDPR mean to data processor and controller?

The GDPR keeps the controllers rules similar to the ones found in DPD. Since data processors are
also included, there are many changes in the way the personal data is handled in the cloud[23]. As
per the law, the processors are bound to meet the GDPR requirements by taking appropriate measures
to ensure the protection of the rights of the data subject as enlisted in the GDPR. The same applies for
the data controller. The controller should also select a processor who satisfies all the criteria outlined
by the GDPR. The essential thing to be noted is that at no point the activity of the controller or the
processor should turn out to compromise the Data subject’s rights as prescribed in the GDPR.

Many processors tend to outsource their work which is not an unusual sight in cloud computing. This
process of outsourcing is done to maintain constant levels of processing data at all periods of time.
Also keeping in mind, increase in data in organizations tends to increase the complexity of the cloud
processes. With the new rules, Processors cannot outsource or engage any other processor without
authorization of the data controller which gives the necessary transparency and accountability into
how the personal data is processed. By getting the controller’s approval, the controller is now aware
of who the processors make use of to carry out their tasks. The controller and processor can enter

4

into a contract which specifically states what data is used, the main aspects of processing and other
obligations. Adding on to the outsourcing context, the GDPR also clearly states that if the processor’s
subcontractor fails to meet the requirements then the initial processor is fully liable to the controller.

To provide an appropriate level of security, the processor and the controller are bound to assess
the risks of processing the personal data. It should be carried out keeping in mind the cost of
implementation and the nature of personal data being processed.Suitable measures to mitigate risks
should be in place. GDPR formulates certain appropriate measures with respect to personal data
which are as follows:

• Pseudonymization and encryption of all personal data.
• Ability to ensure confidentiality, integrity, availability and resilience of processing systems.
• Ability to restore the access to personal data in case of an incident.
• Process to regularly test,assess and evaluate the measures taken towards the security of

processing.

Adding on to this, the processor is liable for any damage caused to the data subject only when the
processing did not comply with the rules set out by GDPR. In such case the processor will also be
held accountable to the compensation. The data processor is also responsible for reporting any breach
of personal data to the controller. There should be no delay in communicating the information about
breaches where the GDPR sets the threshold at 72 hours since the time of the initial data breach.
The processor is also subjected to comply with the obligations of the controller and also it should be
available for any audit the controller performs to verify the security of the processing of personal
data.

The GDPR also gives a clear understanding about the geographical boundaries where it will be
applicable. As per the article, GDPR is applicable to any processor or controller that uses the
personal data of an European citizen. This belongs to processors and controllers outside the European
union too. Business models often lead to joint controller scenarios.Thus GDPR states that,the joint
controllers must specifically state their roles,relationship and responsibilities between them. The final
aspect of GDPR which aims towards securing personal data is on cross border data transfer. Data can
be transferred to any country, region or territory which is tagged by EU Commission to have adequate
data protection capabilities. If the tag is not present, transfer can happen following corporate rules
and regulations. These are the major changes brought about by GDPR with respect to personal data
in the cloud. A proper framework has been established with respect to how data is processed which is
the success of GDPR.

3.3 A Fictitious Example

To understand the implementation of the rules we actually came up with a fictitious example as
depicted in figure 2. We have referenced a part of the work done by P.T.J Wolters[17] in building
this example and have limited the scope to explain this in relation to the data subject, data processor
and the data controller. To understand the real world situation, we take a sports firm which is based
out of France. The firm basically collects a lot of personal data of its customers. The data ranges
from billing information, addresses of customers to contact information and preferences etc. Here
the customers are the data subjects. The Sports firm has customer service operations throughout
all of Europe. These customer service operations are independent companies where the firm has
an outsourcing contract agreement with. The operations are provided by a specific Dutch company
which handles the operations within The Netherlands. The personal data collected is stored in the
cloud which is provided by a company operating out of Belgium. All the involved companies are
based in Europe and handle the data of European citizens which means it is essential for them to be
GDPR compliant. With this example we can see that the Sports Firm is the data controller and the
companies carrying the customer service operations are the data processors.

The sports firm being the controller decides the purpose of the data and the means of processing
the data collected. The main responsibility of protecting the personal data lies with the controller.
As per the rules, the sports firm chooses the customer service provider companies and the company
which acts as the storage provider after carefully assessing whether they will be able to satisfy the
requirements in terms of protecting the personal data. These data requirements are settled in a contract
between the controller and the processors. The processors, which consist of the customer service

5

Figure 2: Fictional Example - Tree

companies, generate, handle and use the personal data to provide their services. The data collected by
these companies are made available to the sports firm by storing it in the cloud. All the processing is
done on behalf of the controller. By the rules according to the GDPR, the processor is also required
to have the right measures in place to ensure the protection of the personal data. In case of a data
breach the customer service companies are considered to be fully liable, this also applies for the cloud
storage provider. GDPR considers them as processor since they make the data available to the Sports
firm as well as the customer service companies. Thus this example provides a good understanding of
how the data controllers and processors are responsible in protecting the personal data of the data
subject involved.

4 Loopholes of GDPR

Although the GDPR has brought a significant amount of positives towards protecting the personal
data, the regulation has some loopholes. Ihenayi Samuel has outlined some of the important missing
links in the GDPR in his research[18]. As per Samuel, there are few loopholes present in the GDPR
laws related to personal data in cloud. These are stated as follows:

• The GDPR implements a strict division between the data processor and data controller
which is misleading as there are more actors and layers present within a cloud computing
framework.

• Cloud computing is a place where there are a lot of collaborating, but autonomous entities
present. Describing their relationship in terms of principal-delegate or as a relationship of
command makes no sense. This can lead to legal uncertainty in understanding the roles of
the actors within the data processing chain.

• Retaining the use of modern contractual clauses is another mistake as they do not cover all
aspects of cloud transactions. Some of the clauses of the model do not fit the technical and
organizational frameworks of cloud services. Asking the data processor to submit for audit
when requested by the controller is not a feasible operation. It is also impossible to get the
consent of the customer before engaging in all the sub-processing services.

• The inability to transfer data between two different processors or controllers who both have
approved binding corporate rules but do not belong to the same group is illogical. This
contradicts the way where two third countries who have adequacy status are allowed to
transfer EU data between them.

6

Samuel states that these problems arise due to the missing knowledge of the cloud architectures,
features and business models by the lawmakers. They also base this on general assumptions of laws
that do not always apply or translate well to the cloud.

5 Cloud Forensic Problem - A big challenge to GDPR

The cloud systems are constantly under serious attack from intruders trying to get hold of personal
data. Once an attacker gets into a cloud system and becomes an intruder, there is very little anyone
can do to protect the data covered under GDPR. The intruder can access, modify, delete or extract
personal data from the cloud system which is considered a serious breach. The resulting data can
be abused in numerous ways. This is a serious issue and often referred to as "The elephant in the
room" in cloud circles. This is a problem which is known to everyone but no one is ready to discuss
it and the problem is tough to defend against. This makes it even more complex to find solutions to
overcome the problem. The complexity of the challenge makes it a problem for organisations using
the cloud and this also proves to be an obstacle to attaining compliance to GDPR.

5.1 Definition

Cloud Forensics is defined as "the application of computer forensic principles and procedures in a
cloud computing environment"[20]. According to Ruan et al.[21], cloud forensics is defined as a
subset of network forensics. When an intruder comes in and gets hold of the data, in most cases the
intruder leaves very little forensic trail to follow which makes companies to be unaware of any breach
happening. When they are not even aware of the breach, they will not be aware of the records deleted,
accessed, modified or stolen. There are some significant cloud forensic challenges which makes it
a complex problem to solve in cloud computing. These challenges can be seen in figure 3 below,
which gives a brief overview of the challenges faced in cloud forensics according to the different
cloud platforms.

Figure 3: Challenges in Cloud Forensics[20]

5.2 Personal data and GDPR Compliance

The cloud forensic problem poses serious threat to attaining GDPR compliance and if that is not
met then your personal data is at risk. It is impossible to be GDPR compliant by ignoring the cloud

7

forensic problem. As seen from the previous sections, it is evident that there is nothing to stop the
intruder once he gains entry into the cloud system. The regulation under scan here is the one where
GDPR states that "data breaches should be reported within 72 hours of breach and all information
about the data compromised should be made available". This is where the compliance will come
into question as most of the companies are not aware about the breach happening or what data is
getting compromised. Also under GDPR personal data should be encrypted. If the data is yet to
be encrypted and if the encryption and decryption keys are under the same cloud instance, in the
event of an intrusion a company will not be able to provide any information about whose data was
compromised. This will lead to multiple breaches of the GDPR provisions. Author Duncan outlines
ways to achieve minimum compliance with GDPR by keeping the cloud forensic problem in mind.
He gives solutions to attain compliance of GDPR which are: Right of Access, Right to Erasure,
Privacy by design, reporting a data breach and finally notifying the data subject in the case of their
data not being encrypted. As per Duncan[19], to achieve minimum compliance organizations should
follow the recommended methods which are as cited in his research as follows:

• All personal Data should be encrypted, the process of encryption should be performed locally
while the encryption and decryption keeps should not be stored in the cloud environment.

• Off-site maintenance with a full audit trail of the organization’s database.

• Off-site maintenance of forensic records of all users accessing and performing activities on
the database must be carried out.

These will help in reaching compliance and keep the organization from breaching the rules of GDPR
and also protecting the personal data of the data subject.

6 Future Work

Cloud computing is a field where advancements in terms of architecture, technology used and
functionalities provided are ever present. One of the key problems of the GDPR is the ability
in which the laws framed fail to take in the practical aspect of cloud computing. Some of the
GDPR laws towards personal data protection cannot be applied in a real life environment. Thus
as a recommendation towards improving this aspect, it will be good if renowned experts in cloud
computing are kept in the discussions when framing the law. Also as we discussed the cloud forensic
is a major issue. There are some methods out there to solve the intruder identification problem which
we have but they are not that effective. More dedicated research can be done towards solving the
cloud forensic problem instead of avoiding to work around it as it tends to cost companies a lot of
money and mistrust with data subjects.

7 Conclusion

It is evident from GDPR that it is a definitive framework when it comes to securing the personal
data in the cloud, which was not the case with the old DPD directive. The GDPR has given the data
subject more rights, brought the data processor into the picture and handed them more responsibilities
when it comes to handling personal data. This gives a clear idea that the GDPR has strengthened
the personal data privacy in the cloud but only to an extent.There are still some uncertainties in the
way GDPR handles some of the regulations as we saw in the loopholes section and also the ability of
GDPR to handle the cloud forensic problem is still a question mark with both of them not suiting
each other. Thus with this research we intend to conclude that the protection of personal data in the
cloud has been strengthened by the GDPR but there are still problems which can pose a threat to the
safety of personal data.

References

[1] Hussam Alddin Shihab Ahmed & Mohamad Fadli Bin Zolkipli, Data security issues in cloud computing:
review International Journal of Software Engineering & Computer Systems (IJSECS)ISSN: 22898522, Volume
2, pp. 5865, February 2016.

8

[2]Barbara Russo, Laura Valle, Guido Bonzagni, Davide Locatello, Marta Pancaldi & Davide Tosi, Cloud Com-
puting and the New EU General Data Protection RegulationIEEE Cloud Computing; https://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=8552651

[3] Treaty of Lisbon amending the Treaty on European Union and the Treaty establishing the European
Community [2007] OJ C306/01.

[4] See Commission, ‘Data Protection’ (2015) Special Eurobarometer 431/ Wave EB83.1 – TNS opinion & social,
Summary, 2 https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_431_en.
pdf accessed 10 May 2016.

[5]https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_431_en.pdf

[6] Nir Kshetri & San Murugesan, Cloud Computing and EU Data Privacy Regulations ; https://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=6489955

[7] European Regulation (EU) 2016/679 of the European Parliament and of the Council, “General Data Protection
Regulation,” 2016.; Available: http://data.europa.eu/eli/reg/2016/679/oj

[8] Sohail Razi Khan & Professor Luis Borges Gouvia, The implication and challenges of GDPR’s on Cloud
Computing Industry IPASJ International Journal of Computer Science (IIJCS) ISSN 2321-5992 Volume 5, Issue
7, July 2017

[9]https://digitalguardian.com/blog/data-controller-vs-data-processor-whats-difference

[10] Art. 4 GDPR Definitions, https://gdpr.eu/article-4-definitions/

[11]See also Dan Jerker B. Svantesson, The Extraterritoriality of EU Data Privacy Law—Its Theoretical
Justification and Its Practical Effect on U.S. Businesses, 50 STAN. J. INT’L L. 53, 65, 73, 100 (2014).

[12]David Loshin, Seven Data Strategies for Regulatory Compliance; http//governyourdata.com/page/
white-paper

[13] In this regard, see M Brkan, ‘The Unstoppable Expansion of EU Fundamental Right to Data Protection.
Little Shop of Horrors?’ (2016) 23(5) Maastricht Journal of European and Comparative Law 812

[14]Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of
individuals with regard to the processing of personal data and on the free movement of such data, 1995 O.J. (L
281/31) (“Data Protection Directive”). IDC 2012, p. 48 – 64.

[15]https://edps.europa.eu/data-protection/data-protection/reference-library/
data-protection-officer-dpo_en

[16]https://ec.europa.eu/info/law/law-topic/data-protection/reform/
what-are-data-protection-authorities-dpas_en

[17]P.T.J.Wolters, The security of personal data under the GDPR: a harmonized duty or a shared responsibil-
ity?,International Data Privacy Law, Volume 7, Issue 3, August 2017; https://academic.oup.com/idpl/
article-abstract/7/3/165/3860950?redirectedFrom=fulltext

[18]Iheanyi Samuel Nwankwo, Missing Links in the Proposed EU Data Protection Regulation and Cloud
Computing Scenarios: A Brief Overview, 5 (2014) JIPITEC 32; https://www.jipitec.eu/issues/
jipitec-5-1-2014/3905

[19]Bob Duncan,"Can EU General Data Protection Regulation Compliance be Achieved When Us-
ing Cloud Computing?",CLOUD COMPUTING 2018 : The Ninth International Conference on
Cloud Computing,GRIDs, and Virtualization; https://abdn.pure.elsevier.com/en/publications/
can-eu-general-data-protection-regulation-compliance-be-achieved-

[20]Shams Zawoad,Ragib Hasan,Cloud Forensics: A Meta-Study of Challenges, Approaches, and Open Prob-
lems, https://arxiv.org/abs/1302.6312

[21]K. Ruan, J. Carthy, T. Kechadi, and M. Crosbie, “Cloud forensics: An overview,” in proceedings of the 7th
IFIP International Conference on Digital Forensics, 2011.

[22]Alaa Altorbaq,Fredrik Blix,Stina Sörman, Data Subject Rights in the Cloud,The 12th International Con-
ference for Internet Technology and Secured Transactions (ICITST-2017); https://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=8356406

[23]Rossana Ducato,Cloud computing for s-Health and the data protection challengehttps://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=7580803

9

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8552651
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8552651
https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_431_en.pdf
https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_431_en.pdf
https://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_431_en.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6489955
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6489955
http://data.europa.eu/eli/reg/2016/679/oj
https://digitalguardian.com/blog/data-controller-vs-data-processor-whats-difference
https://gdpr.eu/article-4-definitions/
http//governyourdata.com/page/white-paper
http//governyourdata.com/page/white-paper
https://edps.europa.eu/data-protection/data-protection/reference-library/data-protection-officer-dpo_en
https://edps.europa.eu/data-protection/data-protection/reference-library/data-protection-officer-dpo_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-are-data-protection-authorities-dpas_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-are-data-protection-authorities-dpas_en
https://academic.oup.com/idpl/article-abstract/7/3/165/3860950?redirectedFrom=fulltext
https://academic.oup.com/idpl/article-abstract/7/3/165/3860950?redirectedFrom=fulltext
https://www.jipitec.eu/issues/jipitec-5-1-2014/3905
https://www.jipitec.eu/issues/jipitec-5-1-2014/3905
https://abdn.pure.elsevier.com/en/publications/can-eu-general-data-protection-regulation-compliance-be-achieved-
https://abdn.pure.elsevier.com/en/publications/can-eu-general-data-protection-regulation-compliance-be-achieved-
https://arxiv.org/abs/1302.6312
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8356406
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8356406
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7580803
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7580803

8 Contribution

10

Serverless Computing and Serverless Research

Kai Zhang
SN: 12712469

Tianyang Lu
SN: 12971502

Hatim Alsyahani
SN: 13281437

Abstract

Serverless computing as a newly merged cloud computing technology has many
definition with common ideas also with different opinions at the same time. In this
paper we will discuss definitions, characteristics, usages, trending from different
papers and also with our own findings. Furthermore, there are a lot of experiments
on public serverless cloud computing but hardly to find private cloud deployment,
code tests and evaluation, we will do experiments on three different local-based
serverless computing technologies (Apache Openwhisk, Knative, OpenFass) and
do evaluation for new coming developers or academic users in order to let them
choose proper platform for their projects.
KEYWORDS: Serverless computing, FaaS, Apache Openwhisk, Knative, Open-
Fass, FaaS introduction

1 Introduction

Serverless computing (SC) has gained traction over the recent past due to its many benefits. After the
SC applied in the cloud computing field, there’s a new cloud services structure called Function as
a Service (FaaS). As [1]’s Figure 1(left) shows that the server-less related popularity boosted since
Amazon took AWS Lambda, which is the first FaaS platform, to the market in 2016. They are a kind
of future for Cloud Computing.

The first interesting thing we found is that though SC and FaaS are popular for programmers and a lot
of literature are discussing SC and FaaS, not only among developers but also among big companies,
there’s no standard definition on it. Besides, characteristics, architecture, use cases and trends toward
SC and FaaS have minor differences among different groups or papers.

Lack of self-deployed framework evaluation is another problem we encountered in paper searching.
When we went through lots of papers about implemented technology part, only public commercial
cloud technology like AWS Lambda, Azure Functions, Google cloud functions, etc. are evaluated
and discussed. For open sourced or self-deployed frameworks, only OpenLambda is introduced,
other popular platforms with same popularity with OpenLambda, which can be checked from Figure
1(right), like Knative, OpenFaaS and Apache Openwhisk are totally ignored, no matter to say that
there’s no introduction, test and evaluation on different platform. This is mainly because most of
open sourced frame are developed end of 2017, then comes popular after 2018.[16]

Figure 1: Serverless google trending(left) Self-deployed FaaS google trending(right)

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

In this paper will be spliced into two parts. Section 2 (1st part) is targeted at giving new cloud users a
brief idea on what is the SC and FaaS also about its structure. Then what are their characteristics will
be discussed, including their pros and cons. Last part of this section will be their difference compared
to the other cloud computing structures. The final subsection is use cases and trending. In Section 3
we will give an introduction, implement High I/O & High computing tests, and give evaluation on
three k8s based serverless framework[18]: Knative, OpenFaaS and Apache Openwhisk, so that can
give new developers an idea which platform are suitable for them in implement their own structures
and why.

2 Server-less computing and FaaS

2.1 Definition and Architecture

What is serverless computing? From [1][4][5][6], we found that it is kind of a new term of industry
to define a new development trend.

First of all we would like to clarify a misunderstanding, which are also mentioned in [1][2][3], the SC
is never means no servers for computation, but means developers leave infrastructure configurations
and operational concerns such as resource provisioning, monitoring, maintenance, scalability, and
fault-tolerance to the cloud provider.

About SC definition, from model aspect it defined as: building and running applications 69 that do
not require server management, from cost aspect[13] aspect it defined as: costs you nothing to run if
nobody is using it (excluding data storage), from function level [14] and also definition compared to
other platform [3]: similar to Platform as a Service (PaaS) but a functional level. (Actually, this one
is not that exact, because the SC’s services can be scaled to 0 when it is not used, but PaaS cannot do
that.) As a developer, I think the following definition is the most suitable[2]: SC is a platform that
hides server usage from developers and runs code on-demand automatically scaled and billed only for
the time the code is running. This tells developers that the SC is elastic, pay-as-customer-consumed,
and there’s no concern to maintain services, moreover, these are SC’s main characteristics.

Figure 2: Relation between serverless computing and Faas(left)(middle)(right)

Then what is FaaS and its relation to SC? [1] Figure 2(left) thinks FaaS is a cloud computing structure
between Service as a Service (shared infrastructure and code) and PaaS (custom infrastructure and
code), which does not shows how its relation to SC and definition is quite vague. The good point
is told us, FaaS is kind of service that use custom code but shared in-structure and can auto-scale
resources on demand. AWS and [5] Figure 2(middle) regard SC is a part of FaaS, and FaaS is a part of
Event Driven. Though this is a AWS Lambda start milestone and Leader of FaaS, but this definition
has bias, they ignored peer-to-peer service of SC also have big influence around the world [11][12].
[2][5][6][7] Figure 2(right) regard SC as a model and FaaS is the most prominent implementation,
where deployed services are executed in response to triggers such as events or HTTP requests.

When we comes to talk about SC architecture, there are many difference among SC implementa-
tions, however all of them have almost the same high-level platform architecture, we combined the
discussion in [1][4][5] to make a new figure in order to illustrate the architecture.(Figure 3)

The edge part defines different triggers, which triggered events and events are processed by the
event controller(EC). The EC validates the event to make sure it has appropriate authentication and
authorization to execute. Then EC gets the corresponding container runtime and sends the event to

2

Figure 3: Serverless Computing High Level Architecture

the event queue (EQ). The EQ is targeted at ensuring function performance even under heavy system
load. Then the dispatcher sends the event in the EQ to a worker. The worker executes the function
and waits for a response, gathers running logs, returns response to users, and stops the function if it is
no longer needed.

2.2 Characteristics

In this part we will discuss SC’s characteristics so that we can know its pros and cons, what is its
difference compared to the other models (like Iaas, PaaS), and what is the best usages and why.

Besides three characteristics: 1) elastic, 2) pay-as-customer-consumed 3) no concern to maintain
services we discussed best definition for developers, the SC also has other characteristics listed as
follows:

• Atomic code/Micro-service, small pieces of code are easier to start, interrupt and restart,
which also means easier to manage and scale in the cloud. [2][6]

• Stateless service, a stateful service requires persistent storage, however in implementation
there are no auto scaling databases that can scale to 0. [2][6]

• Limit time on execution, longer time on execution and frequent access is not cost-effective
for customers and also harder for service providers to maintain and scale. [2][6]

• On-demand, the SC executes, scale, and bill functions on users’ demand, which can bill and
run instances can even scale to 0 when the service is not needed. [6]

• Event triggered, the function is executed by specific triggers. For example, client HTTP
requests, events by external systems, incoming data streams, or self-defined rules, etc. [6]

• Limited Supported Languages, the type available on SC or FaaS depends on the correspond-
ing provider, most providers support Java, JavaScripts, Python. [6]

The above characteristics are discussed from formal definition, we also found one outstanding view
from industry survey[5]:

Stateful service is available, this is not in conflict to the characteristics listed above. The above means
that all procedures and resources should be serverless, and [5] focus more on function, focus more on
service itself, is serverless, and can use external entities.

Due to these characteristics of SC and FaaS brings many benefits for programmers.

• SC is the most cost-effective model, no matter what else elastic models we use there are
always a lowest cost to maintain the service(s).

• quality-of-service (QoS) monitoring, scaling, and fault-tolerance properties. At the same
time, it gives programmers more availability to think about business logic and related
software structure and modules.

However as a new merged technology, it also has some cons and limitations.

• Language, version, library supporting problems. if a developer’s application needs a special
language or certain version of language or library that is not supported by SC, then it cannot

3

be deployed, which is annoying. For example, right now python2 is no longer maintained,
so providers removed support of python2, then the services needed for python2 is no longer
available.

• Cold start, (for providers, developer needs to know) cold start problem, on-demand charac-
teristic can lead to service scale to zero, this can make function cold start. To provide high
QoS, the provider needs to solve this problem.

• Scaling, (for providers, developers need to know) load and provision predicting problems.
Load prediction is hard but essential for SC providers. As SC function is cold started, and
a related amount of provider’s resource Is loaded from time to time, providers need to
proactively provision resources and predict future requirements in order to make service
good response time.

2.3 FaaS Compare to other Cloud Structures

In this part we will discuss Faas’s comparison to Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS), Software-as-a-Service (SaaS), Mobile Backend as-a-Service (MBaaS), and made a
table(Table 1) for look their difference. We will gather key points from [1][2][4].

IaaS enables developers to have control on infrastructure is the fundamental difference compared to
FaaS. These characteristics enable IaaS users to set up their own running environment, and have great
flexibility and the ability to customize every aspect of the application and infrastructure.

PaaS, as mentioned in definition, there’s a definition: FaaS is “function-level” Paas. They must have
many common attributes, for developers, both of them enable developers not concern on infrastructure
configuration and maintaining, and servers can be scaled on incoming demand. On difference, PaaS
cannot be scaled to 0, no cold start, more suitable for stateful service and run computation on system
level, on the other hand, FaaS can be scaled to 0, so not need to pay for idle resources, target at
state-less and micro-service on functions levels.

SaaS, also known as cloud application services. It delivers an application as cloud services, like
Dropbox, Google Apps, a cloud provider also provides whole software and data maintenance.

MBaaS, has a close resemblance to FaaS, both of them run codes on demand on the server side
without managing servers. However, it was typically limited to mobile use cases.

_ FaaS IaaS PaaS SaaS MBaaS
Expertise required Low High Medium Lowest Low

Scaling Auto-scaling Expert to tune Auto-scaling N/A N/A
Infrastructure Control Low High Medium Lowest Low
Deployed work Level Function Project Project None Function

Service target ALL Devices ALL Devices ALL Devices ALL Devices Mobile

Table 1: Different Cloud Structure Comparison

2.4 Status in industry

Right now we have a general cognition on what the SC and FaaS is, what their characteristics include
pros and cons, and the difference they make compared to other cloud models. So what is the current
status of industry, what does a developer need to learn and know if a developer wants to engage in?
We get info from [6]’s survey.

From the survey more than 74% of developers are 5+ experienced IT professionals, in contrast
more than half of them’s cloud experience is less than 2 years. This phenomenon indicates it is a
cutting-edge technology. To learn this, solid programming skill and problem analysis ability may be
required, because related technology questions are not widely discussed.

When you want to choose a platform to start learning, which one is the best? The answer is Amazon
Lambda (AL), the only one platform in the first echelon, which nearly all of developers (86%) have
experience on. The second echelon includes Microsoft Azure, Google Cloud, Digital Ocean, Heroku.
These platforms all have around 30% of developers have experience on them.

4

Then what’s the dominant programming language and other preferred skills in industry? The top three
programming languages is JavaScript (71%), Python (49%) and Java (30%) and related knowledge
are Database services ((e.g., Cloudant, ElephantSQL), Logging services (e.g., Loggly, AWS Logging,
...) and Analytics services(e.g., Spark, Hadoop, ...).

Last but not the least, as this survey[6] is conducted in mid 2018, and now it is mid 2020, self-
deployed/open-source FaaS platform also had long term development. We will discuss and introduce
the top 3 popular candidates in section3.

Right now if you want a project to start with, you can check section2 FaaS usage section, it will
introduce most usage these days and will inspire your ideas.

2.5 Use cases

Not surprisingly, due to a list of advantages, Serverless computing is acting an important role in
the rapid-developing digital society. A most basic example applying SF which is mentioned in the
papers[1][2] is that a simple image-processing event handler function. It is linked to a data store
like Amazon S3. Though its function is thoroughly stateless and idempotent, it can be extended by
combining serverless functions to develop more complicated application mentioned below in this
section.

In 2017, Barga’s keynote mentioned 5 common class of use cases for SF which has been constructed
in Industry and Research: web applications, backends including IOT, Chatbots, IT Automation and
Bigdata.

2.5.1 Web applications

Nowadays, the framework of applications can be established without the detailing of servers. Instead,
cloud provider manages the servers and its provisioning and allocation. An example of static websites
is Expedia. Applications can conduct integration of events for their CI/CD platforms, infrastructure
governance and autoscaling by using SF and run in a stateless, ephemeral and event-triggered
containers. [2]

2.5.2 Backends including IoT

A serverless backend shifts backend functions like data and authentication to the cloud which is
relatedly different form previously development. By using such technology, developers can pick
and integrate the functions they need into their projects. With the advantage of timesaving and less
expense-cost, developers can focus on what they want to do. IoT (Internet of Things) is an industry
which adopted serverless computing early due to tough issues of scalability and availability and highly
variable loads. WeatherGods, a mobile weather app, uses serverless computing as its backend[2].
Other examples are IRobot, Aegex, Abilisense, which effectively reduce their expenses by using
serveless computing. things like finding recipes and directing audibly step-by-step, reading a Kindle
book, achieving movie showtimes or sports schedules.[3][5]

2.5.3 Chatbots

Chatbots like Amazon Alexa are another type of example. A chatbot is a software application used to
conduct an online chat conversation via text or text-to-speech instead of chatting directly with a live
human agent. Recently, chatbots are used more and more frequently to save labor costs and customers
may save waiting time to solve some simple and frequent issues. Amazon Alexa, a highly interactive
AI program, can optimize daily life and make it more convenient with customizable services and
connect other household devices. With a device that integrates the voice technology, things like
finding recipes and directing audibly step-by-step, reading a book, achieving movie showtimes or
sports schedules can be conducted.

2.5.4 IT Automation

IT automation is the process of creating software and systems to replace repeatable processes and
reduce manual intervention.[17] With AWS Lambda(a kind of SF), IT automation is realized easily.
After uploading the code without managing or providing servers, it will be handled by servers and

5

developers just need to pay for the compute used. Amazon Aurora is a relational database service
that combines the speed and availability of high-end commercial databases with the simplicity and
cost-effectiveness of open source databases. Compared with MySQL, its performance in throughput
can be 5 times higher.

2.5.5 Bigdata

In recent years, the amount of data generated by brands has been increased dramatically. Serverless
performs well during the data processing because of its scalability. In addition, testing/staging
environments can be deployed cheaply due to not paying for a fixed amount of resource.

Serverless seems to be fit with event driven computing, stateless and short running and is not good for
number crunching, stateful and long running which is mentioned in the paper [5] published in 2017.
However, paper “The Rise of Serverless Computing” discuss about serverless applying in scientific
computing. It is available to run functions with only paying for what is used, which makes users
more convenient and focus on their experiments. Thus, serverless has gained popularity in compute
intensive applications.

PyWren is a well-known application with map-reduce style framework for highly parallel analyt-
ics workloads[2][3][5]. It utilizes serverless framework to avoid the significant development and
management overhead of running MapReduce jobs.[2] By using AWS S3 for storage caching, Barga
mentioned PyWren 600 concurrent functions can reach 25 TFLOPS performance, 60 GB/sec reading
and 50 GB/sec writing speed to S3. PyWren represents a type of use cases for highly parallel
analytics workloads. If the workloads can be easily divided into small parts, serverless computing
performs well on such job otherwise users should consider other technology such as high performance
computing.[2]

Figure 4: The areas of Serverless Computing having advantage or disadvantage

In recent years, as an emerging technology, serverless computing has been applied in more and more
aspects like parallel analysis, API Composition[2], Multi-Tenant Cloud Services[2], etc. Figure 4
summarizes some of aspects where serverless computing has advantage or limitation. Not hard to
imagine that serverless computing will benefit other areas with the improvement of technology.

2.6 Future of Serverless Computing

FaaS has so many advantages, nevertheless FaaS is not widely used. This is mainly because its
capability, like large data/function scaling problem, and limitations like time limitation, memory
limitation. With the technology development, shortage will be eliminated. FaaS will be applied to
general purpose computing. Let’s see what change may happen in future for FaaS.

Long time service may be available in future[5], the provider may provide a service level agreement
(SLA) in the future. But this brings challenge to providers, long time tasks bring more difficulty in
cost-effective SLA’s and give the provider less flexibility in scheduling and Legacy code is available
for FaaS[1]. Nowadays, there are a lot of existing code and is using in commercial environment. If
it is available to auto-decompose existing codes to FaaS version, or very few code modification by
developer, FaaS will be widely deployed in future.

High performance and parallel programming related application may be applied[5], a programmer
called Barga started his challenge to apply the MapReduce on FaaS model and interactive scientific

6

notebook will emerge to help people on development. Moreover, It will be bring to batch processing
to FaaS to reach the performance on supercomputers.

Cooperate with Edge Computing[2][5], in big data ages privacy problem, big data transport time,
varies demands of users made edge computing blooming and it has a very strong link with FaaS. The
edge device send a request (trigger) to FaaS, the cloud send back a run-able container (workload) to
the edge, then the edge deploys and solves related demand.

3 Evaluation on Self-Deployed FaaS Platforms

3.1 Apache OpenWhisk vs OpenFass vs Knative Intro

Apache OpenWhisk is an open-source platform for serverless computing with a large amount of
underlying components. It supports many languages, such as NodeJS, Go, Java, Scala, PHP, Python,
Ruby and Swift, as well as recent additions for Ballerina, .NET and Rust. Moreover, it can leverage
CouchDB, Kafka, Nginx, Redis and Zookeeper, which brings both advantages and disadvantages.
Developers can focus on scalability and resiliency while they may meet difficulties to master these
tools. In addition, its security can be improved.[15][18]

OpenFaaS is a free and independent project using the Serverless Framework, which includes the
following components: API Gateway, Function Watchdog and the container orchestrators Kubernetes,
Docker Swarm, Prometheus and Docker (as shown in Figure 3). Developers can deploy event-driven
functions and microservices to Kubernetes easily using OpenFaaS. In addition, functions can be
written in any language for both Windows and Linux and packed in Docker or OCI image format.
Moreover, it can run on hardware or public or private cloud. However, OpenFaaS has weaknesses.
Firstly, the starting time may be long when using some programming languages. Secondly, the
provider decides the start time of the container. In addition, containers cannot store code in memory
for a long time.[15][19]

Knative is an open-source project based on the Kubernetes platform to deploy and manage modern
serverless workloads whose architecture consists of the Building, Eventing and Serving components
(as shown in Figure). Among the upsides of Knative are it can start the service in seconds and it
supports common patterns such as GitOps, DockerOps and ManualOps. Secondly, Knative and other
common tools and frameworks such as Django, Ruby on Rails, Spring, etc. can be used together
when developing. Moreover, it is available for developers to create applications internally, such as in
the cloud or in a third-party data centre. However, one of the drawbacks of Knative is the demand to
independently manage container infrastructure.[15][20]

Figure 5: Apache OpenWhisk(Left) OpenFaaS(Middle) Knative(Right)

Now we have a good overview on three popular self-deployed frameworks, but how do developers
choose the most appropriate platform for their apps? What is the computation characteristic so
that we can know their own advantages and disadvantages? From computation aspects, [7][9] gave
us a hint that we can test platforms from CPU Calculation Speed, I/O Speed, Memory Capability,
Execution Time on Elasticity, Response Time for Dynamic Workload, Service Start Delay to know
their performance. From the applicability angle, we can use big data streams[8], machine learning[10]
regard as test cases. Besides, how hard is the platform to be deployed, maintain, related documentation
quality and social support of the platform are also needed to be evaluated for our developer readers.

3.2 Experimental Setup

We used a recent version of Docker (CE 0.18.0) and Kubernetes (Client v1.18.1, server v1.15.11).
AWS EC2 EKS cluster info: 3 nodes, each of m5.large type (i.e., each with 2 vCPUs, 8 GiB memory).

7

Figure 6: Comparison among Apache OpenWhisk vs. OpenFaaS vs. Knative

The serverless technologies CLIs, Docker CLI and Kubectl were installed on a client machine with
15,6 GB memory, Intel R CoreTM i7-4702MQ CPU @ 2.20GHz 8 Os-Type: 64-bit Disk: 128,5 GB.
Because of the poor documentation of OpenWhisk, we were not able to deploy/install the OpenWhisk
application on the AWS Kubernetes cluster. Also, for local deployment, some limitations (mentioned
below) restricted us to do scalability and overhead tests for OpenWhisk, and at the end, we did the
speed tests locally on a single node.

We used the AWS Kubernetes cluster and installed Knative and OpenFaaS. We created functions and
deployed the function in their respective namespaces.

Pre-requisites for Knative :
1. eksctl CLI to connect to an AWS EKS cluster
2.AWS CLI to connect AWS
3.Configure AWS to connect with an AWS EKS cluster
4.Kubernetes CLI (i.e., kubectl)
5.Helm CLI - version 3

Pre-requisites for OpenFass:
1.eksctl CLI
2.AWS CLI
3.Configure AWS to connect with an AWS EKS cluster
4.Kubernetes CLI (i.e., kubectl)
5.Helm CLI - version 3
6.OpenFaaS CLI

3.3 Experimental outcomes

3.3.1 Apache Open Whisk Speed

With a limitation of 60 requests per minute, according to[openwhisk-Docs]], we need to test Open-
Whisk by blocking and non-blocking requests.

Blocking invocations mean the platform won’t send the HTTP response until the action finishes.
This allows it to include the action result in the response. Blocking invocations are used when you
want to invoke action and wait for the result.
Non-blocking invocations return as soon as the platform processes the invocation request. This
is before the action has finished executing. HTTP responses from non-blocking invocations only
include activation identifiers since the action result is not available (default behaviour).

As shown in the graph, non-blocking invocations are much faster than blocking invocations. The
difference is 3.411 s because there is no waiting for the action to be finished.

8

Figure 7: Apche open Whisk Speed Test

3.3.2 Speed,Scalability and Overhead for knative/openfaas

To test Knative and OpenFaaS, we deployed 3 sample Hello World applications written in Go
programming language.

1. App 1 with 1 replica - invoked 100 times using 1 session 2 with 5 replicas - invoked using 3
concurrent sessions, 100 requests each

2. App 3 with 10 replicas - invoked using 5 concurrent sessions, 100 requests each

Figure 8: Speed, Scalability and Overhead (Knative vs OpenFaaS)

As shown in the graph, OpenFaaS is slightly faster than Knative by 0.03833 s.

Knative is more scalable than OpenFaaS.

OpenFaaS has more overhead requests than Knative.

3.3.3 Usability/Challenges

OpenWhisk: Documents on deploying OpenWhisk on the AWS Kubernetes cluster are rare. The
instructions provided on the official document don’t work as written or expected. They need to be
improved, and the technology needs to be mature.

This was not the case for Knative and OpenFaaS. Both are well-documented, and the community is
active.
Despite the growth of open-source serverless technologies, we believe Apache OpenWhisk is not

9

mature and very efficient in the production, so a single node of OpenWhisk may not be realistic in
the production environment.

Knative and OpenFaaS are better, especially with the smooth integration with Kubernetes, which will
make the platform scalable in creating, deploying, and managing serverless workloads.

Although we conclude from the experiments that Knative is better in scalability and overhead,
OpenFaaS is an excellent platform for data scientist developers because it has built-in models for
machine learning to analyse pictures, data, etc. Aside from its simple configuration and maintenance,
OpenFaaS is more straightforward and allows a developer to install an entire component, while in
Knative, the developer needs to install the components separately.

4 Conclusion

From papers we can see that serverless computing and not a really new technology in industry
but a new trend with many new attributes, and its best implementation is FaaS. Serverless is a
technology has three main attribute: high scalability, low cost (pay-as-user-demand), don’t need
expertise knowledge on server, and these advantages are changing the way that developers conduct
services. Right now it is widely used on web applications, IoT and IT automation, however due
it current limitation it still cannot applied to all kinds of applications, like stateless application,
legacy application (exist code) and large scale application. We believe with the development of SC,
limitation will be solved and more application will be applied.

As performance experiments on three opensource serverless frameworks, we found that the open
whisk is not mature because of poor documentation for developers. Openfass and Knative are
compatible with Kubernetes’s high scalability attribute and have high performance and are best
choices for developers.

10

References

[1] Baldini, I. et al. (2017) Serverless Computing: Current Trends and Open Problems.

[2] Castro, P. et al. (2019) The rise of serverless computing. Communications of the ACM. [Online] 62 (12),
44–54.

[3] Lee, H. et al. (2018) ‘Evaluation of Production Serverless Computing Environments’, in 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD). [Online]. July 2018 IEEE. pp. 442–450.

[4] Malawski, M. et al. (2017) Serverless execution of scientific workflows: Experiments with HyperFlow, AWS
Lambda and Google Cloud Functions. Future Generation Computer Systems. [Online]

[5] Fox, G. C. et al. (2017) Status of Serverless Computing and Function-as-a-Service(FaaS) in Industry and
Research. [Online]

[6] Leitner, P. et al. (2019) A mixed-method empirical study of Function-as-a-Service software development in
industrial practice. The Journal of Systems Software. [Online] 149340–359.

[7] Klimovic, A. et al. (2018). Understanding Ephemeral Storage for Serverless Analytics. Stanford University.
[Online]

[8] Kiran, M. et al. (2015) Lambda architecture for cost-effective batch and speed big data processing. [online].
Available from: https://escholarship.org/uc/item/0t36p3hn.

[9] Hendrickson, S. et al. (2016). Serverless Computation with OpenLambda (Unpublished doctoral dissertation).
University of Wisconsin—Madison. [Online]

[10] Lin, W.-T. et al. (2018) ‘Tracking Causal Order in AWS Lambda Applications’, in 2018 IEEE International
Conference on Cloud Engineering (IC2E). [Online]. April 2018 IEEE. pp. 50–60.

[11] Ye, W. et al. (2003) ‘Distributed network file storage for a serverless (P2P) network’, in 11th IEEE
International Conference on Networks, 2003. ICON2003. [Online]. 2003 IEEE. pp. 343–347.

[12] Bryan, D. . et al. (2005) ‘SOSIMPLE: A Serverless, Standards-based, P2P SIP Communication System’, in
First International Workshop on Advanced Architectures and Algorithms for Internet Delivery and Applications
(AAA-IDEA’05). [Online]. 2005 IEEE. pp. 42–49.

[13] Johnston, P. (2017, September 08). A simple definition of "Serverless". Retrieved May 23, 2020, from
http://bit.ly/2G3Hp1R

[14] Brazeal, F. (2018, September 25). Serverless is eating the stack and people are freaking out - as they should
be. Retrieved May 23, 2020, from http://bit.ly/2xzNEWB

[15] Serverless Open-Source Frameworks: OpenFaaS, Knative, amp; More. (2020, February 27). Retrieved May
28, 2020, from https://epsagon.com/blog/serverless-open-source-frameworks-openfaas-knative-more/

[16] OpenFaaS Ltd. (2020, January 14). OpenFaaS 3rd Birthday Celebrations. Retrieved May 28, 2020, from
https://www.openfaas.com/blog/birthday-teamserverless/

[17] IT Automation. (n.d.). Retrieved May 28, 2020, from https://www.vmware.com/topics/glossary/content/it-
automation

[18] A Comparison of Serverless Frameworks for Kubernetes: OpenFaas, OpenWhisk, Fission, Kubeless and
more. (2018, September 01). Retrieved May 28, 2020, from https://winderresearch.com/a-comparison-of-
serverless-frameworks-for-kubernetes-openfaas-openwhisk-fission-kubeless-and-more/

[19] Project, O. (n.d.). Introduction. Retrieved May 28, 2020, from https://docs.openfaas.com/

[20] Knative. (2020, May 12). Retrieved June 01, 2020, from https://knative.dev/

Contribution

4.1 Preparation Stage

Tianyang Lu did search for general intro, discussion, evaluation paper on Serverless and Faas (About 15 papers)

Hatim did search for general intro, discussion on Serverless and Faas (About 5 papers), did research and
experiment on Apache OpenWhisk , OpenFass and Knative. Also find overleaf template for group work.

Kai over-viewed all papers & conducted works, and made the literature overview skeleton. Then set up a meeting
and distribute works with group members’ advantage. Also added 5 supplementary paper and related web pages
for Apache OpenWhisk , OpenFass and Knative.

11

4.2 Writing Stage

Kai is responsible for Abstract, section 1 introduction, section 2.1 Definition and Architecture 2.2 Characteristics
2.3 FaaS Compare to other Cloud Structures 2.4 Status in industry and 2.6 Future of serverless-computing.

Tianyang is responsible for section 2.5 Use cases, and rewrited section 3.1 Apache OpenWhisk vs OpenFass vs
Knative Intro. Kai add instruction in section 3.1 for section 3.3.

Hatim was responsible for all section 3, but 3.1 but Tianyang Updated This Section and rewrite some of it. Hatim
now is responsible for section 3.2 experimental setup 3.3 Experimental outcomes.

Kai and Hatim wrote the conclusion and Kai is responsible for restructure.

4.3 Review Stage

All guys did review on Abstract and Introduction.

Kai did review on Tianyang’s part, and gave suggestion that this part is better to add illusttration with SC’s
characteristics.

Tianyang did review on Hatim’s section 3.1, and found there are a lot of redundancy information. So she had to
rewrote it.

Hatim’s part section 3.2, 3.3 is not being reviewed by others, because no other group members knew how did he
do the evaluation and why. He conducted review on his own part.

4.4 Final Stage

Kai conducted structure overview through out the paper to make the paper read smoothly.

Tianyang updated all figures and citations.

12

The status of Containers and Unikernels from a cloud
perspective

Jackson, Alappatt Warrunny
12842753

Giannakopoulos, Athanasios (Thanos)
12747300

Abstract

Over the last few years, virtualisation and containerisation gained huge momen-
tum within the IT community by incorporating these in providing cloud-native
solutions which they offered. Although containers overcame many constraints
posed by monolithic inflexible and unchanging practices of packaging, sharing
and deploying applications, it is imperative and critical to understand the limita-
tions or weaknesses they have. The main constraint of the containers (e.g. Docker)
is related to the fact that they are not truly sandboxed as they share the host OS
kernel. This weak separation results in the situation where the host OS kernel
creates a virtualized userland for each container everytime with potential security
threats on the environment. The aim of this paper is to make a thorough analysis
of the evolutions of recent technologies and solutions which target to eliminate
this isolation weakness. Moreover, this paper will discuss how well Unikernals
solves this problem and make a comparison between the two in terms of their
capabilities.

1 Introduction

Containerization is the virtualisation technique which allows to package applications and run them
in isolated environments. Due to this offered feature that containers provide, they have become re-
ally popular in the cloud application management. This technology offer flexibility and convenience
to easily deploy applications in the cloud. Development teams working in an agile environment
especially DevOps, can work independently and without interfering to the others using development
pipelines easily adhering to the DevOps principles. Docker technology was the first to try to popu-
larize Linux containers. Client server, registries, images and containers are the main components
of the Docker technology which will be described with more details in the paper later on. Docker
started to gain its momentum in 2013 as the chosen open source approach for software produc-
tion had already been widely accepted by the Information technology community. Other than open
source approach there are other reasons which made Docker the dominant technology for many
years. Among the main benefits that containers offered to the community were the lightweight vir-
tualization and standardization. However, containers brought also some limitations/weaknesses as
well. The main limitation was potential security threat which is based on the fact that they share the
host OS kernel among multiple containers exposing it possible data privacy breaches [2].

In this paper we try to assess whether Unikernals is a right answer to this limitation of Container.
Unikernals were born recently which provides a way to quickly build and deploy relatively small
applications on the VMs that do not require functional and operations functions that would typically
offered by containers. It provides good degree of isolation as every Unikernal is packaged with the
absolute required OS kernel components together with the application to be deployed. In the recent
years it has been attempted to mature Unikernals from a beta version to productonise supporting
new and existing applications.

The status of Containers and Unikernels from a cloud perspective

2 Containers

2.1 An introduction to Containers

Containerisation technology with its unique attribute of being capable of virtualising applications in
a lightweight, flexible and easily scalable manner, has led to its wide adaptation in cloud application
management. More specifically, containers are an operating system virtualization technology used to
package applications and run in the target platform. This technology allows to run the applications
in isolated environments along with their dependencies. They provide a lightweight method of
sharing, packaging and deploying applications in a standardized way across many different types
of infrastructure [9]. In other words, containers offer a way in which applications can be packaged
totally independent and separated from the environment in which they actually run. This decoupling
makes the deployment easier and more consistent for container-based applications, regardless of
whether the target environment is the cloud, a server-based ERP software or even a personal laptop.
This guarantees that all the processes running inside a container will not have any interference with
any processes outside it as depicted in Figure 1. As a result of this, every role in a production team
should have separate concerns and responsibilities. Developers are able to focus on their application
logic, dependencies and fixing any bugs, while IT operations teams can focus on deployment and
of course management with limited knowledge of the application details. That means that any
configurations and new versions of the software can be tested and handled without causing any
inconvenience to the final users [6].

Figure 1: Containers

2.2 Why Containers

In this section we will focus on relevance of containers over Virtual machines. It is important to
understand how the features offered by these differ. The primary difference is in their virtualization
level. Virtual machines offer virtualization in terms of the hardware stack while containers virtualize
at the operating system level. Multiple containers can run at the OS kernel directly. As a result, there
is a comparative advantage for containers as they become far more lightweight. Containers share the
same OS kernel and use only a fraction of the memory while booting up instead of booting an entire

2

OS which makes them to start up faster. [6].On the other hand, comparatively heavier virtual ma-
chines can cause several issues if there is a need to apply changes to the application’s environment.
For instance, this could happen when the changed software is promoted to a higher level up until
production where two environments could be exactly the same. This lack of flexibility in porting
is a strong limitation which can be resolved using containers. Portability can be really simple and
easy procedure using containers in the cloud. Applications requiring a migration from one cloud
environment to another using containers requires far less effort. A risk of failure is much lower
considering container’s flexibility and integrity of code together with its dependencies regardless of
external factors.

2.3 Container technologies

As we have discussed earlier, containers offer an efficient way to run applications along with their
supporting dependencies in an isolated environment. Docker is the open source platform which
facilitates the independent running of these application in a simple and easier way. The first tech-
nology to popularise Linux containers was Docker. The major components that makeup the Docker
includes Docker Client and Server, Docker images, Docker Registries and Docker containers. These
internal components are explained in more detail in the following sections. [1]

Docker Client and Server: Figure 2 below represents Docker as a Client/Server based application.
The starting point is a new request from docker client towards the docker server which then process it
accordingly [15]. Docker is responsible for the shipment of the complete RESTful(Representational
state transfer) API and the command line client binary. It is worth to note that there are two possible
scenarios in which the Docker server and client can reside. The first scenario is that both Docker
Daemon/server run on the same machine. In contrast, it is also possible that the local client can be
connected with a remote server/daemon which is running on a different machine.

Figure 2: Docker Architecture

Docker Images: Docker images are files that are used to execute code in a docker container. The
process of building a new image is called “committing a change”. There are two methods to build
an image. The first one is the process to build a new image from scratch. It is usually built using
a read-only template. The second method is to create the image using a docker file. The docker
file which contains a list of instructions is executed with “Docker build” command from the bash
terminal. This process will follow all the instructions given in the docker file and builds an image.
This is an automated way of building an image than using the first method.

Docker Registries: A docker registry is a storage to hold docker images. It also acts as the distri-
bution system for docker images. These could be same images with different versions which are
identified using tags. As like a source code repository, the docker registries can be viewed as the
source where images can be promoted or demoted. There are two types of registries, public and pri-

3

vate. By default, the docker engine interacts with Docker hub which is the public registry instance.
From this docker hub, the images can be pushed or pulled without creating them from the scratch.

Docker Containers: A docker container is an abstraction of application layer which packages code
and its dependencies together so that the application can run in isolation and as a whole. Several
containers can run on the same machine at the same time and can share the OS kernel with others.
However every containers runs their process in isolation from others.

2.4 Popularity

We have already discussed why containers, in general, have proven so appealing to companies large
and small over the past several years. Let us now have a detailed look at Docker.

Docker was open source from the start. In 2013, the IT community was beginning to adopt the open
source as the standard mode of software production and sharing. This was definitely one of the most
important factors that made the Docker so appealing in the technology market. [11].

Docker got introduced at the right time. By the time Docker was released as a technology, virtual
machines were finally becoming an outdated technology. IT industry was looking for a new, different
and more simple way of deploying applications and Docker was available at the right time. [11].

Docker enabled with the DevOps way of working. DevOps, which became more of a norm in the
early 2010s, emphasizes agility, flexibility and scalability in software delivery. Docker containers
happen to provide an excellent building block for creating software delivery pipelines and deploying
applications according to DevOps prescripts [11].

Docker coincided with the Agile revolution. Agile approach particularly CI/CD (Continuous Inte-
gration/Continuous Deployment) in software delivery was widely accepted as a mechanism to de-
velop and deploy IT components. The framework brought flexibility and scalability compared to the
traditional waterfall methodology. Docker could very well support DevOps approach for developing
software pipelines according to these new standards.[11]

2.5 Benefits and disadvantages

Now that we have discussed about containers and related technologies, let us also analyse the bene-
fits and limitations/disadvantages of containerization. [7].

2.5.1 Benefits

As it is already mentioned, containers are a streamlined way to build, test, deploy, and redeploy ap-
plications on multiple environments. In addition to that, we discussed about containers technologies
and the popularity of containers. In this section we will try to give an overview of the benefits they
offer. Benefits of containers, amongst others, include the following: [18]

Lightweight Virtualization: Containers are lightweight compared to Virtual machines. Virtual ma-
chines virtualizes all the hardware resources using a totally independent operating system while
containers share host OS kernel and run as separate isolated processes within the host.

Containers are faster in startup and stopping and they do not need many system resources. Container
acts as a total independent environment even if it shares only a subset of host’s resources.

Usually the container images are smaller in size that allows the workflow which pulls down latest
image at runtime to perform efficiently without much delays. This feature is very significant for
many fault tolerant, self-healing distributed systems.

Isolation: Since Containers use Linux kernel features, it helps them to isolate itself from other
containers. As a result there is no interference among them. In addition, there is also no conflict
in dependencies and libraries that each container use as they are maintained in separate file system.
Hence it is safe that applications within the container do not conflict with those on others. This helps
the administrators to focus on the mapping between container’s networking and host networks based
on their requirements.

Standardization: One of the most appealing benefits of containers is that they offer a simple way
of packaging and deploying software. In the docker technology section, we discussed that container

4

images allow developers to run applications along with their supporting dependencies into a single
isolated unit. That is to say, developers are able to install and use all the necessary libraries inside
the containers, without any risk of interfering with corresponding host system libraries. When a
container image is being created, supporting dependencies are labelled to a specific version each
time. Next to that, developers need not be aware of the configuration details of target environment
where the container will be running. Operationally wise, administrators can work easier and focus
on maintaining generic hosts that operate as container platforms. In other words, there is a clear
logical separation between the application and the infrastructure platform which requires less effort
from developers and administrators.

2.5.2 Disadvantages

Although containers has some advantages over a virtual machine, they have some limitations as
well. [3]

Sharing the OS host: The major weakness of containers is that they share the same kernel of host
OS and as a result are less isolated than real VMs. This kernel dependency can cause serious issues
as a glitch in the kernel could affect every containers running on it. On top of that any security issue
could be catastrophic because multiple containers running on the same host may belong to other
tenants.

Complexity: It is possible that multiple containers can run on the same host. When the number
of containers increases, a corresponding increase in the complexity factor is to be considered as
well. Developers could face a challenging task to maintain the different containers in the production
without a proper tool for management.

3 Unikernels

3.1 An introduction to Unikernels

In its most simplistic term, a Unikernel looks to be an ’improved container’ but with better security
and performance, it brings. It is a collection of Linux kernels which allows to package an application
in such a way that it makes it more difficult to interfere with others. It may be described that
Unikernels are applications running without an operating system. However, it is technically not true
because Unikernels has operating system but its not like a general purpose operating system such as
Linux. Typically a general purpose operating systems has several processes that starts running when
the system bootsup even when no applications are running on it. However, Unikernels has only one
process which is the application that is designed to run on it. Along with this, it uses absolutely
minimal software stack in the form of required operating system components. This minimalist
requirements means reduced attack surface for any kind of intrusion. This feature, unlike containers,
makes Unikernels most secure and runs with high performance.

3.2 Evolution of Unikernels

Developer community is always in the quest to modernise the infrastructure to deploy their ap-
plications in the cloud by fully utilising the virtualisation, light-weight, fully secured and highly
performing environment with minimal memory foot-print. Unikernal is a natural evolution enhanc-
ing the attributes that are offered by virtual machines and furthered by Containers. Unikernal is
the latest cloud-era solution which links the application with a library of various operating system
components that are required to run the application. These components including memory manager,
scheduler, network stack and device drivers which are integrated into a single address space gener-
ating a binary image that is bootable directly on a virtual hardware [13]. This feature to include only
the required operating system components packaged together with the intended application, brings
the improved performance and the required security since the exposed surface is very limited for
any potential attack. In the recent years there had been a spike in introduction of various Unikernels
which target to utilise cloud and internet workloads. Network performance became key for such
cloud hosted systems and Unikernel’s offering of simplified IO paths and removal of domain cross-
ing helped to improve the latency and throughput of such network intense solutions. It is proven
that Memcashed running on a Unikernal TCP/IP stack gave a throughput improvement of over 200
percentage when compared to that of a Linux [16]. Also it has been shown that Unikernals deployed

5

within a MicroVM performed significantly higher in terms of requried boot time, when compared
to containers [12]. Similarly a micropython unikernal had an image size of 1MB and required 8MB
at execution [14]. Despite the high security feature and performance benefits offered by the Uniker-
nel, it is yet to be widely adopted outside the domain of research and experiment platforms. It is
perceived by the developer community to have much more effort required to deploy an application
to a runtime with only a partial support to legacy software interfaces is provided by Unikernels.

3.3 Unikernel Architecture

In this section we will focus on isolation technology which is the salient feature of Unikernels and
how it is achieved. In a multi-tenant cloud environment mutually mistrusting users share the same
physical resources. While isolation can be established from a hardware perspective (e.g page tables),
here we will discuss the potential security leakage which could exploited via the software interfaces.
The threat could arise from the malicious tenant that could break out from its isolation seriously
interfering with others. The level of this security compromise depends on the attack surface that are
exposed. While Unikernals uses bare minimum OS components just sufficient to run the targeted
application, this threat is far less compared with containers, for instance.

Most of the operating systems used today in the Virtual machines are identical to the traditional
general-purpose operating system that is also used in non-virtualised environments. It is common
practice these days that virtual machines are configured to run a specific application intended for its
own use such as a web server or database together with the required code. In this context most of
the package and services offered by a general purpose operating system is not used. Moreover such
unused components increases the risk profile from a security point of view for the infrastructure on
which various tenants are running. Figure 3 below shows the high level architecture representation
of Traditional OS structure vs Unikernel.

Figure 3: Traditional OS structure vs Unikernels

The figure 4 below shows the Unikernel Ecosystem how it sits within a typical development envi-
ronment [17]

The creation of new Unikernel follow one of the two approaches: A clean state approach where the
kernel is created from the scratch, or a strip down approach where the kernel codebase is stripped
off from the unnecessary components making it fit for the application that it has to run.

Few solutions to construct unikernels with different level of maturity are described below.

MirageOS is one of the most famous Unikernel projects which uses clean slate approach to construct
Unikernels. MirageOS can be used to construct Unikernels for various cloud computing and mobile
platforms offering a library operating system. It is typically used in an environment which hosts

6

Figure 4: Typical Unikernel Ecosystem in a development environment

high-performance and secured network applications. In the first stage, code can be developed on a
normal operating system(Linux, MacOS X), post which the standalone Unikernel can be integrated
with the developed code. In execution mode, a hypervisor is responsible to run this specialised
Unikernel. This framework allows all the hosted services to run more efficiently and secured. All
these state transitions contains different events which gives this framework an event-driven feel
eliminating the need to support proactive failures [8].

ClickOS is another example of a Unikernel project in an open source virtualization platform ideal
for high-performance applications. Based on their performance, ClickOS Virtual Machines are super
small (5MBs), have fast boot time(less than 20ms) and little delay(45ms). On top of that, more than
100 clickOS VMs can be run at the same time on a server [5].

Another well-known Unikernel project is LING. This Unikernel project follows Erlang/OTP proto-
col and understands .beam files. The code can be created in Erlang and deployed as LING Uniker-
nels. An advantage of LING is that it removes the majority of vector files and uses only three
external libraries and no OpenSSL[5].

7

3.4 Benefits and limitations of Unikernals

Having described what Unikernels are, its evolution, architecture and different Unikernels projects,
an overview of its advantages and disadvantages are described in this section.

3.4.1 Benefits

Security: The offering that Unikernels provide on security is the most important advantage among
others. Cyber threat is a major concern for organisations especially hosting their service in the cloud.
These could be intentional or unintentional but both provide a major threat to the reputation of the
organisation in terms of data security. The IT unit of most organisations are struggling to avoid any
potential lapse in security leading to their never ending quest for a security efficient solution to run
the applications on the cloud. Unikernels having its minimalist approach reduced this security risk
by having a smaller attack surface which it exposes. An example, among others, will help us to
understand better the strength of isolation which is provided by Unikernels. In case of a potential
attack in the form of wrongdoing via accessing password file, shell and utilities programs, it is
simply impossible because they just do not exist [10].

Size and speed: Based on the ClickOS projects that we discussed in the Architecture section, it is
obvious that Unikernels are really fast and small in size. A typical working domain name server of
MirageOS can be compiled into just 449 KB. Based on such performance statistics, it is obvious that
size and speed are really strong benefits of Unikernels [10]. However, it is to be noted that on heavy
workloads Unikernals tend to provide same speed as containers.[4]

3.4.2 Limitations

Impact on software development: It is expected that Unikernel is to support only a single process
or thread to take advantage of its offering[3]. This limitation poses difficulty in its adaptation for
legacy applications where they are already designed to run multiple processes and threads.

Unavailability of protection rings: Protection rings are used in traditional operating systems to
provide increasing level of access. Since Unikernel packages OS components and applications to-
gether in the Ring 0, the flexibility of additional protection rings are not available [17]

No parallel processing: Unikernels are designed to encapsulate OS components and a single pro-
cess. Hence anything that will require parallel processing will need to be broken down into several
Unikernels.

Memory consumption: In terms of memory consumed, Unikernals seems to occupy high memory
compared to containers. This roots from the reason that Unikernals has extra overhead on the kernels
while Containers uses the kernel of host OS. [4]

4 Discussion and Conclusions

Container technology allows to run the applications in isolated environments along with their de-
pendencies. However they depend on kernels of the host OS, which poses degradation in various
aspects explained earlier. On the other hand, the concept behind Unikernels is to use the minimum
software which an application needs. They have their own OS kernels providing better isolation and
better overall performance.

Unikernel does better than Containers in terms of speed and response time, while containers seems
to have advantage over Unikernels when memory foot print is considered. In terms of Security threat
aspect, Unikernals are better placed than Containers with less threat surface exposure having only
the required OS components packaged into the kernel together with the target application. However,
Unikernels are yet to mature for industry wide usage although several initiatives are ongoing in the
research areas. If the legacy applications can be split up or multiple instances can be used, or multi
threading is not a requisite, then this limitation of Unikernals of not supporting multi-threading can
be bypassed. While VMs provide good isolation but with heavy weight, Containers provide lighter-
weight vitualisation. However, Unikernels although yet to fully mature, provides secured isolation,
lighter-weight and comparable performance.

8

References
[1] Babak Bashari Rad et al. “An Introduction to Docker and Analysis of its Performance”.

In: IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.3,
March 2017. IJCSNS.

[2] Gundars Alksnis et al. “Containers for Virtualization: An Overview”. In: Applied Computer
Systems). De Gruyter. 2018, pp. 21–27.

[3] Alfred Bratterud, Andreas Happe, and Robert Anderson Keith Duncan. “Enhancing cloud
security and privacy: the Unikernel solution”. In: Eighth International Conference on Cloud
Computing, GRIDs, and Virtualization, 19 February 2017-23 February 2017, Athens, Greece.
Curran Associates. 2017.

[4] Tom Goethals et al. “Unikernels vs containers: An in-depth benchmarking study in the context
of microservice applications”. In: 2018 IEEE 8th International Symposium on Cloud and
Service Computing (SC2). IEEE. 2018, pp. 1–8.

[5] http://unikernel.org/projects/. In: Unikernel.org.
[6] https://cloud.google.com/containers. In: Cloud.
[7] https://dzone.com/articles/container-technologies-overview. In: Dzone.
[8] https://mirage.io/. In: Mirage.
[9] https://rancher.com/blog/2019/an-introduction-to-containers. In: Rancher.

[10] https://techbeacon.com/enterprise-it/containers-20-why-unikernels-will-rock-cloud. In:
Techbeacon.

[11] https://www.channelfutures.com/open-source/why-is-docker-so-popular-explaining-the-rise-
of-containers-and-docker. In: Channelfutures.

[12] Ricardo Koller and Dan Williams. “Will serverless end the dominance of Linux in the cloud?”
In: Proceedings of the 16th Workshop on Hot Topics in Operating Systems. 2017, pp. 169–
173.

[13] Anil Madhavapeddy and David J Scott. “Unikernels: Rise of the virtual library operating
system”. In: Queue 11.11 (2013), pp. 30–44.

[14] Filipe Manco et al. “My VM is Lighter (and Safer) than your Container”. In: Proceedings of
the 26th Symposium on Operating Systems Principles. 2017, pp. 218–233.

[15] Claus Pahl et al. “Cloud container technologies: a state-of-the-art review”. In: IEEE Transac-
tions on Cloud Computing (2017).

[16] Dan Schatzberg et al. “EbbRT: a framework for building per-application library operating
systems”. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16). 2016, pp. 671–688.

[17] Joshua Talbot et al. “A Security Perspective on Unikernels”. In: arXiv preprint
arXiv:1911.06260 (2019).

[18] Qi Zhang et al. “A comparative study of containers and virtual machines in big data environ-
ment”. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). IEEE.
2018, pp. 178–185.

Contribution:
Athanasios (Thanos) Giannakopoulos : Containers, Review of Unikernels
Warrunny Alappatt Jackson: Unikernels, Review of Containers and preparation of presentation ma-
terial

9

Edge Computing and Relation to Cloud
Computing

Futong Han
Msc Computer Science

University of Amsterdam
12581135

hanfutong0804@gmail.com

Junyan Li
Msc Computer Science

University of Amsterdam
12566349

junyan.li@student.uva.nl

Binjie Zhou
Msc Computational Science
University of Amsterdam

12544752
zhoubinjie201909@163.com

June 1, 2020

Abstract

Edge computing is developed with the growth of Internet of Things
devices. It is a decentralized computing architecture which aims to bring
computation as close as to the users as possible, to provide the lowest
possible latency. It makes use of IoT devices. Cloud computing, on the
other hand, provides on-demand availability of computer system resources,
and does not consider latency by default. The distributed nature of edge
computing and its target at a large amount of unreliable devices bring new
issues and challenges compared to distributed cloud computing. These two
approaches focus on different goals, but they are not mutually exclusive.
They need each other in many use cases. Business and IT companies fuse
the strengths of them which work together and provide comprehensive
solutions to IT infrastructure.

1

1 Introduction

Smart devices connected to the network first appeared in 1982. Carnegie Mellon
University’s improved Coke machine became the first network-connected machine.
It can report its inventory and be able to detect whether the beverage is cold.
The world around things connected to the Internet officially kicked off. Internet
of Things (IoT) was first proposed by Professor Ashton in 1999 and then a large
number of cloud computing and Internet of Things applications are gradually
integrated into people’s lives.
However, there are some problems such as slow response, privacy issues, broad-
band restrictions in cloud computing and in 2015, Garcia came up edge computing
to help with these problems.[5] This report gives introduction of edge computing,
cloud computing and discuss the relation between these methods.

2 Edge Computing

Edge computing is a kind of decentralized computing architecture. Online
services, applications and data are moved from node of network to the network
logic edge node for processing. The network edge is a functional entity related
to the data source and the cloud computing center. Those things are together
with edge computing platforms which integrate network, computing, storage,
and application core capabilities to provide dynamic, efficient, and intelligent
service computing for users.

Edge here means the network resources along the path between data source
with online cloud center. There is a principle that the edge computing is a
method of processing where the calculation happened closed to the source of
data.

The edge node is much closer to terminal equipment compared to cloud
computing because it can speed up the data processing and reduce response
time. In this architecture, the generation of data are closer to the source of data,
so they are easy for processing big data.

2.1 Reasons for Edge Computing

Why Edge Computing is necessary for the modern society? There are several
reasons that edge computing has become one of the most important methods for
computing service.

2

From cloud services

It has been proved that putting all the computing tasks on the cloud is an
effective data processing method, because of the speed of computing power on
the cloud exceeding the ability of the edge things. However, compared with
the rapidly developing data processing speed, the network bandwidth has not
kept pace. With the growth of edge data, the speed of data transmission has
become the biggest problem of cloud computing model. Also, self-driving cars,
which generate 1G data per second, need to process vehicles in real time to make
correct real-time decisions. Due to this problem, the data from edge needs to
be processed at edge to shorten the response time, process more efficiently, and
ease the internet pressure.

From the Internet of Things

Nearly all the electronic devices is becoming one of the Internet of Things. These
device plays the role as data producers and consumers, such as LEDs, traffic
lights, even intelligent cooks. It can be inferred that things on the edge of the
network will grow more and more in a short time. Therefore, the original data
generated by these things are huge, and using cloud computing is inefficient to
process all of this data. It means that data generated from Internet of Thongs
will not transferred to cloud, but consumed at the edge of network.

The amount of data at the edge is too large using cloud computing, and
it will result in huge unnecessary bandwidth waste and the use of computing
resources. Then the need for privacy protection has also become a hidden danger
of cloud computing in IoT. At last, most of the nodes in IoT are limited, and by
offloading computing tasks to the edge can make all the system more efficient.

From data consumer to producer

Edge terminal devices always act as a data consumer. In edge computing era,
things are not only data consumers now, at the same time they are also function
as data producers. Since it is always private to collect physical data at the edge
of network, privacy of users can be protected by processing data at the edge than
uploading original data to the cloud. Also, things can not only request services
at the edge and content from the cloud. They can also perform computing tasks
from the cloud. With these tasks in the network, the edge itself has to be well
designed in order to meet requirements in services, such as reliability, security,
and privacy protection.

3

2.2 Summary

In edge computing, the purpose is to put the calculation near the data source
and there are several advantages:

1. Edge application services significantly reduce the amount of data that
must be moved, traffic, and distance that must be transmitted, thereby reduce
transmission costs, shortening latency, and improve service quality.

2. Edge computing can use the same architecture and basic underlying
computing technology as other clouds, and it can use the same cost curve.

3. Edge computing makes the data much more reliable, safety and privacy.

3 Cloud Computing

Cloud Computing is on-demand delivery of computer system resources over the
Internet with pay-as-you-go pricing. The main types of Cloud Computing are
as follow: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS). It is a relatively new concept which was officially
coined in 1996 within a Compaq internal document.[2] It mainly introduce the
basic idea of Internet Cloud. It realizes the evolution of IT solutions can be
caused by the more often use of applications in the Cloud services. Based on
IEEE Xplore search result, there are 58,762 conferences, 7,232 journals and 376
books related to Cloud Computing from 1996 to 2020 (accessed 28/05/2020).
And 8,264 conferences, 2,609 journals and 33 books are doing researches about
Cloud Computing within 2019 - 2020 (accessed 28/05/2020). It can be seen from
these information that Cloud Computing is a trendy topic and it is regarded as
a valuable field of scientific researches.

3.1 Applications and Challenges of Cloud Computing

Cloud Computing benefits users by providing services such as data storage,
computing power and the access to databases. This means storing and accessing
data and programs are no longer only the work of PC’s hard wire. It may sounds
far from real life, but Google Drive as a popular storage application is indeed
a cloud storage service. Another well known cloud service provider is Amazon.
Amazon Web Services (AWS) is one of the most famous and powerful cloud
service platforms. Here Amazon gives explicit benefits of Cloud Computing:
agility, elasticity, cost-saving and globally deployment in minutes. [17] The
customers of AWS range from single IT team to big corporations, and the
reason behind it is the increasing complexity of tasks in the industry. [6] Cloud

4

Computing brings the development of IT into a new stage. It offers brand new
opportunities for outsourcing data and thus benefits individuals, small business
and healthcare systems. It provides the same leverage which was only hold by
big corporations.

In the paper written by Mehdi Bahrami and Mukesh Singhal, they propose
an idea of building a Service-Oriented cloud architecture. [1] In this way, the
information can be transmitted without extra work on transformation. Here
it focuses on eHealth systems and gives assessments of performance based on
the Scalability, Customization, Independence of services and Standardization
of service. However, it did not provides details of experiment setup, the plot
derived from the performance of designed Cloud systems miss the details of how
it counts the weight of all elements. And the algorithm used also neglect the
selecting process. However, it still shows the potential of Cloud Computing in
the healthcare field and gives useful opinion on how to reduce the impact of
heterogeneity of systems to improve the efficiency.

Another article views Cloud Computing as a classification, business models,
and research directions which is written by Christof Weinhardt, et al. [16] It
present the Cloud Business Model Framework (CBMF) as a three-layer system,
which are infrastructure in Cloud, platform and applications. It points out that
more and more big corporations has realized the vital role of cloud services
with increasing demand in modern industries. For example, Amazon, Google
and IBM are all extending computing infrastructures and platforms as a core
service. However, collected data is missing in the report and further information
about pricing strategies are not presented. The highlights of this report is
the Application Domains chapter. It emphasises the urgency of having a new
business models, especially with respect to the licensing of software as well as an
efficient and clear pricing strategy for complex cloud services.

3.2 Worries about Cloud Computing

The report written by Andrew Larkin points out most serious challenges that
Cloud Computing are facing and offers some ideas to address these problems.[9]
As mentioned before, safety and privacy are the keys of winning users’ trust.
However, hacker have successfully attacked the data centres in the past. Sen-
sitive information and valuable technologies owned by corporations or private
information and individual patents can not afford to be leaking. As a remote
data centre, it is impossible for users to fix anything when problems occurred. It
is a big disadvantage when compared to local data centre. Also, cloud servers can

5

be paralysed or even destroyed when natural catastrophe happens. This article
uses various examples to present the difficulties when applying Cloud Computing
and it keeps every point illustrated following a well-organized structure. Possible
solutions are given to most of the problem together with explicit data to help
readers getting better understanding. However, no reference is attached and
many points such as accessibility and regulation.

Despite the bright side of this technology, there are also arguments and
concerns against Cloud Computing. In the paper written by Sreeranga Rajan
and Fujitsu, top ten challenges of big data security and privacy challenges are
introduced and measures to enable safe and trustworthy cloud environments are
explained. [13] The most important part is securing data storage and transaction
logs. Unauthorized access and 24/7 availability are believed to be safer than
Auto-tiering solutions. Validating and filtering input, applying real-time security
and monitoring are being regarded as future developing domain. This is a simple
guidance towards cloud security issues and it mainly just covered theoretical
knowledge without practical examples.

4 Edge and Cloud Computing

The need for edge computing was grown from the success of IoT and rich
cloud services[14, 15]. Edge computing and cloud computing are both essential
architectures in our Internet today, especially at the fifth generation cellular
networks era, in which network latency becomes an critical part [7].

Edge computing can be regarded as a post-cloud computing model[12]. Ac-
cording to the prediction from IDC, the number of apps at the edge will increase
800% [8]. We hereby discuss their relationship and difference in terms of goals
and technical challenges.

4.1 Goals

Both edge computing and cloud computing share the same main purpose, to
process and deliver data through network in different approach. Generally
speaking, cloud computing is a centralized network where all data is handled in a
central location, such as a data center. While edge computing is a decentralized
distributed network that is close to the source of data.

Initially edge computing was born from content delivery networks (CDN),
which provides web contents to end users as close as possible to make latency
low [3]. The concept was later developed into edge servers, whose purposes were

6

similar to CDN. For example, Akamai deployed cloud computing near the end
user to take the advantage of cloud computing and low latency [11]. Nowadays,
edge computing performs computation on any functional computing entity at
the edge, such as IoT devices. The goal is always same, close to users.

Edge computing and cloud computing are not mutually exclusive. While the
decentralized edge computing provides benefits, the centralized cloud computing
is needed to centralize the storage data and analysis of the high value business
data [10]. After the data is processed at the edge, it will eventually reach the
cloud, which acts as back-end access for central management. Edge computing
needs cloud computing, especially in business. Additionally, computing power
at edge devices is usually lower. If a large amount of data is involved in a
computation, such as big data analytic and deep learning, the edge may not be
able to handle them efficiently. Under such situation, the computation should
be done in the cloud.

Cloud computing also needs edge computing. Cloud computing focus on
providing on-demand availability of computer system resources. It provides
many models for users to launch difference resources without the need of direct
management of data center. It focuses on high-capacity, low-cost, and on-demand,
but it did not consider the latency to end users at the first place. The cloud
computing is deployed in data centers, and the latency depend on the physical
distance and route paths between the end users and data centers. To solve the
latency problem, companies deploy cloud computing in world-wide data centers
and redirect end users to the closest data centers. In this case cloud computing is
designated to edge servers [11]. Also, new architectural element such as cloudlet
are designed to bring the cloud closer, which is also considered as edge computing
[4].

4.2 Technical challenges

Challenges of traditional distributed systems such as scalability, reliability,
efficiency, and security appear in a distributed cloud computing environment.
The challenges also apply in edge computing because of its distributed nature.
However, edge computing targets at tremendously large amount of unreliable
things [15], there raise some new issues and challenges.

Scalability : Scalability is an important characteristic in any distributed
systems. It requires the system to adjust the computing performance of each
connected nodes to handle the increasing requests smoothly. It is very hard to
measure accurately measure the scalibility of a system as it requires testing and

7

evaluating. The situation is worsen for edge computing because the amount
of heterogeneity devices are dramatically increased. Some IoT devices like IP
cams, mobile phones tend to have lower performance than cloud data centers.
Edge computing should take these difference into consideration and have a more
effective way of detecting the performance of the terminal devices.

Reliability : Reliability requires a distributed system to continue functioning
when one or more nodes are unreachable. It is more complicated in edge
computing. First of all, it may be hard to accurately identify the reason of failure
of an IoT device, such as low battery, sensor error, or temperature controller
goes down [15]. To mitigate the issues, it is necessary for the IoT devices to
report detailed error information, and each IoT device must have the network
topology of the whole system so that the system failure detection and recovery
can be deployed easily. Moreover, the network connection of edge computing is
mostly wireless, which tend to have unstable latency and packet loss at some
time, it is not as good as cloud computing. This prevents the systems from
delivering reliable service and pending solved with new wireless technology and
algorithms.

Security : Encryption of data is a must in distributed cloud computing. In
edge computing, because data is transit via multiple intermediate nodes before
reaching the cloud, different encryption algorithms should be used according to
security and resource requirements. Raw data should never be visible on the
gateway of edge computing [15]. This involves in a new decentralized model that
controls trust relationship in the edge [5].

5 Conclusion

It can be seen from this report that Edge Computing and Cloud Computing are
not working alone separately. They have different focuses while being applied to
solve complicated problems together. It is not wise to hold the ides of finding
the so-called ’best’ computing method or trying to tell the strict differences
between them. Edge Computing can not replace Cloud Computing and vice
versa. Edge computing aims to reduce the latency and thus place resources near
the devices while Cloud Computing is designed to operate on big data. This
explains the most important difference between them that Edge Computing is
made for time-driven tasks while Cloud Computing is planned to analyse big
data with a data center in a centralised location. However, there are more types
of computing technologies are trending now, such as Big Data Analytics and
Artificial Intelligence. More software are also being expected to thrive with the

8

composition of existing computing technologies to tackle specific problems and
even bring up brand new ideas for modern industrial issues. The computing field
is not isolated, together it works with software engineering, computer science
and many other fields of researches to get improved. Cloud Computing and Edge
Computing are both valuable technologies for the IT industry and business world.
They are still considered has the potential of developing more applications to
achieve higher demand tasks.

9

References

[1] Mehdi Bahram and Mukesh Singhal. “A Dynamic Cloud Computing Plat-
form for eHealth Systems”. In: (2015). [Online; accessed 20/05/2020].

[2] COMPAQ COMPUTER CORPORATION. “Internet Solutions Division
Strategy for Cloud Computing”. In: (November 14, 1996). [Online; accessed
20/05/2020].

[3] J. Dilley et al. “Globally distributed content delivery”. In: IEEE Internet
Computing 6.5 (2002), pp. 50–58.

[4] Elijah. Cloudlet-based Edge Computing. Accessed on May 24, 2020. url:
http://elijah.cs.cmu.edu/.

[5] Pedro Garcia Lopez et al. “Edge-Centric Computing: Vision and Chal-
lenges”. In: SIGCOMM Comput. Commun. Rev. 45.5 (Sept. 2015), pp. 37–
42. issn: 0146-4833.

[6] Eric Griffith. What Is Cloud Computing? https://www.pcmag.com/news/
what-is-cloud-computing. [Online; accessed 20/05/2020]. 2016.

[7] Susan Welsh De Grimaldo. “AI + Edge Computing Essential in the 5G
Era”. In: Strategy Analytics Service Providers Report (2018).

[8] IDC. “IDC FutureScape: Worldwide IT Industry 2020 Predictions”. In:
(2019).

[9] ANDREW LARKIN. Disadvantages of Cloud Computing. https : / /
cloudacademy.com/blog/disadvantages-of-cloud-computing/. [On-
line; accessed 20/05/2020]. AUGUST 7, 2019.

[10] David Linthicum. Settling the edge computing vs. cloud computing debate.
2019. url: https://www.infoworld.com/article/3435121/settling-
the-edge-computing-vs-cloud-computing-debate.html.

[11] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. “The Akamai
Network: A Platform for High-Performance Internet Applications”. In:
SIGOPS Oper. Syst. Rev. 44.3 (Aug. 2010), pp. 2–19.

[12] Yi Pan, Parimala Thulasiraman, and Yingwei Wang. “Overview of Cloudlet,
Fog Computing, Edge Computing, and Dew Computing”. In: Proceedings
of The 3rd International Workshop on Dew Computing (2018), pp. 20–23.

[13] Sreeranga Rajan and Fujitsu. “Expanded Top Ten Big Data Security and
Privacy Challenges”. In: (16 June 2013).

10

http://elijah.cs.cmu.edu/
https://www.pcmag.com/news/what-is-cloud-computing
https://www.pcmag.com/news/what-is-cloud-computing
https://cloudacademy.com/blog/disadvantages-of-cloud-computing/
https://cloudacademy.com/blog/disadvantages-of-cloud-computing/
https://www.infoworld.com/article/3435121/settling-the-edge-computing-vs-cloud-computing-debate.html
https://www.infoworld.com/article/3435121/settling-the-edge-computing-vs-cloud-computing-debate.html

[14] W. Shi and S. Dustdar. “The Promise of Edge Computing”. In: Computer
49.5 (2016), pp. 78–81.

[15] W. Shi et al. “Edge Computing: Vision and Challenges”. In: IEEE Internet
of Things Journal 3.5 (2016), pp. 637–646.

[16] Christof Weinhardt et al. “Cloud Computing – A Classification, Business
Models, and Research Directions”. In: Business Information Systems
Engineering: The International Journal of WIRTSCHAFTSINFORMATIK
1.5 (2009), pp. 391–399. url: https://EconPapers.repec.org/RePEc:
spr:binfse:v:1:y:2009:i:5:p:391-399.

[17] What is cloud computing? https://aws.amazon.com/what-is-cloud-
computing/. [Online; accessed 20/05/2020].

11

https://EconPapers.repec.org/RePEc:spr:binfse:v:1:y:2009:i:5:p:391-399
https://EconPapers.repec.org/RePEc:spr:binfse:v:1:y:2009:i:5:p:391-399
https://aws.amazon.com/what-is-cloud-computing/
https://aws.amazon.com/what-is-cloud-computing/

Contribution

Futong Han Introduction Edge Computing
Binjie Zhou Cloud Computing Conclusion

Junyan Li Abstract
Section 4 Edge and
Cloud Computing

Group
Work

Proofreading Reference

Cloud Security Practices: Security Operations,
Audits, and Compliances

Prashanth V. Dommaraju
(12998214)

University of Amsterdam
prashanthvarma.dommaraju@student.uva.nl

Neeraj Sathyan
(12938262)

University of Amsterdam
neeraj.sathyan@student.uva.nl

Vignesh Murugesan
(12970883)

University of Amsterdam
vignesh.murugesan@student.uva.nl

Abstract

Cloud computing has introduced a new age of information technology, with in-
formation comes privacy and security. History of data breaches and continuously
evolving software and technologies add new types of vulnerabilities, security, and
privacy issues. These issues affect cloud in a significant manner, mainly the public
cloud service providers and cloud users. Few governments took proactive mea-
sures introducing policies such as the European union’s General Data Protection
Regulation GDPR. Security practices enable cloud users to defend themselves in
case of breach or data leaks. Still, it is also the case of the cloud service provider’s
implementation of security, and there is always a tradeoff between choosing public
providers and private providers. Compliances such as PCI-DSS, HIPAA, and
ISO 27001 enable proper industry regulations. Public cloud service providers are
also interested in government assets, and they are designing cloud services in that
way. For example, AWS GOVCloud has different certifications and compliance
requirements from the U.S. Federal government, allowing the government to safely
move its assets to the cloud. We studied various surveys, studies, compliance,
reports, models, and practices on cloud security. We provided our perspective on
these studies with the most important security cases handled in the cloud sector
nowadays.

1 Introduction

Cloud computing has been at the forefront of changing the I.T. infrastructure, as we know. Cloud
computing made Cloud Users(CU) such as Enterprises and Organizations to efficiently reduce
the cost, physical resources, and I.T. management; they still lack confidence in Cloud Service
Providers(CSP). Cloud computing makes centralized management of data difficult. Evolving cloud
computing and services introduced various types of security operations, audits, and compliance on
Cloud Service Providers(CSP) to maintain integrity and trust with Cloud Users(CU). Our research
question/assumption is how current Cloud Users(CU) and Cloud Service Providers(CSP) have
their strategies, operations, the auditing process, and compliance’s. International Data Corporation
(IDC) conducted a survey (see Fig.1.) of 263 IT executives and their line-of-business colleagues to
understand and see opinions on the I.T. cloud service usage. Security was found to be the prime issue
of cloud computing.

4th Assignment on Web Services and Cloud Based Systems (UvA-5284WSCB6Y 2020), Amsterdam, The
Netherlands.

Figure 1: International Data Corporation (IDC) survey on On-Demand Cloud Challenges.(Source:
[36])

Throughout the review, we considered the peer-reviewed papers and followed the compliance stan-
dards such as NIST and ISO/IEC. Reviewed the Cloud Security Alliance(CSA) research, such as
Security Guidance v4 and Cloud Control Matrix. Security surveys also considered in the review. We
selected papers, surveys, and articles based on the highest number of citations and year published
from peer-reviewed journals such as ScienceDirect, Institute of Electrical and Electronics Engineers
(IEEE) Xplore and Springer.

The 2nd section starts with the standard NIST definition of cloud computing and dives into different
security models presented and implemented by the Cloud Service Providers(CSP). We considered
the NIST Cloud Multiple-Tenancy Model, The Cloud Risk Accumulation Model of CSA, and Jerico
Forum’s Cloud Cube Model from paper [5] and discussed how different security issues affect cloud
computing in this section. We also covered the Third Part Auditor part in security practices and
discussed different papers proposed regarding privacy-preserving public audits [6],[7], and [8]. The
3rd section deals with the different compliances and regulations followed by the Cloud Service
Providers such as PCI-DSS, HIPAA, GDPR and IS0-27001. This section also discusses about the
AWS GOVCloud about how different government entities require different compliance and regulation
requirement to earn there certification such as FedRamp, NIST, SRG, FISMA.

2 Security Models, Issues, and Practices in the Cloud

Figure 2: Cloud Service Deployment Models divided into Four categories, each containing their
subcategories based on the NIST definition.

2

We considered the NIST definition of cloud computing. According to [1] NIST Publication 800-145
the cloud has five essential characteristics, three service models, and four deployment models. We
are going to reference these different characteristics and models throughout the review. We would
have considered the ISO/IEC definition of cloud capabilities, but the NIST model is more publicly
accessible and equally valid. [1] NIST model is widely adopted, and the definition is observed
continuously in Cloud Security Alliance (CSA) research. The five essential characteristics are
On-demand self-service, Broad network access, Resource pooling, Rapid elasticity, and Measured
service. The three service models are Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS). Finally, the four deployments are Private cloud, Community
cloud, Public cloud, and Hybrid cloud. Maximum no of available cloud services are a software as a
Service built over Platform as a Service, which is built over Infrastructure as a Service.

The current trend of continually evolving cloud makes it difficult to point to an exact reference or
architecture. However, according to the NIST definition and reference from the paper [2], we made
this Fig. 2. for proper representation.

2.1 Security Models

2.1.1 NIST Cloud Multiple-Tenancy Model

[3] Clouds are multitenant by nature. Multiple different consumer constituencies share the same
pool of resources but segregated and isolated from each other. Isolation allows Cloud Users to
organize their assets better. Multi-tenancy nature does not apply to all the CU’s, as some need more
centralized management. [5] Virtualization allows different CU’s to access the same physical resource
such as processor, memory, storage, and I/O. As virtualization makes CU’s isolated between VM’s,
this allows any malicious malware, virus, or attack to be isolated for that particular container. The
difficulties of Multi-Tenancy models are [5] data isolation, architecture extension, configuration
self-definition, and performance customization.

2.1.2 Jerico Formu’s Cloud Cube Model

Jerico Formu’s model is a graphical respresntation of security attributes in the cloud deployment
models. There are four dimensions in this model as shown in the figure 3.

Figure 3: Jerico Formu’s Cloud Cube Model.(Source: [9])

Internal/External: This represents the physical location of data, whether inside or outside of CU’s
limit. For example, the data on the public cloud is considered as the external and private cloud as
internal.

Proprietary/Open: This parameter represents the interoperability of the data. Proprietary means
that CSP’s in control of all the cloud services such as private clouds. Where open means there is no
lot of constraint on [5] data sharing and incorporation of businesses such as public clouds.

De-perimeterized/Perimeterized: Perimeterized means the data is running in a secure environment
such as a private VPC or with a good firewall and IDS/IPS systems. De-perimeterzied system means
that it does not have proper security mechanisms in place.

Insourced/Outsourced: [5] Insourced means that an organization’s employees present cloud service,
and Outsourced implies that a third party offers cloud service.

3

2.1.3 The Cloud Octagon Model of CSA

In this octagon model, Fig. 4., different sections represent different departments that are exter-
nal/internal in an Organization.

Figure 4: Cloud Octagon Model.(Source: [25])

[25] Data Classification section deals with whether the data on CSP has the following features:
encryption, ownership, and management of data, logical access of data, and IAM Governance. Service
Providers, Development Engineering and Architechture section deals with controls such as obtaining
Assurance throughout the chain of providers, awareness of shared responsibilities between three
different parties, and awareness of and mitigation in place for malicious insiders. Procurment ensures
the right to audit, permission to conduct penetration testing, early risk identification, and mitigation.
Countries Using, Processing, and Hosting section represents that data cannot be transferred to another
country without consent, data in motion shall be protected, and compliance to laws and regulations
in multiple countries. IT, Governance, and Security Policies section represents agreements on roles,
responsibilities, and agreements on I.T. operating procedures.

2.2 Security Issues

Multi-tenancy also leads to the risk of the information or data visibility to other CU’S. Compromised
physical layer or Platform As A Serivce(PaaS) layer can lead an attacker to take control of the Software
As A Serivce(SaaS) or Application As A Serivce(SaaS) layer. One of the main characteristics of
the Multi-tenancy is the Resource Pooling; this allows CU’S to share the computational, network,
and storage resources. [10] The network resource sharing allows the cross-tenant attack as its
hard to distinguish between a vulnerability scan and a real attack. Once if the attackers can get
hands-on network components, they can launch attacks such as sniffing and spoofing. Security
misconfigurations can comprise the security of the whole cloud system. For example, migration of
V.M.s, data, and applications usually need a change of security policies. Any proper misconfiguration
or weakness can lead to data compromise. CSP’s also have data recovery mechanisms in case of
damage or compromise; these features can also lead to security issues. Malicious users of CU’s
can access the previous user’s data using data recovery. This study [13] revealed that over 5000
images on Amazon EC2 had problems such as the prevalence of malware, the quantity of sensitive
data left on such images, and the privacy risks of sharing an image on the cloud. As most of the
cloud controls are Web based UI’s there are security issues which can impact the CU’s such as [27]
OWASP top ten web application security risks: Injection(e.g. Remote Code Execution), Broken
Authentication(e.g. compromised passwords, keys, or session tokens), Sensitive Data Exposure(e.g.
data such as financial, healthcare, and PII), XML External Entities (XXE), Broken Access Control,

4

Security Misconfiguration, Cross-Site Scripting, Insecure Deserialization , Using Components with
Known Vulnerabilities, and Insufficient Logging and Monitoring.

Security issues such as Server Side Request Forgery(SSRF) allow attackers to gain internal mech-
anisms of CSP’s. For example, André Baptista reported an SSRF issue to Shopify’s Vulnerability
Disclosure Program on HackerOne. This report reveals that [11] it was possible to gain root access to
any container in one particular subset by exploiting an SSRF bug in the screenshotting functionality of
the Shopify Exchange application. According to the report, an attacker can gain metadata information
such as SSH keys, CRT files, Network architecture, and Database keys, which can be the primary
source of data leaks.

2.3 Security Practices

[26] CSA research and case study on the top threats regarding cloud computing revealed that human
resource security could have acted as mitigation in six out of nine security breaches. While automated
tools and scanners can perform suitable tasks in detecting vulnerabilities, there is a human factor
that can be a reason for breaches. Proper security training can significantly decrease the attack
surface layer for attackers. CSP’s role is nevertheless low, and they should provide secure use of
virtualization and proper images. This means CU’s cannot run virtual images that are not authorized by
CSP’s. [3] CU’s are also responsible for security regarding virtualization such as identity management,
monitoring, logging, and image asset management. Container orchestration is widely adopted because
it provides OS-level virtualization [28], where kernel allows the existence of multiple isolated user-
space instances. [3] Containers do not offer total security isolation compared to virtualization but
provide task segregation. Containers security is based on [3] deep understanding of O.S. internals,
such as namespaces, network port mapping, memory, and storage access. CU’s should understand the
security isolation capabilities and operating system beneath it, [3] ensure only approved and secured
images can be deployed, implement role-based ACL and strong authentication regarding managing
the images and container repositories. CU’s are typically tended towards Third Party Auditors(TPA)
with experience and expertise, and they help to improve and assess their security based on TPA’s
report. However, TPA cannot be entirely trusted because audits can introduce new vulnerabilities
and data leaks. These are a few papers [6],[7], and [8], which proposed the privacy-preserving
audits. In paper [8], the authors discuss the public audit mechanism of implementing homomorphic
authentication to verify the data blocks from CU’s using metadata and adding a pseudo-random
function to the linear combinations generated. Paper [6] proposes that CU’s or Data Owner(DO)
according to the paper, runs a KeyGen that generates secret key(sk) and public key(pk), where sk is
pair of randomly generated key spk and key generated on signature of the filename ssk, where pk is
combination of random generators and spk. Then the files are divide into blocks, and CU generates
the authenticator for each block. They also proposed doubly linked info table(DLIT) and location
array(LA) where the data, as explained in previous, is preprocessed to CSP so TPA can establish the
DLIT and LA TPA runs a Challenge Generation(ChalGen) to CSP on behalf of CU and gets the file
tag verifies with spk, then it picks up random DLIT blocks and sends the challenge. CSP generates
tag proof and data proof to the challenge and sends it back to TPA. TPA then runs the VerifyProof to
check the DLIT and LA data. TPA gets secure access to the CU’s data. These privacy-preserving
audits help CSP’s and CU’s to trust the TPA without any problem of data or information leak and
protect the data integrity. Security practices consist of compliance and regulations too, but it is a
topic of its own. Next section deals with the governance, compliance, and regulation in the cloud.

3 Compliance and Regulation in the cloud

An important aspect of cloud services when providing its customers with features and services is
that they comply with the concerned laws and regulations to maximize protection from data leak and
privacy issues. A non-compliance service provider can face severe penalties under the various laws
governed under the cyber-laws of each country or union, where it operates or provides a service, and
they become a target of a data breach or privacy leak. There are four major factors upon which the
compliance certifications and rules for cloud security are based upon [7,14,15]:

• Data Protection
• Data Localisation
• Data Sovereignty

5

• Right to Information
• Inter-nations law and its context for application

Any new compliance standards evolve with these features as the fundamental model. Hence industry
can try to standardize a cloud security model focused on all the above-said factors in order to reduce
the complexity of introducing a compliance model certification. This can be a huge boost in saving
humongous development and testing hours as, not only are there a lot of standards and regulations,
but they constantly change, making it difficult for a cloud business to keep up with the ever-growing
compliances and laws [13]. It should also be noted that the following compliances do not mean the
CSP (Cloud Service Providers) are not susceptible to hacks. This is a misconception. The book
[15] stresses that there is no guarantee of security, and compliance does not go hand in hand with
security. Compliance is formed in order to regulate and make strict controls of cloud services that
make it difficult for any security exploit, and even if a security breach happens, it can be dealt with
further consequences. An example to discuss this common misconception is the common guidelines
for setting strong passwords as in Fig.5. Setting up of strong passwords that follow certain lexical
rules are now compliance in many organizations for their employees. However, this does not prevent
a security breach like remote code execution or account takeover; the probability of the attack is
lowered. No system is safe [16] is the standard guidelines the hacker community idolizes, and
this tends to be true as new and weird security vulnerabilities keep on evolving based on the new
upcoming cloud technologies. As more vulnerabilities surfaces, more and more compliance and
regulations are put forth by the regulators and organizations. The literature [7,14,15,16] suggests an
ever-growing tug-of-war between upcoming vulnerabilities and new compliance formation based
on those vulnerabilities. This section provides a review of the history and the outlining goal of
the compliance standards, cloud services follow, and its effect on an organization by selecting the
most important compliance and standards currently being followed by cloud service providers. The
problems identified within a majority of organizations in achieving compliance were found to be due
to these reasons [14]:

• Auditing is not generalized for a virtualized distributed environment.
• Cloud infrastructure tends to be interleaved with different features and hence is difficult to

match all of the compliance issues on all the cloud features.
• CSP Auditing may involve mandatory data share to the enforcing agency, including an NDA.

The customers may not want even that to happen.

Figure 5: Mandatory Strong Passwords: Microsoft Outlook

The compliance regulators challenge Cloud Service Providers to establish, monitor, and demonstrate
ongoing and applicable compliance rules with a set of controls that meet their customer’s business
and regulatory requirements. Maintaining separate compliance efforts for different regulations or
standards is not sustainable, as previously thought of [3]. Hence organizations are focusing on a
practical approach to audit and compliance in the cloud by distribution and coordination of internal
policy compliance, regulatory compliance, and external auditing. Today, these three subsets make up
almost all of the compliance types evolved by the regulators or the cloud organization. All of this
should ultimately be beneficial to cloud customers, like:

• Protections against data breaches and leaks.
• Lower risk of legal sanctions.
• A good low cost per compliance implementation.

6

• Assurance of adherence to international privacy and security standards.

• Respect of rules of highly regulated industries like healthcare.

• Decreased business and financial risk in the long run.

• Easy handling of legal requests and audit processes.

3.1 Internal Policy Compliance

Internal compliances established within the organization providing cloud access or business can be
completely private or open to the public. If a business makes the internal compliance, they reflect it
upon the service level agreement to the CSP, to which the CSP has to comply [3]. Typically internal
company level compliances are based on: risk assessment, technology stack vulnerability and sustain-
able solutions, hierarchical developer access rights, information and communication, monitoring and
solutions [31]. Common and simple compliance that can be found in all tech companies (not only
CSPs), is the merge-request permission before committing a production-ready code change to master
branch in a distributed version control and source code management functionality tool like git [32],
which will use kubernetes [33] to automatically deploy the master branch to production upon any
new commit. These are not mandated or governed by external agents or customers but are crucially
important in identifying and preventing potentially vulnerable code stack from running in production.

3.2 Regulatory/External Compliance

External Compliance requirements from both governing agencies and customers are more dynamic
and keep on changing time after time. Keeping up with these compliances can make a cloud service
boost customer satisfaction and business. Frequently, the requirements are based on or refer to
industry standards. Hence CSPs can build a common framework using industry standards as a base
model to work around the considerable quantity of standards and compliance models, as shown in
Fig.6. However, only compliances related to information and cloud security will be discussed here to
keep in scope with the article.

Figure 6: Ever growing regulatory compliances and standards

3.2.1 PCI DSS:

This is one of the first crucial compliance standards introduced in the cloud systems to maintain
integrity and security of payment details. Now more than 53 countries mandate CSP to involve
payment details to comply with this standard [37]. Online credit card and payment details are sensitive
information that can lead to fraud or theft when exposed. To meet with these major payment gateway
cloud companies like Visa and MasterCard have started their programs [29]. Validation and auditing
are performed annually or quarterly by a method suited for the volume of transactions in records.
Compliance is divided into seven groups of data and information security objectives:

• A secure and foolproof network and systems.

7

• protection and encryption of cardholder data.

• Maintaining a vulnerability management program.

• Implement SAC measures.

• Regular Monitoring and Testing.

• Maintain a proper information security policy.

• use of updated antivirus software certified within the industry.

The growth of multihop VPNs and advanced firewalls have made implementation easier over the
years, although there are regular version updates of this compliance coming up [29]. This compliance,
in itself, poses a sideline security threat. Logs and audit trails are often needed to investigate incidents,
and organizations under PCI DSS have to provide timely forensic investigative data that can contain
sensitive information to the regulators. The trust with regulators is the only solid line with which this
compliance works. Nowadays, organizations are implementing end to end encryption of logs and
introducing expiry dates. They are read-only access for these logs; hence once the auditors verify the
logs, they are ready to be archived or deleted. An example of a breach under the PCI DSS would
be to consider the Heartland Payment Systems (HPS) data security breach in January 2009. The
company was audited and made PCI compliant two weeks before the breach. The breach was caused
by a malware that was able to enter the payment services via SQL injection and cost the company
millions in dollars of damages. This proves that being PCI compliant does not mean that systems are
hack-proof. A rigorous pen testing methodology with all test cases must be involved in the system to
prevent such attacks. These are primary everyday tasks needed to perform to test the integrity of the
firewall and the organization’s methodology that complies with PCI DSS.

3.2.2 HIPAA:

Health Insurance Portability and Accountability Act makes it mandatory for any cloud services to
comply under its measures when supporting a business related to healthcare to get HIPAA certification.
A risk analysis is the initial auditing process in this compliance step. Protected Health Information
(PHI) is the target data focused on protection with this compliance, just like with credit card data for
PCI DSS. This particular compliance was more in line with that of PCI DSS in terms of mandates and
audits. However, the passing of the 2009 Health Information Technology for Economic and Clinical
Health (HITECH) Act in the USA made significant changes to the compliance structure in terms
of breach notification requirements, and accounting of disclosures of a patient’s health information.
With further developments in healthcare and with the rise of the medical health insurance companies
that act as third party organizations to access the data stored within these HIPAA compliant CSPs, a
lot of structural changes to the compliance model is expected in the future.

3.2.3 GDPR:

The GDPR (General Data Protection Regulation) is one of the pioneering compliance regulations put
forth and mandated by the European Union against any organization that is involved with any business
or involvement with its citizens. The core principle of GDPR is that protection of personal data is
a fundamental right, and this regulation enforces it. The rights relating to the collection, storage,
use, processing, transfer, etc. of personal data belonging to the individual, not data controllers,
regardless of where data resides. If the company suffers a breach and the records of any E.U. citizen
are compromised, the GDP jurisdiction will extend globally. That company may be pursued and fined
significant sums of money. This new compliance is a huge undertaking for the implementation point
of view that CSPs started separate dedicated teams to enforce this [18] gradually. The major difference
between this compliance and others is, GDPR is a regulation and hence mandates that all positive
organizations need to be GDPR compliant. GDPR became a model to design new privacy-related
compliances outside E.U., including Chile, Japan, Brazil, South Korea, Argentina, and Kenya. The
California Consumer Privacy Act (CCPA), adopted on 28 June 2018, has many similarities with
GDPR [19]. GDPR focuses on a secure flow of personal data, and its rights belong to the person
to which the data belong. GDPR is implemented and auditing is carried out using two divisions:
data controller and data processors. Some of the rights of a data subject who has his/her data stored
within those CSPs are:

• Right to require consent (and where applicable, to withdraw consent).

8

• Right to request that businesses delete the individual’s personal data(right to be forgotten).
• Right to access their personal data (subject access).
• Right to have inaccuracies corrected (rectification).
• Right to data portability.
• Right to object to certain uses (e.g., processing, direct marketing, profiling).
• Right to complain to supervisory authorities.

3.3 Internal/External Auditing and Standards

3.3.1 ISO 27001:

ISO/IEC 27001 defines mandatory requirements for an Information Security Management System
(ISMS). Its a certification given for CSP dedicated to the field of information system security and web
services interoperability [20]. This standard provides a blueprint to provide a model for: establishing,
implementing, operating, monitoring, reviewing, maintaining, and improving information security
management system.

3.4 Gov Cloud Certifications for Public Clouds

Public Clouds run by governments are increasingly becoming popular to register and process dif-
ferent civil conducts like tax filing, municipal rent agreement, etc. As more and more government
intermediary services are becoming online, public clouds start providing services to it. Thus comes a
challenge to protect the citizens and the government’s sensitive data from a breach as well as from
other government agencies that can mainly utilize their domestic law to eavesdrop on the data used
by different countries in the CSP hosted in that country’s location. An example of this can be the
case of the USA’s Patriot Act, which allows the U.S. government power to retrieve and analyze data
from the servers hosted by CSPs at their sovereign location. This prevents significant government
agencies outside the USA to trust any USA registered CSPs with their internal data and have a higher
demand to implement its public cloud [21]. As the concerns of government data leaks are a primary
concern within public clouds, different gov cloud certifications have evolved to tackle these issues
in a more step-up manner. Some of the most common certifications used today in public clouds are
FISMA, NIST, SRG, and FedRAMP.

3.4.1 FISMA

The Federal Information Security Management Act of 2002 (FISMA) considers information security
as the topmost priority in a public cloud. It requires U.S. agency heads to implement policies and
procedures in a cost-effective process to alleviate security risk to a minimum. It mandates that
sensitive data is not shared outside of the country to become FISMA certified and provide cloud
services to the government. The core concept of FISMA is to make stringent rules as to make a cloud
service provider limited to data sharing capability and make it easy for the U.S. government to utilize
those cloud services. The Act was updated recently in 2014 to the Federal Information Security
Modernization Act.

3.4.2 NIST

The National Institute of Standards and Technology (NIST) is a non-regulatory agency belonging to
the Department of Commerce of the United States Government. This agency attributes standards
and government compliances to public cloud service providers to enhance the data security within it.
NIST creates and promotes information security standards for the federal government, which then
indirectly applies to the CSPs in agreement with the government and must comply with them.

3.4.3 SRG

United State’s Department of Defence (DoD) Cloud Computing Security Requirements Guide pro-
vides authenticity to a CSP so that defense and military data, specifically intelligence data, can be
stored and analyzed using those certified infrastructures. The DoD Cloud Computing SRG leverages
the FedRAMP program to establish a standardized approach for the DoD to assess cloud service
providers (CSPs).

9

3.4.4 FedRAMP

The Federal Risk and Authorization Management Program (FedRAMP) made possible the U.S.
federal government’s cloud-first initiative by making the transition of signing contracts with CSPs to
make business easier. FedRAMP, unlike FISMA, is specific only to cloud service providers. Therefore
its auditing and certification process is far more stringent and rigorous in terms of cloud computing
security standards. Most private-sector cloud companies recognize this as the gold standard for
certification in cloud security.

a good point to be noted all the servers of AWS under the compliance of FISMA, NIST, SRG, and
FedRAMP all are stored and made multiple instances right inside the U.S. territory.

Figure 7: Authorization process for federal clouds: (a) old way and (b) new way. (Source: [23])

4 Conclusion

Cloud computing can offer many advantages to the CU’s, but security is the primary reason CU’s
find it challenging to adopt. Where startups, small, and medium-size companies are more flexible
towards cloud because of the economic feasibility. Government and entities with highly confidential
data are hesitant to shift all their assets to the cloud. Strict compliance requirements are progressed
to meet those requirements. However, there is no guarantee that compliance and regulations can
stop breaches. For example, AWS SOC 3 report [35] states that Vulnerabilities in information
technology components as a result of design by their manufacturer or developer and sophisticated
social engineering techniques specifically targeting the entity. This indicates that CSP’s cannot
provide total security to CU’S because CSP’s job is to ensure and provide proper security to their
IaaS and PaaS platforms. As critical controls are given to CU’s, some of the responsibility also
belongs to them. [34] Synack(Crowd-sourced pen-testing company established by former NSA
employees and has significant fortune 500 companies as clients) conducted a broad survey on more
than 311 organizations from the USA, where there were 25% technological and 17% government
organizations. The study found some compelling aspects: 54% of organizations follow internal
compliance and security standards. 17.3% of organizations have implemented GDPR since it is
inception before two years. 63% use external pen-testing for identifying the vulnerabilities. The
reason for more external testing was to meet the compliance requirements and reduce vulnerabilities.
As cloud services are expanding and integrating new features, it also increases the attack surface
layer and new compliance and regulations. Artificial Intelligence can be prominent in defensive cloud
security practices. Future security practices also require regulations for A.I./ Machine Learning(ML)
systems. Proactive measures can lead to better safety and privacy for the upcoming generation of
humans.

10

References

[1] P. Mell, T. Grance The NIST Definition of Cloud Computing. Special Publication 800-145 NIST (2011)
https://doi.org/10.6028/NIST.SP.800-145 .

[2] Fernandes, Diogo & Soares, Liliana & Gomes, João & Freire, Mario & Inácio, Pedro. (2013). Security Issues
in Cloud Environments - A Survey. International Journal of Information Security: Security in Cloud Computing.
10.1007/s10207-013-0208-7.

[3] Cloud Security Alliance. Security guidance for critical areas of focus in cloud computing(v4.0). Decemeber,
2009. https://downloads.cloudsecurityalliance.org/assets/research/security-guidance/
security-guidance-v4-FINAL.pdf

[4] Jansen, Wayne A., and Tim Grance. Guidelines on security and privacy in public cloud computing. (2011).

[5] Che, Jianhua & Duan, Yamin & Zhang, Tao & Fan, Jie. (2011). study on the Security Models and Strategies
of Cloud Computing. Procedia Engineering. 23. 586–593. 10.1016/j.proeng.2011.11.2551.

[6] J. Shen, J. Shen, X. Chen, X. Huang and W. Susilo, An Efficient Public Auditing Protocol With Novel
Dynamic Structure for Cloud Data,” in IEEE Transactions on Information Forensics and Security, vol. 12, no.
10, pp. 2402-2415, Oct. 2017, doi: 10.1109/TIFS.2017.2705620.

[7] Lins, Sebastian & Schneider, Stephan & Sunyaev, Ali. (2018). Trust is Good, Control is Better:
Creating Secure Clouds by Continuous Auditing. IEEE Transactions on Cloud Computing. 6. 1-14.
10.1109/TCC.2016.2522411.

[8] C. Wang, Q. Wang, K. Ren and W. Lou, Privacy-Preserving Public Auditing for Data Storage Security
in Cloud Computing, 2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010, pp. 1-9, doi: 10.1109/INF-
COM.2010.5462173.

[9] Jericho Forum’s Cloud Cube Model, https://www.w3schools.in/cloud-computing/
cloud-cube-model/, Last accessed 27-05-2020.

[10] Ali, Mazhar & Khan, Samee & Vasilakos, Athanasios. (2015). Security in Cloud Computing: Opportunities
and Challenges. Information Sciences. 305. 10.1016/j.ins.2015.01.025.

[11] André Baptista, SSRF in Exchange leads to ROOT access in all instances. https://hackerone.com/
reports/341876, Last accessed on 27-05-2020.

[12] Marco Balduzzi, Jonas Zaddach, Davide Balzarotti, Engin Kirda, and Sergio Loureiro. 2012. A security
analysis of amazon’s elastic compute cloud service. In Proceedings of the 27th Annual ACM Symposium on
Applied Computing (SAC ’12). Association for Computing Machinery, New York, NY, USA, 1427–1434. DOI:
https://doi.org/10.1145/2245276.2232005.

[13] An Introduction to Cloud Computing for Legal and Compliance Professionals, Microsoft Cloud.
https://download.microsoft.com/download/0/D/6/0D68AE95-6414-4074-B4B8-34039831E2BF/
Introduction-to-Cloud-Computing-for-Legal-and-Compliance-Professionals.pdf, Last
accessed: 27-05-2020.

[14] Baldwin, Adrian, Simon Shiu, and Yolanta Beres. Auditing in shared virtualized environments. Hewlett-
Packard Labs Technical Reports 4 (2008): 2-19.

[15] B. R. Williams, A. Chuvakin. PCI Compliance: Understand and Implement Effective PCI Data Security
Standard Compliance, 4th Edition, 2015 ELSEVIER ISBN: 978-0-12-801579-7

[16] Cole, Eric. Advanced persistent threat: understanding the danger and how to protect your organization.
Newnes, 2012.

[17] Elluri, Lavanya, and Karuna Pande Joshi. A knowledge representation of cloud data controls for eu gdpr
compliance, 2018 IEEE World Congress on Services (SERVICES). IEEE, 2018.

[18] Duncan, Bob. Can eu general data protection regulation compliance be achieved when using cloud
computing?, Cloud Computing 2018: The Ninth International Conference on Cloud Computing, GRIDs, and
Virtualization. IARIA, 2018.

[19] General Data Protection Regulation https://en.wikipedia.org/wiki/General_Data_
Protection_Regulation, Last accessed on 22-05-2020.

[20] Vines, Ronald L. Krutz Russell Dean, and R. L. Krutz. Cloud security: A comprehensive guide to secure
cloud computing. Wiley Publishing, Inc, 2010.

[21] Diez, Oscar, and Andres SIlva. Govcloud: Using cloud computing in public organizations. IEEE
technology and society magazine 32.1 (2013): 66-72.

11

https://doi.org/10.6028/NIST.SP.800-145
https://downloads.cloudsecurityalliance.org/assets/research/security-guidance/security-guidance-v4-FINAL.pdf
https://downloads.cloudsecurityalliance.org/assets/research/security-guidance/security-guidance-v4-FINAL.pdf
https://www.w3schools.in/cloud-computing/cloud-cube-model/
https://www.w3schools.in/cloud-computing/cloud-cube-model/
https://hackerone.com/reports/341876
https://hackerone.com/reports/341876
https://doi.org/10.1145/2245276.2232005
https://download.microsoft.com/download/0/D/6/0D68AE95-6414-4074-B4B8-34039831E2BF/Introduction-to-Cloud-Computing-for-Legal-and-Compliance-Professionals.pdf
https://download.microsoft.com/download/0/D/6/0D68AE95-6414-4074-B4B8-34039831E2BF/Introduction-to-Cloud-Computing-for-Legal-and-Compliance-Professionals.pdf
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

[22] Mell, Peter, and Tim Grance. The NIST definition of cloud computing. (2011).

[23] Taylor, Laura. FedRAMP: History and future direction. IEEE Cloud Computing 1.3 (2014): 10-14.

[24] Omotunde, Ayokunle & Oludele, Awodele & Kuyoro, Shade & Chigozirim, Ajaegbu. (2013). Survey of
Cloud Computing Issues at Implementation Level. Journal of Emerging Trends in Computing and Information
Sciences. 4. 91=96.

[25] CSA Cloud Octagon Model, https://cloudsecurityalliance.org/artifacts/
cloud-octagon-model, Last accessed on 22-05-2020.

[26] Top Threats to Cloud Computing: Deep Dive. Release Date: 08/08/2018. https://
cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-deep-dive/, Last ac-
cessed on 22-05-2020.

[27] Owasp Top Ten. Top 10 Web Application Security Risks. https://owasp.org/
www-project-top-ten/, Last accessed on 22-05-2020.

[28] OS-level virtualization, https://en.wikipedia.org/wiki/OS-level-virtualization/, Last ac-
cessed on 22-05-2020.

[29] Morse, Edward A., and Vasant Raval. PCI DSS: Payment card industry data security standards in context.
Computer Law & Security Review 24.6 (2008): 540-554.

[30] Bailey, Sarah F., et al. Secure and robust cloud computing for high-throughput forensic microsatellite
sequence analysis and databasing, Forensic Science International: Genetics 31 (2017): 40-47.

[31] Graham, Lynford. Internal control audit and compliance: documentation and testing under the new COSO
framework. John Wiley & Sons, 2015.

[32] Git, https://en.wikipedia.org/wiki/Git . Last accessed on 22-05-2020

[33] What is Kubernetes?, https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
. Last accessed on 22-05-2020

[34] The 2020 state of compliance and security testing report, Synack, https://www.synack.com/
resources/the-2020-state-of-compliance-and-security-testing-report/, Last accessed on 27-
06-2020.

[35] AWS SOC 3 – Security & Availability, New SOC 1, 2,
and 3 Reports Available, https://aws.amazon.com/blogs/security/
new-soc-1-2-and-3-reports-available-including-a-new-region-and-service-in-scope/
Last accessed on 01-06-2020.

[36] Enhanced Cloud Security by Combining Virtualization and Policy Monitoring Techniques -
Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/
Cloud-Challenges-Issues-by-IDC-Survey-The-fig1-shows-the-cloud-challenges-issues-a_
fig1_271617323 Last accessed on 01-06-2020.

[37] PCI Compliance is Mandatory, https://www.newnettechnologies.com/
pci-compliance-is-mandatory.html , Last accessed on 31-05-2020.

12

https://cloudsecurityalliance.org/artifacts/cloud-octagon-model
https://cloudsecurityalliance.org/artifacts/cloud-octagon-model
https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-deep-dive/
https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-deep-dive/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://en.wikipedia.org/wiki/OS-level-virtualization/
https://en.wikipedia.org/wiki/Git
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
 https://www.synack.com/resources/the-2020-state-of-compliance-and-security-testing-report/
 https://www.synack.com/resources/the-2020-state-of-compliance-and-security-testing-report/
https://aws.amazon.com/blogs/security/new-soc-1-2-and-3-reports-available-including-a-new-region-and-service-in-scope/
https://aws.amazon.com/blogs/security/new-soc-1-2-and-3-reports-available-including-a-new-region-and-service-in-scope/
https://www.researchgate.net/figure/Cloud-Challenges-Issues-by-IDC-Survey-The-fig1-shows-the-cloud-challenges-issues-a_fig1_271617323
https://www.researchgate.net/figure/Cloud-Challenges-Issues-by-IDC-Survey-The-fig1-shows-the-cloud-challenges-issues-a_fig1_271617323
https://www.researchgate.net/figure/Cloud-Challenges-Issues-by-IDC-Survey-The-fig1-shows-the-cloud-challenges-issues-a_fig1_271617323
https://www.newnettechnologies.com/pci-compliance-is-mandatory.html
https://www.newnettechnologies.com/pci-compliance-is-mandatory.html

Contributions:

Team Contribution Split Table
Group Member Tasks Details Duration

Prashanth
V.Dommaraju
(12998214)

Introduction, Security
Models

Involved in collect-
ing appropriate peer
reviewed literature
and industry standard
websites, gathering
points, analysing pa-
pers, retrieving insights
from each papers, latex
report writing

8-9 days

Neeraj Sathyan
(12938262)

Compliances, external
compliances

Involved in collect-
ing appropriate peer
reviewd literature
and industry standard
websites, gathering
points, analysing papers
to see the trends in the
usage of compliances
over CSPs, latex report
writing

8 days

Vignesh Murugesan
(12970883)

Internal compliance and
audit processing

Fact checking,
analysing papers
to get audit controls
and internal company
compliance standards,
proof reading, error
correction, latex report
writing

8 days

13

High Performance Computing in The Cloud (Group
17) : Literature Study

Octafarras, Gamma A.
me@gammaandhika.com

Radhakrishnan, Abijith
mail@abijith.net

Singh, Tavneet
t.s.tavneet@student.vu.nl

Abstract

High-Performance Computing (HPC) workloads have traditionally been run on
private clouds and on-premise clusters. Until recently, the latency, security and
lack of customizability of public clouds have made them an unattractive option
for running HPC workloads. But with newer services and abstractions, the cloud
service providers have claimed that public cloud is a viable option with lower
costs, ease of scale, higher customizability while guaranteeing QoS and SLAs.
This paper looks at the validity of the claim and challenges of public clouds being
used for HPC workloads of scientific and business applications through a survey
of research papers and whitepapers. Different facets of HPC applications in terms
of performance, cost and security in both public and private clouds are analysed
and compared before presenting a comprehensive discussion and conclusion of
our work. The potential for HPC applications in the cloud is promising especially
due to the major innovations made by cloud service providers in the past years to
bridge the gap separating private and public clouds.

Contents

1 Introduction 2

1.1 Motivation . 2

2 Overview of Cloud Computing 3

2.1 Cloud Computing . 3

2.1.1 Public Cloud . 3

2.1.2 Private Cloud . 3

2.1.3 Hybrid Cloud . 4

2.2 Current state of HPC in the cloud . 4

3 Comparison 4

3.1 Performance . 4

3.2 Cost . 6

3.3 Security . 7

4 Discussion 7

4.1 Adoptions . 8

5 Conclusion 8

1 Introduction

High Performance Computing most commonly associates to the method of assembling computing
capability in a way that produces much higher performance than a regular desktop computer or
workstation in order to tackle large problems in science, engineering, or business and gives the ability
to process data and perform complex calculations at high speeds. The acronym HPC can mean both
high-performance computing or high-performance computers, depending on the context.

A supercomputer is the most common type of HPC solution and it usually consists of 100s of compute
nodes working together to finish one or more tasks. This is termed as parallel-processing and it is
comparable to having a large number of PCs networked together to merge their computing power for
quicker task completion.

HPC brings together multiple technologies including programming, architecture, system software and
algorithms, working together to produce swift and efficient results. HPC systems then use computing
resources simultaneously to achieve robust performance.

HPC applications are being employed for different purposes across multiple industries; from being
used in research labs to help scientists tackle issues such as weather prediction, renewable energy and
astrophysics to financial services to track stock exchange trends. Furthermore, HPC is widely used in
the field of artificial intelligence and machine learning. It is also effective in product design as well
as to test simulations.

The first incitation for high performance computing transpired with the conception of cluster comput-
ing. Cluster computers are loosely linked parallel computing device where the computing nodes have
separate memory and operating system instance, but usually with a shared file-system, and employ an
explicitly programmed high-speed network for communication.

Cluster computing connects many computers in a network and then work like a single entity. A
computer that is a part of this cluster computing network is called a node. Standard cluster computing
is devised to create a repetitive environment that will guarantee an application will continue execution
despite a hardware or software malfunction.

Cluster computing further evolved to form grid computing. Grid computing follows a distributed
method for solving computation heavy problems that can not be done with the common cluster
computing design. Instead of replicating computation device and its corresponding setting to create a
redundant environment, a grid computing cluster is a group of computers loosely coupled to function
as independent modules or solve independent problems. Grid computing is devised to run independent
tasks in parallel, thereby leveraging the computer processing power of a distributed model.

Cloud computing emerged with a similar goal as grid computing - to provide a service where
computing resources can be shared with multiple users, but focusing more on the aspects of flexibility,
availability and accessibility. Cloud computing comprises of hardware as well as software resources
made accessible over the internet as external services. Also, cloud service providers build cloud
computing servers to provide prevalent business and research requirements. A private cloud is a
cloud computation service that is not used by any other organization and the user or organization has
the cloud to themselves. By comparison, a public cloud is a cloud computing service that allocates
computing services between several users and the services are provided over the internet.

1.1 Motivation

HPC in the Cloud is an attractive option because the end-user can obtain on-demand computing
capacities. This additionally provides elasticity as well as workload resilience to handle sudden
spikes in computation. Furthermore, compute resources are calculated at a granular level, allowing
customers to spend only for the computations they use, potentially reducing operational costs. The

2

Figure 1: High Performance Computing Architecture

cloud providers can provide access to the latest hardware through vendor deals and frequent addition
of new hardware to their data centers (more frequently than a private cloud).

In the subsequent sections, different cloud computing services are analysed to answer the question -
Is the public cloud a better alternative for high performance computing than private clouds? After
presenting an overview, and an in-depth analysis of major challenges of HPC on cloud computing,
the current state and adoption of HPC on the cloud are discussed before concluding the paper.

2 Overview of Cloud Computing

This section delves deeper into the technicalities of cloud computing and also explore the current
state of HPC in the cloud.

2.1 Cloud Computing

Initially, cloud computing emerged as a solution for business applications. A platform where
businesses could build their web applications on without having to own a traditional server, with
one of the first major public cloud platform released in 2006 by Amazon as EC2. In recent years,
cloud computing has become even more relevant since the advancement of hardware virtualization
technologies and the concept of micro-services. In which the use of cloud computing has become a
necessity for new businesses.

The cloud computing technology itself is built on a concept that is similar to grid computing, where
multiple compute resources are used together to perform tasks. Though in the scope of cloud
computing, resources in the form of data centers are used instead of distributed clusters, where
multiple computing resource might be located in different geographical locations. Cloud providers
generally use an abstraction where the provider itself would control the hardware and virtualization
whereas the user would have access up to the OS layer 2.

As cloud technologies evolve, major cloud providers have been branching out to not only provide
Infastructure-as-a-Service(IaaS) for businesses, but also multiple fields of computing. Of which in
the scope of this review will be the use of HPC in the cloud.

Cloud computing is now commonly split into three types - public, private and hybrid clouds. Addi-
tionally, community clouds also exits but is out of the scope of this paper.

2.1.1 Public Cloud

A public cloud is the most commonly used platform for cloud computing. Where the computing
resources are hosted by third party provider and is accessed through the internet. The resources are
also shared by multiple users, in which individual VMs are built on top of shared hardware.

2.1.2 Private Cloud

Private cloud, in a technological view, is identical to the public cloud. The main difference being that
private clouds dedicate hardware and software to a single user, which in most cases, but not limited to,

3

Figure 2: General Public Cloud Abstraction

are medium-to-large organizations. The data center of a private cloud may be located in the premise
of the organization or be hosted by a data center elsewhere. Resources are not shared between other
users, hence the improvement of security and customizability which is a factor to why the cost of
private clouds are generally higher than public clouds. Additionally, in this paper we will refer to
supercomputers and HPC cluster as part of the private cloud.

2.1.3 Hybrid Cloud

Hybrid clouds have been gaining more interest over the years, and is generally the solution for users
looking for a balance between the features of public and private clouds. Hybrid clouds provide the
flexibility and cost efficiency of a public cloud while still retaining the control and security of a
private cloud.

2.2 Current state of HPC in the cloud

Early research suggested that though cloud computing can be a viable platform to run HPC applica-
tions, there are still several challenges that needs to be resolved. The main challenges for the adoption
of HPC in the cloud are - security, performance and cost.

An early case study conducted by He et al. (2010) [27] which aims to test performance of running a
NASA climate prediction app in the cloud, shows that performance was hindered the by the slower
network speeds of the cloud instance that was used. These challenges has since been contested by
major public cloud providers, of which examples would be Amazon Web Services(AWS), Google
Cloud Platform(GCP) and Microsoft Azure. Amazon claims that their AWS platform has solved the
challenges of running HPC applications in the cloud [16], and provides instances that are tailored to
run HPC apps [9].

The 3 challenges that have been mentioned will be further explored in the next section.

3 Comparison

3.1 Performance

Performance evaluation of high performance computing in the cloud has been a popular topic as
earlier studies [20, 41, 33] concluded that using public cloud for tightly coupled HPC applications
led to a performance degradation. The lower performance was attributed to networking latencies
caused by commodity interconnects like 1 GBPs Gigabit, processor sharing and virtualisation I/O
overhead [23].

4

The challenges led to academic research to benchmark and suggest new placement strategies, optimi-
sations to improve performance on their private clusters and public clouds.

A way to improve performance was looked into by Gupta et al. [24] where they suggested making
the cloud HPC aware to reduce communication overhead by using containers, thin VMs and taking
advantage of CPU affinity by binding virtual CPUs to physical CPUs. They also presented a simulta-
neous approach of making HPC applications cloud aware by tuning the problem and granularity size
to reduce communication across nodes. They concluded that public clouds showed promise for small
to medium scale startups, research groups which did not have access to a supercomputer and could
be used in a hybrid setting to handle burstiness for groups that did. Their results also showed that
virtualisation overhead was low (1-5%) and Embarrassingly parallel applications not involving high
communication amongst the nodes scale quite effectively.

In another study [25], Gupta et al. looked into making VM placement HPC aware for perfor-
mance gains by using homogeneous VMs and an application characteristics(cache, communication
behaviour)-aware scheduler. Jin et al. [29] deployed a cache contention-aware(CCAP) VM placement
approach for HPC. Both the scheduler and CCAP improve the performance of the in-cluster VMs. So
the research pointed to having separate HPC VMs or handling HPC application differently from the
standard cloud VMs being used for IaaS and PaaS services.

To counter the networking limitations, public cloud providers introduced new VM types targeted
for HPC having full bisection bandwidth (AWS Cluster Compute 1), using infiniband interconnect
(Azure HB Series [8]), Azure H Series 2 and compute optimised VMs C2 on GCP[6].

Studies were conducted to compare these HPC optimised VMs amongst each other and with the in
house clusters. Robert et al.[23] compared the Amazon Cluster Compute - CC1 and CC2 instances.
Their results showed that para-virtualisation of the NICs hindered scalability and CC2 instances
despite having higher computational power performed worse than CC1 instances for collective-based
communication intensive applications like Integer Sort and Fourier Transform.

Hassani et al.[26] compared a parallel optimised version of Radix Sort on their in-house with the
AWS EC2 cluster with AWS cluster showing better execution times. Although, the cluster size was
small in this study (8 nodes).

Single Root I/O Virtualisation (SRV-IOV) is a PCIe technology which reduces I/O overhead in
virtualised environments through virtual functions and direct access to the hardware [39] [34].
Combining SRV-IO with RDMA networking like InfiBand interconnect has been shown to improve
HPC cloud performance [32] [42]. Kotas et al. [31] did a comparison between Azure and AWS HPC-
optimised instances having SR-IOV technology and 10 GB interconnect over for HPCG/ PTRANS
benchmark and concluded that Azure instances offered a faster solution for communication intensive
applications.

A study evaluating performance of a private Fermicloud vs Amazon EC2 instances [37] showed that
communication overhead was still a bottleneck for scientific applications in the cloud leading to lower
performance. AWS instances had higher compute performance, while Azure instances had higher
network performance. The performance bottleneck was also mentioned by [10].

In contrast, a comparison of public cloud providers by Mohammadi et al.[18] using High Performance
Linpack 3 where Microsoft Azure showed the highest speedup because of InfiniBand interconnect
across its H series VMs. A comparison of NERSC Edison supercomputer [5] with the public cloud
provider HPC optimised VMs showed a better performance per GigaFlops by some of the VMs like
Azure H series, Azure A Series, Amazon c4.8xlarge instances, etc as show in Figure 3.

Public cloud providers have recently pushed into efforts for HPC. There were various blog entries in
2019 announcing new products for HPC like Cray Cluster Store in Azure (a parallel storage platform
based on Crays ClusterStor4)[2], Azure HPC Cache [28] (a cache containing active data located
both on premise and cloud to reduce latencies), GCP DDN’s EXAScaler (a parallel file system
based on Lustre 5 to handle high concurrency access patterns to shared data sets)[15]. The studies

1https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-instance.html
2https://docs.microsoft.com/en-us/azure/virtual-machines/h-series
3https://top500.org/project/linpack/
4https://www.cray.com/products/storage/clusterstor
5http://lustre.org/

5

Figure 3: Per Core

show that the performance limitations presented by the public virtualized cloud environment have
reduced considerably over time. HPC seems to be a major focus of cloud providers with Hyperion
research[14] showing a major trend towards increased adoption of public cloud amongst enterprises
and predicting a growing trend.

3.2 Cost

Potential cost savings benefits exist as the cloud offers a pay as you go model based on the util-
isation rate. The total cost of operations for an on-premise setup include the capex(setup) and
opex(operational) expenses while the cloud only has opex. The cost benefits are one of the major
driving factors for cloud usage for IaaS instances. [1] [30]. Doing a cloud comparison is challenging
because the in-house cluster nodes generally do not map directly with the Cloud instance providers.
The dynamic pricing and ever evolving VMs have led to less academic literature comparing the cost
efficacy.

Roloff et al. [36] used a cost efficiency per hour model to compare RackSpace, Azure, AWS and their
cluster instances and defined a break even point (the yearly utilisation days required) where it became
more cost efficient to use an in cluster setup. From their results, the cluster was more cost efficient
when utilising a single node but Azure performed better than the cluster when the application was
run on 4 nodes. The cloud was also a viable option in case of a low utilisation rate (less than 50% for
Azure and less than 25% by AWS).

Emeras et al. [21] came up with a Total Cost of Ownership Model (TCO) to compare their on-premise
HPC setup with AWS instances. Their results showed that some instances had comparable hourly
performance with closest related configuration AWS instances while the high memory VMs did not.
After adding up the costs for storage, they presented that the in-house solution was more cost effective
than the public cloud instances. Prabhakaran et al. [35] used the same TCO model to compare their
in-house supercomputer with AWS, Azure and GCP with the outcome of public cloud estimated to be
3-6 times more expensive. The lower cost for in-house setup was attributed to high utilisation rates,
low manpower costs for maintenance and academic pricing of the hardware for in-house setup.

Another aspect to evaluate the cost in the cloud is the egress cost. It is costly to migrate data from a
cloud vendor leading to vendor lock-in. [3, 12]

The number of nodes in [36] was less (1,2 and 4) and the authors didn’t provide a comprehensive
breakdown of the costs as compared to [21] and [35]. From these studies, it is more cost effective to
run nodes with high utilisation on an in-house cluster. But differential pricing and further market
investments could help drive the price down with time. Evaluation of spot markets to reduce the cost
could be a potential research area.

6

Figure 4: Luxemborg Instances

3.3 Security

Security became a challenge that was slowing down the adoption of HPC in the cloud. An early study
by Hill et al. (2008) [22] states that running HPC applications in a public cloud introduces security
issues which mainly stems from the fact that nodes are hosted by a third-party and that access is
through the internet. They also mention that there is a possibility of an attack incited by another
user on the same node. Other main security concerns revolved around the issue of access control
management and data privacy. From the problems that have been stated, it was observed that HPC in
the cloud itself does not add more security complications and the concerns are is inherited from the
security problems of cloud computing itself.

With the advancement of privacy laws and regulations such as the General Data Protection Regulation
(GDPR), previous concerns on data privacy has lessened. Major public providers also claim that
since the advancement of security tools such as Identity and Access Management for AWS, access
control is now secure. For the concerns that were brought up by Hill et al., a hybrid cloud is a viable
solution. A hybrid cloud would considerably lessen security burdens as you can run sensitive data in
the private cloud side, but still leverage the public cloud for supplementary computing needs.

Though interest in the field of cloud security has been steadily rising since 2008 [7], research specific
to HPC cloud security is sparse and security is rarely mentioned in recent HPC cloud papers. Even
though open cloud security issues still exist, the general notion seems to be that the benefits outweigh
them.

4 Discussion

Most of the fascination for cloud computing is due to convenience, cost and flexibility. However, the
issues faced by HPC users in the cloud are more complicated compared to an average cloud user. In
this section, we discuss a brief summary of arguments and counter arguments for achieving HPC
using public cloud.

After an extensive study of the given topic, it can be concluded that cloud computing systems have
evolved enough to make them appealing for HPC users. Irrespective of being public, private or
hybrid cloud, they offer unparalleled versatility for users to add nodes with distinct architectural
specifications, apply cloud bursting to expand the capacity of the infrastructure.

Even though the system administrators are alleviated from the obligation to maintain expensive
physical hardware, they still have to manage different networking, software and frameworks used in
the complex, modern HPC problems. Also, more responsibilities such as managing cloud credentials,
permissions, security, data synchronization are added. As on-premise server management tools
evolve, there’s a case to be addressed that operating an HPC in the public cloud could be every bit as
intricate as maintaining a local compute cluster.

7

Despite the fact that cloud services have evolved a lot, it is not necessary for cloud-instances to be
quicker than on-premise servers. It is worth noting that a cloud vCPU is not a physical core but
threads in a hyper-threaded core. A non-peer reviewed study observed that the users need to provision
around 27% more vCPUs in the cloud to achieve similar computing capacity in an on-premise setup
[4].

Considering the cloud has a pay-as-you-go subscription model, the cloud can be regarded as the
cheaper option for heavy work-loads of short duration. But heavy work-loads of short duration is
uncommon for an HPC data centre compared to a regular cloud user with low average utilization.
An HPC application tends to wring out intense computations with mean utilization going as high as
90%. Enterprise contracts and using reserved instances can reduce the high cost of the cloud, but
this necessitates meticulous planning and can undermine the pay-as-you-go elasticity offered by the
cloud.

It is not uncommon for HPC applications to process or output large volumes of data. Even though
cloud object storage is reasonably priced, storage subscriptions that support shared network file
system or parallel file systems tend to be expensive.

4.1 Adoptions

The migration of HPC applications to the cloud has become more popular over the years, and some
have been published as a research. A case study of the migration of HPC to the cloud will be discussed
in this section. Balis et al. (2016) [17] conducted a study to port HPC applications to the cloud, in
which they found that using the cloud had a faster "time-to-science". Balis et al. argued that in HPC
for research, the turnaround time for scientific projects, "time-to-science", is more important than raw
computing power.

Furthermore, companies and organizations have started to migrate their HPC applications to the
cloud. HSBC, a banking company hence adhering to stringent regulations, moved 180TB of data
and some of their operations to the GCP platform[40]. Another example would be UC Santa Cruz’s
genomics project using AWS[38], and the claim that their time to process data was cut down from
3 months on their in house cloud to 4 days on AWS. Another notable adoptions would be the Zika
Virus Modelling on GCP by Northeastern University[43].

With major cloud platforms expanding their HPC services, running HPC applications in the cloud
seems to be getting more recognition not only for scientific purposes, but also commercially in
enterprise settings, such as the examples previously mentioned. Though an article in 2018 [11]
mentioned aspects such as - performance, networking, storage being the downfalls that would prevent
the adoption of HPC in the cloud. However, this article was released before cloud providers started to
expand on their HPC services (2019).

A market research conducted by Hyperion Research showed that in 2019[13, 14], 20% of the HPC
community run their workload on some kind of cloud platform and that the global market for cloud
HPC will reach 6 billion USD by 2023. Though the 2019 research by Hyperion might have an
inherent bias as it was sponsored by major cloud providers and this research being cited as a source
by white papers released by the cloud providers themselves.

5 Conclusion

This paper conducted a survey of HPC in public cloud elaborating on the challenges and the industry
responses for the same. Technologies like High-performance Data Analytics(HDPA) and AI have
been the driving factors for new HPC public tools, especially in 2019. Cloud adoption for industries
in Genomics, Finance, Water Simulation is on the rise despite in-house clusters being more cost
effective and performant than the cloud providers for communication intensive applications. The
adoption can be attributed to easier manageability and elasticity provided by the cloud. Various
research opportunities exist as the newer tools claiming higher performance have accompanying
white papers, blog posts but are yet to be fully vetted by academia. The majority of the peer reviewed
papers work on AWS and Azure due to their popularity but comparison of other industry providers
like GCP, Oracle, Alibaba provides more research opportunities. A competitive market can lead to a
standardisation of APIs to promote inter-operability among clouds.

8

The answer to the research question depends on the application being used and is still inconclusive
due to constantly evolving nature of the public cloud. For various companies and smaller research
groups, public cloud is an attractive option as it frees up manpower to research on their areas
without employing a major technological team to handle scale. Supercomputers still provide better
computational power than the cloud especially for tightly coupled scientific application and both
should mutually coexist in the upcoming years. A wise approach for HPC users would be to
maximise the use of on-premise infrastructure while making use of the cloud for supplementary
computations[19].

The future of HPC seems promising with higher investments by major cloud providers to further
reduce the gap between private and public cloud.

9

References
[1] 30% Of Servers Are Sitting "Comatose" According To Re-

search . https://www.forbes.com/sites/benkepes/2015/06/03/
30-of-servers-are-sitting-comatose-according-to-research/.

[2] Accelerate supercomputing in the cloud with cray clus-
terstor. https://azure.microsoft.com/en-in/blog/
supercomputing-in-the-cloud-announcing-three-new-cray-in-azure-offers/.

[3] Aws. https://aws.amazon.com/blogs/aws/aws-data-transfer-prices-reduced/.

[4] Aws vs gcp vs on-premises cpu performance compari-
son. https://medium.com/infrastructure-adventures/
aws-vs-gcp-vs-on-premises-cpu-performance-comparison-1cb3e91f9716.

[5] Edison - cray xc30, intel xeon e5-2695v2 12c 2.4ghz, aries interconnect. https://www.
top500.org/system/178443.

[6] GCP Instances. https://cloud.google.com/blog/products/compute/
expanding-virtual-machine-types-to-drive-performance-and-efficiency.

[7] Google trends - cloud security 2004-2020. https://trends.google.com/trends/
explore?date=all&q=cloud%20security.

[8] HB Series . https://azure.microsoft.com/en-us/blog/
hb-series-azure-virtual-machines-achieve-cloud-supercomputing-milestone/.

[9] High performance computing. https://aws.amazon.com/hpc/.

[10] high-performance-computing-in-the-clou . https://www.csc.fi/en/-/
high-performance-computing-in-the-cloud.

[11] How the cloud is falling short for hpc. https://www.hpcwire.com/2018/03/15/
how-the-cloud-is-falling-short-for-research-computing/.

[12] Once You’re in the Cloud, How Expensive Is It to Get Out? https://www.nefiber.com/
blog/cloud-egress-charges/.

[13] Smart orchestration speeds hpc workflows in the cloud. https://d1.awsstatic.com/
HPC2019/Amazon-HyperionTechSpotlight-Orchestration-Sep2019.pdf.

[14] The importance of expertise for HPC Cloud Comput-
ing. https://azure.microsoft.com/en-us/resources/
the-importance-of-hpc-expertise-for-hpc-cloud-computing/.

[15] Dean Hildebrand . Competing with supercomputers: HPC in the cloud becomes re-
ality. https://cloud.google.com/blog/products/storage-data-transfer/
competing-with-supercomputers-hpc-in-the-cloud-becomes-reality.

[16] Thekkedath. Bala. Challenging the barriers to high performance computing in the cloud.
Discussion paper, Amazon Web Services, 2019.

[17] Bartosz Balis, Kamil Figiela, Konrad Jopek, Maciej Malawski, and Maciej Pawlik. Porting hpc
applications to the cloud: A multi-frontal solver case study. Journal of Computational Science,
18, 01 2016.

[18] Timur Bazhirov. Comparative benchmarking of cloud computing vendors with high performance
linpack. pages 1–5, 03 2018.

[19] Mohamed [Ben Belgacem] and Bastien Chopard. A hybrid hpc/cloud distributed infrastruc-
ture: Coupling ec2 cloud resources with hpc clusters to run large tightly coupled multiscale
applications. Future Generation Computer Systems, 42:11 – 21, 2015.

10

https://www.forbes.com/sites/benkepes/2015/06/03/30-of-servers-are-sitting-comatose-according-to-research/
https://www.forbes.com/sites/benkepes/2015/06/03/30-of-servers-are-sitting-comatose-according-to-research/
https://azure.microsoft.com/en-in/blog/supercomputing-in-the-cloud-announcing-three-new-cray-in-azure-offers/
https://azure.microsoft.com/en-in/blog/supercomputing-in-the-cloud-announcing-three-new-cray-in-azure-offers/
 https://aws.amazon.com/blogs/aws/aws-data-transfer-prices-reduced/
https://medium.com/infrastructure-adventures/aws-vs-gcp-vs-on-premises-cpu-performance-comparison-1cb3e91f9716
https://medium.com/infrastructure-adventures/aws-vs-gcp-vs-on-premises-cpu-performance-comparison-1cb3e91f9716
https://www.top500.org/system/178443
https://www.top500.org/system/178443
 https://cloud.google.com/blog/products/compute/expanding-virtual-machine-types-to-drive-performance-and-efficiency
 https://cloud.google.com/blog/products/compute/expanding-virtual-machine-types-to-drive-performance-and-efficiency
https://trends.google.com/trends/explore?date=all&q=cloud%20security
https://trends.google.com/trends/explore?date=all&q=cloud%20security
https://azure.microsoft.com/en-us/blog/hb-series-azure-virtual-machines-achieve-cloud-supercomputing-milestone/
https://azure.microsoft.com/en-us/blog/hb-series-azure-virtual-machines-achieve-cloud-supercomputing-milestone/
https://aws.amazon.com/hpc/
https://www.csc.fi/en/-/high-performance-computing-in-the-cloud
https://www.csc.fi/en/-/high-performance-computing-in-the-cloud
https://www.hpcwire.com/2018/03/15/how-the-cloud-is-falling-short-for-research-computing/
https://www.hpcwire.com/2018/03/15/how-the-cloud-is-falling-short-for-research-computing/
 https://www.nefiber.com/blog/cloud-egress-charges/
 https://www.nefiber.com/blog/cloud-egress-charges/
https://d1.awsstatic.com/HPC2019/Amazon-HyperionTechSpotlight-Orchestration-Sep2019.pdf
https://d1.awsstatic.com/HPC2019/Amazon-HyperionTechSpotlight-Orchestration-Sep2019.pdf
https://azure.microsoft.com/en-us/resources/the-importance-of-hpc-expertise-for-hpc-cloud-computing/
https://azure.microsoft.com/en-us/resources/the-importance-of-hpc-expertise-for-hpc-cloud-computing/
 https://cloud.google.com/blog/products/storage-data-transfer/competing-with-supercomputers-hpc-in-the-cloud-becomes-reality
 https://cloud.google.com/blog/products/storage-data-transfer/competing-with-supercomputers-hpc-in-the-cloud-becomes-reality

[20] Jaliya Ekanayake and Geoffrey Fox. High performance parallel computing with clouds and
cloud technologies. In Dimiter R. Avresky, Michel Diaz, Arndt Bode, Bruno Ciciani, and
Eliezer Dekel, editors, Cloud Computing, pages 20–38, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[21] J. Emeras, S. Varrette, and P. Bouvry. Amazon elastic compute cloud (ec2) vs. in-house hpc
platform: A cost analysis. In 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD), pages 284–293, 2016.

[22] Constantinos Evangelinos and Chris Hill. Cloud computing for parallel scientific hpc applica-
tions: Feasibility of running coupled atmosphere-ocean climate models on amazon’s ec2. Ratio,
2, 01 2008.

[23] Roberto R. Expósito, Guillermo L. Taboada, Sabela Ramos, Juan Touriño, and Ramón Doallo.
Performance analysis of hpc applications in the cloud. Future Generation Computer Systems,
29(1):218 – 229, 2013. Including Special section: AIRCC-NetCoM 2009 and Special section:
Clouds and Service-Oriented Architectures.

[24] Abhishek Gupta, Paolo Faraboschi, Filippo Gioachin, Laxmikant Kalé, Richard Kaufmann,
Bu Lee, Verdi March, Dejan Milojicic, and Chun Suen. Evaluating and improving the perfor-
mance and scheduling of hpc applications in cloud. IEEE Transactions on Cloud Computing,
08 2014.

[25] Abhishek Gupta, Laxmikant Kale, Dejan Milojicic, Paolo Faraboschi, and Susanne Balle.
Hpc-aware vm placement in infrastructure clouds. pages 11–20, 03 2013.

[26] Rashid Hassani, Md Aiatullah, and Peter Luksch. Improving hpc application performance
in public cloud. IERI Procedia, 10:169 – 176, 2014. International Conference on Future
Information Engineering (FIE 2014).

[27] Qiming He, Shujia Zhou, Ben Kobler, Dan Duffy, and Tom McGlynn. Case study for running
hpc applications in public clouds. In Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, HPDC ’10, page 395–401, New York, NY, USA,
2010. Association for Computing Machinery.

[28] Scott Jeschonek. Azure hpc cache: Reducing latency between azure
and on-premises storage. https://azure.microsoft.com/en-us/blog/
azure-hpc-cache-reducing-latency-between-azure-and-on-premises-storage/.

[29] Hai Jin, Hanfeng Qin, Song Wu, and Xuerong Guo. Ccap: A cache contention-aware virtual
machine placement approach for hpc cloud. International Journal of Parallel Programming, 43,
06 2013.

[30] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville. Cloud migration: A case study of
migrating an enterprise it system to iaas. In 2010 IEEE 3rd International Conference on Cloud
Computing, pages 450–457, 2010.

[31] C. Kotas, T. Naughton, and N. Imam. A comparison of amazon web services and microsoft
azure cloud platforms for high performance computing. In 2018 IEEE International Conference
on Consumer Electronics (ICCE), pages 1–4, 2018.

[32] Xiaoyi Lu, Jie Zhang, and Dhabaleswar K. Panda. Building Efficient HPC Cloud with SR-
IOV-Enabled InfiniBand: The MVAPICH2 Approach, pages 115–140. Springer Singapore,
Singapore, 2017.

[33] Piyush Mehrotra, Jahed Djomehri, Steve Heistand, Robert Hood, Haoqiang Jin, Arthur Lazanoff,
Subhash Saini, and Rupak Biswas. Performance evaluation of amazon ec2 for nasa hpc
applications. In Proceedings of the 3rd Workshop on Scientific Cloud Computing, ScienceCloud
’12, page 41–50, New York, NY, USA, 2012. Association for Computing Machinery.

[34] Overview of Single Root I/O Virtualization (SR-IOV). https://docs.microsoft.com/en-
us/windows-hardware/drivers/network/overview-of-single-root-i-o-virtualization–sr-iov-.

11

https://azure.microsoft.com/en-us/blog/azure-hpc-cache-reducing-latency-between-azure-and-on-premises-storage/
https://azure.microsoft.com/en-us/blog/azure-hpc-cache-reducing-latency-between-azure-and-on-premises-storage/

[35] A. Prabhakaran and L. J. Cost-benefit analysis of public clouds for offloading in-house hpc jobs.
In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pages 57–64,
2018.

[36] E. Roloff, M. Diener, A. Carissimi, and P. O. A. Navaux. High performance computing in the
cloud: Deployment, performance and cost efficiency. In 4th IEEE International Conference on
Cloud Computing Technology and Science Proceedings, pages 371–378, Dec 2012.

[37] Iman Sadooghi, Jesus Hernandez Martin, Tonglin Li, Kevin Brandstatter, Yong Zhao, Ketan Ma-
heshwari, Tiago Pais Pitta de Lacerda Ruivo, Steven Timm, Gabriele Garzoglio, and Ioan Raicu.
Understanding the performance and potential of cloud computing for scientific applications.
IEEE Transactions on Cloud Computing, 5(2), 2 2015.

[38] Amazon Web Services. Uc santa cruz genomics institute case study. https://aws.amazon.
com/solutions/case-studies/uc-santa-cruz-genomics-institute/.

[39] Why using Single Root I/O Virtualization (SR-IOV) can help improve I/O performance and
Reduce Costs. https://www.design-reuse.com/articles/32998/single-root-i-o-virtualization.html.

[40] Srinivas Vaddadi. Adopting cloud, with new inventions along the way, charges up hsbc
| google cloud blog. https://cloud.google.com/blog/products/data-analytics/
adopting-cloud-with-new-inventions-along-the-way-charges-up-hsbc.

[41] Edward Walker. Benchmarking amazon ec2 for hig-performance scientific computing. ; login::
the magazine of USENIX & SAGE, 33(5):18–23, 2008.

[42] J. Zhang, X. Lu, and D. K. Panda. Performance characterization of hypervisor-and container-
based virtualization for hpc on sr-iov enabled infiniband clusters. In 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 1777–1784, 2016.

[43] Qian Zhang, Kaiyuan Sun, Matteo Chinazzi, Ana Pastore y Piontti, Natalie E. Dean, Diana Patri-
cia Rojas, Stefano Merler, Dina Mistry, Piero Poletti, Luca Rossi, Margaret Bray, M. Elizabeth
Halloran, Ira M. Longini, and Alessandro Vespignani. Spread of zika virus in the americas.
Proceedings of the National Academy of Sciences, 114(22):E4334–E4343, 2017.

12

https://aws.amazon.com/solutions/case-studies/uc-santa-cruz-genomics-institute/
https://aws.amazon.com/solutions/case-studies/uc-santa-cruz-genomics-institute/
https://cloud.google.com/blog/products/data-analytics/adopting-cloud-with-new-inventions-along-the-way-charges-up-hsbc
https://cloud.google.com/blog/products/data-analytics/adopting-cloud-with-new-inventions-along-the-way-charges-up-hsbc

Table 1: Work Distribution

Name Sections worked on
Abijith Introduction, Discussion, Conclu-

sion
Gamma Overview, Comparison - Security,

Discussion - Adoption
Tavneet Comparison - Performance & Cost,

Conclusion

13

The Business Models for Cloud Computing
Literature Study

T. van Milligen
Student VU

S.N. Voogd
Student VU

J.M. Kyselica
Student VU

Abstract

Cloud computing has been taking over the way the world buys and uses software.
Many, if not most businesses are making the switch to cloud services as opposed
to buying traditional software and platforms. In this literature study we take a
look at the current state of the business world converting to cloud technology,
what business models are being used amongst cloud service providers and what the
implications are. We found that there are many potential factors that influence either
a company’s decision to steer clear of the cloud, or, on the other hand, to embrace
new cloud technologies. A combination of multiple business models seems to work
best when entering the relatively new cloud market, whereas veterans in the field
have the luxury of taking a more specified approach. All in all the topic of doing
business with and within the clouds is still quite new and far from an exact science.
Future research in this area could prove beneficial for providers and consumers
alike.

1 Introduction

Applications and data are disappearing from personal computers and reappearing in ’the computer
cloud’. This is a trend that appears to be taking over in almost every domain.
For example, where once you would create a Word document on your own private version of
Microsoft Word, you can now log into Google Drive and work on a Google Document, all of which
is happening in the cloud, no locally installed software necessary, save for an internet browser. And
word processing is just the tip of the iceberg, this type of shift can be found all over the software
landscape. Cloud computing is all the rage [1]. This is true for any type of software that can
be moved from a privately owned computer to some server operating as part of the cloud, from
relatively simple word processing applications like Google Docs, to complete virtual machines. The
possibilities have proven to be quite endless.
Naturally, this shift is of great importance for businesses that make use of software and software
platforms. Traditional forms of acquiring the technology necessary to run a business is making way
for running a business (almost) entirely in the cloud. This is a true paradigm shift and has many
implications.

In this paper we will look at the existing studies that have been conducted on how the busi-
ness world is making the switch to cloud services as opposed to using traditional software and what
the business models are behind these cloud services. We will attempt to describe the current state of
cloud usage from a business perspective, identify what the current gaps in knowledge are concerning
this topic and suggest what future research could be beneficial.

Preprint. Under review.

Figure 1: Three three main layers of the Cloud [2]

2 The business models of the Cloud

The cloud can be split up into three main ‘layers’, each associated with their own service. Figure 1
shows the hierarchy of IaaS, PaaS, and SaaS.

We will now look at these layers in more detail, and discuss their business models.

2.1 Infrastructure as a Service (IaaS) Business Models

Infrastructure as a Service, even just by its name, strongly suggests that it is a kind of utility,
comparable to, for example, the electricity grid (see grid computing). It is therefore useful to look at
existing business models in the realm of utilities and assess their applicability to IaaS.

Basic infrastructure utilities such as electricity and water use a ‘metered usage of service’ business
model, as defined by Rappa in [3]. This means that the consumer utilises exactly as much of the
resource as they need, and pays accordingly, determined by a predefined fee per unit of the resource
(e.g. cents per liter of water). However, other types of utilities, such as telephony and internet access,
utilise different business models. Internet access uses a subscription model for unlimited service,
where the consumer pays a recurring fixed fee, for example each month, to have unlimited access to
the service at no additional cost. Telephony uses a business model akin to a kind of hybrid between
the two previously mentioned models. It consists of a subscription model that grants consumers
access to the infrastructure, combined with a metered usage of service business model that charges
the consumer based on their actual usage of the infrastructure.

In order to link the aforementioned business models to IaaS, it is good to analyse why these different
utilities use different business models. Internet service providers and electricity or water providers
provide fundamentally different resources. Where electricity and water are essentially goods that
have to be produced and are then ‘resold’ to consumers, usage of the internet infrastructure incurs
almost no additional cost to the providers. It is easy to see how the subscription model with unlimited
service would be highly unsuitable for electricity and water.

If we now take the IaaS paradigm, we see that it appears to be a mixture between the two. There is a
large initial investment for the infrastructure, akin to internet service providers, and providing the
service also incurs running costs (in the form of electricity).

Several papers agree that IaaS services should follow the utility model [4, 5, 6]. Furthermore, it
appears that the metered usage of service (also known as pay as you go) model is the best fit for IaaS
providers [2]. This can be corroborated by the fact that most of the big IaaS providers (e.g. Amazon
AWS, Microsoft Azure) are using the pay as you go model to monetize their services. However,
according to [2], the pay as you go model could be made more flexible and lucrative by combining it
with a subscription model.

2.2 Platform as a Service (PaaS) Business Models

The Platform as a Service paradigm aims to simplify the application development and deployment
process by providing and managing all the necessary infrastructure for development. This spares the

2

developers from having to deal with the complexity of maintaining and operating the infrastructure,
freeing up more time for the actual development of the applications.

PaaS can take on three different forms, according to the needs of the developers [7]. The first form
is PaaS in the form of a public cloud. This means that all customers share an environment which is
hosted by the PaaS provider. This gives developers less control, but also increases simplicity and
convenience. Some developers might desire more privacy and control over their PaaS, which is when
the private form is used. This can be deployed onto on-premise data centers for full control, or onto
independent IaaS cloud providers, guaranteeing a secured environment for a single business. Lastly,
the two aforementioned concepts can be combined into a hybrid PaaS service, consisting of a mix of
dedicated and public PaaS.

Platform as a Service is a more abstract concept than Infrastructure as a Service, which makes it
difficult to directly relate to long-established utilities, as was done in the previous section. If we look
at one of the first public PaaS services, Zimki, we see that it used a pure pay as you go business
model. Nowadays, a core component of the PaaS business model is lock-in. If an IaaS provider also
offers convenient PaaS services that are proprietary to their infrastructure, it is easy to see how the
two can cooperate to ‘lock developers in’ to their services, and increase revenue [8].

2.3 Software as a Service (SaaS) Business Models

Software as a Service resides entirely in the application domain. The developers do not need to
concern themselves with the lower layers of the cloud, and can make use of the services from the two
lower layers. The main goal of SaaS is to serve software to customers in the form of online services,
rather than in the form of local applications that are managed on site. As the concept of SaaS is quite
different from IaaS and PaaS, the business models used in Software as a Service also differ.

If we compare SaaS to the utilities mentioned in the IaaS section, we see that it most closely resembles
the service of internet service providers. There is a large initial investment to develop the software,
but more use of the software does not greatly increase the cost to the service providers. In fact, by
building on the lower layers of the cloud, SaaS can be entirely flexible in its running cost. If there are
no users using the software, the running cost for the providers will be next to none, as the service
will be hosted using a pay as you go business model. The more users use the software, the higher
the running costs will be. Therefore, the business model has to be chosen in a way that makes this
profitable.

The de facto standard solution for the monetization of Software as a Service is the subscription model
[2]. This could consist of monthly payments, yearly payments, or other recurring payment schemes.
This fits well into the aforementioned use of Iaas and Paas to support the SaaS application. More
users means a higher running cost, but with a recurring payment scheme, more users also equals more
revenue. This makes SaaS highly flexible.

The subscription model is, however, not the only business model used in SaaS. There are many ‘free’
SaaS applications that rely on other revenue streams (e.g. Google Docs). However, many of these
‘free’ applications also serve as a front to the actual subscription based paid SaaS [9].

3 Converting to Cloud

3.1 Risks and Concerns

Ever since the emergence of Cloud Computing, there have been concerns about the risk of switching
to a cloud supply chain within businesses. While the benefits of Cloud Computing have become clear,
the switch to a new business model impacts the whole organization, and brings with it certain risks.
There has been a lot of research done on how to properly manage these risks when switching to
a Cloud Computing business model. The article ‘Risk perception and risk management in cloud
computing: Results from a case study of Swiss companies’ [10] shows some of the main concerns
businesses had at the time about cloud computing. The article argues that concerns about cloud
computing were widely spread around the time of publication, as it cites a survey by the Information
Systems Audit and Control Association from 2010 saying that 45% of the surveyed US businesses
considered the risks of cloud computing as outweighing the benefits. Some of the main topics
of concern include: Regulatory compliance and data location, Availability and disaster recovery,

3

Information security, and Provider lock in and long term viability. These risks can be classified as
political/legal, operational and technical.
The solutions to these problems that the article suggests mostly come down to comparing the
companies’ needs to the willingness of the provider to fulfill them, and to set up contracts/SLA’s
according to the companies’ technical requirements. The authors conclude that the companies have a
good awareness of the risks that come with cloud computing adoption, but with a sample size of only
five companies, the relevance of this can be questioned.
Other than that it does provide good pointers for risks to consider and advise on how to handle them
for companies from any country that considers switching to cloud computing.

Security risk is something that often shows up as an adoption barrier for cloud computing. In
‘Analyzing the operation of cloud supply chain: adoption barriers and business model’ [11] the
authors cite two surveys [12, 13] in which security is seen as one of the biggest barriers for cloud
computing adoption within organizations.
In contrast to this view however, John Nye [14] argues that the specialization offered by security
architects at big cloud providers can in fact drive security closer to perfection. This is however not a
reason to blindly trust cloud providers, he argues that an extensive risk assessment should always be
done when looking to use a cloud provider’s services in terms of setting up possible contracts etc., in
a similar fashion to how (Brender, Nathalie,Iliya Markov)[10] advised in their study.

In similar fashion, Vemula and Zsifkovits [15] point out that security and privacy are among the main
reasons for SMEs to switch to the cloud, while also stating that many others do not consider the
cloud reliable. The larger enterprises have other driving factors for switching to cloud, here things
like speed of deployment and faster return on investment are driving factors [16].
The increased agility to respond to business requirements with cloud computing in supply chain
management and the resulting increase of efficiency is one of the reasons the article recommends
cloud supply chain solutions for enterprises looking to improve on supply chain efficiency. More or
less the same risks of cloud adoption are recognized as by (Brender, Nathalie,Iliya Markov)[10].

Raut et al. [17] also provide a set of barriers to cloud adoption. The study presents a
graph that represents how different barriers interconnect and relate, and which barriers are most
significant. According to the authors, their graph based modeling methodology converts unclear,
poorly articulated interpretive models into visible, correctly defined models. The findings from their
model are that the three most influential barriers to the adoption of cloud computing in business are:
lack of confidentiality, lack of top management support, and lack of sharing and collaboration. The
adoption barrier of lack of confidentiality matches the conclusions of the previously discussed studies
very well.

3.2 Managing the transition

How to successfully change the actual business model of a company to fit the cloud computing model
from a management perspective is another highly discussed topic.
The article ‘Managing potentially disruptive innovations in software companies: Transforming from
On-premises to the On-demand (2015)’ [18] discusses successful management strategies when
switching to the cloud.. The article relies heavily on Christensen’s disruptive innovation theory
on managing potentially disruptive innovations and the management strategies it offers for dealing
with the change [19]. It aims to test whether these strategies also work for the software industry by
doing a case study on five companies that went from purely offering an on-premises product to also
offering on-demand software products. This study found that Christensen’s spin-off strategy was
also applicable to these companies. Although the implementation of this spin-off was not always the
same, due to companies of smaller sizes not being able to, for example, do a completely disconnected
spin-off due to organizational/financial reasons, a separation of resources and responsibility always
made the start of the transition easier.
The leader strategy along with offering both types of software in the early stage was a successful
strategy for these companies. Joining a new market at an early stage or finding new emerging markets
to go along with the new technology worked well for the companies in the study.
The five companies also used expert opinions from things like consultants or cooperation partners
and early adopters and said to have benefited greatly from this. The trial and error strategy through
learning and prototyping cost a lot of time for all five companies. Two companies learned to avoid

4

Table 1: Nine management strategies

No. Strategy Explanation

1 Spin-off
An independent spin-off, or a separate organizational unit, could
help prevent resource allocation conflicts and allow the company
to more easily follow potentially disruptive innovations

2 Leader Preparing the company early and stepping into the market as a
leader could be a wise strategy

3 Expert
opinion

Gathering information from a wide range of sources (technologi-
cal staff, cooperation partners, customers, and external experts)
and sticking to the adopted path despite resistance (e.g. from
shareholders) seems to be a promising strategy to support the
transformation process

4 Trial and
Error

Test products and test markets could be an important step to-
wards achieving fully developed software. This is especially
recommended if the intention is to roll out high quality products
(robustness, stability, etc.) in the B2B market

5 Recruitment Recruiting innovative and experienced staff could help the trans-
formation process. Ideas and innovation may also emerge from
cooperation with universities or lead customers

6 Direct sales It might be best to distribute On-demand software directly. As
an alternative, companies could initially financially incentivize
resellers to promote On-demand sales

7 Step-by-step The transformation might be best organized as a step-by-step
approach focusing on smaller software solutions in the beginning.
Over the course of time, smaller On-demand solutions could
expand along with their customer base and thus gain the attention
of larger clients

8 Partnership
and

ecosystem

Committing to a strong technological partner could help com-
panies to adapt to a disruptive technology faster, as this allows
companies to gain access to technology and expertise

9 Visionary top
management

Inspiring top management can accelerate a transformation and is
important to motivate employees

transferring an unchanged On-premised product to the cloud (cramming). The paper claims this
might be one of the most important strategies.
Aside from these four management strategies, the case study companies also developed some
individual strategies to guide the transformation process. All nine management strategies can be seen
in Table 3.

The paper does address some possible dependencies between strategies, as can be seen in Table 2,
and dependencies and influences due to other contextual factors.
Furthermore it does a good job arguing for the research method used through citing studies backing it
up, and linking the findings to earlier works by, among others, Adner [20] and Christensen [19]. A
shortcoming of this paper is that the paper relies for a big part on the recollection of employees at the
case study companies, since they were interviewed after the fact.

Having discussed the factors that may be preventing businesses from adopting the cloud in the
previous section, we can look at potential solutions that can mitigate these barriers. A 2015 paper
called “Investment evaluation of cloud computing in the European business sector” proposes to do
this. The study agrees with the barrier to adoption mentioned by [17] of lack of management support,
and labels this the most important barrier to the widespread adoption of cloud computing in Europe.

5

Table 2: Possible dependencies and influences across strategies

Strategies Possible reasons Contextual factors
Ecosystem Strategy,
Expert opinion
strategy

New ideas are generated and discussed in
broader context

Independent of a company’s
size or age

Spin-off strategy,
Trial and error
strategy

Companies without an independent unit
faced harder times integrating test products
or markets

Contingent on a company’s
size

Leader strategy,
Visionary
top-management
strategy

Managers of older companies are more alert
to potentially disruptive change and step
earlier into a new market. Managers who
are willing to take risks also pursue early
market entry

Contingent on a company’s
age and a manager’s personal
characteristic

Table 3: Critical success-related business model characteristics in the analysis

No. Critical success-related BMC of the analysis results in the components of a business model
1 Business strategy: know-how transfer, vertical diversification, market expansion
2 Partner network: partners in similar field
3 Resources and activities: know-how –, human –, hardware –, network resource,

data/content, production activities, consulting activities, integration activities, comparison
and categorization

4 Costs: fixed operational costs
5 Value Proposition: manifold width, -depth, computing service, development environment,

-tool, consolidation, cost savings, administration, private –, hybrid cloud, database –,
consulting –, integration –, billing –, search –, messaging service, individual support

6 Distribution and customer relationship: print media communication, monitoring, customer
community, support, on-site interaction

7 Revenue: one-time-charge, pay-per-use revenue, revenue with supplementary service,
membership fees for partners

8 Target market: SME customers, branch market

Their solution to lower this barrier is to come up with a clear cost-benefit analysis method to enable
management of companies to evaluate investment in cloud technologies.
Like many of the studies in this field, this study again uses literature study and surveys as the primary
source of information. The authors present a very clear-cut 7-step methodology to perform a cost-
benefit analysis in the context of adopting cloud technology, which details the exact considerations that
should be made, and how they should be made. This could certainly be quite useful to businesses, but
the scientific value of this methodology is questionable, as there is no real proof that the methodology
really is effective in helping businesses perform CBA, and, as has often proven to be the case, ‘expert
opinion’ is the main source.

3.3 Success in Converting to the Cloud

In an article from 2016 named ‘Successful Business Model Types of Cloud Providers’ [21], the
authors describe their results after analysing cloud providers business models in order to find out
which characteristics are related to the success of a cloud business model. Table 3 lists the business
model characteristics that were found to be most closely related to success.

The paper also talks about there being three business model meta types:

1. New players offering a cluster of services
2. Experienced players with standardized services
3. Specified providers at high trust level with hybrid solutions and integration support

The authors found that the latter was the most successful, while the first was found to be

6

the least successful, as it can be difficult for newcomers to compete in the existing cloud market.
Naturally, the second type lies somewhere in between.

A paper from 2017 named ‘How to Succeed with Cloud Services’ [22] attempts to answer a similar
question as the previous paper, namely ‘how can cloud providers be successful?’, by using data from
a survey of 596 actual users of cloud services. They mention that the cloud provider market has to
contend with severe competition and that customers are not willing to commit to a provider before
properly testing out the service they provide. Many businesses start with a ‘freemium’ business model
(as described in the IaaS section of chapter 2), yet fail to generate adequate revenue streams. Other
businesses start with a subscription based business model and fail to reach sufficient growth.
The main findings are that it is not sufficient to focus on one element of success or mechanism
when studying digital consumer services, which is what the authors claim most previous work has
done. In terms of specifics regarding the question ‘How to succeed with cloud services”, the authors
recommend three generic strategies to be applied in practice: development, retention, and habituation.
Development refers to the transformation of free users into premium users by managing constraints
and dedication. Retention on the other hand, describes a business switching to a subscription model at
a certain point in time, while trying to retain as much of their customer base as possible. Habituation
is a combination of the two aforementioned strategies. The conclusions of this study do have limited
general applicability though, as the survey was only conducted in the context of cloud storage services.
However, the paper contains good information and analysis on the ways a cloud business can create
revenue, especially in the context of the ‘freemium’ business model.

For companies looking to make the switch to a cloud based business, it seems useful to look at the
factors which have contributed to other businesses’ decision to make that switch.
A 2017 paper called “The Importance of Business Model Factors for Cloud Computing Adoption:
Role of Previous Experiences” [23] aims to identify the individual business model factors with the
highest impact on cloud computing adoption. It does this, similarly to the previously discussed
studies, by literature review and interviews with cloud providers and cloud users.
The proposed business model factors can be summarised with: value proposition, provider’s capability
for cloud computing, customer relationship management, and revenue model and costs. The authors
split these factors into more detailed sub-factors. While the authors do seem to provide a good
list of potential factors, these are all taken from previous work in their literature review. The main
new findings of the study are, in fact, that there is no statistically significant impact of the analysed
business model factors on cloud computing adoption. This almost certainly does not imply that
the given factors truly have no influence on cloud adoption; more likely it indicates a flaw with the
methodology. Indeed, the sample size of the surveys is only 80, so the results of this study have
limited use.

3.4 Experiences within the Field

An article from 2015 named ‘Cloud accounting: a new business model in a challenging context’ [24]
focuses on the change in business model the development of cloud services has brought specifically
to the world of accounting. Like in many other domains, traditional accounting software was usually
bought for personal use and run on the buyer’s own computer(s), but with the arrival of accounting
software on the cloud, users simply pay a specialized service provider to use the software via the
internet.
This article talks about a number of benefits that cloud accounting has compared to traditional
accounting software:

• Lowered costs. Buying software requires an initial investment and maintenance costs to
keep it up to date. Cloud accounting requires no additional hardware or software licenses.
Users can usually pay per use or some sort of subscription fee on a regular basis. In this
way, making use of accounting software in the cloud is cheaper than the traditional approach.

• Increased productivity. Cloud services are always available, as long as there is an internet
connection. This allows users to make use of their accounting software outside of business
hours. Also, location is no longer an issue, as long as the user has a device with them that
can connect to the web. The tedious task of backing up data is no longer an issue as this is

7

offloaded to the cloud provider, leaving the user with more time to focus on other things.
Scaling is also made easy with cloud software, as no decisions have to be made beforehand
about, for example, how many copies of the software the company will need.

Concerns and risks are mentioned as well. Business owners worry about whether their financial
data is safe in the cloud. This is mostly a human concern, as modern cloud services have proven
to be extremely secure. Another concern business owners may have is that of losing their internet
connection. This however, also proves to be a nonissue as cloud service providers have very strict
service-level agreements to ensure that their users do not experience any down-time.
It seems that at the time of writing accountants were still sceptical about the use of cloud software
within their field. The authors of the paper take the stance that the accounting profession should
indeed adopt cloud technology in order to stay up to date with modern times.

Although it is commendable that the authors attempted to narrow their scope by looking specifically
at cloud computing within the context of accounting, it would seem that their conclusions apply to all
of cloud computing. The shift from personally owned software to software as a service can be found
in all fields.
The benefits and concerns mentioned also apply to the vast majority of domains that are making
the shift to cloud computing. The actual work that an accountant does for a company is, of course,
different to that of, say, a graphic designer, but as it turns out, the cloud is largely field agnostic,
i.e. as long as the necessary software to do one’s job is available within the cloud, the fact that the
software is found on the cloud has little to no implications regarding the work that is being done.
Financial data is of great importance to a company and should be safe on the cloud, but if it is a key
concern of cloud technology to keep all types of data safe, then there really is no point in looking
further into the security of financial data specifically.

4 Discussion and Conclusion

In this literature study we have attempted to gain a deeper understanding of how businesses are
abandoning their old way of doing things and making the switch to cloud services in order to run
their businesses.

First, we have identified what the common business models in each layer of the cloud are, and why
this is the case. Next, we investigated what the scientific literature says about making the switch to
cloud. We have found that there are many potential factors that influence either a company’s decision
to steer clear of the cloud, or, on the other hand, to embrace new cloud technologies. Factors such
as security, support from upper management, value proposition, long-term viability and regulatory
compliance, among others, are high on the list of concerns of companies considering the cloud. We
have also found potential methods of mitigating the barriers that prevent businesses from adopting
the cloud, such as a clear method of constructing a cost-benefit analysis.

During this literature review we have noticed that every now and then it seems like the business side
of cloud computing can become too focused on the hype behind the technology, all the while it does
not appear to be entirely sure of what cloud computing is, or what it is capable of. A paper such as
‘Cloud accounting: a new business model in a challenging context’ calls cloud computing ‘innovative’
and ‘revolutionary’, and claims that it can truly change the way accounting is done. However, the
reason for this is not adequately explained, which leaves the reader wondering as to what makes
doing your paperwork in the cloud so revolutionary and if the author even knows.

Some papers regarding cloud business models appear to do a good job of stating the obvious. Take
the paper ‘How to Succeed with Cloud Services’, published in 2017, for example. Although great
thought and work was put into producing the test results, basing them off of a large list of literary
sources and even going as far as conducting interviews with experts to back them up, the results
themselves do not seem very revelatory. In total 42 business models characteristics are named that
contribute to success within the cloud provider industry (see Figure 3), all of which are still extremely
broad and non-specific. The conclusion almost may as well have been, ‘do everything as well as
possible in most areas’, which is not very enlightening. The same goes for the business model meta
types that are identified. Saying that newcomers with less refined products will have a tougher time
surviving than veterans with products fine tuned to their customers’ desires is no more than logical.
However, as the authors recognize themselves, further research into what makes a successful cloud

8

business model could result in more specific and useful conclusions, for which this paper could serve
as groundwork (which has done a good job of getting the obvious out of the way) and a stepping
stone to more interesting findings.

In general, a trend that can be identified in the discussed papers is that there is little ‘exact science’
to be found. The majority of the papers seem to rely on ‘expert opinion’, which in and of itself is
quite a vague and subjective concept. What we would like to see more of in the field is hard evidence,
backed up by experiments, that really shows that what the authors are claiming is really true.

In terms of further research, it seems that there is not very much room for deeper investigation
into current business models (e.g. subscription models, pay as you go), as it seems like a fairly
straightforward topic, where a sort of ‘consensus’ is already reached. Perhaps a more interesting path
to take is to look deeper into innovative strategies and business models that might be disregarded
precisely because such a ‘consensus’ exists (e.g. IaaS is best suited to pay as you go).

References
[1] Brian Hayes. Commun. ACM, 51(7):9 – 11, 2008. ISSN 0001-0782.

[2] Zaigham Mahmood and Richard Hill. Cloud Computing for Enterprise Architectures. Springer Publishing
Company, Incorporated, 2014. ISBN 144715861X.

[3] MA Rappa. The utility business model and the future of computing services. IBM Systems Journal, 43:32 –
42, 02 2004. doi: 10.1147/sj.431.0032.

[4] Artur Andrzejak, Martin Arlitt, and Jerry Rolia. Bounding the resource savings of utility computing models.
HP Laboratories Technical Report HPL-2002-339, 01 2003.

[5] Tino Vázquez, Eduardo Huedo, Rubén S. Montero, and Ignacio M. Llorente. Evaluation of a utility
computing model based on the federation of grid infrastructures. In Anne-Marie Kermarrec, Luc Bougé,
and Thierry Priol, editors, Euro-Par 2007 Parallel Processing, pages 372–381, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg. ISBN 978-3-540-74466-5.

[6] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia Youseff, and
Dmitrii Zagorodnov. Eucalyptus : A technical report on an elastic utility computing architecture linking
your programs to useful systems, 2008.

[7] Mike Kavis. Top 8 reasons why enterprises are passing on paas, September 2014.
https://www.forbes.com/sites/mikekavis/2014/09/15/top-8-reasons-why-enterprises-are-passing-
on-paas/7e6d451665aa.

[8] Zachary Flower. Weigh the benefits of paas providers against lock-in risks, May 2018.
https://searchcloudcomputing.techtarget.com/feature/Weigh-the-benefits-of-PaaS-providers-against-lock-
in-risks.

[9] Sadhana Balaji. Freemium model for saas – the good, the bad, and the in-between, September 2018.
https://www.chargebee.com/blog/saas-freemium-model-advantages-and-disadvantages/.

[10] Nathalie Brender and Iliya Markov. Risk perception and risk management in cloud computing: Results
from a case study of swiss companies. International Journal of Information Management, 33:726–733, 10
2013. doi: 10.1016/j.ijinfomgt.2013.05.004.

[11] Jhih-Hua Jhang-Li and Cheng-Wei Chang. Analyzing the operation of cloud supply chain: adoption
barriers and business model. Electronic Commerce Research, 17(4):627–660, Dec 2017. ISSN 1572-9362.
doi: 10.1007/s10660-016-9238-3. URL https://doi.org/10.1007/s10660-016-9238-3.

[12] Wei-Wen Wu, Lawrence W. Lan, and Yu-Ting Lee. Exploring decisive factors affecting an organization’s
saas adoption: A case study. Int. J. Inf. Manag., 31:556–563, 2011.

[13] Markku Sääksjärvi, Aki Lassila, and Henry Nordström. Evaluating the software as a service business
model: From cpu time-sharing to online innovation sharing. In IADIS international conference e-society,
pages 177–186. Qawra, Malta, 2005.

[14] John Nye. Cloud computing: Are your data secure in the cloud. ISACA Journal, 1, January
2015. https://www.isaca.org/resources/isaca-journal/issues/2015/volume-1/cloud-computing-are-your-
data-secure-in-the-cloud.

9

https://doi.org/10.1007/s10660-016-9238-3

[15] Ram Vemula and Helmut Zsifkovits. Cloud computing im supply chain management. BHM Berg- und
Hüttenmännische Monatshefte, 161:229–232, 05 2016. doi: 10.1007/s00501-016-0485-3.

[16] Idg: Cloud computing survey 2015, November 2015. http://www.idgenterprise.com/resource/research/2015-
cloud-computing-study/.

[17] Rakesh Raut, Pragati Priyadarshinee, Manoj Jha, Bhaskar Gardas, and Sachin Kamble. Modeling the
implementation barriers of cloud computing adoption: An interpretive structural modeling. Benchmarking:
An International Journal, 25:00–00, 10 2018. doi: 10.1108/BIJ-12-2016-0189.

[18] Natalie Kaltenecker, Thomas Hess, and Stefan Huesig. Managing potentially disruptive innovations
in software companies: Transforming from on-premises to the on-demand. The Journal of Strategic
Information Systems, 24:234–250, 09 2015. doi: 10.1016/j.jsis.2015.08.006.

[19] Clayton M. Christensen. The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail.
Harvard Business School Press, Boston, MA, 1997. ISBN 978-1565114159.

[20] Ron Adner. The Wide Lens: A New Strategy for Innovation. Penguin UK, 2012. ISBN 9780670921683.

[21] Stine Labes, Nicolai Hanner, and Ruediger Zarnekow. Successful business model types of cloud providers.
Business & Information Systems Engineering, 59(4):223–233, Aug 2017. ISSN 1867-0202. doi: 10.1007/
s12599-016-0455-z. URL https://doi.org/10.1007/s12599-016-0455-z.

[22] Manuel Trenz, Jan Huntgeburth, and Daniel Veit. How to succeed with cloud services? a dedication-
constraint model of cloud success. Business Information Systems Engineering, 61, 09 2017. doi:
10.1007/s12599-017-0494-0.

[23] Kristina Bogataj Habjan and Andreja Pucihar. The importance of business model factors for cloud comput-
ing adoption: Role of previous experiences. Organizacija, 50, 08 2017. doi: 10.1515/orga-2017-0013.

[24] Otilia Dimitriu and Marian Matei. Cloud accounting: A new business model in a challenging context.
Procedia Economics and Finance, 32:665–671, 12 2015. doi: 10.1016/S2212-5671(15)01447-1.

5 Worklog

J.M. Kyselica

• Chapter 2

• 3.5 paragraphs (papers analysed) in chapter 3

• Slides in the presentation

• Part of the conclusion

• BibTex reference management

T. van Milligen

• Wrote 3.1

• Wrote half of 3.2

• Slides in the presentation

S.N. Voogd

• Abstract and introduction

• 2 paragraphs (papers analysed) in chapter 3

• Slides in the presentation

• Part of the conclusion

10

https://doi.org/10.1007/s12599-016-0455-z

Cloud-based integration - iPaaS

Rico Mossinkoff
UvA ID: 12805157

ricokoff@hotmail.com

Vasileios Ntoumanis
UvA ID: 12623911

vasileios.doumanis@gmail.com

Eric Veliyulin
UvA ID: 13040456

ericvel96@gmail.com

Abstract

As the field of cloud computing is growing, the demand for cloud services is
increasing by the day. Users want to have access to all different kinds of web
services without too much trouble. This poses a challenge for providers to integrate
all these services so the users can combine them. iPaaS (Integration Platform
as a Service) is a concept that was designed to help solving this challenge. To
determine whether this concept is future proof, we listed the benefits and challenges
that this concept poses in practice. We found that there are various benefits,
including reduced integration cost, faster time to value, high efficiency and security
and improved scalability. We also found that there are still challenges like the
combination of overlapping platforms, resource-related and logistical challenges,
and integrity issues. When looking more closely at the impact of both the benefits
and the challenges, we conclude that iPaaS is here to stay in the future. We think
that the benefits outweigh the drawbacks of the concept and future platform will
slowly convert to iPaaS infrastructures. However, future research should be done
to determine the exact impact of the challenges and if there are more factors that
we did not account for.

1 Introduction

Cloud computing has grown a lot in the past years, and the demand of cloud services is higher
than ever. With new technologies developing, users want to have access to the latest cloud services
without too much trouble. To realize this, providers must have a system to provide these services
and to allocate their resources accordingly. This has been a challenge for several years, and it will
even become a bigger challenge in the future as the demand is still growing. People often use
multiple services at the same time to realize their business goals. The providing systems must be
able to integrate these services while maintaining an easy-to-use environment. As a reaction to
these challenges, iPaaS (Integration Platform as a Service) has been introduced. iPaaS is a recent
development that offers a variety of features to address the problem of using multiple services via one
platform. As can be seen in figure 1, many companies are already considering switching to iPaaS.

While this sounds promising, one needs to think about the implications for the future. As every other
technology, iPaaS has both advantages and disadvantages. To determine whether this development is
here to stay or if it needs to evolve into something better, we need to evaluate iPaaS with respect to
the future.
In this paper we will take a closer look at iPaaS and its features and determine if it will still be liable
in the future. First we will look at the architecture for iPaaS and the features it holds. We will also
give some real-life examples of companies that use this infrastructure. Then we will list some of the
advantages that iPaaS offers and try to put them in a future perspective. We will do the same for the
disadvantages. Finally we will conclude whether iPaaS is future proof or if has too many flaws.

Figure 1: Adoption of iPaaS by companies. Retrieved from https://blog.adverity.com/marketing-
ipaas-platforms-future-data-integration

1.1 What is iPaaS?

Integration Platform as a Service (iPaaS) is a cloud based integration system whose purpose is
to assist with application, data and process integration, and Service Oriented Architecture (SOA)
projects regarding their development and execution platform [17]. iPaaS’ competence lies in the field
of development, execution, management and govern integration flows.

According to Gartner [6], there are three categories of iPaaS vendors, each focusing on a different area
of integration: e-commerce and B2B integration, cloud integration, and Enterprise Service Bus (ESB)
and Service Oriented Architecture (SOA) infrastructure. We will shortly discuss these categories to
understand their meaning.

1.1.1 E-commerce and B2B integration

E-commerce integration provides the service of exchanging data between a company’s e-commerce
site and back-end accounting and inventory (ERP) system [2]. As data needs to be synchronized on
both sides, integration is key to an efficient system.
According to IBM [1], ’business-to-business (B2B) integration is the automation of business processes
and communication between two or more organizations. In this category, the vendor offers a
platform to businesses to make it easier to trade and work together with other suppliers and business
partners. As most data exchanges can be automated, the platform can take away much of the trivial
communication and tasks that are needed between businesses. B2B integration also makes sure that
businesses that are using different systems and application can still communicate in a universal way.
Maintaining their business network in a fast and agile way is secured in this way.

1.1.2 Cloud integration

With cloud integration, we mean connecting applications, systems and other IT environments to
exchange data and services. This kind of integration is widely used over the internet. Almost all
enterprises are using cloud computing and integration in some way. It offers a way to connect
customers to services and it makes it much easier to scale the business if needed. Because the use of
Software as a Service (SaaS) has grown a lot in the past decade, cloud integration has become a vital
part in the business strategy of modern companies. Business processes can be optimized and there is
a uniform way to share data among different applications, with the use of cloud integration.

2

1.1.3 ESB and SOA infrastructure

Service Oriented Architectures (SOA) is very similar to the cloud integrations we just talked about.
However, there are some small differences. While both are designed to optimally share resources and
data [11], we could view SOA as a way to deliver a business service consisting of smaller services.
Cloud integrations often contain multiple business services and integrates them to deliver a chain
service.

1.2 Real life examples

To understand how iPaaS is used in practice, we will look at some real life applications of it. With this
we can see how companies implement iPaaS and in which way they are similar or different. There
are many companies in this area, but we will outline only some of them. There might be other very
interesting variations that we do not talk about in this paper.

1.2.1 Microsoft Power Automate

Microsoft Power Automate [14] is a cloud based solution to help managing business processes . It
uses triggers and actions to automate common processes. The user can set a certain trigger that should
start a process of actions. When triggered, actions will follow in a specific sequence to get work done.
On the platform there is a variety of different applications that you could use. For instance, you could
post a certain message via Microsoft Teams if some other task is finished in your OneDrive. This
makes it easier to create a workflow for different applications at the same time.

1.2.2 Adaptris

Adaptris [19] is a company that offers various iPaaS services. One of them is an integration platform
that offers similar functionality to Microsoft Power Automate. They also offer services that use the
concept of iPaaS. For instance, they offer a service to receive orders and automate response order
messages. They also provide custom built integration solutions for specific needs. These solution
follow the concept of iPaaS.

1.2.3 Cloud Elements

Cloud Elements [3] offers various services that are based on iPaaS. One of those services are
integrations that are embedded in your product. For companies this can be very interesting as it
gives them a way to easily integrate their product with others, without worrying about the technical
side of implementing such integrations. Cloud elements uses a different approach than some other
companies - instead of integrating APIs directly with some application, Cloud Elements creates a
virtual API that then can connect with all these APIs. This offers a great opportunity, as it takes away
the hassle of integrating all of the different APIs.

1.2.4 Jitterbit

Jitterbit [12] is also a company that offers an integration platform. They state that, with the platform,
you can easily connect your cloud applications and you can reuse and extend trusted applications
to come up with new innovative solutions. They combine this with artificial intelligence to make
this whole process easier. As a platform, it seems that they offer similar functionalities as the other
companies we just discussed. However, they have the added benefit of using artificial intelligence,
which in turn can make the processes a lot more efficient.

1.2.5 Other systems

Now there are many other systems available in the market that offer similar functionalities. We only
discussed a few from which we thought that they are offering a nice example for iPaaS. As we can
see in the companies we just discussed, most companies offer the basic integration platform extended
with some functionalities. This is what the core of iPaaS entails. The platform is used as a service to
connect other services.

3

2 iPaaS vs other "as a Service" solutions

There are a multitude of other "as a Service" types of solutions available in the cloud market. In
this section we will try to explain and differentiate between the three main "as a Service" concepts,
namely PaaS (Platform as a Service), SaaS (Software as a Service) and IaaS (Infrastructure as a
Service). Additionally, we will compare each of them to iPaaS and analyze the relation they have to
each other.

2.1 PaaS

2.1.1 What is PaaS?

PaaS (Platform as a Service) is a type of cloud computing service that works like an environment
that supports building, developing and delivering cloud-based web applications. All servers, storage,
networking, hardware, software, provisioning and hosting is managed by the provider, while the
developers can focus on managing the applications themselves [5] [18].

2.1.2 How does PaaS relate to iPaaS?

iPaaS provides the necessary tools to allow for the integration of the cloud-based web applications that
have been created using PaaS. It also serves as a tool to help integrate the data that the applications
require in order to run [18].

2.2 SaaS

2.2.1 What is SaaS?

Cloud application services, or SaaS (Software as a Service), is a commonly used cloud computing
service that is owned, delivered and managed remotely by one or more providers. SaaS applications
are usually consumed on a pay-for-use basis or as a subscription based service. The majority of
SaaS applications are made to run directly in a web browser, which makes it so there is no need to
download or install anything on the client side [15] [18].

2.2.2 How does SaaS relate to iPaaS?

iPaaS allows organizations to integrate SaaS application data and automate tasks. All iPaaS applica-
tions are normally part of SaaS; in other words, they are individual services hosted completely in
the cloud. iPaaS acts as a connector between SaaS services and allows for a seamless flow of data
between two or more applications. While SaaS applications fully reside in the cloud, iPaaS allows
users to integrate services that are both cloud-based, but also on-premise [15].

2.3 IaaS

2.3.1 What is IaaS?

IaaS (Infrastructure as a Service) is a type of instant cloud computing infrastructure that is provisioned
and managed over the internet [21]. It provides access to and monitoring of computers, networking,
storage and other services. IaaS allows for scaling up and down by purchasing resources on-demand
and as-needed depending on a company’s business needs, so that they only have to pay for what they
use - this is similar to the other "as a Service" solutions [18].

2.3.2 How does IaaS relate to iPaaS?

In the same way that IaaS provides infrastructure in the form of hardware, computing and storage
resources, iPaaS should also offer computing and storage resources, at least to a certain extent.
However, this will not be offered to the same degree as what you would expect from a pure IaaS
solution. Seeing as IaaS provides a foundation for most other platforms, iPaaS is typically deployed
on top of IaaS [20].

4

Figure 2: Cloud Services Structure

3 Benefits of iPaaS

iPaaS provides a huge variety of benefits with great ease of use as it comes to technical equipment
and infrastructure required to achieve these kind of services. This section will dive deeper into several
of these benefits, in an attempt to explain each of them as well as detailing what advantage(s) they
can provide to a company’s cloud infrastructure.

3.1 Reduced integration costs

Businesses have a variety of costs that they have to make to grow the company and deploy new
services. An iPaaS platform automates and facilitates the integration of new services, and as such has
the potential to remove much of the costs associated with this. Reduced integration costs could have
a big impact in the total costs of a company. This is because the demand for web services is rising
and in the coming years, many new services will be deployed. If you can save money on integration
of every new service, you can spend that money on other priorities. For a company this means that
they will be able to grow faster and they will generate more profit. New companies can also benefit
from reduced integration costs, as less initial capital is needed to integrate a new service. The only
investment required is an annual subscription for the integration platform. If we look at the near and
far future, reduced integration costs can be an important factor to use iPaaS [9].

3.2 Avoided long term costs

Most, if not all, of the companies consider including new services to their environment based on
many factors. One of those is the upcoming expenses for deploying these services. In traditional
architectures, every service would have quite some extra costs involved, such as costs related to
upgrading as well as maintenance costs. This could discourage a company from considering to
implement new services. With iPaaS platforms, there is often an option to have a subscription based
implementation of it. This means that the extra costs for deploying and integrating a new service
will be limited to a fixed price for the use of the platform. This could dramatically decrease costs
for companies that often want to deploy new services. Smaller companies that do not have enough
resources to maintain and upgrade services can benefit from this solution too. [9].

3.3 Faster time to value

In our times, where DevOps cycles and agile collaborations are key features for companies, conserving
time and effort in a development setting is considered mandatory. Every company is trying to adapt to
the current state of the cloud market when it comes to collaboration, project management and CRM
(Customer Relationship Management), in addition to other business management aspects. iPaaS
services provide the best way to remove the workload of preparation and configuration of such an
environment within the network of the company and making the services accessible right away. This
way, the employees of a company can save time on the usually time-consuming logistical part of
deploying cloud services, and instead focus their attention on developing and deploying solutions
that actually provide value to their company. [9].

5

3.4 Efficient, productive and simple

Nowadays a company’s development team can benefit from every tool they have at their disposal for
every kind of operations they might perform. iPaaS is here to provide a large amount of tools to make
employees’ life easier from small trivial business related issues, all the way to complex integration
flows and scenarios. One of the greatest collections is the pre-built connectors, or integration
templates, which are available from the majority of the iPaaS providers. As time passes, a lot more
providers are getting involved with more and more visual tools. Some of the most popular tools are
the tools of data mapping, transformation and routing. In addition, iPaaS has extended its capabilities
to provide adapters/connectors to SaaS (Software as a Service) applications, making the TTM (Time
to Market) even better [9].

3.5 Easy to supervise

As large systems are known to be very complex when it comes to management, iPaaS provides the
ability to simplify these kinds of operations, such as ability to create, modify and delete a user or
a group of users - which is only an example of some the simplest operations it can manage. A bit
more advanced activities are available as well, such as assigning user-specific permissions based on
their level and even sometimes the ability to specify different permissions for the same user but for
different servers. That way, companies can get a clearer and more organized perspective of the users,
and are able to manage them more easily [9].

3.6 Improved scalability

Every company has its own needs and these needs can change from one moment to another. One
of the most important attributes of an iPaaS platform is the ability to adapt to these requirements
and provide the best possible way to handle them. That is why iPaaS includes scalability - this is a
flexible way to manage resources either temporarily or permanently. With a great ease of use and
without changing plans and increase your cost, companies now have a way to handle any setback and
adjust accordingly. For example, they can scale up by adding resources temporarily during specific
seasons where it is known or predicted that higher traffic than usual will be occur [9].

3.7 More than just iPaaS

Cloud computing is bringing to the table the way to access our data at any time from everywhere.
That alone is a huge benefit for every company that uses cloud computing, as well as for individual
employees within these companies, as it allows for much greater flexibility when it comes to for
example what devices one can work with, as well as the actual geographical location that an employee
can work from. iPaaS provides this constant access to the stored data from everywhere. In addition,
all this data can be downloaded, modified and uploaded without stressing the system or making
another user wait for some other process to complete first. That is happening because of the load
balancing technique that is used. Furthermore, iPaaS provides a disaster plan in events where damages
from infrastructure or any malicious software enters the system. Moreover, iPaaS is collaborating
with IaaS (Infrastructure as a Service) providers to maintain these services at all times [9].

3.8 Security

One of the biggest concerns from cloud services is security. Preservation of data is important for
everyone, from some simple personal files to companies’ contracts or other important documents.
iPaaS providers reassure the integrity and safety of the data. As the technology evolves and new
threats arise every day, iPaaS providers make sure to apply state of the art techniques to prevent any
of these attacks that would threaten the security of a company’s data. Some of the tools that are used
by iPaaS solutions are for example Multi-tenant environment mechanisms, Virtual Private Clouds
(VPC), Public Key Infrastructure (PKI), in addition to a host of other tools. [4].

4 Challenges of iPaaS

While iPaaS provides plenty of benefits and opportunities to cloud management, there are also some
challenges that must be considered and addressed when implementing this service. Each of the

6

following subsections addresses one specific challenge, and provides ideas for potential fixes or
alternative solutions to avoid these challenges altogether.

4.1 Combination of overlapping platforms

iPaaS platforms are meant to enable and simplify the integration of cloud-based processes, services,
applications and data within organizations [7]. However, if a company decides to implement several
iPaaS platforms at once, it may add complexity to the enterprise architecture and operational require-
ments because of the fact that the platforms can have several overlapping capabilities. The cloud
and/or on-premise environment of the company can then become unnecessarily complicated, making
it more difficult to work with and manage the cloud resources and data [13]. In order to avoid such a
scenario, it’s important to make sure no iPaaS platforms that are in use are disrupting each other. An
even better solution would be to stick to only one iPaaS platform and thus completely bypass any
kind of compatibility issues with other platforms.

4.2 Resource-related and logistical challenges

By hosting iPaaS in the cloud, existing cloud-related challenges like sharing of compute resources
and cloud outages will also affect the integration service [13]. These potential problems similarly
affect all other cloud services, and there is no iPaaS-specific solution to help alleviate this. Another
consideration that should be taken when implementing an iPaaS solution is the actual total cost
of it - depending on what kind of services and/or the amount of data that the solution has to deal
with, running costs can be significantly higher than the initial implementation cost [13]. Platform
governance and correct processing of sensitive data is also an important aspect that must be respected
when working with iPaaS solutions, so enough IT resources must be delegated in order to achieve
and maintain a good level of integrity [22][8]. Before selecting an iPaaS solution to use, companies
should evaluate and balance the strengths and weaknesses of the different iPaaS solutions available.
This way they can ensure that the selected solution is the one that fits their landscape the best and is
the most adapted for their business needs [13].

4.3 Information security and data protection

iPaaS, and other integration platforms in general, often require the need for organizational accounts
at external third-party service providers in order to perform external web API calls to these services,
for example using REST or SOA. This again requires the issuance of authorization tokens so that the
platforms may access and/or consume the services. The authorization process for most integration
platforms is normally based on OAuth 2.0, and as such they inherit both the advantages and the
drawbacks of this authorization protocol. It is relatively easy to integrate OAuth 2.0 authorization
compared to other protocols, as its focus lies on a simplified authorization approach. Because of
this, it only provides a limited set of features. As a consequence, the resulting integration lacks
fine-grained, policy-enhanced, assured and auditable data flow control and monitoring. Companies
are therefore restricted in the degree of control and/or awareness they have over the flow of data and
usage of services in distributed environments [10].

4.4 Ensuring data integrity

By using iPaaS platforms’ dashboards, developers can easily get information about integrations and
potential related errors on a daily basis. If errors are caused by erroneous incoming data, it might be
tempting for a developer to fix the error by correcting the erroneous data. This, however, should be
avoided at all costs - it is considered bad policy to change incoming data into something else if the
failure originates from the sending system. In order to ensure data integrity, iPaaS platforms should
be considered only as tools for data transfer and data conversion, and not for editing incoming data
content. If corrections have to be made, the developers should inform the owners of the data, i.e. the
business system administrators, so that they can make the changes themselves [13].

4.5 Underlying integration issues

In order for a company to fully benefit from an iPaaS platform, it is essential that they understand and
address the root causes of the integration challenges that they are currently facing. An example of

7

such a cause can be data redundancy issues due to immature governance, i.e. unclear data ownership
and ineffective problem resolution processes. It is important that governance is addressed upfront,
otherwise it can lead to unnecessary integration work. It is also crucial to integrate data quality
validation checks throughout the business workflows to ensure long-term data quality - this way, one
can avoid scenarios such as the one described in section 4.4. Before data integration projects go
live, a thorough clean-up of the data should be performed, in addition to developing a strict plan to
maintain its integrity. By first fixing all of the underlying integration challenges within a company,
implementing and running a iPaaS platform will prove to be an easier, smoother and more predictable
experience [13].

4.6 Discontinuation of iPaaS platforms

Despite the fact that the iPaaS market is showing strong growth, one can already see the first signs of
market consoldiation. According to Gartner’s prediction, up to two-thirds of existing iPaaS vendors
will merge, be acquired or exit the market by 2023. This is because iPaaS vendors face the challenge
of having a business that is simply not profitable - the costs for running the platform, in addition to
the costs for sales and marketing, outsize the revenue growth and increasing customer acceptance.

Megavendors, for example Oracle, Microsoft and IBM, have the advantage of being able to deliver
more-competitive offerings with more-aggressive pricing and packaging options than smaller players
in the market, and are as such better-equipped to handle the challenges of the iPaaS market. Gartner
expects that this is a trend that will continue, and that it will in turn further diminish the market
share of the smaller specialist iPaaS vendors. Gartner argues that this is good news for companies
looking to purchase an iPaaS solution - they can capitalize on the evolving market dynamics by
solving short-term/immediate problems today, while at the same time preparing to adopt another
iPaaS platform from an alternative vendor while waiting for the expected market consolidation to
accelerate through 2023.

Market consolidation, however, poses the increased risk of platform services being discontinued
because of the vendor exiting the market or being acquired. In order to minimize exposure to this
type of vendor-related risk, iPaaS solution purchasers should start by adopting platforms that have
the ability to deliver short-term payoffs. This way, the cost of an eventual replacement platform can
be more easily justified [16].

5 Conclusion and discussion

iPaaS is a technology that enables and facilitates the integration of a variety of cloud services,
processes and data within one or across multiple organizations. There are many benefits to be
gained from implementing an iPaaS solution in your company - this includes things such as reduced
integration and long term costs, faster time to value, more efficient and productive integration flows,
easier management of services and data, improved scalability and security options. There are also
certain challenges that one must be aware of when implementing an iPaaS solution - these include
risks such as potential underlying integration issues within a company, ensuring data integrity as well
as resource-related and logistical challenges. From the point of view of an iPaaS provider, there is
also the challenge of maintaining a profitable business, as the costs of running such a platform might
be too high compared to their revenue growth.

Most of these challenges, however, are something that can be dealt with if companies dedicate enough
time and resources to it. As such, the benefits of implementing and running an iPaaS solution have the
potential to outweigh the challenges that are present today. When looking to the future, one can only
assume that as companies get more and more familiar with iPaaS as a concept, they will also become
more aware of the risks and challenges that must be considered when deploying such a solution.
Issues such as potentially overlapping platforms and the lack of data integrity should become less
widespread, and companies will be able to truly harness the opportunities that iPaaS solutions provide.
There might be factors that this paper did not account for, but based on our research we conclude that
companies should consider implementing iPaaS for their integration needs, as this service will only
continue to grow in the coming years.

8

References
[1] B2B integration. URL: https://www.ibm.com/supply- chain/b2b- integration.

(accessed: 25.05.2020).
[2] Mark Canes. eCommerce Integration Defined: Understanding Common Software Jargon. URL:

https://www.bluelinkerp.com/blog/2013/02/27/ecommerce- integration-
defined-understanding-common-software-jargon/. (accessed: 25.05.2020).

[3] Cloud Elements. URL: https://cloud-elements.com/. (accessed: 25.05.2020).
[4] Yuri Demchenko. “Cloud Security services and mechanisms: Can modern clouds provide

secure and trusted environment for data and business applications?” In: Second AMSEC
Workshop. 2019.

[5] IBM Cloud Education. iPaaS (Integration-Platform-as-a-Service). 2019. URL: https://www.
ibm.com/cloud/learn/ipaas. (accessed: 26.05.2020).

[6] Massimo Pezzini Eric Thoo Paolo Malinverno. Gartner Reference Model for Integration
PaaS. 2011. URL: https://www.gartner.com/en/documents/1729256. (accessed:
26.05.2020).

[7] Gartner Glossary. URL: https://www.gartner.com/en/information-technology/
glossary/information-platform-as-a-service-ipaas. (accessed: 26.05.2020).

[8] Robert Gorwa. “What is platform governance?” In: Information, Communication & Society
22.6 (2019), pp. 854–871. DOI: 10.1080/1369118X.2019.1573914. eprint: https://doi.
org/10.1080/1369118X.2019.1573914. URL: https://doi.org/10.1080/1369118X.
2019.1573914.

[9] Hybrid IT and iPaaS (integration Platform as a Service). URL: http : / / www .
enterpriserealtimeintegration.com/2015/11/12/hybrid-it-and-ipaas/. (ac-
cessed: 26.05.2020).

[10] Keith Jeferry et al. “Challenges Emerging from Future Cloud Application Scenarios”. In:
Procedia Computer Science 68 (2015), pp. 227–237. DOI: 10.1016/j.procs.2015.09.238.
URL: https://doi.org/10.1016%2Fj.procs.2015.09.238.

[11] Steve Jin. SOA and Cloud Computing: Are They The Same? URL: https://blogs.vmware.
com/cloudprovider/2010/04/soa-and-cloud-computing-are-they-the-same.
html. (accessed: 25.05.2020).

[12] Jitterbit. URL: https://www.jitterbit.com/. (accessed: 25.05.2020).
[13] Jonna Metso. “Integration error monitoring in iPaaS environment and implementation model”.

In: (2019). URL: http://urn.fi/URN:NBN:fi:amk-2019112923428.
[14] Microsoft Power Automate. URL: https://flow.microsoft.com/en-us/. (accessed:

25.05.2020).
[15] Shreya Naik. iPaaS vs SaaS: Know the Difference. 2018. URL: https://www.built.io/

blog/ipaas-vs-saas-know-the-difference. (accessed: 27.05.2020).
[16] Gloria Omale. Gartner Predicts Up to Two-Thirds of iPaaS Vendors Will Not Survive By

2023. URL: https://www.gartner.com/en/newsroom/press-releases/2019-03-
07- gartner- predicts- up- to- two- thirds- of- ipaas- vendors- wi. (accessed:
26.05.2020).

[17] Vesna Radonjic et al. “Integration Platform-as-a-Service in the Traffic Safety Area”. In: Dec.
2011.

[18] Muhammad Raza Stephen Watts. SaaS vs PaaS vs IaaS: What’s The Difference and How To
Choose. 2019. URL: https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-
the-difference-and-how-to-choose/. (accessed: 26.05.2020).

[19] WebSupplier. URL: https://www.adaptris.com/websupplier/. (accessed: 25.05.2020).
[20] What is an Integration-Platform-as-a-Service (iPaaS)? 2019. URL: https://www.dizmo.

com/what-is-an-integration-platform-as-a-service/. (accessed: 28.05.2020).
[21] What is IaaS? URL: https://azure.microsoft.com/en-us/overview/what-is-

iaas/. (accessed: 28.05.2020).
[22] What Is Platform Governance and Why Is It a Big Deal? URL: https://learn.g2.com/

platform-governance. (accessed: 26.05.2020).

9

https://www.ibm.com/supply-chain/b2b-integration
https://www.bluelinkerp.com/blog/2013/02/27/ecommerce-integration-defined-understanding-common-software-jargon/
https://www.bluelinkerp.com/blog/2013/02/27/ecommerce-integration-defined-understanding-common-software-jargon/
https://cloud-elements.com/
https://www.ibm.com/cloud/learn/ipaas
https://www.ibm.com/cloud/learn/ipaas
https://www.gartner.com/en/documents/1729256
https://www.gartner.com/en/information-technology/glossary/information-platform-as-a-service-ipaas
https://www.gartner.com/en/information-technology/glossary/information-platform-as-a-service-ipaas
https://doi.org/10.1080/1369118X.2019.1573914
https://doi.org/10.1080/1369118X.2019.1573914
https://doi.org/10.1080/1369118X.2019.1573914
https://doi.org/10.1080/1369118X.2019.1573914
https://doi.org/10.1080/1369118X.2019.1573914
http://www.enterpriserealtimeintegration.com/2015/11/12/hybrid-it-and-ipaas/
http://www.enterpriserealtimeintegration.com/2015/11/12/hybrid-it-and-ipaas/
https://doi.org/10.1016/j.procs.2015.09.238
https://doi.org/10.1016%2Fj.procs.2015.09.238
https://blogs.vmware.com/cloudprovider/2010/04/soa-and-cloud-computing-are-they-the-same.html
https://blogs.vmware.com/cloudprovider/2010/04/soa-and-cloud-computing-are-they-the-same.html
https://blogs.vmware.com/cloudprovider/2010/04/soa-and-cloud-computing-are-they-the-same.html
https://www.jitterbit.com/
http://urn.fi/URN:NBN:fi:amk-2019112923428
https://flow.microsoft.com/en-us/
https://www.built.io/blog/ipaas-vs-saas-know-the-difference
https://www.built.io/blog/ipaas-vs-saas-know-the-difference
https://www.gartner.com/en/newsroom/press-releases/2019-03-07-gartner-predicts-up-to-two-thirds-of-ipaas-vendors-wi
https://www.gartner.com/en/newsroom/press-releases/2019-03-07-gartner-predicts-up-to-two-thirds-of-ipaas-vendors-wi
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-how-to-choose/
https://www.adaptris.com/websupplier/
https://www.dizmo.com/what-is-an-integration-platform-as-a-service/
https://www.dizmo.com/what-is-an-integration-platform-as-a-service/
https://azure.microsoft.com/en-us/overview/what-is-iaas/
https://azure.microsoft.com/en-us/overview/what-is-iaas/
https://learn.g2.com/platform-governance
https://learn.g2.com/platform-governance

6 Contributions

6.1 Rico Mossinkoff

Responsible for:

• Abstract
• Section 1 - Introduction
• Part of section 1.1 - What is iPaaS?
• Section 1.2 - Real life examples

6.2 Vasilis Ntoumanis

Responsible for:

• Part of section 1.1 - What is iPaaS?
• Section 3 - Benefits of iPaaS

6.3 Eric Veliyulin

Responsible for:

• Section 4 - Challenges of iPaaS
• Section 5 - Conclusion and discussion

10

MicroVMs and Containers reviewed from a cloud
perspective

Marcus van Bergen
University of Amsterdam

marcus.vanbergen@student.uva.nl
10871993

Abstract

With microservices architecture being a solution to build efficient complex soft-1

ware systems, it is important to know which technologies can be used to build2

such a platform. In this paper we regard Unikernels/MicroVMs and Docker con-3

tainerization; both can be used to create a microservices architecture. This paper4

details the underlying technology on which both are built and as to how they are5

different. Afterwards, we complete this research by elaborating on why Docker6

containerization seems to be more popular in search trends and research interest.7

This information provides us insight as to if Unikernels/MicroVMs will become8

the “next cloud”.9

1 Introduction10

Literature proposes the use of microservices as a solution to efficiently build and manage complex11

software systems [28]. That same literature lists many benefits of using microservices, such as cost12

reduction, whilst building complex software. There are a vast amount of software solutions ranging13

from low-level to high-level, which can be used to build a microservice oriented architecture. In14

this paper we review two technologies, Unikernels/MicroVMs and Docker containers respectively,15

which both have been used in ultra-scale platforms performing a service-like role. These services16

makes part of a larger microservice platform.17

In the following sections we will introduce Unikernels/MicroVMs in brief and mention some18

of their applications. Afterwards, we will detail the underlying technology used to run Uniker-19

nels/MicroVMs and discuss the benefits and disadvantages of them. In the sequential section we20

will perform the same type of analysis but for Docker containers.21

Our main research question is: Will Unikernels/MicroVMs become “next cloud”? To answer22

this research question we will first find answers on the following subquestions: How do Uniker-23

nels/MicroVMs and Docker work? Which platform seems to have better security? Why is one more24

favorable than the other?25

These questions will be answered upon in the sections to follow. We conclude this report by giving26

answer to our main research question.27

2 Unikernels/MicroVMs28

2.1 A brief introduction to Unikernels and MicroVMs29

The recent growth of Cloud computing as a platform to run scalable services has, with it, introduced30

new technologies. Modern cloud computing allows users to run scalable services which provide31

users with a flexible platform which can adapt to load. This manner of running services makes32

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

cloud providers more responsible for the scalability of services. In the past, the under utilization33

of cloud resources brought with it great costs. Using virtual machines, which are deployable on an34

arbitrary hypervisor or hardware, allows cloud providers to better utilize their platforms and lower35

costs [6].36

Unikernels are often small, single spaced, specialized machine images tailored to run a specific37

application. Common practice for unikernels is to setup them up according to the zero overhead38

principle: the machine images do not contain superfluous components not required by the appli-39

cation it is deemed to run [9]. Given that unikernels are machine images they are also portable,40

meaning they can be run on the cloud, a remote server or a personal computer [10]. A typical virtual41

machine, which has been setup to run one service, is usually based on of a full-fledged operating42

system which contains many drivers, user spaces, permissions and miscellaneous software such as43

a text-editor [19]. In contrast, according to the zero overhead principle, unikernels come without44

many of the aforementioned “overhead” while still being able to run that one service.45

2.2 Applications of Unikernels and MicroVMs46

The idea of a thin and fast machine image which can run an application seems quite useful. Uniker-47

nels have seen themselves been applied in multiple sections of technology. For example, Bromium48

vSentry, which has now been acquired and renamed to HP Sure Click Enterprise, is based off of49

Unikernel/MicroVM technology. Bromium’s purpose was to start one MicroVM per application on50

a personal computer. By doing so each “process” is properly isolated from one another and from51

the host operating system [15]. These MicroVMs run on a hypervisor (Xen in the case of Bromium)52

which leverage CPU Virtualization Technology; allowing the virtual machines to be hardware ac-53

celerated (very fast) and isolated up to hardware level. Isolating each application brings enriched54

protection to common ransomware attacks or zero-day attacks in general, because the attack-surface55

for such exploits is limited to that MicroVM. In the case of a ransomware attack, the infected process56

should not be able to access the hostOS. Such exploits are then only limited to the MicroVM due to57

their strict isolation.58

A different use of MicroVMs is its application in the Amazon Firecracker platform. Firecracker59

is a Virtual Machine Monitor (VMM) designed for running serverless applications, containers and60

functions [2]. Firecracker was specifically made to support two AWS (Amazon Web Services) ser-61

vices, Lambda and Fragate. At launch, on the AWS Lambda platform, each Lambda function was62

run in a Linux Container and these containers ran on a single VM per customer. By doing so, cus-63

tomers’ functions were isolated at VM level, but per customer each function was only isolated at64

container level. The drawback that Amazon realized with this approach, was that fixed-sized VMs65

per customer lead to underutilization at the cost of security. Instead, they decided to migrate their66

Lambda platform to Firecracker, where each Lambda function was a single MicroVM instance. The67

Firecracker platform uses KVM (the Linux Kernerl-based Virtual Machine) as the hypervisor via68

which they run the MicroVMs. On Firecracker QEMU, which is often used as the virtual machine69

monitor, via which the MicroVMs are configured, managed and have hardware emulated, was re-70

placed by their own implementation [2]. By running the Lambda functions as MicroVMs, Amazon71

is now able to achieve multitenancy of Lambda functions on a shared host, while keeping isolation72

standards high, overhead low all the while increasing economies for their serverless platform.73

2.3 MicroVM technology74

The aforementioned sections have introduced us to the concept of Unikernels/MicroVMs. In this75

section we will further discuss the underlying technological stack needed to run MicroVMs.76

The Amazon Firecracker example has already hinted what is needed to run MicroVMs success-77

fully. First, virtual machines need hardware, but because they are virtual, the hardware needs to be78

emulated. Commonly, QEMU which is an opensource hardware emulator, is used for this. In the79

case of Firecracker, Amazon chose to not use QEMU and instead replaced the hardware emulation80

with their own implementation. Besides hardware emulation, often hardware-assisted virtualization81

is used in conjunction in order to allow the virtual machine to make use of the CPU Virtualiza-82

tion Technology. In Firecracker’s case they use KVM. This hardware-assisted virtualization allows83

the emulated hardware to make use of hardware acceleration which achieves speedup, compared to84

normal software emulation, and allows the emulated hardware to function at near bare-metal speeds.85

2

Figure 1: A linux-based host is running a VM (guest), using both QEMU (to emulated hardware)
and the KVM kernel module to execute CPU instructions directly on hardware. If a call cannot be
directly executed on hardware then the call is passed back to QEMU to be emulated. Courtesy of
[14]

It is now clear that the basis to run MicroVMs is a combination of a hardware emulator like QEMU86

and a hardware-assisted virtualization platform like KVM. With the zero overhead principle in mind,87

MicroVMs often do not have much emulated hardware attached. We have also noticed that what88

hardware is attached to the MicroVM is implementation specific. In the case of Amazon Fire-89

cracker, only the following emulated devices are supported to attach to a MicroVM: network and90

block devices, serial ports, and PS/2 keyboard controller [2]. IncludeOS, which is an example of a91

Unikernel operating system for C++ services, only supports networking and storage [9]. This is an92

example where we see heterogeneous support for MicroVMs that is platform specific.93

2.4 Benefits and disadvantages of MicroVMs94

Given the acquired knowledge regarding MicroVMs from the previous sections we will now at-95

tempt to understand their benefits and disadvantages. We notice that the literature brings to light96

observations of MicroVMs which might often times can be both a benefit and a disadvantage. For97

example, [8] mentions security observations found when using MicroVMs including but not limited98

to: reduced software attack surface, the use of a single address space, no shell by default.99

Reduced software attack surface. [8] argues that due to the zero overhead principle, the number of100

bytes for MicroVM images are often smaller than normal machine images. In their example, they101

compare a TinyCore Linux image to that of a MicroVM and find a 92% reduction in image size,102

and thus a reduction in software attack surface of that same amount. Of course, a smaller machine103

image comes at a cost that certain software features are missing, which leads us to the next benefit104

and disadvantage.105

No shell by default. As elaborated on in [8], most unikernel systems run without a shell. Commonly,106

system administrators usually log into a system hosting a service to edit configurations or read the107

logs. For unikernel systems, where there is no shell, this would not be possible. [8] suggest that108

other means of logging could be for example, via serial port or over a secured network to a logging109

system. By withholding a shell from unikernel systems, executing malicious code becomes more110

difficult for hackers. It is possible to build a unikernel OS where a shell exists, however [8] suggests111

not including a shell by default for production environments.112

Isolation from the hostOS via virtualization. From the aforementioned sections it should now be113

clear that common practice for running MicroVMs is to use hardware emulation and hardware-114

assisted virtualization, we will refer to this as the KVM/QEMU stack.115

3

Figure 2: On the left, Linux container model for running applications on a host. On the right a
KVM/QEMU model for running applications on a host. Courtesy of [2]

Figure 2 demonstrates how KVM/QEMU stack sandboxing works compared to that of a container-116

ization model. Using the KVM/QEMU stack proper security is not reliant on the host kernel but117

instead on the VMM (virtual machine manager). This contrasts to the containerization platform118

where security is reliant on proper implementation of the Linux kernel features such as: cgroups,119

namespaces etc. Furthermore, the use of KVM allows the virtual machines or the VMM to exe-120

cute commands on the CPU directly using the CPU virtualization extensions. This contrasts to how121

containers run, where the host kernel is used to run applications as processes.122

Resource footprint. As [9] mentions, a “Hello World” service using IncludeOS uses 8.45 MB in123

memory (RAM), compared to a Java implementation (no operating system) which uses 29.29 MB124

in memory. To further enhance this contrast, a full-fledged Ubuntu 14.04 virtual machine running125

the hello world service uses close to 300 MB in ram. Of course, this enhanced resource footprint126

is also carried over to the image sizes of MicroVMs and their startup time. Both of these are often127

lower when compared to normal virtual machines. For example, for the AWS Lambda platform it is128

important that MicroVMs start almost instantaneously, compared to normal virtual machines which129

take upwards of seconds to start [2]. The Firecracker VMM + KVM stack is able to achieve this130

near instant startup-time where a MicroVM is able to start within 125ms.131

3 Docker Containers132

3.1 A brief introduction to Containerization133

Containerization is a ubiquitous technology which has seen widespread use by cloud providers,134

personal developers and even by ultra scalable platforms. As mentioned in [21] Docker is the most135

popular containerization solution. We will be limiting the containerization scope of our literature136

review to Docker containers. It is important to note that other containerization solutions do exists137

such as LXC (Linux Containers). Containerization in general is not a new technology as its recent138

uptake in popularity would suggest [20]. Rather, other technologies such as FreeBSD Jails, Solaris139

Zones all predate Docker [26].140

Containerization is an operating system level virtualization. As mentioned by [20], Docker con-141

tainers try to solve the conflicting dependency problem, missing dependency problem and platform142

difference problem. Docker attempts to solve the conflicting dependency problem by isolating in-143

dividual services to their own containers. For example, if one Python service needs Python 3.6,144

while the other needs Python 3.7, these application run on two separate containers which contain145

their respective Python versions. Running applications in their own containers further contrasts with146

the classical method of “one virtual machine for several services”. The same goes for the missing147

dependency problem. If an application needs a certain dependency to run, it is common practice to148

install this dependency in the image where the application too will be installed. Therefore, when this149

image in run, in form of a container, the dependency is always satisfied for that application. Finally,150

the platform difference problem seems to be one of Docker’s strongest points. If an application151

needs to be run on a server with a different OS, simply install Docker. Afterwards you can run the152

image as a container and all should work [20].153

4

The above information emphasizes why Docker seems so attractive for developers and cloud154

providers.155

4 Applications of Docker156

The previous section already hints to some applications of Docker. The wide-spread adoption of157

Docker has allowed it to gain a large community. With such a large community many projects have158

been established which make use of Docker containerization or improves it in a certain way.159

For example Kubernetes, which is a container orchestration tool that aims to decouple containers160

from the systems on which they operate. Kubernetes aims to leverage Docker containers to deliver161

large-scale distributed systems. By decoupling containers from the systems they run on, and weaving162

them with large-scale robust networks, the application developers can view the containers as a unit of163

computation [7]. An orchestration tool, such as Kubernetes, then takes care of how many containers164

need to be available to satisfy load requirements. In this case, by packaging your applications165

in a Docker image, not only are the problems: conflicting dependency problem and the missing166

dependency problem solved, but also the system on which the container runs becomes abstracted.167

Rewriting applications to micro-service form allows organizations to become more productive while168

allowing applications to become scalable [24]. Furthermore, [18] forecasts that 80% percent of app169

development on cloud platforms will for micro-services. With the prevalence of cloud platforms and170

this forecast, the importance of Docker might only further increase.171

In [4] it is pointed out that Docker containers are also often used for continuous integra-172

tion/continuous delivery (CI/CD) applications. [4] argues that if one were to use a traditional VM173

for CI/CD, it could take upwards of 10 minuets to setup and tear down said VM (with Jenkins, a174

build tool). Instead, this process could be sped up by orders of magnitude by replacing said VM175

with a container running Jenkins. Further use of Docker containers in the CI/CD space can be found176

with their application as GitLab runners [5]. This study shows how one can use Docker containers to177

validate changes on the git mainline. The techniques mentioned in [5] are a similar implementation178

of the Jenkins example [4] mentions.179

4.1 Docker container technology180

Now that we are more familiar with Docker containerization and its applications, we will further181

our research into the details of this technology. As Figure 2 suggests, there are differences in how182

containerization and MicroVMs operate. Even though their low level manner of operating is differ-183

ent from virtual machines, containers are sometimes referred to as “lightweight virtual machines”184

as found in [20].185

In contrast to MicroVMs, elaborated on in Section 2, containers do not require emulation of hard-186

ware. Instead, [11] explains that in a Linux environment containers often offer isolation and resource187

management on the host. In fact, all containers on a host share the same host kernel. [11] argues that188

by not requiring hardware emulation, and by using the host kernel, containers provide near native189

performance in contrast to full-fledged virtual machines. Furthermore, [20] mentions containers are190

not aware they share host resources.191

In the case of Docker, all Docker containers on a host run on the Docker engine. The Docker engine192

is the part of the Docker software stack that is responsible for, amongst others, running, scheduling193

and networking containers [23]. The Docker engine is built in a client-server fashion, where the194

server is commonly referred to as the Docker engine’s daemon. This daemon exposes a RESTFUL195

API (application programming interface) which a Docker client can access. A Docker client can196

thus send commands to the engine to directly manage containers [16].197

5

Figure 3: An exploded-view of the components which makeup the Docker Engine and how the client
connects to the Docker daemon. Courtesy of [23]

Previously, the Docker engine used to be a monolithic application. Throughout that time, it relied198

on LXC as the execution environment for containers to run. Since then, the engine has been refac-199

tored into what is shown in Figure 3. The benefit of refactoring the Docker engine have been large,200

but we will highlight two major benefits. First, migrating away from LXC as the default execution201

environment meant that the Docker engine could be platform-agnostic; instead of being dependent202

on LXC and the endpoints it exposes to run containers via the host kernel as [23] mentions. Further-203

more, as shown in Figure 3, runc is the container runtime implemented to run Docker containers.204

By implementing runc, Docker pushed themselves to make their container runtime specification205

and container image specification OCI (Open Container Initiative) compliant [23]. This means that206

Docker containers follow two open source container-related standards [23]. In theory this would207

mean that clients using Docker containers should be less prone to vendor lock-in, as the container208

should be able to be run on other OCI compliant runtimes.209

When an OCI compliant image is passed to runc, runc is then in charge for interfacing with the210

host kernel and afterwards creates the container. During the interfacing process, runc is allocated211

many things of which the namespace and cgroup are very important. This namespace is an isolated212

environment where the container’s access is limited to. Furthermore, the cgroups or better known as213

control groups are used to limit the resources a container may use. Both the namespace and control214

groups help run the containers securely and responsibly on a host.215

4.2 Benefits and disadvantages of Docker containers216

Given Dockers widespread use it should not be a difficult task to find the benefits of the technology.217

In this section we will provide some benefits and disadvantages of Docker.218

For starters, [29] compares monolithic applications versus microservice patterns. The general con-219

sensus that [29] provides is that microservice patterns make it more practical for companies to main-220

tain a large code base. Furthermore, the microservice pattern allows services to be independently221

scaled and deployed. [17] then continues by elaborating that Docker would be a good fit to imple-222

ment such a microservice architecture.223

[17] further mentions multiple development-friendly components Docker provides such as image224

registries, where Docker images can be uploaded to (push). A user can then use a Docker client225

to pull (download) the images to their own Docker server and run the images [17]. [17] also goes226

further and elaborates on the Dockerfile, which is a simple script that contains a descriptive set of227

instructions showing how a Docker image is built. Further benefits previously elaborated on were228

to use Docker containers inplace of VMs to develop a CI/CD pipeline [5]. The container would, in229

this context, achieve great speedup compared to traditional VMs.230

6

In the previous section we have elaborated on how containers are different than VMs. Research231

found in [1] demonstrates that containers can be faster than VMs. [1] speculates this to be the232

case due to a container not having to startup a separate guest OS, as is the case for a VM. This233

highlights another advantage of Docker containerization, which is that containers share the host234

resources. With this, comes disadvantages that [13] highlights in their paper. [13] concludes that235

due to incomplete implementation in system partitioning technology, which is the same technology236

Docker uses to securely use host resources, it would be possible to jeopardize the system on which237

the containers run on. Further research performed by [12] concludes that the layer of hypervisor238

between a VM and a host is often considered thicker (security wise) than the layer between container239

on host.240

Finally, one of the largest benefits of using Docker containers is their portability. It is possible to241

run Docker containers on a PC by installing the Docker Engine. Aside from this, it is also possible242

to run these containers on many cloud platforms such as Google Cloud, Amazon Elastic Container243

Service etc. Furthermore, it is possible to leverage the power of an open source orchestration tool,244

such as Kubernetes, to deploy a containerized application or service to an ultra scalable platform 1.245

5 MicroVMs/Unikernels and Docker containers: Popularity over time246

So far, this review has discussed two technologies Unikernels/MicroVMs and Docker containers247

respectively. As we have explained thus far, the purpose of both technologies is to leverage and248

underlying technological stack to run a certain application or service. In the case of Unikernels this249

could be an Amazon Lambda function. For Docker containers it could be one service which makes250

part out of a large microservice architecture. Recall Figure 2 which gives a high-level overview251

on the differences in implementation regarding MicroVMs and containers. Till now, we have been252

able to establish that MicroVMs run on a certain VMM and hardware emulation stack. In contrast,253

containers directly make use of existing host resources, albeit in a secure manner by using cgroups254

and namespaces.255

Certain literature like [22] suggests that the Unikernels are an answer to the many security issues256

currently plaguing the cloud atmosphere. Regarding Docker security issues, [27] has found that on257

average both official and community Docker images contain 180 vulnerabilities. Further research258

by [27] found that many times vulnerabilities are propagated from parent images to child images.259

[27] also found that images are not updated frequently enough, whereby vulnerabilities which have260

been patched are not addressed with an image update. This same research concludes that Docker261

needs more systemic methods of applying security updates; something it is currently missing.262

With this in mind, and even with the large benefits which Unikernels/MicroVMs bring (outlined in263

Section 2), Docker seems to be as popular as ever.264

Figure 4: Google Trends search index for search queries: “unikernel” or “microvm” (blue) and
“docker” (red). It is clear that interest in Docker shows a large upward trend, while for uniker-
nels/MicroVMs no such trend is apparent. Interest seems to have stagnated.

As Figure 4 shows, even with the security issues plaguing Docker images, the idea that Uniker-265

nels will be an answer to Docker issues seems not to realize. Literature [25], speculates that after266

1https://cloud.google.com/kubernetes-engine

7

the initial Docker adoption, Unikernels/MicroVMs will be the “next cloud”. Even so, it is appar-267

ent from Table 1 that research interest in Docker and containerization seems to dwarf research in268

Unikernels/MicroVMs.269

Search Query Number of Hits
Unikernel OR MicroVM 220
Docker AND conterinerization 144
Docker 2165
conterinerization 1288

Table 1: Number of articles matching the given search query. Is is apparent that research in-
terest in containerization is much more significant that of Unikernels/MicroVMs. Courtesy of
https://www.scopus.com

At this point we dare speculate as to what factors have played a role in Docker’s success, and why270

MicroVMs/Unikernels have not become the “next cloud”. First, lots of Docker’s software is open271

source and follows a freemium business model. It is very easy to get started with Docker. The272

installation to get-it-running process is very streamlined. The fact that there is a community edition273

of the Docker engine allows users to gain experience with the product for free. In the case of274

MicroVMs/Unikernels it is less clear how precisely one gets started. Also, as literature has stated275

many of Docker’s products are quite user friendly and intuitive such as the Dockerfile [17].276

We also believe that one of the large benefits of Docker containers is that they comply with estab-277

lished standards. At this moment of writing we have been unable to find a group which standardizes278

Unikernel/MicroVM practice. On the contrary, Docker has worked very closely with the Open Con-279

tainer Initiative to standardize operating-system virtualization. As we have explained in Section 3,280

Docker has adapted their engine to comply with these standards.281

The widespread adoption Docker has seen by large companies and its community is also apparent.282

We notice that many successful products make use of Docker containerization, such as Kubernetes or283

GitLab CI/CD, which presumably help make Docker containerization more attractive. Furthermore,284

there are countless cloud providers (Amazon ECS, Microsoft Azure, ...) which offer Docker as285

a service. On such platforms scaling an application which is packaged in form of a container is286

managed by the platform itself.287

Finally, it is clear that Docker is reactive to the community. As [23] highlights, when Docker noticed288

that their engine was becoming monolithic, and thus too slow, they decided to refactor and redo its289

implementation. Making use of runc as the execution environment has made the Docker engine290

better as containers are now daemonless. Furthermore, a thrid-party audit by Cure53 [3] on runc has291

deemed the execution environment safe. This however does not guarantee that Docker is as safe as292

MicroVMs/Unikernels. Even so, these audits possibly makes articles like [22], claiming Unikernels293

to be the answer to many security issues, less relevant.294

6 Discussion and Conclusion295

In this paper we have reviewed two technologies, which can be used for the same purpose, but at296

their core are different in implementation and definition. We have given answer to the subquestion:297

How do Unikernels/MicroVMs and Docker work?298

UniKernels/MicroVMs are based off of true virtualization. We have established that for Uniker-299

nels/MicroVMs a hypervisior and hardware emulation is needed in order to run. The benefits of300

this is that having such a hypervisor adds a “thicker” layer of security when compared to container-301

ization. Furthermore, UniKernels/MicroVMs are not dependent on the host resources to operate.302

UniKernels/MicroVMs are also often built with the zero principle in mind, where the amount of303

software and resources distributed to a MicroVM is not more than needed by the application it is304

running. By doing so, UniKernels/MicroVMs are often low in resource footprint. Furthermore, this305

atypical philosophy results that Unikernels/MicroVMs often contain a stripped-down version of an306

OS. Common practice is that such an OS has no userspace or shell included. This commonly re-307

sults in a smaller software attack-surface and faster boot times making them exceptional for use in308

ultra-scale platforms such as AWS Lambda.309

8

On the other hand we have also investigated containerization technology, more specifically Docker310

containerization. In this research we have been able to establish the different methodology which is311

used to run containers. In contrast to MicroVMs, containers do borrow host resources, relying on312

proper kernel isolation features such as name spaces and control groups to run containers securely.313

The Docker engine, and its implementation, have improved over the years. Moreover, Docker soft-314

ware has proven to be user-friendly, audited, platform agnostic and based on open source specifica-315

tions. Docker has seen widespread adoption and have continued to stay reactive to the community.316

Furthermore, they contribute open source, open standards and improve their own technology and317

containerization in general. With its wide spread adoption many projects have come into existence318

based on Docker containerization, such as Kubernetes.319

We have also regarded the subquestion: Which platform seems to have better security? Litera-320

ture has shown that in general, even though runc has been deemed safe by security audit, Uniker-321

nels/MicroVMs do seem more secure than Docker containers. This generally has to do with the322

fact that Unikernels/MicroVMs have a thicker “layer” of protection than containerization. Other323

literature has also noted that incomplete, or work in progress implementations of kernel security324

features for containerization (namespaces and cgroups), might result in jeopardized Docker hosts.325

Furthermore, literature also suggest that Docker images often have many vulnerabilities and suggests326

Docker to address this problem with a structural solution.327

In Section 5 we given answer to Why one technology, Docker, is more favorable than Uniker-328

nels/MicroVMs? It is difficult to answer this concretely, however we do speculate as to why we329

believe this to be the case. First, Docker has been reactive to the market and has improved its330

products over time. While being reactive to the market and refactoring the Docker Engine, Docker331

adopted and helped contribute to the Open Container Initiative. Adopting OCI runtime and image332

standards presumably makes Docker containers more attractive, as they should theoretically work333

on other OCI compliant runtimes. In the case of MicroVMs/Unikernels we have yet to find any334

specification for the machine images or how they should execute. Furthermore, other large technical335

projects such as Kubernetes or GitLab CI/CD use Docker containerization in their platform. This336

possibly boosts the confidence in Docker containerization. On the contrary, Amazon Firecracker has337

also proven that Unikernels/MicroVMs are suitable for production. Literature also notes that Docker338

products are user friendly and intuitive which obviously makes them appealing to consumers.339

From a cloud perspective, both technologies deem fit for ultra scale use as proven by their success340

in Amazon Firecracker and Google Kubernetes Engine respectively. Even though certain literature341

promises UniKernels/MicroVMs to be the “next cloud”, we have yet to see this be realized. Fur-342

thermore, it is apparent that at this time of writing, interest in Docker and containerization seems343

to be much more present than that in UniKernels/MicroVMs. Given its current rate of maturity,344

contributions to open source and general (positive) consensus, it would come as no surprise to see345

Docker continue to trend upwards; which weakens the point that Unikernels/MicroVMs will be the346

“next cloud”. Nonetheless, given that UniKernels/MicroVMs use true virtualization, and Docker347

uses containerization, it is understandable why certain parties choose the former over the later; as348

virtualization does bring with it some appealing advantages.349

References350

[1] Theodora Adufu, Jieun Choi, and Yoonhee Kim. “Is container-based technology a winner for351

high performance scientific applications?” In: 2015 17th Asia-Pacific Network Operations352

and Management Symposium (APNOMS). IEEE. 2015, pp. 507–510.353

[2] Alexandru Agache et al. “Firecracker: Lightweight Virtualization for Serverless Applica-354

tions”. In: 17th {USENIX} Symposium on Networked Systems Design and Implementation355

({NSDI} 20). 2020, pp. 419–434.356

[3] Ing et. al. Security Review Report runc. 2019. URL: https : / / github . com /357

opencontainers/runc/raw/master/docs/Security-Audit.pdf.358

[4] Charles Anderson. “Docker [software engineering]”. In: IEEE Software 32.3 (2015), pp. 102–359

c3.360

[5] Mohammed Shamsul Arefeen and Michael Schiller. “Continuous Integration Using Gitlab”.361

In: Undergraduate Research in Natural and Clinical Science and Technology Journal (2019),362

pp. 1–6.363

9

[6] Anton Beloglazov and Rajkumar Buyya. “Energy efficient resource management in virtu-364

alized cloud data centers”. In: 2010 10th IEEE/ACM International Conference on Cluster,365

Cloud and Grid Computing. IEEE. 2010, pp. 826–831.366

[7] David Bernstein. “Containers and cloud: From lxc to docker to kubernetes”. In: IEEE Cloud367

Computing 1.3 (2014), pp. 81–84.368

[8] Alfred Bratterud, Andreas Happe, and Robert Anderson Keith Duncan. “Enhancing cloud369

security and privacy: the Unikernel solution”. In: Eighth International Conference on Cloud370

Computing, GRIDs, and Virtualization, 19 February 2017-23 February 2017, Athens, Greece.371

Curran Associates. 2017.372

[9] Alfred Bratterud et al. “IncludeOS: A minimal, resource efficient unikernel for cloud ser-373

vices”. In: 2015 IEEE 7th international conference on cloud computing technology and sci-374

ence (cloudcom). IEEE. 2015, pp. 250–257.375

[10] Antonio Corradi, Mario Fanelli, and Luca Foschini. “VM consolidation: A real case based on376

OpenStack Cloud”. In: Future Generation Computer Systems 32 (2014), pp. 118–127.377

[11] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. “Virtualization vs containerization to378

support paas”. In: 2014 IEEE International Conference on Cloud Engineering. IEEE. 2014,379

pp. 610–614.380

[12] Michael Eder. “Hypervisor-vs. container-based virtualization”. In: Future Internet (FI) and381

Innovative Internet Technologies and Mobile Communications (IITM) 1 (2016).382

[13] Xing Gao et al. “ContainerLeaks: Emerging security threats of information leakages in con-383

tainer clouds”. In: 2017 47th Annual IEEE/IFIP International Conference on Dependable384

Systems and Networks (DSN). IEEE. 2017, pp. 237–248.385

[14] Yasunori Goto. “Kernel-based virtual machine technology”. In: Fujitsu Scientific and Techni-386

cal Journal 47.3 (2011), pp. 362–368.387

[15] Bromium HP. Secure Browsing for the Era of the Mobile Worker. Tech. rep. HP Development388

Company, L.P., Nov. 2018.389

[16] Docker inc. “Introduction to Container Security Understanding the isolation properties of390

Docker”. In: 2016.391

[17] David Jaramillo, Duy V Nguyen, and Robert Smart. “Leveraging microservices architecture392

by using Docker technology”. In: SoutheastCon 2016. IEEE. 2016, pp. 1–5.393

[18] Xabier Larrucea et al. “Microservices”. In: IEEE Software 35.3 (2018), pp. 96–100.394

[19] Anil Madhavapeddy and David J Scott. “Unikernels: the rise of the virtual library operating395

system”. In: Communications of the ACM 57.1 (2014), pp. 61–69.396

[20] Dirk Merkel. “Docker: lightweight linux containers for consistent development and deploy-397

ment”. In: Linux journal 2014.239 (2014), p. 2.398

[21] Claus Pahl. “Containerization and the paas cloud”. In: IEEE Cloud Computing 2.3 (2015),399

pp. 24–31.400

[22] Russell Pavlicek. Unikernels. O’Reilly Media, Incorporated, 2016.401

[23] Nigel Poulton. Docker Deep Dive. Amazon, 2017.402

[24] Harika Rajavaram, Vineet Rajula, and B Thangaraju. “Automation of Microservices Applica-403

tion Deployment Made Easy By Rundeck and Kubernetes”. In: 2019 IEEE International Con-404

ference on Electronics, Computing and Communication Technologies (CONECCT). IEEE.405

2019, pp. 1–3.406

[25] Darren Rush. After Docker: Unikernels and Immutable Infrastructure. 2014. URL: https:407

//articles.microservices.com/after-docker-unikernels-and-immutable-408

infrastructure-93d5a91c849e.409

[26] Thorsten Scherf. Application virtualization with Docker. 2015. URL: https://www.admin-410

magazine.com/Archive/2015/29/Application-virtualization-with-Docker.411

[27] Rui Shu, Xiaohui Gu, and William Enck. “A study of security vulnerabilities on docker hub”.412

In: Proceedings of the Seventh ACM on Conference on Data and Application Security and413

Privacy. 2017, pp. 269–280.414

[28] Andy Singleton. “The economics of microservices”. In: IEEE Cloud Computing 3.5 (2016),415

pp. 16–20.416

[29] Mario Villamizar et al. “Evaluating the monolithic and the microservice architecture pattern417

to deploy web applications in the cloud”. In: 2015 10th Computing Colombian Conference418

(10CCC). IEEE. 2015, pp. 583–590.419

10

Literature Review Participation420

I found myself in a peculiar situation. Previously I was member of group 14 which had trouble421

working together, we have since split. The details are known to the faculty in charge of this course422

and the TAs grading.423

I found it uncomfortable working with my group given the copy-paste I discovered. Since then, I424

decided to continue on the work which I previously wrote in the report of group 14. This was the425

entirety of Section 2 on Unikernels/MicroVMs. I have asked the members of group 14 to not use my426

work as I wrote it completely on my own. This too I have communicated with the TAs and faculty427

of this course.428

Furthermore, I deleted all work performed by the other members of group 14 and wrote the rest of429

the report completely on my own. All work in this report was strictly written by myself.430

11

Web services
and

cloud systems

Team: Adam Belloum + Guests
TA: Saba Amiri (contact for the Literature study and homework,

Onno Valkering, Reggie Cushing (contact for lab assignments),

(MSc. Computer Science, VU-UvA)

Web services and cloud-based systems
(MSc. Computer Science, VU-UvA)

Bloom taxonomy (1)

Knowledge
• Lectures

Comprehension
• Lectures

Application
• Lab sessions

Analysis
• Reading

Assignment
Synthesis

Evaluation
• Literature study

Biggs, J. B., & Tang, C. (2011). Teaching for quality learning at university: What the student
does (3rd ed.). New York: McGraw-Hill Education (UK).

(1) https://en.wikipedia.org/wiki/Bloom%27s_taxonomy

https://en.wikipedia.org/wiki/Bloom%27s_taxonomy

Web services and cloud-based systems
(MSc. Computer Science, VU-UvA)

• Learning Objectives:
• You will learn Cloud Computing as a new approach to distributed computing and

background technologies and standards – homework Discussion and summary
[feedback(1), 20% of the final grade]

• You will develop practical skills which will help you to work with Cloud-base
systems - practical Lab assignments [feedback(2), 45% of the final grade]

• You will develop the ability to analyse scientific publications on cloud related
topics - Literature study - [feedback(3), 35% of the final grade]

(1) Group feedback during lectures discussions or posted in canvas.
(2) personal feedback are given during Lab session (by TA),
(3) posted in canvas or email (lecturers and TA),

Common Body of Knowledge in Cloud Computing

Design Engineering

Cloud Services Engineering & Design

Virtualisation Networking

Web Services, SOA

Security, ID Management

Computing Models: Grid, Distributed, Cluster

IT Systems Management

C
lo

ud
 A

rc
hi

te
ct

ur
es

, S
er

vi
ce

M

od
el

s

C
lo

ud
 P

la
tfo

rm
s,

 A
PI

Cloud Computing Fundamentals [target of the course]

Cloud Computing Common Body of Knowledge (Full)

Bu
si

ne
ss

/O
pe

ra
tio

na
l M

od
el

s,
 C

om
pl

ia
nc

e,

As
su

ra
nc

e

Bloom taxonomy

Knowledge
• Lectures

Comprehension
• Lectures

Application
• Lab sessions

Analysis
• Reading Club

Synthesis

Evaluation
• Literature study

Y. Demchenko, D. Bernstein, A.S.Z. Belloum, A.M Oprescu, T.W. Wlodarczyk, and C. de Laat, New Instructional Models for Building
Effective Curricula on Cloud Computing Technologies and Engineering, In Proceedings of the IEEE International Conference on Cloud
Computing Technology and Science, Bristol, Dec 2013

Schedule
Weeks Lecture topics Labs

Week14 March 30 & Apr. 2
[Adam]

• Service Oriented Architecture
• Web services SAOP and REST

SOAP & REST Services

Week15 April 6th & 9th

[Adam]
AWS SUMMIT RAI Amsterdam[2]

06/04 Deadline[1] Assignment 1

• Virtualization: Virtual Machine
• Cloud platform

Microservice	architecture	

Week16 April 16th

[Adam]
• Modern	distributed	systems	

(Grid/Cloud/…)
Microservice	architecture	
(Private Cloud	àSNE	resources)

Week17 April 20th & 23th

[Adam/Reggie]

17/04 Deadline Assignment 2

• Containers	and	Container	orchestration
• Cloud architecture IaaS/Paas/SaaS
• Cloud Standards

Container Orchestrations
(Private Cloud	àSNE	resources)

Week18 April 30th

[zhiming]
• Security in Cloud
• DevOps/CD/CI

Work on your literature study

Week19 May 07th

[Guest]
01/05 Deadline Assignment 3

Guest Lectures EU Cloud-based project and HPC cloud
Work on your literature study prepare final report & presentation slides

Week20 May 11th & 14th Student presentations

Week22 May 28th Student presentations

Week	8	(TODO) Student presentations &	Submit final report of the presentation slides
NOTE [1] All the deadline are fixed at Fridays midnight

[2] April 8th Amazon is organizing the Annual AWS Summit in RAI Amsterdam CANCELLED

VM customization using
Deploy Web service in the VM

VM customization using
[Optional]Big data Analytics on Spark

New

International events organized in Amsterdam

• 2020 AWS Summits April 8th , 2020 CANCELLED

Online event

Activity 1: Homework

1. kishore Channabasavaiah and Kerrie Holley, IBM Global Services, and Edward
M. Tuggle, Jr., IBM Software Migrating to a service-oriented architecture

2. C Pautasso, O Zimmermann, F Leymann “RESTful Web Services vs. “Big” Web
Services: Making the Right Architectural Decision” Proceedings of the 17th
international conference on World Wide Web, 805-814

3. Adriano Vogel et al. “Private IaaS Clouds: A Comparative Analysis of
OpenNebula, CloudStack and OpenStack” 24th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, 2016

4. Foster I., Zhao Y., Raicu I., Lu S, Cloud Computing and Grid Computing 360-
Degree Compared

Quiz during the Lectures ???

Activity 2: Assignments

• Assignment 1: develop SOAP/REST service
• Assignment 2: Create a Microservice architecture
• Assignments 3: Virtualization using Docker & container Orchestration

Activity 2: Assignments

What you should know about the Lab infrastructure…

• We DO NOT OWN the infrastructure, neither have FULL CONTROL it à Things
might(will) go wrong

• Software platform used in the Labs are very COMPLEX and still under
CONTINEOUS development

à We might not have a straightforward answer to some problems

Activity 3: literature study
1. Servless computing (lambda function), FaaS (functions

as a service)

2. IDaaS (identity as a service)

3. HPC and Cloud (potentials, challenges, and limits …)

4. Big Data and Cloud

5. Edge computing and relation to Cloud computing

6. fog computing and relation to Cloud computing

7. Distributed cloud-based ML/DL workflows

8. Machine Learning/ Deep Learning in edge/IoT devices,

9. Datacenter architecture models for clouds -
Hyperconverged architecture,…

10. Mobile clouds: service models, infrastructure
requirements, existing platforms and applications
analysis

11. Multicloud management considerations

12. Cloud-based integration - iPaaS (integration platform as a
service)

13. Payment systems in clouds (models used by Cloud Service
Providers) and for cloud based applications

14. Impact of GDPR on Cloud computing in Europe- Data and
user information privacy protection in clouds

15. Cloud-native, NewSQL, and globally-distributed
databases - Google Spanner, Azure Cosmos DB,
consistency trade-offs, local/zone/multi-zone replication,
...

16. MicroVMs and Unikernels for the Cloud. - AWS
Firecracker, MirageOS, ...

17. Managing and monitoring Cloud resources

18. Infrastructure as Code, DevOps, Metrics: avg cost per
customer, latency, ...

19. Cloud security practices - SecOps, ISO compliance, Audits,
AWS GovCloud, ...

20. The European Open Cloud and similar initiative in Asia
and US

21. Business model for Cloud computing

• One group per topic
• Report + presentation
• Cross review + grading*

< you can also propose your own topic>
– need to be approved contact The TA (Saba) before you start to work on your any new topic>

What do you know about Cloud?

• Lets start with TV commercials
• Microsoft “Winning Edge”
• IBM, “Through the Cloud”
• IBM, “Smart Cloud”
• Western Digital “Personal Cloud”
• HP Cloud systems “Featuring Charles Barkley”
• SAP, “Run like Never Before”
• Verizon, “Powerful Answers: Firefighters”
• CenturyLink “Weekdays”

http://www.ispot.tv/ad/7g4V/microsoft-cloud-winning-edge
http://www.ispot.tv/ad/716U/ibm-through-the-cloud
http://www.ispot.tv/ad/7Ldw/ibm-smart-cloud
http://www.ispot.tv/ad/7feO/western-digital-personal-cloud
http://www.ispot.tv/ad/7khO/cdw-featuring-charles-barkley
http://www.ispot.tv/ad/7L0f/sap-run-like-never-before
http://www.ispot.tv/ad/7IzT/verizon-powerful-answers-firefighters
http://www.ispot.tv/ad/7t_h/centurylink-business-weekdays

	Web services and cloud systems
	2020-Literature_study_merged
	Introduction- 2020-1

