
Course Web Service and Cloud Systems 2021-2022

Literature study assignment
Coordinators: Saba Amiri, Adam Belloum,

1. Cloud Computing Business Models ……………………………………………………….
2. Identity as a Service IDaaS ………………………………………………………………...
3. HPC and Cloud (potential, Challenges and Limits…………………………………............
4. The territorial Reach of the GDPS and Cloud Services……………………………….........
5. The Impact of GDP on Cloud-base Healthcare systems………………………………........
6. Distributed Transaction in Microservices ….………………………………………………
7. Comparative study of the state of the Art Tools for Cloud monitoring ……………………
8. Getting Grip on Technical Complex systems ………………...……………………………
9. The Impact of Edge and Fog Computing on IoT Applications for Smart Homes …………
10. State of the Art of Single Sign-on…………………………………………………………….
11. Blockchain payment systems on Cloud ……………………………………………………
12. Distributed Neural graphs: DistDGL vs GraphTheta vs AliGrah ………………………….
13. IDaaS - Research on Privacy u enhancement methods ………………………….…………

Note:

Following are reports of the Literature study assignment part of course “Web Services and
Cloud Systems”1 given in the context of the Joint UvA-VU Computer Science program22. The literature
assignment is worth 35% of the total course grade. Students have to read at least 17 papers and
prepare a (8-10)-page report in a style of a scientific publication33, and give 15 mn presentation at the
end of the course. The literature topics are not covered during the lectures, students use the
knowledge acquired during the lectures to perform the literature study. To introduce the students to
scientific paper analysis, 4 scientific papers are analysed and discussed during the lecture hours.
Reports are checked for plagiarism using Trinity tool integrated in Canvas (similarity score tolerated is
max 20%).

1 https://studiegids.uva.nl/xmlpages/page/2020-2021/zoek-vak/vak/79525
2 https://masters.vu.nl/en/programmes/computer-science-big-data-engineering/index.aspx

 3 Formatting requirements: NeurIPS 2019 conference. More information and LaTeX templates can be found
 here: https://nips.cc/Conferences/2019/PaperInformation/StyleFiles

 Serverless computing and Function as a Service: security perpective………………… 14.

Assignment 4a

Cloud Computing Business Models

June 3, 2022

Students:
Clifton Roozendal
10541039

Kasra Imanirad
13517066

Shashank Athreya
14130289

Group:
Assignment Group 3

Course:
Web Services and Cloud-Based

Systems

Course code:
5284WSCB6Y

Abstract

The advent of Cloud computing removed the need for companies and consumers to in-
vest in and maintain computer hardware. With a simple Internet connection, the users can
directly store, access, and run programs on the Internet. Cloud computing can provide users
with a reliable, customized, and cost-effective manner in various applications. However, as
the cloud computing market matures and the competitors rise and fall, how do the market
leaders define themselves enough that users prefer them over their competitors.

1 Introduction

The global public cloud computing market is expected to grow to 495 Billion U.S. dollars in
2022. This amount is made up of business processes, platforms, infrastructure, software, man-
agement, security, and advertising services made possible by cloud services[23] and in looking
at figure 1, it might hit the 600 billion. This massive market is dominated by Microsoft Azure,
Amazon Web Services (AWS), IBM Cloud, Google Cloud, and Alibaba Cloud.

Figure 1: Worldwide forecast for the cloud market[24]

3868 words page 1 of 14

Assignment
Assignment 4a

This paper will focus on the cloud business models and the interaction of actors in the
cloud market as it keeps growing. As shown in Table 1, one must wonder how cloud providers
and cloud users interact. For example, IT professionals at the organization that just switched to
one of the cloud services will be challenged by cloud computing as it might differ from the skills
they already possess [14]. Or for example, Amazon with its a controversial policy regarding its
customers’ data [25]. We will try to discuss these subjects in the paper. In chapter 2, we give a
historical overlook of cloud computing. In chapter 3, we will discuss the service types and the
business model of cloud computing. Chapter 4 will discuss consumer and provider interactions
in the cloud market. In chapter 5, we will discuss the case study of Amazone as a surveillance
breacher. At last, we will discuss our findings and conclusion.

2 History of Cloud Computing

It all started in 2006 when the term ”Cloud Computing” was chosen while tech giants like Google
and Amazon had a massive investment in implementing the applications on the web. They aimed
to offer such service with fast deployment and constantly updating at the same time.

The evolution of major technologies and concepts such as cluster computing, distributed
systems, and utility and grid computing has resulted in the birth of the cloud computing paradigm.
Also, there is an ever-increasing interest in cloud-based systems because of the many benefits it
has brought to the computing industry. Benefits include the rapid decrease in hardware cost, in-
crease in computing power and storage capacity, overflow troubleshooting, growing size of data
in the scientific area, and widespread adoption of web 2.0 applications.

Therefore, due to this evolution, the cloud concept became viable at the enterprise and
consumer levels. Very soon, worldwide adoption and efficacy of cloud-based services rapidly in-
creased over a short period. Consequently, major cloud providers reached a point to find a way
to satisfy the rising demand. [7]

Figure 2: Cloud-based system[1]

Therefore, cloud computing can be considered as a result of evolution of various phases dur-
ing the history of computing. For instance, Mainframe computing had been created in 1951 is

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 2 of 14

Assignment
Assignment 4a

very reliable and powerful type of computing. It is responsible for handling large data opera-
tions like bulk processing such as online financial transactions. So such machines are working
constantly without any interruptions and also high fault tolerance. By developing distributed
computation and advent of mainframe computing machines, we witnessed a noticeable increase
in system’s processing capabilities.

Nevertheless, because of high expenses in implementing mainframe technology, cluster com-
puting came up as a solution. In the sense that all the nodes in the cluster were linked together
via a high bandwidth. By doing so, a cheaper network has been created which it was also capa-
ble of great computations. Thus, the expenses had been decreased to some certain extent but
still the problem of geographical restrictions maintained. To address this issue, grid computing
came up as a solution.

In 1990, along with growth of the internet, the paradigm of grid computing was introduced.
By support of the internet, different systems were located at various location across the world
and all connected to each other through the network. Since these systems were owned by organi-
sations, the grid comprised of heterogeneous nodes and as an increase in distances, new problems
had been emerged such as lacking of sufficient high bandwidth connectivity. Therefore, cloud
computing marked a turning point in the history of computing and named as a successor of grid
computing.[9]

Figure 3: Evolution of cloud computing[2]

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 3 of 14

Assignment
Assignment 4a

3 Cloud Computing Services

By growth of cloud computing and offering it as services to consumers, this paradigm has be-
come as a service-oriented architecture that afterwards it became well-known as ”Everything as
a Service (Eaas)[8]. Based on this service-oriented architecture, cloud providers classified their
services in three standard models: Software as a Service (SaaS), Platform as a Service (PaaS)
and Infrastructure as a Service (IaaS). This approach is also called the cloud computing stack
because they are built on the top of one another.

There is also a pipeline which elaborates which components are running by the provider
and which is offered to the customer. So the cloud provider in each model is taking care of dif-
ferent parts of the pipeline which determine some of its features such as flexibility, customization
ability, security, handling the data, etc. Therefore, considering these features,customers at any
level by choosing the proper type of service can leverage their cloud-based infrastructure or uti-
lize the application and any other services. We will discuss it more in the following sections:

Figure 4: Evolution of cloud computing[2]

3.1 SaaS

When it comes to SaaS, it has become a huge industry because the paradigm of software over
the last two decades has been changed completely. So we moved from an on-premises software
development framework to instead a much more agile software development framework where
they do not need to host such service on their own premises. So any application that companies
or startups are offering today can be externalised through Software as a Service. Based on fig-
ure 3, cloud provider is taking care of the whole pipeline as back-end such as operating systems,
servers and storage(data) and others except the application that is supposed to offer to the user.
Therefore, it has minimum ability to customize which is known as flexibility feature, unless the
user is at an enterprise level and in that case, the client can ask for way more customizations.
Also, in SaaS model there are more limitations because the user has no access to the data.[19]

SaaS model deliver its services through web-based applications which are accessible via web
browsers. Prominent examples would be Gmail and Google Docs which are accessible through
various smart devices that can reach us to the conclusion that accessibility is one of the main
advantages. Furthermore, the user is using does not need to buy the license, upgrade constantly,
or run the application on their own premises.Therefore the major benefits of SaaS model would
be: high scalability, accessibility, flexibility, etc.[12]

3.2 PaaS

As it can be seen in the figure above, in PaaS, there’s a bigger part of the pipeline that is offered
to the consumer. So cloud provider offers the platform to customize or create applications upon
the request of consumer/user at any level which offers more freedom to the user to build their

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 4 of 14

Assignment
Assignment 4a

desire application with particular functionalities. Also, the user is having the ability to possess
the related tools on-demand without the need to build them on their own systems and mean-
while they can manage such applications and related data.

As a matter of fact, PaaS has been offered a perfect deployment and development environ-
ment and gives the customers the ability to develop simple cloud-based applications and also
cloud-enabled applications at enterprise level. So the customer will purches the resources based
on their needs (pas-as-you-go basis) and these applications are accessible from anywhere. Based
on the figure above, Paas comprises infrastructure, servers, storage, development tools, middle-
ware, business intelligence services, database management systems, etc. So as a powerful model,
it supports the whole lifecycle of a web application such as: building, testing, deploying, up-
dating and management. It also prevent some complexities and expenses of licenses, container
orchestrators like Kubernetes, middlewares and apps, and other resources. Therefore, the cus-
tomer manage the applications that developed based on their own preferences and cloud service
providers will be taking care of everything else.[3]

3.3 IaaS

Infrastructure as a Service could the most flexible model because the the biggest part of the
pipeline shown in figure above is possessed by the customer. So it offers essential storage, com-
putation and networking resources on demand and it is based on a pay-as-you-go revenue model.

Migration the infrastructure to IaaS will eliminate the maintenance of an on-premises data
center, reduce the expenses of hardware, and a good insight into business analysis. So it pro-
vides networking, storage, virtualization and hosting and as a result the user can leverage the
cloud-based infrastructure without building it on their own premises. Also, NIST’s has a defi-
nition of IaaS worth mentioning: ”where the consumer is able to deploy and run arbitrary soft-
ware, which can include operating systems and applications. The consumer does not manage or
control the underlying cloud infrastructure but has control over operating systems, storage, and
deployed applications; and possibly limited control of select networking components (e.g., host
firewalls).”[18]

3.4 Cloud business model

By offering cloud services, cloud computing created an entrepreneurial ecosystem, through which
vast majority of companies (in both business-to-business and business-to-consumer) are leverag-
ing the cloud-based services that could result into a revenue consisting of precious products and
services. So Being familiar with their concepts and their differences, could lead us into accom-
plish the business goals.

There is a wide range of commercial purposes by business models. For instance, B2B-enterprise
companies that are doing large-scale data analysis, inventory management, business intelligence,
etc. and B2C companies that are providing social media platforms, streaming services to cus-
tomers. There are several revenue for such business models that have been built on the top of
the cloud and primarily is subscription driven and and they are mostly on-demand services:[7]

- Subscription-based

- Consumption-based (pay-as-you-go)

- Advertising-based

- Hybrid models

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 5 of 14

Assignment
Assignment 4a

4 The Cloud Computing Users and Competitors

4.1 Cloud Computing Consumers.

Cloud computing is a topic of interest for many information systems managers. More businesses
have recognized the benefits of cloud computing and service orientation in cost and scalabil-
ity. Not all corporations have the skills, organizational structure, and processes to realize this
promise. IT professionals’ capabilities will be challenged by cloud computing as the strong mar-
ket growth of cloud computing and the fact that technology continually advances quicker than
organizations can adapt to it[14]. Adoption of difficulties of cloud computing is present for users
such as the following in table 1.

Cloud Challenges Explanation

Availability/Reliability

Users have the expectations once they
move everything to the cloud, are access to
its services, the overall performance, and
safety measures in case of failures.

Security and privacy

Security and privacy are a concern for
users because third-party services and infras-
tructures are used to host data and perform
operations.

Vendor Lock-in / Portabil-
ity / Interoperability

A primary concern of cloud computing
users is about having their data locked in by
a particular provider.

Compliance/Regulatory
ambiguity

Enterprise users must maintain business
legal documents and ensure their integrity
to comply with various national and internal
laws. Cloud computing providers must adopt
technologies and security measures to ensure
that their enterprise users’ data satisfy their
compliance requirements.

Integration / Componenti-
zation

Integration with the existing architec-
tures. The availability of tools enables the
integration and componentization of applica-
tions.

Limited scope for cus-
tomization

Users want cloud services to better
adapt to their specific business model.

Vendor Management

Cloud computing has unique vendor
management challenges and criteria to evalu-
ate when considering strategic sourcing mod-
els and analyses.

Cultural Resistance

Cloud users might face organizational
problems as it changes the tasks of their IT
department, and the organization might not
be prepared for the transition to the cloud.

Transition and Execution
Specific applications may not be suitable

for use in the Cloud environments.

Table 1: Cloud adoption challenges[17].

Managing these systems requires a management approach that considers both the virtual
and the physical sides. This is hard for IT managers who are used to conventional data cen-
ters[10]. To manage these difficulties, as stated in table 1 and migrate to the cloud with success,
IT Teams must have their skills in cloud architecture, development, implementation, and opera-
tions. To solve these difficulties through competency development programs that encompass all

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 6 of 14

Assignment
Assignment 4a

the organization’s processes and the employees to sustain and improve the employee’s competen-
cies[17].

Challenges Competency Emerging Role

Availability/Reliability

Specific details of the service provided
by the cloud provider should be done, includ-
ing the availability and the minimum perfor-
mance guarantee. The management processes
would need to change to the new reality of
moving into the cloud. Furthermore, plan-
ning for cloud outages needs to be prepared.

Provisioning Man-
ager

Security
Additional challenges to making cloud

computing environments as secure as in-
house IT systems.

Security and Compli-
ance Manager

Portability/Interoperability
Integration/ Componentiza-
tion/Customization

Manage the cloud platform for end-to-
end business services by bridging the techno-
logical domains.

Cloud Architect

Vendor Management/Lock-
in

Manage the relationship with the cloud
service providers and integrate them into
the existing services management and de-
livery processes. The IT department’s role is
changing from being internal on its own to
partly or mainly managing external service
providers.

Vendor Manager

Cultural Resistance
Change of management and managing

the development of practical, educated, and
career skills.

Training Manager

Transition and Execution

Assess essential business goals for cloud
migration. Manage the cloud environments
for specific business models. This is achieved
by managing the cloud environments’ config-
uration, operation, and performance.

Cloud Analyst

Table 2: Proposed competencies and roles[17].

However, these solutions are primarily managerial, as seen in table 2. The organizations
adopting cloud computing should try to implement them to have a smooth transition towards
the cloud.

Cloud computing is easier and cheaper for small and medium companies. However, it is not
always the case, and most startups mainly achieve those cost savings instead. This is because
those already established organizations likely already invested in the IT infrastructure. There-
fore, it is financially more worth it to transfer to the cloud after the IT infrastructure is at the
end of its lifecycle or is too obsolete[14].

Another thing that is underestimated is transaction costs. Transaction costs are associated
with monitoring, controlling, and managing transactions. A transaction occurs when a prod-
uct or a service is transferred between the vendor and the customer. When the customer buys
a service or product from the vendor, the customer pays a certain amount to the vendor. There
are always at least two parties involved in a business transaction. However, the amount used for
buying the product or service should not be only considered when looking at the total cost[16].

The aspects of cloud computing transactions, namely cloud assets specificity, cloud uncer-
tainty, and cloud transaction frequency, are shown in fig 5 and will be explained in the following
paragraph.

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 7 of 14

Assignment
Assignment 4a

Figure 5: Cost areas based on cloud transaction dimensions[15]

4.1.1 Cloud specificity

Cloud specificity is based on (1) business process reengineering, (2) meta services costs, and (3)
Change management costs with technologies[15].

Business process reengineering (BRP) is considerable and underestimated despite being
complicated and vital for a cloud project’s success. Business process reengineering is needed
when an organization plans to do cloud adoption, but undeveloped processes might disqualify
them from transferring to the cloud. Moving to the cloud would incur tremendous costs that
may put the business at risk in such circumstances[27]. Redevelop the organization management
according to the organization process rather than each functional department breaking the tra-
ditional model and emphasizing the business process’s overall innovation to achieve the best re-
sults[15]. While being considered a non-IT business process that requires reengineering, billing
and cost allocation should also be considered. Cloud users face different prices and service pack-
ages from vendors[5]. How can the accounting department split the costs across other depart-
ments of an organization? As each department has different consumption storing and computing,
dividing the cost equally among departments wouldn’t be fair[15].

Services that exist because switching to cloud computing are termed meta services. Meta
services costs occur when organizations have to buy third-party services such as training courses,
extra security services, or build their solution to manage their cloud portfolio [15]. For example,
https://cloud-costs.com/, which was before known as Azure-costs.com, is a third-party service
that helps with Cost management and optimization that is not offered by cloud providers such
as Microsoft. Therefore organizations have to pay separately for it[22].

Change management costs are the many expenses such as paid training, hiring skilled cloud
IT’ers, creating new strategies, and firing former qualified employees with outdated skills[11].
Not only that, but the chief information officer (CIO) has a vital role in the transition to the
cloud, as he will change the organization’s practices and mindsets. The CIO needs to be flexible
and agile in his management duties[15].

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 8 of 14

Assignment
Assignment 4a

4.1.2 Cloud Uncertainty

Cloud computing has always had a certain amount of uncertainty involved. Cloud uncertainty
is based on legal compliance, monitory, and Contract management [15]. The main barrier for
potential users is trust in the cloud provider. There needs to be a trusting business relationship
between consumers and cloud providers, and the users need to have a dept understanding of the
cloud provider’s risk and accountability[6].

Legal compliance of data was already before the massive growth of the cloud market con-
troversial. Cloud computing and the potential that data might leave national borders with dif-
ferent regulations open much potential unforeseen harm[4].There is a lack of knowledge in the
legal department to work on cloud-related issues example, data residency. This lack of expertise
is in the law community in general as the legislation around the cloud is still evolving continu-
ously[26].There is a need for external legal consultancy to investigate compliance with laws. This
will be an ongoing cost since its legislations are constantly changing[15].

Monitoring should always be done in every organization, even if they aren’t using the cloud.
However, monitoring the cloud requires cloud-specific monitoring tools. The reason is that de-
partments of user organizations may use more services than needed while being unaware of the
costs. These costs can end up being very high. However, then comes the question of which de-
partment should monitor it? It comes down to three entities in the cloud setup, the cloud ven-
dor, the consumer IT department, and the cloud end-user. It is best left with the IT depart-
ment, and the IT department will monitor it through the service level agreement. It is best to
have some form of internal benchmark to compare the usage with, and the IT department has
to have some form of measures to put limits and thresholds on the end-users before the costs get
too high[15].

Cloud computing is marketed by providers and seen by users as an uncomplicated option
with multiple advantages and is easily adapted. However, in reality, moving to cloud computing
is harder. Transaction costs are the time and effort for negotiating, reaching out, contracting,
and sustaining business relationships. Contract management is unavoidable for cloud consumers.
The cloud consumers are usually neither ready for contract. Especially because contracts are
put to govern a technology that is evolving and is changing by nature and the cloud consumers
don’t have experience managing such a field of law. To solve this the IT department and the law
department should work together in creating and improving this[17].

4.1.3 Cloud Transaction Frequency

Cloud transaction frequency means how often services are implemented and how often a service
is used. How often the services are used for a specific implementation, the more it is paid off to
have it. Cloud transactions have high frequencies, in particular IaaS and Paas. The pay-as-you-
go supports this, and the cloud facilitates scalability. This shows that cloud migration is usually
worth it, even with transaction costs for users. However, they need to be well prepared to exe-
cute it[15].

4.2 Comparing Competitors

The cloud market is dominated by three multinationals Google, Amazon, and Microsoft. Fig-
ure 6 shows that Amazone dominates the market with thirty-three percent, twenty-one percent,
Microsoft second place, and Google in third place with ten percent.

4.2.1 Service

Amazon is the largest provider and the pioneer in the Distributed computing market. Amazon
AWS is dominating with design and monitoring. For the most part, AWS has a preference with
organizations for its broad and massive contributions, venture helpful administrations, and open

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 9 of 14

Assignment
Assignment 4a

and adaptable features. AWS and Microsoft Azure similarly offer a variety of groundwork, pro-
cess capacity, storing and organizing, etc. Azure excels in its registering power, making it possi-
ble to send and manage virtual machines on a scale at whichever time limit. Azure has this over
Amazon and Google. Azure also can be easily incorporated with other Microsoft products and
offers open-source backing. Google cloud has a unique feature that it can provide cloud adminis-
tration for engineers. Google cloud gives open source support, discount offers, migration ability,
and flexible contracts. Because Google’s origins are from analytical groundwork, Google Cloud is
very adaptable to scientific devices[13].

Figure 6: Market share of PaaS and IaaS[20]

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 10 of 14

Assignment
Assignment 4a

4.2.2 Price

Amazon AWS offers every hour installment. Amazon gives free arrangement constrained capac-
ity trial membership, which could attract potential people and organizations before they buy.
Amazon payment plan based on monthly installments based on used hours. This can be very
cost-effective for users, and likely gives AWS an Edge. Microsoft Azure offers two payment plans,
pay ahead of time or a regularly scheduled installment plan. Google Cloud has the best cost-
effective measure among the top three because it charges per minute or second of usage[13].

5 Case study: Amazon: Surveillance as a Service

It’s important to consider the multiple perspectives on cloud and its providers. This section
highlights the perspective of business and privacy advocates, on their view on amazon. To ease
the analysis in this section, we define platform as a digital intermediary that allows interaction
between multiple stakeholders; example, manufactures, distributors, retailers and consumers.

5.1 The business logic of Amazon’s platform

Amazon is considered a platform provider, connecting buyers and seller, developers and end-
users but in the view of digital economy, we notice their primary business is extracting and pro-
cessing data [21]. To understand and process user activity and predict their behaviour allows in
tackling the challenge of future UI/UX, development and services of the platform.

5.1.1 Alexa and her memory

The current focus on Amazon’s Internet of Things (IoT) extends considerably to its well-known
activity of collecting detailed data about its consumers. Amazon Web Services (AWS) promotes
their Connected Home as a way for previously unconnected home devices such as appliances,
lights, plugs, thermostats, doorbells, door locks, and home entertainment devices for the cloud.
One can argue that Amazon sells surveillance as one of its services through these smart home
devices.

The brand Amazon embraces the concept of collecting personal data from familial places as
a crucial part of its customized relationship with individual consumers. It is a somewhat covert
way of collecting data, which Amazon uses to offer surveillance a critical part of their way to
provide personalized goods and services. Amazon orders its developers who seek to create capa-
bilities for Alexa the following ”Alexa should remember context and past interactions, as well
as knowing a customer’s location and meaningful details in order to maintain familiarity and be
more efficient in future exchanges.” Amazon has the will and ability to listen to and watch its
consumers as part of its attribute[25].

5.2 Surveillance and Soft language

Advocates of privacy highlight a point of constant surveillance of user activity within these plat-
forms has lead to a ’Surveillance Capitalism’, coined by Shoshana Zuboff [29], where she further
elaborates how the richest companies are not selling software but supervised platform to extract
data. This coined term was later changed to platform capitalism and then to platform econ-
omy as it deals highly with the study of revenue generation though PaaS. Though it’s renamed,
it’s functionality has remained unchanged, and this lead us to ponder why was it renamed?: in
the previous section we highlighted how surveillance is offered as a feature and re-branded as
’learning’, it’s quite similar the case here. Platform economy sounds much less threatening than
surveillance capitalism which induces correlation between data extraction and military surveil-
lance [28].

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 11 of 14

Assignment
Assignment 4a

Figure 7: Amazon Revenue through the years

5.3 Business Interpretation

Although the case study highlights the legal invasion of privacy by Amazon, it also highlights its
vast data interpretation. This is convenient for business executives to easily migrate to Amazon
and their services in data processing. We also observe the reflection of the phrase ”There is no
such thing as bad publicity”.Observing Amazon’s revenue though the years in figure7, we notice
significant jump in revenue during 2020 and 2021, we could speculate this to Amazon’s data pro-
cessing however, we lack sufficient research to conclude the exact reason for this jump.

6 Discussion

In this paper, we discussed many subjects such as the history, the business models, the consumer
and provider behavior, and even a detailed case study on amazon’s breach of privacy. There are
a lot of concerns for users in the case of privacy, for organizations that want to grow, and even
for the providers themselves. But even weighing this all, we believe that cloud computing is here
to stay with the bad, the ugly parts, but also with its innovative and cost-effective sides.

7 Conclusion

The Cloud computing market is predicted to continue growing, as shown in figure 1 in the in-
troduction chapter. How the market leaders continue to grow and compete will likely continue
to change. We believe that the cloud market will continue growing despite the obstacles we men-
tioned for the providers and the consumers.

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 12 of 14

Assignment
Assignment 4a

8 Division of work

Section Responsible
Introduction Clifton
History Kasra
Cloud Computing Services Kasra
The Cloud Computing Users and Competitors Clifton
Case Study Shashank
Discussion Clifton,Shashank,Kasra
Conclusion Clifton,Shashank,Kasra
Future Research Clifton,Shashank,Kasra

Table 3: Division of work

References

[1] https://en.wikipedia.org/wiki/Cloud computing#/media/File:Cloud computing

.svg. 2020.

[2] https://www.geeksforgeeks.org/evolution-of-cloud-computing/. 2020.

[3] https://azure.microsoft.com/en-us/overview/what-is-paas/. 2020.

[4] Susan Ariel Aaronson. “Data is different, and that’s why the world needs a new approach
to governing cross-border data flows”. In: Digital Policy, Regulation and Governance (2019).

[5] Jonatha Anselmi, Danilo Ardagna, John C. S. Lui, Adam Wierman, Yunjian Xu, and Zichao
Yang. “The Economics of the Cloud”. In: ACM Trans. Model. Perform. Eval. Comput.
Syst. 2.4 (2017). issn: 2376-3639. doi: 10 .1145/3086574. url: https://doi .org/10
.1145/3086574.

[6] Erdal Cayirci and Anderson Santana De Oliveira. “Modelling trust and risk for cloud ser-
vices”. In: Journal of Cloud Computing 7.1 (2018), pp. 1–16.

[7] Gennaro Cuofano. “FourWeekMBA: Cloud Business Models”. In: Article (2022).

[8] Yucong Duan, Guohua Fu, Nianjun Zhou, Xiaobing Sun, Nanjangud C. Narendra, and Bo
Hu. “Everything as a Service (XaaS) on the Cloud: Origins, Current and Future Trends”.
In: 2015 IEEE 8th International Conference on Cloud Computing. 2015, pp. 621–628. doi:
10.1109/CLOUD.2015.88.

[9] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. “Cloud Computing and Grid Com-
puting 360-Degree Compared”. In: 2008 Grid Computing Environments Workshop. 2008,
pp. 1–10. doi: 10.1109/GCE.2008.4738445.

[10] Roberto Gagliardi, Fausto Marcantoni, Alberto Polzonetti, Barbara Re, and Pietro Tapan-
elli. “Cloud computing for network business ecosystem”. In: 2010 IEEE International Con-
ference on Industrial Engineering and Engineering Management. IEEE. 2010, pp. 862–868.

[11] Raoul Hentschel, Christian Leyh, and Anne Petznick. “Current cloud challenges in Ger-
many: the perspective of cloud service providers”. In: Journal of Cloud Computing 7.1
(2018), pp. 1–12.

[12] Andrew Joint and Edwin Baker. “Knowing the past to understand the present1 – issues in
the contracting for cloud based services”. In: Computer Law Security Review 27.4 (2011),
pp. 407–415. issn: 0267-3649. doi: https://doi.org/10.1016/j.clsr.2011.05.002. url:
https://www.sciencedirect.com/science/article/pii/S0267364911000689.

[13] Muhammad Ayoub Kamal, Hafiz Wahab Raza, Muhammad Mansoor Alam, and M Mohd.
“Highlight the features of AWS, GCP and Microsoft Azure that have an impact when
choosing a cloud service provider”. In: Int. J. Recent Technol. Eng 8.5 (2020), pp. 4124–
4232.

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 13 of 14

https://en.wikipedia.org/wiki/Cloud_computing##/media/File:Cloud_computing.svg
https://en.wikipedia.org/wiki/Cloud_computing##/media/File:Cloud_computing.svg
https://www.geeksforgeeks.org/evolution-of-cloud-computing/
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://doi.org/10.1145/3086574
https://doi.org/10.1145/3086574
https://doi.org/10.1145/3086574
https://doi.org/10.1109/CLOUD.2015.88
https://doi.org/10.1109/GCE.2008.4738445
https://doi.org/https://doi.org/10.1016/j.clsr.2011.05.002
https://www.sciencedirect.com/science/article/pii/S0267364911000689

Assignment
Assignment 4a

[14] Angela Lin and Nan-Chou Chen. “Cloud computing as an innovation: Percepetion, at-
titude, and adoption”. eng. In: International journal of information management 32.6
(2012), pp. 533–540. issn: 0268-4012.

[15] Rasha Makhlouf. “Cloudy transaction costs: a dive into cloud computing economics”. In:
Journal of Cloud Computing 9.1 (2020), pp. 1–11.

[16] Hasan Nuseibeh. “Adoption of cloud computing in organizations”. In: (2011).

[17] John Otieno Oredo and James Njihia. “Challenges of cloud computing in business: To-
wards new organizational competencies”. In: (2014).

[18] Timothy Grance Peter Mell. “The NIST Definition of Cloud Computing”. In: The NIST
Definition of Cloud Computing. 2011, pp. 1–10. doi: 10.1109/GCE.2008.4738445.

[19] Aaqib Rashid and Amit Chaturvedi. “Cloud computing characteristics and services: a
brief review”. In: International Journal of Computer Sciences and Engineering 7.2 (2019),
pp. 421–426.

[20] Felix Richter. Infographic: Amazon Leads $180-Billion Cloud Market. 2019. url: https:
//www .statista .com/chart/18819/worldwide -market -share -of -leading -cloud

-infrastructure-service-providers/.

[21] Nick Srnicek. Platform capitalism. John Wiley & Sons, 2017.

[22] app.limit UG. cloud costs. 2022. url: https://cloud-costs.com/.

[23] Lionel Sujay Vailshery. Public cloud computing market size 2023. 2022. url: https://
www .statista .com/statistics/273818/global -revenue -generated -with -cloud

-computing-since-2009/.

[24] Lionel Sujay Vailshery. Public cloud services growth worldwide 2022. url: https://www
.statista.com/statistics/203578/global-forecast-of-cloud-computing-services

-growth/.

[25] Emily West. “Amazon: Surveillance as a service”. In: Surveillance & Society 17.1/2 (2019),
pp. 27–33.

[26] Ogan Yigitbasioglu. “Modelling the Intention to Adopt Cloud Computing Services: A Trans-
action Cost Theory Perspective”. In: Australasian Journal of Information Systems 18 (Nov.
2014), pp. 193–210. doi: 10.3127/ajis.v18i3.1052.

[27] Yuanxing Zhao and Junhong Gao. “Research on Accounting Process Reengineering Based
on cloud computing in the era of big data”. In: 2021 4th International Conference on In-
formation Systems and Computer Aided Education. 2021, pp. 521–525.

[28] Shoshana Zuboff. The age of surveillance capitalism: The fight for a human future at the
new frontier of power: Barack Obama’s books of 2019. Profile books, 2019.

[29] Shoshana Zuboff, Norma Möllers, David Murakami Wood, and David Lyon. “Surveillance
Capitalism: An Interview with Shoshana Zuboff”. In: Surveillance & Society 17.1/2 (2019),
pp. 257–266.

Clifton Roozendal, Kasra Imanirad, Shashank Athreya page 14 of 14

https://doi.org/10.1109/GCE.2008.4738445
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://cloud-costs.com/
https://www.statista.com/statistics/273818/global-revenue-generated-with-cloud-computing-since-2009/
https://www.statista.com/statistics/273818/global-revenue-generated-with-cloud-computing-since-2009/
https://www.statista.com/statistics/273818/global-revenue-generated-with-cloud-computing-since-2009/
https://www.statista.com/statistics/203578/global-forecast-of-cloud-computing-services-growth/
https://www.statista.com/statistics/203578/global-forecast-of-cloud-computing-services-growth/
https://www.statista.com/statistics/203578/global-forecast-of-cloud-computing-services-growth/
https://doi.org/10.3127/ajis.v18i3.1052

Identity as a Service

Abdellah Lahnaoui
Department of Computer Science

Universiteit van Amsterdam
abdellah.lahnaoui@student.uva.nl

Student-ID: 13215566

Adrian Aabech
Department of Computer Science

Universiteit van Amsterdam
adrian.aabech@student.uva.nl

Student-ID: 14120429

Ruben Horn
Department of Computer Science

Universiteit van Amsterdam
ruben.horn@student.uva.nl

Student-ID: 13676091

Abstract

Identity is a central part of any multi-user system. With the move to microservices
and the cloud, new challenges and opportunities arise for the task of identity
management. Developments in this area could impact architectural decisions
and further development of cloud based systems. In this paper, we motivate and
investigate federated and decentralized identity as alternatives to isolated solutions.
We perform an analysis of the literature on this topic using a publication search
engine and select publications for two categories of approaches that build on
federated protocols or decentralized technology. We motivate and establish a set of
criteria to compare a selection of solutions and discuss our findings. We conclude
that established federated protocols are still relevant and more innovation can be
expected in the area of decentralized approaches.

1 Introduction

Digital identity management has a substantial history in Europe, where the European Union has
funded different projects for the last 20 years [11, 12]. Commonly, they were concerned with national
or regional log-on identity services [27]. The intention behind this is providing log-on services with
reliability from the state, letting the nation or one of its institutions act as their trusted identity agent.
This could allow citizens of a country to, for example, securely access sensitive information.

Cloud computing has become a wide-spread practice in the last two decades due to the provided
speed, high availability, scalability, and security [7] which are benefits for businesses migrating to the
cloud. With respect to identity management, several cloud vendors provide services for operating
identity services in the cloud, such as AWS Cognito, Azure Active Directory or Google Cloud Identity
[10, Chapter 9]. Users will have to adapt to creating and providing an online identity for each one of
these cloud services [7] using the isolated identity providers, which correspond to a single service or
distinct set of services. Therefore, in an effort to increase interoperability, the industry is moving
towards using an IDentity as a Service (IDaaS) model [31]. This model permits selected external
providers to manage and store users’ personal data and allows them to authenticate and/or authorize
with other cloud-based services [19].

These IDaaS models contain a variety of services, but typically include Single Sign-On (SSO), Multi-
Factor Authentication (MFA) and Privileged Account Management (PAM) among others [9]. Today,

Web Services and Cloud-based Systems (UvA 2022), Amsterdam, Netherlands

the private sector is dominated by SSO services, like Google, LinkedIn, Twitter or Facebook accounts.
Alternatively, service providers could require some alternate form of identification, commonly
allowing users to create their own accounts.

However, as beneficial a such federated approaches are, they still have similar disadvantages to
the isolated identity management. Users will most likely have to access resources from various
domains and, in a real life setting, would still need to authenticate with multiple identity providers
[41]. Accordingly, there is a considerable amount of ongoing research to come up with an alternative,
such as a blockchain-based decentralized identity management [18]. In such a decentralized system,
the user fully owns and controls their identity data and as such, they interact directly with the service
providers, abolishing the need for a middle-man [27].

We are interested in finding out whether recent developments regarding identity management and
emerging technologies can be seen as an indicator of the future of identity management, and which
approaches are the most promising.

Consequently, this paper will explore the state of available literature to provide an insight into what is
being used, researched and developed. Then, there will be an analysis of modern approaches to identity
management, including notable solutions from academia and the industry. Afterwards, a comparison
of these solutions is conducted to ascertain their relevance and their stance regarding various issues.
Finally, the study will conclude with a brief summary and a look into future developments and the
potential of identity as a service.

1.1 Terminology

Below, we give some definitions for key terminology used in this paper to describe key components
and foundational concepts of identity management.

Identity An identity represents a single user and is used for the authentication and authorization. A
user may have multiple identities for multiple or even the same service.

Attribute Identities do not have to be atomic and immutable. Additional attributes can be linked to
an identity. They are characteristics, such as name, date of birth, profile picture of the user and so on,
that defines the identity.

Identity provider An identity provider manages and provides user identities and additional user
information and implements authentication mechanisms. In the context of cloud computing, such a
standalone identity solution is referred to as IDaaS.

Service provider A service provider may rely on a user identity and ancillary information, which
is obtained from an identity provider, for the purposes of, primarily, maintaining privacy and account-
ability through authorization as well as for billing.

1.2 Identity management technologies

In this section, we give a brief overview over the major authentication and authorization protocol
standards and technologies. These standards are also widely used [46] in the implementation of
identity federation, however, for the purpose of investigating future trends, we only consider solutions
which extend them for comparison.

1.2.1 Kerberos

Kerberos [35] is a ticket based authentication system developed by the Massachusetts Institute of
Technology for project Athena. It uses a Key Distribution Center (KDC) that is composed of two
servers, the Authentication Server (AS) and the Ticket-granting Server (TGS). One implementation
of the KDC is the Windows Domain Controller [22, Chapter 4]. Users authenticate themselves at
the AS and receive a Ticket Granting Ticket (TGT) which can be used to obtain a ticket from the
TGS to be used to access the protected resource on the application server. Tickets in Kerberos have
expiration dates. Multiple organizations can be connected to share resources between their users by
sharing the key of the TGS [22, Chapter 8.1].

2

1.2.2 SAML

Security Assertion Markup Language (SAML) is an eXtensible Markup Language (XML) based
standard which allows identity providers to pass authorization credentials to service providers [2]. So,
the user, using a browser agent, accesses a service provider which in turn redirects the SAML request
back to the browser. The browser then relays the SAML request to the identity provider, which has
the choice of using any suitable authentication method. The identity provider then generates a SAML
assertion and sends it to the service provider through the browser agent. Finally, the service provider
sends the security context to the browser and allows the user to access requested resources.

1.2.3 OAuth

Open Authorization (OAuth) is a standard that grants secure delegated access to a variety of services
via access tokens [25]. This replaces the need for using credentials and enables users to securely
grant access to their data to other service providers on their behalf. It also has the advantage of using
JavaScript Object Notation (JSON) packets and API calls, which makes it more optimized with recent
web and mobile applications (compared to SAML). A common workflow when using OAuth is as
follows: The client requests an access token from the identity provider, which then redirects the user
to its respective authentication and consent procedure. Afterwards, the identity provider returns an
access token. The client can use this token with every request in order to access the resources needed.

1.2.4 OpenID

OpenID connect allows service providers to delegate the authentication of users to identity providers
[3]. It uses OAuth as a foundation and extends it with an extra ID token which contains the identity
claims in JSON format. OpenID’s workflow is very similar to OAuth. The main difference is that
OpenID takes care of the authentication, while OAuth handles the authorization. Consequently, the
identity provider encodes the user details into a JSON Web Token (JWT) identity token that contains
user information and signature. This token is then passed to the client, which confirms the JWT and
confirms the signature using a public key.

1.2.5 SSO

SSO is an authentication method that allows users to use one set of credentials to authenticate to
multiple services [14], possibly in a different organizational domain. A central service performs
authentication and then shares the session with other services by, for example, sharing a signed JWT.

2 State of Publications

To further develop and understanding of the topic, we conduct a survey of the available literature.
The goal is to develop an understanding of what has and is being researched, and how that reflects in
the technologies being developed and used.
First, we compile a list of search keywords, which we identify after shallow manual exploration of
the topic Identity as a Service using Google Scholar. On this basis, we conduct an automated search.
We do this by utilizing the Semantic Scholar API [1] to search using the keywords referred to in
Table 1 and using the category computer science. The keywords identity and access management
and identity management are more general and are included for context. By doing this, we get the
amount of publications and their keywords and can start developing an understanding of all the
available literature in this corpus. All keywords are provided in lower-case, since the search is not
case-sensitive.
We look for papers published after 1990 to potentially include early publications covering grid
computing that predate the cloud, since identity management is relevant to other multiuser systems as
well.

2.1 Limitations

The number of publications for the keyword idaas is not representative, since we are only able to
obtain a very small subset of using the API of the roughly 11,700 publications as of June 3, 2022 that
are returned by the browser search.

3

The official API for Semantic Scholar only returns up to 10,000 publications ranked in descending
order of relevance [21] for any given query regardless of the actual number of publications matching
this keyword and has a strict rate limit of 100 requests within a five-minute window. As of June
3, 2022, Semantic Scholar indexes roughly 200 million publications [1]. Additional sources such
as Scopus and Google Scholar could be included to search among a larger number of publications.
Scopus offers an authenticated API, but Google Scholar can only be crawled using third party
solutions.
While results from the API query are filtered by field of study, this is too coarse and the results still
contain false positives.

2.2 Literature in numbers

Among the 14827 publications that were retrieved 3292 (22.20%) were found for the keyword
decentralized identity management, 3633 (24.50%) for federated identity management, 4638 (31.28%)
for identity and access management, 2528 (17.05%) for identity management and 700 (4.72%) for
self-sovereign identity. Only 36 (0.24%) were found for idaas, which is explained above.

Table 1 shows the average number of yearly publications and average number of citations per
publication for each keyword. The keywords federated identity management and decentralized
identity management are very similar with respect to publication per year and number of citations per
publication. The keyword self-sovereign identity stands out as having particularly few publications,
and the high mean and standard deviation of the number of citations can be attributed to one particular
false positive.1 The average and standard deviation of the number of citations is a bit more varied.
The keyword self-sovereign identity has both an especially high average number of citations per
publication, but also a very high standard deviation.

Keyword µ publications
years σ publications

years µ citations σ citations
federated
identity management 95.61 89.24 22.47 136.13

decentralized
identity management 78.38 82.08 43.0 178.32

self-sovereign
identity 17.95 15.73 288.41 1391.12

idaas 3.0 1.76 14.61 40.5
identity and
access management 118.92 121.34 15.36 51.02

identity management 64.82 67.8 34.73 91.98
Table 1: Keyword statistics

Figure 1 shows the number of publications per keyword over time in absolute numbers and relative to
the total number of publications for the corresponding keyword, respectively. The drop in number of
publications across all keywords can likely be partially attributed to the coronavirus pandemic starting
in late 2019 [34]. Additionally, the search was performed in June 2022, so not all publications from
this yer are accounted for and indexing may be somewhat delayed. The recent peak for the keyword
decentralized identity management coincides with the maturing of blockchain and distributed ledger
technologies, and is also a use-case for many such projects. The related topic of self-sovereign
identity, however, does not seem to experience the same development. At the same time, publications
on federated identity management seem to be plateauing. Generally, all topics grow in popularity up
until the early 2010s and remain relatively high. We did not find an explanation for the recent spike
in publications related to identity and access management.

1The result https://www.semanticscholar.org/paper/a67568e046219eb705eaca2ee6630a76fc4b3043
(Accessed June 3, 2022) for instance falls under the category of philosophy and is not relevant to the topic of this
survey, but was returned due to the high number of citations.

4

1990 1995 2000 2005 2010 2015 2020
Year

0

50

100

150

200

250

300

350

Nu
m

be
r o

f p
ub

lic
at

io
ns

Publication frequency by year
decentralized identity management (dim)
federated identity management (fim)
idaas
identity and access management (iam)
identity management (im)
self-sovereign identity (ssi)

Figure 1: Publications over time per keyword

dim fim idaas iam im ssi

dim

fim

idaas

iam

im

ssi

1 0.36 0.0027 0.2 0.33 0.036

0.33 1 0.0036 0.27 0.37 0.036

0.25 0.36 1 0.28 0.25 0

0.14 0.21 0.0022 1 0.19 0.019

0.43 0.54 0.0036 0.35 1 0.049

0.17 0.19 0 0.12 0.18 1

Overlap of publications normalized by row

Figure 2: Fraction of publications covering two keywords

Figure 2 shows the fraction of papers for a given keyword in a row that are also related to a
second keyword in the corresponding column. The keywords decentralized identity management and
federated identity management have a reasonably high correlation, with 33% and 36% respectively.
Among publications on identity management, these two keywords stand out as having a very high
occurrence of 43% and 54%, but a significantly lower rate for publications on idaas. The topic
federated identity management seems to be generally more popular, whereas decentralized identity
management might ’catch up’ given recent trends as mentioned before.

5

2.3 Relevant literature

While a query on a single keyword contains a considerable amount of false positives, the low number
of results for idaas allows us to select relevant publications by filtering for those that also match
this keyword, along with federated identity management or decentralized identity management. The
resulting publications are listed in Table 2.

Paper Search keywords Content

Nuñez et al. 2015 [39],
Nuñez and Agudo 2014 [36],
Nuñez et al. 2013 [38],
Nuñez et al. 2012 [37]

decentralized
identity management,
federated
identity management

This series of papers proposes Blin-
dIdM, a user centric IDaaS solution in
which the identity provider can supply
the user information without knowing
it himself. This is facilitated through
the use of a proxy re-encryption scheme
which allows to re-encrypt the informa-
tion for a different key without reveal-
ing it. This solution can be integrated
with OpenID and SAML. This approach
should eliminate the trust requirement
between service providers from service
providers to identity providers. The
paper compares this solution to ’tradi-
tional’ identity federation between orga-
nizations.

Fayolle et al. 2011 [20]

decentralized
identity management,
federated
identity management

This paper makes a case for an identity
centric approach for the future internet.
They identify fragmentation as a key
problem of the current state of identity
on the internet. The proposed ’Identity
in the Cloud’-Agent (IC-Agent) is pro-
posed to solve this by facilitating the
separation of data storage and exploita-
tion. These agents are used in-line and
in a symmetric fashion. IC-Agents can
be self-hosted, they do not replace at-
tribute validators.

Vo et al. 2019 [49],
Vo et al. 2018 [48],
Vo et al. 2017 [47]

decentralized
identity management,
federated
identity management

These papers propose an architecture
for a privacy supporting federated iden-
tity architecture based on purpose-based
attribute-based encryption with SAML
and OAuth. Attribute decryption is con-
troled by two tokens which verify the
time and purpose respectively.

Li et al. 2018 [30]

decentralized
identity management,
federated
identity management

This paper proposes Sh-IDaaS, a discov-
ery service model based on the Shibbo-
leth [13] SAML implementation to facil-
itate multiple identity protocol through
the use of a conversion layer. Identity
providers can be dynamically added or
removed.

Lee 2018 [29] federated
identity management

Blockchain Based IDaaS (BIDaaS)
leverages a private blockchain which
service providers can use to look up
identities of users. Users are authen-
ticated by a unique cryptographic chal-
lenge using which can only be solved
using their private key.

Table 2: Relevant literature for idaas from API query

6

2.4 Additional literature

We use Google Scholar and Scopus to manually research other solutions in addition to solutions from
the literature obtained by Semantic Scholar API, we also compare ShoCard, uPort and Sovrin, which
are alternative Self-Sovereign Identity (SSI) solutions, in which the user fully owns and controls their
identity, that utilize blockchain technology [18, 45].

3 Comparison of modern approaches to Identity Management

3.1 Isolated identity services

Isolated identity services follow the most basic approach to identity management, where each domain
uses a separate identity service, thus requiring separate user credentials for multiple services from
different domains. This is inconvenient for the end user as each user’s attributes are managed
in isolation, which leads to a massive number of identities where a lot of them are replicas [28].
Managing multiple login credentials can also overwhelm the user and lead to bad security practices
such as password re-use.

3.2 Motivation for alternatives to isolated identity services

While isolated identity management services are a straight forward solution to identifying users of
service providers, they also have several potentially undesirable implications. We found the following
desired properties that a federated or decentralized approach could improve upon over an isolated
identity service:

Portability Isolated identity services do not share or exchange user repositories. This means that a
user has to interact with and manage credentials for multiple identity providers (e.g., Facebook and
Google) in order to use different services [26]. It is not possible to transfer identities belonging to the
same user, leading to fracturing and duplication of information across multiple services. This may
also be seen as a privacy feature, although identity linking is a possible risk if the same identifiable
personal information is used across multiple identity providers [8]. Users want to be able to interact
with service providers without being forced to migrate to a new identity provider [15].

Unlinkability On the other hand, one prominent service provider may arise due to the increased
convenience of only having a single identity, at which point service providers may be able to learn
sensitive information about the user by tracking them. For Facebook’s identity provider Facebook
Connect [18] this may be the case. The corresponding property of unlinkability describes to which
extent correlations that could reveal such data are hidden. This concerns both linking actions to the
same identity (by a service provider) and linking two identities belonging to the same user (by the
identity or by service providers colluding with each other) [8].

De-coupling Through tight coupling between service providers and identity providers, the number
of users is limited to the users of the chosen identity provider. Each service provider involved must
obtain user data from the identity service directly or from a service consumer who propagates it,
which may be a privacy concern, because it is not controlled by the user [49]. Integrating multiple
service providers from the side of the service providers results in considerable development and
maintenance effort with no apparent benefit to the provided service, as well as all the disadvantages
mentioned above. Termination of the identity provider would also render the service provider
unusable, making them a single point of failure in the worst case.

Privacy If users want to interact with the service providers, they must also interact with and poten-
tially disclose personal information to the identity provider, which may have negative implications for
privacy. A central identity provider may have knowledge of all attributes of the user, and the access
of a service provider to these attributes may not be minimized. Returning to the example of Facebook

7

Connect, an authorized service provider may continue to access user information within the same
scope at will [8]. This issue is different from Section 3.2, since it does not require the combination of
two or more data points.

3.3 Federated solutions

A federated solution, briefly explained, is the result of establishing connections between multiple
identity management systems [16]. How it operates in practice is through users trying to access
service providers, and the service providers contacts an identity provider to verify the users’ identities.
Therefore, on a technical level they are often constructed similarly to an isolated solutions, but the
authentication is handled by a third party, using standards like OpenID or SAML for identification
and OAuth for data access.

3.3.1 BlindIdm

Attributes in BlindIdm [39, 36, 38, 37] are end to end encrypted in this approach as visualized in the
OpenID flow visualized in Figure 3. This approach is designed to eliminate the need for trust in the
identity provider to allow outsourcing identity management which could be especially relevant for
business moving to the cloud.

Figure 3: OpenID flow from Nuñez et al. [39]

Portability Portability is not addressed by this approach beyond SAML and OpenID. However,
since the identity provider is not a trusted party, the validity of attributes is not tied to it and a user
could choose to re-establish their identity with a different identity provider.

Unlinkability While the identity provider cannot decrypt user attributes it may be possible to infer
them through the interaction with service providers in some cases with prior domain knowledge
about the services and interaction models. For example the identity provider could determine the
department of a user in a business from the type of service that they interact with like an ordering
service implying logistics or a journaling service implying book keeping.

Loose coupling to service provider Through the use of SAML and OpenID, tight coupling to
identity providers can be avoided. However, the concrete identity provider for the domain of the user
must be integrated by the service provider.

Privacy Through the use of proxy re-encryption, the identity provider cannot learn any attributes
about the user. Since in the scenario envisioned by this paper there is a direct trust relationship
between the domain of the user and that of the service provider, but not between the service provider
and identity provider, a collusion between identity provider and service provider can be seen as
unlikely.

8

3.3.2 IC-Agents

This ambitious proposal by Fayolle et al. [20] suggests a separation of data storage from services
which access and process it. Attributes can be verified through assertions within a web of trust.
Access to data and services goes through user operated IC-Agents.
Beyond HTTP and onion routing, no concrete technology is proposed. The reliance on crypto-
graphic operations and per-user services which are running constantly implies potentially significant
overhead.

Portability Because IC-Agents are intended to be operated and can also be hosted by users,
identities are portable by default.

Unlinkability While a users’s IC-Agent may provide distinct identities for different services or
actions, tracing the network connection back to the server hosting the IC-Agent could be used to link
them. To mittigate this, it is proposed to use onion routing for all egress traffic. Alternatively or in
addition to that, a user may run multiple IC-Agents which would prevent linking if all ingress traffic
uses onion routing.

Loose coupling to service provider Since the user’s interactions with a service are proxied through
the IC-Agent, the identity of the user is provided by themselve from the view of the service provider.
In order to verify user attributes the service provider must trust the certifier of a given certificate.

Privacy Because the IC-Agents, which store attributes, are operated by the users, and only requested
information is disclosed to service providers, a high level of privacy can be achieved. If users must be
de-anonymizeable, a trusted identity provider would issue a pseudonym. Although this is often not
required, it is likely that all service providers will demand such assurances for legal reasons, which
could severely undermine the users’ privacy.

3.3.3 Vo et al.

Figure 4 shows the overview of the proposed solution by Vo et al. [49, 48, 47] on an example of
three service domains. In this example, the user only directly interacts with one service provider.
The encrypted personal information is deseminated through the users identity provider. Subsets of
attributes can be decrypted using a unique combination of time based access token and policy derived
token.

Figure 4: Overview from Vo et al. [48]

Portability Portability is not addressed by this approach beyond SAML and OAuth.

Unlinkability Trivial identity linking can be avoided, even if service providers colude with one
another, if different attributes are disclosed.

Loose coupling to service provider Through the use of SAML and OAuth, tight coupling to
identity providers can be avoided. However, the concrete identity providers must be integrated by
the service provider. In the presented scenario, the trust relation between the domain of the service
provider and that of the user extends extends to the identity provider, since it is part of the user
domain.

9

Privacy This approach is very beneficial to the user privacy outside of the home domain, since
access to attributes is minimized on an attribute and purpose level.

3.3.4 Sh-IDaaS

As visualized in Figure 5, the Sh-IDaaS [30] solution consists of a discovery service which acts as a
broker to the user’s identity provider. By means of a SAML converter middleware for the required
identity protocol, any service provider can be integrated. This solution could be extended to facilitate
inter-cloud identity management as suggested by [17], even if different protocols are used.

Figure 5: Architectural overview from Li et al. [30]

Portability Portability is not addressed by this approach, because this depends on the connected
identity provider and the underlying protocol used before the SAML conversion.

Unlinkability Identity linking is not addressed by this approach beyond SAML.

Loose coupling to service provider Through the use of a discovery service, identity providers
can be added or removed without affecting the service providers. However, the discovery service
naturally provides a different single point of failure within this architecture.

Privacy Privacy is not addressed beyond SAML by this solution.

3.4 Decentralized solutions

Decentralized identity solutions do not rely on a single authority, but can defer to multiple. Many
decentralized solutions, can also be classified as self-sovereign solutions, meaning that the user them-
selves fully own and manage their own data, without intervention from external administrators[16].
Often in a user-centric solution, this can take the form of a wallet containing credentials which prove
their identity with the authority of different issuers or identity providers. This can be compared to
having an ID or social security card in your own wallet, which can then be validated if need be, but
most of the time as long as the issuer is considered trust-worthy further look-ups is not required [45].
One of the most commonly used technologies in modern decentralized solutions is blockchain,
as can be seen in the spike of literature in decentralized solutions rising at around the same time
blockchain was really asserting its position as a relevant technology. There are also recent attempts
at decentralized solutions which do not rely on it, like I Reveal My Attributes (IRMA) from the
Netherlands [45].

10

3.4.1 BIDaaS

The example in Figure 6 shows the separation between authentication of identity and attribute
desimination in the approach proposed by BIDaaS [29]. The BIDaaS would operate on a private
blockchain where "partners" of the BIDaaS would minimally be able to extract the user’s virtual ID
from the blockchain and verify it against the ID the user provides. Even though this paper matched
the search keyword federated identity management, we consider it a decentralized proposal, since
the identity controlled by the user through the ownership of a private key and can be used anywhere.
However, this does not hold for the centrally stored attributes.

Figure 6: Example use-case from Lee [29]

Portability Portability is guaranteed for the identity beside any attributes stored, since knowledge
of the private key by the user is sufficient to create the exact same identity at any other instance. In
the example from Lee [29] attributes are stored in an external database.

Unlinkability User can create multiple identities for multiple service providers which should be an
effective measure. If only one identity is created, it is trivial for any two service providers to perform
identity linking. The identity provider is not involved in the authentication process, however the
request of user attributes reveals the service provider that the user interacts with.

Loose coupling to service provider While the paper states that a service-level agreement between
service provider and idenity provider must be established, in practice the service provider does
not need to interact with the identity provider for authentication. If the blockchain is operated
independently of this service, only the trust in the integrity of the identity providers private key is
required.

Privacy The paper acknowledges that, in the currently proposed solution, there is no mechanism
which restricts the service providers use of the user attributes in either time or scope of exploitation.

3.4.2 ShoCard

The ShoCard [42] solution, visualized in Figure 7, uses the Bitcoin blockchain to store the digest of an
identification document which is held by the user and which is used as the digital identity. Attributes
are attached to this identity as new Bitcoin transactions which point to the transaction containing the
user’s identity. A user can prove their identity by providing original data that produced the identity
and certificate digest and by proving the ownership of the corresponding private key. Encrypted
certificates can be backed up on a centralized server. This solution is intended for authentication with
both physical and digital services.

Portability Portability does not apply to this solution, since all parties use the main Bitcoin network.
Multiple centralized ShoCard servers could exist, since they are only required to store encrypted

11

Figure 7: ShoCard components and interactions [18]

documents and interact with the blockchain. This functionality could even be provided by a service
that is operated by the user, since it is not involved in any trust relation with the service providers.

Unlinkability Since certificates are only a hashed reference to the ShoCard identity, it is not
possible to extract all certificates for any given identity from the blockchain. However, since users
are expected to set up their ShoCard identity using their ’real-world’ identity, the use of multiple
identities does not seem to be an intendended feature and service providers could thus combine their
knowledge on a specific user.

Loose coupling to service provider To verify a user’s identity, a service provider would theo-
retically only need to interact with the user and the Bitcoin blockchain. The user could indicate
the concrete ShoCard server at request-time. In order to verify a certificate (attributes), the service
provider must trust the corresponding certifier.

Privacy While information is always encrypted outside of the context of a verification, the user’s
identity is always tied to the identity document that were used to set up the ShoCard such as the user’s
passport as noted by Dunphy and Petitcolas. This can lead to oversharing of personal information.

3.4.3 uPort

uPort2 implements Decentralized Identifiers (DIDs) [24, 40] on the Ethereum blockchain which
is implemented using smart contracts. This means that the whole ethereum network becomes the
corresponding identity provider. Attributes are stored on the distributed storage service IPFS [6] and
referenced on the blockchain by the user.

Figure 8: uPort architecture [18]

2In 2021 the project evolved into Veramo as announcement by the uPort project: https://medium.com/
uport/veramo-uports-open-source-evolution-d85fa463db1f (Accessed June 3, 2022)

12

Portability Portability does not apply here if it can be assumed that the mainnet remains the only
relevant Ethereum network.

Unlinkability Since the user can create an arbitrary number of distinct key pairs which correspond
to unique identities, the threat of identity linking can be avoided.

Loose coupling to service provider Due to the elimination of all individual identity providers, the
question of loose or tight coupling of a service provider to an identity provider does not apply. Instead,
service providers interact with the blockchain. This solution does not address attribute validation
which could be implemented similarly as in Sections 3.3.2 or 3.4.2.

Privacy Content which is stored on the blockchain cannot be removed and in the case of IPFS
cannot be guaranteed to be removed, due to the nature of the append only leger and distributed storage
service. This may have severe privacy implications if users attach sensitive data to their uPort identity
and lead to accidental over-sharing [18].

3.4.4 Sovrin

Unlike the previously mentioned solutions that utilize decentralized ledger technology, Sovrin [43]
explicitly uses a permissioned blockchain. Permissioned nodes are operated by trusted organizations.
Users do not directly interact with the blockchain, but instead with an agent which could be self-
hosted or provided by a third party. Similar to ShoCard, agents can also be used as an off-chain
attribute store.

Figure 9: Sovrin architecture [18]

Portability Portability only applies with respect to the agents, because only the Soverin mainnet is
intended to be used. Since users have the option of self-hosting agents or storing attributes locally,
portability can be achieved.

Unlinkability Since the user can create an arbitrary number of distinct key pairs which correspond
to unique identities, the threat of identity linking can be avoided.

Loose coupling to service provider Due to the elimination of all individual identity providers,
the question of loose or tight coupling of a service provider to an identity provider does not apply.
Instead, service providers interact with the blockchain and the user’s agent which is standardized.

Privacy Through the agents, users are in full control of their information and the dissemination
thereof. When using an agent provided by a third party, a trust relation between the provider of the
agent and the user is required. The agent could also learn additional information, since it can interact
with service providers on behalf of the user.

13

4 Solutions and their properties

While we can describe a lot of the solutions by the way they handle the previously discussed criteria,
portability, unlinkability, de-coupling and privacy, we also wish to compare these solutions directly
to see if certain approaches are generally more advantageous. Therefore, we compile them all in
Table 4 the legend for which is given in Table 3. Both federated and decentralized approaches are
evaluated on the same criteria together to see if general observations about those two groups can be
made. However, it is important to understand that many services, by design, will not tackle some of
these issues as well as others and instead prioritize different aspects of a modern identity management
solution. This means that the solution, with the overall highest rating across all categories, is not
automatically the most likely to establish itself as a new standard.
After showcasing the solution and how well they address our criteria, we will discuss common
approaches and contrast noteworthy differences between solutions.

Score Description
✓ Good handling of this criterion by the solution

(✓) The solution addresses this criterion partially
✗ The solution does not adequately tackle the criterion

No symbol This criterion does not apply to the solution
Table 3: How the solutions are rated

Solution Type Portability Unlinkability De-coupling Privacy
BlindIdm F (✓) (✓) (✓) ✓
IC-Agents F ✓ (✓) ✓ ✓
Vo et al. F ✓ (✓) ✓

Sh-IDaaS F (✓)
BIDaas D ✓ (✓) ✓ ✗

ShoCard D (✓) (✓) (✓)
uPort D ✓ ✗
Sovrin D ✓ ✓ (✓)

Table 4: Comparison of (F)ederated and (D)ecentralized solutions

5 Discussion

For all decentralized blockchain based identity management solutions, we observe that privacy seems
to present a challenge. Storing user data on the blockchain has severe privacy implications as we
argue for uPort, however, even solutions such as BIDaaS or Sovrin that opt for an external storage
have some disadvantages when compared to other solutions such as BlindIdm or Vo et al. which
focus explicitly on the issue of privacy.
All the blockchain based decentralized solutions that we compared also significantly more complex
to integrate or operate with for users and service providers while solutions like BlindIdm, Vo et al.
or Sh-IDaaS which build on established federated identity management protocols such SAML or
OpenID only add complexity to certain aspects of the authentication architecture.
Another important aspect that has to be considered for any blockchain based solution is the distributed
ledger and corresponding consensus mechanism being used. Solutions like ShoCard or uPort which
build on the Bitcoin or Ethereum mainnets respectively may be held back by highly limited transaction
throughput resulting in long wait times and exorbitant fees which make adoption of such technologies
for widespread and low-value services. Dedicated permissioned or permissionless networks on the
other hand, such as the ones used by BIDaaS or Sovrin can use more efficient consensus mechanisms
than Proof of Work and scale the network depending on the requirements of this singular use case.
The use of community blockchains could lead to a paradigm shift where identity providers are
replaced by a consortium operating a blockchain which runs a decentralized identity solution similar
to uPort. Such a blockchain could be compared to today’s Platform as a Service (PaaS) offerings.
IC-Agents seems the most promising approach to us, since it satisfies all our criteria, however,

14

they require extensive change to the current identity landscape which may even exceed that of the
highlighted blockchain solutions. Additionally, the overhead posed by running an IC-Agent for
every entity and through the use of onion routing for all user web traffic calls the practicality of this
approach into question. Nevertheless, we are of the opinion that this approach has a lot of potential.
Blockchain based solution, as well as others that are based on asymmetric cryptography, generally
are more portable and potentially provider independent, since cryptographic challenges instead of
trust relations between providers can be used to re-identify users. However, they also present new
challenges such as key management, specifically in regard to invalidation and re-generation. While
uPort and Sovrin each provide a mechanism for account recovery [18], key management is generally
not yet very intuitive, as cryptocurrency wallet software demonstrates [33].

5.1 The struggles of emerging solutions

It is clear to us that the current identity management ’market’ is dominated by the SSO services that
Facebook, Google and Twitter offer, often having or currently using technologies or standards like
SAML, OpenID or OAuth. This is despite the many efforts over recent years to continue to innovate
in the area of identity management, as shown by the solutions presented in our survey. Despite this,
most of the successful implementations are extensions of existing SSO-technologies, usually SAML.
In 2018, it was observed that 6.3% of Alexa’s top one million most visited pages supported SSO
technology, where Facebook was at the time the largest identity provider [23].

The question that arises then is, why do so many services use the same established protocols [46]?
One hypothesis that one quickly arrives at is that users are reluctant to pay someone to manage your
identity for them. This amplifies the network effect experienced by established SSO providers in
the consumer space, the vast majority of which are provided free of charge. Another advantage
most of the well known SSO-solutions have is their ease-of-use and simplicity, often due to them
being actively promoted by the corresponding ecosystems of the identity provider. Technological
innovation, even with high improvements in security and privacy with significant enthusiasm from
(potential) users, cannot completely counteract the overwhelming barrier of lacking usability. With
mandatory components of more very highly demanded products or widespread adoption in a corporate
identity management being perhaps an exception, only slow organic growth can be expected. Finally,
professionals and researchers might overestimate the public’s concern for privacy. While there might
be some outcry over violations regarding the usage of personal information, convenience seems to
be detrimental to the effort put into solving the issues by the consumers. In Europe, expectations
may be placed in legislation pushing for change and government initiatives such as citizen identity
services under eID [4]. However, as the emergence of unintuitive cookie pop-ups on websites in
response to the General Data Protection Regulation (GDPR) has shown, unspecific legislative action
may produce unfavorable outcomes [44].

5.2 Observed trends and prediction of future developments

Among the reviewed approaches, three (BlindIdm, Vo et al., Sh-IDaaS) are built on well established
federated identity protocols and support SAML. This shows that there is still interest in this technology
and new commercial solutions may want to leverage these existing standards instead of establishing
competing similar ones.
With the rise of cryptocurrencies, the concept of self-sovereign identity has seen new developments.
We have reviewed four different solutions (BIDaaS, ShoCard, uPort, Sovrin) which utilize different
blockchains and to a different extent. This shows that the emergence of this technology did not yield
an obvious solution to this challenge. Using asymmetric cryptography is not exclusive to blockchain,
as the proposal for IC-Agents shows. Nevertheless, the momentum behind this technology will likely
continue to spawn new innovation, such as the Unified Identity Protocol (UID) proposed by IOTA
[32], which may be refined and scalable enough to be widely deployed.

15

6 Future work

We limited our comparison to eight federated and decentralized identity management solutions,
however there are several other publications, such as Millenaar and Yarger [32], Zhaofeng et al. [51],
Alom et al. [5], and Yildiz et al. [50], which could be compared using our criteria.
Since some approaches are only very specific about certain aspects of the proposed identity, it may
be possible to combine multiple approaches, such as the decentralized attribute store of uPort with
the privacy preserving proxy re-encryption of BlindIdm. These should be evaluated using the same
criteria to determine which combinations present an improvement over the original approaches.
Our survey focused on general identity management services, however, different solutions may have
unique qualities and intended purposes. A use-case focused study may provide more relevant sugges-
tions for different kinds of services such as internet of things and mobile applications, commercial
end-user, corporate or public/government services.

7 Conclusions

In this survey, we reviewed whether recent developments regarding identity management in the
cloud and emerging technologies can be an indicator of the future of identity management. This was
achieved by conducting a literature survey concerning publication trends over time and in relation with
each other. Next, isolated identity services are introduced that are then compared with two alternative
general approaches, which are federated identity services and decentralized identity management.
We also try to determine which approaches are the most promising by diving deeper into a selection
of notable solutions from each approach. These solutions are reviewed and compared based on their
impact on four criteria: portability, unlinkability, de-coupling and privacy. We found that no one
single solutions of the ones that we investigate satisfies all criteria without some drawbacks. The
blockchain specifically bare some privacy risks. Finally, we discuss some potential challenges faced
by federated and decentralized approaches, as well as any new identity management solution. We
see wide scale adoption as a key challenge to any solution. We conclude that established federated
protocols such as SAML will remain relevant while decentralized approaches continue to innovate.

16

References
[1] Semantic Scholar API. URL https://www.semanticscholar.org/product/api. (Ac-

cessed June 3, 2022).

[2] Conformance Requirements for the OASIS Security Assertion Markup Language
(SAML) V2.0, 2005. URL http://docs.oasis-open.org/security/saml/v2.0/
saml-conformance-2.0-os.pdf. (Accessed June 3, 2022).

[3] OpenID Authentication 2.0 - Final, 2007. URL https://openid.net/specs/
openid-authentication-2_0.html. (Accessed June 3, 2022).

[4] Regulation (EU) No 910/2014 of the European Parliament and of the Council of 23 July 2014
on electronic identification and trust services for electronic transactions in the internal market
and repealing Directive 1999/93/EC. OJ, L 257/73:73—-114, 2014.

[5] Ifteher Alom, Romana Mahjabin Eshita, Anam Ibna Harun, Md Sadek Ferdous, Mirza Kamrul
Bashar Shuhan, Mohammad Jabed M Chowdhury, and Mohammad Shahidur Rahman. Dynamic
Management of Identity Federations using Blockchain. In 2021 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), pages 1–9, 2021. doi: 10.1109/ICBC51069.2021.
9461128.

[6] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System, 2014. URL https:
//arxiv.org/abs/1407.3561.

[7] Elisa Bertino, Federica Paci, Rodolfo Ferrini, and Ning Shang. Privacy-preserving digital
identity management for cloud computing. IEEE Data Eng. Bull., 32(1):21–27, 2009.

[8] Eleanor Birrell and Fred Schneider. Federated identity management systems: A privacy-based
characterization. Security & Privacy, IEEE, 11:36–48, 09 2013. doi: 10.1109/MSP.2013.114.

[9] Dan Blum. Control Access with Minimal Drag on the Business. In Rational Cybersecurity for
Business, pages 227–257. Apress, 2020. doi: 10.1007/978-1-4842-5952-8_8. URL https:
//doi.org/10.1007/978-1-4842-5952-8_8.

[10] Miguel A. Calles. Authentication and Authorization, pages 229–256. Apress, Berkeley,
CA, 2020. ISBN 978-1-4842-6100-2. doi: 10.1007/978-1-4842-6100-2_9. URL https:
//doi.org/10.1007/978-1-4842-6100-2_9.

[11] Jan Camenisch, Abhi Shelat, Dieter Sommer, Simone Fischer-Hübner, Marit Hansen, Henry
Krasemann, Gérard Lacoste, Ronald Leenes, and Jimmy Tseng. Privacy and identity manage-
ment for everyone. In Proceedings of the 2005 workshop on Digital identity management, pages
20–27, 2005.

[12] Jan Camenisch, Ronald Leenes, and Dieter Sommer. Digital Privacy: PRIME-Privacy and
Identity Management for Europe, volume 6545. Springer, 2011.

[13] Scott Cantor, Steven Carmody, Marlena Erdos, Keith Hazelton, Walter Hoehn,
RL "Bob" Morgan, Tom Scavo, and David WasleyS. Shibboleth Architec-
ture - Protocols and Profiles, 2005. URL https://shibboleth.net/documents/
internet2-mace-shibboleth-arch-protocols-200509.pdf. (Accessed June 3, 2022).

[14] Jan De Clercq. Single Sign-On Architectures. In Infrastructure Security, pages 40–58. Springer
Berlin Heidelberg, 2002. doi: 10.1007/3-540-45831-x_4. URL https://doi.org/10.1007/
3-540-45831-x_4.

[15] Damiano Di Francesco Maesa and Paolo Mori. Blockchain 3.0 applications survey. Journal
of Parallel and Distributed Computing, 138:99–114, 2020. ISSN 0743-7315. doi: https:
//doi.org/10.1016/j.jpdc.2019.12.019. URL https://www.sciencedirect.com/science/
article/pii/S0743731519308664.

[16] Omar Dib and Khalifa Toumi. Decentralized identity systems: Architecture, challenges,
solutions and future directions. Annals of Emerging Technologies in Computing (AETiC), Print
ISSN, pages 2516–0281, 2020.

17

[17] Gabi Dreo, Mario Golling, Wolfgang Hommel, and Frank Tietze. ICEMAN: An architecture for
secure federated inter-cloud identity management. In 2013 IFIP/IEEE International Symposium
on Integrated Network Management (IM 2013), pages 1207–1210, 2013.

[18] Paul Dunphy and Fabien A.P. Petitcolas. A first look at identity management schemes on the
blockchain. IEEE Security Privacy, 16(4):20–29, 2018. doi: 10.1109/MSP.2018.3111247.

[19] Christian Emig, Frank Brandt, Sebastian Kreuzer, and Sebastian Abeck. Identity as a service
– towards a service-oriented identity management architecture. In Dependable and Adapt-
able Networks and Services, pages 1–8. Springer Berlin Heidelberg, 2007. doi: 10.1007/
978-3-540-73530-4_1. URL https://doi.org/10.1007/978-3-540-73530-4_1.

[20] J. Fayolle, M. Ates, S. Ravet, and A. Ahmat. An identity-centric internet: Identity in the cloud,
identity as a service and other delights. In 2012 Seventh International Conference on Availability,
Reliability and Security, pages 555–560, Los Alamitos, CA, USA, aug 2011. IEEE Computer
Society. doi: 10.1109/ARES.2011.85. URL https://doi.ieeecomputersociety.org/10.
1109/ARES.2011.85.

[21] Serge Feldman. Building a Better Search Engine for Seman-
tic Scholar (Blog), 2020. URL https://blog.allenai.org/
building-a-better-search-engine-for-semantic-scholar-ea23a0b661e7.
(Accessed June 3, 2022).

[22] Jason Garman. Kerberos: The Definitive Guide. O’Reilly & Associates, Inc., USA, 2003. ISBN
0596004036.

[23] Mohammad Ghasemisharif, Amrutha Ramesh, Stephen Checkoway, Chris Kanich, and Jason
Polakis. O Single {Sign-Off}, Where Art Thou? An Empirical Analysis of Single {Sign-On}
Account Hijacking and Session Management on the Web. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1475–1492, 2018.

[24] Amy Guy, Manu Sporny, Drummond Reed, and Markus Sabadello. Decentral-
ized identifiers (DIDs) v1.0. W3C proposed reccommendation, W3C, August 2021.
https://www.w3.org/TR/2021/PR-did-core-20210803/.

[25] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, October 2012. URL
https://www.rfc-editor.org/info/rfc6749. (Accessed June 3, 2022).

[26] Audun Jøsang, John Fabre, Brian Hay, James Dalziel, and Simon Pope. Trust requirements in
identity management. In Proceedings of the 2005 Australasian Workshop on Grid Computing
and E-Research - Volume 44, ACSW Frontiers ’05, page 99–108, AUS, 2005. Australian
Computer Society, Inc. ISBN 1920682260.

[27] Michael Kubach, Christian H Schunck, Rachelle Sellung, and Heiko Roßnagel. Self-sovereign
and decentralized identity as the future of identity management? Open Identity Summit 2020,
2020.

[28] Maryline Laurent, Julie Denouël, Claire Levallois-Barth, and Patrick Waelbroeck. 1 - dig-
ital identity. In Maryline Laurent and Samia Bouzefrane, editors, Digital Identity Man-
agement, pages 1–45. Elsevier, 2015. ISBN 978-1-78548-004-1. doi: https://doi.org/10.
1016/B978-1-78548-004-1.50001-8. URL https://www.sciencedirect.com/science/
article/pii/B9781785480041500018.

[29] Jong-Hyouk Lee. Bidaas: Blockchain based id as a service. IEEE Access, 6:2274–2278, 2018.

[30] Mengyi Li, Chi-Hung Chi, Chen Ding, Raymond Wong, and Zhong She. A multi-protocol
authentication shibboleth framework and implementation for identity federation. In Raheem
Beyah, Bing Chang, Yingjiu Li, and Sencun Zhu, editors, Security and Privacy in Commu-
nication Networks, pages 81–101, Cham, 2018. Springer International Publishing. ISBN
978-3-030-01704-0.

[31] John Mears. The rise and rise of ID as a service. Biometric Technology Today, 2018(2):5–8,
February 2018. doi: 10.1016/s0969-4765(18)30023-7. URL https://doi.org/10.1016/
s0969-4765(18)30023-7.

18

[32] Jelle Femmo Millenaar and Mathew Yarger. The Case for a Unified Identity – Our Vision for
a Unified Identity Protocol on the Tangle for Things, Organizations, and Individuals (White
Paper), 2019. URL https://files.iota.org/comms/IOTA_The_Case_for_a_Unified_
Identity.pdf. (Accessed June 3, 2022).

[33] Md Moniruzzaman, Farida Chowdhury, and Md Sadek Ferdous. Examining Usability Issues in
Blockchain-Based Cryptocurrency Wallets". In Touhid Bhuiyan, Md. Mostafijur Rahman, and
Md. Asraf Ali, editors, Cyber Security and Computer Science, pages 631–643, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-52856-0.

[34] Omar Mubin, Fady Alnajjar, Abdullah Shamail, Suleman Shahid, and Simeon Simoff. The
new norm: Computer Science conferences respond to COVID-19. Scientometrics, 126(2):
1813–1827, 2021. doi: 10.1007/s11192-020-03788-9. URL https://doi.org/10.1007/
s11192-020-03788-9.

[35] B. Neuman and Theodore Ts’o. Kerberos: An authentication service for computer networks.
Communications Magazine, IEEE, 32:33 – 38, 10 1994. doi: 10.1109/35.312841.

[36] David Nuñez and Isaac Agudo. Blindidm: A privacy-preserving approach for identity manage-
ment as a service. International Journal of Information Security, 13:199–215, 2014.

[37] David Nuñez, Isaac Agudo, and Javier López. Integrating openid with proxy re-encryption to
enhance privacy in cloud-based identity services. 4th IEEE International Conference on Cloud
Computing Technology and Science Proceedings, pages 241–248, 2012.

[38] David Nuñez, Isaac Agudo, and Javier López. Leveraging privacy in identity management as a
service through proxy re-encryption. In ESOCC 2013, 2013.

[39] David Nuñez, Isaac Agudo, and Javier Lopez. Privacy-Preserving Identity Management
as a Service, pages 114–125. Springer International Publishing, Cham, 2015. ISBN 978-
3-319-17199-9. doi: 10.1007/978-3-319-17199-9_5. URL https://doi.org/10.1007/
978-3-319-17199-9_5.

[40] Andreea-Elena Panait, Ruxandra F. Olimid, and Alin Stefanescu. Analysis of uPort Open,
an Identity Management Blockchain-Based Solution. In Stefanos Gritzalis, Edgar R. Weippl,
Gabriele Kotsis, A. Min Tjoa, and Ismail Khalil, editors, Trust, Privacy and Security in Digital
Business, pages 3–13, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58986-
8.

[41] Sebastian Rieger. User-Centric Identity Management in Heterogeneous Federations. In 2009
Fourth International Conference on Internet and Web Applications and Services. IEEE, 2009.
doi: 10.1109/iciw.2009.85. URL https://doi.org/10.1109/iciw.2009.85.

[42] SITA; ShoCard.
Travel Identity of the Future (White Paper), 2016. URL https://blockchainlab.com/pdf/
2016-05-00-idm-ShoCard-travel-identity-of-the-future.pdf. (Accessed June 3,
2022).

[43] Andrew Tobin, Drummond Reed, and Phillip J. Windley. The Inevitable Rise of Self-Sovereign
Identity (White Paper), 2017. URL https://sovrin.org/wp-content/uploads/2018/
03/The-Inevitable-Rise-of-Self-Sovereign-Identity.pdf. (Accessed June 3,
2022).

[44] Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub, and Thorsten Holz. (Un)Informed
Consent: Studying GDPR Consent Notices in the Field. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’19, page 973–990, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367479. doi:
10.1145/3319535.3354212. URL https://doi.org/10.1145/3319535.3354212.

[45] Dirk Van Bokkem, Rico Hageman, Gijs Koning, Luat Nguyen, and Naqib Zarin. Self-sovereign
identity solutions: The necessity of blockchain technology. arXiv preprint arXiv:1904.12816,
2019.

19

[46] Anna Vapen, Niklas Carlsson, Anirban Mahanti, and Nahid Shahmehri. A Look at the Third-
Party Identity Management Landscape. IEEE Internet Computing, 20(2):18–25, 2016. doi:
10.1109/MIC.2016.38.

[47] Tri Hoang Vo, Woldemar Fuhrmann, and Klaus-Peter Fischer-Hellmann. How to adapt au-
thentication and authorization infrastructure of applications for the cloud. In 2017 IEEE 5th
International Conference on Future Internet of Things and Cloud (FiCloud), pages 54–61, 2017.
doi: 10.1109/FiCloud.2017.14.

[48] Tri Hoang Vo, Woldemar Fuhrmann, and Klaus-Peter Fischer-Hellmann. Privacy-preserving
user identity in identity-as-a-service. In 2018 21st Conference on Innovation in Clouds, Internet
and Networks and Workshops (ICIN), pages 1–8, 2018. doi: 10.1109/ICIN.2018.8401613.

[49] Tri Hoang Vo, Woldemar Fuhrmann, Klaus-Peter Fischer-Hellmann, and Steven Furnell.
Identity-as-a-service: An adaptive security infrastructure and privacy-preserving user identity for
the cloud environment. Future Internet, 11(5), 2019. ISSN 1999-5903. doi: 10.3390/fi11050116.
URL https://www.mdpi.com/1999-5903/11/5/116.

[50] Hakan Yildiz, Christopher Ritter, Lan Thao Nguyen, Berit Frech, Maria Mora Martinez, and
Axel Küpper. Connecting Self-Sovereign Identity with Federated and User-centric Identities
via SAML Integration. In 2021 IEEE Symposium on Computers and Communications (ISCC),
pages 1–7, 2021. doi: 10.1109/ISCC53001.2021.9631453.

[51] Ma Zhaofeng, Meng Jialin, Wang Jihui, and Shan Zhiguang. Blockchain-Based Decentralized
Authentication Modeling Scheme in Edge and IoT Environment. IEEE Internet of Things
Journal, 8(4):2116–2123, 2021. doi: 10.1109/JIOT.2020.3037733.

20

HPC and Cloud (Potentials, Challenges
and Limits)

Muhammad Hasseeb Qutabzada
Masters in Big Data Engineering (13879421)

University of Amsterdam
Vrije University

hasseeb.qutabzada@student.uva.nl

Li Mingchen
Masters in Computer Science (14116006)

University of Amsterdam
mingchen.li@student.uva.nl

June 3, 2022

Abstract

In this article, keeping in view the ever increasing demands of high
performance computing, the potential solutions offered by Cloud are
examined. Although, interest for Cloud Computing shown by HPC users
is gaining pace but there exists many challenges and limits. In previous
works, the relationship between HPC and Cloud is analysed on single
aspects. The aim of this study is to present a holistic analysis of the
potentials, challenges and limits when it comes to the relationship between
High Performance Computing and Cloud. It evaluates this relationship in
terms of performance of HPC applications in the Cloud, cost-comparison
between HPC and Cloud, environmental impact of HPC in Cloud, energy
optimisation, hybrid computing and fault tolerance for HPC in Cloud.

1 Introduction
High Performance Computing is the capability to process data and perform
calculations at high speeds. Supercomputers that make use of thousands of
compute nodes to process tasks are an example of HPC solutions. Advancements
in science, society and industry have HPC as their backbone as the role of data
has become crucial. With the rapid rise in Internet of Things and Artificial
Intelligence, an exponential increase in the size of data is followed. This data
requires to be processed at, high speeds, which are a key feature of HPC solutions.
The architecture of HPC comprises compute, network and storage resources.

1

These components are combined to establish an HPC cluster consisting of
thousands of compute servers which are networked together. HPC has uses
in research labs, oil and gas, media and entertainment, artificial intelligence,
machine learning, financial services, medical industry, innovation.

Cloud Computing delivers computing services that include servers, network,
storage, software, analytics, intelligence etc over the internet to provide flexible
resources, economies of scale and high-paced innovation. The definition provided
by [CC and Grid Computing 360] covers the concept comprehensively:

A large-scale distributed computing paradigm that is driven by economies of
scale, in which a pool of abstracted, virtualized, dynamically-scalable, managed
computing power, storage, platforms, and services are delivered on demand to
external customers over the Internet. Cloud Computing is gaining popularity
across public and private organisations as it solves their ever growing demands of
computing and storage. Factors such as low hardware costs, better compute and
storage resources, exponential rise in the size of data, widespread adoption of web
services have favoured the rise of Cloud Computing. The architecture in a Cloud
has three main layers: Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS). Considering the limitations posed by
traditional HPC platforms, Cloud Computing being resourceful in computational
power is offering possible solutions for the users of HPC. Tuning the computing
platform as per the application needs and budget of users, Clouds provide a
cost-effective and timely solution. As opposed to the lengthy procedures of
setting up a HPC platform and expensive maintenance, Cloud services could be
obtained in minutes. Elastic nature of resources, ability to offer infrastructure
and software and virtualisation are the key features of Cloud Computing that
have motivated HPC users to consider Cloud as a potential solution. Although,
discovery of potential in Cloud Computing for HPC has been a driving force
in consideration of porting HPC applications to Cloud but there exist many
challenges and limits. In previous work, considering performance as a metric
the Cloud’s ability to handle HPC applications [ImprovingHPCperformance],
results have not been promising. Cloud had been unable to meet the demands
of network performance required by HPC applications and other limitations
occurred due to resource heterogeneity and multi-tenancy. Nonetheless, recent
advancements in the Cloud have been aimed at improving the technology to
address these issues. In previous work, the researches have focused on single
aspects of the relationship between Cloud Computing and HPC. In this article,
we aim to critically analyse the potential solutions offered by Cloud Computing
for HPC users and illustrate the challenges and limits that exist in adoption of
Cloud by HPC users. This article covers the relationship between Cloud and
HPC from all aspects including improving performance of HPC applications
on Cloud, cost-comparison, environmental impact, energy optimisation, hybrid
computing, fault-tolerance approach for HPC in Cloud, prediction of Cloud
performance for HPC applications. The rest of this article is divided into four
further sections: (2) Body, (3) Discussion, (4) Conclusions and (5) References.
In the next section, these various aspects of HPC and Cloud are analysed in
terms of potentials, challenges and limits.

2

2 Body
In this section, relationship between HPC and Cloud is examined through various
aspects to draw a meaningful analysis of the potentials that exist, together with
highlighting the challenges and limits.

2.1 Performance of HPC applications on Cloud
As there are several cloud platforms, the performance of HPC applications
depends upon the type of Cloud used. To demonstrate that, three public
clouds were technically evaluated for their capability and suitability to run
HPC applications [1]. Belonging to the IaaS (Infrastucture-As-A-Service) type,
these clouds provide the researchers with full control of a Virtual Machine
for application installation and customisation of computing resources. The
experimentation techniques involve using benchmarks that are then deployed to
three public clouds.

The benchmarks used include NPB (NAS Parallel Benchmark), HPL (High
Performance LINPAC), CSFV (Cubed Sphere Finite Volume). Clouds to which
these benchmarks are deployed are Amazon EC2 Cloud, GoGrid Cloud and IBM
Cloud. Inter-process communication over the network was not considered when
evaluating the single cloud server instance performance. Focusing on virtual-
isation overhead, NPB-OMP was run on these clouds and their performance
was compared to NCSA supercomputer. Figure 1 shows that the performance
of all three clouds was comparable to NCSA supercomputer. This comparable
performance shows that virtualisation does not have a significant effect on the
overhead. IBM turned out to be the best Cloud owing to its latest processor
technology at that time.

Figure 1: NPB OMP on public clouds [1]

3

It is interesting to note that by running NPB-MPI benchmark on three
clouds and their comparison with NCSA, IBM Cloud turned out to have the
worst performance despite its latest technology. This throws light on the role of
networking in MPI based parallel computing. Although, EC2 and GoGrid seem
to have similar performance, the use of 6 core-per-node server [1] configuration
in GoGrid leads to more inter-process communications and thereby, GoGrid is
expected to give better results if 8 core-per-node server is used.

HPL benchmarking in GoGrid brings some optimism as increasing cluster
from 1 to 5, the GFLOPS reach to 165 from 55. On the other hand, in case of
EC2 and IBM, the HPL benchmarking does not advocate the idea of running
HPC applications. CSFV benchmarking also holds GoGrid as the best performer
out of the three clouds, with IBM performing the worst and having scaling
problems. It has been shown GoGrid does have the potential of underperforming
NASA system [1] by only 10-20 percent if oversubscription happens. These
three clouds have different performances when HPC applications are ran, but
the paper [1] doesn’t suggest a cloud out of these three as the best one. The
challenges and limits vary as the GoGrid can improve if it opens up 8 or more
cores per node, IBM can improve by upgrading their network with Gigabit NICs
and switches. A limitation of this research is the cloud cluster size being 10
nodes approximately.

As Amazon’s EC2 Cloud seemed to underperform either IBM Cloud or
GoGrid depending upon the benchmarks deployed [1], a relatively new study
[7] suggests a new approach to improve HPC applications performance and
scalability on EC2. Since sorting algorithms tend to be a crucial part of HPC
applications, this study [7] implements MPI version of parallel Radix sort on
EC2 and high-end HPC system i.e Sirius and then does a comparative analysis.
MPI was selected as it outperforms others when it comes to parallel sorting. To
explore the scalability in relation to data size, execution time and speed ups are
calculated for four workloads of 25, 50, 75 and 100MB by scaling up the nodes
from 2, 4, 6 to 8 nodes. Figure 2 show the comparisons for 25MB and 100MB
data and Figure 3 shows how different workloads performed with 2 nodes and 8
nodes. Data distribution has an impact and uneven distribution of data poses a
challenge as it causes a delay in execution time. Maximum speedup was observed
from 2 to 4 nodes, however further increasing the nodes resulted in performance
degradation. However, this study [7] finds EC2 to be outperforming dedicated
HPC cluster Sirius in all cases. By comparing the performance of EC2 in [1] and
[7], we realise that advancement in Cloud is enlarging the potential for HPC
users and EC2’s suitability for HPC has increased, however, EC2 has limitations
and is considered acceptable for on-demand and small sized HPC applications
[7].

4

Figure 2: Average execution times (sec) for 25MB (left) and for 100MB (right)
[7]

Figure 3: Computation performance with 2 nodes (left) and 8 nodes (right) [7]

2.2 Cost-comparison of HPC and Cloud
Evaluation of Cloud platforms for HPC applications has mostly focused on the
performance metric, giving less attention to the cost comparisons. In this article,
we examine a study [11] that focuses on cost metric by comparing Amazon
EC2 to an in-house HPC system. The study [11] notes varying prices of Cloud
platforms and constant evolution of Cloud, bias in the direct price comparison
of HPC operating cost to a Cloud instance as this comparison leaves out the
performance metric as the gaps in academic research and thereby, proposes a
new cost analysis model. The comparison is threefold. Firstly, it goes for a
Total Cost of Ownership (TCO) analysis of the HPC facility at University of
Luxembourg which considers all costs that are incurred. TCO is decomposed
into two major types of costs CAPEX and OPEX [11]. The TCO analysis in
combination with correct amortisation period of items in TCO, lead to a node
hourly cost. As the usage of HPC tends to play a part in TCO analysis, the
study [11] used the HPC facility by University of Luxembourg where the access
for constant monitoring of HPC usage was undertaken.

The computing performance metric used to compare the EC2 instances and
HPC computing nodes, is the GFLOPS. Performances of EC2 instances is given
in ECU (EC2 Compute Units), but the lack of information on how ECU is
computed and the presence of a linear relationship between ECU and GFLOPS,

5

have caused the researchers to use GFLOPS as the performance metric. A
multiple linear regression approach is employed to compute the Amazon EC2
price model, while keeping in consideration the different purchasing modes.
Figure 4 shows a complete cost analysis, where only in a few cases, EC2 instances
are cost effective. Otherwise, it is always more cost effective to acquire the
resources for HPC facility. It should however be noted that this cost comparison
is carried out by considering the HPC facility of University of Luxembourg.

Figure 4: Comparison of in-house HPC operating cost to Amazaon EC2 for
different purchasing modes [11]

Another cost comparison is carried out by comparing Purdue University’s
HPC community cluster program to a commercial cloud [9]. The strategy
deployed actually presents a per node-hour cloud computing cost that depends on
the actual usage of community cluster users. Owned by the faculty and centrally
owned by the institution, a community cluster generally benefits research groups.
Ran by their designated technical staff, low overheads due to centralisation,
pooling of resources by all participants and meaningful sourcing of the cluster
hardware make community clusters the best option for faculty when it comes
to an in-house facility. Purdue operates two large community clusters, namely,
Steele and Coates.

A instance of Amazon’s EC2 called “Cluster Compute Instances” (CCI) was
directed as an alternative to traditional cluster-based computing. The study [9]
analyses this EC2 CCI product from performance and cost perspectives. For
comparison of performance, NPB benchmarks are deployed. From figure 5, we
can learn the results which show EC2 to be much faster than Coates or Steele.
Nonetheless, this performance is only valid for CPU bound HPC applications. For

6

cost analysis, a methodology is applied to consider all the factors that add to the
costs of community cluster and EC2 CCI instance and EC2 CCI equivalent. In
cost analysis, the community cluster tends to be the best choice and more afford-
able for the faculty than providing nodes in Amazon EC2. The Purdue owner has
to pay 1.75togetthesamecomputationdonethatisachievedbyPurdueclusterfor0.25
only. The setup of EC2 CCI could be difficult and challenging for end-users,
however, it has the potential to be useful in situations where time constraints
are present. To be cost effective, there lies a potential for EC2 CCI, as they
could provide “spot instances” with prices fluctuating in an open market.

Figure 5: NPB performance on Purdue clusters and EC2 CCI [9]

2.3 Environmental Impact of HPC in Cloud and Energy
Optimisation

As environmental impact of any practice does seem to shape and influence
its future, in this article, we review techniques that could make running HPC
applications in Cloud more environmental friendly. We shall critically analyse a
study [15] that focuses on how the Cloud provider can achieve optimal energy
sustainability for HPC applications by taking advantage of the heterogeneity
of multiple data centres in different parts of the world. In this article, we
present an analysis of this study that aims to lower the carbon footprint without
compromising on the profits of Cloud providers.

A meta-scheduling model has been proposed which follows a protocol and
acts as an interface to the Cloud. This meta-scheduling protocol can be seen
in Figure 6. It basically has two phases. The first one is mapping phase
where an application is mapped onto a data centre. Second is scheduling

7

phase where applications are scheduled in the data centre that was chosen
for mapping. For optimising the global carbon emission these policies are
employed: Greedy Minimum Carbon Emission, Minimum-Carbon-Emission-
Minimum-Carbon-Emission. While, for optimising the global profit of all data
centres, the following policies are in place: Greedy Maximum Profit, Maximum-
Profit-Maximum-Profit. To strike a balance between carbon emissions and
profits, the MCE-MP (Minimising carbon emission and maximising profit) is
used. The policies employed [15] for scheduling have shown an impressive saving
of 25 percent in energy when compared to profit-based scheduling policies.

Figure 6: Cloud meta-scheduling protocol [15]

This article also analyses an approach that presents HPC based clouds for
energy optimisation [10]. Objective behind this approach is reduction of expenses
in task processing in terms of energy. Two models have been developed [10] for
use as an HPC based cloud: CometCloud based system and HTCondor based

8

system. While, workers are coordinate by Master and thus carry out tasks in
CometCloud, for HTCondor there exists a Master-Slave Mechanism.

A simulation software i.e EnergyPlus plays a role in this approach as re-
searchers have shown how HPC based cloud can be used for deploying EnergyPlus
simulation-based optimisation. The evaluation of optimisation process is car-
ried out from two sides: Facility manager perspective and HPC cloud provider
perspective. The former represents the users who are interested to minimise
energy costs, while the later is represented by any data centre that has the
ability to process EnergyPlus based simulations. Understanding the fact that
an optimisation problem relies on several runs of EnergyPlus, the researches
have identified two important parameters: 1) Complexity of the Input Data File
building model and 2) Period to Simulate. The complexity of the input data
file has a direct impact on total execution time and simpler input files require
less time. Period to simulate impacts simulation time and simulation of building
model over shorter period requires less time to simulate than a building model
over a long period.

For this real-time energy optimisation, some more limits and challenges exist.
Two other parameters must be complied with by the HPC based cloud and these
are: Time-To-Complete and Results Quality.

The two environments namely CometCloud and HTCondor that are inte-
grated with HPC based cloud in [10]. CometCloud being an autonomic comput-
ing engine basing upon Comet decentralised coordination substrate, supports
heterogeneity and dynamic infrastructures of cloud or grid or HPC, allows for
integration of public and private clouds. While, HTCondor is an high throughput
work management software for cluster of computing resources. To enhance the
performance of distributed computing resources, wide application of HTCondor
can be noticed. For those interested in the architecture of these two environments,
Figure 7 seems to be the answer.

Figure 7: CometCloud architecture (left) and HTCondor architecture (left)

For experimentation, three environments are used: 1) Single CometCloud
— local 2) Federated CometCloud — shared within a federation system and 3)
HTCondor. The types of jobs and the workloads of jobs has been changed in the

9

experiments [10]. A number of different experiments are carried out that observe
time with job execution, tasks completed in deadline, data transferred with job
execution, data storage with job execution, total cost with job execution and so
on. The benefits of HPC based cloud lie in the areas of task completion and cost
optimisation. More tasks result in more cost and the major increase is attributed
to cost of storage and execution. So, these expensive operations of storage
and execution present a challenge for HPC based clouds. Nonetheless, the cost
with transfer turns out to be linear over time. From an overall perspective,
the idea of HPC based cloud is termed beneficial by [10] and we examine it in
this article as this solution could be extended to other type of problems. This
approach combines the performances of HPC system with a unique combination
of different environments such as CometCloud and HTCondor and thus, it reaches
an optimum between execution time, costs and scheduling.

2.4 Hybrid Computing
The benefits of High Performance Computing, Cloud Computing and Grid
Computing are remarkable in their respective domains. In this article, we analyse
a study [5] that introduces a new hybrid approach for HPC that predicts execution
of applications, scales well from a resource to multiple resources having different
owners, location and policies. For this novel hybrid approach, an architecture
is suggested that aims to combine the benefits of these three technologies. The
foundation of this architecture lies in the block named Elastic Cluster. In addition
to accruing the benefits of this Elastic Cluster in predicting the execution of
HPC workloads, a new distributed information system is also proposed which
merges features of distributed hash tables and relational databases.

As hybrid computing is the amalgamation of three different technologies,
each technology has characteristic attributes namely: 1) resource ownership,
2) resource accessibility, 3) resource sizing, 4) resource allocation policy and
5) application portability. The study [5] well describes HPC facility, Cloud
Computing and Grid Computing in terms of these attributes. Figure 8 shows
comparison of these three paradigms.

10

Figure 8: Comparison of key features of HPC, Grid and Cloud [5]

The hybrid approach has a promising potential by aiming to combine the
individual strengths of these three paradigms and even enhance them if possi-
ble, while reducing the weaknesses. A capacity vs capability analysis of these
paradigms is well-depicted in Figure 9. The Elastic Cluster introduced by study
[5] is the model that combines these strengths. It must be noted that this Elastic
Cluster differs by the one defined by OpenNebula as this study [5] includes: 1)
dynamic infrastructure management services (DIMS), 2) cluster level services and
3) intelligent modules to bridge gap between the previous two. Elastic Clusters
has the features of re-sizing to adjust to the requirements, having an automatic
system that provisions further resources needed. Through modelling and utilising
Workload and Resource Management Systems (WRMS) and incorporating DIMS,
the approach aims to add the features of both and this is achieved by Elastic
Cluster. The potentials of Elastic Cluster lie in job predictable execution (when
the jobs will start) and automatic scale-down elasticity. The study [5] includes
algorithms for achieving these potentials.

To realise the potentials of Elastic Cluster, the researchers have proposed to
design a new distributed information service that exhibits effectiveness, reliability
and scalability. Named Key Partitioned Database (KPAD), this is the distributed
information service design presented. This design offers potentials as it has these
features: 1) information is disturbed across multiple locations, 2) a distributed
hash table (DHT) and 3) ability to manipulate tables using SQL. This new
design could be safely called as a generalisation of the DHT technique [5].

11

Figure 9: Resources hierarchy in hybrid architecture [5]

The DHT mechanism is implemented using an enhanced version of Content
Addressable Network (CAN) [5]. Handling node departure, CAN achieves
load balancing which has potential to increase speed ups but it is not without
challenges as this technique does not preserve the rectangle structure of zones
that a node owns. This leads to the problem of new taking over node to look
after multiple rectangles. Addressing these challenges, enhancement of CAN in
KPAD can be done in these ways: 1) improving availability and performance
by key replication and 2) load balancing and introducing a new technique to
reassign zones owned by departing nodes.This study [5] identifies three main
strategies to realise the potentials of hybrid architecture proposed. These are: 1)
scale up and scale down (size of Elastic Cluster) — this strategy is also known as
cloud bursting, 2) scale out (spreading the load across many Elastic Clusters and
3) personal virtual cluster. This hybrid model serves as a starting point to fully
tap the vision of using on-demand compute resources for heavy applications.

2.5 Fault-Tolerance approach for HPC in Cloud
The challenges and limits posed when running HPC applications in the Cloud are
further complicated in situations where fault occurs. As Cloud Computing offers
different solutions to high performance computing, it makes use of a high number
of Virtual Machines. The presence of a large number of Virtual Machines and
electronic components in HPC systems make this vulnerable to faults, as any
fault would cause restarting the application and thus incurring costs in terms of
time, energy and money.

In this article, we examine a study [17] that presents a proactive fault tolerance

12

(FT) approach for HPC systems in the cloud to cut down the wall execution
time when faults occur. Surprisingly, more than 50 percent of failures on HPC
systems are attributed to hardware issues (processors, circuits, memory, drive).
Although, a reactive FT approach already exists but it does not work well with
HPC applications. For the proactive fault tolerance approach, the researches
[17] primarily focused on Message Passing Interface (MPI) applications. For
performance monitoring, the control over application in dedicated HPC systems
is present. However, the Cloud providers do not usually provide fault tolerance
at this level [17].

The proactive FT approach by [17] basically revolves around an avoidance
mechanism to lessen the negative impact of faults. Two features that assist
this FT approach are system log and health monitoring facilities. Consisting of
four modules, this proactive FT mechanism has 1) Node monitoring with an
lm-sensor, 2) a failure predictor, 3) a proactive fault tolerance policy module
and 4) controller module.

To test approach in a real cloud environment, four servers/nodes (HaaS
type) were leased and all of them had the same configuration. An industrial
standard virtualisation technology, Xen hypervisor [17], runs on each node where
a para-virtualised guest OS is installed. Three experiments were conducted with
2, 4, 8 and 16 nodes per cluster. The application to be run is High Performance
Linpack (HPL) benchmark. This HPL application was run with four different
problem sizes of 2000, 4000, 6000 and 8000 on different number of nodes. From
figure 10, the reduction in wall clock execution time can be noted.

13

Figure 10: Performance of HPL benchmarking without checkpointing, with
checkpointing and FT approach [17]

Thereby, this proactive FT approach has a high potential to reduce the
execution times by having fault tolerance. The application ran is computation-
intensive and thus, this mechanism opens up the potential for scientific community
that require intensive computations to be done at a fast speed. Prediction
techniques are employed to predict failures and this work [17] provides fault
tolerance to HPC in the cloud at hardware level, also keeping the costs low.
Nonetheless, this potential solution does have its limits as this is designed for
users that lease HaaS (Hardware as a Service).

3 Conclusion
Cloud Computing has been gaining the attraction of HPC community as it
provides on-demand, pay-as-you-go solutions as opposed to setting up the infras-
tructure required for an in-house HPC facility. The potential in Cloud for High
Performance Computing is examined in various studies during this literature
review but there are many challenges and limits present. A critical analysis of
the relationship between HPC and Cloud in terms of cost, performance, envi-
ronmental impact, energy usage and fault tolerance provides a comprehensive
understanding in this literature study. Examining various studies shows that
the advancements in Cloud are making them more suitable for running HPC

14

applications. Nature of HPC applications also plays a role in the performance of
Cloud, as there is a difference in characteristics of applications. While some are
suitable for Cloud, others are not. We aim to assist future research by presenting
a holistic view of the relationship between HPC and Cloud in terms of many
aspects that hold importance for both HPC users and Cloud providers. This
study shall bridge the gaps in previous works and help academic community
understand this complicated relationship between HPC and Cloud, and aid in
developing Clouds which exhibit high performance (in all aspects) for HPC
computing intensive applications.

References
References used in this literature study

[1] He, Qiming, et al. "Case study for running HPC applications in public clouds."
Proceedings of the 19th ACM International Symposium on High Performance Distributed
Computing., 2010.

[2] Roloff, Eduardo, et al. "HPC application performance and cost efficiency in the
cloud." 2017 25th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP)., IEEE, 2017.

[3] Dillon, Tharam, Chen Wu, and Elizabeth Chang. "Cloud computing: issues
and challenges." 2010 24th IEEE international conference on advanced information
networking and applications., IEEE, 2010

[4] Foster, Ian, et al. "Cloud computing and grid computing 360-degree compared."
2008 grid computing environments workshop, IEEE 2008

[5] Mateescu, Gabriel, Wolfgang Gentzsch, and Calvin J. Ribbens. "Hybrid com-
puting—where HPC meets grid and cloud computing." Future Generation Computer
Systems, 27.5 (2011): 440-453..

[6] Gupta, Abhishek, et al. "Evaluating and improving the performance and
scheduling of HPC applications in cloud." IEEE Transactions on Cloud Computing
4.3, (2014): 307-321

[7] Hassani, Rashid, Md Aiatullah, and Peter Luksch. "Improving HPC application
performance in public cloud." ERI Procedia 10, (2014): 169-176.

[8] Expósito, Roberto R., et al. "Performance analysis of HPC applications in the
cloud." Future Generation Computer Systems 29.1, (2013): 218-229.

[9] Carlyle, Adam G., Stephen L. Harrell, and Preston M. Smith. "Cost-effective
HPC: The community or the cloud?." 2010 IEEE Second International Conference on
Cloud Computing Technology and Science, IEEE, 2010.

[10] Petri, Ioan, et al. "A HPC based cloud model for real-time energy optimisation."
Enterprise Information Systems 10.1, (2016): 108-128..

[11] Emeras, Joseph, et al. "Amazon elastic compute cloud (EC2) versus in-house
HPC platform: A cost analysis." IEEE Transactions on Cloud Computing 7.2, (2016):
456-468.

[12] Mariani, Giovanni, et al. "Predicting cloud performance for hpc applications:
A user-oriented approach." 2017 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), IEEE, 2017.

[13] Gupta, Abhishek, et al. "The who, what, why, and how of high performance
computing in the cloud." 2013 IEEE 5th international conference on cloud computing
technology and science. Vol. 1, IEEE, 2013..

15

[14] Aljamal, Rawan, Ali El-Mousa, and Fahed Jubair. "A comparative review of
high-performance computing major cloud service providers." 2018 9th International
Conference on Information and Communication Systems (ICICS), IEEE, 2013.

[15] Garg, Saurabh Kumar, et al. "Environment-conscious scheduling of HPC appli-
cations on distributed cloud-oriented data centers." Journal of Parallel and Distributed
Computing 71.6, (2011): 732-749.

[16] Netto, Marco AS, et al. "HPC cloud for scientific and business applications:
taxonomy, vision, and research challenges." ACM Computing Surveys (CSUR) 51.1,
(2018): 1-29.

[17] Egwutuoha, Ifeanyi P., et al. "A proactive fault tolerance approach to High
Performance Computing (HPC) in the cloud." 2012 Second International Conference
on Cloud and Green Computing, IEEE, 2012.

[18] Marathe, Aniruddha, et al. "A comparative study of high-performance comput-
ing on the cloud." Proceedings of the 22nd international symposium on High-performance
parallel and distributed computing, 2013

[19] Mauch, Viktor, Marcel Kunze, and Marius Hillenbrand. "High performance
cloud computing." Future Generation Computer Systems 29.6, (2013): 1408-1416.

[20] Lynn, Theo, et al. "Understanding the determinants of cloud computing
adoption for high performance computing." 51st Hawaii International Conference on
System Sciences (HICSS-51), University of Hawai’i at Manoa, 2018.

16

The Territorial Reach of the GDPR on Cloud Services

Alex Antonides
14113961

University of Amsterdam
Amsterdam, The Netherlands

alex.antonides@student.uva.nl

Marianne Hernholm
14071770

University of Amsterdam
Amsterdam, The Netherlands

marianne.hernholm@student.uva.nl

Mulham Jayab
12022985

University of Amsterdam
Amsterdam, The Netherlands

mulham.jayab@student.uva.nl

Abstract

The General Data Protection Regulation (GDPR) has a pivotal role in ensuring the
right of data protection to citizens of the European Union. The GDPR claimed to
have innovated its predecessor, the Data Protection Directive, by expanding on its
territorial scope.
To aid the research into this topic, the following problem statement was formu-
lated: Explore the reach of the GDPR with respect to Cloud-Service Providers.
This study has clarified the role of Cloud-Service Providers in cloud computing
by identifying and describing the three main types of cloud architecture.
Furthermore, this research has clarified the role of the GDPR; describing the im-
pact of the GDPR on Cloud-Service Providers; and which of the sections of the
GDPR affects Cloud-Service Providers, with respect to the different cloud archi-
tectures.
This study has described how the GDPR affects cloud services by describing the
clear distinction between the two operators and by describing their respective re-
sponsibilities, reliableness, and accountability.
The territorial reach was examined by looking into the applicability of the GDPR
on Europe-based organisations. The GDPR enforced organisations to adopt their
secure measures in the way of processing, controlling, and protecting personal
data. The extraterritorial applicability of the GDPR was also examined. Specifi-
cally how the European Commission deemed certain countries adequate for data
transfer. Due to the strict requirements, many sites from inadequate countries are
now inaccessible. There have been attempts of developing frameworks to allow
data transfer between countries, but theses attempts are deemed invalid by the
Court of Justice.
In general, therefore, it seems that the territorial reach of the GDPR is capable
of reaching countries outside the European Union, but due to the high standards,
many sites are now inaccessible to Europeans. Thus, it would do good to de-
velop a valid framework that would allow countries to transfer data to inadequate
countries with respect to the user’s privacy.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Contents

1 Introduction 3

2 Cloud Service Providers 4

2.1 Cloud Computing . 4

2.2 The NISTs Cloud Reference Model . 4

2.3 Cloud Architectures . 5

2.4 Current Status and Industry Leaders . 5

3 The General Data Protection Regulation and Cloud Service Providers 6

3.1 What is the GDPR? . 6

3.2 Impact of GDPR on CSPs . 6

3.2.1 Sections of the GDPR affecting CSPs . 6

3.2.2 GDPR considerations for different cloud architectures 7

3.3 Discussion . 9

4 Data Processors and Data Controllers 10

4.1 Distinction . 10

4.2 Complications . 10

4.3 Responsibilities and Obligations . 10

4.4 Discussion . 10

5 Europe-based Applicability 11

5.1 Challenges and Necessary Changes . 11

5.2 Data Portability . 11

5.3 Data Retention . 11

5.3.1 Data Breach . 11

5.3.2 Discussion . 12

6 Extraterritorial Applicability 13

6.1 Cross-border Data Transfer . 13

6.1.1 Privacy Shield . 14

6.2 Complications . 14

6.2.1 Shared Responsibility model . 14

6.3 Discussion . 14

7 Summary 15

2

1 Introduction

The General Data Protection Regulation (GDPR) has a pivotal role in ensuring the right of data
protection for citizens of the European Union (EU). The GDPR claimed to have innovated its pre-
decessor, the Data Protection Directive (DPD), by expanding the territorial scope. This begs the
question, how far is the territorial reach of the GDPR?

To aid the research into this topic, the following problem statement was formulated: Explore the
reach of the GDPR with respect to Cloud-Service Provider (CSP)s.

This paper is divided into five main sections. To offer an introduction into the topic, the first section
gives background knowledge into the topic of CSPs. It does this by relying on the National Institute
for Standard and Technology (NIST) reference model among other sources. The succeeding section
introduces the GDPR and explores sources discussing it both as a standalone regulation and with
regard to CSPs. The next main section further explores the topic of how the GDPR affects CSPs.
It does this by delving into the terminology of the GDPR and looking at how the GDPR distributes
responsibilities and obligations for different parties. Following this, the succeeding section attempts
to explore the problem statement by describing the territorial applicability of the GDPR in the Euro-
pean Union. Finally, the article delving into its last main section which examines the extraterritorial
applicability of the GDPR.

3

2 Cloud Service Providers

2.1 Cloud Computing

IBM describes Cloud Computing as a structure that ”transforms IT infrastructure into an utility. It
lets you ’plug into’ infrastructure via internet, and use computing resources without installing and
maintaining them on premises” [1].

Russo et al. also defines the term in their research paper Cloud Computing and the New EU General
Data Protection Regulation [2] as ”(..) a set of technologies and service models that allow access to
a scalable and elastic pool (provisioned or released on demand) of shareable computing resources
(through a common access to the service provided separately for each user)”[2].

A Cloud-Service Provider is a company that work on making various cloud services available to
customers [3]. Cloud-Service Providers make the available resources accessible to customers by
claiming periodical fees for their service [1].

2.2 The NISTs Cloud Reference Model

The National Institute for Standard and Technology (NIST) created a publication defining the thresh-
old for cloud computing architectures [4]. The publication consists of two main parts. The first re-
gards the cloud reference model with regards to the set of roles associated with it, while the second
considers it with regards to the set of activities that define its architectural components [5].

The NIST defines a conceptual Reference Model (1) which includes the five main actors in a cloud
computing scheme; the cloud consumer, the cloud auditor, the cloud provider, the cloud broker and
the cloud carrier. In short summation, the roles of the five actors can be defined as follows:

1. Cloud Consumer:
(a) SaaS consumers - Use cloud services
(b) PaaS consumers - Use cloud services for business intelligence requirements like

database managing
(c) IaaS consumers - Use cloud services for IT requirements like storage and backups

2. Cloud Auditor: Audits the cloud infrastructure of a company
3. Cloud Provider: Make cloud services available to consumers
4. Cloud Broker: Manages cloud service providers
5. Cloud Carrier: Responsible for resources that support cloud computing

[4, 5]

The architectural components of the Cloud Reference Model define the relationship between cloud
providers and consumers. The model defines the following components:

1. Service deployment:
(a) Public - Infrastructure mostly accessible for wide range of audiences like the general

public
(b) Private - Infrastructure accessible only to individual customers
(c) Community - Infrastructure is mostly accessible to a consumer group with certain

similarities (eg. security requirements)
(d) Hybrid - Infrastructure accessible via actors like a cloud broker

2. Service Orchestration: three layers of system components needed by cloud providers for
service delivery. The layers are:
(a) Service layer
(b) Physical resource layer
(c) Resource abstraction and control.

3. Cloud Service Management:
(a) Management of business requirements

4

Figure 1: The NIST’s Conceptual Reference Model

(b) Management of logistical requirements
(c) Management of information-related tasks and requirements

4. Cloud Security: Concerns security issues relating to cloud infrastructure
5. Cloud Privacy: Concerns the protection of the data of cloud consumers

[4, 5]

2.3 Cloud Architectures

There are three main types of cloud architectures; Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS). They mainly differ in which service layer they
offer services to customers [2]. IaaS schemes offers hardware and infrastructure services, PaaS
schemes offers services representing the operating system layer and SaaS schemes offers services at
the application layer [2].

IaaS offers resources for computing and hardware infrastructure in a virtualized environment [2].
Examples of this cloud architecture is Microsoft’s Dropbox, Google’s Compute Engine and Ama-
zon’s Compute Cloud. PaaS schemes offer users cloud environments for development and deploy-
ment of custom applications. Microsoft Azure is an example of a PaaS cloud architecture. SaaS
offers software types (application or service) through the cloud. Example of SaaS is Salesforce
[6, 2].

2.4 Current Status and Industry Leaders

In 2020 IBM claimed 25 percent of organisations had plans to move the entirety of their applications
to the cloud [1]. There are numerous articles ranking the top CSPs in todays industry. Some compa-
nies who can unequivocally be identified as industry leaders are Amazon Web Services, Microsoft
Azure, Google Cloud Platform and Alibaba Cloud. Computational tasks that require more comput-
ing storage and capacity than most companies can afford or find it worthwhile to obtain on-premise,
present potential business opportunities for CSPs [1].

5

3 The General Data Protection Regulation and Cloud Service Providers

3.1 What is the GDPR?

The General Data Protection Regulation came into action in 2016 after being passed in the European
Parliament, and has required organizational compliance as of March 25, 2018 [7]. It’s stated inten-
tion and objective is to regulate the processing and movement of personal data by establishing rules
intended to protect the people whose personal data is in question [8]. The regulation was written and
passed by the European Union, but is valid for any organization whose work involve storing, collect-
ing and targeting data from citizens withing the EU. This means that it applies to all enterprises who
provide products or services, or monitor data subjects in the EU [7, 2]. Cloud providers are required
to follow principles of the GDPR. The principles are ”lawfulness, fairness and transparency, pur-
pose limitation, data minimization, accuracy, storage limitation, integrity and confidentiality and
accountability”. They are also responsible for following the regulation’s requirements with regards
to processing the data of data subjects [6]. Article 6 of the GDPR [8] states the terms that qualify
data processing to be lawful as:

1. Processing shall be lawful only if and to the extent that at least one of the following applies:
(a) the data subject has given consent to the processing of his or her personal data for one

or more specific purposes;
(b) processing is necessary for the performance of a contract to which the data subject is

party or in order to take steps at the request of the data subject prior to entering into a
contract;

(c) processing is necessary for compliance with a legal obligation to which the controller
is subject;

(d) processing is necessary in order to protect the vital interests of the data subject or of
another natural person;

(e) processing is necessary for the performance of a task carried out in the public interest
or in the exercise of official authority vested in the controller;

(f) processing is necessary for the purposes of the legitimate interests pursued by the con-
troller or by a third party, except where such interests are overridden by the interests
or fundamental rights and freedoms of the data subject which require protection of
personal data, in particular where the data subject is a child.

[8]

The GDPR describes itself as the ”toughest privacy and security law in the world”, and consists of
11 chapters, 99 articles and 173 recitals [8].

3.2 Impact of GDPR on CSPs

Cloud-Service Providers and their sub-contractors fall under the category of organizations who are
required to to be in compliance with the GDPR [6]. Many cloud computing companies are situated
outside of the EU, but have customers in the entire world. This obligates them to GDPR compliance
[2]. Google is a prime example of this. This subsection explores which sections of the GDPR apply
to Cloud Service Providers. And what challenges the different cloud architectures bring with them,
with respect to GDPR compliance. Points a) and f) of the list above are especially relevant for
Cloud-Service Provider companies. CSPs are required to obtain demonstrable consent from the data
subjects whos data they are collecting and/ or processing [6]. CSPs should thus collect, store and
process the data of data subjects only when there are legitimate and specific purposes for doing so.
The data should be erased as soon as the previously stated term is no longer applicable [6].

3.2.1 Sections of the GDPR affecting CSPs

Researchers at the University of Piraeus in Greece published the research paper GDPR compliance:
proposed technical and organizational measures for cloud provider [6]. The paper proposes mea-
sures for CPS companies who aim to be in compliance with the GDPR.

The article points out the main sections from the GDPR a CSP needs to consider in order to be able
to be in compliance with the regulation:

6

1. Material and territorial scope
2. Data protection principles
3. Consent
4. Children - parental consent
5. Sensitive data and lawful processing
6. Information notices
7. Subject access, rectification and portability
8. Rights to object
9. Right to erasure and right to restriction of processing

10. Processing and automated decision-taking
11. Accountability, security and breach notification

[6]

3.2.2 GDPR considerations for different cloud architectures

The type of cloud service architecture in use has an effect on the challenge a CSP faces with re-
spect to GDPR compliance. All cloud architecture types should comply with the GDPR [6]. Geor-
giopoulou et al. identify consideration points for different cloud architectures to assist in achiev-
ing compliance [6]. The finds of their research paper GDPR compliance: proposed technical and
organizational measures for cloud provider [6] regarding GDPR applicability for different cloud
architectures are explored below.

IaaS providers mostly offer computing infrastructure and virtualized hardware, giving customers a
lot of freedom in how they wish to use said infrastructure. The providers are thus not necessarily
familiar with how customers are using their services, which makes it more difficult to provide indi-
vidual aid for customers. In figure 2 we see an overview of the main GDPR requirements that are
applicable to IaaS providers, as identified in the research conducted by Georgiopoulou et al. [6].

Figure 2: GDPR requirements for IaaS

PaaS gives customers control of the main application, but little control over the underlying environ-
ment. Figure 3 shows the main GDPR requirements that are applicable to PaaS providers, providers,
as identified in the research conducted by Georgiopoulou et al. [6].

SaaS actors offer software application services which are often intended to process user data. SaaS
cloud architectures have obligations regarding data processing-activities according to the GDPR.
Figure 4 illustrates the main GDPR requirements that apply to SaaS providers, as identified in the
research conducted by Georgiopoulou et al. [6].

7

Figure 3: GDPR requirements for PaaS

Figure 4: GDPR requirements for SaaS

8

3.3 Discussion

The General Data Protection Regulation is an extensive regulation, but its intention is ultimately to
strengthen the rights data subjects have to their own data. The requirement for GDPR compliance
can pose several challenges for Cloud-Service Providers, as we have briefly discussed. However, we
also believe it poses opportunities for CSPs, especially with regards to trust. Some of the challenges
of cloud computing are trust, security and privacy [9]. When data is stored in the premise of the
CSP, users may feel a lack of control over how their data is being handled [9]. Knowing there
is a regulation with strict principles that creates obligations for how Cloud-Service Providers are
required to collect, store and process their personal data may lead them to feel safer in their use of
Cloud-Service Providers. This increase in trust will ultimately benefit CSPs as an industry.

9

4 Data Processors and Data Controllers

Numerous organisations were not prepared for the obligations that were introduced by the European
Data Protection Law; many would have to change their services to comply with the law and to ensure
the user’s fundamental right of data protection [10]. However, in cloud computing, when a subject
is not compliant to the law, who would be held accountable, the Cloud-Service Customer (CSC) or
the Cloud-Service Provider?

4.1 Distinction

The General Data Protection Regulation clarifies the responsibility, reliability, and accountability
of the subject by making a distinction between two operators: a) data controllers and b) data
processors [11]. The data controller determines the purpose for which and the means by
which personal data is processed, whereas the data processor acts on behalf of the relevant con-
troller and under their authority. The processor should only process personal data in line with a
controller’s instructions, unless it is required to do otherwise by law. Nevertheless, employees of the
controller are not processors, they are part of the controller, unlike third parties that are contracted
to process data on the controller’s behalf. It would be logical to conclude that the CSC is classified
as the data controller, while the CSP is classified as the data processor.

4.2 Complications

In reality, it is hard to determine whether the CSP is the data processor or the data controller, because
an individual that uses third party cloud service is unlikely to be able to specify how the personal data
under their control is processed [10]. This data is stored among various servers and other storage
devices across the cloud. Information and personal data is is disassembled, transported from one data
center to the next, reassembled, and supplied to the client on request; the client has no control how
the data is processed. Moreover, some providers offer the service to store account information for
account registration, administration, service access, or contact information [12]. Furthermore, there
are also many consumer-oriented cloud services where CSCs are given free service, because the
CSP is able to use the obtained data to help pay for them, by means of target advertising. Regardless
of the operator, eventually both parties share the responsibility of the subject’s data.

4.3 Responsibilities and Obligations

Under the European Data Protection Law, processors and controllers share responsibility of how
personal data is processed and how the service and infrastructure are deployed and utilised; all
conducted data processing is subject to the GDPR, even if this activity is not conducted within EU
territory or related to EU subjects [2, 10]. That is to say, that all European-based data controllers are
responsible for the data processing that is conducted inside and outside of the European Union (EU),
thus they also have to be aware of their extraterritorial data processors [13, 14]. Thus, data may only
be transferred to third countries, if the EU Legal Standards apply to their processing. In addition,
CSPs that provide social networking services over the internet, are also responsible for managing
the customers and users data and they have to comply with the GDPR regulations, since they are
providing global services for users.

4.4 Discussion

As mentioned in the previous section, there are various types of cloud service architectures, thus the
responsibility of controlling and processing could differ [15]. The Infrastructure as a Service archi-
tecture provides computing resources and infrastructures in a virtualised environment, therefore, the
IaaS are likely to be data processors, because they are responsible for processing and handling the
subject’s personal data that are stored in virtual machines. However, IaaS providers are not respon-
sible of how their system and infrastructure is used, e.g., if an enterprise does not comply with the
GDPR.
We think this is a logical approach, because we agree that the provider shouldn’t be responsible
for the customer’s content, because CSP only provide a platform to which the CSC can host their
application on.

10

5 Europe-based Applicability

Freitas et al. conducted interviews with various small and medium-sized enterprises (SMEs), prior to
the application of the GDPR, to examine their compliance of the approaching regulations [16]. Their
study indicated that most SMEs were neither aware of the General Data Protection Regulation nor of
their obligations as a data controller in terms of processing and storage principles. Furthermore, the
companies that contracted third parties were unaware of the need to have their contracts compliant
with the GDPR, if the third party was collecting, storing, accessing or processing personal data to
supply their services. Interestingly, none of the interviewed SMEs transfers data to countries out of
the European Union [16].
These SMEs would have to set up new contracts with the CSPs, in order to be compliant to the EU
Data Protection Regulations.

5.1 Challenges and Necessary Changes

The GDPR affects all organisations that operate in Europe or have customers in Europe. These
demands of data protection have enforced existing organisations to make changes to comply with the
GDPR [17]. This has an impact on potential opportunities for the emergence of new organisations.
Cloud-Service Providers and data centres have to adopt their security measures and the way of
processing personal data according to the GDPR rules. Not complying with the GDPR rules may
cost them very large fines of the European Union, therefore, re-engineering of existing systems
in some cases is needed to ensure that they meet the GDPR requirements [17, 18]. The CSPs are
obligated to provide information about data processing subjects in accordance with the corresponded
GDPR articles.

5.2 Data Portability

Data portability is about the ability to move and transfer data among different Cloud-Service
Providers. The CSPs have to provide the right of data portability and the ability for their customers
(controllers) to retrieve and transfer the data in structured format and common technology [19, 15].
This could be done by CSPs by providing the technical capability for their customers to retrieve and
transfer the data. It could be that an organisation want to transfer and upgrade a specific system or
application to another cloud solution. And in order to do this the customer data held by that system
could be crucial for this operation. GDPR Regulations enforce CSPs to provide the the technical
capability to transfer the data. So, CSPs who are providing or wish to provide a service in the EU
are obligated to guarantee this right of data portability [15].

5.3 Data Retention

Data retention is about implementing and defining some retention periods on how long the data is
allowed to be stored. Under the GDPR, the personal data should not be stored longer the predefined
retention periods [20, 19]. The data controllers should be able to delete this personal data com-
pletely in all stored locations. The challenge is that the data could be stored in multiple locations by
CSPs. Therefore, data processors have to provide the data controllers with the technical capability
to manage and control their personal data.

5.3.1 Data Breach

Under the GDPR, the data processors CSPs are obligated to send notifications for the data controllers
their customers in any case of data breach without any delay. The data processors have to provide
support to their customers to manage that data breach [19].

11

5.3.2 Discussion

The GDPR has enforced organisations to adopt their security measures and the way of processing,
controlling, and protecting personal data. We believe that some of these obligated changes that
GDPR require such as data portability and data retention, could have an effective role in the de-
velopment of systems used in organisations. Giving Cloud-Service Customers more flexibility to
delete, transfer and move data, could facilitate and encourage organisations to use the latest tech-
nologies and update their systems. The most challenge thing is that data processors have to provide
data controllers with the technical capability to manage and control their systems in more secure
and flexible way. But on the other hand, these strict GDPR obligations may pose obstacles for small
companies which could also be very challenging for them.

12

6 Extraterritorial Applicability

The General Data Protection Regulation innovated data protection regulations by expanding on the
territorial scope of data protection, resulting in a wider application of the law, indicating that the
GDPR is applicable outside of the borders of the European Union [21]. The territorial scope includes
the location of where data may be processed. Which means that any processor that is established
outside the European Union, is also subject to EU Data Protection Law, because they are active in
the EU market, offering their products or services to EU citizens, thus widening the extraterritorial
application of the Regulation [10]. Moreover, the territorial scope also includes the storage location
where personal data may be stored of EU residents.

6.1 Cross-border Data Transfer

The GDPR distinguishes between countries outside the EU that are considered to ensure an adequate
level of protection for personal data. Subjects that transfer personal data to a subject outside of the
European Union, have to ensure that their data is sent to a country that is deemed adequate by
the European Commission, so it does not require prior approval from the authority. The European
Commission determines whether the country in question offers an adequate level of data protection
for personal data flow. At the time of writing, the European Commission has so far recognised
Andorra, Argentina, Canada (commercial organisations), Faroe Islands, Guernsey, Israel, Isle of
Man, Japan, Jersey, New Zealand, Republic of Korea, Switzerland, the UK under the GDPR and the
LED, and Uruguay as providing adequate protection [22].Map of GDPR Adequate Countries

Personal Data can flow from the EU to an adequate country without any further safeguard being necessary.

This site uses Wide Angle Analytics. A privacy-friendly analytics from Germany.

Legal Disclosures & Imprint

+

-

Faroe IslandsFaroe Islands Faroe Islands

United States of AmericaUnited States of America United States of America
JapanJapan Japan

IndiaIndia India

South KoreaSouth Korea South Korea

FranceFrance France

ChinaChina China

Scarborough ReefScarborough Reef Scarborough Reef

EcuadorEcuador Ecuador

AustraliaAustralia Australia

PhilippinesPhilippines Philippines

SpainSpain Spain

VenezuelaVenezuela Venezuela

United KingdomUnited Kingdom United Kingdom

GreeceGreece Greece

DenmarkDenmark Denmark

GreenlandGreenland Greenland

CanadaCanada Canada

United Republic of TanzaniaUnited Republic of Tanzania United Republic of Tanzania

DominicaDominica Dominica

New ZealaNew Zeala New Zeala

YemenYemen Yemen

OmanOman Oman BangladeshBangladesh Bangladesh

Solomon ISolomon I Solomon I

NorwayNorway Norway

CubaCuba Cuba

IndonesiaIndonesia Indonesia

MauritiusMauritius Mauritius

SwedenSweden Sweden
RussiaRussia Russia

Trinidad and TobagoTrinidad and Tobago Trinidad and Tobago

BrazilBrazil Brazil

The BahamasThe Bahamas The Bahamas

PalauPalau Palau

IranIran Iran

ChileChile Chile

TaiwanTaiwan Taiwan

ItalyItaly Italy

Papua New GuineaPapua New Guinea Papua New Guinea

VV V

Equatorial GuineaEquatorial Guinea Equatorial Guinea

ComorosComoros Comoros

AzerbaijanAzerbaijan Azerbaijan

SudanSudan Sudan

LibyaLibya Libya

UzbekistanUzbekistan Uzbekistan

MexicoMexico Mexico

MoroccoMorocco Morocco

ArgentinaArgentina Argentina

Saudi ArabiaSaudi Arabia Saudi Arabia

MalaysiaMalaysia Malaysia

HaitiHaiti Haiti

Democratic Republic of the CongoDemocratic Republic of the Congo Democratic Republic of the Congo

KuwaitKuwait Kuwait

MyanmarMyanmar Myanmar

UgandaUganda Uganda

KazakhstanKazakhstan Kazakhstan

TurkeyTurkey Turkey

EritreaEritrea Eritrea

East TimorEast Timor East Timor

AlgeriaAlgeria Algeria

PeruPeru Peru
AngolaAngola Angola

MozambiqueMozambique Mozambique

PanamaPanama Panama

CambodiaCambodia Cambodia

BelizeBelize Belize

North KoreaNorth Korea North Korea

NicaraguaNicaragua Nicaragua

MalawiMalawi Malawi

South AfricaSouth Africa South Africa

EthiopiaEthiopia Ethiopia

JordanJordan Jordan
SyriaSyria Syria

UruguayUruguay Uruguay

MongoliaMongolia Mongolia

BoliviaBolivia Bolivia

Western SaharaWestern Sahara Western Sahara

AfghanistanAfghanistan Afghanistan

UkraineUkraine Ukraine

PakistanPakistan Pakistan

BulgariaBulgaria Bulgaria
RomaniaRomania RomaniaAustriaAustria Austria

SwazilandSwaziland Swaziland

NigerNiger Niger

AndorraAndorra Andorra

Ivory CoastIvory Coast Ivory Coast

IraqIraq Iraq

ChadChad Chad
NigeriaNigeria Nigeria DjiboutiDjibouti Djibouti

SenegalSenegal Senegal
GuineaGuinea Guinea

PolandPoland Poland

ParaguayParaguay Paraguay

LatviaLatvia Latvia

NamibiaNamibia Namibia

LaosLaos Laos

ColombiaColombia Colombia

MaliMali Mali

Central African RepublicCentral African Republic Central African Republic
VietnamVietnam Vietnam

TunisiaTunisia Tunisia

EgyptEgypt Egypt

SomaliaSomalia Somalia

IcelandIceland Iceland

Sri LankaSri Lanka Sri Lanka

NepalNepal Nepal

Highcharts.c

Source: https://adequate.country/

Figure 5: Map of GDPR Adequate Countries

Figure 5 illustrates the adequate countries, where a blue indicates that it is an EU/EEA country;
purple indicates that the country is adequate; orange indicates that there is a complex relationship;
and red is an inadequate country.
In the absence of an adequacy designation, the controller or processor can make appropriate safe-
guards under the GDPR to enable cross-border data transfers to a third country or an international
organisation. These safeguards can be a legally binding contract between public authorities or an
approved code of conduct.

13

6.1.1 Privacy Shield

The European Union does not list the U.S. as an adequate country that meets the requirements of the
GDPR. The U.S. Department of Commerce, the European Commission, and the Swiss Administra-
tion created the Privacy Shield, which is a framework whereby participating companies are deemed
as having adequate protection, and therefore facilitate the transfer of information of registered organ-
isations and Adequate countries [23]. This allowed organisations to have a workaround, however, on
July 16, 2020, the Court of Justice of the European Union issued a judgement declaring the EU-U.S.
Privacy Shield invalid.

6.2 Complications

The General Data Protection Regulations reach starts to get complicated whenever an extraterri-
torial Cloud-Service Customer, that isn’t present in the EU, uses an extraterritorial Cloud-Service
Provider, that is present in the EU. The CSP is subject to the GDPR, thus, having to change their
services, affecting the CSC, even though the CSC is not subject to the European law. Popular Cloud-
Service Providers like and Google Cloud claim that all of their services can be used in compliance
with the GDPR [12, 24, 25].

6.2.1 Shared Responsibility model

Even though both provider and processor are held accountable for GDPR compliance. Numerous
Cloud-Service Providers hold a shared responsibility model, where the CSP promises to be compli-
ant with the security aspect of the GDPR, but where the CSC has to agree that they are responsible
for how the system is used. Thus, as mentioned earlier in Section 4, IaaS are not responsible of how
their system and infrastructure is used.

6.3 Discussion

The General Data Protection Regulation ensures the protection of personal data by enforcing organ-
isations to secure their data and by blocking data transfer to inadequate countries. In our opinion,
this is a good initiative, because personal data shouldn’t be sent to countries that are outside of the
reach of the GDPR. However, due to these strict standards, many organisations (mainly US-based
newspapers) that do not wish to comply with the GDPR block people living in the EU from access-
ing their websites [26]. There have been attempts to set up a framework that allows data transfer to
an inadequate country, but that wasn’t good enough for the high standards of the European Com-
mission. Hopefully, there will be an improved version of the Privacy Shield that allows companies
in inadequate countries to still reach the EU, without putting subject’s data at risk.

14

7 Summary

The main goal of this paper was to examine the territorial reach of the General Data Protection
Regulation.

This study has clarified the role of the Cloud-Service Providers in cloud computing by identifying
three main types of cloud architecture: a) Infrastructure as a Service, b) Platform as a Service, and c)
Software as a Service. Whereas IaaS offers resources for computing and hardware infrastructure in
a virtualised environment, while PaaS offers cloud environments for development and deployment
of custom applications, and SaaS offers software types through the cloud.

The research has also clarified the role of the General Data Protection Regulation, describing the
impact of the GDPR on Cloud-Service Providers and which of the sections of the GDPR affects
CSPs, with respect to the different cloud architectures. We think that the GDPR is an extensive
regulation with the intention to ultimately strengthen the rights of data subjects to have their own
data, to which we believe that it poses opportunities for CSPs to strengthen the trust in their services.

This study has described how the GDPR affects cloud services by describing the clear distinction
between the two operators: data processors, data controllers, by describing their obligations, includ-
ing their responsibility, reliability, and accountability. However, in cloud services, the CSP can act
as both of these operators, adding complications to the model.

The territorial reach was examined by looking into the applicability of the GDPR on Europe-based
organisations. The GDPR enforced organisations to adopt their secure measures in the way of
processing, controlling, and protecting personal data. We believe that such changes could have
an effective role in the development of systems used in organisations. However, the strict changes
may pose obstacles for smaller companies.

The extraterritorial applicability of the GDPR was also examined. Specifically how the European
Commission deems certain countries adequate for data transfer. Unfortunately, due to these changes,
many sites that come from these inadequate countries are inaccessible and we think that time needs
to be invested in frameworks that could allow data transfer between countries, without putting the
user’s data at risk.

In general, therefore, it seems that the territorial reach of the General Data Protection Regulation is
capable of reaching countries outside the European Union, but due to the high standards, many sites
are now inaccessible to Europeans. Thus, it would do good to develop a valid framework that would
allow countries to transfer data to inadequate countries with respect to the user’s privacy.

15

References
[1] S. Vennam, “Cloud computing,” Aug 2020. [Online]. Available: https://www.ibm.com/cloud/

learn/cloud-computing

[2] B. Russo, L. Valle, G. Bonzagni, D. Locatello, M. Pancaldi, and D. Tosi, “Cloud computing
and the new eu general data protection regulation,” IEEE Cloud Computing, vol. 5, no. 6, pp.
58–68, 2018.

[3] J. Mathenge, “Cloud service providers (csps) explained,” Aug 2021. [Online]. Available:
https://www.ibm.com/cloud/learn/cloud-computing

[4] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, D. Leaf et al., “Nist cloud computing
reference architecture,” NIST special publication, vol. 500, no. 2011, pp. 1–28, 2011.

[5] “What is the nist cloud computing reference,” Sep 2021. [Online]. Available: https:
//blog.rsisecurity.com/what-is-the-nist-cloud-computing-reference-architecture/

[6] Z. Georgiopoulou, E.-L. Makri, and C. Lambrinoudakis, “Gdpr compliance: proposed techni-
cal and organizational measures for cloud provider,” Information & Computer Security, 2020.

[7] B. Wolford, “What is gdpr, the eu’s new data protection law?” 2018. [Online]. Available:
https://gdpr.eu/what-is-gdpr/

[8] C. of the European Union, “General data protection regulation,” 2018. [Online]. Available:
https://gdpr.eu/tag/gdpr/

[9] M. Alhanahnah, P. Bertok, and Z. Tari, “Trusting cloud service providers: trust phases and a
taxonomy of trust factors,” IEEE Cloud Computing, vol. 4, no. 1, pp. 44–54, 2017.

[10] M. Vidović, “Eu data protection reform: Challenges for cloud computing,” Croatian Yearbook
of European Law and Policy, vol. 12, pp. 171–206, 12 2016.

[11] European Commission, “What is a data controller or a data proces-
sor?” Dec 2019. [Online]. Available: https://ec.europa.eu/info/law/law-topic/
data-protection/reform/rules-business-and-organisations/obligations/controller-processor/
what-data-controller-or-data-processor\ en

[12] T. Anderson, C. Gambardella, G. Russo, M. Taggart, and L. Iannario, “Navigating gdpr
compliance on aws,” Tech. Rep., 4 2022. [Online]. Available: https://docs.aws.amazon.com/
whitepapers/latest/navigating-gdpr-compliance/navigating-gdpr-compliance.pdf

[13] T. Minssen, C. Seitz, M. Aboy, and M. C. Compagnucci, “The eu-us privacy shield regime for
cross-border transfers of personal data under the gdpr: What are the legal challenges and how
might these affect cloud-based technologies, big data, and ai in the medical sector?” EPLR,
vol. 4, p. 34, 2020.

[14] M. Barati, O. Rana, G. Theodorakopoulos, and P. Burnap, “Privacy-aware cloud ecosystems
and gdpr compliance,” in 2019 7th International Conference on Future Internet of Things and
Cloud (FiCloud). IEEE, 2019, pp. 117–124.

[15] Y. Wang and A. Shah, “Supporting data portability in the cloud under the gdpr,” 2018.

[16] M. Freitas and M. Silva, “Gdpr compliance in smes: There is much to be done,” Journal of
Information Systems Engineering Management, vol. 3, 11 2018. [Online]. Available: https:
//www.jisem-journal.com/article/gdpr-compliance-in-smes-there-is-much-to-be-done-3941

[17] M. Kutyłowski, A. Lauks-Dutka, and M. Yung, “Gdpr–challenges for reconciling legal rules
with technical reality,” in European Symposium on Research in Computer Security. Springer,
2020, pp. 736–755.

[18] H. Li, L. Yu, and W. He, “The impact of gdpr on global technology development,” pp. 1–6,
2019.

16

[19] A. Tolsma, “Gdpr and the impact on cloud computing,” Apr
2021. [Online]. Available: https://www2.deloitte.com/nl/nl/pages/risk/articles/
cyber-security-privacy-gdpr-update-the-impact-on-cloud-computing.html

[20] “Cloud computing and gdpr: What you need to know: Combell,” Apr 2020. [Online].
Available: https://www.combell.com/en/blog/cloud-computing-and-gdpr/

[21] M. Goddard, “The eu general data protection regulation (gdpr): European regulation that has
a global impact,” International Journal of Market Research, vol. 59, no. 6, pp. 703–705, 2017.
[Online]. Available: https://doi.org/10.2501/IJMR-2017-050

[22] European Commission, “Adequacy decisions.” [Online]. Available: https:
//ec.europa.eu/info/law/law-topic/data-protection/international-dimension-data-protection/
adequacy-decisions\ en

[23] European Commission, Swiss Administration, and U.S. Department of Commerce, “Privacy
shield overview.” [Online]. Available: https://www.privacyshield.gov/program-overview

[24] Google LLC, “Trusting your data with google cloud platform,” Tech. Rep., 9 2019. [Online].
Available: https://cloud.google.com/files/gcp-trust-whitepaper.pdf

[25] Google LLC , “Safeguards for international data transfers with google cloud,” Tech.
Rep., 9 2021. [Online]. Available: https://services.google.com/fh/files/misc/safeguards for
international data transfers with google cloud.pdf

[26] J. O’Connor, “Websites not available in the european union after gdpr,” 5 2019. [Online].
Available: https://data.verifiedjoseph.com/dataset/websites-not-available-eu-gdpr

17

The Impact of GDPR on Cloud-Based Healthcare
Systems

Nina Groot
12062693

Faculty of Science
University of Amsterdam

Science Park 904, 1098 XH Amsterdam
n.groot@student.uva.nl

Hugo Yuzhong Liu
13558366

Faculty of Science
University of Amsterdam

Science Park 904, 1098 XH Amsterdam
hugo.liu@student.uva.nl

Dewi Spooren
12149721

Faculty of Science
University of Amsterdam

Science Park 904, 1098 XH Amsterdam
d.spooren@student.uva.nl

Abstract

After the use of internet has increased massively, the switch to cloud-based health-
care systems is a logical next step. In order to maintain the privacy and security
of patients’ health data, it is important to establish guidelines. From the Data
Protection Directive, which was founded in 1995, the General Data Protection
Regulation (GDPR) followed in 2018, consisting of a set of rules for the processing
and protection of personal data. This paper reports the new changes in the GDPR,
the impact of it on cloud-based healthcare systems, what aspects of the GDPR
are most relevant to these systems and how healthcare organizations can comply
with the most relevant regulations. The introduction of the GDPR in 2018 has
changed some things within healthcare organizations. The main aspects that are
impacted with regards to healthcare organizations are security, consent, privacy and
the overall rights of the data subject. Because of this, data subjects are often more
willing to share their personal health data because they gained trust in healthcare
systems.

1 Introduction

Data grows bigger, becomes more important every day and almost every company uses data in some
way. One of the most promising inventions around data has been the cloud-based storage. The switch
of keeping your files on a local storage drive to a cloud-based storage has made a major difference.
A device with access to the web, has access to the data, thus one of the most fundamental aspects
of a cloud-based system is to ensure privacy and security (1). Since the General Data Protection
Regulation (GDPR) was enforced on 25 may 2018, in order to stay compliant, some new requirements
were necessary. It replaces the 1995 Data Protection Directive, which was created when the internet
was still in its infancy.

All companies and organisations that deal with data relating to EU citizens must comply with the
GDPR. An example of an organization where it is very important to ensure that the GDPR is followed
are healthcare organizations. Medical records must be protected and it is important for patients
to know that their conversations with health workers or doctors are private and will not be leaked.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Consider a scenario where these guidelines would not exist, or where these guidelines are just an
advice. When insurance companies can look into all of your healthcare data, they could adjust their
prices, based on someones health history. Higher the price for someone who is known to have health
problems. Or when conducting a job interview, the recruiter could pick people based on their health
conditions. This might benefit the insurance company or the recruiter, but it is a serious form of
discrimination. Because of these reasons and many more it is extremely important to protect these
private data.

In this literature study the impact of the GDPR on cloud-based healthcare systems will be evaluated.
First, an introduction to cloud-based healthcare systems and to the GDPR will be given, along
with the rise of data protection, where-after the main changes of the GDPR in contrast to the Data
Protection Directive will be reported. Afterwards the effects that arose after enforcing the GDPR on
cloud-based healthcare systems and some sub-sectors will be presented. In the next section, the data
protection impact assessment of the GDPR will be discussed. In the end, the impact of the GDPR on
cloud-based healthcare systems will be concluded.

2 Introduction to cloud-based healthcare systems

A cloud-based environment for healthcare systems allows the sharing of someones health records
among different domains, which can be very useful. There is a large amount of health records which
all need to be stored somewhere. Cloud-based systems have a lot of advantages. Using a cloud-based
system has proved to be scalable and thus can mage large amounts of data (2). Since healthcare data
is extremely large, a scalable storage system is very important. Furthermore it allows sharing of
data in a very easy and timely manner. There are three different types of cloud models which are
employed in healthcare systems, the private, public and hybrid cloud (3).

A private cloud is the most secure cloud out of the three. You cannot enter via the internet and it
can only be accessed by recognised personnel of the healthcare organization. It is often used for
Electronic Medical Records (EMRs) of patients. These kind of clouds are provided by a cloud
provider such as Amazon Web Services (AWS), however only accessible for one specific organization
and where the infrastructure can be on-premise or at the cloud provider (4) .

The second type of cloud is the public cloud. As can be concluded from the name, this cloud is public
to other organizations. Using a public cloud, healthcare organizations can make use of a shared online
infrastructure where for example, they can share EMRs among different healthcare organizations.
Such an infrastructure is often also provided by a cloud provider such as AWS (4). The advantage of a
public cloud is that you only pay for a used capacity per month, so you can save money. Furthermore
a public cloud is highly scalable.

A hybrid cloud is a combination of both the private and public cloud. It combines the benefits of both
the private and the public cloud (3). It make sure that the organization can store private data in their
own network, but still get the benefits of a shared cloud. In figure 1 an example of a hybrid cloud can
be seen.

Figure 1: Example of hybrid cloud. From Security and privacy issues in e-health cloud-based
system: A comprehensive content analysis, by Azeez, N. A., & Van der Vyver, C. (2019). Egyptian
Informatics Journal, 20(2), 97-108.

2

The use of cloud-based systems in healthcare has a lot of advantages, however there are security and
privacy issues that need to be addressed. Since the adoption of the GDPR, certain things need to be
changed and guidelines need to be followed.

3 Introduction to data protection and the GDPR

3.1 The rise of data protection (in healthcare)

As was mentioned in the introduction, the GDPR replaced the Data Protection Directive which was
enforced in 1995. However, the idea that data must be protected, arose much earlier than 1995. In
1968, at the United Nations International Conference on Human Rights occurred the first international
discussion about the protection of data (5). In 1980 the OECD, which is an organisation for Economic
Co-operation and Development, created the Guidelines on the Protection of Privacy and Transborder
Flows of Personal Data (Guidelines). That was a step in the right direction, however these guidelines
did not yet had legal force, so it was only an advice.

After the Guidelines, there became the Directive (Data Protection Directive) which resulted from
the elimination of the distinction between public data protection and private data protection. The
Directive applied to all sixteen EU members and was adopted around 1995. According to the
Directive, personal data may be used only for the legitimate purposes for which it was collected,
and kept in a form that does not permit identification of individuals longer than is necessary for
that purpose (5). Furthermore according to Cate (5): "the Directive excepts only the "processing of
personal data" that is performed by a "natural person in the course of a purely personal or household
activity".

When thinking of data protection, one important aspect is ethics. According to the Oxfords dictionary,
ethics is "the moral principles that govern a person’s behaviour or the conducting of an activity". One
of the earliest expressions of ethics in the medical world is the Hippocratic Oath. The oath has been
written by the famous Greek Hippocrates between the fifth and third centuries BC. Hippocrates is
considered to be the founder of modern western medicine. The Hippocratic Oath is an oath of ethics
taken by physicians. According to Séroussi et al. (7): "The oath is build on four pillars, autonomy,
e.g., patients but also physicians should keep their autonomy of thought, intention, and action when
making decisions regarding health care procedures; (ii) justice, e.g., burdens and benefits of health
care procedures, especially treatments, must be distributed equally to be fair with all players involved;
(iii) beneficence, e.g., health care procedures are provided with the intent of doing good for the
patient involved; and (iv) non-maleficence, e.g., health care procedures should not harm the patient
involved."

Inspired by medical ethics, ethics in health informatics (EHI) arose, which was mainly concerning
data privacy in healthcare (7). Before the internet, there was one doctor for one patient which
maintained the security and privacy of their patient records, because it was unethical to share this
private information. With the rise of electronic health records, which are kept in cloud-based systems,
it became necessary to ensure the privacy of these records, since data can be shared among different
members of a healthcare team. Because of this, the Directive which was adopted around 1995 became
extremely important.

However, the internet kept evolving and thus also the guidelines on privacy. Internet in relation
to healthcare is also a growing sector. Think of online doctors, at any moment you can get in
contact with a nurse or a doctor, or the fact that you can order your pharmacy prescriptions online.
There even exists an online AI doctor, which can give a diagnose based on your symptoms using
AI-algorithms (11). Some of these systems would require storage of data in a cloud, for example the
online pharmacies, whereas others might not keep track of data such as the AI doctor. But in order to
require all companies and organizations to be compliant with data protection rules, the GDPR was
declared in 2018.

3.2 The GDPR and its differences with the Data Protection Directive

As mentioned above there are two main set of rules relating to data protection and privacy, the
Data Protection Directive (Directive) and the General Data Protection Regulation (GDPR). From
the Directive, the GDPR followed. In this subsection we will dive into detail on the two different
regulations and will discuss the differences between them.

3

The GDPR is about the protection of data with regard to the processing of personal data (5). The
rules are set to secure personal data across EU countries and its citizens. In contrast to the Directive,
all companies and organisations, also the ones that are not located in the EU, that deal with data
relating to EU citizens must comply with the GDPR. Before diving into the regulations, it is important
to understand the term ’personal data’. According to the handbook on European data protection
law (8): "personal data is defined as information relating to an identified or identifiable natural
person. It concerns information about a person whose identity is either manifestly clear or can be
established from additional information." It covers various types of information, such as name, date
of birth, address or phone number, where it is known to which person it belongs to or you can use the
information to find the person.

Article 9 of the GDPR expanded the personal data definition with special categories of personal
data (6). As stated in article 9, it is forbidden to process personal data which reveals racial or
ethnic origin, political opinions, political opinions, religious or philosophical beliefs, or trade union
membership. Furthermore it is prohibited to process genetic or bio-metric data for the purpose of
identifying a person, or data concerning health or concerning a person’s sex life or sexual orientation.
This definition is also very important for all sorts of healthcare systems including the cloud system.
Healthcare systems should not contain or process data about someones health which could be used to
link it to a particular person.

The GDPR consists of 7 principles related to the processing of personal data which can be seen in
figure 2. In order to fully understand the principles it is important to know and be able to distinguish
three definitions which are stated in the GDPR and relate to different roles in the process of processing
data. They will be described with respect to the roles of data processing in cloud-based healthcare
system. Article 4 of the GDPR describes the three different roles, the controller, the processor and
the data subject (6). The patient, who receives medical treatment or counseling, is the data subject.
The controller determines the purposes of the processing of the data, this would be the healthcare
institution. The data processor in this case is the cloud service provider (12).

Figure 2: Principles of the GDPR. From the GDPR Compliance: Proposed Guidelines for Cloud-
Based Health Organizations, by Georgiou, D., & Lambrinoudakis, C, 2020. In Computer Security
(pp. 156-169). Springer, Cham.

The principles will be briefly described below, with relevance to cloud-based healthcare systems.
The first principle guarantees that any processing of personal data is lawful, fair and transparent in

4

relation to the data subject (6). In connection with cloud-based healthcare systems this means that the
data subject, in this case the patient, is aware of the data being processed and why this is necessary.
Furthermore, the data should be limited, data cannot be collected without an appropriate purpose,
the controller, in this case the healthcare institution is responsible for this. In order to ensure data
minimization the controller needs to check whether the purpose could be achieved with a smaller
collection of the data. Moreover, the controller should ensure the accuracy of the collected data.
It is very important that healthcare information is accurate, if a patients allergies are not carefully
written down, it could result in their death. In addition to, with respect to the purpose of the data
collection, the data should only be stored for as long as needed. Another principle is about the
integrity and confidentiality, in relation to cloud-based healthcare systems, it is very important to
limit the access to the data and the personal health data should be encrypted. At last, the controller
should be accountable for the processing and needs to be able to prove the processing is lawful.

One of the most important differences between the Data Protection directive and the GDPR is that the
GDPR is a regulation instead of a directive, because of this it became an enforceable law for all EU
countries. Before the GDPR, the Directive was not necessarily legally binding, the EU member states
must transpose the directive into a law. Nowadays, companies can be made accountable to the fact
they are not following data protection rules. Another change is about to which countries the GDPR
applies to. Unlike the Directive, for the GDPR it does not matter whether the personal data is located
within or outside a European country; the one condition is that the data concerns an EU citizen (5).
Another change is the addition of the data processor role. We briefly mentioned the different roles
in the EU data protection regulation (controller, processor and data subject). Before the GDPR the
data processor role did not exist. The data owner had the responsibility of the protection of data.
Nowadays, it is a shared liability between the data owner and the cloud service provider.

4 The impact of the GDPR on cloud-based healthcare systems

4.1 Most relevant aspects of the GDPR and how to comply

To find the impact of the GDPR on cloud-based health care systems, first it has to be decided which
aspects of the GDPR are most relevant to cloud-based health care systems. This section describes the
most relevant regulations of the GDPR and how cloud-based healthcare systems/organizations can
comply with these regulations.

4.1.1 Security

One of the most relevant aspects in cloud-based healthcare systems is security (9). It is important
that the data is protected properly. The data that is involved in healthcare, for example health data,
genetic data or bio-metric data, is very sensitive, a data breach could lead to unfortunate events. Thus
the method that is used to secure this data is critical. According to the principle of integrity and
confidentiality of data, the patient of a healthcare organization expects the organization to protect
his or her personal data by enforcing appropriate organizational and technical protection (6). This
protection concerns the overall organization and operation of the healthcare organization on data
protection issues. Some examples are the existence of confidentiality clauses and its training, the
existence of relevant procedures and the overall compliance of the health unit with the GDPR. This
minimizes the possibilities of an unauthorized access or accidental disclosure of data, along with the
unauthorized or accidental alteration of data.

Two methods of securing the processing of personal data have been mentioned in the GDPR article 4
and 6, namely pseudonymization and encryption (6). To pseudonymize data, the information that
can identify a person is replaced by "pseudonyms". Encryption is a method where information is
transformed into a secret code. The data is not accessible and only with a particular key it can be
decrypted again.

In addition to these two methods, Butpheng et al. presented an solution for the security of cloud-
based E-health systems using a five layer system (15). They identify an E-health system as “the
ability to seek, find, understand and appraise health information derived from electronic sources and
acquired knowledge to properly solve or treat health problems" They conducted a literature review
and provided a system based on all security aspects. The system consists of the following layers:

5

• Device layer
Designed to prevent malicious attacks on the data storage system. In this layer the devices
can perform functions like detection and monitoring.

• Communication and service layer
This layer allows different devices to connect with each other and is used against sniffing
attacks and adulteration.

• Network layer
This layer can connect to the cloud system and is used as a secure routing.

• Cloud layer
Protection of stored and processed data against unauthorized users. The layer processes,
stores and monitors data collected by the device layer.

• Application layer
This is the layer where the user communicates with the E-health system and is used to
provide the user against bribery of information.

4.1.2 Consent

Another important aspect in healthcare systems is the request for consent (10). It is crucial that the
patient knows which data is being processed. The processing of special data categories (Article
9, (6)), which health, genetics and bio-metric data also belong to, can only be processed when the
subject gives explicit consent. There are three main types of consent, per type it varies how to get
consent of a patient:

• Informed consent
According to the GDPR (6), for consent to be informed, the data subject should be aware
of the identity of the controller and the purposes of the processing. Consent should not be
regarded as freely given if the data subject has no genuine or free choice or is unable to
refuse or withdraw consent without detriment. The consent can be in either oral or written
form, for example by the subject answering a specific question about their willingness to
participate.

• Explicit consent
To obtain explicit consent, on the other hand, the data subject has to give an explicit
affirmative action. This can, for example, be done by answering a specific question, in oral
or written form, about their willingness to participate. The important difference is that the
data subject actually has to perform an action, like clicking a button or ticking a box, to give
the consent.

• Broad consent
To give broad consent, the subject should agree to a broad set of potential secondary future
uses of his or her data under a particular government framework (16). This type of consent
has been widely embraced as the standard practice in genetic registries and bio-banks. It is
also generally used for most big data projects where their most innovative secondary uses
can’t be specified by the time of data collection.

The GDPR enhances the citizen’s rights when it comes to the process of consent for the collection,
use and sharing of their personal data. The regulation states that consent is the main legal base to
process this kind of data. There are several conditions for this consent, namely it should be explicit
and unambiguous, freely given, specific, informed and signified. In healthcare, it is important that
this consent also incorporates the case of many potential transfers of health data, this includes cloud
storage and international data transfers. The patients need to decide if they give consent to the
collection of their personal information. In healthcare, this consent could be asked for by a button or
by a ticking box, along with a clear, specific and targeted information.

4.1.3 Rights of data subjects

A third important aspect is the fact that the GDPR strengthens the rights of the data subjects. Even
though the rights of data subjects were already there in former legal texts of case-law, the GDPR
improves them because it lists them in clear terms within other data protection rights and obligations
(9). Article 15 of the GDPR requires data subjects to have access to information about themselves.

6

Besides that, the data subject also has the right to receive copies of it. Furthermore, article 18 enables
the patients to ask their data to be restricted, meaning no processing of the data only storage the
data (6). In a research regarding a cloud service, participants were worried that the controller (the
healthcare organization) would access their patient data, outside of their treatment, which is against
the right of the data subject (12). Article 34 prevents this by reporting such misuse to the authority
and by immediately notifying the data subject.

In order to earn the trust of the data subject, and of course comply with the GDPR regulations, it is
important to comply with the rights of the data subject. Because of this, Georgiou et al. (1) proposed
a procedure of different steps in order for cloud-based healthcare organizations to manage requests of
data subjects in a fair and transparent way. The procedure consists of the following steps:

• Collection of data subject’s request. The data subject can send their request via mail,
e-mail, via the website of the cloud-based healthcare organization or physically.

• Identification and information of the data subject for the reception of the request. The
person responsible of the request should identify the data subject and inform them upon
reception.

• Registration of the request in the requests’ record. All requests for the cloud-based
healthcare organization should be recorded in one file.

• Forwarding the request to the data protection officer.

• Evaluation of the request The data protection officer assesses whether additional informa-
tion from the data subject is needed in order to proceed with the request.

• Requesting additional information from the data subject. If needed

• Informing the data subject of a charge to process the request. If a charge is needed for
the request, inform the data subject about it.

• Performing the required actions. Satisfy the right of the data subject

• Justified information to the data subject for delaying the satisfaction of their request.
When a delay occurred, inform the data subject

• Informing the DPO regarding the implementation. Once the request is completed inform
the data protection officer.

• Prepare the response document for the data subject. the answer given to the data subject
regarding the fulfillment or not of the request must be documented

• Informing the data subject regarding the fulfillment or not of the request. Response to
the data subject via a letter, electronically or orally.

4.1.4 Privacy policies

According to the GDPR (6), the cloud provider that collects or processes personal data should take
further action to protect it. This cloud provider usually acts as data processors on behalf of their
users. To properly protect their users’ data, the types of sensitive data that are processed should be
recognized and analytically described. This should be done in the security policy of the cloud and
should also provide the reasoning for their necessity. Furthermore, a short format of the privacy policy
should be freely accessible to patients. This short format ought to contain the basic information and
clear pointers on how to obtain the full privacy policy.

The question remains, how can cloud-based healthcare organizations ensure the privacy of a data
subject. Controlling and limiting the access to personal data is very important in relation to privacy.
One tool which can be used to ensure privacy is the privacy awareness cycle (15). Here, personal
data is presented in the form of life cycle stages. The different stages can be seen in figure 3.
Initiation represents the processing of the data, following collection where the data is gathered
together, retention means the structuring and storing of the data, following access, which represents
how to consult the data. Disclosure is when the data is made available to third parties and usage
represents what is done with the data. In the end, destruction represents the act of erasing the personal
data.

7

Figure 3: Privacy awareness cycle. From Butpheng, C., Yeh, K. H., & Xiong, H. (2020). Security
and privacy in IoT-cloud-based e-health systems—A comprehensive review. Symmetry, 12(7), 1191.

4.2 The impact of the GDPR on certain sub-sectors of healthcare systems

In order to take a closer look at the impact of the GDPR on healthcare systems, we study two of the
sub-sectors as case studies: health-related data processing for research purposes and mobile health
applications.

4.2.1 Health-related data processing for research purposes

In healthcare systems, healthcare research is undoubtedly an integral sub-sector that plays a role in
improving the quality of healthcare practices. Health-related data processing for research purposes is
thus subjected to the impact brought by the GDPR.

Under the new regulation, researchers are facing obligations for the protection of health-related
data when conducting research; such obligations can be an obstacle, in terms of time and resource
allocation (17). To adapt to the new paradigm, the whole research architecture needs to adopt a
series of technical and organizational measures. In addition, these measures cannot be standardized
for general purposes, because each project has its own specific situations that need to be dealt with
individually and can also evolve as the project proceeds. Translated into a researcher’s daily routine,
this piece of work could be a new combination of procedures, contacts, and administrative activities,
which can be time-consuming and resource-demanding for both the researcher and the research
institute.

Despite a burden the aforementioned obligations might seem to be, Amram, D. (17) sees the imple-
mentation of the GDPR as an opportunity to enhance the EU values and protect fundamental rights;
after all, science serves human being, not vice versa – this is particularly relevant in the context of
health-related data.

The author further proposes a model incorporating several features to achieve a standard accountability
in health-related data research:

• Ethical-legal specialists should be involved in research initiatives to assist in the creation of
an ethical-legally compliant ecosystem.

• To achieve ethical-legal compliance, research institutes should implement appropriate and
effective technical and organizational procedures.

• Data availability, confidentiality, and integrity should be guaranteed by the IT infrastructure
and data management plan.

• Data processed for healthcare and scientific research should be segregated and subjected to
separate security protocols.

• Data flows should be controlled both between partners and inside research teams.

8

• In the information provided to data subjects, data flows should be tracked and described.

• The coordination between various legal limitations, protocols, and standards should be
assessed in terms of risk and managed throughout the research’s life cycle.

The article manages to highlight several practical issues that researchers may need to deal with when
complying with the GDPR and other ethical requirements.

Nonetheless, there are not sufficient stakeholders (from a variety of backgrounds) involved in the
proposed model. Moreover, the article does not discuss possible effectiveness and limitations that the
model might have.

4.2.2 Mobile health applications under the GDPR

Mobile health (m-health) applications leverage medical devices and sensors as well as cloud tech-
nologies to deliver healthcare services, such as fitness trackers and surgical rehabs (18). However,
these services come with a price – a large amount of medical data can be vulnerable if not protected
properly. For instance, a patient’s health data run the risk of getting exposed to unauthorized parties
via the usage of cloud technologies, which, according to Forbes, are used by 83% e-healthcare service
providers in some capacity (19).

As summarized by (20), there are three major threats confronting medical data: tampering with
medical data (integrity issue), loss of data (availability issue), and unauthorized disclosure of data
(confidentiality issue). The GDPR thus comes into play to ensure that adequate safeguards are in
place to secure medical data in healthcare systems, including m-health apps.

An m-health project, WELCOME, is presented by Mustafa U. et al. in (18) as a case study to evaluate
its privacy aspects in compliance with the GDPR. WELCOME provides an integrated healthcare
solution based on the following devices (Table 1):

Table 1: WELCOME healthcare solution

Device Functionality

A wearable vest that monitors a
large number of sensors

Various physiological data, includ-
ing chest sounds, heart rate and
rhythm, and oxygen saturation lev-
els, are measured by each sensor.

Medical sensors
Monitor blood trends such as glu-
cose, blood pressure, and tempera-
ture on a regular basis

Inhaler devices
Assess the patient’s medical adher-
ence as well as their inhaling tech-
nique

Remote monitors

Track and analyze the patient’s
multi-parametric data, including
physiological, environmental, and
emotional data, to create personal-
ized integrated care plans

On top of the devices, a system architecture is built, consisting of several core modules such as patient
hub, cloud processing, and end user applications (see Figure 4).

9

Figure 4: WELCOME core system architecture (18)

• Patient hub. The patient hub is a mobile platform that manages the patient’s interaction
as well as the data transfer. It consists of all software and hardware components that
interface with the WELCOME vest and medical sensors in order to collect data, pre-process
biosignals, and then send it to the WELCOME cloud.

• Cloud processing. Storage server, feature extraction server, decision support system, and
orchestrator agent make up the system’s cloud.

• End user applications. WELCOME applications are used to keep track of the patient’s
mental, behavioral, and overall health. They provide remote monitoring information and
alert medical workers to potentially dangerous circumstances.

To comply with the GDPR, such an m-health project needs to follow these requirements:

• Patients must be able to examine their data and request that any faulty measurements
collected by the sensors be deleted or modified.

• Patients must be notified about the sort of data acquired from the sensors they are wearing,
as well as the length of time this data will be used for processing.

• Only data that is essential for the application’s functionality will be collected. Only limited
access is granted in order to enable the app’s functionality.

• Patients must be fully informed about the security measures in place for their data in transit
or in third-party storage.

• The data gathered must not be used for marketing or profiling. The patient’s informed
medical consent is required before any medical data is collected or stored. Patients must be
made aware of the risks and benefits of utilizing a mobile health app.

• To protect themselves from device impersonation attacks, all devices must have a set of
proper security features. Mobile devices that run the patient hub application can only be
accessed by an authorized user.

• Authentication of the devices that share medical data is required so that only authorized
devices can send and receive medical data.

• To ensure that data kept in whatever form has not been tampered with, proper security
methods are required. To prevent unwanted access to data in transit as well as data in
backups, proper security techniques such as encryption should be employed.

Mustafa U. et al. further describe and assess various security and privacy methods deployed in
different layers of the WELCOME architecture. These mechanisms include consent management,

10

data minimization, data retention period, security measures, data anonymization, role-based access,
and authentication and authorization process.

At last, this paper offers suggestions for developing a secure and compliant mobile health application:

• Consent. As discussed before, prior to using the medical application, the user must give
their informed consent to process their medical data. Any prospective data transmission,
including international data transfers and cloud storage, should be covered by the consent.
Because the data controller now bears the burden of proof, it is critical that they demonstrate
that the patient has granted consent.

• Authentication. Authentication is the foundation of access control and audit tracking, thus
identifying m-health users is crucial. Continuous authentication is essential to ensure that the
device holder is the same person who authenticated the first time. This can be accomplished
through bio-metric sensing.

• Secure application development. While developing any medical application, secure app
development procedures must be performed in accordance with the code of conduct for
privacy in health applications (4). It is critical to detect and mitigate personal data protection
risks. A risk assessment should be carried out, taking into account all of the services and
partners with whom the application trades data.

This paper provides a clear case study to showcase what privacy and security requirements an m-
health application faces under the GDPR and how it should be implemented to adapt to the new
regulation.

However, the recommendations of a privacy framework proposed in the paper are not substantial, nor
are they novel enough due to the considerable overlap between them and the GDPR requirements,
e.g., the suggestion that medical data should not be provided to any third party for commercial use.

4.3 Data protection impact assessment required by the GDPR

As privacy concerns spread throughout society, particularly in the healthcare sector, the importance
of the Data Protection Impact Assessment (DPIA) grows, as the GDPR also requires organizations
to conduct a DPIA when a processing activity is likely to result in “in high-risk to the rights and
freedoms of natural persons” (21).

A DPIA is a process aiming to minimize risks with respect to privacy, security, and reputation, comply
with the data protection legislation, and increase trust among data subjects and stakeholders. Clearly,
providing cloud-based health services involves "high-risk", given that they process a large volume of
sensitive (health) data, and the DPIA is a critical step in protecting patients’ privacy and rights.

Georgiou, D. et al. (22) present the main steps of a DPIA, by employing the methodology of the
Privacy Impact Assessment, Commission Nationale de l’Informatique et des Libertés (PIA-CNIL)
(23). The steps and the transition from one step to another are shown in Figure 5.

• Context. This step defines the context of the personal data processing in question. It
attempts to outline the personal data processing process, including personal data categories,
processing purposes, data processing methods, personal data supporting assets, data subjects,
etc.

• Controls. This step identifies the existing and planned (procedural, technical, and organiza-
tional) controls that are required for securing data, treating privacy risks proportionately,
and complying with legal obligations. This stage necessitates the rationale and explanation
of decisions made about the data collection purpose, storage period, and quality.

• Risks. This step evaluates the privacy risks posed by data processing and ensures that they
are appropriately addressed. Several issues should be addressed at this stage, including risk
sources and descriptions of their capabilities; feared events; threats to personal data and
assets that could result in feared events; and risk level determination.

• Decision. This step is called risk management decisions. Its goal is to analyze the outcomes
of the previous steps, assess the risk level and existing controls, and determine whether they
are acceptable.

11

Figure 5: General approach of the privacy impact assessment, Commission Nationale de
l’Informatique et des Libertés (PIA-CNIL) methodology

Further, a case study of a cloud-based hospital information system is carried out by Georgiou, D. et al.
In the case study, by identifying the purposes of processing and conducting a gap analysis, the paper
presents the steps for conducting a DPIA that ensures the security and privacy aspects of the hospital
information system, specifically the GDPR principles, such as purpose limitation, data minimization,
accuracy, accountability, the lawfulness of processing, and the user consent (24).

It is valuable of this paper to identify the most important organizational and legal requirements
that cloud-based healthcare organizations must meet under the GDPR. The study is relevant to any
personal data processing since it helps to structure the process, and to bring data protection concerns
to a broader audience.

5 Discussion and Conclusion

In summary, the introduction of the GDPR in 2018 has changed some things within healthcare
organizations. The main aspects that are impacted with regards to healthcare organizations are
security, consent, privacy and the overall rights of the data subject. We investigated multiple ways to
comply with the GDPR rules, such as pseudonymization, encryption, the privacy awareness cycle
and a five layer system to ensure security (15).

The main difference of the Data Protection Directive from the GDPR is that the Data Protection
Directive was not necessarily legally binding. Each European member country had to create the data
protection law, it did not apply to them automatically. The advantage of the GDPR is that it applies to
all entities that use data from the citizens of the EU, even if the organization or company is located
outside Europe. which means that organizations are forced to address their guidelines and ensure
privacy and security. Because of this, data subjects are often more willing to share their personal
health data because they gained trust in the healthcare organization, since they are obligated to follow
the data protection rules. This is a huge advantage for the healthcare organization themselves, but
also for researches in the field of health, who rely on personal healthcare data.

Through the case studies of two sub-sectors of healthcare systems, i.e., health-related data processing
for research purposes and mobile health applications, we find that organizations are facing more
obligations under the GDPR, and that while adapting to the new regulation, organizations can take
it as an opportunity to contribute to a more secure environment for data processing in cloud-based
healthcare systems.

12

Finally, we examine the steps of the data protection impact assessment in order to present methodolo-
gies to assess and minimize privacy risks in the cloud-based healthcare systems as well as to comply
with the GDPR.

In this paper, we do not cover more sub-sectors of healthcare systems to formulate a more compre-
hensive perspective of the GDPR’s impact, due to the scope of our topic, and to the situation that the
implementation of the GDPR is still at a relatively early stage and its impact on the sub-sectors is
yet to take place. Therefore, for future work, it would be interesting to investigate the impact of the
GDPR on more sub-sectors of healthcare systems.

References
[1] Georgiou, D., & Lambrinoudakis, C. (2020). Compatibility of a Security Policy for a Cloud-

Based Healthcare System with the EU General Data Protection Regulation (GDPR). Information,
11(12), 586.

[2] Abbas, A., Khan, M. U., Ali, M., Khan, S. U., & Yang, L. T. (2015, August). A cloud based
framework for identification of influential health experts from Twitter. In 2015 IEEE 12th Intl
Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and
Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications
and Its Associated Workshops (UIC-ATC-ScalCom) (pp. 831-838). IEEE.

[3] Azeez, N. A., & Van der Vyver, C. (2019). Security and privacy issues in e-health cloud-based
system: A comprehensive content analysis. Egyptian Informatics Journal, 20(2), 97-108.

[4] Cloud computing Service, Explore our solutions. Retrieved on 29 May 2022 from https:
//aws.amazon.com/?nc2=h_lg

[5] Cate, F. H. (1994). The EU data protection directive, information privacy, and the public interest.
Iowa L. Rev., 80, 431.

[6] European Parliament and Council of the European Union. 2016. Directive 95/46/EC (General
data protection regulation). Retrieved on May 17, 2022 from https://eur-lex.europa.eu/
legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

[7] Séroussi, B., Hollis, K. F., & Soualmia, L. F. (2020). Transparency of health informatics processes
as the condition of healthcare professionals’ and patients’ trust and adoption: the rise of ethical
requirements. Yearbook of Medical Informatics, 29(01), 007-010.

[8] Council of Europe Handbook on European Data Protection Law 2018 Edition. Retrieved on May
23, 2022 from https://www.echr.coe.int/Documents/Handbook_data_protection_
ENG.pdf

[9] Georgiou, D., & Lambrinoudakis, C. (2020). GDPR Compliance: Proposed Guidelines for
Cloud-Based Health Organizations. In Computer Security (pp. 156-169). Springer, Cham.

[10] Muchagata, J., & Ferreira, A. (2018, October). Translating GDPR into the mHealth Practice. In
2018 International Carnahan Conference on Security Technology (ICCST) (pp. 1-5). IEEE.

[11] Symptomate, check your symptoms today. Retrieved on 23 May 2022 from https://
symptomate.com/nl/

[12] Chomutare, T., Yigzaw, K. Y., Olabarriaga, S. D., Makhlysheva, A., de Oliveira, M. T., Silsand,
L., ... & Bellika, J. G. (2021, March). Healthcare and data privacy requirements for e-health
cloud: A qualitative analysis of clinician perspectives. In 2020 IEEE International Conference on
E-health Networking, Application & Services (HEALTHCOM) (pp. 1-8). IEEE.

[13] Ekonomou, E., Fan, L., Buchanan, W., & Thuemmler, C. (2011, November). An integrated
cloud-based healthcare infrastructure. In 2011 IEEE Third International Conference on Cloud
Computing Technology and Science (pp. 532-536). IEEE.

[14] Khan, F. A., Ali, A., Abbas, H., & Haldar, N. A. H. (2014). A cloud-based healthcare framework
for security and patients’ data privacy using wireless body area networks. Procedia Computer
Science, 34, 511-517.

13

https://aws.amazon.com/?nc2=h_lg
https://aws.amazon.com/?nc2=h_lg
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://www.echr.coe.int/Documents/Handbook_data_protection_ENG.pdf
https://www.echr.coe.int/Documents/Handbook_data_protection_ENG.pdf
https://symptomate.com/nl/
https://symptomate.com/nl/

[15] Butpheng, C., Yeh, K. H., & Xiong, H. (2020). Security and privacy in IoT-cloud-based e-health
systems—A comprehensive review. Symmetry, 12(7), 1191.

[16] Politou, E., Alepis, E., & Patsakis, C. (2018). Forgetting personal data and revoking con-
sent under the GDPR: Challenges and proposed solutions. Journal of Cybersecurity, 4(1).
https://doi.org/10.1093/cybsec/tyy001

[17] Amram, D. (2020). Building up the “Accountable Ulysses” model. The impact of
GDPR and national implementations, ethics, and health-data research: Comparative
remarks. Computer Law & Security Review, Volume 37, 105413, ISSN 0267-3649,
https://doi.org/10.1016/j.clsr.2020.105413.

[18] U. Mustafa, E. Pflugel and N. Philip, "A Novel Privacy Framework for Secure M-Health
Applications: The Case of the GDPR," 2019 IEEE 12th International Conference on Global
Security, Safety and Sustainability (ICGS3), 2019, pp. 1-9, doi: 10.1109/ICGS3.2019.8688019.

[19] M. A. Sahi et al., "Privacy Preservation in e-Healthcare Environments: State of the Art
and Future Directions," in IEEE Access, vol. 6, pp. 464-478, 2018, doi: 10.1109/AC-
CESS.2017.2767561.

[20] JPC Rodrigues J., de la Torre I., Fernández G., López-Coronado M. (2013). Analysis of the
Security and Privacy Requirements of Cloud-Based Electronic Health Records Systems, J Med
Internet Res 2013;15(8):e186, DOI: 10.2196/jmir.2494

[21] Shaping Europe’s digital future. 2016. Code of Conduct on privacy for mHealth apps has been
finalised. Retrieved on May 30, 2022 from https://digital-strategy.ec.europa.eu/
en/library/code-conduct-privacy-mhealth-apps-has-been-finalised

[22] ARTICLE 29 DATA PROTECTION WORKING PARTY. Guidelines on Data Protection Impact
Assessment (DPIA) and Determining whether Processing Is “Likely to Result in A High Risk” for
the Purposes of Regulation 2016/679. Retrieved on May 31, 2022 from https://ec.europa.
eu/newsroom/article29/items/611236

[23] Georgiou, D., & Lambrinoudakis, C. (2021). Data Protection Impact Assessment (DPIA) for
Cloud-Based Health Organizations. Future Internet, 13(3), 66.

[24] French Data Protection Authority Privacy Impact Assessment (PIA). Retrieved on May 31,
2022 from https://www.cnil.fr/en/privacy-impact-assessment-pia

[25] Art. 5 GDPR Principles Relating to Processing of Personal Data. Retrieved on May 31, 2022
from https://gdpr-info.eu/art-5-gdpr/

14

https://digital-strategy.ec.europa.eu/en/library/code-conduct-privacy-mhealth-apps-has-been-finalised
https://digital-strategy.ec.europa.eu/en/library/code-conduct-privacy-mhealth-apps-has-been-finalised
https://ec.europa.eu/newsroom/article29/items/611236
https://ec.europa.eu/newsroom/article29/items/611236
https://www.cnil.fr/en/privacy-impact-assessment-pia
https://gdpr-info.eu/art-5-gdpr/

Distributed Transactions in Microservices

Radu M. Doros,
Universiteit van Amsterdam

1012 WX Amsterdam, Netherlands
radu.doros@student.uva.nl

Alina Boshchenko
Universiteit van Amsterdam

1012 WX Amsterdam, Netherlands
alina.boshchenko@student.uva.nl

Igor Mazurek
Universiteit van Amsterdam

1012 WX Amsterdam, Netherlands
igor.mazurek@student.uva.nl

Abstract

In this article we explore the design options systems have at their disposals
when they need to support transactions spanning multiple services in the
context of a microservices architecture. We explore based on the desired
consistency levels, what are the common tools systems base their design
on.

1 Methodology

In this section, we explain the methodology defined to allow an in-depth analysis of the state
of distributed transactions in microservice architectures. For conducting a literature study.
we opted to start with the collection of information from the literature. We analyzed around
35 papers from digital libraries, such as ResearchGate, Scopus and Scholar, read several blog
posts and tutorials from cloud providers such as Amazon Web Services, Google Cloud and
Microsoft Azure, and found N resources that met our selection criteria.

2 Introduction

2.1 Microservices Advantages

Microservices are an ubiquitous way of designing systems in today’s software organizations.
[24] provides an overview of both advantages and pain points of using miscroservices. Among
the most mentioned benefits we can highlight:

• Technology Heterogeneity: Because with micro-services, systems are composed of
many smaller services collaborating together it is possible to have services being
developed in different languages and using different technology stacks. Organizations
can use this features to experiment with desired emerging languages and technologies
in some services before making a full transition organization-wide.

• Robustness: Compared to monolithic applications, microservices will typically fail
locally with some correlated services failing, while the rest of the system will be able
to still be up.

• Simplified deployments: A similar advantage to previous one is that services can
be updated and redeployed individually without necessary affecting other services
globally. Newly deployed services and the changes they bring will mostly affect local
services that collaborate with them.

• Targeted Scaling: Compared to monolithic applications, scaling with microservices
can be more targeted. For example systems can choose which services encounter
increased load and can add more replicas of them, something impossible in the
monolithic world.

• Simplified team organization and code ownership

2.2 Microservices Criticism

With microservices being so popular and widespread, critiques also appeared. Among the
disadvantages of adopting a microservices architecture we can enumerate:

• Network latency: In monolithic applications, services were simply only objects on a
same system, communication between them having a much smaller latency compared
to today’s remote network calls.

• Monitoring and Troubleshooting: Observing and diagnosing bugs in a distributed
setting is more difficult.

• Encapsulated databases poses problems in cases the system needs to interact with
multiple databases in the system. Both querying and complex transactions spanning
multiple services can become serious hurdles, especially when they also need to
follow some guarantees (atomicity, some minimum levels of isolation).

• More complicated CI/CD pipelines: as the software may need coordination among
multiple services, deployment and integration pipelines are not as straightforward as
in monoliths [4].

3 Distributed transactions types

A distributed transaction is a set of operations on data that is performed across two or
more data repositories, in majority of cases - databases. It can be coordinated both across
separate nodes connected by a network and multiple databases on a single server [6].

For a distributed transaction to happen, transaction managers coordinate the resources,
manager decides whether to commit or rollback a transaction. There could be a single
or multiple entities of the transaction manager(s) in a system. It can be one of the data
repositories that is to be updated in the course of transaction, or a completely independent
resource only responsible for the coordination. In the current context resources are either
multiple nodes of a single database or multiple databases.

We can distinguish between two main types of commonly used types of distributed transac-
tions:

• ACID Distributed Transactions (Atomic, Consistent, Isolated, Durable).
Extensions of the classic single-node ACID transactions. Systems opting for this
type of transactions can not afford to be flexible in their consistency levels. Typical
examples for such systems are banking systems.

• BASE Distributed Transactions (Basically Available, Soft State, Even-
tually Consistent). These kinds of transactions are best suited for systems that
don’t necessarily depend on increased levels of consistency and are able to explore
lower consistency levels to increase availability and/or performance.

In the subsections below we elaborate a bit more in-depth on the differences between these
two types of transactions.

3.1 ACID Transactions

Many applications are dependent on their services and databases providing higher degrees
of consistency. The question is, how do such systems behave in case they also follow a
microservice architecture blueprint and microservices follow the database-per-service style.
Commonly, this architecture suffices and performs well in cases data is not required to

2

be committed across multiple services. Sometimes, however, there is a need to support
transactions spanning across services.

ACID transactions guarantee that a database will be in a consistent state after running a
group of operations, even in case of unexpected errors. Atomicity guarantees that all of the
commands in a transaction are treated as a single unit and either succeed or fail together.
Consistency stands for the fact that changes made within a transaction are fully consistent
with database constraints. Isolation makes sure that concurrent transactions do not affect
each other’s outcomes. Durability guarantees that, once the database send an event to the
client that the data was recorded, the data has in fact been written to a backing store[8].

3.2 BASE Transactions

BASE provides less assurance than ACID, but it is more efficient for scalability and reacts
well to the rapid data changes.

Basically Available property means that rather than enforcing immediate consistency, BASE-
modelled databases will ensure availability of data by spreading and replicating it across the
nodes of the database cluster. Soft State property means that data may change over time
due to the lack of immediate consistency. The BASE model delegates the responsibility of
maintaining consistency to the developer. Eventually Consistent denotes that despite BASE
does not enforce immediate consistency, it eventually achieves it. Until this state is reached
data reads are still possible.

BASE transactions were designed so that system developers can experiment with lower levels
of consistency which can be leveraged into improved availability and performance. Similar
to the case of single node databases, where lower isolation levels can be used to achieve
improved performance, in a distributed setting it is possible to sacrifice consistency levels for
performance, and this opportunity provides a big field for exploration.

3.2.1 Related work and literature evaluation

Medjahed at el. (2009) [22] provides the reader with a generalization of ACID properties.
According to the authors the properties were designed for traditional applications like banking
and may be no longer applicable for large high throughput databases. They propose the
properties to be rather seen as: Recovery – ability to recover in case of a failure, Consistency –
this one remains the same, Visibility – ability to see intermediate results of other transactions,
Permanence – ability to save transactions. This generalization allows to relax some of the
constraints compared to traditional ACID.

An interesting take on atomicity implementation in e-commerce systems can be seen in the
article by Frank and Kofod(2002) [12]. Their take is to use approximated ACID properties
in order to reduce the response time caused by locking properties. The transaction pattern
uses nested transactions to achieve approximated atomicity. Eventually, all of the updates
made to the database are either executed or compensated.

Chandra (2012) [13] analyzes the BASE properties of NoSQL databases like Key/value
databases, BigTable, and Columnar databases. He uses widely known and used implementa-
tions such as Amazon’s Dynamo, Google File System, and Hadoop. NoSQL databases that
follow BASE design come with many advantages like high scalability and easy deployment.
Table 1 highlights the key differences between two types of transaction types according to
Chandra. His judgment is based on SQL and NoSQL databases.

Birman et al. (2012) [3] try to overcome the CAP theorem with consistent soft-state
replication. Their consistency alternative includes agreement on update and in-memory
durability. One could see it as undeniably close to the BASE solution however their approach
has a way to have consistently replicated data across the nodes. Another advantage is that
solution does not require locks compared to the traditional ACID solution.

3

ACID [C + A] BASE [A + P]

Strong consistency Accomplishes Consistency, Atomicity and
Partition tolerance “eventually”

Isolation Availability first
Focus on “commit” Best effort
Nested transactions Approximate answers

Pessimistic: Force consistency
t the end of transaction

Optimistic: Accepts temporary database
inconsistencies, Eventually Consistent

Suitable for Financial Portals Suitable for non-financial
web-based applications

Safe Fast
Shared Something (Disk, Memory) Shared Nothing

Scale UP (limited) Scale Out (Unlimited)
Simple Code, robust database Complex code, simple database

Single Machine A cluster
CA AP/CA/CP, i.e. any 2 out of 3.

Scale Vertically Scale Horizontally
SQL Custom APIs

Full Indexes Indexing is mostly on Keys
Difficult evolution Easier evolution

Table 1: ACID versus BASE [13]

4 Distributed transaction management patterns

A distributed transaction can be perceived as an atomic operation that must be synchronized
(or provide ACID properties) among multiple participating resources distributed among
different physical locations [6]. Unfortunately, for distributed transactions there is no unified
perfect solution for all business problems, because the complete ACID model is hard to
achieve, maintaining a high level of performance.

The challenge of implementing ACID transactions in a distributed system comes down
to consistently resolving transactions across data partitions in as efficient and scalable a
manner. Another challenge comes from networking. as with geographically distributed
replicas, minimizing cross-region network communication is critical in order to maintain
reasonable response latency [1].

In most cases transaction model follows BASE principles, balancing between assurance and
scalability/performance. Therefore, in actual applications, the solution would be to choose
the approach according to the particular business requirements and characteristics.

When the application is transitioned from monolith to microservices, developers want to
avoid system-wide distributed transactions. However, in comparison to monolith, data is
distributed more, so there is a need for distributed transactions. Below we describe 3 main
architectural patterns, widely used for the distributed transaction management.

4.1 Two-Phase Commit

Two-phase commit is a standardized protocol that ensures that all ACID properties are
complete. It is usually considered the most common way to implement transactions. It is
imperfect, but the general idea is simple. In this protocol, a coordinator wants to coordinate
an operation with all participants:

• Phase 1: The Coordinator broadcasts a prepare message that instructs the par-
ticipants of the operations they need to perform. Participants answer with their
acknowledgements, confirming that they are prepared for the upcoming commit
operation.

• Phase 2: The Coordinator sends a commit message if all participants confirmed the
previous step. Also avoids committing in case not all the participants confirmed.

4

Figure 1: The two-phase commit protocol [18]

Figure 1 presents a sequence diagram of the voting phase and the decision phase. Some of
the protocol’s main advantages are discussed below:

• The protocol commits the entire transaction or rolls back to its prior state in case of
failure in one of the operations.

• It’s a simple protocol with much research done since it was published by Lampson in
1979 [21]. According to Al-Houmaily et. al. (2009) [18] it’s the most studied atomic
commit protocol.

• There is a global order which dictates the order in which transactions will be executed.
Any updates to the database are isolated, we are not able to see intermediate results
of transactions. Simultaneous transactions can occur as long as they do not have an
influence on each other.

Unfortunately, 2PC is not perfect that’s why we would like to point out some of the problems
and design considerations:

• The protocol requires a stable coordinator as it’s a single point of failure.

• The protocol is blocking, so if the coordinator fails permanently before sending a
message with the final decision, participants don’t know whether to commit or abort.
This may lead to some transactions never being resolved.

• The more participants are in system, the higher the latency of a transaction. Coor-
dinator needs to communicate with every single participant whenever distributed
transaction decisions are made.

According to Samaras el at. (1999)[28], the greatest performance repercussions of the protocol
are caused by:

• Logging. Logs are helpful in a case of a memory-related system failure, it allows
the protocol to reach a consistent state by reading data from stable storage. One
could minimalize the number of data saved which would lead to higher performance
in non-failure situations. However, recovery time would increase or the independent
recovery might be not available at all.

• Network traffic. Every message that needs to be exchanged between a coordinator
and participants slows down protocol significantly by adding network delay, easiest
solution to this obstacle is to limit the number of sent messages in the protocol.

5

Figure 2: The design of CMQ [10]

Figure 3: Response time experiment result [10]

4.1.1 Related work and literature evaluation

A substantial number of the research articles regarding the two-phase commit protocol are
discussing optimization and possible improvements. One of the most important studies
related to the two-phase commit protocol is a paper by Lampson (1979)[21]. It introduces
the reader to the protocol through a series of abstractions and informal correctness proof.

The authors of the article 2PC*: a distributed transaction concurrency control protocol
of multi-microservice based on cloud computing platform [10] propose an enhanced two-
phase commit with a focus on large-scale and high-throughput systems. It’s a innovative
concurrency control protocol, by using transaction compensation it tries to improve the
fault-tolerance. One improvement is the usage of a circle message queue(CMQ), presented
in Figure 2. This mechanism asynchronously polls the response until it gets a successful
response, instead of blocking the whole system. To test and evaluate the algorithm authors
deploy it using the Netty framework on the PaaS cloud platform. Most of the positive impact
can be observed with the number of concurrent threads higher than 100. They were able to
achieve a 70% improvement in throughput(transactions per second). Given 300 concurrent
requests the original 2PC has higher latency by 2.9 times, moreover, the committing rate
would be only one-third compared to the modified version. The results of the response time
experiment are presented in Figure 3.

Nouali et. al. (2005)[25] extend the protocol to be fitting the mobile wireless environment.
The weaknesses are caused by limited computing resources for mobile devices. Moreover,
wireless connection means lower bandwidth, high latency, and is much more error-prone.
The protocol is able to counter it by adding an additional phase 0 to the protocol that
contains commit messages along with logs. As the connection in a mobile environment can
be unreliable the coordinator waits for client acknowledgment before removing logs and
forgetting about the transaction. Due to protocol not being redesigned, key ingredients stay
the same as in the classic two-phase commit. This makes the adoption of any improvement
proposal for classic variation also applicable.

6

Lapmson and Lomet (1993)[20] propose a lightweight version of 2PC, lower cost of messages
could be beneficial for the environment where logging cost is high. We can achieve it
by reducing the number of saved information this would result in the disability to know
which transactions were active before the coordinator crashed. This means that ability of
independent recovery could be lost, another disadvantage is losing the transactions that were
started but not committed.

An improvement to the availability of 2PC types of systems: have regions using Raft [26] and
their leaders participate in a 2PC famously used by Google Spanner [7]. Google spanner uses
Paxos groups, but they can easily be replaced by Raft groups, Raft was not yet published
then. Figure 4 shows how Google Spanner’s organization could be used to design Distributed
Transactions in microservices.

Figure 4: Spanner organization ported to microservices

A workaround developers can sometimes choose is to not opt for the database-per-service
style and use a shared distributed DB that will handle such hurdles by itself. For example
systems can be designed instead of database-per-service as table-per-service, that also offers
to some degree some of the benefits of isolation gained by database-per-service.

One of the first papers (Helland 2007) that explore methods of avoiding distributed transac-
tions in highly-scaling systems from a more architectural perspective is [17]. Helland claims
that the benefits 2PC brings are much outweighed by their costs: namely the availability
and performance problems. The Author splits layers of micro-service system in two parts:
scale-aware and scale-agnostic and argues for simplified designs where transactions have only
local scopes and services can run atomic transaction only across local entities. He continues
by observing that as systems grow in scale, are more likely related entities spread around

7

and systems need to repartition their data when this happens. Details and impacts of these
repartitions are not discussed in depth, even though they are of high interest.

He goes on and describes ways to correlate transactions across services using workflows
and activities. The operations the author is describing closely resemble Sagas, the paper is
published at a time when Sagas did not enjoy same popularity they do today. The description
of the operations and concepts offer important insights into how one should design saga their
operations.

4.2 Event Sourcing

Most often applications use a traditional model to store and interact with persistent storage
called CRUD. This acronym stands for four basic operations that can be executed on
resources namely - create, read, update and delete. It allows users to update the current
state by modifying values in a database. This approach has some weaknesses - limited
scalability, and performance as changes as committed directly to the data store. Considering
multiple users sharing one resource, complete data loss is possible by other user actions like
overwriting or deleting. Additionally, version control is not possible unless there is a separate
log implemented. One solution to the above-mentioned problems could be a pattern called
Event Sourcing.

4.2.1 Concept

Event sourcing means that instead of only keeping conventional mutable states in databases,
services append to an immutable log of events. These events are being in turn handled
and replayed by services, replaying these events allows the consuming services to be able
to reconstitute the current state of an entity’s value. Events are appended to a store of
events like in Figure 5. The Service issues change events and when all events are replayed by
interested services, they will reconstitute the new current state

Figure 5: Service appends event change the current of some entity.

Events represent changes to values of an entity’s field. Then, a microservice interested in the
state of this entity will replay the series of events for this entity. After the replaying, the
current value of the entity’s fields will be computed.

One of most popular ways to implement the Event Sourcing architectural pattern is using
Apache’s Kafka [19] .

Because the number of events can grow large in some cases, making replaying the full set of
events very costly, some ideas are used to avoid long replays. Snapshotting and CQRS [11] are
often used in combination with Event sourcing. Snapshotting is a performance optimization
and means saving states of entities after a certain number of events are appended to an
entity’s event log to avoid following services to replay the full event history.

Usage of CQRS consists in segregating the Commands query model (queries that modify
data) and the Read Query model in such a way to allow systems to scale these two types
of queries separately. Typically Read Query is separated by replaying events and storing
these values in traditional databases that handle Querying well and have a powerful querying
language. As an example for a system following CQRS, we could have services performing
command queries by using an Event Store, where they can pusblish new events to modify
some entity’s state and in the background, some services can listen to these events and replay

8

Figure 6: CQRS Architectural Pattern [11]. Typically the database on the left is an
EventStore and the Query Model consists of specialized databases

them to insert to a specialized database, for example ElasticSearch [15], that handles text
finding queries more efficiently. This Query Model will be always somewhat in the past,
eventually consistent with the Command Model’s state, but this guarantee is most often
enough for the typical modern applications. Figure 6 illustrates how CQRS decouples Read
Model from Write Model.

Details about database encapsulations in microservices are explored in [16]. Helland cate-
gorizes databases of services as inside and outside data. Inside data denotes encapsulated
data contained inside a service itself, while outside data is information that is queryable
from outer services, services different than those where the data resides. In the paper’s
architectural framework, only the service that owns the database is allowed to change data
and it will publish data to be queried by the outside services. Moreover, from outside services,
this published data will be something "from the past". The author distinguishes between
the following reference data types that are typically encountered:

• Operands consist of information published by a service to be used by some other
services that perform an operator ’s job. Services running operators combines the
published operands to run their job and possibly produce some results in the system.

• Historic Artifacts that report information about what happened in the (distant)
past. Many systems need to collect immense amount of data and archive for future
statistics and planning (e.g. user’s UI interaction patterns, traffic statistics..)

• Shared Collections where reference data is shared by multiple services that also
want to mutate it. The publishing service also periodically pushes updates. Write
conflicts and stale reads, all need to be handled by the clients of this database.

He goes on to explore facets of data encapsulated by their services: storing data from ouside
and exensibility. All in all, the article provides an intuitive vision about how microservices
interact with data from its own database and with data residing in other microservices and

9

is especially useful for developers designing systems that follow the CQRS architectural
pattern.

4.3 Sagas

4.3.1 Concept

Figure 7: Saga Workflow

The concept of saga was first introduced in a paper in 1987 [14], and the concept gained a lot of
attention in the context of microservices [6]. Sagas are similar to nested transactions. A nested
transaction is a transaction started by an instruction within the scope of the transaction
which is already in progress. In sagas, each of these transactions has a corresponding
compensating transaction. The reason behind it is the following: if a transactions in
a saga fails, the compensating transactions for each transaction that was successfully run
previously will be invoked to counteract the preceding transactions. Figure 8 illustrates this
behavior.

Due to this logic, the saga guarantees that basically only two states are possible: either all
operations complete successfully or the corresponding compensation actions are run for all
executed operations to cancel the partial processing.

An operation denotes to a part of the saga, which represents a particular work segment.
Each saga can be divided into a sequence of operations which can be implemented as a
separate ACID transactions. On the operation complete state, results are persisted in the
durable storage meaning that it may cause an inconsistent state between the individual
operations invocations. However, the saga utilizes the eventual consistency model, which
denotes that the state will become eventually consistent after the whole saga completes (both
successfully or by compensations calls)[29].

According to the pattern, a compensating transaction must be retryable and idempotent.
These principals are strongly required for a transaction to be managed without any manual
intervention. The Saga Execution Coordinator (SEC) ensures that these principles are
hold.

The Saga Execution Coordinator is the central component of the Saga pattern. It
contains a Saga log, which contains all the transactions-related events recordings and can
be inspected in cases of failures to determine the operations impacted. In case of SEC failure,
it is possible for it to read Saga log once it’s coming back up and take all the corresponding
actions depending on the transactions’ states.

10

Figure 8: Sagas Compensating Operations

In contrast to the traditional transaction approach and patterns like Two-Phase Commit
Protocol, the Saga pattern relaxes the ACID requirements to opt for scalability and availability.
Saga breaks the isolation property as it commits each operation separately, which results in
a fact that updates of the not fully committed saga are immediately visible to other parallel
operations. So, instead of using ACID model, Saga follows BASE model described above in
a section 3.2.

Let us now describe the profits of utilizing Sagas in the distributed systems. Saga definition
in distributed systems is redefined as a sequence of requests which are placed on a particular
participants invocations. The ability of these requests to provide ACID guarantees is not
restricted and must be ensured by individual participants.

Saga Execution Component (distributed and durable) and Saga Log also present in distributed
systems. Exactly like in the centralized system, each participant is required to expose the
idempotent compensating request handler. This handler is capable of semantically undoing
the participant’s request in the saga.

The main challenge that arises in this case would be the network latency and participant
failures that may happen between remote invocations.

4.3.2 Implementation

There are two approaches [27] to implement the Saga pattern, which we describe below.

• Choreography-based. Using the EventStore we are able to leverage the existing
event handling communication in the system and define saga flows using them.
In this pattern each microservices that is part of the transaction publishes an event
that is processed by the next microservice [2]. The main challenge here is to decide
whether the microservice is going to participate in Saga. In this pattern, the Saga
Execution Coordinator is either embedded within the microservice or is a standalone
component.
The flow is considered successful if all the microservices complete their local transac-
tion meaning there is no failure reported by any of the microservice. However, if
failure occurs, the microservice reports to the Saga Execution Coordinator, and it
invokes the relevant compensation transactions. Pattern’s behavior is illustrated in
Figure 9

11

The Choreography pattern is suitable for the microservice application with devel-
opment being is on the early stage. Also, it is a good fit when there are fewer
participants in the transaction. It doesn’t require additional service implementa-
tion and doesn’t introduce a single point of failure, since the responsibilities are
distributed. Among disadvantages of the pattern we can mention potentially confus-
ing workflows if new steps are added, and risk of cyclic dependency between saga
participants because they have to consume each other’s commands [23].

Figure 9: Choreography-Based Saga

• Orchestration-based. This pattern uses a central coordinator that orchestrates
each participant’s actions, it is responsible for managing the overall transaction
status. The central coordinator can be a service in the system of microservices that
coordinates other services. If any of the microservice encounters a failure, then the
orchestrator is responsible for invoking the necessary compensating transactions.
Orchestration pattern becomes extremely useful for microservice application on a
later development stages. It is good for cases where there are complex workflows
involving many participants. It doesn’t introduce cyclical dependencies, as the
orchestrator unilaterally depends on the saga participants[23]. However, it has
higher complexity which requires an implementation of a coordination logic and
provides an additional point of failure. This pattern is shown in Figure 10

4.3.3 Discussion.

Usage. Saga pattern is a good fit if it is required to ensure data consistency in a distributed
system without tight coupling. It is less suitable for cyclic dependencies and tightly coupled
transactions.

Challenges. Saga pattern can be difficult to implement and hard to debug, the complexity
grows as participants increase. It is not possible to roll back a transaction as the participants
commit changes to their local databases.

12

Figure 10: Orchestration-Based Saga

Best practices. It’s best to implement monitoring to track the saga workflow. The lack
of participant data isolation imposes durability challenges. The saga implementation must
include countermeasures to reduce anomalies [23].

4.3.4 Related work and literature evaluation

We found a sufficient amount of research papers, articles and tutorials to understand the
concept of Saga, its main strength and weaknesses. Among all the scientific papers we can
highlight [9], [5], [30], which clearly define main strength and weaknesses of the pattern,
however, these articles do not provide any implementation insides. Therefore we referred to
tutorials, in particular, [23] and [2] useful for deeper understanding of the implementation
details.

5 Literature evaluation

After analysing the relevant resources for this literature study we came up with the following
general overview of the field. Below we present what we enjoyed and found appealing:

• A lot of resources and best practices guidelines about tansactions overall and
transactional patterns in monolith applications.

• A decent amount of modern research papers regarding Saga pattern, published after
2018-2019 meaning that the technology holds the attention.

• Clear definition of key differences and strong/weak sides of 2PC and Saga as of
patterns implementing the opposite policies.

Understandably not every aspect of such a broad and interesting field was appreciated by us,
below we present some of the things that were a bit off-putting:

• Less resources and best practices guidelines for distributed applications.

• Lack of research regarding the future of this topic and discussions on how existing
strategies can be enhanced.

• Controversial opinions regarding 2PC

13

6 Conclusions

Generally, in a microservice architecture, a distributed transaction is an outdated approach
that can cause severe scalability issues. Modern patterns that rely on asynchronous data
replication or model distributed write operations as SAGAs avoid these problems. 2PC
distributed transactions are considered a bad practice, they create a single point of failure
and also overload the transaction coordinators heavily. Improvements try to mitigate some
of the issues. Sagas, despite all benefits, can become complex to implement especially
Choreography-based ones. They are difficult to follow and log. To do this one needs to keep
track of full flow of event messages in the EventStore and engineers need to have a good
grasp of the the system as a whole.

References
[1] Daniel Abadi and Matt Freels. “Achieving ACID Transactions in a Globally Distributed

Database”. In: (2017).
[2] Baeldung. Saga Pattern in Microservices. https://www.baeldung.com/cs/saga-pattern-

microservices. 2022.
[3] Kenneth P Birman et al. “Overcoming cap with consistent soft-state replication”. In:

Computer 45.2 (2012), pp. 50–58.
[4] Lianping Chen. “Microservices: Architecting for Continuous Delivery and DevOps”. In:

ACM Sigmod Record (2018).
[5] Binildas Christudas. “Deployment and communication patterns in microservice archi-

tectures: A systematic literature review”. In: Journal of Systems and Software 180
(2021).

[6] Binildas Christudas. Practical Microservices Architectural Patterns. 2019. Chap. 6.
Distributed Messaging.

[7] James C. Corbett et al. “Spanner: Google’s Globally Distributed Database”. In: ACM
Trans. Comput. Syst. 31.3 (Aug. 2013). issn: 0734-2071. doi: 10.1145/2491245. url:
https://doi.org/10.1145/2491245.

[8] MongoDB documentation. What are ACID Transactions?
https://mongodb.com/basics/acid-transactions. 2021.

[9] Karolin Dürr and Guido Lichtenthaeler Wirtz. “Patterns for Microservices-Centric
Applications”. In: 13th Central European Workshop on Services and their Composition
(2021).

[10] Pan Fan et al. “2PC*: a distributed transaction concurrency control protocol of multi-
microservice based on cloud computing platform”. In: Journal of Cloud Computing 9.1
(2020), pp. 1–22.

[11] Martin Fowler. “Cqrs”. In: Martin Fowler’s Blog (2011).
[12] Lars Frank and Uffe Kofod. “Atomicity implementation in e-commerce systems”. In:

Proc of the Second International Conference on Electronic Commerce, ICEB. 2002.
[13] Deka Ganesh Chandra. “BASE analysis of NoSQL database”. In: Future Generation

Computer Systems 52 (2015). Special Section: Cloud Computing: Security, Privacy
and Practice, pp. 13–21. issn: 0167-739X. doi: https://doi.org/10.1016/j.future.
2015.05.003. url: https://www.sciencedirect.com/science/article/pii/
S0167739X15001788.

[14] Hector Garcia-Molina and Kenneth Salem. “Sagas”. In: ACM Sigmod Record 16.3
(1987), pp. 249–259.

[15] Clinton Gormley and Zachary Tong. Elasticsearch: the definitive guide: a distributed
real-time search and analytics engine. " O’Reilly Media, Inc.", 2015.

[16] Pat Helland. “Data on the Outside vs. Data on the Inside: Data kept outside SQL has
different characteristics from data kept inside.” In: Queue 18.3 (2020), pp. 43–60.

[17] Pat Helland. “Life beyond distributed transactions: an apostate’s opinion”. In: Queue
14.5 (2016), pp. 69–98.

[18] Yousef J Al-Houmaily and George Samaras. Two-Phase Commit. 2009.

14

https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245
https://doi.org/https://doi.org/10.1016/j.future.2015.05.003
https://doi.org/https://doi.org/10.1016/j.future.2015.05.003
https://www.sciencedirect.com/science/article/pii/S0167739X15001788
https://www.sciencedirect.com/science/article/pii/S0167739X15001788

[19] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A distributed messaging system
for log processing”. In: Proceedings of the NetDB. Vol. 11. 2011, pp. 1–7.

[20] Butler Lampson and David Lomet. “A new presumed commit optimization for two phase
commit”. In: 19th International Conference on Very Large Data Bases (VLDB’93).
1993, pp. 630–640.

[21] Butler Lampson and Howard Sturgis. “Crash Recovery in a Distributed Data Storage
System”. In: Unpublished technical report, Xerox Palo Alto Research Center (June
1979).

[22] Brahim Medjahed, Mourad Ouzzani, and Ahmed Elmagarmid. “Generalization of acid
properties”. In: (2009).

[23] Microsoft. Saga distributed transactions pattern, Azure official docu-
mentation. https://docs.microsoft.com/en-us/azure/architecture/reference-
architectures/saga/saga. 2022.

[24] Sam Newman. Building microservices. " O’Reilly Media, Inc.", 2021.
[25] Nadia Nouali, Anne Doucet, and Habiba Drias. “A two-phase commit protocol for mobile

wireless environment”. In: Proceedings of the 16th Australasian database conference-
Volume 39. 2005, pp. 135–143.

[26] Diego Ongaro and John Ousterhout. “In search of an understandable consensus al-
gorithm”. In: 2014 USENIX Annual Technical Conference (Usenix ATC 14). 2014,
pp. 305–319.

[27] Eugen Paraschiv. “Saga Pattern in Microservices”. In: (2022).
[28] George Samaras et al. “Two-phase commit optimizations in a commercial distributed

environment”. In: Distributed and Parallel Databases 3.4 (1995), pp. 325–360.
[29] Martin Stefanko, Ondrej Chaloupka, and Bruno Ross. “The Saga Pattern in a Reactive

Microservices Environment”. In: 14th International Conference on Software Technologies
(2019).

[30] Chellammal Surianarayanan, Gopinath Ganapathy, and Pethuru Raj Chelliah. “Patterns
for Microservices-Centric Applications”. In: Essentials of Microservices Architecture
(2019).

15

A Comparative Study of the State of the Art Tools for
Cloud Monitoring

Sklavos, Antonios
a.sklavos@student.vu.nl

Kyriazopoulos, Dionysios
d.kyriazopoulos@student.vu.nl

Nadif, Amin
a.nadif@student.vu.nl

Abstract

Monitoring cloud-deployed applications, as well as infrastructures, is essential due
to the inherent complexity of those systems. Detecting failures and bottlenecks
originating in the infrastructure itself is paramount for optimal performance. The
specialized monitoring software is complex and often platform-specific. Based
on our bibliography and former research we present the state-of-the-art of cloud
monitoring tools. We set multiple evaluation dimensions and we explain them
clearly. We compare and contrast the tools based on those evaluations. Finally, we
draw conclusions and suggest fields of further research.

1 Introduction

Back in the 00s, cloud computing was a revolutionary term, a mere suggestion that would transform
the IT industry from its core. Today, cloud computing has fulfilled its potential, revolutionized the
industry, and become a mainstay in almost every kind of business. The NIST (National Institute
of Standards and Technology)[24] definition of cloud computing: Cloud computing is a model
for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction. NIST also
acknowledges five essential characteristics of cloud computing which are: on-demand self-service,
broad network access, resource pooling, rapid elasticity, and measured service. This cloud model
is composed of three service models which are Software as a Service (SaaS), Infrastructure as a
Service (IaaS), and Platform as a Service (Paas). Furthermore, it describes private cloud, public cloud,
community cloud, and hybrid cloud as its deployment models. In layman’s terms, Rashid et al.[12]
explain that cloud computing essentially replaces our computer’s hard drive with the Internet. Instead
of storing and accessing data to and from our hard drives, we perform the same actions through the
internet.

This literature review aims to introduce and describe the term cloud monitoring, present the state-of-
the-art tools, discuss their similarities and differences and finally provide ideas for further research.

1.1 Cloud Monitoring

The cloud is a large, distributed system that considers virtualization technology to manage resources.
Availability, concurrency, dynamic load balancing, independence of running applications, security,
and intensiveness are all needed to provide a cloud system. Along with these attributes, Cloud com-
puting must deal with challenges as well. These challenges include quality of service (QoS), provision
and guarantee of SLAs (Service-Level Agreement), and management of large-scale, complex, and
federated infrastructure. To face these challenges, accurate and fine-grained monitoring activities are
required.

1

1.1.1 Need for Cloud Monitoring

Ward et al.[30] break down the motivation for cloud monitoring into five essential pieces. We briefly
explain those pieces.

• Performance: Find ways to investigate the performance jitter, detect resource over-sharing,
select ideal instances according to the user’s needs and financial capabilities, and determine
a performance benchmark for future deployments.

• SLA enforcement: Notice unusual SLA violations like high error rates in APIs and perfor-
mance degradation of VMs. Ensure safeguarding performance for the user.

• Load balancing latency: Monitor load balancing to avoid incorrect traffic distribution and
to ensure the creation of additional VMs when required.

• Service faults: Ensure service availability and correctness, specifically when an entire
business depends on one cloud provider.

• Location: Decide the geographic location of a VM based on all relevant information. Ensure
that the VM is placed as close to the user or the data source according to the user’s demands.

In another approach, Aceto et al.[14] emphasize the importance of cloud monitoring for both the
Cloud Service Providers (CSP) and the Cloud Service Consumers (CSC). Cloud monitoring provides
essential information, which should serve as assurance to the SLAs and the quality of service.

Syed et al.[29] move one step forward and describe both the Cloud Service Providers and Cloud
Service Consumers’ perspectives. The CSPs consider efficient resource utilization an important
factor, both performance-wise and financially-wise. They also want insurance regarding the SLA
boundaries of the service level that the user anticipates. Finally, monitoring physical infrastructure
is paramount in avoiding service interruption and machine failure. On the other hand, CSCs are
mainly concerned about the promised service level and the QoS. Additionally, they need to monitor
the condition and health of the virtual machine at any second.

From another perspective, Hauser et al.[20] pick three major categories, to divide the motivation for
cloud monitoring. The first category is alerting, which includes ensuring service availability, detecting
errors and failures, and preserving the health of the system. This can be likened to Ward’s[30] service
fault category. Secondly, resource allocation aims to monitor load balancing and avoid incorrect
traffic distribution or the creation of VMs when not required. This category is likened to Ward’s load
balancing latency category. Finally, visualization of current and historic measurements could help in
controlling an enterprise’s resources. We observe that every approach has significant similarities in
motivating cloud monitoring.

1.1.2 Cloud Monitoring Taxonomy

Cloud Computing involves many activities for which monitoring is an essential task. There ex-
ist different perspectives[13][14][29] regarding this taxonomy of essential tasks. After carefully
investigating them, we produced the following taxonomy:

• Capacity and Resource Planning: Developers have to investigate the capacity and the
resources, measure their performance, and predict their demand. They also need to consider
how such applications and services are designed and implemented. Finally, they need to
estimate the workload.

• Capacity and Resource Management: Avoid faults and errors when migrating virtual
resources from one physical machine to another. Maintain 100% uptime and provide high
availability.

• Data Center Management: Cloud services revolve around huge data centers and utilize
large-scale data engineering. To keep these data centers running smoothly, developers have
to monitor the hardware and provide essential metrics. Furthermore, they have to analyze the
data and apply the results to resource provisioning or troubleshooting actions. Paramount to
achieving this, is the scalability and the real-time operation of these actions.

• SLA Management: Monitor SLA parameters to avoid violations and subsequently financial
or legal actions. Moreover, monitoring SLA parameters allow the developers to create better

2

pricing models, by creating more realistic SLAs based on the performance shown to the
user.

• Billing: Cloud computing exploits the model of "utility computing". Consumers pay
proportionally for the use of the service, according to the type of price model and the type
of resources they have chosen. Monitoring is mandatory to assure the consumer that he is
paying for what he is using. It is also important for the developer to measure the billing in
order to generate accurate and verifiable bills.

• Troubleshooting: A monitoring system is an important tool for investigating faults and
identifying where the error exists or which is the underlying problem. The system should be
highly reliable and available to ensure that the client knows the reason for the failure in a
timely manner.

• Performance Management: Real-time applications are dependent on the cloud’s high avail-
ability. For users to select the most applicable cloud according to their needs, monitoring the
cloud’s performance is crucial. Monitoring the cloud’s performance and metrics can allow
the user to switch clouds in real-time with confidence and ease. Performance monitoring
also ensures that the SLAs are not violated.

• Security Management: Critical services and agencies use clouds daily. Highly precise and
strict security monitoring is mandatory to guard sensitive information and satisfy relevant
regulations and rules.

Cloud monitoring is paramount for each one of the aforementioned fields. It is responsible for
providing accurate and precise metrics and statistics and helping cloud developers deal with any kind
of danger.

1.1.3 Cloud Monitoring Properties

A cloud monitoring system must have specific qualities in order to be successful. These properties are
analyzed by Bulla et al.[17] and others [14],[13]. In this subsection, we briefly present the properties
that are needed for the smooth operation of a cloud monitoring system.

1. Accuracy: A cloud monitoring system is accurate when it provides measures that are as close
as possible to the real value. Cloud services need accuracy for tasks like troubleshooting
and SLA management, where a slight error can be misleading for problem-solving or can
lead to a violation of SLAs.

2. Adaptability: Requirements, resources, and demands change dynamically in the cloud. A
cloud monitoring system is adaptable when it can support this dynamic nature and adapt to
varying computational and network loads.

3. Autonomic System: Reacting extremely fast to errors and faults of the cloud services
is crucial for a monitoring system. Equally important is to avoid human intervention in
dealing with these mishappenings. A cloud monitoring system is autonomic when it can
react automatically to unpredictable changes without exposing them to the consumers. This
property relies upon other properties like timeliness and elasticity.

4. Availability: A cloud monitoring system should be available at any point for any user that
requests its services. Availability is important for tasks like SLA management, billing, and
resource and capacity management.

5. Comprehensiveness: A comprehensive cloud monitoring system can support multiple
types of resources, either physical or virtualized, multiple types of monitoring data, and
multitenancy. Comprehensiveness is important for both providers and developers because
it enables adaption to any monitoring API without considering the type of monitoring
information.

6. Elasticity: Cloud computing needs to be dynamic to cope with the various assignment of
resources to users, multiple monitoring requirements, and multitenancy. Thus, a cloud moni-
toring system is elastic when it deals with dynamic changes, and consequently, it depends on
scalability. The monitoring system should be able to monitor correctly, dynamically created,
or destroyed virtual resources. Elasticity is also called dynamism.

3

7. Extensibility: Extensibility is the functionality that extends the cloud monitoring systems
to match the new demands of each user. An extensible cloud monitoring system provides
the opportunity to enhance the comprehensiveness of the system without tampering with the
monitoring framework.

8. Intrusivity: A cloud monitoring system is intrusive if adaptability means significant mod-
ifications to the cloud. When non-cloud monitoring systems extended to the cloud, they
retained low intrusiveness along with their extensibility.

9. Scalability: A scalable cloud monitoring system is able to deal with the huge volume of
data collected by many virtual resources on top of a single physical resource. Consequently,
the system can effectively analyze this volume of data without being impaired by neither a
large number of parameters nor a large number of resources.

10. Reliability: Reliability is paramount for the QoS of cloud services. A cloud monitoring
system is reliable when it can do certain actions under specific conditions and for a known
period of time.

11. Resiliency: A cloud monitoring system is resilient when it can withstand several failures
without compromising its operations. Resiliency is a key part of ensuring the smooth
operation of tasks like billing and SLA management.

12. Timeliness: Timeliness is a complex property. Failure to obtain the correct information on
time erases the usefulness of monitoring itself. Timeliness is affected by three core factors:
sampling, analysis, and communication delay. Each of these factors can affect the cloud
monitoring system positively or negatively, and there is always a trade-off between speed
and sampling when requiring up-to-date information. Thus a cloud monitoring system is
timely when it detects events on time for their intended use.

Figure 1 provides a schema of the cloud monitoring properties and their interconnections. It also
pinpoints the issues each property has to deal with. In certain approaches[17] multitenancy, which
means concurrently handling requests and data from multiple users, and portability, which means
that cloud environments must work with different platforms and services, are included as well in the
cloud monitoring properties.

Figure 1: Cloud monitoring properties and related issues

1.1.4 Monitoring by Cloud Layer

Cloud Security Alliance models the cloud into seven layers. Spring[26][27] introduces those layers
through the CSA (Cloud Security Alliance) and presents monitoring techniques for each one of them.

The Facility Layer requires physical monitoring which, includes surveillance, architectural resiliency,
and security guards. Furthermore, the operation of a data center comes with great responsibility and
should be accompanied by a comprehensive continuity of operations plan (COOP).

Control and monitoring of the Network Layer are essential in securing the operations between
the provider and the consumer. Protection mechanisms like firewalls, dynamic firewalls, intrusion
detection systems (IDSs), intrusion prevention systems (IPSs), and network proxies are the standard
techniques for protecting the cloud’s border from external dangers. Collecting and logging information
from the monitoring is also useful and can serve as validation for the SLAs.

4

Securing the Hardware Layer begins with monitoring the hardware and ensuring high availability.
Measuring values like memory use, bus speeds, processor loads, disk storage, temperature, and
voltage can lead to correct and timely load-balancing.

The Operation System of a cloud service must be secured and monitored. If the host OS is
compromised, then sensitive customer data is compromised as well. If the providers monitoring the
OS notice unusual changes, they can return the OS to a known good state. Furthermore, the customer
should apply standard practices to monitor his OS.

The security of the Middleware is significant in maintaining a cloud provider‚Äôs or customer‚Äôs
information assurance capabilities. Malicious acts against the middleware can be as harmful as
against the OS. Techniques to protect the middleware include: maintaining an architecture that is
simple enough to prevent errors in the settings, third-party inspection of the developer’s source code
and reporting to the customer, and finally monitoring of security services if they are provided by the
middleware.

The source code and the business logic of each Application should be examined by third parties and
reported to the customer. Regarding web applications, cloud developers should apply precautions like
deploying digital certificates (SSL) and performing domain authentication. Additionally, applications
should sanitize all inputs.

The Users who are members of the customer organization are important to the security policy. Cloud
developers can monitor access patterns to recognize malicious behavior. Furthermore, the education
of the user regarding the dangers of the web is an integral part of security.

2 State Of The Art

In this section, we will present state-of-the-art tools for cloud monitoring. We will split these tools
into two distinctive categories: Commercial and Open-Source tools. We will briefly describe the
majority of the tools from each category and delve deeper into a small selection of them. There will
be comparisons based on the already mentioned cloud monitoring properties. Furthermore, we will
provide information about each tool’s deployment model and monitoring architecture. We will also
discuss each tool’s service model, wherever applicable.

The National Institute of Standards and Technology (NIST)[24] provides its definitions for each model.
The private cloud model is provisioned for exclusive use on behalf of a company. Consequently, this
model is inaccessible to the public. The private cloud can exist on or off premises and can be operated
by a third party. It is considered the most secure deployment model. The public cloud infrastructure
is designed for use by the general public. A company, a business, a government, or an academic body
can operate it. It exists on the premises of the cloud provider. Famous examples of public clouds
include the Amazon Elastic Cloud Compute and the Google app engine. The community cloud is
designed for exclusive use by a specific group of consumers from different organizations with shared
interests. As a result, more than one organization can manage it, and it can exist on or off-premises.
Finally, the hybrid cloud is a composition of two or more distinct cloud infrastructures like the ones
mentioned above. Despite being bounded together, these cloud infrastructures remain unique.

There are different research papers[23][15][28] analyzing the monitoring architecture of the cloud
monitoring tools. Centralized monitoring architecture and decentralized monitoring architecture are
the two distinct categories.

• Centralized Architecture: In a centralized architecture, the server resources send status
updates to the centralized monitoring server. The system collects states from the resources
by polling and pushing. Afterward, the monitoring server is responsible for identifying
errors, reporting them, and taking control. Drawbacks of centralized architecture include
lack of scalability, suffering from a single point of failure, and lack of computational power
to handle loads of monitoring requests.

• Decentralized Architecture: Decentralized architecture is on the rise. A monitoring tool
configuration is decentralized when none of the system’s components are more important
than the others. In contrast to centralized architecture, if one component fails, then it does
not influence the operability of the other components. This type of monitoring system have,
also, scalability improvements over centralized systems.

5

2.1 Commercial Tools

Numerous approaches have taken place regarding commercial cloud monitoring tools. Alhamazani
et al.[15] provide information for a few commercial tools, while also comparing them in terms of
monitoring architecture and other evaluation dimensions. Birje et al.[16], Aceto et al.[13] and Fatema
et al.[19] describe briefly the commercial tools and compare them in terms of cloud monitoring
properties. Syed et al.[29] introduce some tools as well and compare them in terms of monitoring
architecture and deployment model. Finally, Fahad et al.[18] provide advantages and drawbacks for
each tool. To continue, we present some of the commercial cloud monitoring tools.

2.1.1 Monitis

Monitis is a commercial cloud monitoring tool that started in 2006. Since 2011, Monitis operates
under the TeamViewer umbrella after its purchase. Monitis is capable of providing cloud-based
agentless IT monitoring solutions. It is able to monitor websites, servers, applications, networks,
and cloud virtual instances. Its main focus is Amazon Services but also supports Microsoft Azure,
RackSpace, VMware, and Hyper. Monitis is a Software-as-a-Service solution and also provides
extendable APIs. Additionally, it supports fully customizable widgets for viewing performance data.
Finally, it copes well with most essential tasks except for security management.

2.1.2 LogicMonitor

LogicMonitor[7] is a SaaS-based unified observability and IT operations data collaboration platform
for enterprise IT and managed service providers. It was founded in 2008 and partners with third
parties like Dell and HP.

LogicMonitor adopts an elastic multi-layer approach and ranges from web servers and databases to
the underlying supervisors. It supports visualized environments like VMware and Cloud platforms
like Amazon and Eucalyptus. It implements extensibility by providing the users with extensible
APIs. Furthermore, it stores data for up to two years and assists the customers 24/7. By using
AIOps, it enables troubleshooting and proactive prevention of alarms and issues. LogicMonitor is a
collaborative effort of RackSpace and NimSoft.

Figure 2: LogicMonitor workflow

2.1.3 CloudMonix

CloudMonix[3] is an enhanced cloud monitoring and automation solution for Microsoft Azure Cloud.
CloudMonix replaced AzureWatch, which monitored and aggregated key performance metrics from
Azure resources. It provides a live monitoring dashboard that allows the cloud administrators to

6

explore the cloud resources and get timely information on errors and cautions. CloudMonix supports
automatic problem resolution by using AI and scripting, while it can also auto-scale the resources to
match the ever-changing demands of the customer. A possible limitation can be that it works only
with Azure Cloud resources.

2.1.4 NimSoft

Nimsoft is a cloud monitoring tool able to monitor data centers of both private and public clouds.
Nimsoft was bought by CA Technologies in 2010 and it is still used by them. It offers a large variety
of IT monitoring, including a plethora of OS servers, storage, and network resources including routers
and firewalls. Furthermore, Nimsoft monitors databases like Oracle, applications like Microsoft
Exchange, Cloud environments, and VoIP environments by Cisco.

Like LogicMonitor, Nimsoft is capable of extensibility by extending APIs and encouraging custom
configuration from the customer. Importantly, it succeeds with each of the essential tasks discussed
in the introduction. Nimsoft’s drawbacks include non-fault tolerance and not supporting SLA
compliance.

2.1.5 CloudKick - RackSpace Cloud Monitoring

CloudKick[9] is a multi-cloud management platform with a range of high and low-level monitoring
features and metrics. Cloudkick was acquired by RackSpace, which provides monitoring data like
CPU utilization and traffic volume. Through Cloudkick, measured data can be visualized in real-time.
Alerts and reports inform the users about errors and cautions.

RackSpace Cloud Monitoring which eventually replaced CloudKick is an effective tool for ad-
vanced monitoring configurations and for providing a variety of metric data collection. Cloudkick’s
disadvantage is that it works only on centralized models and does not ensure availability.

2.1.6 CloudWatch

Amazon CloudWatch[1] is one of the most famous commercial cloud monitoring tools. It is used for
monitoring higher-level cloud data. Cloudwatch can store the collected data for up to fifteen months.
Customers can build plots, statistics, metrics, and alarms among others, on this data.

A key advantage of CloudWatch is that it allows the customer to collect data from all his Amazon Web
Services resources, applications, and services into one single platform. Cloudwatch automatically
publishes one-minute metrics with a one-second interval. It can also be used in hybrid environments.
Cloudwatch enables consumers to raise alarms and automate actions to identify malicious activities
or abnormal behavior. Additionally, automatic dashboards help with the visualization of the data and
ensure insight for the users. Consequently, it helps in troubleshooting the user’s infrastructure and
quickly resolving the root of the problem. Users can create alarms to trigger auto-scaling and, as a
result, optimize each action proactively. Furthermore, Cloudwatch collects data from every layer of
the performance stack, leading to the monitoring of the client-side data.

In figure 3 provided by Amazon, the workflow of CloudWatch is described.

Figure 3: CloudWatch workflow

7

2.1.7 Comparison

In table 1 the commercial cloud computing tools are compared in terms of key properties. The
key properties were extensively described in the introduction1.1.3. Monitis’ key properties are
comprehensiveness, because it can support various kinds of resources and cloud providers, and
extensibility as it provides extendable APIs. LogicMonitor falls in the same category as Monitis and
adds elasticity due to its capability to deal with a plethora of assignments and to its elastic multi-layer
approach. Because of its automatic recovery procedures, CloudMonix thrives as an autonomic
system. In addition, the ability to auto-scale resources in real-time makes scalability its key property.
Nimsoft can monitor a broad variety of resources and databases, thus making it comprehensive.
Cloudkick-RackSpace’s dynamic nature makes it highly adaptable, while CloudWatch’s automated
responses and auto-scaling leads to timeliness and elasticity.

Table 1: Comparison by key properties

Tools A
cc

ur
ac

y

A
da

pt
ab

ili
ty

A
ut

on
om

ic

A
va

ila
bi

lit
y

C
om

pr
eh

en
si

ve
ne

ss

E
la

st
ic

ity

E
xt

en
si

bi
lit

y

In
tr

us
iv

ity

Sc
al

ab
ili

ty

R
el

ia
bi

lit
y

R
es

ili
en

cy

Ti
m

el
in

es
s

Monitis - - - - ✓ - ✓ - - - - -

LogicMonitor - - - - ✓ ✓ ✓ - - - - -

CloudMonix - - ✓ - - - ✓ - ✓ - - -

NimSoft - - - - ✓ - - - ✓ - - -

CloudKick - ✓ - - - - - ✓ - - - -

CloudWatch - - - - - ✓ ✓ - - - - ✓

In table 2 we can observe the comparison of the tools based on architecture and deployment model.
Unfortunately, we could not find enough information about the monitoring architecture of the tools.
Monitis and Nimsoft work with both centralized and decentralized architecture. On the other hand,
CloudKick-RackSpace works only with centralized monitoring architectures. All the tools except for
CloudMonix, work with private clouds. CloudMonix works exclusively with hybrid clouds, while
LogicMonitor supports this deployment model as well.

Table 2: Comparison by architecture, deployment model

Tools Centralized Decentralized Public Private Hybrid Community

Monitis ✓ ✓ - ✓ - -

LogicMonitor NA NA - ✓ ✓ -

CloudMonix NA NA - - ✓ -

NimSoft ✓ ✓ ✓ ✓ - -

CloudKick ✓ - - ✓ - -

CloudWatch NA NA - ✓ ✓ -

8

Fatema et al.[19] propose a ranking system for both the commercial and the open-source cloud
monitoring tools. They score a percentage for each of the tasks proposed in the cloud monitoring
taxonomy 1.1.2. We investigate those scores in table 3 and comment on them based on their and
our findings. We observe that Monitis’ big advantage is its capacity and resource management and
planning. The wide range of Monitis is the reason behind this advantage. Its ability to cover most of
the IT industry stands out. As mentioned earlier, security is its major disadvantage. LogicMonitor
was not part of the Fatema et al. research. We recognize capacity and resource management as
LogicMonitor’s best task. Its elastic approach and its extensibility plays the biggest part in our
reasoning. Additionally, its ability to monitor databases makes up for the data center management
category. CloudMonix was known as AzureWatch, when the research took place. We updated the
scores based on our study. We emphasized on troubleshooting because CloudMonix’s automated
solution system matches the demands of the customers. Nimsoft scored the highest in almost every
category. We decided to penalise SLA and Security management as they are part of Nimsoft’s
drawbacks, according to our research. CloudKick provides high and low level monitoring features
and metrics. This versatility contemplates for the high score in both capacity and resource planning
and management. Finally, we boosted most of the scores for CloudWatch because it deserves it
through its longevity and performance.

Table 3: Comparison by taxonomy

Tasks Based on Taxonomy M
on

iti
s

Lo
gi

cM
on

ito
r

C
lo

ud
M

on
ix

N
im

so
ft

C
lo

ud
K

ic
k

C
lo

ud
W

at
ch

Capacity and Resource Planning 82% 81% 80% 91% 87% 82%

Capacity and Resource Management 80% 87% 85% 90% 88% 85%

Data Center Management 65% 85% NA 87% NA NA

SLA Management 81% 89% 81% 80% 88% 81%

Billing 82% NA 79% 89% 86% 83%

Troubleshooting 77% 85% 88% 83% 80% 83%

Performance Management NA NA NA NA NA NA

Security Management 66% 80% 82% 79% 75% 84%

2.2 Open-Source Tools

2.2.1 Nagios

Nagios Core [8] is a general-purpose open-source monitoring system (Commercial version "Nagios
XI" is also offered). It is one of the most popular monitoring solutions on the market. It offers great
flexibility through the usage of plugins (compiled executables or scripts). As a result, limitations
such as lack of features can be straightforwardly resolved. Both official and third-party plugins exist -
Nagios itself does not have internal mechanisms to perform monitoring tasks. [22] Advanced users
may benefit from the development of their custom plugins. As a result, it can be adapted to monitor
virtually any environment [25]. It works on Linux and Unix variants.

It is especially common for Nagios Core to serve as the basis framework for building more
advanced/user-friendly monitoring solutions. [21]

9

2.2.2 Zabbix

Zabbix [11] is a cloud monitoring solution that started in 2001. It has the ability to monitor servers
and services in addition to cloud infrastructures. Contrary to Nagios (2.2.1) it works on macOS,
Windows, and Solaris on top of Linux. Zabbix offers easy installation and configuration. [29] Its
latest version (6.0 LTS) adds Kubernetes monitoring, offering automatic nodes/pods discovery, and
can be deployed on existing enterprise frameworks. A drawback of the framework is that it is unable
to scale to support very large environments [29]. Additionally, the auto-discovery feature of Zabbix
can be inefficient [19].

Its price and reliability stemming from two decades of operation make it a compelling choice.

2.2.3 collectd

collectd [5] is a Unix daemon, which uses a modular design to minimize the resources it needs [4] in
order to collect network metrics - done using plugins.

Its main advantage is its performance, offered by its modular design and pure C implementation. For
that reason, it is a popular choice for embedded systems. Additionally, it is actively developed and its
documentation is of a reportedly high standard.

A major limitation is its lacking alerting mechanisms (monitoring is limited to simple threshold
checking [5]. Additionally, no visualization platform is offered [19]

2.2.4 Ganglia

Ganglia [6] is a popular distributed monitoring system for clusters and Grids. Its main three compo-
nents are:

• gmond (Ganglia Monitoring Daemon)

• gmetad (Ganglia Meta Daemon)

• Web front-end

gmond must be installed on each cluster that must be monitored. gmond collects information about the
state of the cluster and sends it to a ganglia meta daemon. Multiple cluster nodes are represented using
gmetad (point-to-point connections). gmetad sends aggregated state information (XML) collected
from gmond instances, to a client over TCP.

Among its drawbacks, is its inability to be easily customized. Additionally, it introduces network
overhead due to the multicast updates, and XML event encoding [19]. Also, Ganglia has no alerting
mechanisms.

2.2.5 cacti

Cacti [2] is an open-source network and server monitoring tool, first released in 2001. It is used
mainly as a frontend to the industry standard logging software RRDTool [10].

Its advantages include excellent graph support and flexible data sources. In addition, Cacti has a
reportedly appealing dashboard with several view options.

Many companies are using Cacti with some other monitoring tools for monitoring their cloud [29].

2.2.6 Comparison

In table 4 we compare the open-source cloud monitoring tools by their properties. To begin with,
Zabbix’s ability to monitor different kinds of resources makes it comprehensive. It is also known for
its reliability and timeliness, due to its auto-discovery feature. Nagios supports the usage of plugins,
thus making extensibility one of its key properties. Its higher level of performance ensures accuracy
and resiliency. Collectd benefits as well from high performance and consequently it provides high
accuracy. Furthermore, it is extendable, through its support for plugins. Cacti’s fault management
makes it an autonomic system and adds to its resiliency. Ganglia can monitor different kinds of cloud
environments making it highly adaptable and scalable.

10

Table 4: Comparison by properties

Tools A
cc

ur
ac

y

A
da

pt
ab

ili
ty

A
ut

on
om

ic

A
va

ila
bi

lit
y

C
om

pr
eh

en
si

ve
ne

ss

E
la

st
ic

ity

E
xt

en
si

bi
lit

y

In
tr

us
iv

ity

Sc
al

ab
ili

ty

R
el

ia
bi

lit
y

R
es

ili
en

cy

Ti
m

el
in

es
s

Zabbix - - - - ✓ - - - - ✓ - ✓

Nagios ✓ - ✓ ✓ - ✓ ✓ - ✓ - ✓ -

Collectd ✓ - ✓ - - - ✓ - - - - -

Cacti - - ✓ - - ✓ - ✓ - ✓ ✓ -

Ganglia - ✓ - - ✓ - - - ✓ ✓ - -

Table 5 shows each tool’s monitoring architecture and support for deployment models. Again,
information about the monitoring architecture is limited. Nonetheless, we managed to confirm that
Zabbix, Nagios, and Cacti can support both centralized and decentralized monitoring architectures.
Furthermore, Zabbix and Cacti can also support both Public and Private cloud models. On the
contrary, Collectd and Ganglia can support only private cloud models, while Nagios supports only
public cloud models.

Table 5: Comparison by architecture, deployment model

Tools Centralized Decentralized Public Private Hybrid Community

Zabbix ✓ ✓ ✓ ✓ - -

Nagios ✓ ✓ ✓ - - -

Collectd NA NA - ✓ - -

Cacti ✓ ✓ ✓ ✓ - -

Ganglia NA NA - ✓ - -

Similarly to the comparison section of the commercial tools2.1.7, Fatema et al.[19] also scored the
open-source tools based on the tasks of the proposed taxonomy. The first pattern that we notice, is
the huge difference in scores between the open-source tools and the commercial ones. As we can
see in table 6 the open-source tools have lower percentages in almost every task. The scores that
stand out are the ones from Zabbix. We lowered the capacity and resource management score,due
to Zabbix’s inability to auto-scale when dealing with larger environments. Capacity and resource
planning and management for Nagios are high in comparison to the other tools. Nagios’ extensibility
and adaptability can help in dealing with virtually every environment. Collectd is a rather limited
cloud monitoring tool and the scoring depicts that. Average in almost every category and extremely
low in terms of security management. Cacti usually accompanies other monitoring tools when used by
cloud developers. This limitation leads to its more than average scores. Finally, despite its drawbacks,
Ganglia scores more than average and that is reasoned by the work of its three important components.

11

Table 6: Comparison by taxonomy

Tasks Based on Taxonomy Za
bb

ix

N
ag

io
s

C
ol

le
ct

d

C
ac

ti

G
an

gl
ia

Capacity and Resource Planning 87% 75% 66% 56% 73%

Capacity and Resource Management 76% 70% 60% 56% 70%

Data Center Management NA NA NA NA NA

SLA Management 88% 66% 56% 47% 59%

Billing 86% 61% 64% 46% 68%

Troubleshooting 80% 57% 60% 43% 63%

Performance Management NA NA NA NA NA

Security Management 70% 54% 41% 59% 63%

3 Discussion

3.1 Review

With increasing cloud complexity, the amount of effort required for cloud infrastructure management
and monitoring must be increased. When compared to traditional infrastructure, the size and
scalability of clouds necessitate more complicated monitoring systems that must be scalable, effective,
and rapid. In terms of technology, this means that there is a demand for real-time performance
reporting while monitoring cloud resources and apps. As a result, cloud monitoring solutions must be
sophisticated and tailored to the variety, scalability, and high dynamic nature of cloud settings.

In Chapter 1 we looked at the important monitoring assessment dimensions in depth. Chapter 2
reveals that monitoring solutions in both the open-source and commercial realms do not use all
of those characteristics. Each commercial instrument had a specific strength in one of the main
attributes listed in 1.1.1. Where particular tools fall short in one property, they usually make up
for it in another. We couldn’t locate enough information on the monitoring architecture of several
commercial tools because they worked on distinct architectures. Monitis and Nimsoft are unique in
that they work with both centralized and decentralized architecture, the commercial tools, with the
exception of CloudMonix, are able to use a private cloud. Further analysis reveals that CloudWatch
and CloudMonix are effective for the vast majority of jobs. When we look at open source tools, we
see that many of them are restricted in some form, requiring you to pay a "premium" version of the
tool. When a "Free" version is employed, they tend to be lacking in many properties. The tools each
have their own strengths, such as collectd, which has excellent performance but no alerting systems.

The state-of-the-art research in the field of cloud monitoring was presented and addressed in this
publication. It did so by presenting several design challenges and research factors that may be
taken into account when evaluating a cloud computing system. It also discussed a number of cloud
monitoring tools, including their benefits and drawbacks. Finally, this work presented a taxonomy of
current cloud monitoring technologies,

3.2 Further Research

Because monitoring has become such an important part of the cloud infrastructure, its scalability must
be given top emphasis. Based on this fact, as well as the already mentioned monitoring elements and
methodologies, we predict that more reliable cloud monitoring systems will necessitate a significant
amount of effort. Furthermore, we discovered that there are no universally agreed-upon procedures,
formats, or criteria for evaluating cloud monitoring’s progress. As a result, we advocate for more

12

collaborative use of research facilities, where tools, lessons gained, and best practices can be shared
with all interested research and professions.

Another interesting part to focus on is the modernization of past research. We discussed that most of
the former studies contain tools that are either acquired by other companies or deprecated completely.
Thus, comparisons between the tools may be slightly inaccurate. The evolution of the state-of-the-art
deserves more recognition and more research. Therefore, we propose modern research on today’s
state-of-the-art.

Surprisingly, there are no past studies on individual tools. World-renowned tools like CloudWatch and
LogicMonitor have not been researched at all. They are only mentioned in review and comparison
studies. Furthermore, open-source tools like Nagios and Zabbix are discussed in papers about
distributed and cloud monitoring in general, or as part of a review. Studying scientific papers based
on individual tools will be great for evaluating the state-of-the-art comparison. We propose further
research, separate for each tool, to showcase their uniqueness and their qualities. Finally, each study
should provide examples of use.

4 Conclusion

Cloud monitoring is essential to keep up with the huge volume of data that modern cloud systems
produce. Many cloud monitoring systems, either commercial or open-source, succeed in their
tasks. By taking into consideration past research, we presented those tools and discussed their
characteristics and limitations. We evaluated them, with respect to the evaluation dimensions set.
Finally, we compared them based on the cloud monitoring taxonomy, the cloud monitoring properties,
the monitoring architecture, and the deployment model. All tools discussed show extremely high
complexity. There are a plethora of past studies exploring cloud monitoring tools. Despite that, we
believe that bibliography needs modernization, because it has not kept up with the pace of the cloud
systems’ evolution. In conclusion, cloud computing has never stopped evolving since its inception
and we have to evolve along with it.

References
[1] Amazon cloudwatch. https://aws.amazon.com/cloudwatch/.

[2] Cacti homepage. https://www.cacti.net/.

[3] Cloudmonix. https://cloudmonix.com/.

[4] collectd features. https://collectd.org/features.shtml.

[5] collectd homepage. https://collectd.org.

[6] Ganglia monitoring system homepage. http://ganglia.info/.

[7] Logicmonitor. https://www.logicmonitor.com/.

[8] Nagios core. https://www.nagios.org/.

[9] Rackspace. https://www.rackspace.com/.

[10] Rrdtool homepage. https://oss.oetiker.ch/rrdtool/.

[11] Zabbix. https://www.zabbix.com/.

[12] Amit Chaturvedi Aaqib Rashid. Cloud computing characteristics and services: A brief review. International
Journal of Computer Sciences and Engineering, 7:421–426, 2 2019.

[13] Giuseppe Aceto, Alessio Botta, Walter de Donato, and Antonio Pescape. Cloud monitoring: A survey.
Computer Networks, 57(9):2093–2115, 2013.

[14] Giuseppe Aceto, Alessio Botta, Walter Donato, and Antonio Pescape. Cloud monitoring: definitions,
issues and future directions. pages 63–67, 11 2012.

[15] Khalid Alhamazani, R. Ranjan, Karan Mitra, Fethi Rabhi, Prem Prakash Jayaraman, Samee Khan, Adnene
Guabtni, and Vasudha Bhatnagar. An overview of the commercial cloud monitoring tools: Research
dimensions, design issues, and state-of-the-art. Computing, 97, 04 2014.

13

https://aws.amazon.com/cloudwatch/
https://www.cacti.net/
https://cloudmonix.com/
https://collectd.org/features.shtml
https://collectd.org
http://ganglia.info/
https://www.logicmonitor.com/
https://www.nagios.org/
https://www.rackspace.com/
https://oss.oetiker.ch/rrdtool/
https://www.zabbix.com/

[16] Mahantesh Birje and Chetan Bulla. Commercial and Open Source Cloud Monitoring Tools: A Review,
pages 480–490. 01 2020.

[17] Chetan Bulla and Mahantesh Birje. Cloud monitoring system: Basics, phases and challenges. 12 2018.

[18] Ahmed Mohammed Fahad, Abdulghani Ali Ahmed, and Mohd Nizam Mohmad Kahar. The importance of
monitoring cloud computing: An intensive review. In TENCON 2017 - 2017 IEEE Region 10 Conference,
pages 2858–2863, 2017.

[19] Kaniz Fatema, Vincent C. Emeakaroha, Philip D. Healy, John P. Morrison, and Theo Lynn. A survey
of cloud monitoring tools: Taxonomy, capabilities and objectives. Journal of Parallel and Distributed
Computing, 74(10):2918–2933, 2014.

[20] Christopher B. Hauser and Stefan Wesner. Reviewing cloud monitoring: Towards cloud resource profiling.
In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pages 678–685, 2018.

[21] Chavee Issariyapat, Panita Pongpaibool, Sophon Mongkolluksame, and Koonlachat Meesublak. Using
nagios as a groundwork for developing a better network monitoring system. In 2012 Proceedings of
PICMET ’12: Technology Management for Emerging Technologies, pages 2771–2777, 2012.

[22] Gregory Katsaros, Roland Kübert, and Georgina Gallizo. Building a service-oriented monitoring framework
with rest and nagios. In 2011 IEEE International Conference on Services Computing, pages 426–431,
2011.

[23] Praveen Kumar, Priyavrat Singh, Sarthak Chopra, Jagmeet Singh Sarna, and Krishna Rawat. Inspection
of cloud computing monitoring tools. In 2017 International Conference on Infocom Technologies and
Unmanned Systems (Trends and Future Directions) (ICTUS), pages 361–365, 2017.

[24] Peter Mell and Timothy Grance. The nist definition of cloud computing, 2011-09-28 2011.

[25] Sophon Mongkolluksamee, Panita Pongpaibool, and Chavee Issariyapat. Strengths and limitations of
nagios as a network monitoring solution. 05 2022.

[26] Jonathan Spring. Monitoring cloud computing by layer, part 1. IEEE Security Privacy, 9(2):66–68, 2011.

[27] Jonathan Spring. Monitoring cloud computing by layer, part 2. IEEE Security Privacy, 9(3):52–55, 2011.

[28] Chellammal Surianarayanan and Pethuru Raj Chelliah. Cloud Monitoring, pages 241–254. Springer
International Publishing, Cham, 2019.

[29] Hassan Jamil Syed, Abdullah Gani, Raja Wasim Ahmad, Muhammad Khurram Khan, and Abdelmuttlib
Ibrahim Abdalla Ahmed. Cloud monitoring: A review, taxonomy, and open research issues. Journal of
Network and Computer Applications, 98:11–26, 2017.

[30] Jonathan Stuart Ward and Adam Barker. Observing the clouds: a survey and taxonomy of cloud monitoring,
2014.

14

Getting grip on technical complex systems

Bjorn Kouw, Qiyang Zhong, and Tim Schouten
Department of Computer Science

University of Amsterdam
Amsterdam, 1098 XH

bkouw@hotmail.com, qiyang.zhong@student.uva.nl, and tim.m.schouten@gmail.com

Abstract

Re-designing complex systems is a hard task, especially for designers who have
little understanding of the technical functionalities of theses systems. By decom-
posing and abstracting these systems, and applying frameworks to visualize the
subsystems, a more clear overview of the technicalities can be obtained. After the
necessary information is gathered, the designer can use design patterns to create a
new UX-design which is both technically sufficient and has a high usability. In this
paper, ten guidelines are presented which aid the designer through this process and
help the re-designing process of technical complex systems.

1 Introduction and motivation

The market in cloud computing is growing. In the first half of 2019, the total revenue of cloud
computing was $150 billion, which was a 24% increase from the previous half-year. In 2021, 92% of
all organizations were at least somewhat in the cloud.Gartner (2019) These figures show that more
and more cloud software is being developed and used by an increased audience of organisations.
However, one of the main issues current cloud systems and especially cloud platforms suffers from,
is that this software frequently lacks usability Brian Stanton et al. (2015)Adam Belloum ([n.d.]). A
cloud platform can be defined as a third-party provider that is responsible for delivering hardware and
software tools over the internet, where cloud platforms are necessary for development of application
Dou et al. (2013). The service provider hosts its hardware and software on its own infrastructure.
The result is that the client’s developers only have to install hardware and software to develop a
new application. Even though this level of service provision is useful, in various cases the provided
interfaces are confusing due to the level of technicality present in the tool designs. When systems
lack usability, it will take longer for the developers that work with this software to complete a task
Jakob Nielsen (1995). This could lead to increased development costs for the client, or the client will
choose to work with another more usable cloud platform.

The people responsible for the usability of the cloud systems are the human-computer interaction
(HCI) practitioners which are also known as UX designers/researchers Alexander Jones and Dr
Volker Thoma ([n.d.]). A UX designer should have a wide range of skills, from understanding
human psychology to requirements modeling and wireframing. UX focuses on issues such as ease
of use, ease of learning, user performance, gathering requirements, and user satisfaction. The UX
practitioners work together with Software engineers. These engineers are trained in programming,
data structures, and database design and are therefore responsible for implementing the designs from
the UX professional to running code Thomas Memmel et al. (2007). Unlike software engineers,
UX practitioners on the design side of the field in most cases do not have the sufficient technical
knowledge to work with the cloud since many design education programs focus on subjects such
as the distinction between designing for mobile and desktop applications and the techniques from
social science. This lack of understanding is a problem since designers need some familiarity and
expertise to function and contribute to the workYang et al. (2018). Cloud platforms are technically

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

and therefore functionally complex. Due to a lack of technical knowledge, a UX practitioner can get
easily overwhelmed. This then could lead to a lower quality design and User Interface (UX) Qian
Yang (2018) Yang et al. (2018). A use case where UX design provided value in a cloud project is
Adobe Creative Cloud. Adobe took all its software and sells it currently through an licensing model
in the cloud. Before cloud, these kind of subscriptions were not possible. Then, UX designers needed
to have an good understanding what the boundaries of cloud are in order to come up and design
functionalities that add value to the user journey Yang et al. (2018).

This paper aims to increase the understanding of UI and usability design in systems where someone
with little or no technical knowledge would be overwhelmed when a complex system, such as a cloud
system, has to be re-designed. In order to do this, a literature review and case description are done to
explain how certain guidelines can be applied to complex system designs in order to increase usability
and understanding of the software. The guidelines suggest some working methods that will help the
designer deal more effectively with the technical complexity of these types of systems, aiming to
help the designer create higher quality designs. These guidelines won’t replace the methodologies
and rules that come with the design process but add more to the knowledge a professional designer
already has. In order to scope this research, the following research question has been defined:

- How can a UX designer better understand the technical aspects of complex software systems
when redesigning these types of systems, in order to provide more effective designs with a
higher level of user experience?

For a more in-depth insight into the problem scope, a selection of sub-questions were also defined:

- How can a UX designer get better understanding of technical complex systems?

- What should the collaboration between different UX designers and developers look like to
create understanding of the system’s technical complexity?

- What are UX design patterns to give the UX Designer handles to work with and simplify
the technical complexity for the user?

- What are guidelines that UX Designers can adopt in their work process to deal with technical
software complexity?

This paper contains four chapters. The first chapter defines complex systems through the introductory
explanation of cloud-based systems. The second chapter then explains how Complex Systems can be
understood through the eyes of a UX designer. Different techniques of understanding these types of
systems are introduced along with a framework which combines the techniques into a way-of-working.
Next, this chapter discusses how UX designers can actually obtain technical understanding of the
complex system through communication and collaboration within the development team. The second
chapter concludes with design principles designers can abide by when actually designing the system
after all necessary understanding and information is obtained. In the third chapter design principles
on how to work with complex systems are presented. The fourth and final chapter of this paper
provides design guidelines which can be used by designers when redesigning technical complex
systems based on the information gathered in the previous three chapters.

2 A Cloud System as a Complex System

The definition of a complex system is a collection of diverse adaptive elements that interact with
each other, whose micro-level behavior produces macro-level behaviors Chaffee and McNeill (2007).
Examples of complex systems are the human body, the economic system, ecosystems, Artificial
Intelligence, and Cloud Systems Cindy E. Hmelo et al. (2000). A cloud system is defined in this paper
as a complex system. Cloud and especially cloud platforms are complex because cloud platforms
allow users to have a high level of control in a dynamic world with lots of variables that interact. A
cloud platform is software that refers to the operating system and hardware of an internet-based data
center server. It allows letting software and hardware products to co-exist remotely and at scale. A
user can, for example, change variables like storage, networking, and CPU in order to get the right
balance between costs and performance. Also, the cloud consists of separated services that did not
exist before the cloud needed to work together in the system. Other vendors can also offer some
services. All these variables that influence each other need to be managed in a cloud platform. That’s

2

why this software is complex Adrian Bridgwater (2021) Chunye Gong et al. (2022). Furthermore,
the cloud is by itself a complex technology. By looking at the characteristics of cloud, it can be seen
that many cloud applications run on multiple virtual machinesIsha Upadhyay (2020). These virtual
machines are, in this example, the elements of the system that need to interact in order to make the
application work since they carry each part of the application. There are also backup virtual machines
for the situation that one virtual machine will be done, then the copy will be activated. Using virtual
machines makes the cloud scalable, which means that new services and copies can be added easily.
In other words; the elements in the system are adaptive M. Hasan Jamal et al. ([n.d.]). Since cloud
platforms and other cloud systems can be defined as complex systems, the authors of this paper will
generalize this research since it should not make a difference in the design process if an UX designer
will re-design a cloud system or another system that is complex in a technical way.

3 How to understand complex systems

Complex systems are difficult to understand since they consist of multiple components that interact,
coexist and requires management. Furthermore, these systems are often dynamic and interdependent.
For people with little technical knowledge, getting a grasp of these systems and understanding exactly
how they work takes a lot of cognitive effort and is difficult since some interactions are invisible and/or
have a time sequence that makes the processes hard to perceive Cindy E. Hmelo-Silver et al. (2007).
When UX designers are required to design such systems, it is important for them to understand how
these systems operate in detail. This enables the designer to create designs that have the highest
usability possible for users who work with these technical complex interfaces and systems Yang et al.
(2018). This paragraph discusses different methods designers and development teams can apply in
order to enable the designer to create these high-level designs.

3.1 Decomposition and abstraction

As the name suggests, complex systems contain a lot of different interactions, information flows, and
other complicated processes. The totality of these processes leads to a system being hard to understand
in its totality. To enable a designer to better understand a system and the different processes, the
system should be divided into various different sub-systems Nicholas R. Jennings (2001) Cindy E.
Hmelo-Silver et al. (2007). This decomposition of the total system into smaller parts, with each
interaction, flow, and process documented separately, makes it easier to understand the system as a
whole. The complex system will be more manageable since the designer can treat the sub-systems
in relative isolation. In the case of UX design, this decomposition of the larger system into smaller
parts enables the designer to focus more on the interactions the user has with the system instead of
the content of the system. This makes for a more usable design and also enables the designer to
connect the different sub-systems together more easily and effectively. The decomposition of the
system can be aided by another method called Abstraction. Abstraction is the method of creating a
simplified model of the system which enhances certain properties while it (temporarily) ignores other,
less important, properties in the system. By creating a simplified model of the system, decomposing
becomes easier because the key elements of the system are identifiedNicholas R. Jennings (2001).
The combination of these two creates a more clear view of the (infra-)structure of the system and
enables the designer to focus on the usability and functionality of the system together, instead of
sacrificing one for the other due to a lack of insights. This means that parts of the system that are
not important to know for the UX designer must be left out of the system, as a general guideline
everything that won’t influence the functionality boundaries of the system can be left out. Applying
these two techniques however also has a downside. In some cases, the system is oversimplified,
leaving out key functionalities and features which are required for proper usage of the system Cindy
E. Hmelo et al. (2000). Instead of a high-level usable design, a feature-lacking design is created
which inhibits the proper functionalities of the system.

3.2 Frameworks for understanding complex systems

In order to make sense of complex systems, frameworks have been created to aid developers and
designers in creating these types of systems. One example of this is the Function-Behavior-Structure-
framework (FBS). “Function” refers to the purpose and functionalities of the (sub-)system, for
example, the log-in system of a software application Cindy E. Hmelo et al. (2000). In software

3

engineering, the “Behavior” then can be seen as the language of causality, where some actions cause
some states enabling another action, possibly in a different subsystem. Finally, “Structure” refers to
the physical structures of the system and is the part which novices understand the easiest Cindy E.
Hmelo et al. (2000). In software development, this could for example be a database and the data it
contains as a physical structure, or various front-end components. The “Behavior” is the most difficult
part to understand for people with a lower technical understanding of systems because this requires
an understanding of both the “Function” and “Structure” parts of the system. The FBS framework
is promising because it focuses on the casual understanding of the relationships among different
aspects of the system. This is how experts of a system view complex systems as well, where technical
novices focus on visible elements and simple causal understanding Cindy E. Hmelo-Silver et al.
(2007) Cindy E. Hmelo et al. (2000). Breaking down a complex system to a structural, behavioral,
and functional level will help designers understand the complex system without oversimplifying it.
Developers can use the FBS framework as a way of explaining systems in presentations, chats or
visualizations Cindy E. Hmelo-Silver et al. (2007). In this chapter, the focus will be on the FBS as a
system visualization aid which serves as a single source of truth in order to get a shared understanding
between the disciplines and to get an overview of the whole system.

Earlier research suggests to only use the functions of the system in the visualization. The authors of
this research would like to propose to make use of the FBS technique, since this technique helps to let
novice people have a better understanding of the system and give them the tools to gain more expert
insights and understanding Thomas Memmel et al. (2007). However, visualizing software according
to the FBS framework could lead to many small functionalities that interact with each other, which
could lead to confusion due to the level of complexity. This is also known as "Death Star" architecture
Kevin Sookocheff (2022). When a system has a lot of functions and interactions, grouping sub-
systems together and treating and documenting these units at a higher level could aid in creating
structure and understanding of the system. After this, these systems could be broken down again and
treated as their own once more. This creates a structured approach to understanding technical complex
systems and the relations and interactions between the various levels of sub-systems. In business this
is done by decomposing teams into different responsibilities. For example; in an financial institution
team one would be responsible for the design and development of the app and team two would be
responsible for the website and its functionalities. Another way to prevent the Death Star to occur
is to simplify the system visualization in such a way that the person who looks at it still gets the
information necessary for the job to be done ?. In the example of the financial institution the app
team needs a more detailed overview of the app subsystem then the website subsystem. In figure 1
an example of an FBS visualization in high overview can be seen. The categories in this figure are
separated and form their own sub-system lines, which show how these systems are related. For a real
project the contents in the categories behavior, structure and functions should be described in more
detail than in the figure in order to get a meaningful overview of the system.

Figure 1: Example of FBS visualisation Sanderson et al. (2019)

3.3 Stock and flow visualizations with the FBS framework

Another way of viewing technical complex systems are as input-output mechanisms. Software
systems can be considered as open systems. This means that the system accepts input from outside.

4

A typical input for software systems would be user input. Inside the system entities and relationships
form an unified whole and can be seen as the boundaries from the surrounding world. One can
visualize this as can be seen in figure 3. This way of simplified thinking and visualizing input and
output comes from the scientific field of system dynamics and is known as the Stock flow Diagram,
which is used to map complex systems Thomas Binder et al. ([n.d.]). In this image the input is
visualized by an arrow and description which is the input pointing to a dotted box. This represents
the inner system with its entities. The arrow pointing the opposite direction is the output Kevin
Sookocheff (2022). This is a simplified overview compared to the FBS diagram and is composed of a
single interaction. One downside of this diagram is that it can be oversimplified.

Figure 2: Stock and flow diagram for software systems Kevin Sookocheff (2022)

As discussed earlier, oversimplified overviews have multiple disadvantages Cindy E. Hmelo et al.
(2000). One can make this diagram more specific by making annotations about the entities. Another
way would be to use the lessons that are learned from the FBS framework. Since the entities are
the structure (S) in the FBS framework one could add arrows with descriptions that describe the
behavioral relationship between the structures and the outcome (B). To implement the function (F) in
this visualization one could add a user story. This agile method describes the problem and the software
feature(s) from a user perspective, shows the value of the feature(s) and allows the connection of
multiple interactions since the user story can be divided and into several interaction moments. Each
moment will have its own stock and flow visualization because the stock and flow visualization can
only exist of one interaction. Using user stories tackles the problem when the system consists of a lot
of interactions Thomas Memmel et al. (2007). User stories also help to manage complexity since they
focus on the user’s tasks rather than the content which in some use cases can be difficult to understand
for one without specialized knowledge of the system Davide Bolchini and John Mylopoulos (2003).
An advantage of this visualization technique is that it helps to compose the system into meaningful
chunks which are less complex compared to the whole FBS system visualization that is mentioned
earlier. Another advantage of this is that it builds on the existing agile methodology of user stories
which are well known by designers and developers Thomas Memmel et al. (2007). A disadvantage is
that this method of visualizing the system only allows for visualisation of the sections that are part of
the user story, and it cannot show the whole system at once. The visualization method mentioned in
the abstraction section is more suited for this. It is advised to make a visualisation according to the
method which is described in the previous section to create an overview and shared understanding of
the system for everybody in the team and to use the visualization method described in this section to
create a deep understanding about an specific part system when the UX designer needs to work with
it on project basis Cindy E. Hmelo et al. (2000).

In this paper the stock and flow visualisations together with annotations based on the FBS framework
are proposed as a way of visualizing complex software systems. A use case is presented to make
the FBS stock and flow visualization from the previous section more tangible. A user story can
have various levels, where high-level user stories consist primarily of multiple interactions, and
low-level user stories consist of mainly one interaction per user story. This paper uses an example of
a high-level user story where somebody wants to change his account setting but first needs to log in.
In figure 3, the stock and flow diagram is implemented with a use case. The use case is simple, but
provides an example which describes that this way of visualizing systems together with use scenarios
and explaining the behavior can reduce the complexity of technical systems. The texts explain the
relationships according to the FBS framework. However they can also explain necessary domain

5

knowledge since this can be necessary to understand the elements from the FBS framework Cindy E.
Hmelo-Silver and Roger Azevedo (2006).

Figure 3: A stock and flow use case

3.3.1 Receiving data from another system

Sometimes a system needs to receive data from another system to work. From figure 4, it can be seen
how this can be accomplished. Since this is not a use case, the elements from the FBS framework are
not displayed. Defining when structures need to be displayed as a separate system is defined by the
system and its boundaries, and the best solution differs per use case Richardson and Lissack (2001).
This way of visualizing two interactions is common in system dynamicsBernhard J. Angerhofer
and Marios C. Angelides (2000). An example of a possible system boundary is where the team’s
responsibility ends. This separated system can have another level of abstraction, but this also depends
on what the UX designer needs to understand the system they are working on. When the other system
is not necessarily required to be understood, such as an external microservice, then it could be treated
as a black box that sends data.

4 Communication across disciplines

Understanding an existing system is the first step in re-designing complex systems. In order to
understand the requirements for the redesign, information regarding the new technical infrastructure
has to be acquired by the designer in order to create a design that serves these requirements. This
transaction of information is key in the process of redesigning complex systems because the technical
infrastructure determines the various sub-systems and interactions present in the total system, and
therefore determines the final design. The key factor that determines the success of the information
transaction is good communication. Research has shown that among project teams with different
backgrounds and tasked with complex system redesign, good interdisciplinary collaboration is crucial
to the success of the project by “reducing inefficiencies and avoiding sub-optimal products being
released” . In order to achieve a successful level of communication, close cooperation and proximity
within project teams are essential Alexander Jones and Dr Volker Thoma ([n.d.]). The source of
the challenge in interdisciplinary collaboration on technical complex systems is primarily from
collaborators’ different levels of background knowledge of the products. For example, computer
engineers could build complex software systems but would need (UX) designers to create designs to
make the product presentable, marketable and make sure the product is easy to use for customers. To
design such a showcase would require designers to have knowledge of the technical aspects of the
software system and engineers to have knowledge of the notion of usability and general design systems

6

Figure 4: Receive data from another system

Alomari et al. (2020). However, it is shown that teaching STEM technical material to non-STEM
students is difficult even in the classroom and would require novel teaching methods to have some
success MAJ and NUANGJAMNONG (2020). In the interdisciplinary workspace, then, it would be
challenging for this kind of background knowledge to be acquired by the collaborators in a clever,
and cost-efficient fashion. With the obstacle of background knowledge, efficient communication,
workflow design, and workload distribution, is ever more important in interdisciplinary collaboration
to communicate effectively. It can be shown that none of these general requirements can be missed,
and one requirement facilitates the other in improving the development process with the advantages
they bring to the table. In the headers below, the importance of the different aspects of interdisciplinary
communications are explained and discussed.

4.1 In-person Communication

Various studies delve into measuring the efficacy of collaboration among different disciplines In health
care, a successful collaboration between nurses and medical engineers would involves a brainstorming
session where all of the coworkers would contribute to a new detailed design Zhou et al. (2021).
The designs are then “revised until all team members have no further comments”. Postdoctoral
researchers from Columbia University Winowiecki et al. (2011) with diverse backgrounds working on
a research question would employ several strategies to facilitate their collaboration, which includes
communicating during in-person seminars and engaging in fruitful and deep epistemological and
philosophical discussions. Without these seminars, it is hard to imagine how they could engage in
deep dialogues. In person communication, then, would prove to be beneficial or even mandatory in
facilitating interdisciplinary collaboration in these kinds of situations. A paper Thomas Memmel
et al. (2007) discussing agile developing process for software and UX engineering argues that in the
workspace of software engineers and UX designers, “continuous and lively discussion is necessary
[. . .] Informal communication across organizational borders should be easy, and teams should
share offices and common spaces.” This image of an open workspace is different from a traditional
classroom, where in traditional teaching the materials would have a high Intrinsic Cognitive Load and
causes materials to be hard to learn and remember MAJ and NUANGJAMNONG (2020). Knowledge
is relational when it builds open upon other pieces of knowledge, such as in the situation when
someone learns about how firewalls prevent attacks would also need to learn about OSI transport
layers and a UDP/TCP protocol for example MAJ and NUANGJAMNONG (2020). High Intrinsic
Cognitive Load is the result of teaching highly relational knowledge, which happens to be the case
for a lot of the background knowledge required to understand cloud systems, in limited teaching
time and with limited support from teachers MAJ and NUANGJAMNONG (2020). In the open
workspace, knowledge and ideas could be circulated without the traditional teaching pedagogy
and argued as more easy to grasp for teammates with these other backgrounds. The freedom of

7

engaging in personal, face-to-face dialogues means the dialogue participants could organize their
ideas and materials freely and provide better learning support for the other participant, which results
in lower Intrinsic Cognitive Load. Whereas teachers teaching a large classroom would be forced
to use traditional teaching methods. Furthermore, in the context of software and UX designers
collaboration, including designers into the development process and the other way around is crucial
and it is facilitated by the open workspace. The main goal of the design phase is that the designs
that are delivered will provide a good user experience, match the requirements of the stakeholders
and be able to be implemented by developers in a technically feasible manner. Previous research
showed that designers produce higher quality designs when they work together with development
when working with complex systems, since development can help them to understand the boundaries
of what is possible with the technology, it is important that these communication happens face to face
Yang et al. (2018).

4.2 Division of Roles

Open workspace is not advocating for unorganized anarchy. Clear roles and capable leadership
exist within agile frameworks as well. A leader “should be an authoritative person who must have
a deep understanding of both subjects Thomas Memmel et al. (2007).” Another paper about UX
design in agile advocates that the project manager (PM) should have experience of UX design and
technical development Laura Plonka et al. (2014). A capable and knowledgeable leadership would
not only simply solve the teams’ development and design obstacles by “navigating through the
development process, proposing solutions to critical design issues and applying the appropriate
design, engineering and development methods”, but also facilitate their collaboration and in the
end improve the final product. For example, the project manager would know the importance of
communication in interdisciplinary collaboration and encourage a friendly, open workspace as well
as organize activities for colleagues to participate in. The team would know that it is being guided by
the right hand and view the project manager as an example that it is possible to be knowledgeable
in both fields and have confidence in the learning, communicating and developing process. On
the management scale, a “Project Manager with a background in technical and UX management
mean[s] that the project level decision maker [is] sensitive to the team’s UX challenges and [is] able
to introduce new ways of working to improve the situation”Laura Plonka et al. (2014). Sensitivity
is another quality that is useful for the leadership in interdisciplinary collaboration. With a timely
intervention, it is possible to avoid a delay of the teams‘ deliverables and a would-be development
disaster altogether. Sensitivity would not simply be a standalone quality of the leadership, it also
requires good communication for leadership to have the capacity to be sensitive.

However, it is possible in an open workspace that a person does not take advantage of the workspace
and prefers to isolate themselves with people who share the same background. Therefore, various
communication problems could still exist. An example of this comes from earlier research, where
“developers [were feeling] inhibited about phoning a designer to discuss [an] issue” and preferred
indirect communication, “or tried to resolve the issue within the development team for the sake
of speed”. The designers, not knowing the issues, would be unlikely to discuss and discover this
issue even in open space due to this lack of communication. This type of problem could be solved
with various methods such as organized meetings. Another method is assigning a Business Analyst
(BA) who could serve as a communication bridge between clients and the interdisciplinary teams
Laura Plonka et al. (2014). “This BA role [could be] staffed by a senior developer, able to manage
the discovery and communication of requirements and to provide direct feedback on the technical
feasibility of design ideas coming out of the meetings between designers and clients.” With a senior
staff members handling these meetings, the outcome of these meetings would be fruitful. This would
save more time compared to letting the teams talk to clients themselves. Feedback from the BA
would be valuable for the teams’ internal communication. The team would consequently know what
to communicate. Their communication would aim to improve upon the BA’s feedback, which further
facilitated their work process.

4.3 Organized activities

Various researches discuss agile as the framework for interdisciplinary collaborations, especially
among computer engineers and UX designers. Agile, however, is only a framework with different
practices. The detail on how to implement agile affects the performance of interdisciplinary projects
Laura Plonka et al. (2014). Nevertheless, it could be argued that learning tasks that facilitate learning

8

the background knowledge are mandatory to implement in interdisciplinary collaborations within
agile frameworks. Earlier research did an experiment where middle school students had to design
an artificial lung, but they first had to understand how the complex system of the lung works. This
experiment was based on design based learning that practitioners learn about a given problem and
design a solution for it. It is important that the assignments has some modeling aspects, to make
an artificial lung means someone has to have an understanding on how the lung interacts with other
organs for example, which will be replicated in the end product. The difference with the traditional
way of classroom learning is that in design based learning students are constructing knowledge
instead of passively receiving knowledge, this is beneficial since it is more engaging for them Cindy
E. Hmelo et al. (2000). Although this argument might not be relevant for UX Designers since their
motivation is different than middle school students, the writers of this research expect that using a
familiar methodology to conduct knowledge will make it easier for them to understand a complex
system. Making an artifact during the process will also make the knowledge seem less abstract
than only teaching the theories of the system. The results of the experiment showed that students
following a design based learning approach understood the complex system of the lungs better than
the students that followed the traditional teaching approach. The researchers also state that reflecting
with an expert of the complex system about what is learned in the design based learning process is
important since this tackles misunderstandings and the expert can give feedback on the learnings
Cindy E. Hmelo et al. (2000).

Earlier research showed that feedback and iterations are an important aspect of the learning process
Janet L Kolodner (2002). Therefore, at the start of the project tasks will be set up to facilitate new UX
designers’ learning in addition to open workspace. An example of such a task is letting the designer
takes charge of a system and creates a quick re-design. The assignment must be a practice assignment
on a real project to ensure that learning the system is the essential part of the actual re-design. The
purpose needs to be communicated to the UX designer to understand that less time needs to be spent
on the outcome. Someone who is an expert in this system needs to guide the designer. This could
be the project manager or business analyst. The UX designer will give presentations to the mentor,
and the mentor will give feedback if he understands the system correctly. The UX designer will
make iterations on the design based on the developer’s feedback. The time the UX designer gets to
complete the practice assignment is dependent on how big and complex the system he will re-design,
but time needs to be scarce enough to let the deliverable be of secondary value but to make iterations
in the process possible.

Other types of activities that promote group communication are recommended. Examples of such
activities are daily stand-ups or design studios. In daily stand-ups, teams and the person in charge,
which is usually a product manager, will attend the meetings and report their work progress. It
provides a venue of communication and keeping up to date with each others’ work Laura Plonka
et al. (2014), which should prevent the issue of designers or developers isolating themselves and
preferring solving issues within their own teams. Therefore, it is important that both designers and
developers join the meeting, and it is also important that persons working on the actual product attend
the meetings consistently. This can prevent the phenomena that designers attend meetings but them
often not being the designers currently doing the work Laura Plonka et al. (2014), which would
cause the interdisciplinary team and the leadership to lose track of the progress on designers’ work.
Design studios are meetings where designers, developers and stakeholders produce design sketches,
present them and critique them in order to find the best technically feasible solution with the aim
of promoting communication, shared understanding and shared ownership of designs Laura Plonka
et al. (2014). With a shared understanding, the aforementioned knowledge and communication gap
between the interdisciplinary teams could be reduced. The team members would essentially be
doing the stated learning tasks that practice their designs on prototyping and construction of new
knowledge. With regular design studio meetings, they would also get feedback and iterations on their
own work, which facilitates their learning process. With a promoted shared ownership, they would
be increasingly encouraged to take responsibility for their own work and consequently they would
be less likely to take actions that are convenient for them but damage the product as a whole. For
example, preferring indirect communication instead of participating in face-to-face conversations is
an action that is convenient but damaging, and it shows that teams taking such a action do not think
about the complex product in its entirety and only want to finish their tasks on their subsystems.

9

5 Design principles

Where the previous chapters of this paper were focused on the process of understanding a technical
complex system, this section describes the process of designing for complex systems. The principle
of interaction design is about realizing a human-computer interface of which the usability is positively
perceived by the user. In this case the interface is a Graphical User Interface (GUI). The most
important characteristic of a GUI is the direct manipulation. This enables users to interact with the
elements on the screen by touch or a pointer device. However most GUIs are a mix between direct
and indirect manipulation, for example by clicking on the menu items the menu opens, which is
the direct manipulation, from where a menu item in selected, the indirect manipulation. The GUI
has some advantages(for example the predictability of the system, reversibility of actions and task
completion time), however the effect of these advantages are dependent on the quality of the UX
designer’s work. This chapter will help the UX designer make decisions to realize these benefits when
they are working on a design of a complex service. In this section a multitude of design principles for
complex systems will be introduced and discussed.

5.1 Principle 1: Use patterns from web design wherever applicable

According to Alan Cooper, one of the founding fathers of usability, the difference between interaction
design patterns from a simple conventional website and a complex system should be as small as
possible, and the design approach should not differ as well M.T. Hoogvliet (2008). An example of
this is a simple radio (option) button. If a user has three to five options to choose from, and only one
can be selected he, the radio button is a suitable interaction design pattern, as this forcefully limits
the user to only a single choice. This means that in the design of a technical complex system that
is software based the interaction design patterns that are also known from the web should be used,
since users transfer their knowledge from the web to this complex software system. Examples of web
design principles are design a clear application, let the application forgive users their faults, do user
research, test the design and create a consistent design. There are more general design principles but
since this paper is focused on creating guidelines for working with technical complex systems it is
assumed that the general principles are already familiar Luke Wroblewski (2001).

5.2 Principle 2: Identify the Posture

It is good practice to understand what kind of system will be (re-)designed since this helps to choose
the design patterns that are the most appropriate for that specific situation. Research found that
graphical user interface applications can be divided into four different types of systems:

• Sovereign postures: Sovereign postures are screens that are mostly used in full screen or
enlarged mode by users. This type of interface is suited for interfaces that require a lot of
interaction for prolonged periods of time. Typically this type of software is a tool that users
use to do productive tasks. An example of a Sovereign posture is a text editor like Google
Docs.

• Transient postures.:Transient posture interfaces usually serves as a support supplement of
a Sovereign posture. This type of posture is mostly used shortly by its users to perform a
single task and then return to the sovereign posture. Because users do not use these transient
postures as much as sovereign postures, controls should be more stressed and bigger than
sovereign postures. An example of an transient posture is the calculator on MacOS.

• Auxiliary posture: The Auxiliary posture is a combination between the sovereign posture
and the transient posture. They are always visible but only play a role of support. The
task-bar is a good example. Often these programs are quiet process reporters which notify
the user in a simple process that is currently going on. It is important that these messages
respect the sovereign posture.

• Daemonic postures: These postures are program interfaces which rarely perform interaction
with users. Daemonic postures perform tasks behind the scenes without users being aware
of this. If users need to interact with such a system they are often perceived as difficult to
use. Printer drivers are an example of a Daemonic posture.

Once the type or types of appropriate postures are identified, the designer can change the design pat-
terns which match the appropriate posture. An example is default window size or, if the functionality

10

which he is designing is a support element, he can choose to do it in a pop-up instead of the main
screen Marton Sakal (2009).

5.3 Principle 3: Make clear to the user a specialized environment is used

According to previous research, hiding the browser controls makes it more obvious for the user that
he is working in a specialized environment rather than just a standard website since it has the look
and feel of a desktop application. The authors argue that the maximum information communication
capabilities will increase by removing the browser functionalities. However, the authors of the current
paper question whether the research findings from 2001 are still valid. The assumption is made that
users are now more experienced with using complex tools in the browser than in 2001 and therefore
understand that the browser can do more than only browsing standard websites Luke Wroblewski
(2001).

5.4 Principle 4: Minimize the use of browser windows

The user should be able to use multiple browser windows. This is by default possible by using HTML
for example, where the user is enabled to perform multiple tasks simultaneously. However, when
the system opens new browser windows by itself, there is a risk that some browser windows will get
lost behind others, leading to confusion and disorientation. The user should take action by using the
browser’s standard functions whenever a new window is required to open Luke Wroblewski (2001).

5.5 Principle 5: Use Rollovers

Information overload will happen when too many interface elements are shown on the same page.
Rollovers are used on the web to eliminate unnecessary interface texts that only serve for more
information or clarification that more experienced users might not need. These rollovers can be
activated by hovering or touch on mobile or tablet. However, using too many rollovers will result in a
flickering effect by constantly having items appear and disappear. It is also not a pleasant experience
for the user to use a rollover for every interface element in the system to understand what is going on,
so use them only when necessary. When interface elements can be explained in one short sentence,
an ALT rollover might be a better option, but this functionality is not available on mobile Luke
Wroblewski (2001).

5.6 Principle 6: Task-based design

Complex software systems are in many cases used to fulfill a task. Examples are applications from
financial institutions, cloud platforms, and text editors. The UX designer should work task orientated,
due to the many different ways an application can be used. The user’s goal should be defined and this
goal has to then be decomposed into into smaller goals and functionalities, making the complexity of
the system more manageable. Task based design is not often used in web design since communication
means are more important in websites than in complex software systems. Luke Wroblewski (2001)
Thomas Memmel et al. (2007) Davide Bolchini and John Mylopoulos (2003).

5.7 Principle 7: Aesthetics

Visual design can give a complex software system personality, familiarity, trust, and user enjoyment.
However, by using non-functional or changing the website patterns for aesthetic reasons, the usability
of the system will suffer. It is important to not allow visual treatments to overwhelm interaction
elements and to only use visual design for functional reasons. Using animations in the visual design
can also increase usability when this is done the right way. Animation should be used as a feedback
mechanism only to show, for example, the transition between screens, illustrate change over time, or
attract attention. Poorly executed animation will only distract the user. However, the system should
not solely depend on animation for understanding since some users can deactivate the animations
using their browser settings Luke Wroblewski (2001).

11

5.8 Principle 8: Simplification

The design process of a UX designer whose task is to redesign a complex system will do this by using
his knowledge based on previous experience. Simplifying the system wherever this is possible will
shorten the time needed to understand the system and therefore, as a consequence, reduce costs. It is
important to ignore interactions in the system and information that have no influence on the behavior
of the system, or do not provide information about the technological boundaries Luke Wroblewski
(2001).

5.9 Principle 9: Scaffolding

Scaffolding is support that enables people to accomplish tasks they could not do otherwise. When a
scaffold is well designed, it will help people learn and discover new tasks of the system and increase
their competencies. It is essential that the scaffolding layer will fade and disappear over time and
perhaps sometimes return so the learner can complete a task independently. Scaffolding needs to
assist in the use of questioning, prompting, modeling, and discussing. An expert will take this role in
a normal situation, but sometimes this is not possible. Technological scaffolding can take this role
and offer the same support as experts. Scaffolding is sometimes necessary for complex software
systems since in some cases the UX designer, for various reasons (such as the topic of domain not
able to tackle all the complexity for novice users), a learning curve might be required. Scaffolding
helps the user to overcome this learning curve. Three forms of scaffolding can be identified:

• Communication and Guidance This type of scaffolding means that the process of a task will
be demonstrated or modeled to the user in a simplified way. Also, the task can be structured
into smaller separated tasks by, for example, checklists. This way of scaffolding will guide
the user.

• Coaching While users perform tasks, guidance will be given by feedback and suggestions
from the system. This can be done by highlighting certain parts of the interface for example,
giving statements that help to solve the problem. Often users can make use of coaching on
request.

• Eliciting articulation This type of scaffolding asks the user to reflect on their given task and
to show their way of thinking. This can be used as a basis of discussion. An example in
software engineering are code comments.

In software, these types of scaffolding can be separated into glass-box scaffolding and black-box
scaffolding. In black-box scaffolding, the software performs an action instead of the user, usually
because learning this task is not important in order for the user to achieve their learning goals. An
example of black-box scaffolding is a calculator in an e-learning environment. Doing the computations
by hand might not be the learning goal. However, when the user performs well, the calculator might
disappear. Black-box scaffolding simplifies processes without increasing the understanding of the
processes. Glass-box scaffolding lets students focus on their learning goals before dealing with other
sub-goals and communicates about the processes of the system. Examples of glass-box scaffolding
are, for example, prompts and instruction videos that prompt the user to perform the action themselves.
Glass-box scaffolding will disappear over time when users are more familiar with the system. Previous
research provided a table with examples for each type of scaffolding, as shown in Figure 5.

For the UX designer, it can be advised to identify if scaffolding is needed for the application and if so,
which type of scaffolding is necessary. For example, if previous domain knowledge is necessary which
the user does not have and cannot be automated, a communication process glass-box scaffolding is
necessary for a tutorial. Earlier research found that scaffolding is a promising technique for learning
about complex systems when it is combined with modeling exercises since this technique can guide
the exploration of the system and can provide necessary background knowledge about the system.
However, what requirements these scaffolds should have in a complex system domain is a topic for
future research. The scaffolding can be designed to tackle the learning curve of the system for a user
of that software, but it can also be used to onboard new team members to make them familiar with
the system Cindy E Hmelo-Silver ([n.d.]).

12

Figure 5: Scaffolding table Cindy E Hmelo-Silver ([n.d.])

5.10 Principle 10: Cloud Usability guidelines for cloud providers

When the complex system is an cloud platform, the cloud usability guidelines found in previous
research should be followed. Not all aspects mentioned in the guidelines will actually make the
cloud system more easy to use but it serves as an overview that describes the expectation of the cloud
consumer which the UX designer can communicate as user needs to the developers. This research
found that cloud usability can be broken down into the following 5 categories and 20 elements. Some
items can be considered important for all complex systems, like accessibility, responsiveness and
User satisfaction. The categories and elements are:

• Capable The following functionalities should be available in the cloud server for cloud
consumers:

– The consumer must be able to see if the cloud service is based on current technology.
– When the consumer uses an IaaS service, then the consumer must be able to define the

exact hardware specifications. For SaaS services the service must be independent of the
cloud hardware and operating system in order to work on any software and hardware.

– The cloud service should be available from every device.
– The cloud service should offer standard cloud services for cloud consumers like

elasticity and scalability.

• Personal The application should offer the functionality to change the look and feel and adapt
to the needs of the organization.

– Cloud services should be accessible for people with various needs and characteristics
– The interface of the cloud systems should be customizable and users have to be able

to change the interface(s) to their own need (for example selling an application as an
white-label product).

– The user should be in control of the cloud service, for example being the one that
determines if cookies may or may not be placed.

– Consumers must have ownership of their own data and it should be made clear who
has access to the data and how it is used.

13

– Multiple access authentications need to be designed to ensure that the user can seam-
lessly login. It is important that the user shouldn’t be aware of all the authentications
and authorizations that happen in the back-end to ensure ease of use.

• Reliable The system and its functions are required to work under agreed conditions and time
constraints.

– Cloud systems should be highly available. Availability can be defined as being able
to perform the functionality over an agreed time period and under certain conditions.
Some cloud providers are advertising over 99% availability.

– The service should be consistent where interaction patterns are applied in the interface,
as well as make sure the behavior of the system should remains consistent under
different circumstances. It doesn’t matter for the user whether or not he uses the
application during peak hours for example, but the system should remain as accessible
as it is under less traffic.

– The service policies from the cloud provider should be transparent and easy to under-
stand to the organization of the cloud consumer since this enhances trust. Another
way to increase trust is to let the users that work with the cloud system from the cloud
consumer team have access to the cloud data center and be informed about the details
of the possibilities of cloud platforms

• Valueable The cloud consumer expects that the cloud system will add value to the organiza-
tion and provide various solutions.

– Organizations expect to save money and other resources when they use a cloud applica-
tion compared to when they run the service on their own infrastructure.

– The experience of the users should be good enough so that they keep consuming the
service.

– The cloud service should bring new functionalities that wouldn’t be possible in a
different IT set-up.

• Secure Cloud consumers expect their data and the cloud system itself are secure

– Cloud systems have to be secure, meaning it must be resistant against various attacks
on its hardware and network.

– Personal data leaks should be prevented. This can be done by authenticating a user’s
credentials, tools, applications, utilities and patches before providing access to sensitive
data.

– Unauthorized users should not have access to data or be able to start any process. The
organisation should be able to decide who has access to which processes inside the
system.

– The cloud provider must ensure that the user has trust in the cloud service. This can be
done by listing how authorization, privacy and security are realized in the service level
agreement Brian Stanton et al. (2015).

6 Complex system design guidelines

From this paper a summary is made in the form of ten guidelines that can help UX designers to work
with and understand complex systems in a more effective way. These guidelines are based on the
insights that were obtained from literature research which are described in the sections above.

6.1 Create a visualization of the system and explain it according to the FBS framework

To get an overview of the whole system, it is advised to create an overview according to the FBS
framework. This creates a shared image of the system along with the different members of the team.
The FBS structure is chosen since this helps readers to understand systems the same way experts do.
More information about this guideline can be found in the “How to understand complex systems”
section.

14

6.2 Decompose the system into subsystems to prevent the designer from getting overwhelmed
by the complexity of the system

When a system consists of many interacting structures, the user can get overwhelmed by its complexity
even when the FBS method is used. This is also known as a Death Star. If this is the case, then
it is advised to break the system into various subsystems that make sense. This would mean the
reader still gets the system information that is necessary, but in a simplified manner. An example
of a meaningful decomposition is when a financial institution, for instance, has an app team and a
website team. The app subsystem should be shown in much more detail to the app team. The website
subsystem could probably be shown more abstractly or be left out. However, the way the system
should be decomposed and if decomposition is necessary would be different for every situation. More
information about this guideline can be found in the “How to understand complex systems” section.

6.3 Abstract the system as much as possible and necessary, but no further in order to prevent
a too simplified view of the system

Some parts of the system should be described and visualized in more detail than others. Abstractions
emphasize parts of the system while it ignores others. This method also prevents the visualization
of the system from becoming a Death Star. Making the system more abstract leads to a simplified
version of the system. This can be a problem since an oversimplified system can create a wrong
understanding of the system or leave out important information which is necessary to work with the
system. In the example from guideline two, the app team requires less understanding of the website
system than the app system. This means that the app team does not need all the detail of how the
website system works. They could visualize the website system as a subsystem and treat it as a
black box, where the subsystem is acknowledged to be part of the system but not explained more
elaborately. However, how the system is abstracted and if abstraction is necessary will, again, differ
per use case and for who is responsible for the redesign. More information about this guideline can
be found in the “How to understand complex systems” section.

6.4 Use the FBS Stock and flow diagram to visualize parts of the system during a project to
create a better understanding of the subsystem

The visualisation proposed in guideline one is meant to give the reader an overview of the system
that is being worked on. However, during a project, a deeper understanding of a specific parts of
the subsystems might be necessary. In this paper, a method is proposed that makes use of the user
story, which is often used in agile methods to decompose the system into a smaller subsystem(s).The
user story will be the function in the FBS framework. From there, a stock and flow diagram needs to
be made. These diagrams come from the scientific field of system dynamics and are used to map
complex systems. A different stock and flow diagram should be made for every interaction (trigger)
in the user story if it differs from the previous one. In the current use case, the system contains all
the technical items that are defined in the FBS framework structures. The system arrow pointing to
the system is the input once triggered (interaction), and the arrow pointing out of the system is the
system’s output. The behavior between the structures when the input occurs is shown by arrows and
described with annotations. This proposed way of visualizing the system decomposes the system in a
meaningful way. It makes it easier to focus on crucial parts of the system and for the UX designer to
understand their tasks. More information about this guideline can be found in the "How to understand
complex systems" section.

6.5 Have an open workspace where teams work closely together and share office space, and
facilitate in person communication during the collaboration

Knowledge gaps exist in interdisciplinary projects and cause communication problems. To facilitate
communication, in-person communication and open workspace is encouraged, instead of passively
being taught the knowledge in a mentorship program or in a classroom setting. Engaging in con-
versations or seminars could help circulate the ideas and close the knowledge gap better since the
participants are actively engaging in conversations. In an open workspace it is easy to include
designers into the development process and the other way around. Previous research showed that
designers produce higher quality designs when they work together with development when working

15

with complex systems, since the development team can help them to understand the boundaries of
what is possible with the technology, it is important that these communication happens face to face.

6.6 Have a product owner with knowledge of all subjects responsible for that specific
subsystem and have people responsible for their own roles in the team

Hierarchy and leadership exist in an open workspace. A capable and knowledgeable product manager
or owner with knowledge of all subjects would not only simply solve the teams’ development and
design obstacles, but also facilitate the team’s collaboration and in the end improve the final product.
For example, the project manager would know the importance of communication in interdisciplinary
collaboration and encourage a friendly, open workspace as well as organize activities for colleagues
to participate in. The team would know that it is being guided by the right hand and view the project
manager as an example that it is possible to be knowledgeable in both fields and have confidence in
the learning, communicating and developing process. It also makes sure the developers’ views are
represented in the designers’ team and vice versa. Roles that are responsible for the teams’ various
aspects of collaboration need to be set up. A business analyst serves as a communication bridge
between clients and the interdisciplinary teams. The business analyst works closely with the teams
and clients. The business analyst could manage the discovery and communication of requirements,
and to provide direct feedback on the technical feasibility of design and development ideas.

6.7 Do modeling exercises as onboarding tasks that help new team members understand the
system where they will work with

It has been shown in an experiment that a group of middle school students, whose goal is to learn the
inner workings of lungs by designing an artificial lung, learn better than students taught by traditional
classroom teaching. It is concluded that in design-based learning students in the first group are
constructing knowledge instead of passively receiving knowledge, which makes the learning more
engaging for them, which in turn make them comprehend the knowledge better than the second group.
Similar tasks could be set up for new team members in the onboarding process. The designer, for
example, could be given ownership of a real system and create a quick re-design. Someone who is an
expert in this system needs to guide the designer, who could be the aforementioned project manager
or business analyst. The UX designer will give presentations to the mentor, and the mentor will give
feedback to make sure the designer understands the system correctly. The UX designer will make
iterations on the design based on the developer’s feedback. Feedback and iterations are important in
this process, because they make for an engaging learning experience if the feedback is correct and
constructive.

6.8 Have designers and developers join each others daily project stand-ups

In daily stand-ups, all teams and leadership will attend the meetings and report their work progress.
This provides a venue of communication and keeping up to date with each others’ work and prevent
a possible issue that designers or developers isolate themselves and prefer to solve issues within
their own teams. In design studios, designers, developers and stakeholders produce design sketches,
present them and critique them in order to find the best technically feasible solution. This would
promote communication, shared understanding and shared ownership of designs, which leads to
improvement on the final product.

6.9 Apply design principles when (re-)designing technically complex systems

Eleven principles have been described that need to be taken into account when the UX designer starts
with the design of a complex system. More information about this guideline can be found in the
"Design principles" section.

6.10 The UX design process of the complex system should be no different compared to the
normal UX Design process

In the usual UX design process, user needs will be researched, a prototype will be made, tested with
real users, and iterated according to their feedback and gathered insights. This is also applicable to
the design process of creating complex systems. The guidelines formulated in this section do not

16

replace the tools, principles, processes, and knowledge the UX designer currently uses to design
systems. User research, user testing, customer journey mapping, and creating personas are still
helpful methods for designing a high-quality application. The reason why these are not treated in this
paper is because they are considered basic knowledge.

7 Discussion

7.1 Understanding complex systems

First, ways to better understand technical complex systems have been proposed, along with the
FBS framework. This framework is useful for better understanding which aspects of the system
should be highlighted and which should be left out. In this paper, it is advised to create two system
visualizations during a project: one that contains the whole relevant system, and one where the
system is decomposed according to the user story. The writers of this research propose the second
visualization, and there is (to the author’s knowledge) no scientific literature that proves that this
visualization would tackle the complexity. However, this proposed method combines principles where
there is scientific proof that it helps to tackle complexity or is used by other scientific principles to
help them manage the complexity. Therefore, the authors of this research believe that this way of
making visualizations will help the UX designer understand complex software in a better way. These
principles are the FBS framework, Stock and Flow diagrams, and abstraction and decomposition.
A user story will be used to decompose the system. The advantage of this method is that it is well
known by designers and developers and is used in many companies to decompose the work for
the UX designer. Adding the system visualization to the user story will not only result in a logical
decomposition of the system, but the UX designer can also work with a method he is familiar with.
The proposed stock and flow FBS visualization is the first version of how such a visualization based
on the user story can look, but one can iterate on this. For example, an improvement point would
be to make it less text-based. An assumption that is made in this paper is that there is already a
complex system that exists. This means that the complex system and its logic is already present, and
the designer needs to redesign the existing system. This is fundamentally different from creating a
complex design from scratch, since it would be otherwise hard to map the system. One could ask
whether it would be the UX designer’s role to understand the system since this can limit creativity.
When the UX designer focuses on what is possible with the current components of the system, he
might not propose functionalities where the system needs to be changed but are despite valuable input.
The authors of this research assume that UX designers will keep doing this when the developers
and product owner communicate clearly to the UX designer that this input is appreciated and plan
some time for them to design them and give them when necessary input in for example a co-creation
session.

7.2 Guidance and communication

After this, the next section described the importance and different aspects of interdisciplinary commu-
nication. Here it became evident that in-person communication was very important for information
exchange, and a clear division and capable leadership are required for more effective work and
encourage team communication. These aspects are positively aided by the so-called open workspace.
Another way of stimulating effective teamwork is by organizing activities that not one but all the
interdisciplinary teams attend. In these activities, team members learn more about the case they are
working on, and obtain more information regarding project progress. Together they develop sketches,
prototypes or design ideas with stakeholders. These ideas will then be reviewed by senior members
of the team and provide a goal or a standard for the next stage of work and communication. Learning
tasks are setup as on-boarding process for junior members to close their knowledge gaps with the rest
of the team. These tasks will give them hand-on practice on the real project and would stimulate their
learning. Next up, the paper presented design principles which designers can follow in order to create
designs with a higher level of usability. These patterns touch upon several different aspects of the
design process and factors that need to be taken into account when creating the UX-design.

7.3 Complex systems design principles

These principles are the ones the authors found to be the most prominently represented in literature
and good examples of principles to abide by. However, as can be understood from the ways these

17

principles are described, there are a multitude of other principles which could also be used by
designers. Take for example principle 4; "Minimize the use of browser windows". Other types of
applications might not use browser windows to operate, but other functionalities to which certain
principles could be applied. This shows that a lot of case-specific "principles" could be formulated,
but this paper tried to highlight the most prominent ones in a generalized way. In principle 10 multiple
items are introduced where some often go beyond the scope of the UX designer like security for
example. However the writers of this research think that these items can serve as user requirements
for the UX designer, he can now say to the developer which aspects of the cloud platform are essential
from a user perspective. Perhaps some of them can be generalized to other professional software, for
example that the cloud platform must be customizable would not only be an requirement for cloud
platforms but for all professional software.

From the information presented in the previous three sections, ten design guidelines were extracted and
created for UX designers to use when redesigning technical complex systems. These guidelines are
(especially) applicable when the designer has a lower level of technical experience or understanding
regarding software applications. The same reasoning as before applies here. These guidelines were
based on the information gathered, and it is very much possible more (general) guidelines could be
identified when information is added to the knowledge pool.

8 Conclusion

This paper presented guidelines that can be used as tools for the UX designer to better understand
and work with technical complex systems. These guidelines were based on literature research. This
literature research firstly described what the term "Complex System" entails and what different
aspects of these types of systems are. These aspects are discussed in the section which describes how
these systems can be understood from a non- or low-technical point of view. By decomposing and
abstracting the system into smaller sections, aided by the FBS framework a better understanding of
the system is creating by dividing the system into smaller segments. This could then be visualized
using Stock and Flow diagrams. After complex systems had been elaborately discussed, another
important aspect was described: communication. This provides the information necessary for the
designer to re-design systems. The communication is improved by in-person communication, a clear
division of roles and organizing group activities for the project group to partake in. By enhancing the
interdisciplinary communication withing these groups, more mutual understanding about the design
task is obtained and better products are delivered. This information gathered from this increased
communication can them be applied to certain design principles which were described next, in order
to finalize the process. This paper therefore described how to understand complex systems, how to
gather information and how to apply this into a red-design according to design principles. This flow
and its elements were then summarized into ten design guidelines for UX designers to follow while
re-designing technical complex systems.

8.1 Future work

As stated in the discussion, there is more research to be done regarding the specifics of complex
system design. Future work could therefore focus on gathering more information from which the
presented guidelines could be improved or added to, or new guidelines could be created altogether.
More researches could also be done on improving interdisciplinary communication. In the era of
COVID-19, in-person communication became difficult and many people prefer to work from home.
Also some companies have chosen to divide their teams across different locations, this means that it
possible for example that the UX designer who is based in Amsterdam has to work together with an
development team that is based in Argentina. Still, face-to-face conversations could happen online in
video conferencing platforms such as Zoom. Technologies such as Cloud-Based Multiuser Virtual
Reality, where organized group meetings are held virtually using VR technology, could replace real
life face conversations or even improve communication efficiency. Since machine learning is often
used as an optimization tool, optimization on how to schedule meetings, how to evaluate the outcome
of onboarding tasks, how to set up a collaborative workflow, and how to distribute workload among
the teams could be done with the help of artificial intelligence. More research could be done on how
to use newly developed technologies to improve communication in the interdisciplinary workspace.
When more time was given the authors of this research would also like to investigate other scientific

18

areas that have an impact on understanding complex system. Promising areas to investigate are
psychology and pedagogy.

References
Adam Belloum. [n.d.]. Cloud Computing Cloud Platforms.

Adrian Bridgwater. 2021. Why Is Cloud Computing So Complicated?

Alexander Jones and Dr Volker Thoma. [n.d.]. Determinants for successful Agile collaboration
between UX designers and software developers in a complex organisation. ([n. d.]).

Hakam W. Alomari, Vijayalakshmi Ramasamy, James D. Kiper, and Geoff Potvin. 2020. A User
Interface (UI) and User eXperience (UX) evaluation framework for cyberlearning environments in
computer science and software engineering education. Heliyon 6, 5 (5 2020), e03917. https:
//doi.org/10.1016/j.heliyon.2020.e03917

Bernhard J. Angerhofer and Marios C. Angelides. 2000. SYSTEM DYNAMICS MODELLING IN
SUPPLY CHAIN MANAGEMENT: RESEARCH REVIEW. Brunel, 342–351.

Brian Stanton, Karuna Joshi, and Mary Frances Theofanos. 2015. Framework for Cloud Usability. In
Conference: HCI International 2015At: Los Angeles, CA , USA. Los Angeles, 664–671.

Mary W. Chaffee and Margaret M. McNeill. 2007. A model of nursing as a complex adaptive system.
Nursing Outlook 55, 5 (9 2007), 232–241. https://doi.org/10.1016/j.outlook.2007.04.
003

Chunye Gong, Jie Liu, Qiang Zhang, Haitao Chen, and Zhenghu Gong. 2022. The Characteristics of
Cloud Computing. 2010 39th International Conference on Parallel Processing Workshops (2022),
275–279.

Cindy E. Hmelo, Douglas L. Holton, and Janet L. Kolodner. 2000. Designing to Learn About
Complex Systems. The Journal of the learning sciences (2000), 247–298.

Cindy E Hmelo-Silver. [n.d.]. Design principles for Scaffolding technology-based inquiry. In
Collaborative Learning, Reasoning, and Technology. Chapter 7.

Cindy E. Hmelo-Silver and Roger Azevedo. 2006. Understanding Complex Systems: Some Core
Challenges. The Journal of the Learning Sciences 1 (2006), 53–61.

Cindy E. Hmelo-Silver, Surabhi Marathe, and Lei Liu. 2007. Fish Swim, Rocks Sit, and Lungs-
Breathe: Expert–Novice Understandingof Complex Systems. THE JOURNAL OF THE LEARNING
SCIENCES (2007).

Davide Bolchini and John Mylopoulos. 2003. From Task-Oriented to Goal-Oriented Web Re-
quirements Analysis. Fourth International Conference on Web Information Systems Engineering
(2003).

Wanchun Dou, Lianyong Qi, Xuyun Zhang, and Jinjun Chen. 2013. An evaluation method of
outsourcing services for developing an elastic cloud platform. The Journal of Supercomputing 63,
1 (1 2013), 1–23. https://doi.org/10.1007/s11227-010-0491-2

Gartner. 2019. Gartner Says Global IT Spending to Grow 1.1 Percent in 2019.

Isha Upadhyay. 2020. Top 15 Major Characteristics of Cloud Computing.

Jakob Nielsen. 1995. Usability Metrics Tracking Interface Improvements. IEEE Software (1995),
12–13.

Janet L Kolodner. 2002. Learning by Design Iterations of Design Challenges for better Learning of
Science Skills. Design Reseach on Learning environments (11 2002), 338–350.

Kevin Sookocheff. 2022. What complex systems can teach us about building software.

19

https://doi.org/10.1016/j.heliyon.2020.e03917
https://doi.org/10.1016/j.heliyon.2020.e03917
https://doi.org/10.1016/j.outlook.2007.04.003
https://doi.org/10.1016/j.outlook.2007.04.003
https://doi.org/10.1007/s11227-010-0491-2

Laura Plonka, Helen Sharp, Peggy Gregory, and Katie Taylor. 2014. UX design in agile: a DSDM
case study . In Open Research On 15th International Conference, XP 2014, Lecture Notes in
Business Information Processing, Springer.line. Lancashire.

Luke Wroblewski. 2001. DESIGN CONSIDERATIONS FOR WEB-BASED APPLICATIONS .
Proceedings of the 45th Annual Meeting of the Human Factors and Ergonomics Society. Santa
Monica, CA: Human Factors & Ergonomics Society. 2001. (10 2001).

M. Hasan Jamal, Abdul Qadeer, Waqar Mahmood, Abdul Waheed, and Jianxun Jason Ding. [n.d.]. Vir-
tual Machine Scalability on Multi-Core Processors Based Servers for Cloud Computing Workloads
. ([n. d.]).

Stanislaw Paul MAJ and Chompu NUANGJAMNONG. 2020. Using Cognitive Load Optimiztion to
teach STEM Disciplines to Business Students. In 2020 IEEE International Conference on Teaching,
Assessment, and Learning for Engineering (TALE). IEEE, 428–435. https://doi.org/10.
1109/TALE48869.2020.9368351

Marton Sakal. 2009. GUI vs. WUI Through the Prism of Characteristics and Postures. Management
Information Systems (4 2009).

M.T. Hoogvliet. 2008. SaaS Interface Design Designing web-based software for business purposes.
Ph.D. Dissertation. Rotterdam University of Applied Sciences, Rotterdam.

Nicholas R. Jennings. 2001. Why agent-oriented approaches are well suited for developing complex,
distributed systems. Communications of the ACM volume 44 (2001), 35–41.

Qian Yang. 2018. Machine Learning as a UX Design Material: How Can We Imagine Beyond
Automation, Recommenders, and Reminders? AAAI Spring Symposium Series: User Experience
of Artificial Intelligence (3 2018).

Kurt A. Richardson and Michael R. Lissack. 2001. On the Status of Boundaries, both Natural and
Organizational: A Complex Systems Perspective. Emergence 3, 4 (12 2001), 32–49. https:
//doi.org/10.1207/S15327000EM0304{_}3

David Sanderson, Jack C. Chaplin, and Svetan Ratchev. 2019. A Function-Behaviour-Structure de-
sign methodology for adaptive production systems. The International Journal of Advanced
Manufacturing Technology 105, 9 (12 2019), 3731–3742. https://doi.org/10.1007/
s00170-019-03823-x

Thomas Binder, Andreas Vox, Salim Belyazid, Hördur Haraldsson, and Mats Svensson. [n.d.].
Developing system dynamix models from casual loop diagrams. ([n. d.]).

Thomas Memmel, Harald Reiterer, and Fredrik Gundelsweiler. 2007. Agile human-centered software
engineering. Lancaster.

Leigh Winowiecki, Sean Smukler, Kenneth Shirley, Roseline Remans, Gretchen Peltier, Erin Lothes,
Elisabeth King, Liza Comita, Sandra Baptista, and Leontine Alkema. 2011. Tools for enhancing
interdisciplinary communication. Sustainability: Science, Practice and Policy 7, 1 (4 2011), 74–80.
https://doi.org/10.1080/15487733.2011.11908067

Qian Yang, Alex Scuito, John Zimmerman, Jodi Forlizzi, and Aaron Steinfeld. 2018. Investigating
How Experienced UX Designers Effectively Work with Machine Learning. In Proceedings of the
2018 Designing Interactive Systems Conference. ACM, New York, NY, USA, 585–596. https:
//doi.org/10.1145/3196709.3196730

Ying Zhou, Zheng Li, and Yingxin Li. 2021. Interdisciplinary collaboration between nursing and
engineering in health care: A scoping review. International Journal of Nursing Studies 117 (5
2021), 103900. https://doi.org/10.1016/j.ijnurstu.2021.103900

20

https://doi.org/10.1109/TALE48869.2020.9368351
https://doi.org/10.1109/TALE48869.2020.9368351
https://doi.org/10.1207/S15327000EM0304{_}3
https://doi.org/10.1207/S15327000EM0304{_}3
https://doi.org/10.1007/s00170-019-03823-x
https://doi.org/10.1007/s00170-019-03823-x
https://doi.org/10.1080/15487733.2011.11908067
https://doi.org/10.1145/3196709.3196730
https://doi.org/10.1145/3196709.3196730
https://doi.org/10.1016/j.ijnurstu.2021.103900

The Impact of Edge and Fog Computing on IoT
Applications for Smart Homes

Okke van Eck
11302968

University of Amsterdam
Amsterdam, The Netherlands

okke.vaneck@student.uva.nl

Florian Gerlinghoff
14092824

University of Amsterdam
Amsterdam, The Netherlands

f.gerlinghoff@student.vu.nl

Anne-Ruth Meijer
10978046

University of Amsterdam
Amsterdam, The Netherlands

anne-ruth.meijer@student.uva.nl

Abstract

Home automation can improve the lives of residents by monitoring and controlling
several home appliances. However, the sensors needed for these services produce
a significant amount of data. Storing and processing all these data could become
the bottleneck of an applications. Edge and fog computing are promising compute
paradigms that could help to overcome this challenge. In this literature review, we
study 14 different home automation applications that use edge and fog computing
and distill the advantages and disadvantages that come with these new approaches.
The most often mentioned benefits are a lower latency, reduced network traffic
and improved privacy and security, all thanks to the local processing of data.
Other benefits and challenges are often dependend on the context of a surveyed
application.

1 Introduction

The Internet of Things (IoT) is far from being a new thing. Already in the 1990s, Mark Weiser of
Xerox PARC [27] wrote about the vision of ubiquitous computers blending with the environment. But
even though most enabling technologies like the internet, embedded devices and low-cost connectivity
technologies have existed for decades now, Corcoran [7] argues that only with the recent advent of
cloud computing, IoT has found wide-spread adoption.

One particular field of application for IoT is home automation: sensors and actuators constantly
monitor and control home appliances, thereby improving the lives of the residents of the smart home
[1, 12]. One challenge that emerges is that all these sensors produce data constantly [26, 19]. Low-
budget IoT devices themselves are not capable of handling this massive amount of data; therefore,
it has to be sent for processing to the cloud [1]. This, however, leads to potentially higher latency,
higher bandwidth requirements and higher energy consumption [31], and the data transport becomes
the new bottleneck [25].

Especially for application domains with low latency requirements like gaming, edge computing was
proposed to tackle these problems [5]. In this paradigm, some of the computation and storage is done
on devices between the data sources and the cloud data centers and close to where the data originate
[5, 25].

We want to investigate what edge and fog computing have to offer for applications in the field of
smart homes and why researchers and developers have chosen or should choose it. In particular,
we are interested in how it helps to process large amounts of data. We therefore pose the following
research question:

RQ What advantages and disadvantages does the use of edge computing and/or fog comput-
ing for big data smart home applications entail?

We divide RQ into the following three sub-questions:

RQ1 Which applications in the field of smart homes make use of edge computing and/or fog
computing?

RQ2 What benefits did researchers or developers of the applications in RQ1 expect when
they decided to use edge computing or fog computing? In other words, why did they
use edge computing?

RQ3 What drawbacks and challenges did edge computing and fog computing bring along
for the applications in RQ1?

To answer these questions, we conducted a systematic literature review. The remainder of this
paper is structured as follows. In Section 2, the terms Internet of Things, big data and smart
home are explained in more detail. We further elaborate on some of the challenges that come with
these technologies. Lastly, we describe edge and fog computing and what distinguishes these two
approaches. In Section 3, we outline the procedure for this literature review, define inclusion and
exclusion criteria, and give a short overview of the included material. In Section 4 we give a brief
overview of what an IoT ecosystem looks like with edge and fog nodes. The other findings of the
literature review are described in Section 5. We divided this section by application domain and
present advantages and challenges of edge computing for each. In Section 6, we discuss our results,
and finally conclude our paper in Section 7.

2 Background

In this section, we give an overview of the relevant background information for the research. Internet
of Things (IoT) is described in relation to the home. The challenges of big data are listed and the
relation of big data with cloud computing is detailed. After this, the cloud computing methods of
edge computing and fog computing are explained.

2.1 Internet of Things

The Internet of Things (IoT) connects many small computers to each other, which then can exchange
data over the internet [3]. These computers can be, for instance, dedicated electronic devices or
integrated into objects of the everyday life. IoT allows the real world to be merged into the virtual
world. An IoT ecosystem is a system that combines the components of IoT and tries to manage
those in an efficient manner [3]. IoT applications can be categorized as consumer-based, industrial-
based and infrastructure-based [3]. Consumer-based applications include smart wearables, smart
vehicles and smart homes. Industrial-based applications include smart manufacturing processes and
automation of industrial tasks. Infrastructure-based applications are, for example, smart cities and
smart environments. Smart homes and home automation are our main focus for this work [3].

2.2 Home automation and smart homes

The terms home automation and smart home both describe the concept of automating services for
residents of a home. However, they cannot be considered synonyms. Smart home refers to the
residence itself that includes smart technologies to improve the quality of life of its users [18]. Home
automation, on the other hand, means controlling and automating home appliances and domestic
features via the network or a dedicated remote control [13]. The term smart technology is often
used in the context of home automation and smart homes. Smart technology has the ability to gather
data from its surroundings and act based on that data [18]. One example is a smartwatch: it can, for
example, measure how loud its surroundings are and warn its owner of possible damaging levels.

2

There are various benefits of creating a smart home, but challenges exist as well. We discuss them in
Section 2.2.2 and Section 2.2.3, respectively.

2.2.1 Components of smart homes

Smart homes consist of various devices and sensors, making up their own IoT ecosystem [32]. The
components of a smart home can be divided into three categories: cyber-physical, connectivity and
context-aware. The first category, cyber-physical, is comprised of the actual smart devices that are
installed directly in the home. They are responsible for the measuring, changing and operating
the home. Examples include smart appliances, energy management systems and smart charging
points. These components need to be able to communicate among themselves and contact the outside
world. This is the responsibility of the second category of components. The connectivity allows
devices to communicate through an IoT gateway. and the homeowner to interact with the smart
technology through, for example, a mobile app. The last category are context-aware components.
These are in charge of the decisions in the smart home; they provide the intelligence. This category
also manages policies and security configurations created by the residents. The intelligence includes
activity recognition, event detection, behavioral analysis and predictions. These aspects are mostly
placed in cloud computing systems, including edge or fog computing.

2.2.2 Benefits

Extending a home with smart technology can provide immediate advantages and long-term benefits
[18]. The potential benefits can be divided into health-related, environmental, financial and social
benefits. Literature reviews on the topic show that the most common benefit is related to improved
health, with environmental being second [18]. Less mentioned benefits are the financial and social
benefits.

Smart homes can provide support to vulnerable people inside the house [18]. Smart homes have
multiple functions for the health of the residents. The technology can aid monitoring, managing and
consulting. For example, the hearth rate of users can be monitored and the user can be alerted of
irregularities. A chronic disease can be helped with by managing prescriptions and registering data.
In terms of consulting, smart home technologies can for example enable virtual visits of medical
professionals.

Environmental benefits are provided by smart technologies focused on energy efficiency [18]. With
climate change and global warming, the interest in energy-efficient devices has increased. Technolo-
gies that monitor energy consumption, control the consumption and aim at energy optimization allow
homes to become more energy-efficient.

The financial benefits can be associated with the health-related and the environmental benefits [18]. A
benefit of improving energy efficiency is the reduction of energy consumption. A reduction in energy
consumption will lead to a reduced energy invoice. An effect of monitoring energy consumption
is the transparency it can provide. The monitoring allows users to compare energy costs from
varying providers to choose the financially optimal provider. Health-related applications for the smart
home could result in prolonged home care, which could be financially beneficial. Summarizing,
smart homes provide multiple financial benefits. However, studies showed that the investment and
prospected maintenance compared to the relatively low prospected saving causes financial benefits to
not result in users choosing to switch to a smart home [18].

Smart homes can provide social benefits by avoiding users to become isolated [18]. The technology
can aim to provide support and establish contact with loved ones. However, this benefit is not always
supported. By replacing face-to-face contact, the feeling of isolation could also increase.

2.2.3 Challenges

There are multiple challenges that hinder the adaptation and implementation of smart homes [18]. A
significant challenge is the technology on which smart homes are based.

The technology used is an important factor of not implementing smart homes [18]. The challenges in
the technology are mainly focused on security, privacy, reliability, complexity and finance. The ability
of gathering massive amounts of often private data by the smart technologies raises concerns about
security. For users, it is often unclear what protocols are used to store their information. Moreover,

3

the applications need to be secured at the device layer, network layer, cloud layer, and human layer
[10]. This requires a lot of knowledge, energy and time to be accomplished.

Another challenge is the reliability. The technology needs a decent life cycle to justify the investment.
Financial challenges for adopting smart home technology are the initial cost and maintenance cost
[18]. This challenge includes the lack of understanding how environmental and healthcare related
devices could benefit financially.

2.3 Big data and its challenges

IoT smart home systems include components that collect a lot of data—big data—to base their
decisions on. This results in a time-demanding and challenging task [14]. Big data refers to a volume
of data that is difficult to analyze, process and store with traditional technology [14]. The use of
big data provides opportunities in decision-making tasks, while introducing challenges as well. The
challenges consist of data storage, transmission, management, processing, and analysis [30].

Data storage The volume, velocity and variety of big data provide a challenge for storage [30].
The velocity can cause the data to quickly scale up, which is difficult to support with traditional
methods for data storage. Cloud computing is an alternative solution for data storage and can support
the velocity, variety and volume better than traditional methods. However, cloud computing could be
a cost-inefficient solution.

Data transmission Using big data means that the data needs to be transmitted on multiple occasions
[30], for example, when it is collected, aggregated from multiple locations, managed and analyzed.
Transferring high volumes of data multiple times introduces a large time demand. Therefore, it is
important to use techniques to minimize the transferred amount.

Data management To efficiently manage data, it needs to be cleaned, stored and organized.
However, on big data, this can be a challenging task [30]. the costs of sensors and computing has
reduced, which makes it easier to collect big amounts of data in a short time [10]. Technologies,
for example Hadoop, are available to provide management solutions. However, there is still the
challenge of automatically generating metadata to describe the data [30]. This is a challenge due to
the complexity of the data and the variety.

Data processing In order to process large amounts of data, a lot of computing resources are required
[30]. Traditional computing solutions do not provide enough computing power, but cloud computing
provides one solution. Another challenge while processing data is data locality. This is the process of
performing the computations on the machine where the data resides instead of moving the data.

Data analysis Extracting information from big data is an important factor of working with big data.
However, it does impose challenges. It requires complex algorithms and parallel processing. The
algorithms need to be able to scale according to the data and to possibly cope with diverse data.

2.4 Big data with cloud computing

As stated before, big data brings a lot of challenges. Its large volume and high throughput require
special technology to benefit from big data through data-driven applications [20]. Data warehouses
were the first solution to store relational data and process them efficiently. Due to their bad support
for unstructured data and high cost, data warehouses were replaced by distributed file storage and
processing platforms like Hadoop [20]. Hadoop was one of the first to provide reliability and
scalability in data processing. Moreover, the platform was able to store and analyze unbounded
big data on clusters. Nowadays, new platforms include more cloud technology to provide cheap,
flexible and scalable big data solutions [20]. Many IoT scenarios today require collection of data
from millions of devices, while processing the data at the lowest response time possible for creating
analytics [16].

Big data analytics systems are latency-sensitive and can create petabytes of data [22]. This amount of
data is impractical to stream back and forth between the cloud data centers and end-devices. This
issue stimulated the development of two new extensions on cloud computing: edge computing and
fog computing [22]. Both are discussed in the next section.

4

2.5 Edge and fog computing

Two compute paradigms that solve the latency and bandwidth problems with cloud computing are
edge computing and fog computing. Modern day cloud computing applications generate loads of
data, which would be very costly to move and process all in the cloud [10]. Edge computing was
introduced to aggregate all data from the IoT devices and send them efficiently to the cloud. It
pre-processes the data and eliminates redundancy, so the data size is reduced without affecting the
information content too much [15]. The cloud itself can then decide how to use the delivered data.

Fog computing is a layer in between the cloud and edge computing. It was introduced to further
reduce the data by executing several cloud functions, like further extensive pre-processing, pattern
mining, classification, prediction, and visualization [32]. Fog computing nodes handle these functions
and provide quick analytics of the collected data while sending the aggregated results to the cloud.
Data arriving at the fog computing layer can be unstructured and does not have a predefined model.
After applying the necessary computations, the fog compute nodes send structured data to the cloud,
possibly containing privacy-sensitive data. This makes the fog nodes very vulnerable to various
attacks, more than edge computing [32].

Note that in the literature, many authors use different definitions for fog computing. A study
often does not make the distinction between the edge computing functionalities and fog computing
functionalities. Instead, they simply state that the application makes use of fog computing in general,
while their definition of fog computing includes functionalities from our definition of edge computing.

3 Method

To answer our research question RQ, we strove to compile a comprehensive overview of smart home
applications that adopted edge computing and understand the motivation and reasoning behind the
use of this paradigm. Therefore, we conducted a systematic literature review [17]. Compared to other
methods for literature studies, this one allows for a guided traversal of the available literature, can
reduce bias because of its systematic approach, and has a clear criterion for when to stop the search.

The last point made it possible for us to reduce the scope of our search and in this way the number
of research articles to review, which was necessary because of the upper page limit of this work as
well as limited time. In particular, we only considered documents that discuss how edge and fog
computing can help with the processing of large amounts of data.

To find relevant articles, we used the Scopus1 search engine. Again because of the page and time limit,
we did not consider other search engines since the Scopus search already yielded enough articles to
review. The following search string was used:

TITLE-ABS-KEY ("edge computing" OR "fog computing") AND
TITLE-ABS-KEY ("big data") AND
TITLE-ABS-KEY (home AND (automation OR smart))

We included research articles, conference papers, and other literature surveys, all in English language,
in our review. That we also cover other secondary studies is in contrast to the recommendation in
[17], but we concluded that surveys, too, can help to answer our research question. The 37 search
result were filtered further according to the inclusion and exclusion criteria shown in Table 1. In
the end, this literature review covers 14 documents spanning the period from 2018 to early 2021
(see Figure 1). Each article was selected, reviewed and summarized by the same single person. The
summaries were then categorized by application type and synthesized. The quality of studies was not
considered explicitly.

1https://www.scopus.com/

5

https://www.scopus.com/

Table 1: Inclusion and exclusion criteria for the literature review

Inclusion Criterion Exclusion Criterion

• The document describes one or several
smart home application that uses edge or
fog computing OR

• The document describes a technical solu-
tion and a smart home application is used
as case study

• The article does not describe a concrete
smart home application OR

• The authors do not explain why they used
fog computing or what the advantages and
disadvantages of this approach are

Figure 1: Number of papers included in this review, per year published

4 IoT ecosystem and architecture

An ecosystem that revolves around IoT applications historically consists of three layers: IoT Device
Layer, IoT Fog Layer, and IoT Cloud Layer [10]. We found that nowadays, some applications also
involve edge computing in the fog layer. However, edge computing is fundamentally different from
fog computing, which is why we add the IoT Edge Layer to our definition, which resides between the
Device Layer and Fog layer. Figure 2 shows the interaction between the four layers. Credits for this
image should go to Farahani et al. [10], as we took figure 4 from their paper and added the edge layer
to it.

We shortly cover each of the layers to provide an understanding of what the ecosystem entails. This
overview will be very concise, as it is our goal is to highlight the impact of edge computing and not
the entire IoT ecosystem.

Device layer The device layer is a set of smart IoT devices that enable individual users to collect
data for their usage. These devices can be classified as either physical sensors or virtual sensors [10].
Physical sensors are hardware that perform measurements, while virtual sensors come in the form
of software and mobile applications. These devices use a connectivity and communication protocol
based on the requirements of the application.

6

Figure 2: Four-layer IoT architecture (with changes from [10]).

Edge layer The edge layer pre-processes the generated data from the device layer and eliminated
redundancy. It limits the data size without affecting the information content too much [15]. This
reduced dataset is then forwarded to the fog layer.

Fog layer The fog layer handles multiple application specific functions. It can further reduce the
data by for example performing pattern mining, classification, or prediction [32]. Moreover, the fog
layer can also be used to create visualizations that are used to determine data-relevance. The goal of
the fog layer, for performance critical applications, is to reduce latency and bandwidth usage as much
as possible [10].

Cloud layer Lastly, the cloud layer is where the fog node data comes in and is processed by the
application. The cloud is often a multi-layer architecture, and consists of a connectivity layer, a
user/device/data management layer, and an application service layer [10]. The connectivity layer
established connectivity between devices, fog nodes, and the cloud. The management layer aggregates
the data from multiple sources and stores it locally. Lastly, the application service layer reads the
data from storage and uses it for application specific purposes.

5 Edge and fog computing in smart home applications

With the relevant terms and concepts explained, this section will provide an overview of the big data
smart home applications we came across during the literature review. These were categorized by
their domain as either related to energy management, health or other applications that enhance smart
homes (“smart living”). We will also emphasize the benefits and drawbacks/challenges that were
mentioned by the authors. Note that we stuck to the terminology of the authors of each article, so
different words might be used for the same concept in different paragraphs.

5.1 Energy management

All the IoT devices together consume a lot of energy, but they can also help with efficient energy
management. In this section, we explore different applications that manage the energy consumption
of smart homes on a small and on a big scale.

5.1.1 On a small scale

In [29], Xia et al. present an “edge-based energy management system” whose job is the scheduling of
home appliances. It aims to create a schedule that maximally utilizes energy produced by the smart

7

home’s solar energy system. The scheduling algorithm runs on an edge device. In their proof of
concept, Xia et al. chose a Raspberry Pi 3B. The authors do not explain in detail why their system
runs on the edge rather than in a central cloud data center, but they mention that they used a Raspberry
Pi “due to its low-cost and appropriate computation capability” [29]. In other words, the system runs
on the edge because it is good enough for this scenario. No cloud needed.

Energy management plays a role, too, in the real case scenario Di Martino et al. describe in [8]. They
outline how users can set constraints and preferences for their home appliances. Based on these
and other information like the weather forecast, an optimal schedule for energy consumption of the
appliances is calculated. This calculation takes place on the fog nodes, but it is important to balance
the computational load between nodes. The authors describe in this paper an approach to parallelize
the calculation and to distribute the load. This task also includes finding a hardware allocation such
that available resources are optimally utilized.

With their approach, Di Martino et al. want to minimize the need for cloud servers. As advantages
of the fog computing paradigm they mention that 1) security issues are avoided because data is not
stored remotely, 2) responses can be provided fast and reliably, 3) results can be delivered even if the
internet connection fails as long as the local network stays intact, and 4) fewer data is transferred
over the network, therefore reducing the likelihood of congestion.

5.1.2 On a larger scale

Singh and Yassine describe a platform in [26] for analyzing data about the energy consumption
from multiple home appliances. The goal is to find patterns in and possibly make forecasts about
consumers’ energy consumption, which enables an optimized operation of smart power grids. The
authors start their design process from the requirements for this platform. These include the ability
to obtain near real-time responses from the system. The authors use fog computing to satisfy
this requirement. Another mentioned advantage of fog computing is that these nodes allow for
resource-efficient computations, which can reduce energy consumption and cost.

However, Singh and Yassine mention that the fog computing nodes fall short for very computationally
intensive tasks or when access to a huge amount of data has to be stored. Hence, they combine fog
computing with the traditional cloud computing paradigm. Fog computing nodes pre-process data
collected from IoT devices and send them to the cloud, where data from multiple fog computing
nodes is aggregated, stored, and analyzed. That is, tasks that are not latency-sensitive can be offloaded
to the cloud.

The authors also mention briefly that privacy and security issues arise when data from multiple
households is processed on the same fog node. The same problem exists when processing the data in
a cloud data center, though.

A similar design that distributes tasks between the fog nodes and the cloud was chosen by Pham et al.
in [22]. Therein, they present the use case of an energy management system for multiple smart homes
within a district. Big data analysis is applied, among other purposes, to detect unusually high energy
consumption or make predictions about the consumption. The authors argue that for time-critical
tasks such as anomaly detection, the computation should take place on fog nodes. Moreover, these
nodes pre-process data before it is sent to the cloud data center. This way, the amount of transferred
data and therefore the required bandwidth are reduced significantly. The cloud is responsible for
handling computationally expensive tasks as well as batch-processing tasks that need access to the
big cloud storage, like the consumption prediction.

One of the biggest challenges is what Pham et al. call elasticity. When a complex application is
divided into components that are distributed across the cloud, fog, and end-devices, it must still be
possible to migrate components vertically between the fog and the cloud and horizontally between
different fog nodes, according to the authors. When such a migration must happen can depend, for
example, on the number of end-devices connected to a single fog node. Horizontal migration might
also be required when end-devices change their physical location. Components are then moved to a
fog node that is geographically closer to the end-device.

Another issue the authors raise is vendor lock-in. When components must be able to migrate between
the cloud and different fog nodes, each potentially from another vendor, compatibility must be
ensured. Lastly, all components must be able to interact if required, regardless of whether they are
deployed on end-devices, fog nodes or in the cloud. After describing all these challenges, Pham et

8

al. go on to propose a framework for IoT big data analytics applications that provides the required
elasticity.

Butt et al. sketch out a model for a global energy management system in [6]. It has four layers.
Layer 4 consists of brokers, each responsible for a number of buildings that contain smart meters.
Smart meters send requests for energy to a broker. The broker communicates with the cloud (layer 1)
and, based on the information it receives, selects one of several fogs in the corresponding region.
Fogs comprise the second layer in this model. The broker installs a specific application, a so-called
cloudlet, on a virtual machine in the selected fog. This cloudlet has to locate the nearest microgrid,
i.e., a grid that spans only a few energy consumers and producers like solar panels, that has a surplus
of energy and can additionally supply the smart meter that initially made the energy request. If
no such microgrid can be found, then the energy must come from the country’s macrogrid. The
microgrids make up the third layer in this model.

In [6], the purpose of using fog computing is to achieve scalability by distributing the load from one
central cloud to many fogs. In addition, improved latency and security are mentioned as benefits of
fog computing. Load balancing within the fogs is still an issue, for which Butt et al. go on to simulate
and compare different algorithms.

5.2 Health-related applications

Traditional healthcare is revolved around citizens visiting doctors for their care [10]. This hospital-
centric model requires patients with chronic diseases to make frequent visits to hospitals or clinics in
order for doctors to make observations. Some other challenges and barriers of the traditional model
are: scaling issues with the increasing number of patients, the increasing average age of the population,
urbanization, shortage of healthcare workers, and rise of medical costs [10]. These challenges and
barriers were a driving force behind a new IoT-driven healthcare model, which transitions from
hospital-centric to patient-centric healthcare.

Patient-centric healthcare entails that the received healthcare is tailored to someone’s individual needs
[10]. In order to integrate hospitals or clinics with patients, it is required to utilize IoT applications.
Examples of areas in which IoT applications can play a role are: hospitals, clinics, mobile-clinics,
telemedicine, wellness, smart homes, and smart cities. In this section, we will cover health-related
applications that are integrated in smart homes.

5.2.1 Patient monitoring

One application to improve the health of elderly people is a monitoring platform proposed by
Alexandru et al. in [2]. It uses data from wearables, smartphones and home sensors to collect
important information about patients, which enables a patient-centric healthcare. As an example,
motion sensors can determine if a person has fallen and needs help. These devices make up the
data generation layer. Data is then sent to the fog layer for processing and small analysis, and then
possibly to the cloud layer for storage and deeper analysis. The fourth layer is the user interface to
various stakeholders.

The requirements for the platform of Alexandru et al. include being able to timely process a large
amount of data and integrating with a variety of devices. Fog computing is a good solution because
(1) it allows for real-time processing of data for time-critical applications due to lower latency, (2) it
can be geographically distributed and scaled, (3) it is capable to provide privacy and security, and
(4) fog nodes supports different communication standards, so they can exchange data with various
devices and sensors.

The authors also list a lot of other benefits of fog computing. These include reduced network traffic
because fog nodes can filter and pre-process data, support for mobility and low energy consumption
since no additional cooling system is needed. Because of the resource constraints of the fog nodes, the
authors offload heavy tasks and storage to the cloud. Other challenges that come with fog computing
are that fog nodes must support a lot of communication technologies and protocols, flexible naming
and name resolution mechanisms must be deployed, and resource managers must consider the context
of the fog-cloud environment.

Feng et al. [11] build their solution based on a similar layered architecture with fog nodes in the
middle. They propose a platform for the analysis of health information in hospitals. According

9

to the authors, it can also be used to support smart homes. Their main concern is to reduce the
energy consumption of the whole solution. This requires energy-efficient sensor networks, but also
an approach to minimize the energy consumed by fog nodes, which are most of the time busy with
data processing. They describe their clustering approach in their paper. In a simulation, they then
show that using their fog computing platform can contribute to saving energy when compared to
traditional cloud computing.

The other reason for choosing fog computing in [11] is the reduced latency, which is important for
delay-sensitive healthcare applications. Hence, fog nodes analyze sensor data, process important
requests and events immediately, and send the less time-critical data to the cloud layer, where it is
further processed and stored. Again in a simulation, the authors show that this setup reduces network
delay, congestion and round-trip time compared to the cloud-only scenario.

For Bera et al. [4], data integrity is important to ensure correct predictions when applying big data
analysis to COVID-19-related data collected by a home monitoring system. In particular, they want
to avoid data poisoning attacks when there are untrusted participants. Additionally, confidential
medical data should only be visible to authorized parties. In their system model, medical devices
and wearables send data to a fog server, which extracts useful information that are relevant for the
predictions. When fog nodes do not have to trust other fog nodes, it is possible to let them be managed
by different entities. The others propose the use of a private blockchain to establish trust in the
provided data. Fog nodes encrypt the information they extracted and send them to a cloud layer,
which is responsible to add them to the blockchain. The prediction algorithm is able to decrypt the
data and can use them while being certain that the data originated indeed from a real medical device.

Fog computing is used in this model because the sensitive medical data should only be processed
either locally or by the trusted big data analysis algorithm. For the data transfer, the data is encrypted.
Other benefits of fog computing, according to the authors, are reduced latency and better load
distribution among the many fog nodes.

In the paper, the authors only vaguely describe their use case and mostly in abstract terms. Further-
more, it is questionable if trust between the fog nodes, which in the authors’ model run in the same
local network, cannot be established in a less expensive manner.

5.2.2 Assisted living

Privacy is a big concern for Wu et al. In [28], they describe a nursing system which recommends
activities to elderly people. For example, it is possible to receive TV show recommendations or
automatically order food. Multiple smart homes communicate with what the authors refer to as
edge node. Depending on QoS requirements like latency and computational complexity, tasks are
either processed on these nodes or in the cloud. Besides lowering the latency, using edge nodes also
reduces the network traffic and leads to a more robust network, according to the authors. Edge nodes
also act as a caching layer between the cloud and smart homes. Furthermore, they participate in the
maintenance of a blockchain that is used to preserve the privacy of the users of the nursing system.

5.2.3 Generic health applications

In [9], Dong and Yao propose an IoT platform that could help with non-pharmaceutical interventions
(NPIs) to control the COVID-19 pandemic. An architectural layer of low-end, decentralized fog
computing nodes is responsible for handling time-sensitive NPIs like quarantine monitoring. Fog
computing is suitable for these kinds of tasks because the nodes are located closer to the data source
and the latency is therefore lower. Furthermore, location-sensitive NPIs like contact tracing are
implemented in the fog layer. The fog nodes must therefore be able to track the location of connected
IoT devices and support their mobility.

NPIs that require a lot of computing resources or a lot of data are offloaded to the cloud layer. For
example, outbreak forecasting, which uses machine learning algorithms, is handled by this layer.
According to Dong and Yao, a proper strategy has to be found to decide if computing resources are
allocated at the fog or cloud layer. Such a strategy could help to reduce power consumption while
still satisfying time constraints. The authors propose a “smart gateway” that makes this decision
based on parameters like the data that needs to be processed, the current network congestion and
energy consumption.

10

Shehab et al. [24] consider fog computing to be an important part of the telehealth ecosystem,
too, because health-related applications are often time-critical and privacy-sensitive. The problem,
however, is that fog nodes are often geographically distributed, have only few computing resources
available and can fail anytime. Current stream processing platforms are not able to handle to manage
fog resources efficiently. For this reason, the authors propose a new resource manager specifically
designed for fog computing. It enables telehealth applications that are fault-tolerant scalable.

Pani et al. point out in [21] that admittedly the response time plays a crucial role for the processing of
emergency health data, but the energy requirements of IoT devices should be considered, too. For
this reason, they propose to categorize tasks as either delay-sensitive or delay-tolerant. To reduce
energy-consuming communication, only delay-sensitive packets are sent immediately to upper layers
(fog/cloud). Delay-tolerant packets are only forwarded as batch of a size bigger than a certain
threshold. The authors state that benefits of fog computing in general are lower latency, higher
bandwidth, and less geographic dispersion.

5.3 Living in smart homes

Some of the surveyed applications do not fit into the energy or health category. These are summarized
in this section.

Kireev et al. [16] describe a system that monitors the state of utilities in the home, such as water
inlets or pumping stations. It can detect and classify faults and then notify operators or residents.
Furthermore, it can make forecasts about the utilities, which can, for example, be used to schedule
repairs. The authors only describe their proposed system, but do not evaluate it empirically.

In this system, IoT devices called controllers regularly collect data from the sensors in the house
and, after an initial filtering, send them to a router which resides in the same network. The router
compares the received data to thresholds for each sensor and, if the measurements are below or above
some limit, it tries to classify the problem. In case of an emergency, the cloud server is called, which
then can notify the responsible person. In the cloud, data from multiple routers are aggregated, stored
and analyzed.

Thanks to the use of edge computing and therefore the highly distributed nature of this system, data
from numerous sensors can be processed. Moreover, because data is first filtered and processed
locally, less network bandwidth is required.

In [23], Ramirez-Prado et al. present a “smart floor” that can be used for movement and activity
tracking of a smart home’s tenants. They use the fog computing paradigm to reduce the amount of
traffic to the cloud. This reduces “overhead such as time, latency and throughput, energy consumption,
and cost” [23]. They also emphasize the importance of privacy, security and integrity of the sensitive
health data and suggest fog computing is a suitable approach in this regard.

5.4 Summary

Table 2 gives an overview of all the benefits and Table 3 of all the drawbacks/challenges that were
mentioned in the papers included in this review.

The advantage that is most often mentioned—only two papers do not talk about it—is the reduced
latency compared to traditional cloud computing thanks to the fog nodes being located closer to
the edge devices and sometimes even in the same local network. This makes fog computing suited
for real-time processing and time-critical applications. However, fog nodes mostly do not have
large computational resources. Many authors propose to circumvent this problem by offloading
resource-intensive tasks and the storage of data to the cloud. That is, they suggest to extend the cloud
with fog computing, not to replace it.

Even this extension can reduce the network traffic to the cloud significantly, since not all data has to
be processed there. When fog nodes reside in the local network, it can also improve the reliability of
the whole system because it is now more resilient against internet outages: even if cloud data centers
cannot be reached, fog nodes can do some of the processing.

Furthermore, not having to process data remotely can greatly benefit the privacy and security of
the application. This seems to be especially relevant for health-related applications. However, not
every fog layer is located at the local network. Some solutions use fog nodes that are closer to the

11

Table 2: Benefits of using edge computing for smart homes mentioned in surveyed papers

Domain Ref. L
at

en
cy

N
et

w
or

k
tr

af
fic

R
el

ia
bi

lit
y

Pr
iv

ac
y/

Se
cu

ri
ty

Sc
al

ab
ili

ty

M
ob

ili
ty

In
te

ro
pe

ra
bi

lit
y

E
ne

rg
y

ef
fic

ie
nc

y

C
os

t

Energy
management

[29] - - - - - - - - ✓
[8] ✓ ✓ ✓ ✓ - - - - -

[26] ✓ - - - - - - ✓ ✓
[22] ✓ ✓ - - - - - - -
[6] ✓ - - ✓ ✓ - - - -

Health

[2] ✓ ✓ - ✓ ✓ ✓ ✓ ✓ -
[11] ✓ ✓ - - - - - ✓ -
[4] ✓ - - ✓ ✓ - - - -

[28] ✓ ✓ ✓ ✓ - - - - -
[9] ✓ - - - - ✓ - - -

[24] ✓ - - ✓ - - - - -
[21] ✓ ✓ - - - - - - -

Smart living [16] - ✓ - - ✓ - - - -
[23] ✓ ✓ - ✓ - - - ✓ ✓

Table 3: Disadvantages and challenges of using edge computing for smart homes mentioned in
surveyed papers

Domain Ref. R
es

ou
rc

e
co

ns
tr

ai
nt

s

D
at

a
se

gr
eg

at
io

n

R
es

ou
rc

e
m

an
ag

em
en

t

L
oa

d
ba

la
nc

in
g

E
la

st
ic

ity

In
te

ro
pe

ra
bi

lit
y

E
ne

rg
y

co
ns

um
pt

io
n

Energy
management

[29] - - - - - - -
[8] - - - ✓ - - -

[26] ✓ ✓ - - - - -
[22] - - - - ✓ ✓ -
[6] - - - ✓ - - -

Health

[2] ✓ - ✓ - - ✓ -
[11] - - - - - - ✓
[4] - - - - - - -

[28] - - - - - - -
[9] ✓ - - ✓ - - -

[24] ✓ - ✓ - - - -
[21] - - - - - - -

Smart living [16] - - - - - - -
[23] - - - - - - -

12

edge devices, but may process data from multiple smart homes. As in cloud data centers, it is then
important to arrange for sufficient segregation of this data to avoid privacy issues.

The geographical distribution of fog nodes makes it possible to scale systems to support many smart
homes with their edge devices, sensors and users, and it allows to distribute load between different
nodes. Fog computing can help to deal with mobile users and devices that change their positions:
when a device gets closer to another fog node, this node can take over the processing for this particular
user.

But the distribution and the sheer number of fog nodes introduce several challenges, too. Firstly, a
new strategy is needed to allocate nodes efficiently to users. It must also take into account that fog
nodes can crash and might even crash often [24]. Similarly, new approaches for scheduling and load
balancing have to be found that take the fog computing paradigm explicitly into account and achieve
an efficient utilization of both fog nodes and cloud servers. Lastly, because systems can be comprised
of many fog nodes and because some applications have to support mobility of users, new solutions
have to be developed to migrate application tasks between fog nodes or between the fog and the cloud
layer. Pham et al. [22] call this elasticity.

One advantage of fog computing mentioned in [2] is that fog nodes can communicate with many
different edge devices because they can be built to support various communication technologies and
protocols. This, however, is at the same time a challenge because integrating and standardizing these
technologies is not trivial. [22] points out the need for compatibility between vendors.

The better energy efficiency compared to traditional cloud computing is mentioned as benefit of fog
computing by three authors. On the other hand, it is also important to keep the energy consumption
of the additional fog nodes in mind, according to [11].

For some authors, the low cost of the edge devices themselves and the whole solution is a benefit.

6 Discussion

The introduction of IoT in a home setting allowed for an enhanced home experience [3], but also
resulted in enormous amounts of data produced. These datasets are often personalized, and can
contain petabytes of data that needs to be processed [22]. The problems with processing big data is
generally tackled through cloud computing [30], but this approach is not suited for latency-sensitive
applications [20]. Streaming petabytes of data back and forth between cloud data centers and
end-devices is undesirable, which motivated the introduction of edge and fog computing [22].

Our literature review suggests that edge and fog computing indeed can provide the quality of service
required by latency-sensitive applications. Many papers are published that state that the reduction of
the latency is the purpose of using fog computing. Since this approach is adopted by many authors
and we have not read about qualified alternatives, we count this as evidence that fog computing is
also in practice very beneficial for these kinds of applications.

Furthermore, the adoption does not seem to introduce many new challenges. Several papers even
mentioned zero challenges or disadvantages. But readers should not conclude from this that edge
and fog computing can be introduced without obstacles. A more decentralized distributed computing
paradigm requires efforts in finding new solutions for difficult topics such as resource management
and load balancing. It also requires to think about new programming models and how to place
applications along the cloud-edge continuum. There are many open research questions in this
emerging field of edge computing.

Many of the covered papers do not do a good job in discussing the technical decision to use fog
computing. They just state that they are using fog computing and name a few benefits, but often
without covering the negative consequences and challenges or exploring design alternatives. But this
is a general pity with academic papers: that they mostly just describe the end result and not how
the authors got there. As positive examples we want to highlight Sing and Yassine [26] as well as
Alexandru et al. [2] who started their designs from the requirements.

When authors describe technical challenges of edge and fog computing, then often in the context of a
solution they present for this particular problem. Of course, it is very nice that many of these new
challenges are tackled, but we would appreciate a more thorough assessment of pros and cons.

13

One major problem we encountered during our study was the lack of shared definitions for common
terms. The line between edge computing and fog computing is drawn differently by every author, and
getting consensus alone on what exactly the “fog” is seems to be difficult. Fog computing can cover
everything from a Raspberry Pi next to some smart devices to processing on the router at the local
network (some authors refer to this as mist computing) to micro data centers that are geographically
distributed.

We certainly did not cover all relevant papers in this survey. For example, we did only use one search
engine. Nevertheless, we think that the papers we included are enough to uncover the main benefits
and challenges of edge and fog computing in a smart home setting. More papers could probably
reveal further niche use cases, advantages and disadvantages, but would most likely also focus on the
main driving force behind the adoption of fog computing, namely the lower latency. Furthermore, we
were constrained by page and time limits.

Initially, each reviewer independently inspected a subset of the papers in the search results. Later in
the process, other reviewers took a look at the included papers, but did not evaluate excluded papers
again. This means that the individual decisions of each reviewer carry a lot of weight. The reviewers
also needed some time to synchronize their inclusion and exclusion criteria.

7 Conclusion

In this systematic literature review, we examined papers which describe home automation applications
that use edge or fog computing to manage big data. The applications we found come from the domains
of energy management, healthcare and enhanced smart homes. Most of these applications were
time-critical, so traditionally cloud computing was not a suitable approach for data processing because
of potentially high and variant latency.

Edge and fog computing provide a solution to this problem. Data is processed closer to the data
source, potentially even in the same local network. This can reduce the latency significantly. But
a cloud component is still required by most applications since fog nodes are often constrained in
their computing power and storage capacity. Therefore, resource-intensive and time-uncritical tasks
are often offloaded to the cloud. Still, having a fog layer between data sources and the cloud can
help to reduce the network traffic, because fog nodes can filter and pre-process the data. Besides
lower latency and reduced network traffic, seven other benefits were mentioned in some of the papers
included in this literature review.

Some authors also mentioned disadvantages and challenges that come with edge and fog computing.
Another seven of those we distilled in this review. Despite them, we conclude that edge and fog
computing can keep their promise of enabling time-critical big data applications in smart home
environments.

14

References
[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. Internet of Things:

A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys
& Tutorials, 17(4):2347–2376, 2015.

[2] A. Alexandru, D. Coardos, and E. Tudora. IoT-based healthcare remote monitoring platform
for elderly with fog and cloud computing. In 2019 22nd International Conference on Control
Systems and Computer Science (CSCS), pages 154–161. IEEE, 2019.

[3] S. Bansal and D. Kumar. IoT ecosystem: A survey on devices, gateways, operating systems,
middleware and communication. International Journal of Wireless Information Networks,
27(3):340–364, 2020.

[4] B. Bera, A. Mitra, A. K. Das, D. Puthal, and Y. Park. Private blockchain-based AI-envisioned
home monitoring framework in IoMT-enabled COVID-19 environment. IEEE Consumer
Electronics Magazine, 2021. Early Access.

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the Internet of
Things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing
- MCC ’12, pages 13–16, New York, NY, USA, 2012. Association for Computing Machinery.

[6] H. Butt, N. Javaid, M. Bilal, S. Aon Ali Naqvi, T. Saif, and K. Tehreem. Integration of cloud-fog
based environment with smart grid. In F. Xhafa, L. Barolli, and M. Greguš, editors, Advances
in Intelligent Networking and Collaborative Systems, pages 423–436, Cham, 2019. Springer
International Publishing.

[7] P. Corcoran. The Internet of Things: Why now, and what’s next? IEEE Consumer Electronics
Magazine, 5(1):63–68, 2016.

[8] B. Di Martino, S. Venticinque, A. Esposito, and S. D’Angelo. A methodology based on
computational patterns for offloading of big data applications on cloud-edge platforms. Future
Internet, 12(2), 2020.

[9] Y. Dong and Y.-D. Yao. IoT platform for COVID-19 prevention and control: A survey. IEEE
Access, 9:49929–49941, 2021.

[10] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, and K. Mankodiya. Towards
fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Future
Generation Computer Systems, 78:659–676, 2018. Cited By :458.

[11] C. Feng, M. Adnan, A. Ahmad, A. Ullah, and H. U. Khan. Towards energy-efficient framework
for IoT big data healthcare solutions. Scientific Programming, 2020, 2020.

[12] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of Things (IoT): A vision,
architectural elements, and future directions. Future Generation Computer Systems, 29(7):1645–
1660, 2013.

[13] V. S. Gunge and P. S. Yalagi. Smart home automation: A literature review. International
Journal of Computer Applications, 975(8887-8891), 2016.

[14] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan. The rise of “big
data” on cloud computing: Review and open research issues. Information systems, 47:98–115,
2015.

[15] M. S. Hossain and G. Muhammad. Emotion-aware connected healthcare big data towards 5G.
IEEE Internet of Things Journal, 5(4):2399–2406, 2018.

[16] V. S. Kireev, S. A. Filippov, A. I. Guseva, P. V. Bochkaryov, I. A. Kuznetsov, V. Migalin, and
S. S. Filin. Predictive repair and support of engineering systems based on distributed data
processing model within an IoT concept. In 2018 6th International Conference on Future
Internet of Things and Cloud Workshops (FiCloudW), pages 84–89. IEEE, 2018.

15

[17] B. Kitchenham and S. Charters. Guidelines for performing systematic literature reviews in
software engineering. Technical report, Evidence-Based Software Engineering (EBSE) Project,
Keele University and University of Durham, 2007. Version 2.3.

[18] D. Marikyan, S. Papagiannidis, and E. Alamanos. A systematic review of the smart home
literature: A user perspective. Technological Forecasting and Social Change, 138:139–154,
2019.

[19] F. Mattern and C. Floerkemeier. From the Internet of Computers to the Internet of Things.
In K. Sachs, I. Petrov, and P. Guerrero, editors, From Active Data Management to Event-
Based Systems and More, volume 6462, pages 242–259. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[20] G. Mokhtari, A. Anvari-Moghaddam, and Q. Zhang. A new layered architecture for future big
data-driven smart homes. IEEE Access, 7:19002–19012, 2019.

[21] L. Pani, A. Dutta, C. Misra, and R. Roy. Assisting fog-cloud computing with an adaptive traffic
awareness resource provisioning algorithm for health data. In 2021 19th OITS International
Conference on Information Technology (OCIT), pages 290–295, 2021.

[22] L. M. Pham, T.-T. Nguyen, and T.-Q. Hoang. Towards an elastic fog-computing framework for
IoT big data analytics applications. Wireless Communications and Mobile Computing, 2021,
2021.

[23] G. Ramirez-Prado, B. Barmada, and V. Liesaputra. On non-intrusive prediction of activities and
behavior. In 2019 IEEE International Conference on Big Data (Big Data), pages 6203–6204,
2019.

[24] R. Shehab, M. Taher, and H. K. Mohamed. Live big data analytics resource management
techniques in fog computing for TeleHealth applications. Jordanian Journal of Computers and
Information Technology, 7(1):89–103, 2021.

[25] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges. IEEE
Internet of Things Journal, 3(5):637–646, 2016.

[26] S. Singh and A. Yassine. IoT big data analytics with fog computing for household energy
management in smart grids. In A.-S. K. Pathan, Z. M. Fadlullah, and M. Guerroumi, editors,
Smart Grid and Internet of Things, pages 13–22, Cham, 2019. Springer International Publishing.

[27] M. Weiser. The computer for the 21st century. ACM SIGMOBILE Mobile Computing and
Communications Review, 3(3):3–11, 1999.

[28] J. Wu, P. Zhou, Q. Chen, Z. Xu, X. Ding, and J. Hao. Blockchain-based privacy-aware contextual
online learning for collabrative edge-cloud-enabled nursing system in Internet of Things. IEEE
Internet of Things Journal, 2021. Early Access.

[29] C. Xia, W. Li, X. Chang, F. C. Delicato, T. Yang, and A. Y. Zomaya. Edge-based en-
ergy management for smart homes. In 2018 IEEE 16th Intl Conf on Dependable, Au-
tonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing,
4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), pages 849–856, 2018.

[30] C. Yang, Q. Huang, Z. Li, K. Liu, and F. Hu. Big data and cloud computing: Innovation
opportunities and challenges. International Journal of Digital Earth, 10(1):13–53, 2017.

[31] H. Yar, A. S. Imran, Z. A. Khan, M. Sajjad, and Z. Kastrati. Towards smart home automation
using IoT-enabled edge-computing paradigm. Sensors, 21(14):4932, 2021.

[32] A. Yassine, S. Singh, M. S. Hossain, and G. Muhammad. IoT big data analytics for smart homes
with fog and cloud computing. Future Generation Computer Systems, 91:563–573, 2019.

16

Contributions

Coming up with a reserach question and scope was the work of the whole group. The search results
were divided between the group members and independently reviewed and either included or excluded.
Table 4 indicates who participated in writing a particular section of this document. Florian did try
to fix most of the grammer and spelling mistakes, and to make the whole document consistent and
coherent.

Table 4: Contribution

Sections

Florian Abstract, 1, 3, 5, 6, 7
Okke 2.4, 2.5, 4, 6

Anne-Ruth Abstract, 2.1, 2.2, 2.3, 5

17

The State of the Art of Single Sign-On

Radu Geacu (2731957) Bas Loyen (2754714) Mark Bebawy (2620527)

Web Services and Cloud-Based Systems: Group 16

University of Amsterdam

Abstract

Single sign-on (SSO) is a mechanism that allows users to perform a single action
of authentication, after which they can access a variety of services without being
prompted to log in again. Many big companies such as Facebook, Google, and
Microsoft are using SSO for their services extensively. There exist a variety of
protocols that enable SSO, such as Web Services Federation (WS-Fed), SAML 2.0,
OAuth 2.0, and OpenID Connect. The goal of this paper is to give an overview of
the state-of-the-art of SSO by analyzing these protocols, discussing how secure
they are, and researching to what extent they are used in industry. We do this by
providing a literature review on papers that discuss (the security of) these protocols
and on surveys on SSO. We conclude that OpenID Connect is currently the most
secure and widely used protocol, and we give a prediction of the future of SSO and
possible future work to be done in this field.

1 Introduction

Web services require their users to authenticate themselves before accessing protected resources.
Historically, each service would have to come up with their own authentication mechanism, while
users would have to replicate their identities [1]. Single sign-on (SSO) systems allow a user to perform
a single action of authentication and then access a variety of services without being prompted to log
in again. This increases their productivity and allows for more mobility between systems [2]. SSO is
also user-friendly, as users only have to remember one set of credentials to access multiple services.
The growth of companies such as Facebook, Google, Microsoft resulted in both the proliferation of
the necessary technologies for SSO, and the concentration of many users in few places [2].

1.1 Research Questions

In this paper, we aim to analyze the evolution of SSO and, more specifically, the building blocks that
enable it. To facilitate this analysis, our main research question is: What is the state of the art of SSO?
To answer this question, we use the following sub-questions:

• What are the protocols/frameworks that enable SSO?

• How secure are these?

• What methods are currently used in industry for SSO?

1.2 Paper structure

We aim to offer a chronological overview of the evolution of SSO and its enabling frameworks, starting
with Section 2 where we discuss Web Services Federation. In Section 3, we analyze SAML 2.0.

Next, in Section 4, we evaluate OAuth 2.0; we recognize that technically OAuth is an authorization
framework and it cannot constitute an SSO system by itself, but it is being adopted as a means of
providing SSO [3] and it is a fundamental building block of OpenID Connect, which we discuss
in Section 5. Section 6 consists of a discussion of our findings and a comparison of the different
methods we present, and we conclude by answering our research questions in Section 7.

2 Web Services Federation

2.1 Overview of WS-Trust

Before discussing Web Services Federation, a brief overview of WS-Trust and related mechanisms,
which Web Services Federation builds upon, will be given [4]. These mechanisms are WS-Security,
WS-Trust, and WS-SecurityPolicy, which provide a basic model for federation between providers
and relying parties. WS-Security defines mechanisms to assure message integrity, authenticity
and confidentiality. WS-SecurityPolicy enables the description of the security requirements of
participating services, this includes the algorithms and types of tokens each service accepts. WS-
Trust enables the use of the Security Token Service (STS) and a protocol for requesting or issuing the
tokens. The STS tokens are used by WS-Security and described by WS-SecurityPolicy.

Figure 1: Security Token Service (STS) Model (from [4]).

In Figure 1 an overview of the STS model is given. Each arrow represents a potential path for
communication. Each participant has their own policies which determine the security tokens and
associated claims which are required to communicate with each participant. Whenever a requestor
wants to gain access to certain resources, it queries the corresponding resource provider for its policies.
Using policy expressions, the requestor checks whether it meets the security requirements of the
resource provider. If the requestor’s token does not meet the requirements described in the resource
provider’s policy, it might be able to request a token from another appropriate STS. The requestor
can query this STS, which all have their own policy, to determine the requirements for requesting the
type of token it needs.

WS-Trust defines independent protocol mechanisms for requesting, issuing, renewing, cancelling and
validating security tokens. These security tokens can be exchanged to authenticate principals and
protect resources. At the core of this protocol is the request-response message pair, Request Security
Token (RST) and Request Security Token Response (RSTR). An example of both an RST and RSTR
message are shown in Figure 2 and Figure 3, respectively.

2.2 Overview of WS-Federation

Web Services Federation (“WS-Federation” or “WS-Fed” for short) extends WS-Trust, and related
mechanisms, as discussed in more detail in Section 2.1. WS-Federation introduces federations. A
federation is a collection of realms (security domains) that have established relationships for securely
sharing resources between each other [4].

2

Figure 2: Example of RST message (from [4]). Figure 3: Example of RSTR message (from [4]).

To establish a federation with identity and recourse providers operating in different realms, they need
to agree on what claims are required and frequently requires agreement on mechanisms to securely
transport those claims between realms over possible unprotected networks. Generally, participants in
a federation need to communicate these requirements over a wide variety of trust and communication
topologies. To support the different topologies which the federations span, metadata needs to be
exchanged. This metadata describes the endpoint references where services may be obtained and
the potential security policies and communication requirements needed to access these endpoints.
This exchange of metadata can become quite complicated, depending on the different policies of
participants in a federation.

2.2.1 Components

When an organization establishes a federation, the participants need to exchange configuration
information, this is the federation metadata. This will allow participants to identify the common
services in the federation and retrieve the policies to access them. A mechanism for determining the
authenticity must be in place. Services may also participate in multiple federations, so it must be
possible to distinguish between these different contexts. Lastly, it is desirable for this configuration
process to be automated. WS-Federation enables this by defining a metadata model and document
format which extend the metadata already in place. This model describes how federation metadata
about related services can be discovered/combined.

An authorization service may be implemented as a special type of Security Token Service to provide
decision brokering services for participants. Extensions to the RST and RSTR mechanisms, as
described in Section 2.1, can be sued to communicate authorization requests and decision outputs.

WS-Federation defines several authentication types in the form of Universal Resource Identifiers
(URIs). These are used within the RST and RSTR messages to specify common authentication types
and assurance levels. Since some of the data in these RST and RSTR messages can be quite sensitive,
there are also options to indicate whether the messages should be encrypted.

2.3 WS-Federation in the real world

WS-Federation seemed to be mostly positively received and was covered quite a bit [5, 6, 7]. It
was used by governments and other institutions, like CERN [8], all over the world. However, it is
currently not used as much. This also becomes apparent when examining the years in which the
covered literature was published. Most of the literature on WS-Federation was published before 2010
which already indicates that it is no longer state of the art.

3 SAML 2.0

3.1 Overview of SAML 2.0

Security Markup Language (SAML) is an XML-based protocol used for authorization and authen-
tication between identity providers and resource providers [2, 9]. These XML-based messages are
called Assertions. There are multiple types of Assertions. Authentication Assertions detail whether
users are authenticated, Attribute Assertions detail what kind of rights, roles and access they have

3

and Authorization Assertions detail how they can use this data and resource. HTTP, SMTP, FTP and
SOAP or other protocols can be used to transmit these assertions between security domains.

All of this gives SAML obvious applications in SSO. An example of the flow of SSO with SAML is
shown in Figure 4. In this figure, we assume user U is already authenticated by source site S. The
flow begins once user U returns to source site S. This could be after being redirected by destination
site D for example. An assertion about the U’s identity is stored by S if it recognizes U’s browser
B during the so-called user tracking. It then redirects the user’s browser B to the destination site
D. A small piece of data is included into the redirect by S, a SAML artifact. The SAML artifact
refers to the stored assertion. Once D receives the redirect, it shows the artifact to S and requests the
corresponding assertion. S confirms to D that U, presenting the artifact, was indeed authenticated by
S.

Figure 4: SAML SSO protocol flow (from [10]).

3.2 Security & Vulnerabilities

The security of SAML SSO heavily depends on several assumptions, such as the trust relationships
between parties and the security mechanisms used to transport the messages. There are many security
recommendations in the SAML specifications which help avoid certain pitfalls, but are definitely
not an insurance policy for all security threats. This makes it quite difficult to achieve the needed
level of security even for very simple SAML implementations. This can also lead to certain security
threats in the real world such as Google’s SAML SP-Initiated SSO implementation, where an attacker
could take complete control over the authorization and authentication of hosted user accounts that
can access web-based applications like Gmail or Google Calendar [11].

Further analysis of SAML reveals several flaws in the specification that can lead to vulnerable
implementations [10]. These attacks include a replay attack, connection hijacking, HTTP referrer
attack and a man-in-the-middle attack. These attacks could prove to be real threats to the security of
an SSO implementation. Although it is generally considered to be a well-written protocol, it is not
perfect and some changes are needed when implementing SSO using SAML.

3.3 SAML 2.0 in the real world

Just as with WS-Federation, a lot of the literature regarding SAML 2.0 is quite old (from before
2010). It is still being used, but as time has gone on newer and better protocols have taken SAML
2.0’s place. It is still in use in some places, but as mentioned before, a lot of vulnerabilities have to be
manually prevented by the developer.

4

4 OAuth 2.0

4.1 Overview of the OAuth 2.0 framework

The OAuth 2.0 (“Open Authorization”) framework is a set of standards that enables a third-party
application to obtain limited access to an HTTP service on behalf of a resource owner [12]. OAuth
2.0 (or OAuth1 for short) allows a resource owner (user) to grant relying parties (RPs) or clients
(web services) access to their resources (data) hosted on other services, called identity providers
(IdP), authorization servers, or resource servers. [13] OAuth enables users to grant third-party clients
access to their web resources without sharing login credentials or their complete data. [14]

Initially, OAuth’s objective was to serve the authorization needs for websites (that is, to grant the
right permissions to authenticated users). However, as it became widely adopted across industry, it
has been re-purposed to also serve authentication2 purposes (that is, to verify the identity of users).
Major providers such as Facebook, Google, and Microsoft support this scheme [13]. More than that,
it has also been targeted towards mobile platforms [15]. Recently, its use in IoT applications is also
under review [16, 17, 18].

It can therefore also be used as a single sign-on (SSO) scheme: the relying party (i.e., the application
that requires authentication) relies on the identity provider (for example, Facebook) to authenticate
the user. This is based on browser redirection: the relying party redirects the user’s browser to an
identity provider; the IdP handles authentication, asks the user for permission to grant access to
(some) resources to the RP, and then redirects the user back to the RP web service (with an access
token); the RP can use this access token to call the IdP’s APIs and access the user’s profile [14].

As early as 2012, OAuth became the most widely supported protocol for API authorization, largely
due to its adoption by giants such as Google, Twitter, Facebook [19]. Besides these, it is also used by
identity providers such as Amazon, Microsoft, LinkedIn, Yahoo, and GitHub, making OAuth one of
the most used single sign-on systems in the world [13].

4.1.1 Predecessor

OAuth 1.0, published in 2009, was intended to unify existing authorization mechanisms implemented
by different services, such as Twitter, Google, and Flick. However, it was criticized as being “too
complex, inflexible, and website-centric” [19]. OAuth 2.0, published in 2012, is the latest major
revision to this protocol (and it is not backwards compatible with OAuth 1.0) designed to reduce client
developer complexity (which drew criticism for sacrificing security for usability [20]; for example,
unlike OAuth 1.0, the new framework does not feature request and response authentication [19]).

4.1.2 Components

The OAuth framework is built on several central components, starting with roles. Four roles are
defined [12]: resource owner (an entity capable of granting access to a resource; for example, the
end-user of a Facebook account), resource server (server hosting the protected resources, uses access
tokens to respond to requests), client (an application making a protected resource request), and
authorization server (the server that issues access tokens to the client after authenticating the resource
owner and obtaining their authorization).

Scopes are bundles of permissions asked for by the client when requesting a token.

Four common authorization types (also called modes) are defined and analyzed across the literature
[13, 20].

• Authorization code. When a user wants to authorize an RP to access their data, they are first
redirected to the IdP where they must authenticate. The user is redirected back to the RP
with an authorization code generated by the IdP which is used further by the RP (along client
secrets) to obtain an access token, which itself is used as a credential to access protected
resources hosted by the IdP. This mode is also known as the “server-flow” [14] and can be
seen in Figure 5.

1We use OAuth as shorthand for OAuth 2.0 unless otherwise mentioned
2Some literature distinguishes this mechanism as pseudo-authentication

5

Figure 5: OAuth 2.0 flow in case of authorization-code mode (from [21]).

Figure 6: OAuth 2.0 flow in case of implicit mode (from [21]).

• Implicit mode. The resource owner’s authorization is given directly as an access token,
thereby skipping the authorization code steps. This mode is also known as the “client-flow”
[14] and can be seen in Figure 6.

• Resource owner password credentials. The user gives their credentials for the IdP directly to
the RP. The RP can then authenticate on the user’s behalf. This mode is intended for highly
trusted RPs.

• Client credentials. The client and the resource owner are considered the same entity, and the
user’s interaction is not required. The RP accesses its own resources at the IdP.

Analyzing the security of OAuth is a “challenging task” due to its various features and the “inherent
complexity of the web” [13]. Most analysis efforts have focused on specific implementations [21, 15,
22, 23], not on the standard itself. Moreover, many existing approaches analyze only the authorization
and implicit modes of OAuth, not all modes running simultaneously [13]. Therefore, we distinguish
two types of studies in the literature: those that focus on a formal model of OAuth and those that
focus on empirical real-world implementations.

4.2 Formal analysis

One of the first formal verification of security of the OAuth standard is done in [20]. The standard is
formalized using the Alloy framework according to guidelines defined by the authors. They formally
confirm a security flaw found in previous research (which shows that, in cases where the client is a
desktop application with no server-side security measures, client passwords are vulnerable). However,
the paper is meant only to present the Alloy formalization as a proof-of-concept, so no further flaws
are presented and are left for future work.

The authors of [19] perform a comprehensive analysis of OAuth using formal methods, with models
built using the WebSpi library and verification done using ProVerif. While relying on general
assumptions (network attackers, bad-acting resource owners/clients, untrusted websites, malicious

6

JavaScript are enabled, but every authorization server is honest and no CSRF attacks3 exist on honest
applications) the authors are unable to find any attacks. If these assumptions are changed, attack
possibilities are found and, using these, the authors in fact find vulnerabilities in implementations of
different web services, such as Facebook, Twitter, Yahoo, IMDB. The authors also find that in certain
conditions CSRF attacks are possible (and exist in real-world implementations), as well as token
redirection attacks (which rely on the existence of open redirections on the client).

More recently, the authors of [13] perform the first extensive formal analysis of the OAuth standard
for all four modes. They use a pre-defined “comprehensive” formal model of the web [24] and
incorporate best practices in terms of security to model OAuth with as few assumptions as possible.
Three security properties are formalized: authorization, authentication and session integrity. During
analysis, four attacks on OAuth were in fact identified: identity providers unintentionally forwarded
user credentials to clients or a network attacker can impersonate any identity provider (breaking the
first two properties); an attacker can force browsers to be logged in under the attacker’s name to the
identity provider (breaking session integrity). After notifying the working groups of the affected
frameworks, and modelling OAuth with the fixes in place, the authors prove that it does finally satisfy
the security properties. They emphasize that not only do the aforementioned attacks have to be
mitigated, but also that standard best security practices (such as the ones found in [25]) are essential
in individual implementations, where the largest security issues can be found. Their work differs
from (and improves on) other research through the “more expressive” model that is used and the fact
that OAuth as a standard is analyzed, as opposed to specific implementations.

4.3 Empirical analysis

Shortly after the protocol was published, the authors of [14] studied OAuth implementations of
three major identity providers (Facebook, Microsoft, Google) and 96 relying parties. They find that,
despite the fact that OAuth was designed to prevent exposing access tokens over a network, many
tokens obtained are transmitted in unprotected form to the relying party. For instance, tokens are
appended as query parameters to the URI of the relying party’s sign-in endpoint, or stored as cookies.
Moreover, the authors found that only 21% of relying parties employed SSL to protect sessions at the
time of writing. The authors also find that tokens can be stolen via malicious JavaScript, through
impersonation, session swapping or CSRF attacks. The authors assert that these vulnerabilities are
mainly caused by design decisions of OAuth that trade security for simplicity, and that leave security
decisions at the hands of clients or identity providers.

These findings are also corroborated in [23]. The authors identify the following attack methods:
replay attack module (an attacker may capture an authorization code redirect request while the
client communicates with the resource owner’s agent); phishing attacks (client applications may
be illegitimate, and even though they are allowed to consume services from, for example, Google,
they might not have an interest in user privacy); impersonation attacks (as in [14], the authors find
vulnerabilities caused by the fact that the client application is not required to use any TLS mechanism
to protect the data).

The authors of [22] focus on specific implementations of OAuth in China: 60 relying parties that
support SSO via identity federation are analyzed. The authors identify “serious” vulnerabilities
in a number of these systems, and make recommendations based on that. First, countermeasures
against CSRF attacks are needed (relying parties in this study do not implement them, despite
recommendations from identity providers to include the state parameter in the requests). Next,
relying parties must ensure that a non-guessable parameter is generated, and that state is session
dependent.

Similar results can be found in a study of the 50 most popular websites in Ireland, which found that of
the 21 that had OAuth support, 2 were susceptible to some form of attack in the threat model defined
in [25, 26]. Besides these findings, the authors implement their own OAuth environment: a client
application, a resource server and an authorization server, and test its robustness against the threat
model. They find that their solution performs well against threats because it follows guidance and is
“implemented correctly”.

3CSRF (cross-site forgery requests) is a type of exploit where unauthorized commands are issued from a user
that the application trusts by forwarding their session cookie. A common countermeasure against CSRF is to
require a session-specific nonce that is difficult to be forged to be sent with every request [19].

7

While most other studies rely on manual empirical analysis to discover new vulnerabilities in OAuth
implementations, or only perform automated testing for a set of specific and previously-known
vulnerabilities, the authors of [27] propose an adaptive model-based testing tool to enable the
automated discovery of vulnerabilities. The authors confirm rediscovering existing vulnerabilities
and, also, they claim the discovery of new vulnerabilities: misuse of the state parameter, amplification
attacks via dual-role identifying parties (those that serve both as an IdP and as a client to another IdP),
failure to revoke authorization, and failure to adopt TLS protection. However, all of their findings are,
again, related to the actual implementation of OAuth protocols, and not to the standard itself.

It is not, however, always the case that implementation flaws are the main vulnerability of OAuth.
The authors of [21] argue that user data can leak from various points due to fundamental design
decisions of the protocol: “OAuth focuses on protecting the user, not the application”. They define
this as the “app impersonation attack”. First, if a provider supports the implicit flow of OAuth, a user
can bypass the client and directly query the resource provider’s API. Second, depending on the type
of access token that is issued by the IdP (bearer token4 or MAC token5), the token can be forged. The
authors also conduct a real-world study of 12 major providers and found that 8 of them present these
vulnerabilities (in one case, there was the possibility of a leak of 200 million users’ data because a
read token could be used to access any objects). To mitigate such vulnerabilities, the authors propose
that providers opt-out of certain OAuth modes and review the access scopes in their architecture (we
would argue, however, that at least the second proposal has nothing to do with OAuth as a standard,
and more to do with a provider’s implementation and, possibly bad, decisions). It is also worth
mentioning that the implicit mode has been discontinued and replaced by new guidance [28].

Widespread adoption of OAuth for mobile platforms has triggered research interest into its vulnera-
bilities in this area [15, 29]. For example, in [15] the authors find that 59.7 % of the 149 applications
surveyed were not implemented correctly and therefore vulnerable. More specifically, the difference
between redirection mechanisms on browsers vs mobile platforms (custom scheme mechanism on
iOS and Intents on Android), and the fact that the OAuth specification “makes intensive use of
HTTP redirections” leads to flaws in implementations. Moreover, in web applications the browser is
entrusted to deliver a message (confidential messages such as access tokens) to the intended target;
the authors find that for mobile application many developers have “ill-conceived notions of the real
recipients of messages”, which means that it is difficult for a message provider to ensure that a token
is sent to the intended recipient. In [29] the authors corroborate these findings: 58.7% of Google Play
Android applications present flawed implementations of the OAuth protocol. Vulnerabilities identified
include: improper user-agent (WebView and System browser are “not suitable” for authentication of a
relying party’s app), lack of authentication (Intents can be used by a malicious app to hijack data sent
by a legitimate relying party app), incorrect implementations of TLS, insecure secret management
and problematic server-side validation.

4.4 Vulnerabilities summarized

Broad vulnerabilities identified in OAuth can be grouped as follows:

• Access token eavesdropping [14, 23, 27]. An attacker can sniff the unencrypted communi-
cation between a browser and a client application/relying party [14]. Failure to adopt TLS
protection increases this vulnerability [27, 29].

• CSRF attacks (cross-request site forgery) [14, 22, 26, 27]. A user can be tricked into
loading a page that contains a malicious request that can affect the integrity of the user’s
session data [14]. The OAuth specification recommends including the state parameter to
protect against this sort of attacks; the relying party can then verify the source of a request
[22]. It is also worth mentioning that the RFC for OAuth states that both the client and the
authorization server “must” implement CSRF protection [12]. However, as [30] found, only
4 out of 11 major IdPs require CSRF defenses, while the reset either suggest it or ignore it.

• Impersonation [14, 22, 23, 27]. An attacker can send a stolen or guessed SSO credential
to the RP’s endpoint. To mitigate this, the SSO credential must be limited to one-time use

4Bearer token: simply added to the HTTP request header and any party in its possession can get access to a
resource without verifying their identity

5MAC token: a client secret is used to compute a cryptographically secure version of the key, thereby
ensuring proof of identity when making a request

8

[27] or the RP can check if the response sent is by the same browser which performed the
authorization request [14]. This is also called a “replay attack module” [23]. However,
protection against this sort of attacks is left at the hands of the RP and whether they decide
to mitigate it or not [22].

• Session swapping. If the RP does not provide a state parameter in an authorization request,
then an attacker can exploit this contextual binding vulnerability [14].

• Access token theft. The authors of [14] distinguish the case when a token is stolen via
XSS6: malicious JavaScript can be used to exploit the fact that, in some cases, an IdP might
perform automatic authorization granting (if permissions related to the request have been
granted by the user previously and if the user is logged in to the IdP from the browser in the
same session). The authors of [23] describe a phishing method, in which an attacker can
poison DNS records to ensure that a user that tries to visit legitimate sites is redirected to
malicious ones.

5 OpenID Connect

5.1 Overview of the OpenID Connect framework

In this section we will discuss the OpenID Connect (OIDC) protocol for single sign-on (SSO) that was
standardized in 2014 [31]. At the moment of writing, OIDC is the most widely used protocol for SSO
[32] that has been adopted by large companies like Facebook, Google, Twitter, LinkedIn, Amazon,
Microsoft, and Salesforce [33]. OIDC is based on the OAuth 2.0 protocol that we discussed in the
previous section and is used to enable clients to verify the identity of users based on authentication
that is performed by an authorization server. As discussed in the previous section, OAuth 2.0 provides
a framework to obtain access to HTTP resources and was originally designed as an authorization
framework. However, unlike OIDC, OAuth 2.0 does not provide a standard for obtaining identity
information [31]. We will discuss below how OIDC provides identity information.

A typical OIDC flow, as described in [34], is shown in Figure 7 and works as follows. A user browses
to a relying party (RP). The RP can be some application that implements SSO using OIDC, so that
users can log in with their credentials from some identity provider (IdP)7. The user clicks a button
that allows them to log in with SSO (often RPs have these buttons with texts like Login with your
Google account). The RP then discovers some information about the IdP, namely the authorization
endpoint (the IdP URL at which the user can fill in their credentials), the redirect endpoint(s) (one
or more URLs to which the browser is redirectd by the IdP after authenticating themselves), the
token endpoint (a URL from which the RP can obtain the ID token), the issuer identifier, the IdP’s
public key to verify the signature of the ID token, the client id (which the IdP uses to identify the
RP), and possibly a client secret which the RP uses to prove its identity to the token endpoint. After
discovery, the RP registers itself at the IdP (establishing a trust relationship between the RP and IdP
by exchanging the RPs redirect URIs in exchange for a client id and client secret that the IdP issues to
the RP). Then, the RP redirects the user to the IdP, where they log in using their (for example Google)
credentials (or using some session cookie if they are already signed in to the IdP). If successful, the
IdP provides a cryptographically signed ID token to the RP. The RP uses this token to verify the
user’s identity, after which the RP sets a session cookie in the browser, which indicates that the user
is authenticated and signed in to the RP.

5.2 Components

5.2.1 ID token

The ID token is the primary extension of OIDC compared to OAuth 2.0 [31]. It is a JSON Web Token
(JWT) that contains information (called claims) about the user and about the identity provider. There
are a couple of required claims that this token should have [31]. They are:

6XSS: cross-site scripting, meaning that malicious scripts are injected into otherwise trustworthy websites
7In literature on OIDC, the relying party (RP) is sometimes called the client and the identity provider (IdP) is

sometimes called the OpenID provider (OP). To avoid confusion and for consistency with the section on OAuth
2.0, we will (like [34]) use the terms RP and IdP.

9

Figure 7: High level overview of OpenID Connect flow (from [34]).

• iss. This is an HTTPS URL (without query components) that identifies the issuer (i.e., the
IdP).

• sub. This is a string that identifies the subject (i.e., the user) and is unique at the IdP.

• aud. This is a string (or array of strings) that represents the audience of the ID token. It
contains (at least) the OAuth 2.0 client id of the RP.

• exp. Expiration time of the ID token.

• iat. Time at which ID token was issued.

• nonce (required if the authentication request contains a nonce parameter). The same nonce
parameter as in the authentication request, used to mitigate replay attacks (see below).

5.2.2 Modes

As is the case with OAuth 2.0, OIDC defines the authorization code mode and the implicit mode.
Additionally, OIDC also defines the hybrid mode. These modes define how the RP obtains the ID
token from the IdP. The mode that is used is passed as part of the browser’s request to the IdP before
providing credentials [34].

• In the authorization code mode, the RP obtains the ID token from the IdP via direct
communication. After the user authenticates their selves at the IdP, the IdP grants them an
authorization code in the body of an HTTP redirect, which is used to redirect the browser to
the RP. The RP receives the authorization code, presents it to the IdP at the token endpoint
(together with the client id, client secret and redirect URI that was used to obtain the
authorization code), after which the IdP issues an access token8 and an ID token to the RP.
The user is then logged in, and the RP can issue a session cookie to the browser.

• In the implicit mode, the RP obtains the ID token from the IdP via the browser. The flow
is similar to the authorization code mode, but the IdP issues an ID token to the browser
directly instead of issuing an authorization code. The RP then retrieves the ID token from
the browser after the browser is redirected to the RP.

• In the hybrid mode, the RP can obtain the ID token from the IdP using direct communication
and indirect communication via the browser at the same time. The browser receives an
authorization code and either an ID token, an access token, or both (depending on the
configuration of the IdP) when it gets redirected to the RP. The RP retrieves this information
as done in the implicit mode, but additionally the RP can use the authorization code to
retrieve a (second) ID token and access token from the IdP.

5.3 Security analysis

As OpenID Connect is a newer protocol than OAuth 2.0, less research has been done on its security.
This is also due to the fact that OpenID Connect still uses a major component of OAuth 2.0, which
means that some of the attacks on OAuth 2.0 can also be done on OpenID Connect. Below, we will

8The access token is used for delegated authorization as explained in Section 4.

10

compare the security of these protocols and discuss how they relate. We start, however, by focusing
on the research that has been done on the security of OpenID Connect in chronological order.

In 2016, the authors of [35] did a practical analysis of the security of Google’s implementation of
OpenID Connect. To this end, they went through all the GTMetrix Top 1000 Sites9 and selected
the sites that provide services in English and support authentication with Google’s OpenID Connect
service. They found 103 such sites for which they used Fiddler10 to analyze the HTTP traffic between
the RPs (the websites) and the IdP (Google’s OpenID Connect service). They found some severe
vulnerabilities in many of these sites that allow an attacker to impersonate a user and log in to the
RP. They verified these attacks by creating accounts for these purposes and successfully executing
the attacks on these accounts. They concluded that these vulnerabilities originate from Google’s
design of their OpenID Connect service and from design choices by the RPs who (unknowingly)
traded off security for ease of implementation. They also give practical recommendations on how to
mitigate these vulnerabilities and on how to implement OpenID Connect securely. This is the same
conclusion that we found for OAuth 2.0: the OIDC protocol is secure if implemented correctly. It
would have been interesting if the authors also studied the vulnerabilities of less popular websites
that use Google’s OIDC service, as these websites are developed by smaller (maybe less experienced)
teams, which would be a great indication of how manageable it is for small teams or individual
developers to implement OpenID Connect correctly and securely. Also noteworthy is the fact that the
researchers treated the RP and IdP as black-boxes and based their study solely on the HTTP traffic
between these parties. This means that there may be uncovered vulnerabilities and implementation
flaws for which future research is necessary.

In 2017, the authors of [36] studied the security of OpenID Connect by applying well-known
SSO attacks to it. Where necessary, they modified the attacks to make them suitable with OIDC.
Surprisingly, they found that at that time, 75% of the officially referenced OIDC libraries were
vulnerable to some of these attacks. They distinguished single-phase attacks (which abuse a lack
of a single security check) from cross-phase attacks (which require a complex setup to modify
various messages throughout the entire protocol flow). A great contribution of this paper is an
open-source Evaluation-as-a-Service tool11 that automatically evaluates the security of an OpenID
Connect implementation, finds vulnerabilities, and gives recommendations on how to mitigate them.
The single-phase attacks identified by this paper result from wrong implementations of OpenID
Connect, as the specification mentions these attacks and explains the necessary verification steps
that are needed to avoid these attacks. We discuss two of the four single phase attacks discussed in
this paper (we do not discuss all of them, as all attacks can be mitigated by implementing the OIDC
specification correctly; the cross-phase attacks are more interesting for us).

• Wrong Recipient. Suppose a malicious RP (mRP) receives an ID token of user A who just
signed in to mRP. The mRP can then use this token to try to impersonate user A by sending
the token to another RP (RP2) that implements OIDC. If RP2 does not verify the Recipient
information in the ID token (that is, the aud claim which indicates that the audience of
this token is mRP), then mRP gets access to user A’s resources in RP2. If, however, RP2
correctly verifies the aud claim (checking that the token was issued by the IdP to RP2), then
it will reject mRP’s token and this attack is not possible.

• Replay attack. As is the case with OAuth 2.0, OIDC is also vulnerable to replay attacks.
A replay attack can occur if an RP does not verify the exp, iat, or nonce claims in the ID
token. These claims indicate the freshness of the token. If, for example, the exp claim is not
verified, then an ex-employee can use their once obtained ID token to keep signing in to
their old company’s RP as the expiration of the token is never checked. The nonce claim is
also used to mitigate this attack; the value of this claim in the token should be equal to its
value in the authentication request, binding the token to that specific request. Of course, the
attack is only mitigated if these claims are verified by the RP.

The paper mentions three cross-phase attacks that allowed an attacker to skip a verification step by
ingeniously abusing the lack of a binding between different phases of the OIDC protocol. One of
them (Issuer Confusion) is an implementation flaw, which we omit from this paper, as it can be
mitigated by implementing OIDC correctly. The other two attacks (IdP Confusion and Malicious

9https://gtmetrix.com/top1000.html
10https://www.telerik.com/fiddler
11https://github.com/RUB-NDS/PrOfESSOS

11

https://gtmetrix.com/top1000.html
https://www.telerik.com/fiddler
https://github.com/RUB-NDS/PrOfESSOS

Figure 8: OpenID Connect vulnerability: IdP Confusion attack flow; figure from [36], where the
authors use the term Service Provider (SP) for the object that we call Relying Party (RP).

Figure 9: OpenID Connect vulnerability: Malicious endpoints attack flow; figure from [36], where
the authors use the term Service Provider (SP) for the object that we call Relying Party (RP).

Endpoints) exposed a specification flaw that resulted in an updated OIDC specification. By virtue
of this study, the current OIDC protocol incorporates some changes that mitigate these attacks (we
discuss them below). Both cross-phase attacks involve the discovery phase of the protocol where, as
discussed in Subsection 5.1, various endpoint URLs are exchanged between the IdP and the RP.

• IdP Confusion attack. For this attack, the attacker implements a custom IdP to steal an
authorization code from an honest IdP. The attacker can then get access to an honest RP. This
attack assumes that the RP has the same client id for both the attacker IdP and the honest
IdP (the OIDC specification allows this). The attack is visualized in Figure 8. First, a user
clicks on a malicious link that initiates the OIDC flow for the honest RP and the attacker IdP.
In steps 1.1.1 to 1.1.4, the RP discovers endpoints from the attacker IdP. Then, in step 2.1
the user is redirected to the attacker IdP, which in turn redirects the user to the honest IdP
in step 2.2. In step 2.3 the user gets asked to fill in their credentials to authenticate to the
honest IdP (this is the only step where the user has a chance to not fall into this attack by not
authenticating). If the authentication is successful, the honest IdP sends an authorization
code to the RP in step 2.4. The RP, however, still thinks that the user is authenticating to
the attacker IdP, so it presents the authorization code to the attacker IdP to obtain the ID
token. The attacker now has an authorization code which they can use to log in to the RP,
impersonating the victim user (as the honest IdP issued the authorization code and will
upon reception exchange it for an ID token). This attack was possible, because the user
authentication step was not linked to the ID token request step in the protocol. In the current

12

version of the protocol, this is mitigated by adding an issuer parameter to every step in the
protocol which indicates who the IdP is that issues the tokens.

• Malicious Endpoints attack. The malicious endpoints attack is very similar to the IdP
Confusion attack, but here the attacker abuses the fact that the discovery step was not linked
to the ID token request step (whereas the IdP Confusion attack abuses the fact that the
authentication step was not linked to the ID token request step). Again, the user clicks
on a malicious link that initiates the OIDC flow for the honest RP and the attacker IdP.
In phase 1.1, the RP discovers endpoints from the attacker IdP, but (and this is the major
difference between these two attacks), here the attacker IdP returns malicious endpoints.
More specifically, the issuer, token endpoint, and user information endpoint are set to the
attacker IdP, but the registration and authentication endpoints are set to the honest IdP. This
results in phases 1.2 and 2, where the RP registers at the honest IdP and the user authenticates
to the honest IdP. The resulting authorization code (and client id and client secret) are then
sent to the (malicious) token endpoint, which points to the attacker IdP. Again, the attacker
obtained an authorization code which they can use to log in to the RP, impersonating the
victim user. This attack can also be mitigated by connecting all steps of the protocol through
an issuer parameter.

In 2017, the first formal security analysis of OpenID Connect was performed [34]. In this paper,
the authors give a long list of possible attacks on OIDC (including the attacks from [36] which we
discussed above) with implementation choices that mitigate these attacks. They use a formal model
of the web to prove that OIDC is secure when following these implementation choices. We omit the
details on the attacker models in this analysis, as we are only interested in practical security of OIDC
to determine to what extent it is the state-of-the-art of SSO. The paper concludes that OIDC is highly
secure regarding authentication, authorization, and session integrity if users implement it correctly.

Besides security, there are also some privacy concerns regarding OIDC. For example, the IdP learns
which RPs users sign in to [32]. Studies like [32] and [37] propose extended and modified protocols
that mitigate these privacy problems.

5.3.1 Relation to OAuth 2.0

The security of OIDC is similar to that of OAuth 2.0, in that it is secure if implemented correctly, and
thus the security of the protocol depends on its implementation. The studies we reviewed show that
although the OIDC specification is sound, developers find it hard to implement it correctly, resulting
in unsafe usage of the protocol [33, 35, 36]. Furthermore, the discovery and registration steps of
OIDC do not appear in OAuth 2.0 and thus they open the door to new attacks, as we saw above. OIDC
is, however, less prone to some attacks of OAuth 2.0 [34] as OIDC requires some cryptographic
signing steps which OAuth 2.0 does not require. Also, the nonce parameter that mitigates replay
attacks in OIDC is not present in OAuth 2.0.

6 Discussion and Future Work

We discussed four of the most-used protocols for SSO, namely Web Services Federation (WS-Fed),
SAML 2.0, OAuth 2.0, and OpenID Connect (OIDC). We found that although WS-Fed was well-
received when it was published, it has in the meantime become outdated. SAML 2.0 is still being
used by some enterprise applications, but OAuth 2.0 and OIDC are by far the most popular protocols
today, with OIDC being most-widely used for SSO.

In the case of OAuth, though early formal security validations of the standard did find some vulnera-
bilities (although the authors admit, however, that “correct implementations” of OAuth 2.0 do not
suffer from some attacks [19]), later research [13] formally proves that, if best security practices
are followed, OAuth provides “strong authorization, authentication and session integrity”. These
best security practices are taken into account in their modeling and were defined in [25] (which, it
is worth mentioning, is built based on some recommendations from these papers [13]). RFC6819
presents a threat model of the framework, grouped by the component that might be attacked: clients,
authorization endpoints, token endpoints, authorization granting flows. Recommendation such as
token encryption (and lifetime constraints and refresh times) or usage of the “state” parameter are
already present in the OAuth standard (which is also constantly being updated with recent security
findings [28]). This leads to what seems to be the largest security vulnerability of the OAuth standard:

13

most of the OAuth exploits can happen because of specific implementations, and not necessarily
issues with the framework itself [26]. This is also related to the main criticism aimed at OAuth
security that is common in the literature: that too much leeway, in terms of security, is left to clients
(RPs) themselves and their implementation decisions. One possible recommendation, endorsed by
[30], is to not trust developers to implement such protection against vulnerabilities, and to have
identity providers enforce this before allowing clients to connect to their data.

We found recurring patterns when analyzing the security of the protocols, namely that the protocols
were secure when implemented correctly. Sometimes, the protocol specifications were too complex,
resulting in unsafe implementations of the protocols. As a result, the protocol specifications were
modified or the protocol got changed (for example, adding the issuer parameter to every step of
OIDC mitigated some protocol specification flaws). This convinces us that this pattern will continue
in the future. OIDC still has security threats that cannot be mitigated if the specifications are not
implemented correctly. We expect future work to be done to develop extensions of OIDC (or new
protocols) that can only be implemented safely. Studies like [32, 37] are making the first steps
towards this direction.

7 Conclusion

Recall that our main research question was: What is the state of the art of SSO? We answer this
question by answering the three sub-questions that we stated in Section 1.1:

• What are the protocols/frameworks that enable SSO?
• How secure are these?
• What methods are currently used in industry for SSO?

We analyzed four main protocols that enable SSO, namely WS-Fed, SAML 2.0, OAuth 2.0, and
OpenID Connect. All four methods are still being used in industry, although WS-Fed and SAML
2.0 are starting to get outdated, and OAuth 2.0’s main purpose is authorization, not authentication.
We found that all protocols are in principle secure if implemented correctly, although this requires
quite a lot of effort in case of WS-Federation and SAML 2.0. Studies like [33, 34, 36] have shown
that currently the protocols are not always implemented correctly, so there is still work that needs
to be done (and is being done [32, 37]) to further secure the SSO protocols and to write more clear
developer specifications for it. In conclusion, OpenID Connect constitutes the state-of-the-art of
SSO, being the most-widely used protocol that is secure if implemented correctly, but further work is
needed to mitigate the possibility to implement it wrongly, exposing RPs to security vulnerabilities.

References
[1] Victoria Beltran. “Characterization of web single sign-on protocols”. In: IEEE Communications

Magazine 54 (July 2016), pp. 24–30. DOI: 10.1109/MCOM.2016.7514160.
[2] V. Radha and D. Hitha Reddy. “A Survey on Single Sign-On Techniques”. In: Procedia

Technology 4 (2012). 2nd International Conference on Computer, Communication, Control
and Information Technology(C3IT-2012) on February 25 - 26, 2012, pp. 134–139. ISSN:
2212-0173. DOI: https://doi.org/10.1016/j.protcy.2012.05.019. URL: https:
//www.sciencedirect.com/science/article/pii/S2212017312002988.

[3] Wanpeng Li, Chris J Mitchell, and Thomas Chen. OAuthGuard: Protecting User Security and
Privacy with OAuth 2.0 and OpenID Connect. 2019. DOI: 10.48550/ARXIV.1901.08960.
URL: https://arxiv.org/abs/1901.08960.

[4] Marc Goodner et al. “Understanding ws-federation”. In: Microsoft and IBM (2007).
[5] Michiaki Tatsubori, Takeshi Imamura, and Yuhichi Nakamura. “Best-practice patterns and tool

support for configuring secure web services messaging”. In: Proceedings. IEEE International
Conference on Web Services, 2004. IEEE. 2004, pp. 244–251.

[6] Yuichi Nakamura et al. “Model-driven security based on a web services security architecture”.
In: 2005 IEEE International Conference on Services Computing (SCC’05) Vol-1. Vol. 1. IEEE.
2005, pp. 7–15.

[7] Nils Agne Nordbotten. “XML and web services security standards”. In: IEEE Communications
Surveys & Tutorials 11.3 (2009), pp. 4–21.

14

https://doi.org/10.1109/MCOM.2016.7514160
https://doi.org/https://doi.org/10.1016/j.protcy.2012.05.019
https://www.sciencedirect.com/science/article/pii/S2212017312002988
https://www.sciencedirect.com/science/article/pii/S2212017312002988
https://doi.org/10.48550/ARXIV.1901.08960
https://arxiv.org/abs/1901.08960

[8] Emmanuel Ormancey. “CERN single sign on solution”. In: Journal of Physics: Conference
Series. Vol. 119. 8. IOP Publishing. 2008, p. 082008.

[9] Andreas Pashalidis and Chris J Mitchell. “A taxonomy of single sign-on systems”. In: Aus-
tralasian conference on information security and privacy. Springer. 2003, pp. 249–264.

[10] Thomas Groß. “Security analysis of the SAML single sign-on browser/artifact profile”. In:
19th Annual Computer Security Applications Conference, 2003. Proceedings. IEEE. 2003,
pp. 298–307.

[11] Alessandro Armando et al. “Formal analysis of SAML 2.0 web browser single sign-on:
breaking the SAML-based single sign-on for google apps”. In: Proceedings of the 6th ACM
workshop on Formal methods in security engineering. 2008, pp. 1–10.

[12] D. Hardt. “RFC6749 - The OAuth 2.0 Authorization Framework”. In: IETF (2012). URL:
https://tools.ietf.org/html/rfc6749.

[13] Daniel Fett, Ralf Küsters, and Guido Schmitz. “A Comprehensive Formal Security Analysis
of OAuth 2.0”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (2016).

[14] San-Tsai Sun and Konstantin Beznosov. “The devil is in the (implementation) details: an
empirical analysis of OAuth SSO systems”. In: Oct. 2012, pp. 378–390. DOI: 10.1145/
2382196.2382238.

[15] Eric Chen et al. “OAuth Demystified for Mobile Application Developers”. In: Nov. 2014. DOI:
10.1145/2660267.2660323.

[16] Sowmya Ravidas et al. “Access control in Internet-of-Things: A survey”. In: Journal of
Network and Computer Applications (July 2019). DOI: 10.1016/j.jnca.2019.06.017.

[17] W. Denniss. “DRAFT - OAuth 2.0 Device Flow for Browserless and Input Constrained
Devices”. In: IETF (2017). URL: https://datatracker.ietf.org/doc/draft-ietf-
oauth-device-flow/09/.

[18] Shamini Emerson et al. “An OAuth based authentication mechanism for IoT networks”. In:
Oct. 2015, pp. 1072–1074. DOI: 10.1109/ICTC.2015.7354740.

[19] Chetan Bansal, Karthikeyan Bhargavan, and Sergio Maffeis. “Discovering Concrete Attacks
on Website Authorization by Formal Analysis”. In: 2012 IEEE 25th Computer Security
Foundations Symposium. 2012, pp. 247–262. DOI: 10.1109/CSF.2012.27.

[20] Suhas Pai et al. “Formal Verification of OAuth 2.0 Using Alloy Framework”. In: June 2011.
DOI: 10.1109/CSNT.2011.141.

[21] Pili Hu et al. “Application impersonation: Problems of OAuth and API design in online social
networks”. In: COSN 2014 - Proceedings of the 2014 ACM Conference on Online Social
Networks (Oct. 2014), pp. 271–277. DOI: 10.1145/2660460.2660463.

[22] Wanpeng Li and Chris J. Mitchell. “Security Issues in OAuth 2.0 SSO Implementations”.
In: Information Security. Ed. by Sherman S. M. Chow et al. Cham: Springer International
Publishing, 2014, pp. 529–541. ISBN: 978-3-319-13257-0.

[23] Feng Yang and Sathiamoorthy Manoharan. “A security analysis of the OAuth protocol”. In:
2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing
(PACRIM). 2013, pp. 271–276. DOI: 10.1109/PACRIM.2013.6625487.

[24] Daniel Fett, Ralf Küsters, and Guido Schmitz. “An Expressive Model for the Web Infrastruc-
ture: Definition and Application to the Browser ID SSO System”. In: 2014 IEEE Symposium
on Security and Privacy. 2014, pp. 673–688. DOI: 10.1109/SP.2014.49.

[25] T. Lodderstedt, M. McGloin, and P. Hunt. “RFC6819 - OAuth 2.0 Threat Model and Security
Considerations”. In: IETF (2012). URL: https://tools.ietf.org/html/rfc6819.

[26] Eugene Ferry, John O’Raw, and Kevin Curran. “Security evaluation of the OAuth 2.0 frame-
work”. In: Information and Computer Security 23 (Mar. 2015), pp. 73–101. DOI: 10.1108/
ICS-12-2013-0089.

[27] Ronghai Yang et al. “Model-based Security Testing: An Empirical Study on OAuth 2.0
Implementations”. In: May 2016, pp. 651–662. DOI: 10.1145/2897845.2897874.

[28] T. Lodderstedt et al. “DRAFT - OAuth 2.0 Security Best Current Practice”. In: IETF (2021).
URL: https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-
topics/.

[29] Hui Wang et al. “Vulnerability Assessment of OAuth Implementations in Android Applica-
tions”. In: Dec. 2015, pp. 61–70. DOI: 10.1145/2818000.2818024.

15

https://tools.ietf.org/html/rfc6749
https://doi.org/10.1145/2382196.2382238
https://doi.org/10.1145/2382196.2382238
https://doi.org/10.1145/2660267.2660323
https://doi.org/10.1016/j.jnca.2019.06.017
https://datatracker.ietf.org/doc/draft-ietf-oauth-device-flow/09/
https://datatracker.ietf.org/doc/draft-ietf-oauth-device-flow/09/
https://doi.org/10.1109/ICTC.2015.7354740
https://doi.org/10.1109/CSF.2012.27
https://doi.org/10.1109/CSNT.2011.141
https://doi.org/10.1145/2660460.2660463
https://doi.org/10.1109/PACRIM.2013.6625487
https://doi.org/10.1109/SP.2014.49
https://tools.ietf.org/html/rfc6819
https://doi.org/10.1108/ICS-12-2013-0089
https://doi.org/10.1108/ICS-12-2013-0089
https://doi.org/10.1145/2897845.2897874
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics/
https://doi.org/10.1145/2818000.2818024

[30] Ethan Shernan et al. “More Guidelines Than Rules: CSRF Vulnerabilities from Noncompliant
OAuth 2.0 Implementations”. In: July 2015, pp. 239–260. ISBN: 978-3-319-20549-6. DOI:
10.1007/978-3-319-20550-2_13.

[31] Natsuhiko Sakimura et al. “Openid connect core 1.0”. In: The OpenID Foundation (2014), S3.
[32] Sven Hammann, Ralf Sasse, and David Basin. “Privacy-preserving openid connect”. In:

Proceedings of the 15th ACM Asia Conference on Computer and Communications Security.
2020, pp. 277–289.

[33] Jorge Navas and Marta Beltrán. “Understanding and mitigating OpenID connect threats”. In:
Computers & Security 84 (2019), pp. 1–16.

[34] Daniel Fett, Ralf Küsters, and Guido Schmitz. “The web sso standard openid connect: In-depth
formal security analysis and security guidelines”. In: 2017 IEEE 30th Computer Security
Foundations Symposium (CSF). IEEE. 2017, pp. 189–202.

[35] Wanpeng Li and Chris Mitchell. “Analysing the Security of Google’s Implementation of
OpenID Connect”. In: July 2016, pp. 357–376. ISBN: 978-3-319-40666-4. DOI: 10.1007/978-
3-319-40667-1_18.

[36] Christian Mainka et al. “SoK: single sign-on security—an evaluation of openID connect”. In:
2017 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE. 2017, pp. 251–
266.

[37] Zhiyi Zhang et al. “EL PASSO: Efficient and lightweight privacy-preserving single sign on”.
In: Proceedings on Privacy Enhancing Technologies 2021.2 (2021), pp. 70–87.

16

https://doi.org/10.1007/978-3-319-20550-2_13
https://doi.org/10.1007/978-3-319-40667-1_18
https://doi.org/10.1007/978-3-319-40667-1_18

Block-chain based Payment Systems on the
Cloud - Group 20

Abhishek Iyer Heymi Dannon Romano Smruti Inamdar

June 3, 2022

Abstract

With this paper, we try to give an insight on the current state of
blockchain, cloud computing technologies and try to explain the importance
of blockchain based payment systems that are powered by smart smart
contracts and how the current research done into the same tells us that,
these payment systems are better than the traditional payment systems
that are currently in place, by giving an insight on how the problems
that arise with use of traditional payment systems can be mitigated by
blockchain based payment systems

1 Introduction
With this literature review, we aim to provide an in-depth insight on the research
done in the area of cloud payments done using block-chain and the usage of smart
contracts. With the rapid evolution of cloud computing, there has been a drastic
increase in outsourcing services done over the cloud too, so it is of paramount
importance to both the users and the cloud service providers to have a payment
system in place that is reliable, scalable and most importantly, trustworthy. The
main aim of blockchain is to decentralize, and this, in the payment systems over
cloud is quintessential, as the current traditional payment systems in place on
the cloud are riddled with issues like . So, in the literature review, we will be
talking about various types of the systems implemented in various papers and
we will do a comparative analysis of the various implementations and how well
they work in order to eliminate the need for a third party system like banks.

We target to answer the following question(s) “What are the issues with the
traditional payment systems on the cloud? How can the use of block chain and
smart contract improve this? What is the scope of such a system?”

This paper is structured in the following way. We first give a brief introduction
to blockchain technology and then dive deeper into its architecture, applications
and the challenges that arise with it. Then in the subsequent section we talk
about cloud computing and how it can facilitate blockchain as a service and the

1

challenges faced by cloud computing. Then, we talk about Blockchain and cloud
and how the two technologies are being used together to mitigate the issues
faced by each of them and we also talk about smart contract in that section and
what they really are. We then proceed to talk about various blockchain based
payment systems that have been implemented in the cloud and discuss how they
are being used to mitigate the issues that arise with using traditional payment
systems. Finally, we talk about the future work and scope of these systems that
me mention in preceding sections and arrive at a conclusion about our research
question,

2 Blockchain fundamentals
Distributed ledger technology is a decentralized database managed by multiple
users [19]. Blockchain is a digital ledger of transactions that are distributed
across an entire network of computers. It is a method of recording information
which becomes immutable. Blockchain is a special form of DLT where transac-
tions are recorded using an immutable hash.

Bitcoin, a very popular decentralized peer-to-peer digital currency, makes exten-
sive use of the Blockchain technology [4]. The fundamental idea of blockchain
revolves around creating a digital consensus and this is achieved with giving
utmost importance to anonymity. The inception of bitcoin was done with the
paper “Bitcoin: A Peer-To-Peer Electronic Cash System”. It describes electronic
cash transactions done without the presence of a trusted third party or financial
institution. Every transaction is protected using a digital signature. Following
summarizes important steps followed by a transaction:

• Private key of the sender is used to digitally sign the transaction sent to
the public key of the receiver.

• The digital signature is then verified by the entity receiving the digital
currency.

• Transactions are broadcast to every node of the bitcoin network, are verified
and then recorded in a public ledger.

The verifying node has the responsibility to check if Sender owns the cryp-
tocurrency and if sufficient crypto balance is present in the Sender’s account.
Their Public key needs to be verified in the ledger.

2.1 Consensus Algorithms
To add a block into the Blockchain, the block has to be verified by all nodes
on the network. Consensus algorithms are a bunch of protocols that maintain
order of the blocks to be added and check for validity of existing blocks. In a
real time scenario, more than one blocks are competing to be added into the
chain. Consensus algorithms step in and help with decision making as miners

2

cannot reach a consensus without a central authority.

Transactions are not always in the order of generation. Since bitcoin is a
distributed system, it is a daunting task to maintain consensus on the order.
This problem is solved using Blockchain Technology. Blocks are groups of trans-
actions which are linked together, in a linear and chronological order. Every
block contains a hash of the previous block, it’s encrypted hash and a timestamp.

2.1.1 Proof of Work

Multiple blocks could be generated at different nodes at the same time. There
is a possibility of unverified transactions to be broadcasted to the remaining
network. To identify the order of blocks’ placement, a user needs to solve a
computationally challenging problem. The network node uses a block header and
a nonce (4-byte field beginning at zero) to obtain a cryptographic hash function
SHA-256. When the target value is achieved, the miner block is broadcasted to
all the network nodes. Validity of the hash value has to be then confirmed for
approval of the new block. It is then connected to the blockchain. This system
is called Proof-of-Work.

Another tricky scenario stems when miner blocks are generated in parallel.
The Proof-of-Work protocol follows the rule of longest chain, where the longer
the chain is, the more authentic it is. Miners end up using a lot of computation
power in PoW, which results in resource wastage. [4]

2.1.2 Proof of Stake

Proof-of-Stake is an excellent alternative to PoW, and deals with resource
wastage. Miners with more coins are more likely to have their block inserted
in the Blockchain system. This leads to a bias towards the wealthiest miner.
Solutions like Peer coin are used, where the age of the coin is favored for selection
of the next block. Blackcoin is yet another solution which uses randomization to
predict the next block.

2.2 Blockchain Architecture
Blocks : Blockchain comprises of fine-grained components called blocks which
are linked together in a linear chain fashion. Every block comprises of transaction
ID provided by the users, Block height, Hash values of previous and the current
block, Merkle Tree Root hash, Timestamp, block size and list of transactions.[6]

Mining Nodes : They produce Blocks to add to the Blockchain. Mining nodes
are not responsible for maintenance of blocks. Blocks produced are transmitted
throughout the network and then verified by participant nodes for authenticity.[3]
Images 1 and 2 show the architecture of a blockchain and dissection of a block,
respectively

3

Figure 1: Blockchain Architecture

Figure 2: Dissection of a Block

2.3 Applications
Fintech times made an elaborate study on the various use cases of Blockchain,
ranging from Crypto to Central Bank Digital Currency (CBDC). The idea was
to emphasize on it’s applications other than crypto. Blockchain has been used to
make payments to buy digital artwork (NFT) , or even as simple as a morning
coffee. Of late, banks have been issuing cards which deal with transactions
with cryptocurrency balance. This has broken barriers of traditional payment
methods, while encouraging cross-border payments. [10]

2.4 Challenges in Blockchain
Like any other technology, blockchain has it’s challenges and shortcomings.

Privacy: Transactions are stored in a public ledger and are made with anony-
mous addresses in place of real identities. Blockchain doesn’t assure privacy, as
the value of transactions is available to the public key.Privacy is an essential
requirement for cryptocurrency. Using a private or federated blockchain is a
good workaround for privacy. [3]

Scalability: A blockchain is made of blocks and the size of blocks are fixed.
With an increase in the users, the block generation time also increases. This
leads to higher and time consuming transactions, which defeats the purpose of
using Blockchain.

Higher energy consumption: Blockchain infrastructures like bitcoin use

4

constructs like Proof-of-Work and consensus algorithms. The mining process
requires a lot of computational power. It is important to maintain a balance
between blockchain architecture and applications. But we can’t allow Bitcoin
and PoW mining’s potential heavy energy consumption to sidetrack blockchain’s
potential upsides — again; high energy consumption is only inherent to Bitcoin
(and other PoW Cryptocurrencies to a minor degree).

3 Cloud Computing
Cloud Computing is the delivery of services like storage, databases, software
and networks over the internet. It has emerged from distributed computing
technology. A major advantage of this technology is that the user can only
pay for the services used, hence leading to lower operational costs and efficient
infrastructure. [6]

3.1 Delivery models of Cloud Services
• SaaS: Software as a service is where the whole application is deployed

on the internet. These services are also accessed using a dashboard like Iaas.
Saas leverages on maintenance time with control and security. Examples:
Gmail, Salesforce, Amazon Web Services

• PaaS: Platform as a service is where the cloud service provider allows a
user to deploy applications within the platform. Examples: Google Search
Engine

• IaaS: Infrastructure as a service is a pay-as-you-go service where
the user has direct access to processing ,storage and software across the
internet .These services are accessed and controlled using an API. There
is flexibility to purchase only the services needed. Virtualization is used
to distribute resources as per cloud user demands. Examples: Amazon
EC2,GoGrid [9]

3.2 Blockchain as a Service
An extension of the above is Blockchain-as-a-Service (BaaS). It is a third
party cloud-based infrastructure for building blockchain apps and is based on
SaaS. [8] Organizations can access the blockchain service built on the cloud. And
like traditional Blockchain applications, this also consists of smart contracts.
Cloud based service provider is responsible for the maintenance of the infras-
tructure. [8]

In the Blockchain as a Service (BaaS) model, businesses and organizations
can access the Blockchain service that is created and developed on a cloud. A
blockchain as a service application is developed, hosted and deployed on the
cloud. This application is like any other natively hosted blockchain application

5

that has smart contracts and other relevant Blockchain functions. The advantage
of a blockchain as a service (BaaS) model application is that the business need
not worry about the management and installation of any kind of infrastructure
like the server and instead depend on the cloud-based service provider to do all
these IT-related jobs. Examples: Azure, AWS, R3 Corda

3.3 Downsides of Cloud
Downtime: It is one of the biggest downsides of Cloud computing. It being
based on the internet, there are possibilities of network and service outages due
to bottlenecks, power outages, technical difficulties, slow internet connections,etc.

Data Encryption: Encryption of data is done to provide an extra layer of
security. Cloud largely uses SSL encryption for access. It is well known that
data is decrypted before storing in the cloud. This leads to data security being
compromised while storing decrypted data without prior encryption.

Vendor Lock-in: Migration of data and applications from one cloud vendor to
another isn’t an easy task due to it’s rigid infrastructure. Even if the migration
is successful, it could lead to support issues and configuration complexity. The
user data might be left vulnerable and prone to attacks due to compromises
made during migration.

Limited control: Users don’t have a complete control on their deployed appli-
cations. Cloud Services on remote servers are owned, deployed and managed by
Cloud service providers, leaving little room for the users to make any modifica-
tions to the backend infrastructure.

4 Blockchain and Cloud

4.1 Integration of Blockchain and Cloud
Sections 2 and 3 give a brief overview of Blockchain and Cloud systems. This sec-
tion focuses on the integration of Blockchain with Cloud Computing. Blockchain
provides solutions like data privacy, network security and interoperability to
mitigate the downsides of Cloud mentioned in Section 3. Cloud computing
is made of large networks of virtualized resourcces, hardware and software re-
sources. Blockchain can be integrated with cloud systems to facilitate data
replication, easier access to transactional databases and storage. Security and
privacy are important features offered by blockchain which makes user, task and
data management easier. [16]

4.2 Smart Contracts
“A smart contract is the formalisation of an agreement, whose terms are automat-
ically enforced by relying on a transaction protocol, while minimising the need
of intermediaries.”(Scoca,Uriarte,De Nicola, 2). “Smart contracts are computer

6

programs that can be consistently executed by a network of mutually distrust-
ing nodes, without the arbitration of a trusted authority. Being embedded in
blockchains, smart contracts enable the contractual terms of an agreement to be
enforced automatically without the intervention of a trusted third party.”(Jani, 2)

Simply put, smart contracts are just programs stored in a blockchain which are
used to automate the execution of agreements between the user and the service
providers, when the predetermined conditions are met at both the user and server
side. They play an important role in the blockchain payment systems as they
replace the need for an intermediary, it the smart contract’s job to constantly
keep checks on both the user side and the server side and make sure that the
pre-determined conditions are being met from both ends. In case the smart
contract notices a lapse on either side, based on the implementation of it within
a framework, it will either make suggestions to the side where the conditions are
not being met by either sending error messages or simply refusing to execute
an agreement. It is also used to hold in information like public keys and digital
signatures in order to maintain the information of the user and the server side.

4.2.1 Interoperability

Internal communication is not allowed with Public clouds, but with an addition
of blockchain technology to the cloud, seamless inter-node communication is
possible. Each cloud entity is treated as a node and every node on the network
contains a copy of transactions.

4.2.2 Cloud Data Management

The data stored in cloud is unstructured as opposed to structured data on
Blockchain. Since every block contains a hash from the previous block, it is easy
to locate required data. Since Blockchain is a Distributed ledger, large number
of transactions can be processed and stored easily. This extends to involvement
of smart contracts, which increased service quality. [12]

4.2.3 Data Encryption

It is known that data is decrypted before storing in the cloud. Blockchain
network has block data which uses cryptographic algorithms to transform into
hash keys. Block data integrity is of utmost importance and is achieved using
block discovery consensus mechanisms. Every node on the network has a copy of
the transactions, which means easy availability. This also improves persistence
which helps network deal with security attacks.

4.3 Tassat Case Study
Tassat Group, a New York based company provides Blockchain technologies and
solutions for financial institutions. They deal exclusively with Business-to-
Business (B2B) payments. Recent digital economy has setbacks like processing

7

delays, transaction limits and exorbitant transfer fees. This resulted in the need
for real-time payment processes. Most banks lack infrastructure and resources to
build technology to process legacy payments. Tassat group focused on creating a
Private Blockchain-based payment platform for it’s customers. This technology
was integrated with cloud making a labor-intensive and expensive approach
redundant. the integrated model is what became TassatPay. [11]

Table 1: Summary of infrastructure functionality and technology used

Functionality Technology Used
Credential Managament Google Cloud Secret Manager
Scalability Google Cloud Compute Engine
Storing and Managing Data Google Cloud Filestore
Web access optimization Google Cloud Load Balancing
Guided Design Work Google Cloud Architecture Framework
Visualization of Energy Impact Google Cloud Carbon Footprint

The TassatPay runs on a microservice based architecture build around a
private, permissioned Blockchain and a message bus. Compute Engine was
chosen to achieve speed and scalability. It aids with performance considerations
like memory-optimized workloads and general purpose computing. 1 summa-
rizes the functionality required for the Blockchain-Cloud infrastructure and the
Technologies issued by Cloud service provider, which in this case, is Google.

4.3.1 Outcomes

Using Tassat infrastructure with Google cloud aided in reducing energy con-
sumption associated with transaction. A majority of regulatory requirements
of the finance industry like privacy, security and others are met using above
technologies.

5 Analysis of various payment systems

5.1 BCPay
This is a payment framework that was introduced in [18], the main aim of
this framework is to eliminate the need for a trusted third party to build trust
between the users and the cloud service providers. This framework has robust
fairness and soundness. i.e., it is quite resilient to attacks like eavesdropping and
also that is is quite efficient.

It achieves it’s robust fairness and soundness using a protocol called the all or
nothing checking proof protocol [18]. This protocol aids the service providers
to guarantee back immediately after the user has paid the fee for the required
service, or, it is penalized in form of a deposit payment to the user.

8

Figure 3: BCPay Architecture

Image 3 shows the architecture of BCPay as described in [ref]. There are
three key actors in the BCPay architecture, i) Users i.e Client, ii) Cloud Service
Providers i.e Server and iii) Blockchain. The user, wants to gain access or
subscribe to a particular service that is offered by the server and the server
wants to obtain the fee for the service being provided and also send the user back
with the access to the said service as well as confirmation of the subscription fee.
Meanwhile, the blockchain has which has a smart contract, checks if the condi-
tions at both ends are met, when they are, the agreement is then executed. With
this, BCPay succeeds in eliminating the drawbacks of the traditional payment
system like the need for a trusted third party i.e., a bank and the assumption
that it is indeed trusted by both the user and service provider, the bottleneck
that is cause when any participant changes their bank and then that bank or
third paty needs to registered and also the issue of user’s privacy being violated
by the third party. BCPay, whilst mitigating the drawbacks of the traditional
system, also speeds up the payment process as the computational time lost due
to having an intermediary, is no longer an issue.

BCPay’s functionalities can be summed up in five phases. The first one being
the System Setup Phase. This is the phase where both parties (the user and

9

the service provider) set some important parameters on the blockchain, this is
done inorder to define the conditions the need to met inorder for the transaction
to be considered proper and complete by the smart contract that is stored in the
blockchain. The second phase is the Service Implementation phase, in this
phase the service that is requested by the user is implemented. In this phase, the
user subscribes to the service provided by the service provider and sends the data
relating to the service is sent by the user to the service provider, on receiving that
data, a digital signature is created and stored in the blockchain by the service
provider and then the service provider sends a confirmation message that helps
the user get the signature from the blockchain and on obtaining the signature,
the user is assured that the service they have subscribed for is implemented
(which is checked by the user before the subsription fee is paid). The third phase
is the Service Checking Phase this phase is jointly initiated by both the user
and the service provider. In this phase, the conditions of the service that is
implemented are checked and both the user and the server come to agreement
and if both parties are honest, then the user gets the assurance the service will
be as per the agreement and the service provider will get the subscirption fee
from the user. The fourth phase is the Service Payment Phase in this phase,
the user pays the subcription fee to the service provider after checking that the
service implementation meets the predetermined criteria. The final phase is the
Service Claim Phase BCPays only enters this phase if the service provider
fails to prove that the service requirements are met, before a specific time. In
this phase, the user can claim enough deposits from the service provider.

5.2 BlockSubPay
This is payment system mentioned in [5], it is influenced by BCPay. Unlike
BCPay, in this framework, two ways of subscription are taken into account as
usually some cloud service providers work with a fixed subscription fee model
wherein, a fixed fee is levied for the service that a user wants to use. Then there
is a pay as you go model, where the payment depends on factors like how much
computation is done and how much memory is used. In that case the user is
billed according to their usage.

In this framework the authors propose a protocol that has four stages. (i)
Subscription Registration Stage, (ii) Access Token Request Stage, (iii) Cloud
Resource Access Stage, and (iv) Subscription Expiration Stage. In the first stage,
the user selects the service that they want to subscribe to, from a particular
cloud service provider and on selecting the particular service and the service
provider provides the user with necessary information regarding that particular
service, which includes the subscription fee and the address to the smart contract
which is to be accessed by the user to make the fee payment. When the payment
has been made by the user, the smart contract checks if it meets the all the
criteria for a successful payment, after doing the checks, if the smart contract
finds no fault in the payment, it records the user’s public key address which
was used to transfer the payment into the pool list of public keys and then it

10

also sends out valuable information to the user like the subscription status and
expiry date of the subscription. In pay as you go model, the subscription fee is
usually a minimum deposit made by the user, which guarantees that the user is
honest and genuine and in that model, the smart contract also returns valuable
information like how much of the deposit money has been used the user and
how much more computations the user can do before all the money has been
used. In the second stage, after the payment of the subscription fee, the user
asks the service provider for an access token in order to access the servers. The
service provider, on the request of the user, will open a gateway, through which
the user signs his requests with the public key used during the payment of the
subscription fee (or in the case of a pay as you go model, the deposit). On
receiving the request, the cloud service provider uses the smart contract to make
checks on the public key of the user and if the public key is found in the pool of
other public keys and also if the subscription status is valid, then access token is
granted to the user. In the third stage, the user wishes to access the server of
the cloud service provider using the access token that was granted to them in
the previous stage. The user accesses the gateway and sends in a request with
using the access token they have, on receiving the request, the smart contract
checks the access tokens to see if they are valid and if they are meant to access
the server that the user wishes to access, along with those checks, it also checks
the subscription status of the user, if all is in order, then the access is granted
to the user. The final stage occurs when the user’s subscription status turns
to inactive. In this case, the user can either choose to extend the subscription
by paying the subscription fee again, or in the case of pay as you go model,
by making a deposit again and resuming their subscription. The user can also
upgrade or downgrade by choosing the service which best suits their current
need. The user can also choose to not do anything and let the subscription be
inactive and discontinue using the services provided by that cloud platform.

6 Future Scope & Work
Today, various industries are reliant on mobile payment or digital transactions
that require verification. From using the cloud service provider for verification
stage of the payment protocols to using smart contracts that settle the service
agreements for the cloud service requirements or the energy market [14] to even
auditing the integrity of a cloud service, blockchain technology coupled with
cloud architecture and containerization poses great solutions for the modern
issues that arise with new systems.

One of the main issues in mobile payment architecture [2] is the trustwor-
thiness of the cloud service provider that provides the computation that is
required to validate the pseudo keys used in the transactions. CSPs are prone
to colluding with each other for profits. However, on the contrary to the efforts
of the paper, smart contracts can be used to audit the CSP’s integrity. The
articles [20] and [13] shows that with minimal overhead, the third party auditor

11

can be replaced. As the paper indicates, the overhead of ProofGen and Verify is
approximately 14 ms and 11 ms respectively, when the number challenge blocks
reaches 1000. These results show that we can have the CSP auditing automated
using blockchain technology in a scalable manner which fixes the trustworthiness
issue around the CSP involved in the payment process.

A great issue with acquiring cloud services is to agree on a Service Level Agree-
ment. This contracts essentially depicts what the CSP agrees to provide and
what the requestor demands. However, this contract needs to be dynamic as
the demands of the requestor adjust according to various factors. For example,
Netflix would require different resources for streaming video to its customers for
different segments of video quality and the video quality is subject to change as
the user upgrades or downgrades their subscription plan. Smart contracts can
provide this exact service as they are software that can automate the construction
and negotiation of the terms between the requestor and the service provider.
Using blockchain technology, the validity of the contracts can be proven and
the older contracts can be acknowledged in the process as well. The article [7]
demonstrates a clear design of a system that automates the process of finding
the suitable SLA [1] for the requestor in a fast, automated way. As flexibility
is adjustable, the results show that for certain level of thresholds, autonomous
negotiation system can achieve more matches than a classic bilateral negotiation.

Energy market is another sector where cloud services and the smart contracts can
completely digitize the who paradigm. In the energy market, energy providers buy
or sell as the demand and supply for energy(ie. carbon) shifts constantly. These
transactions are crucial to maintain the equilibrium in the demand and supply for
energy. The article [14] outlines a design of a cloud based platform that leverages
the use of smart contracts to meet the dynamic nature of the energy transactions.
The design was tested for different scenarios in which natural gas contracts were
bought and sold using the Antchain contracts rather than Etherium because
Antchain costs only 0.25 yuan to compute while Etherium contracts computa-
tional cost can go up to 12.71 yuan. The article depicts a viable system which was
developed using Cloud IDE provided by Blockchain-as-a-Service (BaaS) platform.

On the more general use cases of smart contracts, Stellar emerges as a cost effec-
tive alternative. Stellar is able to support languages such as Python, JavaScript,
GoLang, or PHP. Stellar achieves the cost of effective execution by using Docker
containers. To be precise, the execution cost of one transaction at Stellar is
only $ 0.0000002 and the execution time is around 5 seconds. With such low
cost and high speed, Stellar technology can digitize the process of creating,
negotiating, and validating contractual requirements of different payments in
scalable manner.

12

7 Conclusion
From the research that we conducted in the area of blockchain, cloud computing,
smart contracts and various blockchain based payment systems that use smart
contracts, that are being implemented on cloud, we can come to the conclusion
that these payment system frameworks certainly do help in mitigating various
issues like user’s data privacy, deduplication [15], high computational time and
cost. To add to this, blockchain and smart contract powered payment systems
can also be extended to various types of subscription model like fixed subscription
as well as pay as you go model. They are also quite safe and reliable and don’t
suffer from issues like eavesdropping.

Albeit new, these systems can replace the traditional payment systems and
not just in a single user and server case,these systems can be extended to sectors
like the energy sector, where we deal with multiple users and multiple service
providers [14][17]. Since, the smart contracts in blockchain can keep a log of
public keys and store it, it can be extended to facilitate a scenario where multiple
users are at the user level and multiple service providers are the server level for
a single scenario. Such cases, where traditional payment systems could cause a
bottleneck when multiple participants on any either end change their trusted
third parties and work to establish trust. It is also useful as having the blockchain
layer with smart contracts can be used to store pre-determined conditions for all
the participants on both ends.

Hence, it is safe to say that continued research and development in this field of
study can help a lot of sectors to transition from traditional payment mechanisms
and adopt a blockchain based payment system which are powered by smart
contracts.

References
[1] Wenjuan Li et al. “Blockchain-based trust management in cloud computing

systems: a taxonomy, review and future directions”. In: Journal of Cloud
Computing 10 (June 2021). doi: 10.1186/s13677-021-00247-5.

[2] Yongjian Liao et al. “Analysis of a mobile payment protocol with outsourced
verification in cloud server and the improvement”. In: Computer Standards
Interfaces 56 (Sept. 2017). doi: 10.1016/j.csi.2017.09.008.

[3] Ch Murthy et al. “Blockchain Based Cloud Computing: Architecture and
Research Challenges”. In: IEEE Access 8 (Nov. 2020). doi: 10.1109/
ACCESS.2020.3036812.

[4] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In:
Cryptography Mailing list at https://metzdowd.com (Mar. 2009).

13

https://doi.org/10.1186/s13677-021-00247-5
https://doi.org/10.1016/j.csi.2017.09.008
https://doi.org/10.1109/ACCESS.2020.3036812
https://doi.org/10.1109/ACCESS.2020.3036812

[5] Yustus Oktian et al. “BlockSubPay - A Blockchain Framework for Subscription-
Based Payment in Cloud Service”. In: Feb. 2019, pp. 153–158. doi: 10.
23919/ICACT.2019.8702008.

[6] s Sarmah. “Application of Blockchain in Cloud Computing”. In: Interna-
tional Journal of Innovative Technology and Exploring Engineering 8 (Oct.
2019), pp. 2278–3075. doi: 10.35940/ijitee.L3585.1081219.

[7] Vincenzo Scoca, Rafael Brundo Uriarte, and Rocco De Nicola. “Smart
Contract Negotiation in Cloud Computing”. In: May 2017. doi: 10.1109/
CLOUD.2017.81.

[8] Blockchain Simplified. Blockchain as a Service. 2021. url: https://
medium . com / @blockchain _ simplified / the - implementation - of -
blockchain-as-a-service-baas-de18490c9887.

[9] Blockchain Simplified. Delivery Models. 2020. url: https://www.redhat.
com/en/topics/cloud-computing/iaas-vs-paas-vs-saas?sc_cid=
7013a000002pgRPAAY&gclid=Cj0KCQjwnNyUBhCZARIsAI9AYlEuk9iKFt1m%
20JtT6hS2mqSbcyvoe3LgOjDj- 3F8nG5VHfCFC_3TIy9kaArWVEALw_wcB&
gclsrc=aw.ds.

[10] Tyler Smith. Financial Times Study. 2020. url: https://thefintechtimes.
com/blockchain-how-its-being-used-to-process-payments/.

[11] TassatPay. 2020. url: https://cloud.google.com/customers/tassat.
[12] Karthikeya Thanapal et al. “Online Payment Using Blockchain”. In: ITM

Web of Conferences 32 (Jan. 2020), p. 03007. doi: 10.1051/itmconf/
20203203007.

[13] Hao Wang et al. “Blockchain-based fair payment smart contract for public
cloud storage auditing”. In: Information Sciences 519 (May 2020). doi:
10.1016/j.ins.2020.01.051.

[14] Lei Wang et al. “Design of integrated energy market cloud service platform
based on blockchain smart contract”. In: International Journal of Electrical
Power Energy Systems 135 (Feb. 2022), p. 107515. doi: 10.1016/j.
ijepes.2021.107515.

[15] Shangping Wang, Yuying Wang, and Yaling Zhang. “Blockchain-Based
Fair Payment Protocol for Deduplication Cloud Storage System”. In: IEEE
Access PP (Sept. 2019), pp. 1–1. doi: 10.1109/ACCESS.2019.2939492.

[16] Zhiran Wang. “Research on Cloud Computing-Based Online Payment
Mode”. In: 2011 Third International Conference on Multimedia Information
Networking and Security (2011), pp. 559–563.

[17] Wei Wu et al. “Blockchain-based smart payment scheme of power in-
frastructure funds”. In: Energy Reports 7 (Nov. 2021), pp. 725–733. doi:
10.1016/j.egyr.2021.09.199.

[18] Yinghui Zhang et al. “Blockchain based Efficient and Robust Fair Payment
for Outsourcing Services in Cloud Computing”. In: Information Sciences
462 (Sept. 2018), pp. 262–277. doi: 10.1016/j.ins.2018.06.018.

14

https://doi.org/10.23919/ICACT.2019.8702008
https://doi.org/10.23919/ICACT.2019.8702008
https://doi.org/10.35940/ijitee.L3585.1081219
https://doi.org/10.1109/CLOUD.2017.81
https://doi.org/10.1109/CLOUD.2017.81
https://medium.com/@blockchain_simplified/the-implementation-of-blockchain-as-a-service-baas-de18490c9887
https://medium.com/@blockchain_simplified/the-implementation-of-blockchain-as-a-service-baas-de18490c9887
https://medium.com/@blockchain_simplified/the-implementation-of-blockchain-as-a-service-baas-de18490c9887
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas?sc_cid=7013a000002pgRPAAY&gclid=Cj0KCQjwnNyUBhCZARIsAI9AYlEuk9iKFt1m%20JtT6hS2mqSbcyvoe3LgOjDj-3F8nG5VHfCFC_3TIy9kaArWVEALw_wcB&gclsrc=aw.ds
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas?sc_cid=7013a000002pgRPAAY&gclid=Cj0KCQjwnNyUBhCZARIsAI9AYlEuk9iKFt1m%20JtT6hS2mqSbcyvoe3LgOjDj-3F8nG5VHfCFC_3TIy9kaArWVEALw_wcB&gclsrc=aw.ds
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas?sc_cid=7013a000002pgRPAAY&gclid=Cj0KCQjwnNyUBhCZARIsAI9AYlEuk9iKFt1m%20JtT6hS2mqSbcyvoe3LgOjDj-3F8nG5VHfCFC_3TIy9kaArWVEALw_wcB&gclsrc=aw.ds
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas?sc_cid=7013a000002pgRPAAY&gclid=Cj0KCQjwnNyUBhCZARIsAI9AYlEuk9iKFt1m%20JtT6hS2mqSbcyvoe3LgOjDj-3F8nG5VHfCFC_3TIy9kaArWVEALw_wcB&gclsrc=aw.ds
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas?sc_cid=7013a000002pgRPAAY&gclid=Cj0KCQjwnNyUBhCZARIsAI9AYlEuk9iKFt1m%20JtT6hS2mqSbcyvoe3LgOjDj-3F8nG5VHfCFC_3TIy9kaArWVEALw_wcB&gclsrc=aw.ds
https://thefintechtimes.com/blockchain-how-its-being-used-to-process-payments/
https://thefintechtimes.com/blockchain-how-its-being-used-to-process-payments/
https://cloud.google.com/customers/tassat
https://doi.org/10.1051/itmconf/20203203007
https://doi.org/10.1051/itmconf/20203203007
https://doi.org/10.1016/j.ins.2020.01.051
https://doi.org/10.1016/j.ijepes.2021.107515
https://doi.org/10.1016/j.ijepes.2021.107515
https://doi.org/10.1109/ACCESS.2019.2939492
https://doi.org/10.1016/j.egyr.2021.09.199
https://doi.org/10.1016/j.ins.2018.06.018

[19] Zibin Zheng et al. “An Overview of Blockchain Technology: Architec-
ture, Consensus, and Future Trends”. In: June 2017. doi: 10 . 1109 /
BigDataCongress.2017.85.

[20] Jinglin Zou et al. “Integrated Blockchain and Cloud Computing Systems:
A Systematic Survey, Solutions, and Challenges”. In: ACM Computing
Surveys (Mar. 2021). doi: 10.1145/3456628.

15

https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1145/3456628

Distributed neural graphs: DistDGL vs GraphTheta vs
AliGraph

Effrosyni Stergiopoulou
Department of Computer Science

University of Amsterdam
13915681

effrosyni.stergiopoulou@student.uva.nl

Noé Zhang
Department of Computer Science

University of Amsterdam
14149117

noe.zhang@student.uva.nl

Anastasios Bazinis
Department of Computer Science

University of Amsterdam
14206587

anastasis.bazinis@student.uva.nl

Abstract

This study focuses on graph neural networks (GNNs) and analyzes 3 state-of-the-art
methods that can be directly applied on graphs to perform inference. In the first sec-
tion, we introduced GNNs by formalizing them, describing basic methods required
such as partitioning, sampling, and training procedure, and addressing challenging
aspects that this field currently faces based on recent bibliography. In the following
chapters we describe three of the most prominent GNN learning methods, namely
AliGraph, DistDGL, GraphTheta. We provide an overview of their basic attributes,
system architecture and methods used or supported. Following that analysis we pro-
vide a comparative analysis of the three methods in terms of their most important
features in each of the basic components(partitioning,sampling,training). Finally,
we provide a qualitative evaluation of the three methods concerning their scalability
potential. According to our analyis, we came to the conclusion that GraphTheta ap-
pears to be the dominant method among the three discussed since it is tested under
a real world size dataset and appeared to outperform existing methods and scale
linearly in comparison to the workers/nodes provided in a distributed setting(Linux
CPU Docker). Finally, our conclusion offers some future work suggestions as well
as methods that could be enhanced to produce even more efficient results.

1 Introduction

Over the last several years, graph neural networks (GNNs) have demonstrated exceptional perfor-
mance in a range of graph-based applications, including social networks and recommendation systems.
They are a rapidly growing graph learning family of deep neural network designs for which, common
DNN practices like data and model parallelism, do not apply (1). Despite recent advances, training
GNNs on large-scale real-world graphs remains challenging. There has been several attempts to
expand GNN training utilizing sampling methodologies however, they are still inefficient for training
on extremely large graphs due to the unique structure of GNNs and the limited memory capacity
of present servers. One alternative is to use distributed training with data parallelism as a potential
solution to these limitations as moving from a single machine to several machines reduces the training
time and memory burden on each unit.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

However, due to the reliance between nodes in a graph, generalizing the existing data parallelism
approaches of conventional distributed training to the graph domain is not straightforward. GNNs,
for example, rely significantly on the information intrinsic to a node and its nearby nodes, unlike
picture classification issues where images are mutually independent, allowing us to divide the image
dataset into various partitions without worrying about image dependence. As a result, partitioning
the graph produces subgraphs with edges crossing subgraphs, causing information loss and slowing
down the model’s performance. To address this issue, multiple approaches have been proposed such
as transferring node features between local machines however, it can result in considerable storage or
communication overhead and privacy problems.

For graph analytics, machine learning and deep learning are becoming more popular. Graph Neural
Networks (GNNs) are a new type of Deep Neural Network (DNN) architecture designed specifically
for graphs, in which the neural network’s structure overlaps with the graph’s structure(2; 3). A GNN
is made up of layers that transform the inputted features into a set of outputted features in the form of
embeddings. Embedding is a process of converting high-dimensional data into a lower-dimensional
latent representation like vectors. These representations make it easier to do machine learning such as
prediction and classification tasks on large or sparse inputs like the ones from graph neural networks.

1.1 GNN learning approaches

The primary idea behind node embedding methods is to employ dimensionality reduction techniques
to convert high-dimensional information about a node’s network surroundings into a dense vector
embedding. These node embeddings may then be supplied into downstream machine learning systems
to help with node classification, clustering, and link prediction, among other tasks(4).

There are two major types of learning approaches, the transductive and the inductive. When we use
transductive learning, we can infer only the labels of unlabeled nodes that were in the training set,
while for inductive learning we train a predictive model M that can dynamically predict labels of
nodes that were not in the training set.

Figure 1: Comparison between transductive and inductive setting(5)

1.1.1 Transductive Graph Learning

The majority of current methods for producing node embeddings are intrinsically transductive.
Because they make predictions on nodes in a single, fixed graph, most of these algorithms explicitly
optimize the embeddings for each node using matrix-factorization-based objectives and do not
typically extend to unseen data(6).Transductive GNNs create a model based on the data points
collected during training and testing but it does not build a predictive model that could be generalizable.
Using the knowledge of the labeled points and extra information, this method predicts the labels of
unlabeled points but if new, unlabeled data points are met typically we will have to rerun the algorithm

2

from scratch. These algorithms may be tweaked to work inductively to infer new knowledge from the
graph, but doing so is computationally costly, necessitating more rounds of gradient descent before
new predictions can be produced(7).

1.1.2 Inductive Graph Learning

Previous research has concentrated on embedding nodes from a single fixed graph, however many
real-world applications demand embeddings for unseen nodes or totally new (sub)graphs to be
produced fast. For high-throughput, production machine learning systems that work on developing
graphs and frequently meet unseen nodes, this inductive power is critical (e.g., posts on Reddit,
users and videos on Youtube). An inductive approach to generating node embeddings also makes it
easier to generalize across graphs with similar features: for example, one could train an embedding
generator on protein-protein interaction graphs derived from a model organism, and then use the
trained model to easily generate node embeddings for data collected on new organisms(8).

During the training phase of inductive learning, the nodes that will be utilized for testing are
completely hidden. When compared to the transductive approach, the inductive node embedding case
is extremely complex since generalizing to unseen nodes entails "aligning" unseen subgraphs to the
node embeddings that the algorithm has previously optimized. An inductive framework must learn
to detect structural aspects of a node’s neighborhood that disclose both the node’s local and global
significance in the graph. An inductive framework must learn to detect structural aspects of a node’s
neighborhood that disclose both the node’s local and global roles in the graph.

1.2 Partitioning of Graphs

How information spreads throughout the graph is a critical topic. There are several cases in which
information must be transmitted across long distances across a network, such as when we have long
sequences reinforced with extra relationships between the sequence’s constituents, such as in the
text, computer language source code, or temporal streams. The most basic strategy, and one used by
nearly all graph-based neural networks, is to emulate synchronous message-passing systems from
distributed computing theory (9). In particular, the inference is carried out in a series of rounds in
which each node sends messages to all of its neighbors, the messages are delivered, and each node
does some calculation depending on the received messages. While this method is straightforward and
fast to apply, it is inefficient when the task demands spreading information across large distances in
the graph.

As a result, extensive graph partitioning methods are utilized in GNNs to attain a better degree of
efficiency and parallelization of calculations. Graph partitioning is a method of dividing a graph into
smaller sections in which the nodes are mutually exclusive. It is an efficient method for reducing
complexity or parallelizing, and the partitioned graph becomes more suitable for analysis and problem-
solving. With the introduction of ever-larger instances in applications such as scientific simulation,
social networks, and road networks, graph splitting becomes increasingly crucial, multidimensional,
and difficult. Because graph partitioning is a difficult topic, several strategies and solutions are
presented. Several heuristics and high-quality graph partitioning algorithms are among these solutions.
The multilevel graph partitioning technique is the most successful heuristic for dividing huge graphs.
It is divided into three stages: coarsening, initial partitioning, and uncoarsening(10).

1.3 Sampling techniques: Global-batch, Mini-batch, Cluster-batch

Global-batch and mini-batch are two prominent training algorithms on huge graphs from the stand-
point of inductive learning. By combining feature matrices with graph Laplacian, global-batch
executes globalized graph convolutions throughout an entire graph. Regardless of graph density, it
requires calculations on the full graph(11). Mini-batch, on the other hand, performs localized convolu-
tions on a batch of subgraphs, where a subgraph is made up of nodes and their neighbors(8).Subgraph
building is frequently confronted with the problem of size explosion, especially when the node
degrees and exploration depth are both big. As a result, training on dense networks (high-density
graphs) or sparse graphs with strongly skewed node degree distributions is challenging. A number
of neighbor sampling strategies are offered to lower the size of neighbors to lessen the issue of
mini-batch training(12). However, the sampling strategies are frequently the reason behind unreliable
inferencing results.

3

Cluster-batch, like mini-batch, trains a model on the subgraphs created by the first batches of target
nodes, whereas global-batch trains a model on the whole graph. The number of GNN layers, graph
topology, and community recognition techniques all influence the size of a subgraph, which can range
from one node to the whole graph. The number of GNN layers controls the neighbor exploration
depth, and subgraph sizes rise exponentially. Node degree affects the exponential factor of subgraph
development in a graph topology. By utilizing community discovery (graph clustering) methods,
this strategy may optimize per-batch neighborhood sharing and in some applications, it outperforms
mini-batch.(13)

1.4 Formalization of Graph Neural Networks

According to Hu et al.(14), a GNN may be perceived as a message passing system that uses the input
graph structure as the computation graph, with local neighborhood information collected to provide a
more contextual representation(15).

Suppose H l
t is the representation of node t at the (l)-th GNN layer, the recurring update procedure

from the layer (l − 1) to the (l)-th layer is:

H
(l)
t ← Aggregate

∀s∃Nt,∀ε∃E(s,t)

(Extract(Hs
(l−1);Ht

(l−1), e)) (1)

where N(t) represents the source nodes of node t and E(s,t) represents the edges from node s to
t. The most used operators for GNNs are Extract and Aggregate. The Extract operator stands
for extracting neighbor information, using the target node’s representation H l−1

t and the edge e
that connects the nodes as query, extracting information for the new node H l−1

s . The Aggregate
operator performs neighborhood information aggregation. Each aggregator function collects data
from a certain number of hops away from a particular node, or search depth. We employ our trained
system to construct embeddings for completely unseen nodes at test or inference time by applying the
learned aggregation methods. The simplest aggregation operators are commonly regarded the mean,
sum, and max functions, however advanced pooling and normalizing functions can also be developed.
In principle, Extract operator is used by attention-based models assessing the significance of each
source node, which is then returned to do a weighted aggregation.

1.5 Training with sampling algorithms

In practice, learning large-scale graph data necessitates significant computing and memory resources,
resulting in a high training cost for GNN. To address the issue, sampling techniques for efficient
GNN training are developed. Sampling methods decrease the computational and memory costs of
training while maintaining acceptable accuracy loss by conditionally picking nodes(16).

Training GNNs, particularly GCNs, typically necessitates the implementation of the entire graph
Laplacian and all intermediate embeddings, which incurs a high memory cost and makes it difficult to
scale training on massive graph data. Furthermore, the standard training technique updates the model
using a full-batch strategy, which results in a sluggish convergence rate.To tackle these shortcomings,
sampling algorithms are proposed that alter traditional training by using a mini-batch approach and
conditionally selecting partial neighbors, decreasing memory and computation costs. According to
the granularity of the sample operation in one sampling batch, sampling algorithms may be classified
into a variety of categories(17).

The respective categories are node-wise, layer-wise, and subgraph-based.The typical node-wise
sampling algorithms,treat several hops, randomly sampling each node’s neighbors. Layer-wise
sampling algorithms use top down sampling on a multi-layer model. They focus on a fix number
of sampling nodes per layer without taking into consideration the number of the nodes’ neighbors.
In subgraph-based sampling techniques, one subgraph is sampled for each mini-batch for training,
which is formed by splitting the entire graph or inducing nodes (edges). Summarising, all sampling
algorithms choose partial nodes based on specified rules and combine them into a single training
batch(16).

4

1.6 GNNs Training Challenges

Unlike regular data, graph data consists of interconnected nodes and axes that translate to intercon-
nected and inter-dependent vertices. GNN models each layer as a message-passing process in which
each vertex accumulates the characteristics of its neighbors(18).This requires a more distinguished
training approach than the regular DNNs and the complexity worseness when we scale the existing
solutions. Practices like partitioning result in considerable communication costs since certain nearby
vertices are necessarily separated between partitions(1).

A GNN model is commonly trained end-to-end once per task on the input graph using supervised
data. Having adequate and diverse sets of labeled data to train specialized GNNs matching to each job
is necessary for different tasks on the same graph. Access to adequate labeled data for those activities
is usually prohibitively expensive and often impossible, especially for large-scale graphs(14).

1.7 Application of GNNs

We can find graphs in all the domain of life. One of the interesting topic to look at is chemistry.
Indeed, the molecules have an inherent graph like structure. We can describe a molecule from the
atoms being the nodes and the bonds between them the edges of the graph. GNNs have allowed
us to learn more about existing molecular structures and also to discover new chemical structures.
It has lead to great discoveries in computer aided drug design. One example is the prediction of
the properties of new molecules by learning from existing one. We can also find GNNs in Natural
Language Processing. Indeed, there exist way of converting a text into a graph of words from which
we can use a GNN to obtain interesting results such as reading comprehension. However, one of
the main application of GNNs today is e-commerce. Indeed, a lot of online platforms recommend
content likely to interest a person who’s browsing. The GNN will predict the most relevant content to
show to the customer based on its information.

2 Research Question

The scope of this project is to conduct a comparative study between three state-of-the-art methods on
GNNs namely DistDGL, Aligraph, and GraphTheta. We offer an overview of their training strategy,
system architecture, and overall structural differences. Finally, we include a critical evaluation of the
three methods concerning their efficiency and scalability in huge datasets that simulate real-world
applications.

3 AliGraph

AliGraph (19)is a comprehensive graph neural network system with the goal of facilitating GNN
training and enabling the development of new GNN algorithms by providing efficient graph storage
and processing capabilities. AliGraph is now being used by Alibaba to support a range of business
scenarios, including product suggestion and tailored search on the company’s E-Commerce platform.
AliGraph is made up of a distributed graph storage system, optimized sampling operators and runtime
system. The system is designed to to supports existing popular GNNs as well as a series of developed
ones at Alibaba.

3.1 System

The AliGraph platform consists of 5 different layers: application, algorithm, operator, sampling and
storage where the three last layers compose the system.

The system architecture is abstracted from the generals GNN methods and is based on a GNN
framework. This framework will take diverse information in input (such as a graph, vertex information
etc...) and it will return an embedding for each vertex of the graph. These result in a system divided
in three different layers. The storage layer that will fulfill the fast data access required by high-level
operations and algorithms. In addition, we can find multiple operators that play an important role
in GNN algorithms such as sample, aggregate and combine. Each of these operators reads data and
complete distributed calculations. As sampling lays foundation to the other two, it results in the
implementation of a sampling layer that have access the storage to generate training samples. On

5

Figure 2: Architecture of the AliGraph Platform

top of this layer, we can find the operator layer which aim to optimizes the aggregate and combine
operators.

3.1.1 Storage

This layer aim to solve the challenges encountered by the large size of graph and provide efficient
access in a distributed environment of clusters. Three different strategies are applied.

Graph Partition Because the platform is build on a distributed environment the whole graph is
divided and stored separately in different worker nodes. This strategy aim to minimize the number of
crossing edges whose endpoints are in different workers. To achieve this, the system use 4 different
graph-partition algorithms (METIS(20), vertex cut and edge cut partitioning(21), 2-D partition(22),
streaming-style partition(23)). As all these strategies are suitable to different circumstances, it is up
to the user to chose which one he wants to use.

Separate Storage of Attributes The structural and the attributes of the graph are stored separately.
The two main reasons for that are: attributes cost more space to store and attributes among vertices
and edges overlaps. Thus, the amount of data stored is greatly reduced. However, the access time to
retrieve the attributes is increased. The solution proposed consists to cache the frequently accessed
nodes.

Caching Neighbors of Important Vertices This method consists to locally cache the neighbors
of the important vertices in each worker memory to reduce the communication cost. Indeed, if a
vertex is frequently accessed, storing its neighbors will reduce the visiting cost of other vertices to
their neighbors. However, it comes with the price of space if there are too many neighbors. In order
to make the best trade-off between storing and communication, the system uses a metric that will
give a degree of importance to each vertex. Later, only the vertices that score higher than a manually
selected threshold will be stored.

3.1.2 Sampling

To build embeddings for each vertex, GNN algorithms rely on pooling neighborhood information.
However, the degree of skewed distribution of graphs, makes the convolution procedure difficult to
perform. Thus, a sample layer is abstracted due to its relevance in the system. The AliGraph system
will abstract three kinds of different samplers:

• Traverse: it will be used to sampling a batch of vertices or edges from the whole partitioned
subgraphs.

• Neighborhood: it will be used to generate the context for a vertex.

6

• Negative it is used to generate negative samples to accelerate the convergence of the training
process

According to the neighborhood requirements, the graph is partitioned by source vertices. The vertices
are split on a graph server by group. Each group will be related with a request-flow bucket where the
operations are all about the vertices in the group. The bucket is a lock-free queue and each operation
in the bucket will be executed sequentially leading to enhanced performances from the system.

3.1.3 Operator

After the sampling, the output data can be processed easily. The system use two kinds of operators
that will use the data.

• Aggregate: it collects the information from the surrounding neighborhood of a node and
could be compared to a convolution operation.

• Combine: it allows to describe a vertex using the information of its neighbors.

In addition, new operators can be defined. The operators will be distributed operators and the data
required for calculation will be distributed on each Server of the service.

3.2 Design of Algorithm

On top of the system, we can find the algorithm layer where GNNs can be built on AliGraph system.
Indeed, the AliGraph platform is abstracted from the GNN algorithms. Thus, a large number of GNNs
can be build on the platform. In order to implement a GNN algorithm, the algorithm needs to use the
AliGraph’s sampling operator instead of its own. In addition, it needs to instantiate the Agregate and
Combine operators by adapting the algorithm. There are already multiple GNN algorithms that are
native with the platform. After what, the algorithm can be trained normally.

4 DistDGL

In most applications that use GNN the main problem they face is that the graphs are large(24). That
created the need for a new method that would be able to solve this issue. That method is DistDGL
and it is based on the Deep Graph Library (DGL). It spreads GNN model mini-batch training over a
cluster of processors. The data dependency between vertices distinguishes GNN mini-batch training
from other neural networks. As a result, we must select subgraphs that capture the data with care.

4.1 Graph Partition

The purpose of graph partitioning is to divide the input graph into numerous divisions with the fewest
possible edges between them. Before distributed training, graph partitioning is a preprocessing
procedure. The overhead of a graph is reduced by partitioning it once and using it for numerous
distributed training runs.

The algorithm used in DistDGL’s graph partitioning is METIScite(20). DistDGL adjusts that algo-
rithm so that the neighbors of the local vertices are accessible on the partition, allowing samplers to
compute locally without having to communicate with one another.

4.2 System

DistDGL consists of the following logical components: sampler, KVStore server for storage, trainers
and a model update.

To decrease network communication, the general principle is to delegate computing to the data owner.
The input graph is initially partitioned by DistDGL using a light-weight min-cut graph partitioning
technique. The edge features are then partitioned and co-located with graph partitions. To supply the
local partition data, DistDGL starts the sampler and KVStore servers on each machine (Figure 2).

For each trainer (their use is explained later), DistDGL can spawn multiple sampling worker processes
to sample mini-batches in parallel. Instead of sending distant requests, the workers use shared memory
to access the graph structure stored on the local sampler server.

7

Figure 3: Architecture of the DistDGL System

4.3 Sampler

The sampling of the mini-batch graph derives, as expected, from the input graph. DistDGL does
neighbor sampling to reduce computation. The trainers receive the mini-batch graphs created by
those samplers.

DGL has created a set of adaptable Python APIs to enable a wide range of sampling methods that
have been proposed in the literature. This API architecture is preserved in DistDGL, although it
is implemented differently internally. The trainer sends out sampling requests using the current
mini-target batch’s vertices at the beginning of each iteration. The graph partitioning technique
generates a core vertex assignment, which is used to dispatch the requests to the machines. When
sampler servers get a request, they contact DGL’s sampling operators on the local partition and return
the results to the trainer process. Finally, the trainer compiles the results into a mini-batch.

4.4 KVStore

The KVStore in general stores your data as key-value pairs in collections. In our case, it has two
easy-to-use interfaces for getting data from or sending data to the distributed storage. It also controls
the vertex embeddings if the user-defined GNN model specifies them.

To manage the vertex and edge features, as well as vertex embeddings, DistDGL creates a distributed
in memory KVStore. Flexible partition policies to map data to separate machines are supported by
DistDGL’s KVStore. Each machine’s graph partitions are aligned with DistDGL’s different partition
policies for vertex and edge data. Because the majority of transmission in GNN distributed training is
spent accessing vertex and edge features, efficient data access in KVStore is critical. Using shared
memory is a fundamental enhancement for rapid data access. Because data and processing are
co-located, most data access to KVStore is handled by the KVStore server on the local workstation.
Trainers can gain immediate access to the majority of the data without incurring any communication or
process/thread scheduling costs. For fast networks, the RPC frameworks are used to optimize network
transmission of DistDGL’s KVStore . DistDGL’s KVStore is designed to provide sparse embedding
for training transductive models with learnable vertex embeddings in addition to storing feature data.
The embedding is updated by KVStore based on the optimizer that the user has registered.

4.5 Trainers

The trainers acquire the information of the mini-batch graph from the samplers and the corresponding
collection features, in this cases the edges of the graph, from the KVStore. The gradients of dense
parameters are provided to the dense model update component for synchronization, which is the next
component we will explore, whereas the gradients of sparse embeddings are returned to the KVStore.

8

DistDGL uses a two-level method to partition the training set equitably across all trainers at the start
of distributed training to balance the computation in each trainer. To begin, each trainer has to have
the same quantity of training examples. Training samples are evenly split by IDs and are assigned
the ID range to the machine with the biggest graph partition overlap with the ID range. This is
achievable because during graph partitioning, vertex and edge IDs are relabeled , and the vertices and
edges in a partition have a contiguous ID range. There is a choice between load balancing and data
localization. In reality, the tradeoff is insignificant as long as the graph partition algorithm balances
the number of training samples between partitions. It’s discovered that a random split results in a
very balanced workload assignment. The updating of the parameters in terms of synchronization, is
done through synchronous SGD(25). To overlap communication and computation, asynchronous
SGD(26) is employed to update the sparse vertex embeddings.

4.6 Dense Model Update

This component is used for aggregating dense GNN parameters to perform synchronous SGD(25)
which is an optimization algorithm that can be used to train neural network models.

5 GraphTheta

GraphTheta is a new parallel and distributed graph learning system that supports a variety of training
strategies and allows for efficient and scalable learning on large graphs. GraphTheta’s three main
goals are to support dense and (highly) skewed sparse graphs, to investigate new training strategies
in addition to the existing mini-batch and global-batch methods, and to provide deep neighborhood
exploration without neighbor sampling. GraphTheta implements both localized and globalized graph
convolutions on graphs, and implements NN-TGAR, a new graph learning abstraction which is
intended to bridge the gap between graph processing and graph learning frameworks. Furthermore,
a distributed graph engine is used to carry out the stochastic gradient descent optimization with
hybrid-parallel execution(27).

5.1 System

GraphTheta was inspired by distributed graph processing systems and can handle three training
techniques at the same time: NN-TGAR, Forward and Auto-diff, and Backward. It balances memory
consumption, time cost per epoch and fast convergence to enable deep GNN exploration without
pruning graphs.

It consists of five parts: i) a graph storage component with distributed partitioning and heterogeneous
feature and attribute management, (ii) a subgraph generation component with sampling techniques,
(iii) graph operators that modify nodes and edges, and (iv) learning core operations such as neural
network operators (containing fully-connected layer, attention layer, batch normalization, concat,
mean/attention pooling layers), usual loss functions like softmax cross-entropy loss and optimizers.
The system components of GraphTheta are shown in Figure 4.

Figure 4: Architecture of the GraphTheta System

9

5.2 Graph Partition

The core graphs of GraphTheta are put in a distributed setting, that requires effective graph partitioning
techniques.A number of graph partitioning approaches have been implemened, such as vertex-cut,
edge-cut, and hybrid-cut solutions. GrapthTheta, also includes popular graph partitioning algorithms
that allow for many popular graph processing methods.

A novel graph partitioning approach is used to evenly distribute nodes to partitions and cut off
cross-partition edges. Master and mirror nodes are used, with a master node allocated to one partition
and mirrors established in other partitions. Our strategy places each edge in the partition in which its
source node is a master (target nodes also can be used as the indicator). This ensures that every edge
has at least one master node.

To avoid the problem of duplicated mirror nodes from the vertex-cut techniques, that previous systems
have encountered(28), GraphTheta allows mirror nodes to function as placeholders, keeping just the
node states rather than the real data.

Figure 5: GraphTheta. Three partitions with evenly assigned nodes

5.3 Graph Traversing and Storage

GraphTheta keeps node and edge data individually and arranges outgoing edges in Compressed
Sparse Row (CSR) and incoming edges in Compressed Sparse Column (CSC). The distributed graph
traversal is performed in two parallel operations: one with CSR and the other with CSC. For the
CSR, each master node transmits its associated values to all mirrors and then gathers its outgoing
edges with master neighbors, skipping the edges with mirror neighbors. Each mirror node aggregates
incoming edges with master neighbors for the CSC procedure. Mirror nodes that get values from
their masters will be passively gathered by their neighbors.

The technique used can handle the issue of local message bombing. We only need one message
propagation of node values and outcomes for a master-mirror pair, which decreases the traffic burden
from O(M) to O(N). During the dataflow execution of a GNN model, however, we only synchronize
node values involved in the computation per neural network layer.To adjust cluster-batched training,
heuristic graph partitioning methods such as METIS(20), and Louvain(29) are also supported.

5.4 Sampling

GraphTheta implements a new type of training strategy called cluster-batched training, which conducts
graph convolution on a cluster of nodes and may be thought of as an extension of existing mini- or
global-batch strategies to reduce unnecessary calculations between batches(13).

Cluster-batch divides a large graph into smaller clusters first. Then, either on one cluster or a mix
of clusters, it creates a batch of data. Cluster-batch, like mini-batch, conducts localized graph
convolutions. Moreover, cluster-batch condenses the neighbors of a target node into a single cluster,
which is the same as performing a generalized convolution on a cluster of nodes. It typically creates
clusters by employing a community discovery technique that maximizes intra-community edges
while limiting inter-community connections(29). Community detection can be performed either
offline or in real-time, tailored to the needs of the system. Furthermore, cluster sizes are frequently
uneven, resulting in a wide range of batch sizes.

10

5.5 Training

5.5.1 Subgraph Training

After the sampling methods are applied, naturally we proceed to the subgraph training. In the paper,
it was given an example of mini-batch training which is indicative of the training process Figure 6.
The right side depicts a subgraph built from a set of initial target nodes 1,2,3 with one-hop neighbors
4,5,6 and two-hop neighbors 7,8. The forward and backward computation of this subgraph is shown
on the left, with arrows showing the propagation direction.

Figure 6: Target node tensor stacks and its 2-hop neighbors in the training process with a 2-hop GNN
model

Computational savings A simple way of computing subgraphs is to load the subgraph structure
and relevant data into memory and then conduct matrix operations on the subgraph on the same
processor. This approach has an inherent constraint in generalization since the memory overhead
of a subgraph may surpass the memory limit. GraphTheta uses distributed computing to finish the
training method by simply traversing the distributed subgraph’s structure. It uses a breadth-first
search traverse operation to build a subgraph. This action initializes a minimum number of layers
per target node that are engaged in the computation in order to prevent excessive graph computing
propagation.Furthermore, within each process/worker, a vertex-ID mapping is developed between the
subgraph and the local graph to reuse CSR/CSC indexing, avoiding the expense of subgraph structure
building and preserving graph access efficiency.

5.5.2 Concurrent train of multiple subgraphs

The power of a distributed system cannot be fully redeemed by sequentially training subgraphs.
GraphTheta was created to train numerous subgraphs with multi-versioned parameters in a distributed
environment while also allowing for concurrent lookups and modifications. As a result, the present
GNN training methods have two distinct features: i) parallel subgraph tensor storage based on
distributed graphs, and ii) GraphView abstraction and multi-versioned parameter management for
parallelized batched training. The topology of the parallel batched training that is used for GraphTheta
is depicted in Figure 7

Figure 7: Parallel batched training - GraphTheta

11

Parallel tensors storage Two essential strategies are inspected for subgraph parallel training to
enable low-latency access to dispersed subgraphs and minimize total memory overhead. Reusing the
CSR/CSC indexing is the first approach. Constructing and releasing indexing data for each subgraph
on the fly is wasteful in a high-concurrency situation. Instead, as mentioned in section Subgraph
Training, the global indexing of the whole graph is reused, and a private cache-friendly vertex-ID
mapping is employed to efficiently retrieve a graph topology.

Task-oriented tensor storage is the second method. In GNNs, the same node, especially high degrees
nodes, might appear in many subgraphs generated from separate batches of target nodes. The memory
structure of nodes is task-specific (a task might be an individual forward, backward, or aggregate
phase) and sliced into frames to make tasks context independent and hide underlying implementation
details. A frame is a stack of sequential resident memory that stores raw data and tensors for a specific
node. Memory can be dynamically allocated and freed every frame on the fly to lessen peak memory
load. The output tensors for each layer are computed and released immediately after usage in the
forward/backward phase.

Because tensor allocation and de-allocation have a context-aware memory consumption pattern, a
tensor caching system is built between frames and normal memory manipulation libraries to minimize
frequent trapping in operating system kernel areas.

GraphView was created to train numerous subgraphs at the same time. All major characteristics of
the underlying parallel graph storage, such as reused indexing, embedding lookup, and the distributed
graph representation, are maintained by it. The GraphView, which is implemented as a lightweight
logic view of the global graph, exposes a set of interfaces that are required by all training strategies
and enables easy communication with storages.Furthermore, other training procedures, in addition
to global-, mini-, and cluster-batch, may be implemented using GraphView. Training tasks are also
scheduled in parallel, allowing a training worker to be assigned to the different forward, backward,
and aggregation stages at the same time. To increase load balancing and efficiency, a work-stealing
scheduling method is used due to the diverse workloads of subgraphs.

6 Discussion

We divided the methods into three categories to have a better overview of the techniques used in each
of the approaches. We decided to divide them such as we have: the partitioning, the sampling and the
training. In Table 1 we have made a summary table of these categories. First of all, we look at graph
partitioning. DistDGL use the METIS algorithm. Metis can also be used by AliGraph but Aligraph
supports more partitioning algorithms. On the other hand, GraphTheta uses its own graph partitioning
algorithm, as well as METIS. In addition, the sampling in DistDGL is a mini-batch sampling with
neighbours that could be compared to the neighbourhood sampling of AliGraph. Contrarily to the
two previous approaches, GraphTheta uses a new type of sampling which is cluster batch sampling,
however, it can also use the conventional ones such as mini-batches sampling. The distributed
operators utilized by the algorithms on the platform enable distributed training in AliGraph. However,
it is offered the possibility to utilize your own GNN algorithm, as long as you modify it such that
it is complainant to the AliGraph operators. By using data-parallel execution, the training will be
performed using forward and backward computation over a mini-batch by only one worker. Trainers
in DistDGL perform backward and forward computations in parallel on their own-mini batches.
Finally, GraphTheta employs parallel tensor storage as well as GraphView.

Based on the above mentioned observations, the techniques used by AliGraph are similar to those
used by DistDGL, but they also support new ones that DistDGL does not support. GraphTheta,
on the other hand, appears to be the most efficient and scalable of the methods due to its novel
implementation of graph partitioning and unique sampling technique. GraphTheta distinguishes itself
from other approaches by utilizing hybrid-parallel execution, which computes each mini-batch by a
group of processes/workers and supports several training strategies such as global-batch, mini-batch,
and cluster-batch.

In a distributed Linux CPU Docker environment, it scales approximately linearly using up to 1,024
workers. Given the cheap cost of access to a cluster of CPU machines in public clouds such as
Amazon Web Services, Google Cloud, and Microsoft Azure, GraphTheta has the potential to enable
low-cost graph learning on large graphs.

12

Method Partitioning Sampling Training
AliGraph The algorithm can be cho-

sen in function of the graph
data: METIS, Vertex cut and
edge cut partitioning, 2D-
partitioning, Streaming style
partitioning.

Traverse, Neighbor-
hood, Negative

The GNN algorithms need to be
adapted to the platform. They need
to implement the sampling as well as
the operators defined by the aligraph
system. These operators run in a
distributed way on different servers
allowing faster training.

DistDGL METIS: the neighbours of
the local vertices are acces-
sible on the partition. Sam-
plers work locally without in-
terference from the other par-
titions

Mini-batch sampling
with neighbours

Training samples are uniformly di-
vided by IDs. The machine that has
the largest graph partition that over-
laps with the ID range is assigned
the ID range. The trainers compute
the gradient by running the forward
and backward computations in par-
allel on their own mini-batches.

GraphTheta Specific to GraphTheta:
evenly distribute nodes
to partitions and cuts off
cross-partition edges. The
master node is allocated to
one partition and mirrored
in other partitions. It avoids
duplicated mirror nodes, the
mirrored nodes can function
as placeholders keeping the
state of the node and not the
real data.

sampling without
neighbours cluster
batch

Parallel subgraph tensor storage.
Within each process, a vertex id
mapping is developed between the
subgraph and the local graph to
reuse CSR/CSC indexing. Task-
oriented tensor storage: the same
node can be incorporated in dif-
ferent subgraphs. GraphView pro-
vides a set of interfaces necessary
for all training strategies. The train-
ing tasks are scheduled in parallel.

Table 1: Summary table of each method

When compared to other state-of-the-art methods, including DGL and Aligraph, GraphTheta appears
to have the best generalization potential. The novel cluster-batch training technique that GraphTheta
uses, achieves the greatest generalization results and the fastest convergence time on massive networks,
according to experimental results on the Alipay dataset, the biggest edge-attributed graph ever used
to evaluate deep GNN models in the literature. It is worth noting, however, that while the system
may handle a wide range of activities, only node classification tasks were examined, hence the
performance of GraphTheta in comparison to other jobs is unclear. Concluding, if we had to choose
an approach for our own implementation, we would go with GraphTheta, then DistDGL, and finally
AliGraph.

7 Conclusion & Future work

The use of graph data has exploded during the last years. The graph neural network algorithms
offer a wide range of new applications in every domain. However, their training is still an important
challenge due to the large size of the graph data/ In this study, we talk about three different methods
for training Graph Neural Networks in a distributed way. We present the methods as well as the
strategies that they use to make the training of the GNN algorithms faster. Finally, we divide each
method into three parts and compare the techniques used in each one of them. Because Graph neural
networks are among the most powerful tools in deep learning the opportunities for research are very
large.

Indeed, as we describe it in our study, the approaches focus especially on the training but there is also
a large room for improvement in the development of efficient GNN inference. We could see some
improvement concerning advanced mini-batching or cluster-batching in GNNs where the systems
would use asynchronous or bi-directional mechanisms making it more efficient. Finally, we observe

13

that methods rely on the use of graph partitioning but replication could also be used to increase the
overall performance.

14

References
[1] M. Serafini and H. Guan, “Scalable graph neural network training: The case for sampling,” ACM SIGOPS

Operating Systems Review, vol. 55, no. 1, pp. 68–76, 2021.

[2] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on graph neural
networks,” IEEE transactions on neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[3] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph neural networks: A
review of methods and applications,” AI Open, vol. 1, pp. 57–81, 2020.

[4] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data mining, 2016, pp. 855–864.

[5] Z. Song, X. Yang, Z. Xu, and I. King, “Graph-based semi-supervised learning: A comprehensive review,”
IEEE Transactions on Neural Networks and Learning Systems, 2022.

[6] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with global structural information,” in
Proceedings of the 24th ACM international on conference on information and knowledge management,
2015, pp. 891–900.

[7] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representations,” in Proceed-
ings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014,
pp. 701–710.

[8] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” Advances in
neural information processing systems, vol. 30, 2017.

[9] H. Attiya and J. Welch, Distributed computing: fundamentals, simulations, and advanced topics. John
Wiley & Sons, 2004, vol. 19.

[10] R. Liao, M. Brockschmidt, D. Tarlow, A. L. Gaunt, R. Urtasun, and R. Zemel, “Graph partition neural
networks for semi-supervised classification,” arXiv preprint arXiv:1803.06272, 2018.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv
preprint arXiv:1609.02907, 2016.

[12] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph convolutional networks via importance
sampling,” arXiv preprint arXiv:1801.10247, 2018.

[13] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-gcn: An efficient algorithm
for training deep and large graph convolutional networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2019, pp. 257–266.

[14] Z. Hu, Y. Dong, K. Wang, K.-W. Chang, and Y. Sun, “Gpt-gnn: Generative pre-training of graph neural
networks,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, 2020, pp. 1857–1867.

[15] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum
chemistry,” in International conference on machine learning. PMLR, 2017, pp. 1263–1272.

[16] X. Liu, M. Yan, S. Song, Z. Lv, W. Li, G. Sun, X. Ye, and D. Fan, “Gnnsampler: Bridging the gap between
sampling algorithms of gnn and hardware,” arXiv preprint arXiv:2108.11571, 2021.

[17] X. Liu, M. Yan, L. Deng, G. Li, X. Ye, and D. Fan, “Sampling methods for efficient training of graph
convolutional networks: A survey,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 2, pp. 205–234,
2021.

[18] M. Y. Wang, “Deep graph library: Towards efficient and scalable deep learning on graphs,” in ICLR
workshop on representation learning on graphs and manifolds, 2019.

[19] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and J. Zhou, “Aligraph: A comprehensive graph
neural network platform,” 2019. [Online]. Available: https://arxiv.org/abs/1902.08730

[20] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs,”
SIAM Journal on scientific Computing, vol. 20, no. 1, pp. 359–392, 1998.

[21] F. Rahimian, A. H. Payberah, S. Girdzijauskas, and S. Haridi, “Distributed vertex-cut partitioning,” in IFIP
International Conference on Distributed Applications and Interoperable Systems. Springer, 2014, pp.
186–200.

15

https://arxiv.org/abs/1902.08730

[22] E. G. Boman, K. D. Devine, and S. Rajamanickam, “Scalable matrix computations on large scale-free
graphs using 2d graph partitioning,” in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2013, pp. 1–12.

[23] I. Stanton and G. Kliot, “Streaming graph partitioning for large distributed graphs,” in Proceedings of
the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 2012, pp.
1222–1230.

[24] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang, and G. Karypis, “Distdgl:
distributed graph neural network training for billion-scale graphs,” in 2020 IEEE/ACM 10th Workshop on
Irregular Applications: Architectures and Algorithms (IA3). IEEE, 2020, pp. 36–44.

[25] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed synchronous sgd,” vol. 3,
2017.

[26] Q. Meng, W. Chen, J. Yu, T. Wang, Z.-M. Ma, and T.-Y. Liu, “Asynchronous accelerated stochastic
gradient descent,” Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
(IJCAI-16), 2016.

[27] H. Li, Y. Liu, Y. Li, B. Huang, P. Zhang, G. Zhang, X. Zeng, K. Deng, W. Chen, and C. He, “Graph-
theta: A distributed graph neural network learning system with flexible training strategy,” arXiv preprint
arXiv:2104.10569, 2021.

[28] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “{PowerGraph}: Distributed {Graph-
Parallel} computation on natural graphs,” in 10th USENIX symposium on operating systems design and
implementation (OSDI 12), 2012, pp. 17–30.

[29] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in large
networks,” Journal of statistical mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

16

Web Services and Cloud-Based Systems Literature
Study IDaaS (Identity as a Service) - Research on

Privacy Enhancement Methods

ChiaYu Lin
13692577

1, Wenjun Liang
14128012

1, and Jianyang Gu
135267311

1Department of Computer Science, Universiteit van Amsterdam, Amsterdam, the Netherlands

Abstract

This literature review explores Identity as a Service(IDaaS) and further focuses on
some privacy enhancement methods. IDaaS is an on-trend cloud-based identity
management service while facing some privacy issues. In this paper, we analyzed
three privacy enhancement methods (Rupa, Kuhrmann, and Gomaa) and compare
these methods. We discovered that SAML is the most ideal identity authentication
protocol used in IDaaS environment. Furthermore, among three studies, Rupa
and Gomaa’s method showed a low data transmission latency; while Fuhrmann’s
method showed an efficient performance over large data size processing.

1 Introduction

1.1 Background

To get a comprehensive understanding of Identity as a Service (IDaaS), we first look into Identity
Access and Management(IAM) and cloud identity management. With the development of cloud
computing and a burst of cloud services, digital identity in the cloud should be well managed. Digital
identity is a series of characteristics that an entity owns and uses information technologies to define
an identity (a person, company, application, or device)(6). However, digital identity management is
not a simple process, and cloud identity management solutions need the implementation to protect
digital identity. We may assume Identity and Access Management as a way of saving our passwords,
while it is way more this.

Identity Access and Management (IAM) is a traditional security technology that ensures users with
different roles have different privilege access to resources. Identity and access management is one of
the staples of a comprehensive cybersecurity platform—possibly the most important if some surveys
are to be believed(7).

In the modern business context, cloud identity management can be seen as the next step or next
generation of identity and access management solutions(7). There are two situations for cloud
identity management: private cloud model and public cloud model. Typically, it is much easier to
manage identity in a private cloud model because you own and manage the systems and applications,
any customization that you need to make to integrate the cloud service into your current identity
management scheme can be performed during the design and deployment stage of cloud services(8).

Group 23 Literature Study of Web Service and Cloud-based System (2022), Amsterdam, the Netherlands.

For the public cloud model in cloud identity management, IDaaS is one of the most important models
in use.

Identity as a Service (IDaaS) has many variations, but most of them are just a combination of each
other. ’As a service’ refers to the way IT assets are consumed in these offerings - and to the essential
difference between cloud computing and traditional IT. In traditional IT, an organization consumes
IT assets - hardware, system software, development tools, and applications - by purchasing them,
installing them, managing them, and maintaining them in its own on-premises data center(9). The
cloud service will provide the customers with managing and maintaining the assets, and the customer
would consume via an Internet connection, and pays according to the cloud service subscription.

With many types of cloud services offering, it is meaningful to review some other could service
models first. IaaS, PaaS and SaaS are the three most popular types of cloud service offerings(9).

• IaaS(infrastructure as a service), is on-demand access to serve storage and network. With
the cloud-based physical and virtual servers, storage, and networking - the backend IT
infrastructure for running applications and workloads in the cloud(9).

• PaaS(platform as a service), is access to OS and a complete, ready-to-use, cloud-hosted
platform for applications.

• SaaS(software as a service), is access to packaged software OS and ready-to-use, cloud-
hosted application software.

Figure 1: Cloud Service Models (IaaS,PaaS, and SaaS)

Identity as a Service is a variation of these services above using a third party. As the architecture
shown in Fig2, administrators create an account at the IDaaS provider (directly through the UI or
programmatically through an API), and the provider will then create accounts in the cloud service
applications used by your company, leveraging federation when possible(17). IDaaS is flexible and
can provide many on-ramps to different cloud services. Moreover, it can help with the identity service
integration, just as how its name stated.

We have to point out, however, in IDaaS model the actual accounts and credentials could be stored
in the enterprise identity management system, the IDaaS identity management system, or the cloud

2

Figure 2: Identity Flows and Stores in the Cloud

service identity management system(17). As a result, The main disadvantage of this model is the
privacy issue: security is always treated as the main concern for companies and users from moving to
the cloud. Also, it has the disadvantage with any cloud-based service: all the applications and users
would go down if the system breaks down. Our paper would focus on the privacy issue of IDaaS and
dive deep into three strategies for improving IDaaS privacy.

1.2 Traditional IAM to Cloud IDaaS

Traditional IAM includes an internal identity authentication service within the corporation to verify
user identities. This causes a heavy workload on the system to perform each identity verification
process. Furthermore, users are registered inside the corporation, therefore, all user identities are
maintained in a single large internal database, which demands ongoing maintenance and policy to
keep data secured.

IDaaS is a similar technology to traditional IAM, the difference is, IDaaS deployed its identity
services on the cloud. By using IDaaS, the corporation does not require any authenticate mechanism
of its own to verify user identity. Instead, the process of user identification is provided by a trusted
Identity Provider(IdP).(5) Besides, IDaaS provides better business services such as tracking user
transactions, easy to modify user privileges, user behaviour analysis. Comparing to traditional IAM
where users are registered within the corporation and user information is stored in a local database,
IDaaS requires users to register themselves on the cloud, and identities are passed between IdP and
Service Provider(SP) to grant permission to resources. This may lead to privacy concerns about user
data which would be discussed in the next section. Table 1 is a comparison of traditional IAM and
IDaaS.

3

Table 1: Comparison of Tradition IAM and IDaaS

Traditional IAM IDaaS

Deploy Within the corporation. On public or private clouds.

Authenticate Authentication is performed using an
internal authentication service.

User identification is provided by a
trusted IdP.

Other functions Need to deploy and maintain by the
corporation itself.

Uses existing service provided by
cloud provider.

Performance
Depends on the corporation’s server
configuration, maybe cause heavy
workload to system.

Multiple cloud server operating at the
same time.

Privacy
User data usually stored in a local
database, low risk of data leak (exclud-
ing human errors)

User identities are exchanged between
the IdP and the SP which leads to high
risk of data leak.

1.3 Challenges

Among cloud service models such as SaaS, PaaS, and IaaS, IDaaS is a relatively new and immature
technology that still contains multiple hidden security risks to be resolved. Before adopting IDaaS
from traditional IAM, the corporation needs to perform a risk assessment for all of its applications
that might use IDaaS authentication services and consider the potential security risks of it(10). In this
section, the three major challenges of IdaaS - availability, identity data protection, and trusting a
third party(11); would be discussed.

Identity data protection

In IDaaS cloud environment, user identities are constantly exchanged between users, IdPs, and SPs,
how to ensure identity data protection is arguably the biggest challenge for IDaaS. One can enhance
the privacy of identity by adopting the CIA (Confidentiality, Integrity, and Availability) security
triad(12). For data confidentiality, IDaaS must ensure that the identity is only disclosed to authorized
users, which necessitates the use of encryption techniques. For ensuring data integrity, it becomes
more complex since the cloud environment contains multiple databases, and identities can easily
get tampered with or lost during data exchange. IDaaS must apply a unique access management
technique (14) to prevent this situation.

Availability

The availability of IDaaS, which is related to whether the identity service could operate normally
by handling such a large amount of identity exchange, authentication, and authorization, is a critical
issue given the rapid growth of digital identity requests(13). To ensure the satisfactory performance
of IDaaS, how to achieve its cloud scalability while remaining low-cost, and prevent cyber attacks
that may cause service downtime and user unsatisfactory is one of the major challenges.

Trusting third party

In cloud environment, IdPs and SPs are considered as third parties that are responsible for identity
authentication and authorization. This prompts the concern of whether users can trust these third par-
ties. Therefore, the issue of how to apply techniques such as Blind Identity Management (BlindIdM),
which allows third parties to provide identity services without knowing the users’ actual identity
information, is also a challenge for IDaaS(15).

4

1.4 Research Question

Due to the potential security risks in IDaaS cloud environment. Recent research into how to improve
the privacy of IDaaS has been a popular issue. Studies have recommended various solutions for
improving IDaaS’s privacy problem. In this paper, we will discuss and compare the performance
and algorithm used by three privacy improvement strategies based on distinct authentication
models.

2 Literature survey

Privacy preservation is a significant issue for allowing consumers and businesses to believe that the
data they share and communicate on the cloud is secure. Several strategies for providing various
encryption protocol techniques with infrastructure-based services have been proposed. In this section,
three methodologies for improving the privacy of IDaaS in the cloud environment will be introduced.

2.1 SAML and PECC based authentication protocol in fog computing

Rupa et al.(1) suggested a fog based SAML and PECC (Pentatope found Elliptic Curve Crypto
Cipher) based authentication protocol model. This model improved user privacy by concealing data
transferred over the cloud server. In this section, a brief overview of SAML and the architecture of
this authentication based protocol model will be discussed.

2.1.1 Introduction of SAML

SAML(Security Assertion Markup Language) is a well-known identity protocol used in cloud
infrastructure(3). SAML is an XML-based protocol that generates security tokens from end-users
information, this token serves as an authentication symbol provided by the identity provider(IdP). By
passing the authenticated token to the service provider(SP), end-users can grant permission to access
the service(4).

2.1.2 Introduction of PECC

PECC (Pentatope found Elliptic Curve Crypto Cipher) is a key generation, encryption, and decryption
technique used to secure data. PECC could help improve user privacy in Rupa’s protocol model by
hiding data information from identity providers (16).

2.1.3 Authentication protocol model

In Rupa’s authentication protocol model, to join the data communication under this model, all clients
and parties must first register with the authentication server (AS) to grant permission and obtain an
encrypted authentication token. Step 1 to 3 and step 7 to 9 in Fig.3 shows the procedure of User A
and User B sending a request to the Authentication Server(AS) to receive a token encrypted with an
encryption key(AS-IDS), and a timestamp T1.

Based on the time stamp, this authentication token will validate the authenticity of clients at the Iden-
tity Server (IDS), and the clients will receive an authorized Ticket and a random key to communicate
with the other user. Step 4 to 6 and 10 and step 12 to 9 in Fig.3 shows the procedure of User A and
User B sending information includes encryption key(AS-IDS) which retrieves from the previous
step and the User ID of A and B. User A and B will then receive a random key RK(A-B) for them to
communicate along with a Ticket encrypted with encryption key(IDS-A/IDS-B).

To initiate communication between two clients, the requester sends a PECC encrypted message to the
receiver, which contains a random key that encrypted the original message as well as the receiver’s
secret key that encrypted its Ticket. The message could then be decrypted by the receiver using
the random key shared by the two clients. Step 12 and 13 in Fig.3 shows the procedure of User A
generating a communication channel to User B with the RK(A-B) which encrypted the message and
the encryption key(IDS-A) which encrypted the ticket.

All communication in this model is session-based, with timestamps that expire after a set period of
time. Following that, clients must reauthorize themselves with the AS, which reduces the likelihood
of data theft attacks.

5

Figure 3: Protocol Model and Transaction

2.2 Trust Adaption and Purpose-based Encryption to protect the disclosure of PII(Personal
Identifiable Information)

Fuhrmann et al.(2) proposed a Trust adaption model and Purpose-based Encryption to protect privacy.
This approach is suitable for sharing sensitive personal data in a large, distributed, heterogeneous
environment. Personal Identifiable Information customers stored in cloud environment may cause
disclosure of PII from intermediary entities and from untrusted hosts. They proposed an efficient
solution to protect the PII of customers over the intended channel and unintended channel. Also, their
solution help against an untrusted host.

6

2.2.1 Architecture Design Overview

2.2.2 Design Principles for Trust Adaptation

Figure 4: Trust Model - Identity federation

Figure4 shows the trust model they proposed. Every domain owns an Identity Provider(IdP). The
user registers at the trusted home Idp. The IdPs of other domains will cooperate with the home
IdP. The service provider will trust the Identity Providers of its domain and use them to handle the
sensitive operation. For example, this model includes three security domains: Telekom, Salesforce,
and Amazon, and each domain have an IDaaS. A customer registers his home IDaaS for authen-
tication. The home IDaaS would then be federated with other domains, which are called visitor
IDaaS. In different domains, SPs trust according to IDaaS as an authoritative resource to handle the
authentication requests. To be more specific, SP1 trusts IDaaS1, SP2 trusts IDaaS2. This trust model
reduces the complexity for a user and an SP to establish trust with each partner individually(2). If
and only if the access purposes of the service can satisfy the user proposed before, the IDaaS in the
domain can decrypt.

To adapt the security infrastructure for cloud services, their approach considers the separation of duties
between a security architect, an IDaaS, and application developers(2). The application developers
can only use the user attributes which are available from the environment.

To dive deeper into the trust adaption concept, they use Topology to Model the infrastructure including
Node Types, Capabilities Types, and Relationship Types.

2.2.3 Design Principles of Purpose-Based Encryption

For collection of personal data, the law regulates that it should be under consent and clarify the
purpose. Also, this collection of personal data has a time limit and could not be disclosed.

To describe the disclosure policy, this paper proposed an access control model - Purpose-based
Encryption, including three main factors: time, purpose, and domain. They use the Predicate
Encryption with public index to encrypt the data: each ciphertext is associated with a public index

7

that describes the disclosure policy(2). While this model can allow users to encrypt and distribute
their data in any security domains, SPs without satisfying the disclosure policy cannot obtain the key
capabilities to decrypt the data.

To be more specific about the encryption scheme, this encryption mainly includes 3 parts:

• Encryption: group and encrypt the Personal Identifiable information that shares a disclosure
policy.

• Generalisation: Before encrypting a value, generalization avoids it from being revealed
exactly. Multiple authorities are implemented to process secret keys along with the attributes
independently. For the key generation, this design uses the UID concatenating with the
SESSIONID as input for tying all key attributes together(2). All key attributes are used
because they can prevent collusion attacks between users. With all key attributes, this design
can prevent users from trying to combine their different keys to gain more capabilities for
decryption.

• Minimisation: It prevents more user data from being disclosed than is necessary for the
intended purpose. For example, the process of purpose development shouldn’t include any
personal information.

2.2.4 Life Circle and Request flow

This architecture design mainly contains two request flows.

Single authority

• Encryption: User attributes are encrypted by the home Identity Provider and stored in
ciphertext in a Policy Information Point.

• Authentication and authorization: Use “User-Managed Profile” standard and send requests
asynchronously.

• Purpose authorization request: Activate the purpose for accessing the cloud service.

• Identity propagation: If the access purpose of the backend service complies with the
disclosure policy, it is possible to decrypt the ciphertext.

Multi-authority

• Encryption: Use Multi-authority Attribute-Based Encryption which is mentioned above.

• Authentication: Authenticates the user and generates a Time Access Token using the key
generation algorithm.

• Authorisation: The user provides the SAML to access a service provider after authenticating

2.3 Virtual Identity frameworks based on the Identity-Based Encryption (IBE) and
Pseudonym-Based Encryption (PBE)

Gomaa et al.(18) proposes a new identity concept called Virtual Identity, which can assure security,
privacy, reliability, and cost-effectiveness towards a feasible cloud-based IDaaS solution.

8

Figure 5: main framework

This new model can make each user have not only one main identity but also different virtual ones.
Virtual identities would map into each service access as shown in Fig5 framework.

2.3.1 Proposed Virtual Identity approaches

This framework can create user virtual identity-based IBE and PBE to build connections with cloud
service providers. This design contains three main entities: User, Service Provider, and the Private
Key Generator.

The basis for creating Virtual Identity includes two secure mechanisms, the first one is based on IBE
and the second is based on a different method, PBE. For achieving a high degree of security and
efficiency, the IBE and PBE are designed and implemented based on Elliptic Curve Cryptography
(ECC)(18). They are different encryption techniques, and both are not anonymous to the Trust
Authority. Thus, this design can ensure the identity can develop into Virtual Identity and secure
reliability and privacy. Moreover, the two different method shares the same security requirements to
secure the system’s privacy.

For implementing and designing proposed protocols and further evaluation, ’MIRACL library’ is
used in the IBE and PBE. The function can calculate the number of points in a finite field which
should be a prime number](18).

In this paper, the authors also compare the two approaches – IBE and PBE. While they are both used
as solutions for anonymous communications, there are some differences in their processing time and
scalability. The processing times for all messages are around 0.05 Sec both IBE and PBE. For the
scalability issue, they evaluate the time needed to create the Virtual Identity for the different numbers
of users as a simulation scheme for a large number of cloud access users, and the PBE provides a
short time for V ID creation because of the low number of messages used to create it(18).

3 Discussion

In this section, a comparison between the privacy enhancement methods suggested by Rupa’s,
Fuhrmann’s, and Gomaa’s team would be made. We will then discuss the method models based on
the algorithm used and the execution performance.

9

3.1 Algorithm Used

SAML is utilized for authentication and authorization identity exchange in all Rupa’s, Fuhrmann’s,
and Gomaa’s method, because SAML can offer data communication among various types of devices,
making it ideal for IDaaS, which demands a lot of communication between users, IdPs, and SPs.

In addition, Rupa’s method used PECC as a key encryption scheme. When compared to the other two
approaches discussed in the study, PECC may help conceal data (IDs, tickets, and tokens) transmitted
via the cloud, whereas the other two methods only hide user identities but not the data itself (1).
Therefore, we can say that Rupa’s method can better prevent ID theft attacks, reply attacks, and
forgery attacks because of the hidden user identities technique.

Fuhrmann’s method proposed a Purpose-Based Encryption as their encryption scheme. To the best of
knowledge, this work is the first approach to combine Purpose-based Access Control and Attribute-
based Encryption to protect the confidentiality of disseminated data with multi-authorities support(2).
They prove their concept in real development and solved the following issues successfully. With
their proposed Purpose-based Encryption, propagation between intermediaries and further identity
theft can be prevented. Besides, Insider attack on an IdP: PII is encrypted on the IdP. Therefore,
an administrator of one IdP does not have enough tokens to decrypt it and malicious hosts can be
prevented(2).

Gomaa’s method did not focus on proposing a new-design encryption mechanism. They come up
with a virtual identity technology to reach the goal of preventing the reverse of access chain in the
virtualized environment through hiding the main user identity. Their method can also be used for big
data secure access mechanisms combined with cloud computing to solve scaling problems.

A table listing the algorithms used in these three privacy enhancement methods is stated inTable 2.

Table 2: Algorithm Used in Different Methods

Identity Exchange Data Encryption

Rupa’s SAML PECC

Fuhrmann’s SAML Purpose-Based Encryp-
tion

Gomaa’s SAML /

3.2 Performance

Aside from the different data privacy enhancing approaches used in the IDaaS model, the actual
performance of the cloud environment’s communication is also a key concern. Even though a
technique offers a high level of security, if it takes a lengthy time to finish the entire authentication
process, it isn’t always the best option. A performance analysis was carried out in these three studies
by assessing their response time, latency, and other elasticity measurements.

However, there is a slightly different in the computer configuration that the three studies used in
their analysis, therefore, there may be some comparison errors due to the incompatibility of the
configuration applied. Rupa’s method measured the performance using the Ubuntu 16.04 LTS and
Linux kernel version 3.13.0 environment, while Fuhrmann’s method tested on CPU i7-8650U, 1.90
GHz, 16 GB RAM, and Gomaa’s method used memory 4GB in Linux Ubuntu 12.10.

• Latency
The latency time in Rupa’s method stands for the delay between the communication of
userA and SP, this does not include the data processing time.
Rupa’s and Gomaa’s methods receive an average of 2 seconds of latency which is much
lower than Fuhrmann’s method, which is around 12 seconds. The relatively high latency in

10

Fuhrmann’s method relies on the time it spends on verifying the timestamp, purpose, and
domain.

• Response Time

In Rupa’s method, we analyze the performance of response time according to different data
sizes transmitted over the cloud. The time it takes for user A to send a request and to receive
a service from the SP is shown inTable 3. It’s not hard to tell that although Rupa’s method
only transfers a small amount of data, for example, 50kb, it also takes nearly 2 seconds
for the model to respond. Furthermore, the response time grows exponentially as data size
increases. Comparing to Fuhrmann’s method that only requires 0.19 seconds for transferring
1 MB of data, Rupa’s method does have a lower efficiency. This could be due to the larger
scale of communication; recall from Rupa’s model that both the identity server and the
authentication server require an additional step to verify the user’s identity.

Table 3: Response Time of Rupa’s method

Data Size (kb) Response Time(sec)

10 0.6213

20 0.4842

30 0.7650

40 0.8243

50 1.83

In Fuhrmann’s method, they take security level into account. The security level is a standard
recommended by the National Institute for Standards and Technology (NIST) on the sizes
for secure settings of parings(19). They tested the performance with different data sizes and
with different security levels. The result shows that the security level would barely affect the
performance. To sum up, for 80 security bits, it only took 50 ms and 37 ms to encrypt and
decrypt 1MB, respectively, which is pretty fast. The token generation time is shown in Fig6.
However, the performance took a tumble when the data size was above this level.

Table 4: Encryption and Decryption time of Rupa’s method

Data Size Encryption
Time(milliseconds)

Decryption
Time(milliseconds)

1 byte 49 33

1 MB 50 37

10 MB 71 62

100 MB 309 328

11

Figure 6: Token generation time

In Gomaa’s method, the response time is not included into their evaluation.
• Authentication load In Gomaa’s method, they compared the authentication load, defined

as the number of simultaneous service sessions that a user has(20). The comparison
indicated that the proposed Virtual Identification approaches are suitable for cloud-based
SaaS applications(18).

• Security In Gomaa’s method, they analyze the security comparison between their proposed
approaches and the same related works. The proposed approaches passed three out of
four AVISPA back-ends (OFMC (On-the-fly ModelChecker), CLAtSe (CL-based Attack
Searcher), SATMC (SAT-based Model-checker), and TA4SP (Tree-Automatabased Protocol-
Analyser))(18). Thus, this method is more secure compared with other competitive schemes.

3.3 Limitations

The three papers all offered a solution to the cloud-based IDaaS privacy problem. However, the
authors of these studies also point out some of their IDaaS models’ limitations.

Rupa’s method (1)pointed out that the model’s performance is insufficient due to the multiple identity
verification steps(See steps 2,8,5,11,14 in Figure 3). Furthermore, Rupa’s method may place a heavy
communication load on the cloud environment because each of their steps generates a timestamp.
Once the timestamp expires, the whole communication needs to start over again.

Fuhrmann’s method(2) cannot prevent the collision attacks between the home and visitor IdP, despite
the authors assuming adversaries cannot control both IdPs at the same time.

Gomaa’s method(18) would create virtual identity, so the authentication load can be an issue. How
to improve the correlation with the keystone security server and further better integrate with cloud
scalability would also be challenging for this method.

4 Conclusion

In this literature review, we investigated the architecture of IDaaS, and looked into how it develops
from cloud-based services. It is noted that the difference between IAM and IDaaS is that IDaaS
deployed its identity services on the cloud. IDaaS, however, faces many privacy challenges. In the
literature survey, we analyzed the three privacy enhancement methods for IDaaS. Some findings are
shown below:

12

• Identity protection method
Both Rupa’s and Fuhrmann’s methods used an encryption technique to encrypt information
transferred between users, IdPs, and SPs, with the goal of concealing the information itself.
Gomma’s method, on the other hand, focuses on concealing the user’s identity rather than
the information transmitted by creating a virtual identity.
Furthermore, all three studies use SAML as their identity protocol, demonstrating that
SAML is the best option for IDaaS when compared to other identity protocols such as
OAuth.

• Latency
When comparing the three approaches, Fuhrmann’s study had the highest latency due to
the time spent confirming the timestamp, purpose, and domain, while Rupa and Gomaa’s
methods had the same latency in communicating identity information.

• Response time
Fuhrmann’s method responds in a short time for the total time it takes for the user to
receive the service by efficiently processing the encrypting, decrypting, and token generation
procedures despite the large data size. However, due to the verification step in the protocol
model, the response time of Ropa’s method grows exponentially with data size increase.

The limitations of each method are also analysed afterwards. Further upgrading the models for better
solutions will be a realistic and sustainable purpose.

5 Work distribution

ChiaYu Lin is responsible for part of section 1.2, section 1.3, section 1.4, part of section 2, and part
of section 4

Jianyang Gu is responsible for section 1.1, part of section 2, part of section 3, and part of section 4

Wenjun Liang is responsible for part of section 2 and part of section 3

References
[1] C. Rupa, R. Patan, F. Al-Turjman and L. Mostarda, "Enhancing the Access Privacy of IDaaS

System Using SAML Protocol in Fog Computing," in IEEE Access, vol. 8, pp. 168793-168801,
2020, doi: 10.1109/ACCESS.2020.3022957.

[2] Vo, T. H., Fuhrmann, W., Fischer-Hellmann, K. P., & Furnell, S. (2019). Identity-as-a-service: An
adaptive security infrastructure and privacy-preserving user identity for the cloud environment.
Future Internet, 11(5), 116.

[3] N. Naik and P. Jenkins, "An Analysis of Open Standard Identity Protocols in Cloud
Computing Security Paradigm," 2016 IEEE 14th Intl Conf on Dependable, Autonomic
and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd
Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), 2016, pp. 428-431, doi: 10.1109/DASC-
PICom-DataCom-CyberSciTec.2016.85.

[4] Oracle - What is SAML, https://www.oracle.com/in/security/cloud-security/what-is-saml/

[5] I. Indu, P.M. Rubesh Anand, Vidhyacharan Bhaskar, Identity and access management in cloud
environment: Mechanisms and challenges, Engineering Science and Technology, an International
Journal, Volume 21, Issue 4, 2018, Pages 574-588, ISSN 2215-0986

[6] Mohammed I A. Intelligent authentication for identity and access management: a review paper[J].
International Journal of Managment, IT and Engineering (IJMIE), 2013, 3(1): 696-705.

[7] https://solutionsreview.com/identity-management/cloud-identity-management-differ/

[8] Cox P. How to manage identity in the public cloud[J]. InformationWeek reports, 2012.

[9] https://www.ibm.com/cloud/learn/iaas-paas-saas

13

[10] Fisher, W., Brown, C., Russell, M., Umarji, S., Scarfone, K. (2021). Identity as a Service for
Public Safety Organizations (No. NIST Internal or Interagency Report (NISTIR) 8335 (Draft)).
National Institute of Standards and Technology.

[11] Understanding IDaaS: The benefits and risks of Identity as a Service, Tech Tar-
get, https://www.techtarget.com/searchsecurity/feature/Understanding-IDaaS-The-benefits-and-
risks-of-Identity-as-a-Service.

[12] Samonas, Spyridon, and David Coss. "The CIA strikes back: Redefining confidentiality, integrity
and availability in security." Journal of Information System Security 10.3 (2014).

[13] Josang, A., AlZomai, M., Suriadi, S. (2007). Usability and privacy in identity management
architectures. In ACSW Frontiers 2007: Proceedings of 5th Australasian Symposium on Grid
Computing and e-Research, 5th Australasian Information Security Workshop (Privacy Enhancing
Technologies), and Australasian Workshop on Health Knowledge Management and Discovery
(pp. 143-152). Australian Computer Society.

[14] Kadam, Yashpal. "Security issues in cloud computing a transparent view." International Journal
of Computer Science Emerging Technology 2.5 (2011): 316-322.

[15] Nuñez, D., Agudo, I. BlindIdM: A privacy-preserving approach for identity management as a
service. Int. J. Inf. Secur. 13, 199–215 (2014). https://doi.org/10.1007/s10207-014-0230-4

[16] Nikhila, V. & Rupa, Ch. (2019). Intensifying Multimedia Information Security Using Compre-
hensive Cipher. 1-4. 10.1109/i-PACT44901.2019.8960002.

[17] HowtoManage Identity in the PublicCloud, Information Week Report, https://dsimg.ubm-
us.net/envelope/280082/485573/strategy-how-to-manage-identity-in-the-public-
cloud_1165433.pdf

[18] Gomaa I, Abd-Elrahman E, Saad E, et al. Virtual identity performance evaluations of anonymous
authentication in IDaaS framework[J]. IEEE Access, 2019, 7: 34541-34554.

[19] Barker, E. Recommendation for Key Management—Part 1: General. In NIST Spec. Publ.
800-57; National Institute of Standards and Technology: Gaithersburg, MA, USA, 2016; pp.
1–142.

[20] M. Barisch, “Modelling the impact of virtual identities on communication infrastructures,” in
Proc. 5th ACM Workshop Digit. Identity Manage., New York, NY, USA, Nov. 2009, pp. 45–52.
doi: 10.1145/ 1655028.1655040.

14

Serverless Computing and Function as a Service:
Security Perspective

Behnam Bozorgi
Department of Computer Science

University of Amsterdam
14125056

behnam.bozorgi@student.uva.nl

Kimiya Ataiyan
Department of Computer Science

University of Amsterdam
13582453

kimiya.ataiyan@student.uva.nl

Abhilash Balaji
Department of Computer Science

University of Amsterdam
14476347

abhilash.balaji.balaji@student.uva.nl

Abstract

This literature study highlights the matter of security related to serverless computing
and FaaS. The measures of security have gotten more complex with serverless
computing and FaaS, due to the separation between provider and user, and several
isolations and independence that are used to make applications more scalable and
efficient. First, we define important components to understand the content of the
literature, then we highlight existing challenges and possible solutions to these
challenges, and lastly finish with security measures that are taken in the cloud
provider industry. Security is essential to maintaining reliable applications within
an organization.

1 Introduction

Cloud computing has become an inevitable tool to use in industry and also an interesting research
topic these years. Its evolution brought many innovations to research and industry including serverless
computing. According to a study in 2020, the market worth of serverless computing will reach more
than 21 billion dollars by 2025, at a Compound Annual Growth Rate (CAGR) of 22.7% during
the forecast period [24]. Cloud computing is a service that can provide storage, applications, and
processing power over the internet. Its technology part consists of IaaS1, PaaS2, SaaS3, and Serverless.

Serverless computing is based on dividing the workload into small pieces to achieve auto-scaling
and fast deployment. This way the “pay-as-you-go” model works since you are only charged for the
pieces and resources that you are actually using and running. Part of the serverless model is FaaS
(function-as-a-service), in which cloud users are able to develop, run and manage their applications,
without managing the infrastructure and architecture of it. FaaS is based on the execution of small
and lightweight functions that each performs a single logical task. In this scenario, developers are
not in control of where and how this data is flowing, which creates a risk to security [8]. So, despite
FaaS’s benefits such as auto-scaling, cost reduction, and availability, serverless computing also brings

1Infrastructure as a Service
2Platform as a Service
3Software as a Service

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

limitations and problems, security being part of them [26]. Conceptually thinking about security,
serverless platforms should be capable of securing functions from attacks.

The main contribution of this work to security in serverless computing are as follows:

1. Bring discipline and categorization to challenges of security in serverless computing.
2. Go over recent reviews of academic and also industrial solutions for challenges.
3. Introduce the most important research on challenges and current solutions to them.
4. Present our perspective on this topic and future research potential.

2 Definitions

In this topic definitions of topics are presented to make the enthusiasts and researchers have a basic
understanding of general concepts in cloud computing.

2.1 Serverless computing

Serverless computing is a relatively new concept and technology which started its trend from 2016
based on google trends over the internet. But there were few interests around 2004 which were taken
seriously. Figure 1 shows the amount of interest in serverless computing over the past 6 years on
google trends.

Figure 1: Trends of serverless computing

For defining serverless computing we need to look at how much control a developer has over cloud
infrastructure. For that matter as it is shown in Figure 2, IaaS gives the most control application which
is coded and configuration of infrastructure in the cloud. In this model the developer can configure
how to deploy and run the application and can customize the process. On the other hand, In SaaS
developer is not even aware of infrastructure therefore configuration and customization can not be
done in infrastructure and developer only allow to host code here which is strictly coupled [6].

In serverless computing, the cloud provider dynamically allocates and provisions servers. The code
is executed in almost-stateless containers that are event-triggered, and ephemeral (may last for one
invocation). Serverless covers a wide range of technologies that can be grouped into two categories:
Backend-as-a-Service (BaaS) and Functions-as-a-Service (FaaS) [20].

2.2 Backend-as-a-Service

Backend-as-a- Service allows for the replacement of server-side components with off-the-shelf
services. BaaS allows developers to outsource all aspects of an application’s backend, allowing them
to write and maintain all application logic in the frontend. Remote authentication systems, database
management, cloud storage, and hosting are some examples. Google Firebase, a fully managed
database that can be used directly from an application, is an example of BaaS. Firebase (the BaaS
services) manages data components on our behalf in this case. [20].

2.3 Function-as-a-Service

Function-as-a- A service is an environment in which software can run. Serverless applications are
event-driven cloud-based systems in which application development is entirely dependent on a combi-

2

nation of third-party services, client-side logic, and cloud-hosted remote procedure calls[ref 23].FaaS
enables developers to deploy code that, when activated, executes in a separate environment. Each
function typically describes a subset of an entire application. Function execution times are typically
limited (e.g. 15 minutes for AWS Lambda). Functions are not constantly active. Instead, the FaaS
platforms watch for events that instantiate the functions. As a result, functions must be triggered by
events such as client requests, events generated by any external systems, data streams, or others.

Figure 2: Range of developer control over cloud infrastructure
[7]

Serverless computing is somewhere in the middle. In serverless computing developers has control
on code but they need to write code in a certain way called “stateless functions”. It is important
that enthusiasts do not fall for the misconception of naming serverless computing because servers
indeed are needed but developers need to understand that they are responsible to manage them. Some
parameters like the capacity of the server are configured by the cloud platform depending on the
workload on the server or auto scaling and fault tolerance of deployment are guaranteed by the
platform. So developers only need to code somehow independent of where it is going to run [6].

Lastly, we want to highlight the differences between serverless computing and server computing,
before diving into the security of serverless computing and FaaS as shown in 3.Before the emergence
of serverless architecture, developers faced manu challenges when setting up a cloud environment for
applications. The traditional IaaS infrastructure showed challenges in scalability, and thus the demand
for an architecture that is able to scale up or down depending on number of request by a module
rather than application. In addition, orignally organizations relied on their large-scale applications to
be hosted in each region of the world, which becomes very expensive for an organization. Serverless
computing on the other hand solves this issue by loading up the code closest to the origin of the
request. Lastly, the traditional approach showcased issues with deploying updates to the server,
because it was time consuming and required specialized developers to update existing code. With
serverless architecture, developers no longer make backend changes but rather only upload the new
update in patches [21].

3 Challenges and possible solutions

Security is one of the main concerns in serverless computing research in recent years and there are
some researches that focus on different topics in security. In this section, we tried to categorize
challenges in the security of serverless computing and present important works in each category.
As illustraited in Table 3, challenges in security of serverless computing can be categorized in four
different categories:

Table 1: Summary of security challenges categories and solutions

Challenge Solution(s) Important works
Data Protection API Protection, Code Protection (Intel SGX),

API Authentication (e-Lambda)
[17],[26],[16],[11],
[22],[21],[8],[9]

Resource Isolation Virtualization, Containers,Language-specific Isolation [9],[1],[13]
Security Monitoring Dynamic tracing, Proxy network requests using agents [13],[8]
Security Management IAM, PKI [17], [23]

3

Figure 3: Comparison of serverless and server computing
[21]

3.1 Data Protection

In the FaaS model of serverless computing, users create and load code in the cloud environment
while only paying for CPU time, storage, and network operations required to run and execute the
code Since this shifts the responsibility of server/container security to the provider, an organization
only needs to be responsible for the security related to their code and its functionality [17].

In FaaS functions are independent of one another and their run-time is relatively fast since they
usually are small functions of the application - although, certain providers such as AWS set an upper
bound for function execution time [26]. Another characteristic of FaaS is the transparency which
provides the capability of separating the user from code deployment and management, but rather only
requires the user to upload their function. The functions written by the cloud user are stateless, which
ensures robustness in case of crashing. As mentioned above, a huge benefit of serverless computing
and FaaS to organizations is the “pay-as-you-go” model, in which the user is only charged for the
uploaded and executed functions [26].

4

While it may seem that organizations moving to FaaS require less attention to the security of the
organization, this only holds true considering the security of the host OS and servers. Cloud providers
provide security functionalities such as cloud identification and authorization management (IAM),
policy and role management, and access control management [17]. On the other hand, the organization
is fully responsible for the security of the application and the code that holds it together, which
includes validation and communication of data and library calls to third-party code or services
[17]. A large number of functions, using API calls can lead to a loosely coupled setup and thus
open a door for inappropriate access by APIs. In addition, the issue of validation of input becomes
more difficult as the validation may be spread across multiple functions that each needs its own
input validation. It commonly happens that developers make the mistake of their application being
exposed to APIs without correct authorization controls, allowing an attacker to bypass and access the
codebase and application. Since FaaS architecture is designed after a stateless web design, OWASP
(Open Web Application security project) web vulnerabilities are also possible issues in FaaS [17].
Thus security issues with FaaS include Injection, sensitive data exposure, broken authentication,
XML external entities, broken access control, security misconfiguration, cross-site scripting (XSS),
insecure deserialization, and using components with known vulnerabilities, and insufficient logging
and monitoring [17].

Many of the public cloud providers provide APIs to programmatically handle working with their
products that provide FaaS, and with cyber attacks doubling 5 years [16] open cloud vendors must
make sure to harden their public facing APIs as a form of threat prevention, so that no bad actors
can enter the platform through over privilege or XSS.Scientists have found multiple issues with the
current design , architecture and documentation of client facing APIs of leading cloud providers
leading to services being misconfigured due to a lack of clarity on the APIs or actual steps required
for hardened cloud policies being omitted altogether [11].

Organizations are offered a high degree of flexibility with little to no effort in moving code between
FaaS providers, due to the shared practices of supported functionality subsets among providers. This
high degree of flexibility comes with the price of the user needing to maintain the security of the
entire communication flow of functions as well as the state datastore. All Linux container instances
share the OS, which causes all containers to be vulnerable to breaches and tampering as soon as one
of the containers fails [26]. An example of this vulnerability is the published shocker[8] attack which
several containers instances can access one another as well as files on the OS caused by a bug in
system calls to file handling in just one of the containers. Another example of vulnerability due to
shared OS is in the multitenancy phenomenon. Here security can be at threat when for example two
instances running on the same application can access one another’s data because the customers is
using the same resource for each of their applications. This also means that one user’s error may
cause an error for other users due to lack of isolation [21].

Going beyond the challenges of data protection related to FaaS, a major and general challenge in
serverless computing security in data protection is securing the API gateway. In a typical application
like a web or mobile application, there are APIs to expose a service to the outside world. There are
best practices that include tokens in APIs to make it more secure and the gateway is responsible to
obtain this token. That is why these API gateways are attractive targets for attackers [22]. In [22]
they proposed a solution for gateway security called Se-Lambda. This solution includes two main
actions which are Core Modules Isolation and Function Validation. Figure 4 shows the architecture
of Se-Lambda.

Each API in Se-Lambda has core modules like authentication. When a request reaches the API, first
it is parsed and checked if there are any security concerns for malicious attacks. After the request is
scanned and approved in terms of security, the user authentication module is called, and the token
is controlled to prevent any unauthorized access. At the final stage, The API gateway calls the
appropriate service runtime to run function modules and returns the results to the user. Se-Lambda
also does not accept other software on the API gateway not only because of security reasons but
also because putting many modules in the API gateway results in large TCB4 which increases the
overhead. Se-Lambda only places privacy-sensitive modules in the Intel SGX enclave to isolate them
from being exposed to threats [9].

By making use of hardware attestation, Se-Lambda uses SGX’s remote attestation to perform integrity
checking for function modules. Se-Lambda does integrity validation on modules to make sure those

4Trusted Computing Base

5

Figure 4: Architecture of Se-Lambda

modules are the ones that were supposed to be running. Se-Lambda also provides a service runtime
that makes use of a two-way sandbox to make function modules more protected. The sandbox
provides two-way protection: the SGX enclave protects the confidentiality of users’ data, and the
WebAssembly sandboxed environment protects the security of the cloud provider’s host runtime.

3.2 Resource Isolation

Another challenge is having a trade-off between security and performance which happens in resource
isolation [9, 1] . This challenge is mostly concerned with the isolation option that an application
uses. Mainly there are three different ways to bring isolation to workloads on Linux: Virtualization,
Containers and Language-specific Isolation [1] . Figure 5 shows the different security approaches
between containers and virtualization. Linux containers rely on the kernel’s sandboxing features
directly, whereas KVMstyle5 virtualization relies on the VMM’s6 security, maybe with augmented
sandboxing.

Figure 5: Security approaches between Linux containers and virtualization
[1]

The first category which is the oldest is virtualization. In virtualization, functions run in their isolated
VMs under a VMM. Untrusted code is often given full access to a guest kernel in virtualization,
allowing it to exploit all kernel features while expressly designating the guest kernel as untrusted.
Virtualization brings isolation on the hardware level as well, but it comes with two main challenges:
density and overhead. But with these challenges, the great benefit of virtualization in a perspective of
isolation is that it shifts the security-critical interface from the OS border to a hardware-supported and

5Kernel-based Virtual Machine
6Virtual Machine Monitor

6

comparably simpler software boundary. Virtualization eliminates the need to choose between kernel
functionality and security: the guest kernel can provide its entire feature set while the threat model
remains unchanged. VMMs are substantially smaller than general-purpose OS kernels, exposing
only a few well-understood abstractions while preserving program compatibility and avoiding the
need to modify applications. The second one is containers which is a relatively newer technology. In
containers, the kernel is shared among workloads and the kernel provides possibilities to isolate them.
Untrusted code in Linux containers communicates directly with the host kernel, maybe with the
kernel surface area limited. It also has direct interactions with the host kernel’s other services, such as
filesystems and the page cache. Containers provide many features for security isolation like cgroups
to provide resource (CPU, memory and etc) limitations, namespaces provide isolation for kernel
resources like process IDs or network resources. But, seccomp-bpf brings the most important security
isolation. seccomp-bpf allows a process to specify which syscalls it can use and the arguments it can
provide to these syscalls. The last method for isolating workloads is using a language virtual machine
like JVM7. Some of these language VMs intend to run multiple workloads in a single process. This
kind of language VMs imposed a tradeoff between functionality and security including resistance
to side-channel attacks such as Spectre. Inside the cloud, physical co-residency is at the heart of
hardware-level side-channel attacks [13]. Based on this fact, if physical co-residency is prevented,
it may conflict with startup time, resource utilization, and communication optimization [13].Other
approaches tend to use a process per trust domain and stop the code from escaping the process
boundaries. It is worth mentioning that this kind of isolation is not suitable for Lambda because in
Lambda there is a need to support arbitrary binaries. In [1] Amazon team presents a new open-source
VMM called Firecracker which is designed specifically for serverless workloads but also helpful for
containers, functions, and other computational workloads that fit under a fair set of limitations.

3.3 Security Monitoring

Another field of security challenge in serverless computing is security monitoring. Communica-
tion between cloud functions can expose access patterns and time information. Unlike serverful
applications in which data are transmitted in batch and cached locally, Cloud functions are widely
distributed across the cloud. So, in this data transmission more sensitive data may be leaked even
in encrypted transmission. In this scenario, transforming serverless applications into multiple small
functions makes the security exposure even more. It is true that most threats come from outside of
a company but protection from internal threats is not to be taken lightly despite the fact that this
kind of protection has more overhead [13]. A typical serverless platform has certain runtimes for
functions but also supports customized runtimes to support a variety of customized needs. There
is also a possibility of having common packages of specific programming languages, but security
threats arise when a third-party package comes to play. That is why a reliable monitoring feature is
needed to detect abnormal behavior and always check the security status. One approach to tackle
this challenge is to do dynamic tracing. In [8] used an agent to proxy network requests, an agent
was inserted in each function’s container. These agents produced and send out tags in every network
traffic so they can be tracked and also limit function behavior based on a specific configuration. The
architecture of Valve is shown in Figure 6.

These agents consist of 3 different profilers. The first profiler is Network Profiler which is designed
to look at the request header and check the tags are correct according to the current data flow. Since
the containers can contain any kind of programming language, REST-based API calls. The second
profiler is API Request Validator. Its sole job is to check the request with application security policies
to see if anything is against the policy, it drops the request. In the worst-case scenario, an access
request is denied which only causes a single web session workflow to fail. So, this validator makes
sure the stability of the system is intact as well. And the third profiler is called File Access Profiler. In
this profiler, there is a tracer that keeps track of which files are accessed by any kind of file operations
in the code and after function execution is finished, all data on the disk that was modified is deleted.
The current attack mechanism is about data flow from one function execution to another and by
deleting all modified files, the chain of hopping from one function execution to another is stopped.
The garbage collection specifically exists to prevent this cross-invocation to deny attackers from
manipulating the system [8].

7Java Virtual Machine

7

Figure 6: Architecture of Se-Lambda

3.4 Security management

The following security issue mitigations are related to OWASP8 issues. The first problem of injection
in FaaS, when unverified data can be passed between functions, can be mitigated by using a safe
API – one that does not use interpreters – as well as having each function validate input and encode
output. In cases where a developer uses FaaS for user authentication, the provider’s FaaS IAM
(Microsoft Azure Active Directory, Amazon’s IAM 9 implementation) should be leveraged rather
than the developer doing their own authentication, since this would require the establishment of
authenticated connections and minimal permission for data flows. The risk of faulty code and giving
wrong or too loose access is a security issue itself, thus it is safe to use existing tools from the
provider [17]. In order to maintain protected data via encryption and decryption, organizational
IAM or PKI10 functionality can be leveraged for managing keys that are used between function
communications. In addition, functions should be assigned to trust groups, where communication
between trust groups with different labels each have their own unique keys, so that communication
between same-label-trust-groups have common keys [17].

The security issue related to broken access control appears when developers make use of authorization
tokens that are overly capable – for example setting permissions on group level. Instead, permissions
to data should be ACLed11 so that functions are not able to iterate through the state information store
but rather get passed a hashid to retrieve a specific information [17]. Since FaaS is structured in a
way with a large number of independent functions, there is an increase in vulnerability to attacks
from surface, also known as cross-site scripting. Each function should be safeguarded against XSS12,
since losing control of dataflow can expose functions that are not meant to be exposed. Preventing
unwanted exposure of functions can be mitigated by using trustworthy encoding libraries to encode
data and validate input. The constant passing of data between stateless functions requires that objects
are serialized during sending and deserialized during receiving. To do this in a secure manner
digital signatures can be used on transmissions to identify trusted and untrusted sources during
deserialization procedures.

Security issue mitigations that are more so related to the developer keeping versions up-to-date or
monitoring the platform’s functionality are critical. The developer is responsible for updating patches
whenever manufacturers release new versions, and simultaneously double check dependencies to
make sure library components are the most recent. In addition, monitoring the functionality of the
platform, and acting in unexpected behavior are more so possible if the developer creates code that
validation failures and sensitive transactions are logged accordingly [17]

8Open Web Application Security Project
9Identity Access Management

10Public Key Infrastructure
11Access Control List
12Cross-Site scripting

8

Another perspective is to see the problem at the entry point. In [23] They control every external
requests reach to gateway API for authorization and permission. In this work a new WILL.IAM
framework was introduced. This framework is an access control model which not only obey notions
of typical IAM-style role-based access control but also has same design principles of serverless
application. WILL.IAM framework consists of three components: API Gateway, Policy evaluation
service and the request handler. An external path to the deployed functions is provided by the
API gateway, which is embedded into the FaaS platforms. The API gateway in WILL.IAM has
been enhanced to send externally generated requests to the policy evaluation service and internally
generated invocation requests to the appropriate function instances. The access control policies set
for various serverless processes implemented in the cloud are enforced by the policy evaluation
service. Each function-instance (i.e. container) has a request handler that transparently modifies
will. WILL.IAM is function-agnostic since it includes IAM-specific headers in the invocation request
before delivering it to the function. As shown in Figure 7, these three components work together to
enforce access control in serverless cloud platforms.

Figure 7: WILL.IAM architecture and its authorization workflow.

Lastly, the developer should be aware of expected dataflows. Unique certificates can be implemented
for known communication paths, which help filter for unexpected communication paths. Certificates
help to establish communication between two components that both trust the certificate. Overall,
FaaS brings high flexibility and scalability to serverless computing. Yet this means that the more
complex and larger a developers platform and application gets, it involves more security measures,
thus requiring an organization to be strong in management and process controls [17]. Figure 8 shows
several cloud security functionalities provided by AWS, Google and Microsoft, that deal with Access
Control Management, Policy and Role Management and Identity and Access Management.

4 Tools - Security measures in industry

One of the challenges mentioned above speaks on resource isolation. In order to achieve isolation of
tenants Linux uses approaches based on (for example) Virtual Machines and Containers Virtual Ma-
chines use a combination of software-assisted methods and hardware features to achieve virtualization,
which moves the security interface from the OS to software and hardware. Generally, a hardware-
mechanism is adopted to create an isolated environment with its resources as a sandbox. Containers
on the other hand share the same host OS kernel, weakening isolation. Thus, containers include
and combine several isolation mechanisms such as namespaces, cgroups, chroot, and seccomp-bpf
to create isolation and policies for system calls and process permits. This approach implies that
the container relies on system calls from the host machine, once again leading to weak isolation.

9

Figure 8: Architecture of Se-Lambda

So, several cloud providers such as Google and Amazon have introduced different mechanisms to
mitigate existing security issues, including resource isolation.In this section, we go through the tools
in serverless computing and security in serverless computing [24]

4.1 gVisor

gVisor is a serverless function introduced by Google to completely isolate the function from the OS
by providing a kernel that intercepts and processes all system calls from the function – basically a
sandbox for containers [25].Sentry (the kernel) handles memory management and thread scheduling
via function calls so that the majority of function calls get handled within the Sentry. Only in a
few cases such as I/O operations, the request is forwarded to host Linux services [26].Thus for the
above-mentioned challenge of containers sharing a kernel, gVisor provides a separate Sentry for each
serverless function, which in return provides better isolation [15].In addition, gVisor achieves the
same isolation level as VMs due to its hardware virtualization approach. A downside to gVisor is
its lack of support for I/O operations, especially in cases where serverless functions execute such
frequently. In Figure 9, the multiple components of gVisor are shown. Each container in the sandbox
has its own Gofer, which provides file systems access to containers. The Sentry (kernel) runs the
containers and acts a an additional intercept by responding to system calls from the application [25].

10

Figure 9: The architecture of Google gVisor
[15]

4.2 FireCracker

Amazon approaches the isolation of containers via the FireCracker which uses two levels of isolation
boundaries using hardware virtualization and a jailer box which is based on seccomp and namespace.
FireCracker launches light-weight virtual machines called microVM, which hold a container. The
microVM has an advantage to the regular container-in-VM approach since it removes all unnecessary
functionalities such as unused drivers and thus is more speed and resource efficient [10, 15].Figure
10 shows the architecture of AWS FireCracker, in which the kernel-based VM (KVM) creates and
manages microVMs. This architecture showcases that each container group can be held within a
virtual machine barrier, enabling workloads to be run on same machine while maintaining security
[10].

Figure 10: The architecture of AWS FireCracker
[15]

4.3 Intel SGX13 enclaves

One of the tools which are used in serverless computing security is Intel Software Guard Extensions.
Intel Software Guard Extensions (Intel SGX) is an Intel technology that allows application developers
to safeguard certain code and data from being disclosed or modified. In Intel SGX there is a concept

13Software Guard Extensions

11

called Enclave. The establishment of a software "enclave" lies at the heart of SGX. The enclave is
essentially a code and data-separated and encrypted sector. Because the enclave is only encrypted
inside the CPU, it is protected against being read straight from the RAM. Enclave is used for both
software security and hardware security which focuses on both memory and CPU [12].

4.4 Public Cloud vendors

4.4.1 AWS Lambda

Lambda, Amazon’s Serverless Computing offering, adheres to the Shared Responsibility model in
terms of security [2], relying on the customer to be responsible for their Code, Configuration, and
IAM. As AWS operates, manages, and controls the components from the host operating system and
virtualization layer down to the physical security of the facilities in which the service operates, this
shared responsibility model can help relieve the customer’s operational burden. [5] AWS presented
some principles that are visualised in figure 11.

Figure 11: Shared responsibility model for AWS Lambda
[5]

In a serverless context , AWS specifies these design principles: [3]
Speedy, simple, singular functions are required to be short,concise, single purpose and their environ-
ment may live up to their request lifecycle. Transactions are efficiently cost aware and thus faster
executions are preferred [3].
Think concurrent requests, not total requests serverless applications take advantage of the concur-
rency model, and tradeoffs at the design level are evaluated based on concurrency [3].
Share nothing function runtimes environment and underlying infrastructure are short-lived, therefore
local resources such as temporary storage is not guaranteed. State can be manipulated within a state
machine execution lifecycle, and persistent storage is preferred for highly durable requirements [3].
Assume no hardware affinity Underlying infrastructure may change. Customers are asked to
leverage code or dependencies that are hardware-agnostic as CPU flags, for example, may not be
available consistently . They’re also expected to orchestrate their application’s workflow using state
machines rather than functions. Chaining Lambda executions within the code to orchestrate the
workflow of their app results in a monolithic and tightly coupled app. Instead, clients are expected to
orchestrate transactions and communication flows using a state machine.[3].

Use events to trigger transactions Events such as writing a new Amazon S3 object or an update to a
database allow for transaction execution in response to business functionalities. This asynchronous
event behavior is often consumer agnostic and drives just-in-time processing to ensure lean service
design. [3]

Design for failures and duplicates Operations triggered from requests/events must be idempotent as
failures can occur and a given request/event can be delivered more than once.Developers are asked to
include appropriate retries for downstream calls.[3]

12

Amazon also uses a variety of open-source and proprietary isolation technologies to protect Workers
and execution environments and keeps a clear list of technologies used [4] allowing transparency into
the actual hardware used for developers to debug any issues if they arise while also using community
standard libraries and dependencies which are maintained by the open source community.

4.4.2 Microsoft Azure Functions

Azure functions is the FaaS service provided by Azure.This is service is designed to help cus-
tomers build web APIs, respond to database changes, process IoT data streams, or managing mes-
sage queues.To meet this need, Azure Functions provides "compute on-demand" in two significant
ways.[18]

The first where Azure Functions allows the customer to implement their system’s logic into readily
available blocks of code. These code blocks are called "functions". Different functions can run
anytime need to respond to critical events.[18]

Second, as requests increase, Azure Functions meets the demand with as many resources and function
instances as necessary - but only while needed. As requests fall, any extra resources and application
instances drop off automatically.[18]

The platform components of App Service, including Azure VMs, storage, network connections, web
frameworks, management and integration features, are actively secured and hardened. App Service
goes through vigorous compliance checks on a continuous basis to make sure that all communication
and underlying infrastructure security.[19]The Developer documentation does provide easy access to
guidelines on how customers could run more secure functions apps.Such as continuous logging of
the service health and warn customers of any potential attacks.Customers are also required to use
HTTPS due to the secuity of the underlying SSL/TLS protocol.Microsoft goes into detail on user
practices to mitigate any potential attacks or loss of privacy.[19]

5 Advantages - Serverless Computing and FaaS security approaches

The most common way of holding a function in serverless computing is via Linux containers that are
based on namespace and control group mechanisms. Each namespace can declare its own system
resources which can only be accessed from inside its own namespace. This creates a security isolation
method, since resources outside a namespace cannot access resources within that namespace. Another
benefit of this approach is that the CPU, memory, network and disk usage is adapted to the necessary
usage of resources within that namespace only, which establishes a security of resources taking
up too much system resources. Despite some challenges with security, serverless computing also
increases the security of applications. Function as a Service shifts the responsibility of the hygiene
and maintenance of machines to the cloud providers who are more likely to update patches, so there is
no risk of unpatched server vulnerability. This fact also to some degree establishes resistance against
DDoS14 attacks. In FaaS cloud environments, in case of a DDoS attack you can simply scale up to
handle the load, due to the scalability functionality of FaaS [14, 17].

Based on papers we have read we have come to conclusion that followings are list of advantages of
using serverless computing:

1. Visibility to attackers:As mentioned before, serverless applications are made as many
number of functions in cloud which makes it so much easier for companies like google,
amazon and etc. that work on security of their serverless applications, to infer internal
workflow of application.

2. Easier IAM: Having multiple small functions make it easier to do. For security tools it is
easier to define permission, access roles and security policies for each of small functions.
This also results to more control over whole application by tools.

3. Long-term attacks protection: The fact that each function gets destroyed after doing the
job, makes it so hard to put back doors in server because there is no resources assigned to
function so attacker can not store any malware in application or do any manipulation.

14Distributed Denial-of Service

13

6 Discussion and Conclusions

In this review paper we categorized challenges of security in serverless computing and also introduced
the cutting-edge tools to achieve maximum security in this area. Based on what we studied in this
work, there are four different categories of security in serverless computing which we will discuss
about their strengths and weaknesses and we introduce our ideas on how they could be improved. We
also present our future ideas about how enthusiasts can do research further.

As mentioned in section 3 , one of the main challenges in serverless computing is data protection.
We believe most researches in this area focus on 3 different categories like protecting data at REST
API level, protecting flow of data inside the cloud and hardware-based approaches like Intel SGX.
The strengths of these studies were that currently they cover most of challenges of protecting data in
different scenarios. But still there are flaws in few topics like (1) hardware-based approaches are slow
and are limited in user side and (2) solutions in this topic are not fully implemented for serverless
environments, thus further researches on this matter required.

Another aspect of security was resource isolation which is one of hit topics for past few years and we
can tell that it is well covered in research by presenting VM-based approaches and also providing
concept of secure containers. We found out that VM-based approaches can bring better security but
they are much slower because of their start-up time. That is why researches at first took the path of
reducing the kernel code of OS on VM to make it lightweight. One of leading technologies in this
area that we saw was Firecracker which was applied to AWS Lambda. secure container is more like
industrial term which bring concept of lightweight VMs to reduce the start-up time with high level of
isolation. Papers in this topic well covered the challenges of this area but we believe there are room
for improvements including (1) making secure containers more reliable like VMs in term of security
and isolation (2) containers still have some heavy computing that bring overhead and performance
issues which can be tackled.

Security monitoring was another security aspect of serverless computing which requires more research.
Papers in this topic focus on flow of data by putting dynamic tracing in functions. They also covered
monitoring the traffic from outside of cloud to inside and for that matter they used REST API headers.
But there are still room for more investigation on this matter like (1) these studies did not really
focus on diagnosis rather they focus preventing and just observation. It would be much better to
design a platform to diagnose and auto-fix procedure in monitoring (2) As mentioned in section 3.3
REST-based API headers was used to check for tags but no study focused on GraphQL queries for
that matter. Tags could be used in every GraphQL query and mutation as a default configuration.

Last category that we discussed in security of serverless computing was security management. This
category is all about managing capabilities, authentication and authorization. Works in this area
focus on checking permission and access control over incoming request. Industry brought some
definitions like IAM and PKI to manage permissions and keys. The strength of current researches
are well definition of policies regarding access management but downside is that administration
of that management system must infer the user needs and define policies and update them and it
requires so much effort. One suggestion for improvement in this category is automation of this
process. It is expected in the future that papers focus on automating inferring the user needs based on
their behaviour and define some policies to meet their needs also maintaining and updating those
policies over time based on changes on behaviours. Also in current paper there is no sign of quality
checking of management. There is no specific tool for measuring quality of management in serverless
computing.

To conclude, serverless computing comes with both security issues and security advantages. [14]
highlights more how serverless computing and FaaS increase security by arguing that the maintenance
and hygiene burden is shifted from developer to provider, and thus avoids non-updated patches.[14]
also argues that DDoS attacks in serverless computing are handled better due to the ability of scaling
up rather than a traditional approach. On the other hand, [26], discusses the matter of security
based on cloud provider approaches. It focuses on security of containers and how Amazon and
Google provide users with FireCracker and gVisor (respectively) to enhance the security of containers.
Essentially, the complexity of serverless computing and FaaS comes with the necessity of strong
management and process controls over organization’s developments to keep their applications secure.
Thus as mentioned in [17], organizations that cannot implement strong management and process
controls of developments and environments, would be safer following classic security life-cycle

14

processes. In addition [17] discusses the security issues related to FaaS and its independence and
complexity in detail.

Name Work(Section)

Kimiya Ataiyan 2,3.4, 4.1, 4.2, 5
Behnam Bozorgi 1, 2.1, 3.1, 3.2, 3.3, 3.4, 4.2, 4.3, 5, 6
Abhilash Balaji 2.1, 2.2, 2.3 , 4.4 , 3.1

7 References
[1] Alexandru Agache et al. “Firecracker: Lightweight Virtualization for Serverless Applications”.

In: 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20).
Santa Clara, CA: USENIX Association, Feb. 2020, pp. 419–434. ISBN: 978-1-939133-13-7.
URL: https://www.usenix.org/conference/nsdi20/presentation/agache.

[2] AWS Cloud Security: Shared Responsibility Model. https : / / aws . amazon . com /
compliance/shared-responsibility-model/. Accessed: 2022-05-23.

[3] AWS, Architecting and Operating Lambda Functions. https : / / docs . aws . amazon .
com/whitepapers/latest/security-overview-aws-lambda/architecting-and-
operating-lambda-functions.html. Accessed: 2022-05-23.

[4] AWS, Lambda Isolation Technologies. https://docs.aws.amazon.com/whitepapers/
latest/security-overview-aws-lambda/lambda-isolation-technologies.html.
Accessed: 2022-05-23.

[5] AWS, The Shared Responsibility Model. https://docs.aws.amazon.com/whitepapers/
latest/security-overview-aws-lambda/the-shared-responsibility-model.
html. Accessed: 2022-05-23.

[6] Ioana Baldini et al. “Serverless Computing: Current Trends and Open Problems”. In: Research
Advances in Cloud Computing. Ed. by Sanjay Chaudhary, Gaurav Somani, and Rajkumar
Buyya. Singapore: Springer Singapore, 2017, pp. 1–20. ISBN: 978-981-10-5026-8. DOI: 10.
1007/978-981-10-5026-8_1. URL: https://doi.org/10.1007/978-981-10-5026-
8_1.

[7] Ioana Baldini et al. “Serverless Computing: Current Trends and Open Problems”. In: Research
Advances in Cloud Computing. Ed. by Sanjay Chaudhary, Gaurav Somani, and Rajkumar
Buyya. Singapore: Springer Singapore, 2017, pp. 1–20. ISBN: 978-981-10-5026-8. DOI: 10.
1007/978-981-10-5026-8_1. URL: https://doi.org/10.1007/978-981-10-5026-
8_1.

[8] Pubali Datta et al. “Valve: Securing Function Workflows on Serverless Computing Platforms”.
In: Proceedings of The Web Conference 2020. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 939–950. ISBN: 9781450370233. URL: https://doi.org/10.1145/
3366423.3380173.

[9] Erwin van Eyk et al. “The SPEC Cloud Group’s Research Vision on FaaS and Serverless
Architectures”. In: Proceedings of the 2nd International Workshop on Serverless Computing.
WoSC ’17. Las Vegas, Nevada: Association for Computing Machinery, 2017, pp. 1–4. ISBN:
9781450354349. DOI: 10.1145/3154847.3154848. URL: https://doi.org/10.1145/
3154847.3154848.

[10] Firecracker: Secure and fast microVMs for serverless computing. https://firecracker-
microvm.github.io/. Accessed: 2022-05-23.

[11] Puneet Gill, Werner Dietl, and Mahesh V Tripunitara. “Least-Privilege Calls to Amazon Web
Services”. In: IEEE Transactions on Dependable and Secure Computing (2022), pp. 1–1. DOI:
10.1109/TDSC.2022.3171740.

[12] Intel SGX: Enclave. https://www.intel.com/content/dam/develop/external/us/
en/documents/overview-of-intel-sgx-enclave-637284.pdf. Accessed: 2022-05-
23.

[13] Eric Jonas et al. Cloud Programming Simplified: A Berkeley View on Serverless Computing.
2019. DOI: 10.48550/ARXIV.1902.03383. URL: https://arxiv.org/abs/1902.
03383.

15

https://www.usenix.org/conference/nsdi20/presentation/agache
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/architecting-and-operating-lambda-functions.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/architecting-and-operating-lambda-functions.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/architecting-and-operating-lambda-functions.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/lambda-isolation-technologies.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/lambda-isolation-technologies.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/the-shared-responsibility-model.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/the-shared-responsibility-model.html
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/the-shared-responsibility-model.html
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1145/3366423.3380173
https://doi.org/10.1145/3366423.3380173
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1145/3154847.3154848
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/
https://doi.org/10.1109/TDSC.2022.3171740
https://www.intel.com/content/dam/develop/external/us/en/documents/overview-of-intel-sgx-enclave-637284.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/overview-of-intel-sgx-enclave-637284.pdf
https://doi.org/10.48550/ARXIV.1902.03383
https://arxiv.org/abs/1902.03383
https://arxiv.org/abs/1902.03383

[14] Philipp Leitner et al. “A mixed-method empirical study of Function-as-a-Service software
development in industrial practice”. In: Journal of Systems and Software 149 (2019), pp. 340–
359. ISSN: 0164-1212. DOI: https://doi.org/10.1016/j.jss.2018.12.013. URL:
https://www.sciencedirect.com/science/article/pii/S0164121218302735.

[15] Yongkang Li et al. “Serverless Computing: State-of-the-Art, Challenges and Opportunities”.
In: IEEE Transactions on Services Computing (2022), pp. 1–1. DOI: 10.1109/TSC.2022.
3166553.

[16] McAfee Labs Threats Report. https://www.mcafee.com/enterprise/en-us/assets/
reports/rp-quarterly-threats-apr-2021.pdf. Accessed: 2022-05-24.

[17] J. Michener. “Security Issues With Functions as a Service”. In: IT Professional 22.05 (Sept.
2020), pp. 24–31. ISSN: 1941-045X. DOI: 10.1109/MITP.2019.2930049.

[18] Microsoft. Introduction to Azure Functions. https://docs.microsoft.com/en-us/
azure/azure-functions/functions-overview. Online; accessed 25 May 2022. 2022.

[19] Microsoft. Securing Azure Functions. https://docs.microsoft.com/en-us/azure/
azure-functions/security-concepts?tabs=v4. Online; accessed 25 May 2022. 2022.

[20] Jussi Nupponen and Davide Taibi. “Serverless: What it Is, What to Do and What Not to Do”.
In: Mar. 2020. DOI: 10.1109/ICSA-C50368.2020.00016.

[21] Rishabh Patil et al. “Serverless Computing and the Emergence of Function-as-a-Service”. In:
2021 International Conference on Recent Trends on Electronics, Information, Communication
Technology (RTEICT). 2021, pp. 764–769. DOI: 10.1109/RTEICT52294.2021.9573962.

[22] Weizhong Qiang, Zezhao Dong, and Hai Jin. “Se-Lambda: Securing Privacy-Sensitive Server-
less Applications Using SGX Enclave”. In: Security and Privacy in Communication Networks.
Ed. by Raheem Beyah et al. Cham: Springer International Publishing, 2018, pp. 451–470.
ISBN: 978-3-030-01701-9. DOI: 10.1007/978-3-030-01701-9_25.

[23] Arnav Sankaran, Pubali Datta, and Adam Bates. “Workflow integration alleviates identity and
access management in serverless computing”. In: Annual Computer Security Applications
Conference. 2020, pp. 496–509.

[24] Serverless Architecture Market by Service Type (Automation and Integration, Monitoring,
API Management, Security, Analytics, and Design and Consulting), Deployment Model,
Organization Size, Vertical, and Region - Global Forecast to 2025. https : / / www .
marketsandmarkets.com/Market- Reports/serverless- architecture- market-
64917099.html. Accessed: 2022-05-23.

[25] What is gVisor? https://gvisor.dev/docs/. Accessed: 2022-05-23.
[26] Mingyu Wu, Zeyu Mi, and Yubin Xia. “A Survey on Serverless Computing and Its Implica-

tions for JointCloud Computing”. In: 2020 IEEE International Conference on Joint Cloud
Computing. 2020, pp. 94–101. DOI: 10.1109/JCC49151.2020.00023.

16

https://doi.org/https://doi.org/10.1016/j.jss.2018.12.013
https://www.sciencedirect.com/science/article/pii/S0164121218302735
https://doi.org/10.1109/TSC.2022.3166553
https://doi.org/10.1109/TSC.2022.3166553
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-apr-2021.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-apr-2021.pdf
https://doi.org/10.1109/MITP.2019.2930049
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/security-concepts?tabs=v4
https://docs.microsoft.com/en-us/azure/azure-functions/security-concepts?tabs=v4
https://doi.org/10.1109/ICSA-C50368.2020.00016
https://doi.org/10.1109/RTEICT52294.2021.9573962
https://doi.org/10.1007/978-3-030-01701-9_25
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html
https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-market-64917099.html
https://gvisor.dev/docs/
https://doi.org/10.1109/JCC49151.2020.00023

	LS-reports
	Binder1.pdf
	assignmentgroups3_97909_6800723_literature_study__Cloud_Computing_Business_Models
	Introduction
	History of Cloud Computing
	Cloud Computing Services
	SaaS
	PaaS
	IaaS
	Cloud business model

	The Cloud Computing Users and Competitors
	Cloud Computing Consumers.
	Cloud specificity
	Cloud Uncertainty
	Cloud Transaction Frequency

	Comparing Competitors
	Service
	Price

	Case study: Amazon: Surveillance as a Service
	The business logic of Amazon's platform
	Alexa and her memory

	Surveillance and Soft language
	Business Interpretation

	Discussion
	Conclusion
	Division of work

	assignmentgroups6_218135_6797269_WSCBS_LitStudy_group6
	assignmentgroups7_314730_6799403_HPCandCloud
	Introduction
	Body
	Performance of HPC applications on Cloud
	Cost-comparison of HPC and Cloud
	Environmental Impact of HPC in Cloud and Energy Optimisation
	Hybrid Computing
	Fault-Tolerance approach for HPC in Cloud

	Conclusion

	assignmentgroups2_96817_6799315_wscbs_as4_group2
	assignmentgroups8_97531_6798455_Literature_study_Group8
	Introduction
	Introduction to cloud-based healthcare systems
	Introduction to data protection and the GDPR
	The rise of data protection (in healthcare)
	The GDPR and its differences with the Data Protection Directive

	The impact of the GDPR on cloud-based healthcare systems
	Most relevant aspects of the GDPR and how to comply
	Security
	Consent
	Rights of data subjects
	Privacy policies

	The impact of the GDPR on certain sub-sectors of healthcare systems
	Health-related data processing for research purposes
	Mobile health applications under the GDPR

	Data protection impact assessment required by the GDPR

	Discussion and Conclusion

	assignmentgroups10_315322_6800027_WS_CP_Assignment4
	Methodology
	Introduction
	Microservices Advantages
	Microservices Criticism

	Distributed transactions types
	ACID Transactions
	BASE Transactions
	Related work and literature evaluation

	Distributed transaction management patterns
	Two-Phase Commit
	Related work and literature evaluation

	Event Sourcing
	Concept

	Sagas
	Concept
	Implementation
	Discussion.
	Related work and literature evaluation

	Literature evaluation
	Conclusions

	assignmentgroups13_95129_6797147_Web_Services_Exercise_4-Group_13
	Introduction
	Cloud Monitoring
	Need for Cloud Monitoring
	Cloud Monitoring Taxonomy
	Cloud Monitoring Properties
	Monitoring by Cloud Layer

	State Of The Art
	Commercial Tools
	Monitis
	LogicMonitor
	CloudMonix
	NimSoft
	CloudKick - RackSpace Cloud Monitoring
	CloudWatch
	Comparison

	Open-Source Tools
	Nagios
	Zabbix
	collectd
	Ganglia
	cacti
	Comparison

	Discussion
	Review
	Further Research

	Conclusion

	assignmentgroups14_118399_6799782_Group14-Getting-grip-on-complex-systens
	Introduction and motivation
	A Cloud System as a Complex System
	How to understand complex systems
	Decomposition and abstraction
	Frameworks for understanding complex systems
	Stock and flow visualizations with the FBS framework
	Receiving data from another system

	Communication across disciplines
	In-person Communication
	Division of Roles
	Organized activities

	Design principles
	Principle 1: Use patterns from web design wherever applicable
	Principle 2: Identify the Posture
	Principle 3: Make clear to the user a specialized environment is used
	Principle 4: Minimize the use of browser windows
	Principle 5: Use Rollovers
	Principle 6: Task-based design
	Principle 7: Aesthetics
	Principle 8: Simplification
	Principle 9: Scaffolding
	Principle 10: Cloud Usability guidelines for cloud providers

	Complex system design guidelines
	Create a visualization of the system and explain it according to the FBS framework
	Decompose the system into subsystems to prevent the designer from getting overwhelmed by the complexity of the system
	Abstract the system as much as possible and necessary, but no further in order to prevent a too simplified view of the system
	Use the FBS Stock and flow diagram to visualize parts of the system during a project to create a better understanding of the subsystem
	Have an open workspace where teams work closely together and share office space, and facilitate in person communication during the collaboration
	Have a product owner with knowledge of all subjects responsible for that specific subsystem and have people responsible for their own roles in the team
	Do modeling exercises as onboarding tasks that help new team members understand the system where they will work with
	Have designers and developers join each others daily project stand-ups
	Apply design principles when (re-)designing technically complex systems
	The UX design process of the complex system should be no different compared to the normal UX Design process

	Discussion
	Understanding complex systems
	Guidance and communication
	Complex systems design principles

	Conclusion
	Future work

	assignmentgroups15_84372_6793219_group_15_literature_study
	Introduction
	Background
	Internet of Things
	Home automation and smart homes
	Components of smart homes
	Benefits
	Challenges

	Big data and its challenges
	Big data with cloud computing
	Edge and fog computing

	Method
	IoT ecosystem and architecture
	Edge and fog computing in smart home applications
	Energy management
	On a small scale
	On a larger scale

	Health-related applications
	Patient monitoring
	Assisted living
	Generic health applications

	Living in smart homes
	Summary

	Discussion
	Conclusion

	assignmentgroups16_205_6800018_16_literature_review_sso-2
	Introduction
	Research Questions
	Paper structure

	Web Services Federation
	Overview of WS-Trust
	Overview of WS-Federation
	Components

	WS-Federation in the real world

	SAML 2.0
	Overview of SAML 2.0
	Security & Vulnerabilities
	SAML 2.0 in the real world

	OAuth 2.0
	Overview of the OAuth 2.0 framework
	Predecessor
	Components

	Formal analysis
	Empirical analysis
	Vulnerabilities summarized

	OpenID Connect
	Overview of the OpenID Connect framework
	Components
	ID token
	Modes

	Security analysis
	Relation to OAuth 2.0

	Discussion and Future Work
	Conclusion

	assignmentgroups20_252297_6800720_Cloud_Payments_group20
	Introduction
	Blockchain fundamentals
	Consensus Algorithms
	Proof of Work
	Proof of Stake

	Blockchain Architecture
	Applications
	Challenges in Blockchain

	Cloud Computing
	Delivery models of Cloud Services
	Blockchain as a Service
	Downsides of Cloud

	Blockchain and Cloud
	Integration of Blockchain and Cloud
	Smart Contracts
	Interoperability
	Cloud Data Management
	Data Encryption

	Tassat Case Study
	Outcomes

	Analysis of various payment systems
	BCPay
	BlockSubPay

	Future Scope & Work
	Conclusion

	assignmentgroups22_293650_6799535_Group 22-Literature_Study
	Introduction
	GNN learning approaches
	Transductive Graph Learning
	Inductive Graph Learning

	Partitioning of Graphs
	Sampling techniques: Global-batch, Mini-batch, Cluster-batch
	Formalization of Graph Neural Networks
	Training with sampling algorithms
	GNNs Training Challenges
	Application of GNNs

	Research Question
	AliGraph
	System
	Storage
	Sampling
	Operator

	Design of Algorithm

	DistDGL
	Graph Partition
	System
	Sampler
	KVStore
	Trainers
	Dense Model Update

	GraphTheta
	System
	Graph Partition
	Graph Traversing and Storage
	Sampling
	Training
	Subgraph Training
	Concurrent train of multiple subgraphs

	Discussion
	Conclusion & Future work

	assignmentgroups23_254921_6798666_LiteratureReview_Group23
	Introduction
	Background
	Traditional IAM to Cloud IDaaS
	Challenges
	Research Question

	Literature survey
	SAML and PECC based authentication protocol in fog computing
	Introduction of SAML
	Introduction of PECC
	Authentication protocol model

	Trust Adaption and Purpose-based Encryption to protect the disclosure of PII(Personal Identifiable Information)
	Architecture Design Overview
	Design Principles for Trust Adaptation
	Design Principles of Purpose-Based Encryption
	Life Circle and Request flow

	Virtual Identity frameworks based on the Identity-Based Encryption (IBE) and Pseudonym-Based Encryption (PBE)
	Proposed Virtual Identity approaches

	Discussion
	Algorithm Used
	Performance
	Limitations

	Conclusion
	Work distribution

	assignmentgroups25_260467_6793099_group25
	Introduction
	Definitions
	Serverless computing
	Backend-as-a-Service
	Function-as-a-Service

	Challenges and possible solutions
	Data Protection
	Resource Isolation
	Security Monitoring
	Security management

	Tools - Security measures in industry
	gVisor
	FireCracker
	Intel SGXSoftware Guard Extensions enclaves
	Public Cloud vendors
	AWS Lambda
	Microsoft Azure Functions

	Advantages - Serverless Computing and FaaS security approaches
	Discussion and Conclusions
	References

