Course Web Service and Cloud Systems 2022-2023

Literature study assignment

Coordinators: Saba Amiri, Adam Belloum,

Securing the Foundation: A Comprehensive Overview of Infrastructure as Code

1
2. [Serverless Computing and Function as a Service: A Literature Study |
3. |Addressing Challenges of Fog Computing Using Blockchain Technology................ |

4, |CIoud-Native, Distributed OLAP databasesooeveeeeeeeeeeeeeeeee e |

: |Big data and Cloud in Medical INdUStryccooiiiii e |

. |Convergence of 10T, Edge Computing, and Cloud Computingc.ccceeveinnnnn. |

Mobile cloud computing contribute to sustainable development and green computing

5
6
7. |Payment SYSEEMS IN ClOUDSvveieii e |
8
9

Critical Factors to the Adoption of Identity as a Service (IDaaS) in Organisations

10. [Impact of Cloud Computing on High-Performance Computing,

11.|Application of Machine Learning algorithms in Cloud resource scheduling

12. |Ev0|ution of Data Centers and Emergence of Hyper-Converged Infrastructure |

13. |How Can Peer-to-Peer Deep Learning Enhance Edge Computing in loT Devices? ... |

14.| Machine Learning and Deep Learning for 1oT and Edge Computing for Smart Cites |

15. |Emerging technologies to address the privacy and data protection for the GDPR |
16. How are DevSecOps, 1ISO compliance, Security Audits, and AWS GovCloud

17. Exploring iPaaS: An Comprehensive Analysis of Research Status, Solution Issues ...

18. How communication protocols influence service discovery in microservice

19. What are the emerging trends and future directions in multi-cloud management?
20. [Business Models in the Cloud: A High Level Framework for Cloud-Based Data......

21. |Performance of Serverless computing (lambda function), FaaS (functions as a service)

22. Distributed Graph Neural Network Trainingcooeiiiiiiiiiiiiiiiiiiian...
23. |Distributed Cloud-based ML/DL WoOrkflows.cccoiiiiiiiiiiiiiiiiiiii ... |
24. [OAuUth2, Webhooks, API iN MICr0-SErVICES.ivieiiieiie e,
25.[MicroVMs and unikernels for the cloud....... niiinaanannn. |

Note: Following are reports of the Literature study assignment part of course “Web Services and Cloud
Systems™ given in the context of the Joint UvA-VU Computer Science program?. The literature assignment is
worth 35% of the total course grade. Students have to read at least 17 papers and prepare a (8-10)-page report in
a style of a scientific publication and give 10 mn presentation at the end of the course. The literature topics are
not covered during the lectures, students use the knowledge acquired during the lectures to perform the literature
study. Reports are checked for plagiarism using Trinity tool integrated in Canvas (similarity score tolerated is

max 20%).

1 https://studiegids.uva.nl/xmlpages/page/2022-2023/zoek-vak/vak/79525
2 https://masters.vu.nl/en/programmes/computer-science-big-data-engineering/index.aspx

https://studiegids.uva.nl/xmlpages/page/2022-2023/zoek-vak/vak/79525
https://masters.vu.nl/en/programmes/computer-science-big-data-engineering/index.aspx

Securing the Foundation: A Comprehensive Overview
of Infrastructure as Code Security, Best Practices and
Novel Detection Methods

Luca Pantea Anders Nou
Graduate School of Informatics Graduate School of Informatics
University of Amsterdam University of Amsterdam
luca.pantea@student.uva.nl anders.nou@student.uva.nl

Floris Brunet de Rochebrune
Department of Computer Science
Vrije Universiteit Amsterdam
f.d.brunetderochebrune@student.vu.nl

Abstract

Infrastructure as Code (IaC) is a vital practice in modern software development
and deployment, enhancing efficiency and consistency. Despite these benefits, it
introduces unique security risks that require careful management. This literature
review provides a comprehensive examination of the current state of security in
TaC. We explore the nature of security threats in IaC, the prevalent vulnerabilities
in [aC scripts, the implications of security breaches, and the best practices for
writing secure IaC scripts. Additionally, we delve into the advanced techniques for
security and defect detection in IaC. This review highlights the critical importance
of security considerations in IaC and proposes potential areas for future research.
Our findings underscore the need for developers and organizations to adopt robust
security measures and utilize advanced techniques to mitigate the potential risks
associated with IaC, ensuring resilient and secure infrastructures.

1 Introduction

The growing demand for continuous delivery of code changes to meet evolving requirements has
prompted numerous organizations to reconsider their development practices. One aspect that com-
monly halts or slows down rapid code delivery within an organisation is the tension between software
development teams and operations. While the former are incentivised to deliver new releases to
accommodate incoming requirements, the latter must ensure the stability of production software at all
times. One particular solution the operations team use is automation logic (e.g., scripts) for the fre-
quent deployment of middleware and applications to the production environment. However, this logic
may require updates to accommodate new requirements from application releases. Moreover, these
methods generally lack a design built according to software engineering practices (e.g., modularity or
reusability) and often pose a risk to deployment stability [34} 25 42| 20} 26].

One emerging framework used in DevOps to bridge the gap between engineers and operators is
Infrastructure as code (IaC) 18| 31]], which describes and specifies the underlying configurations
behind the infrastructure of software systems, built around the fundamental principles of software
engineering. By employing [aC scripts, organizations can provision and configure their development
and deployment environment, set up user accounts, and manage dependencies at scale, thus allowing
for a stronger collaboration between operations and software development teams, and consequently

delivering software at an increased pace. The growing interest in IaC is evident among practitioners
and researchers alike [[16}37]).

Various IaC tool vendors, such as Cheiﬂ Puppeﬂ AnsibleE] and Terrafornﬂhave emerged, which allow
practitioners to specify configuration and dependency information as scripts, instead of manually
developing and maintaining custom BASH/Perl executables across multiple cloud instances. These
tools equip developers with abstractions to configure automation steps as idempotent [8] processes.
The principle of idempotentce is a fundamental concept in automation and computing, ensuring
consistent outcomes regardless of the number of executions.

The benefits of adopting IaC practices have been evident in information technology (IT) organizations.
According to a report conducted by Enterprise Strategy Group in 2016 [27]], the use of IaC scripts
resulted in an average time savings of 210% for IT organizations. General Motors (GM) leveraged
Chef to increase their software deployment frequency by a remarkable factor of 21 ([[15)]. Another
notable case is the National Aeronautics and Space Administration (NASA), where the use of IaC
scripts reduced their previously time-consuming patching process from multiple days to a mere
45 minutes [13]]. CERN, the European Organization for Nuclear Research makes use of Puppet to
effectively manage their vast infrastructure, comprising 15,000 servers and processing 2,000 TB
of data every day. Puppet’s deployment management capabilities have played a significant role
in minimizing service disruptions and reducing deployment time at CERN [10]. These real-world
examples demonstrate the tangible benefits that IaC brings to diverse IT organizations, facilitating
increased efficiency, reliability, and scalability.

Despite the aforementioned advantages, IaC scripts are not immune to defects that can have severe
consequences. For instance, an [aC script defect caused an outage that resulted in Amazon Web
Services suffering business losses of approximately 150 million USD [[17]. Similarly, other defects
in IaC scripts have led to significant incidents, such as the unintentional deletion of user directories
for around 270 users on cloud instances maintained by Wikimedia Commons [46]. In addition to
functionality-related defects, security-related issues can also manifest in IaC scripts. These issues
encompass inadvertent exposure of secrets and SSL certificates in logs, as well as hardcoding sensitive
information. Notably, such security flaws are not confined to specific domains but have been observed
across various projects, including blockchain [45]], video game software [35]], cloud management
software [47]], and prominent open-source projects such as Apache, Linux, and Mozilla [9, 43]].

Building upon the understanding of the benefits and potential pitfalls associated with Infrastructure
as Code (IaC), this study aims to delve deeper into the realm of security considerations within this
domain. In light of the aforementioned defects and vulnerabilities observed in IaC scripts, it is crucial
to address security concerns effectively. To accomplish this, three key research questions will guide
our investigation:

* [RQ1]: We seek to provide a systematic overview of security considerations in Infrastruc-
ture as Code. By thoroughly examining existing literature, we aim to identify and analyze
the various security aspects that must be taken into account when developing and deploying
TaC scripts.

* [RQ2]: We propose a subset of best practices that can assist practitioners in developing
secure infrastructure as code scripts. Drawing upon insights gathered from comprehensive
literature studies, we will present practical guidelines and recommendations that can enhance
the security posture of IaC implementations.

* [RQ3]: We present novel methods firmly grounded in literature for security and defect
detection within the context of IaC. By leveraging advancements in security technologies
and techniques, we will explore innovative approaches to identify and mitigate security
vulnerabilities and defects in IaC scripts.

By addressing these research questions, this study aims to contribute to the broader understanding
of security in [aC, provide actionable recommendations for practitioners, and offer perspectives on
mitigating such vulnerabilities.

"https://www.chef.io/
“https://www.puppet . com/
*https://www.ansible.com/
“https://www.terraform.io/

https://www.chef.io/
https://www.puppet.com/
https://www.ansible.com/
https://www.terraform.io/

2 Background

2.1 Definition

Infrastructure as Code (IaC) is a methodology and practice of managing and deploying infrastructure
resources with code and using standard practices from software development [29]]. IaC helps organi-
zations treat the infrastructure as software. The practice involves using configuration files, scripts
and automation to define and control the infrastructure configuration, deployment and management
processes [28]].

2.2 Benefits

Reproducibility and Consistency; Infrastructure defined as code provides the possibility of creating
reproducible environments [32]]. Instead of manually creating infrastructure resources, infrastructure
code can be reused to replicate environments across development, testing, acceptance, and production.
Therefore presenting consistency and minimizing configuration drift, which reduces the risk of
deployment issues that are caused by environment discrepancies [29].

Agility and Efficiency; Leveraging infrastructure as code leads to significant benefits in terms of
agility and efficiency. Defining infrastructure in code allows organizations to automate the deployment
and management processes. This allows organizations to adapt quickly to business requirements and
deliver fast and efficiently. IaC also greatly benefits the identification of defects and debugging due to
version control [32].

Scalability and Elasticity; IaC enables organizations to rapidly upscale or downscale the infrastruc-
ture resources as required [32]]. This allows teams to fully utilize the elasticity that the cloud provides.
Scaling resources automatically removes manual intervention and thus reduces the risk of human
errors. The dynamicity and modularity of IaC help provision infrastructure swiftly for new features
and applications quickly.

Stability and Reduced Risk; Using IaC promotes stability and risk aversion [29]. Infrastructure
changes can be quickly and consistently tested on development environments beforehand. This leads
to fewer human errors and inconsistencies across environments. Automated infrastructure testing
can also be added to the formula. Code that goes through validation and testing leads to fewer
vulnerabilities and reduces the risk of downtime and disasters. In turn, the overall stability of the
system improves.

Improving DevOps; Utilizing IaC helps to reduce the distance between development and operations
[6]]. Instead of giving the operations team full control and overview of the infrastructure, IaC shares
the infrastructure responsibility with the development teams. This facilitates better communication,
faster feedback loops and leads to more efficient infrastructure management.

Disaster Recovery; During incidents and catastrophic events with infrastructure, disaster recovery
becomes a simple automation task [32]]. The infrastructure can be rolled back, redeployed and
restored due to backups and version control. Undocumented and manually configured resources
and servers are no longer an issue due to IaC. This also allows organizations to do disaster recovery
testing called Chaos Engineering which was pioneered in Netflix [29]. Chaos Engineering injects
errors into systems to see if the systems are capable of handling the errors.

2.3 Tooling

At this point in time, there is already a multitude of tools to choose from to implement infrastructure
as code. There are configuration management tools like Chef, Puppet, and Ansible that automate the
provisioning, configuration, and management of the infrastructure resources [37]. In 2015, Chef and
Puppet were considered the most popular infrastructure languages [[19]. They provide a declarative
way of defining and configuring the infrastructure as needed. Configuration management tools prove
to be especially useful in managing a fleet of servers.

In addition to the configuration management tools, there are also infrastructure provisioning tools
such as Terraform and AWS CloudFormation [14] [[L1]. Terraform provides a cloud-native way of
provisioning infrastructure with declarative code. Terraform tracks the state of the infrastructure
resources and compares the state to the code. During execution, Terraform updates, creates, or deletes

the resources as defined by the code. AWS CloudFormation is another provisioning tool that is
dedicated to managing Amazon Web Services (AWS) cloud resources [11]. CloudFormation provides
similar benefits and features to users that Terraform does with the exception that it is meant only to
be used with AWS.

2.4 Examples

We show examples of four IaC languages: Chef, Puppet, Terraform and CloudFormation. Figure]|
shows Chef and Puppet snippets with the same functionality: initializing an HTTP server on two
platforms [19]. Figure[2shows an example of Terraform and CloudFormation. Both examples show
how to provision a simple EC2 (Elastic Compute Cloud) instance in AWS.

case node[:platform] case $platform{
when "ubuntu" "ubuntu": {
package "httpd-v1" do package {"httpd-vi":
version "2.4.12" ensure => "2.4.12"
action: imnstall }
end }
when "cent(0S" "cent0S": {
package "httpd-v2" do package {"httpd-v2":
version "2.2.29" ensure => "2.2.29"
action: install }
end }
end }

Figure 1: Chef (Left) and Puppet (Right) Examples [[19]

resource "aws_instance" "example" "ExampleEC2": {
{ "Type": "AWS::EC2::Instance",
ami = "ami-005e54dee72cc1d00" "Properties": {
instance_type = "t2.micro" "ImageId": "ami-005e54dee72cc1d00",
} "InstanceType": "t2.micro"
X
}

Figure 2: Terraform (Left) and CloudFormation (Right) Examples

3 Related Works

Our literature study showed that there is some research on the topic of infrastructure as code. Some
analysed the defects in IaC, while others delved deep into specific IaC languages. There were a
considerable amount of papers that gave an overview of what is IaC and explained the concept.
However, on our specific topic of security in infrastructure as code, we found that there is a deficit
of research. There are some papers on the topic of code smells and anti-patterns in infrastructure
as code. Although, we found that a great amount of those papers were written by a select few [38]],
[40], [37], [36]. We found some information about the considerations, anti-patterns and methods for
detecting defects in IaC. However, there was no comprehensive overview of the security that provided
depth about the overall security in IaC. Overall, we discovered that papers and articles did not give an
extensive summary and framework about the considerations, best practices and methods to use with
infrastructure as code.

4 Methodology

This study employs a two-pronged approach, combining a systematic literature review and an
empirical analysis of internet artifacts, to explore the security considerations pertinent to Infrastructure
as Code (IaC). The process can be divided into four main steps.

1. Exploratory search for IaC security literature and Internet artifacts; We perform a systematic
search for pertinent peer-reviewed articles within databases such as IEEE Xplore, ACM Digital
Library, SpringerLink, and also employ Google Scholar and Google Search for a broader reach. Our

non:

search string includes keywords such as "infrastructure as code security", "infrastructure as code
security practices", "puppet scripts security", "chef cookbook security", and "terraform code security".
We collect the top 25 results from each search engine for every query string, creating an initial pool

of potentially relevant sources.

2. Filtering of literature and artifacts; To establish a corpus of high-quality, relevant literature,
we then apply a series of rigorous filtering criteria. This includes excluding non-English results,
eliminating duplicate entries, and retaining only those sources directly discussing IaC security,
security management techniques, or secret management best practices. The final corpus of 41 works
comprises academic papers and Internet artifacts like blog posts and articles (showcased partly in the
introduction, and analysed in the Results section).

3. Synthesis of the literature; Following the collection and filtration process, the remaining artifacts
are scrutinized to identify common themes, best practices, and recurring patterns. Through a thematic
analysis approach, we categorize and summarize findings to distil a set of effective practices that
have been highlighted in the literature. This synthesis informs our understanding of prevailing
security considerations in IaC and contributes to the formulation of recommendations for secure IaC
implementations.

4. Enumeration of methods aligning with best practices; Lastly, we catalogue tools and methods
that are aligned with the synthesized best practices. This includes solutions for identifying and
mitigating security vulnerabilities in IaC scripts. This step aids in translating the synthesized best
practices into actionable strategies for practitioners aiming to enhance the security of their IaC
deployments.

This dual-pronged approach, combining rigorous academic research with insights from real-world
applications, offers a comprehensive view of IaC security, allowing for robust conclusions and
actionable recommendations.

5 Results

5.1 [RQ1] Security Implications in IaC Development and Deployment

Nature of Security Threats in IaC; Infrastructure as Code (IaC) enhances agile software develop-
ment but also ushers in unique security threats. TrendMicro highlights the risks of misconfiguration,
where improper settings lead to security breakdowns, the complexity of managing drift in immutable
infrastructure, issues in handling confidential data like passwords and API keys, the necessity of
stringent access management policies, and the requirement for diligent logging and monitoring [44]].
Simultaneously, OWASP proposes several countermeasures: using standard security plug-ins in IDEs
for early threat detection, initiating threat modelling early in the development cycle for enhanced
visibility and flexibility, securely managing secrets, utilizing version control for tracking IaC changes,
and performing static analysis to identify potential risks and misconfigurations.

Prevalent Vulnerabilities in IaC Scripts; Several academic articles have reported on the prevalent
vulnerabilities in IaC scripts. One such article is “Security Controls in Infrastructure as Code” by
Almuairfi and Alenezi [5]. The authors conducted a study of security smells in IaC scripts and
identified seven security smells through qualitative analysis of 1,726 IaC scripts. The security smells
include hard-coded secrets, weak permissions, and insecure network configurations.

t)

Another article is “The ‘as code’ activities: development anti-patterns for infrastructure as code
by Knauss et al. [22]. The authors identified development anti-patterns that relate to defective IaC
scripts. These anti-patterns include poor documentation, lack of testing, and poor code quality.

Finally, “Source code properties of defective infrastructure as code scripts” by Knauss et al. [21]
identified 12 source code properties that correlate with defective IaC scripts. These properties include
long files, high complexity, and low cohesion.

Impact and Implications of Security Breaches; Security breaches in IaC can have serious con-
sequences for organizations. According to Neharika and Lennon [30], security attacks are rapidly
increasing and can result in heavy fines when appropriate measures for security are not taken. Provi-
sioning infrastructure using manual configuration can also be a difficult task as it involves multiple
steps. The authors investigated securely provisioning infrastructure automatically using source code
analysis tool, container security tool, and IaC tools. They showed that source code and containers

can be scanned for vulnerabilities, and when critical vulnerabilities are not found, the infrastructure
can be automatically provisioned using Terraform script. The authors observed that implemented
systems can be scanned for vulnerabilities in source code and containers provisioned automatically
using secure IaC script.

In addition, cyber risk management is an important aspect of cybersecurity. According to a systematic
review of data by Kshetri et al. [23]], cyber risk management is essential for organizations to protect
their data from cyber attacks. The authors analyzed the extant academic and industry literature on
cybersecurity and cyber risk management with a particular focus on data availability. They found that
cyber risk management is an important aspect of cybersecurity and that organizations should take
proactive measures to protect their data from cyber attacks.

Security Management in IaC; IaC security is the practice of securing infrastructure that is managed
using [aC. This can include measures to secure the IaC codebase itself, as well as the infrastructure
resources that are managed using IaC [[1]. According to OWASP, security in IaC contexts is typically
managed by developers who are responsible for writing the code that defines the infrastructure([2].
However, security teams may also be involved in reviewing and approving the code before it is
deployed. Automation plays a critical role in IaC security by enabling security checks to be performed
automatically during the development process. This helps to identify potential security issues early
on and ensures that security is integrated into the development process from the beginning.

Security should be integrated throughout the entire Infrastructure as Code life cycle, from development
to deployment and beyond. According to TechTarget, IaC can help organizations achieve better
security by providing greater visibility into their infrastructure and enabling them to more easily
identify and remediate vulnerabilities[3]]. By treating infrastructure as code, organizations can apply
the same versioning techniques used for software development teams, which can help ensure that
changes are tracked and auditable.

5.2 [RQ2] Best Practices for Secure IaC Scripts

As the popularity of using Infrastructure as Code rises, it is vital that the security concerns of the IaC
are taken into attention. If the security of the scripts is not considered, organizations could introduce
vulnerabilities in their infrastructure. This section highlights the best practices for writing secure IaC
scripts to maintain secure, durable and resilient infrastructure. It is also important to note that we
cover the best practices for both the code itself and also some security considerations for what is
deployed and provisioned by the IaC.

Principle of least privilege; Analysis showed that the principle of least privilege is sometimes
violated [38]. This means that the IaC is provisioning infrastructure that gives the resources or
users too much access, often administration access. Instead, applying the zero-trust model for the
services is more secure because the application only has as few permissions as needed and only to
the resources it needs to access [29].

Use a secret management tool; Researchers found that more often than not, secrets were hard-coded
and exposed in the Git history [4], [38]. Usernames, passwords, API keys etc are often exposed which
causes vulnerabilities and might lead to security breaches. Instead of using hard-coded secrets, it is
recommended to use secret management tools where the secrets could be fetched from and injected
into the code [36]. Some examples of secret management tools are HashiCorp’s Vaultﬂ AWS Secrets
ManagerE] and GCP Secret manager

Fine-grained access control; Developers might often take shortcuts when implementing access
controls for servers, databases and other resources [38]]. For the initial testing and validation process
it is easy to take the path of allowing access from everywhere to not deal with connectivity issues.
However, when this security anti-pattern stays in the system permanently, security concerns rise up.
Instead of defining access to be allowed from 0.0.0.0/0 (everywhere) for servers and databases,
specific IP ranges of private networks should be utilized instead.

Testing; Performing continuous testing and delivery is one of the core practices of Infrastructure as
Code. For secure, resilient and durable infrastructure, testing is a vital cornerstone for achieving that.

>https://www.vaultproject.io/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
"https://cloud.google.com/secret-manager

https://www.vaultproject.io/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://cloud.google.com/secret-manager

It is reasonable to test in addition to many other aspects of the infrastructure, the security of the code.
Such as tests for asserting the status of ports, user access and overall resource access [29].

Other considerations; In addition to the aforementioned practices, it could also be important
to keep in mind other security concerns that could lead to serious threats. Such concerns include
the employment of TLS to prevent main-in-the-middle attacks [38]. In addition to using a secret
management tool to avoid hard-coding secrets, it is important to obfuscate secrets in the logs as
well [4]]. The final concern is the use of weak cryptography algorithms when for example setting up
passwords or SSH connections. Using weak algorithms could lead to collision attacks and might
open up your system to intruders [38].

5.3 [RQ3] Advanced techniques for identifying and mitigating security vulnerabilities in IaC
scripts

This section aims to give an overview of the recent research efforts focused on the development of
techniques for the analysis and detection of security anomalies in IaC scripts.

Model-Based Approach for Assessing Security-Related Practices; The widespread adoption of
IaC has revolutionized software deployments, but verifying adherence to architectural requirements
remains a challenge. In the paper titled “Assessing Architecture Conformance to Security-Related
Practices in Infrastructure-as-Code-Based Deployments™ [33]], the authors investigate security-related
practices in deployment architectures managed using IaC scripts. Their proposed model-based
approach utilizes technology-independent metrics tied to architectural design decisions in IaC-based
deployments, allowing developers to measure conformance to security practices such as observability,
access control, and traffic control.

To evaluate the effectiveness of their approach, the authors employ 21 IaC deployment models.
Initially, they model the essential aspects of architectural decision options using a minimal set of
deployment model elements, automatically extracting them from the IaC scripts. Subsequently, a
range of metrics is defined to cover various decision options, with the generated models serving as a
benchmark. Ordinal regression analysis is then employed to derive a prediction model. The results
demonstrate the efficacy of the proposed metrics, accurately predicting the ground truth assessment
with a high degree of accuracy. The significance of this approach lies in its ability to facilitate
the continuous assessment of deployment models, considering the influence of continuous delivery
practices.

Detection of Security Smells with SLIC; Security smells encompass patterns that serve as indicators
of vulnerabilities within a system, making them potentially exploitable. Just like any other software
system, Infrastructure as Code (IaC) is also susceptible to security problems. Rahman et al. [3§]]
carried out a study into coding practices that could potentially compromise security within Puppet
scripts. The study involved scrutinizing 1,726 Puppet scripts sourced from Mozilla, OpenStack, and
Wikimedia projects. Through descriptive coding, the authors identified 7 specific “security smells”,
which are common indicators of possible security issues, using, which often occur beyond the context
of Infrastructure as Code (e.g. “hard-coded secret”, “admin by default”). To detect these security
smells in Puppet scripts, the authors develop and evaluate SLIC, a rule-based method of detecting

security smells based on pre-defined string patterns.

The authors tested SLIC on a sample of 140 Puppet scripts containing manually labelled as containing
code smells, where it showed increased precision and recall rates. Further examination was carried out
on a larger scale, running SLIC on 15,232 Puppet scripts collected from GitHub, Mozilla, OpenStack,
and Wikimedia repositories. The "hard-coded secret’ smell was found to be most prevalent, appearing
in 21.9%, 9.9%, 24.8%, and 17.0% of scripts from the respective sources. The authors engaged
industry professionals by submitting 1,000 bug reports related to identified instances of security
smells, resulting in a 21.2% response rate. Among the responded reports, there was a consensus of
69.8% on the identified bugs, with the highest agreement observed for the “use of weak cryptography
algorithms” (84.6%) and “use of HTTP without TLS” (over 75%).

Expansion to Ansible and Chef Scripts with SLAC; A follow-up study by Rahman et al. [39]
expands the investigation of security smells to Ansible and Chef scripts, building upon the previous
research. They identify two additional smells and develop SLAC, a tool for detecting these smells
along with the ones identified in the earlier study. Evaluations demonstrate SLAC’s high precision
and recall in Ansible and Chef scripts (0.9 and 1.0, respectively). Empirical studies on thousands of

scripts reaffirm the prevalence of “hard-coded secret” (22.4% Ansible scripts from OpenStack and
6.8% Chef scripts on GitHub) in [38]] and other common smells, such as “suspicious comment” and
“use of HTTP without TLS”. A practitioner survey reveals agreement on security smells, although the
response rate was relatively low (9.4%), which should be considered when interpreting the findings.

GLITCH for Polyglot Security Smell Detection; The tools mentioned above are of great value
for practitioners, as they span a wide range of security smells and are built for the prevalent IaC
technologies (Puppet, Ansible and Chef). However, they are implemented separately (prone to
duplication), language-dependent and lack flexibility in introducing a new smell (one would have to
implement the logic for both technologies). To address this, the authors of “GLITCH: Automated
Polyglot Security Smell Detection in Infrastructure-as-Code” [41] propose a language-agnostic tool
that provides consistent security checks and smell detection for IaC scripts.

The proposed method achieve state-of-the-art (SOTA) performance by transforming IaC scripts
(Ansible, Chef or Puppet) into a new intermediate representation that supports the detection of
nine security smells. The framework was tested on a dataset of nearly 200,000 scripts and over 12
million lines of code. It operates based on security rules like “admin by default” and “hard-coded
secret”. When evaluated on this large corpus of IaC scripts, GLITCH outperformed existing tools
(like SLAC) in terms of precision and recall and demonstrated flawless results for rules such as
“admin by default”. The lowest precision was found to be 42% for the “hard-coded secret” rule. The
method displayed significant improvements in both precision and recall for Puppet, Ansible, and Chef
scripts. For Puppet, precision and recall increased by 8% and 13% respectively, while Ansible saw
improvements of 10 and 8 points. The most noticeable enhancement was for Chef, with precision and
recall increasing by 28 and 26 percentage points respectively. Additionally, GLITCH also provided
speedups over SLIC and SLAC, ranging from 9x to 32x.

Defect Prediction using RADON; Defective Infrastructure as Code (IaC) scripts can lead to severe
outcomes for software development organizations, such as monetary loss, security breaches and from
service disruptions. Predicting such failure-prone scripts is critical as it aids developers in prioritizing
their examination efforts and allocating resources effectively. In their article “Within-Project Defect
Prediction of Infrastructure-as-Code Using Product and Process Metrics,” Dalla Palma et al. [[12]]
introduce RADON, a Machine Learning framework designed to predict IaC defects. RADON utilizes
a variety of code, IaC-specific, and process metrics to perform tasks such as repository crawling,
metrics gathering, model creation, and assessment.

The authors conducted a thorough empirical study on Ansible code to evaluate RADON’s efficacy in
IaC defect prediction. They compared five ML methods for defect prediction in IaC scripts: decision
tree, logistic regression, naive Bayes, random forest, and support vector machine. Using a publicly
available dataset of Ansible-based IaC scripts from GitHub, they trained these models and assessed
their predictive abilities. The study found that the random forest model was the most effective, and
models using [aC-specific metrics (such as TEXTENTROPY, NUMKEYS) performed better than those
relying on other metric sets. Moreover, the study identified certain [aC-oriented metrics that optimize
prediction performance. These insights provide a guideline for choosing suitable prediction models
based on project-specific features and inform the development of prediction models for IaC scripts.
Despite the focus on Ansible, the authors believe the predictive models can be easily transferred to
other languages like Chef and Puppet, as several of the most influential features are general-purpose
metrics.

Detection of Linguistic Anti-Patterns with DeeplaC; Finally, linguistic anti-patterns, which are
recurrent poor practices causing inconsistencies in the naming, documentation, and implementation
of an element, not only obstruct the readability, understandability, and maintainability of source
code but also pose security challenges. In response to this security-sensitive problem, N. Borovits
and his team [[7] devised an innovative solution, DeeplaC, which is an automated tool that employs
word embeddings and deep learning techniques, specifically Convolutional Neural Networks [24], to
classify scripts based on the presence of these linguistic anti-patterns. The tool is trained on a dataset
of scripts, which have been purposefully modified with bugs.

DeeplaC'’s effectiveness was empirically trained and evaluated using a set of 18,286 scripts sourced
from 38 GitHub repositories, with artificially-inserted bugs. The tool exhibited strong performance
with an accuracy range of 0.785 to 0.915. Its standout performance was in detecting inconsistency in
the file module, where accuracy peaked at 0.915 and F1 scores for both inconsistent and consistent
classes exceeded 0.9.

6 Discussion

The literature review presented in the previous sections has identified key security issues and best
practices related to Infrastructure as Code (IaC) development and deployment. This section seeks to
discuss these findings, particularly focusing on their implications for future research and practical
applications in the field.

6.1 Security Implications in IaC

The study of IaC has revealed its potential for bolstering agile software development but also the
associated unique security threats. Misconfiguration, drift in immutable infrastructure, insecure han-
dling of confidential data, lax access management policies, and weak logging and monitoring policies
pose serious challenges to security [44]. Several studies have identified prevalent vulnerabilities in
IaC scripts, which include hard-coded secrets, weak permissions, insecure network configurations,
poor documentation, lack of testing, and poor code quality [S} 22} [21]].

These security vulnerabilities can lead to severe implications, including substantial financial losses
and reputational damage [30]. It’s therefore critical to manage IaC security effectively, involving both
developers and security teams, to perform regular checks and apply preventive measures [11 2} [3].

6.2 Best Practices for Secure IaC Scripts

Despite the potential risks, [aC has immense benefits, providing developers with more control and
visibility into their infrastructure. To leverage these benefits while mitigating the associated security
risks, certain best practices should be followed. These practices involve applying the principle of
least privilege [38l], using secret management tools [36], implementing fine-grained access control
[38]], continuous testing [29]], and other security considerations like the use of TLS and avoiding weak
cryptography algorithms [38]].

These best practices present a roadmap for developers and organizations to write and maintain secure
IaC scripts, hence promoting a secure, durable, and resilient infrastructure.

6.3 Advanced Techniques for Security and Defect Detection in IaC

Apart from following the best practices, researchers have also proposed advanced techniques for
detecting defects and enhancing security in IaC. The reviewed papers take on different angles in
addressing security within the context of Infrastructure as Code (IaC), with unique results and varying
levels of effectiveness. The model-based approach, presented in the first discussed paper, capitalizes
on architectural design decisions in IaC deployments. The paper successfully argues for a model-
based method that leverages technology-independent metrics tied to architectural design decisions. It
further consolidates this argument with empirical evidence, employing 21 IaC deployment models
to demonstrate the effectiveness of their method. Notably, the metrics predicted the ground truth
assessment with a high degree of accuracy. The method’s strength resides in its potential to contin-
uously evaluate IaC-based deployments, thus aligning with the core principles of DevOps culture
— continuous integration and continuous deployment. However, one potential drawback is that it
assumes the correct and complete extraction of model elements from IaC scripts, which may not
always be feasible, particularly when dealing with large, complex, or poorly documented scripts.

The work of Rahman et al. encapsulated in two sequential papers, explores the identification and
detection of ’security smells’ in IaC scripts. Their first paper, “The Seven Sins: Security Smells in
Infrastructure as Code Scripts” takes a focused view, investigating the coding practices that could
potentially compromise security within Puppet scripts. By defining and detecting seven distinct
security smells, the paper introduces a conceptually new and practical means of revealing potential
security issues. The second paper expands this approach to Ansible and Chef scripts with SLAC.
The follow-up research not only validates the previous work but also broadens its scope, thereby
enhancing practical relevance. A potential limitation of their approach is its reliance on predefined
smell patterns, potentially limiting its effectiveness against novel or less typical security threats.

The fourth study, “GLITCH: Automated Polyglot Security Smell Detection in Infrastructure as Code”,
takes a significant step forward by proposing a language-agnostic tool to detect security smells. The
strength of this approach lies in its versatility —- GLITCH’s intermediate representation allows for more
consistent security checks across multiple IaC technologies (Puppet, Ansible, and Chef). Moreover,

the tool’s performance surpasses previous solutions, showing improved precision and recall for all
three languages. However, a key consideration is that it still relies on detecting predefined security
smells, much like SLIC and SLAC, which could limit its effectiveness against non-standard or newly
emerging threats.

In the fifth analysed paper, the authors take a different approach to IaC security by employing
machine learning to predict defective IaC scripts. The strength of RADON lies in its ability to
effectively prioritize and manage the allocation of resources by providing predictive insights into
potential defects. It also gives developers actionable intelligence on which areas of their scripts need
attention. However, the predictive performance of the model could be compromised by the quality
and representativeness of the training data used or the inherent complexity of the defect prediction
problem.

The final paper, “Detection of Linguistic Anti-Patterns with DeeplaC,” adds a new dimension to the
security analysis of IaC scripts. The proposed tool, DeeplaC, harnesses the power of word embeddings
and deep learning to identify and classify scripts based on the presence of linguistic anti-patterns.
This approach is quite potent in that it can detect less obvious, yet consequential vulnerabilities that
stem from linguistic inconsistencies in IaC scripts. However, the tool’s effectiveness in real-world
scenarios may be limited by the nature of its training set, which was artificially modified with bugs.

In essence, each study offers valuable insights into mitigating security concerns in IaC contexts, each
with unique strengths and potential limitations. However, the varied methodologies highlight the
multifaceted nature of IaC security, suggesting that a combined, comprehensive approach may be
more effective in achieving robust and enduring security practices.

6.4 Future Directions

The ever-increasing reliance on IaC to manage modern cloud-based infrastructures necessitates further
research in this domain. Future research should delve deeper into understanding and modelling the
security risks associated with IaC, developing novel techniques for automatic vulnerability detection,
and creating tools that can assist developers in writing secure [aC scripts.

Moreover, future work should also aim to bridge the gap between research and practice by proposing
industry-relevant methodologies that ensure security in IaC without hampering the agility and
productivity it offers. Industry-academia collaborations can play a significant role in this regard by
combining practical industry insights with rigorous academic research methods to create more robust,
scalable, and secure IaC solutions.

7 Conclusion

In this paper, we have examined the state of the art in Infrastructure as Code (IaC) security, identifying
the most prevalent security threats and the implications of these risks. We have also highlighted
several best practices and advanced techniques that are essential for enhancing security in IaC scripts.
Our literature review emphasizes the importance of maintaining a balance between leveraging the
benefits of IaC and mitigating the associated security risks.

IaC has emerged as a powerful tool in managing modern cloud-based infrastructures. However,
the potential security vulnerabilities in IaC scripts can have severe implications if not properly
managed. It’s imperative for developers and organizations to adopt robust security measures, such
as the principle of least privilege, fine-grained access control, continuous testing, and use of secret
management tools.

The use of advanced techniques like static code analysis and machine learning for anomaly detection
has shown promise in enhancing security in IaC. Future research should focus on building upon these
techniques and developing tools that can assist in writing secure IaC scripts. Moreover, collaborations
between academia and industry can greatly contribute to the development of practical, robust, and
secure IaC solutions.

In conclusion, as the reliance on IaC continues to grow, it is crucial for all stakeholders to prioritize
security in IaC development and deployment, thereby ensuring the resilience and integrity of the
infrastructures they manage.

10

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

Infrastructure as code (iac) security: Securing top 5 iac platforms - aqua. https://www!

aquasec.com/cloud-native-academy/devsecops/infrastructure-as-code-iac/|
Accessed: 2023-06-011.

Infrastructure as code security - owasp cheat sheet series. https://cheatsheetseries!
owasp.org/cheatsheets/Infrastructure_as_Code_Security_Cheat_Sheet.html,
Accessed: 2023-06-01.

The security benefits of using infrastructure as code. https://www.techtarget.com/
searchsecurity/tip/The-security-benefits-of-using-infrastructure-as-code,
Accessed: 2023-06-01.

Effat Farhana Akond Rahman, Chris Parnin, and Laurie Williams. Gang of eight: A defect
taxonomy for infrastructure as code scripts. in 2020 ieee/acm 42nd international conference on
software engineering (icse). acm, seoul south korea, 752-764, 2020.

Sadiq Almuairfi and Mamdouh Alenezi. Security controls in infrastructure as code. Computer
Fraud & Security, 2020(10):13-19, 2020.

Matej Artac, Tadej Borovssak, Elisabetta Di Nitto, Michele Guerriero, and Damian Andrew
Tamburri. Devops: Introducing infrastructure-as-code. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), pages 497498, 2017.

Nemania Borovits, Indika Kumara, Parvathy Krishnan, Stefano Dalla Palma, Dario Di Nucci,
Fabio Palomba, Damian A. Tamburri, and Willem-Jan van den Heuvel. Deepiac: Deep learning-
based linguistic anti-pattern detection in iac, 2020.

Mark Burgess. Testable system administration. Commun. ACM, 54(3):44—49, mar 2011.

Gemma Catolino, Fabio Palomba, Andy Zaidman, and Filomena Ferrucci. Not all bugs are the
same: Understanding, characterizing, and classifying the root cause of bugs, 2019.

CERN. Key facts and figures — cern data centre. https://information-technology.web!
cern.ch/sites/default/files/CERNDataCentre_KeyInformation_01June2018V1.
pdf} 2018. [Online; accessed 2-June-2023].

Peter Dalbhanjan. Overview of deployment options on aws. Amazon Whitepapers, 2015.

Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian A. Tamburri. Within-
project defect prediction of infrastructure-as-code using product and process metrics. /[EEE
Transactions on Software Engineering, 48(6):2086-2104, 2022.

Jonathan Davila. Nasa case study. https://fiercesw.com/wp-content/uploads/2016/
01/NASA-Case-Study-Ansible.pdf, 2016. [Online; accessed 2-June-2023].

Leonardo Reboucas De Carvalho and Aleteia Patricia Favacho de Araujo. Performance compari-
son of terraform and cloudify as multicloud orchestrators. In 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGRID), pages 380-389. IEEE, 2020.

Jeanne Gu. Gm - extract, transform, and load platform as a service. https://www.chef.io/
docs/cheflibraries/stories/chef_gm_etl_platform_as_a_service.pdf, 2019.
[Online; accessed 2-June-2023].

Michele Guerriero, Martin Garriga, Damian A. Tamburri, and Fabio Palomba. Adoption,
support, and challenges of infrastructure-as-code: Insights from industry. In 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pages 580-589,
2019.

Rebecca Hersher. Amazon and the $150 million typo. https://www.npr.org/sections/

thetwo-way/2017/03/03/518322734/amazon-and-the-150-million-typo, 2017.
[Online; accessed 2-June-2023].

11

https://www.aquasec.com/cloud-native-academy/devsecops/infrastructure-as-code-iac/
https://www.aquasec.com/cloud-native-academy/devsecops/infrastructure-as-code-iac/
https://cheatsheetseries.owasp.org/cheatsheets/Infrastructure_as_Code_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Infrastructure_as_Code_Security_Cheat_Sheet.html
https://www.techtarget.com/searchsecurity/tip/The-security-benefits-of-using-infrastructure-as-code
https://www.techtarget.com/searchsecurity/tip/The-security-benefits-of-using-infrastructure-as-code
https://information-technology.web.cern.ch/sites/default/files/CERNDataCentre_KeyInformation_01June2018V1.pdf
https://information-technology.web.cern.ch/sites/default/files/CERNDataCentre_KeyInformation_01June2018V1.pdf
https://information-technology.web.cern.ch/sites/default/files/CERNDataCentre_KeyInformation_01June2018V1.pdf
https://fiercesw.com/wp-content/uploads/2016/01/NASA-Case-Study-Ansible.pdf
https://fiercesw.com/wp-content/uploads/2016/01/NASA-Case-Study-Ansible.pdf
https://www.chef.io/docs/cheflibraries/stories/chef_gm_etl_platform_as_a_service.pdf
https://www.chef.io/docs/cheflibraries/stories/chef_gm_etl_platform_as_a_service.pdf
https://www.npr.org/sections/thetwo-way/2017/03/03/518322734/amazon-and-the-150-million-typo
https://www.npr.org/sections/thetwo-way/2017/03/03/518322734/amazon-and-the-150-million-typo

[18] Michael Httermann. DevOps for Developers. Apress, USA, 1st edition, 2012.

[19] Yujuan Jiang and Bram Adams. Co-evolution of infrastructure and source code - an empirical
study. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, pages
45-55, 2015.

[20] Muhammad Shoaib Khan, Abudul Wahid Khan, Faheem Khan, Muhammad Adnan Khan, and
Taeg Keun Whangbo. Critical challenges to adopt devops culture in software organizations: A
systematic review. IEEE Access, 10:14339-14349, 2022.

[21] Eric Knauss, Thomas Zimmermann, and Kurt Schneider. Source code properties of defective
infrastructure as code scripts. Journal of Systems and Software, 157:1-14, 2019.

[22] Eric Knauss, Thomas Zimmermann, and Kurt Schneider. The ‘as code’ activities: development
anti-patterns for infrastructure as code. Empirical Software Engineering, 25(6):4085-4118,
2020.

[23] Nir Kshetri. Cyber risk and cybersecurity: a systematic review of data availability. Journal of
Information Security, 13(1):1-20, 2022.

[24] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[25] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles. A survey of
devops concepts and challenges. ACM Comput. Surv., 52(6), nov 2019.

[26] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles. A survey of
DevOps concepts and challenges. ACM Computing Surveys, 52(6):1-35, nov 2019.

[27] Mike Leone. The economic benefits of puppet enterprise. cost-effectively automating the
delivery, operation, and security of an it infrastructure. https://www.esg-global.com/
hubfs/pdf/EVV-Report-Ex2.pdf, 2016. [Online; accessed 2-June-2023].

[28] Kief Morris. Infrastructure as code: managing servers in the cloud. " O’Reilly Media, Inc.",
2016.

[29] Kief Morris. Infrastructure as code. O’Reilly Media, 2020.

[30] Keerthi Neharika and Ruth G Lennon. Investigations into secure iac practices. In Lecture Notes
in Networks and Systems, volume 448, pages 301-310. Springer, 2022.

[31] Stephen Nelson-Smith. Test-Driven Infrastructure with Chef: Bring Behavior-Driven Develop-
ment to Infrastructure as Code. O’Reilly Media, Inc., 2013.

[32] Stephen Nelson-Smith. Test-Driven Infrastructure with Chef: Bring Behavior-Driven Develop-
ment to Infrastructure as Code. " O’Reilly Media, Inc.", 2013.

[33] Evangelos Ntentos, Uwe Zdun, Ghareeb Falazi, Uwe Breitenbiicher, and Frank Leymann.
Assessing architecture conformance to security-related practices in infrastructure as code based
deployments. In 2022 IEEE International Conference on Services Computing (SCC), pages
123-133, 2022.

[34] Chris Parnin, Eric Helms, Chris Atlee, Harley Boughton, Mark Ghattas, Andy Glover, James
Holman, John Micco, Brendan Murphy, Tony Savor, Michael Stumm, Shari Whitaker, and
Laurie Williams. The top 10 adages in continuous deployment. /EEE Software, 34(3):86-95,
2017.

[35] Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bacchelli. How is video
game development different from software development in open source? In 2018 IEEE/ACM
15th International Conference on Mining Software Repositories (MSR), pages 392-402, 2018.

[36] Akond Rahman, Farhat Lamia Barsha, and Patrick Morrison. Shhh!: 12 practices for secret
management in infrastructure as code. In 2021 IEEE Secure Development Conference (SecDev),
pages 56-62. IEEE, 2021.

12

https://www.esg-global.com/hubfs/pdf/EVV-Report-Ex2.pdf
https://www.esg-global.com/hubfs/pdf/EVV-Report-Ex2.pdf

[37] Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. A systematic mapping study
of infrastructure as code research. Information and Software Technology, 108:65-77, 2019.

[38] Akond Rahman, Chris Parnin, and Laurie Williams. The seven sins: Security smells in
infrastructure as code scripts. in 2019 ieee/acm 41st international conference on software
engineering (icse). IEEE, 1645175, 2019.

[39] Akond Rahman, Md. Rayhanur Rahman, Chris Parnin, and Laurie Williams. Security smells in
ansible and chef scripts: A replication study, 2020.

[40] Akond Rahman and Laurie Williams. Source code properties of defective infrastructure as code
scripts. Information and Software Technology, 112:148-163, 2019.

[41] Nuno Saavedra and Jodo F. Ferreira. Glitch: Automated polyglot security smell detection in
infrastructure as code, 2022.

[42] Mali Senapathi, Jim Buchan, and Hady Osman. Devops capabilities, practices, and challenges:
Insights from a case study. In Proceedings of the 22nd International Conference on Evaluation
and Assessment in Software Engineering 2018, EASE °18, page 57-67, New York, NY, USA,
2018. Association for Computing Machinery.

[43] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengxiang Zhai. Bug
characteristics in open source software. Empirical Softw. Engg., 19(6):1665-1705, dec 2014.

[44] TrendMicro. Infrastructure as code security risks and how to avoid them. TrendMicro, 2020.

[45] Zhiyuan Wan, David Lo, Xin Xia, and Liang Cai. Bug characteristics in blockchain systems:
A large-scale empirical study. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 413—-424, 2017.

[46] Wikitech. Incidents/2017-01-18 labs — wikitech,. https://wikitech.wikimedia.org/
w/index.php?title=Incidents/2017-01-18_Labs&oldid=1965859, 2022. [Online; ac-
cessed 2-June-2023].

[47] Wei Zheng, Chen Feng, Tingting Yu, Xibing Yang, and Xiaoxue Wu. Towards understanding
bugs in an open source cloud management stack: An empirical study of openstack software
bugs. Journal of Systems and Software, 151:210-223, 2019.

13

https://wikitech.wikimedia.org/w/index.php?title=Incidents/2017-01-18_Labs&oldid=1965859
https://wikitech.wikimedia.org/w/index.php?title=Incidents/2017-01-18_Labs&oldid=1965859

Serverless Computing and Function as a Service: A
Literature Study

Adam Swift Sebastian Skalski
Department of Computer Science Department of Computer Science
University of Amsterdam University of Amsterdam
Science Park 904, 1012WX Amsterdam Science Park 904, 1012WX Amsterdam
a.k.swift@student.vu.nl sebastian.skalski@student.uva.nl
Maciej Kozub

Department of Computer Science
University of Amsterdam
Science Park 904, 1012WX Amsterdam
maciej.kozub@student.uva.nl

Abstract

Serverless Computing and Function as a Service (FaaS) have risen to prominence
in the last decade due to the wealth of FaaS offerings from public cloud companies
including Amazon, Google and Microsoft. This Literature Study explores how
Serverless architectures impact the scalability and resiliency of applications, as well
as techniques that can be leveraged to design scalable and resilient Serverless ap-
plications. We investigate studies such as the Survey on Serverless Computing|[12]]
and A Fault-Tolerance Shim for Serverless Computing[29], and discuss the utility
of FaaS in different contexts. We conclude that although serverless architectures
provide many benefits to scalability and resiliency, there are also drawbacks that
decrease their utility in certain use cases, such as in stateful applications.

1 Introduction

Serverless Computing and Function as a Service (FaaS) are technologies that have been rising in
popularity in recent years, as seen by the market size and Google Trends. Serverless architectures
allow developers to focus on writing code, as the management of infrastructure is abstracted and
operational costs depend on actual use. Thus, using a Severless approach often results in application
development that is faster, more cost-effective, and more flexible than a traditional server-based
approach. Consequently, Serverless Computing and FaaS has become an important topic in the
current technology landscape.

In this literature study we aim to answer two connected research questions: 1. How do serverless
architectures impact application scalability and resiliency? and 2. How do we design serverless
applications that are scalable and resilient?

Scalability and Resiliency are important factors in the development of the majority of applications.

Developers aspire to create scalable applications such that they can handle increasing amounts of users
and data when demand increases. If applications scale badly, higher amounts of users could cause
performance to decrease (or halt), negatively affecting the users’ experience. Similarly, application
resiliency is crucial to minimise the effect of failures and to ensure the application can continue to
function smoothly. Scalability and Resiliency in Serverless computing has been investigated in the
past but often with limited detail, especially in the case of Resiliency, as most reviews have preferred
to analyse other factors of Serverless architectures such as their Performance and Latency, Cost

optimisation, or Security. Therefore, we have decided to focus on these areas and we assert that our
research questions are of high significance.

We have structured the remainder of our study as follows: In Section 2] we give some background
on the origins of Serverless Computing and FaaS, and detail some of the key concepts of Serverless
architectures. Additionally, we discuss some of the main benefits and challenges of these architectures.
We explore studies and literature regarding scalability in Section [3] including a case study of the
Toyota Connected Serverless Architecture. Then, we present the current literature regarding serverless
computing resiliency in Section[d] In Section[5] we give more detail on specific design techniques
and actionable advice that can be employed to develop resilient and scalable serverless applications.
In Section[6] We give our opinion on the research and discuss how applicable serverless computing is
to stateful applications. Lastly, We conclude our findings in Section 7]

2 Background & Concepts

Cloud computing has significantly evolved over the years, expanding its capabilities and transforming
how businesses operate and how applications are developed. Initially operating as an Infrastructure
as an Service (IaaS) [22] model, which provides basic compute resources, such as virtual machines,
storage, and networks, as services over the Internet. IaaS provides users with the highest level of
flexibility and control over their infrastructure, but it also requires users to manage and maintain their
own operating systems, middleware, and applications. Examples of IaaS are Amazon EC2, Azure
VM and Google Compute Engine. Next cloud services providers started introducing Platform as
a Service (PaaS) [[11]], to further abstract the underlying infrastructure. PaaS provides a platform
that includes both hardware and software tools over the Internet. This model eliminates the need
for users to manage the underlying infrastructure and allows them to focus on the deployment and
management of their applications. PaaS examples include AWS Elastic Beanstalk, Google App
Engine and Microsoft Azure Web Services. Currently cloud computing is embracing Serverless
Computing and Function as a Service (FaaS) [10]]. Each phase of this progression has sought to
enhance usability, decrease costs, and augment the degree of abstraction presented to the developer.

2.1 Serverless Computing and Function as a Service (FaaS)

FaaS is the most recent step in cloud computing’s evolutionary journey. In a serverless model, the
cloud provider takes over all the operational responsibilities, allowing developers to focus solely on
writing and deploying code. The term "serverless" does not mean that there are no servers, but rather
that the management of these servers is entirely handled by the cloud provider. The most notable
examples of FaaS include AWS Lambda, Google Cloud Functions, Apache OpenWhisk and Azure
Functions [27]]. The Rise of Serverless Computing |7|] formally defines serverless computing as a
platform that hides server usage from developers and runs code on-demand automatically scaled and
billed only for the time the code is running.

The FaaS service model started gaining a lot of attention after the release of AWS Lambda in 2014,
which started the overall serverless trend [31]]. Functions deployed to FaaS platforms are typically
event-driven, stateless, and often have short execution time. Developers outsource the maintenance
efforts to the corresponding platform provider. As a consequence, functions are automatically scaled
without any imposed limits on the amount of new instances [31]]. According to [7]], due to its
simplicity and economical advantages, serverless computing is gaining popularity as reported by the
increasing rate of the “serverless” search term by Google Trends.

FaaS isn’t the sole component of serverless computing. There’s also a set of specialized services
provided by cloud vendors, encompassing areas such as storage (for example, AWS S3, AWS
Elasticache, DynamoDB, Cloud Firestore, Cloud Pub/Sub), machine learning (for instance AWS
SageMaker), and data analytics (such as AWS EMR, Google BigQuery, and Google Cloud Dataflow).
These services fall under the Backend as a Service (BaaS) category [23]]. Although many of these
services were already in existence when FaaS was just beginning to be accessible to the public, they
can be viewed as serverless services with a specific focus, given that they similarly free developers
from managing the underlying hardware resources. The entirety of serverless computing is a blend of
the generic FaaS platform and the supplementary services provided by BaaS. For example, lambda
functions frequently employ BaaS storage services such as AWS S3 for storing their input and output
data. Consequently, serverless computing is considered as the fusion of FaaS and BaaS [23].

| Serverless Cloud provider |

Faa$S BaaS
o (&)
. API Fn (A)
Client >
Gateway Files
) | Ge))
4 \/ Servers
Event msg
-/

Figure 1: Example of serverless back-end of CSP [12]

2.2 Benefits
Serverless architectures offer several key benefits.

1. They provide a high degree of scalability, as the cloud provider can instantly provision more
resources to handle increased demand. Thus, they benefit from cloud providers’ economy of
scale on resource utilization.

2. They allow for precise billing, as users only pay for the compute time they consume which
is typically less than the cost of running dedicated servers. The pay as you use concept is
one of the key aspects of serverless computing. Depending on the exact scenario, building
in serverless often leads to a reduction in cost, particularly on variable work loads. However,
in some cases, such as on some stable workloads, the costs can be greater [[12]].

3. One of the unique and key benefits of serverless computing is the capability to scale to zero
instances when there are no requests hitting the service. This means that there is no cost
incurred until the application is invoked by an event.

4. Serverless architectures also have the potential to improve developer productivity, as devel-
opers can focus on writing code without worrying about infrastructure management.

2.3 Challenges
There a several drawback to serverless computing and FaaS.

1. They introduce new complexities in areas such as testing, monitoring, and debugging.
Additionally [12] observed a lack of solutions for testing, debugging and versioning FaaS-
based projects, especially for separately testing, debugging and versioning of FaaS-based
applications from the functions used to implement them.

2. Serverless platforms have millisecond-scale runtime overheads, making them unable to meet
the strict sub-millisecond latency targets required by existing interactive microservices [[14].

3. Serverless architectures can lead to increased reliance on a single cloud provider, raising
concerns about vendor lock-in. This can be argued as a general cloud service issue and not
specifically to FaaS. However often there is out-of-the-box integration with provider-specific
services. For instance, AWS Lambda can natively be combined with Amazon SQS to use
message queues as sources triggering function execution [3 1.

3 Scalability in Serverless Computing

Scalability, in the context of cloud computing, refers to the ability of a system to handle a growing
amount of work or its potential to accommodate growth in demand. This typically includes the
system’s capacity to increase its performance proportionally with added resources, such as servers
or storage. There are different notions of scalability as described in the examined literature, mainly
the differentiation of horizontal and vertical scaling. The former meaning the addition of computing

nodes to the system and the latter the addition of computing power to a single node. [24] states
that horizontal scaling is used in cloud computing environments [[20]]. Another differentiation of
scalability definitions is proposed by [19], defined differently for both PaaS and SaaS respectively as
“platform scalability is the ability of the execution platform to provide as many (additional) resources
as needed (or explicitly requested) by an application” and “means that the application maintains its
performance goals/SLAs even when its workload increases (up to a certain workload bound)”[19]].

Serverless computing takes scalability to a new level by abstracting away the underlying infrastructure,
allowing developers to focus solely on their application code. This abstraction eliminates the need
for manual intervention in resource provisioning and load balancing, as the serverless platform
automatically scales the application in response to demand. The automatic scaling characteristic of
serverless computing is largely enabled by Faa$, as described in the Section 2] When a function
is triggered by an event (e.g., an http request), the serverless platform automatically allocates the
necessary resources to run the function. If the number of events increases, more instances of the
function are automatically run in parallel.

Toyota Connected Data Lake Architecture

Decode Transform Analyze / Consume

Streaming data from:
Connected vehicles H
Lambda Dynamo APIGW | Customers

—;}\sbﬂ—?\\:

S
-
53 buckt @

€. ot Its Affillates. All rights reserved

Figure 2: Case study example of Toyota Connected Serverless Architecture [18]]

An example of scalability in serverless architectures comes from Toyota Connected. Toyota Connected
is a subsidiary of Toyota, and it provides a range of technology services, including connected
platforms, big data, mobility services, and other automotive-related services. They decided to build a
platform using serverless architecture, specifically AWS Lambda, Amazon Kinesis Data Streams, and
Amazon S3 [18]]. Through this serverless architecture, Toyota Connected was able to scale up to 18
times its usual traffic volume, demonstrating the scalability of serverless. It was handling 18 billion
transactions per month running through the platform. Additionally it also reduced data processing
times by 97.5 percent, representing a significant increase in efficiency and a reduction in operational
burden [18]].

3.1 FaaS Execution at Scale

There are two main approaches to FaaS Execution at Scale. One is the traditional Container-Based
Execution, the other is an emerging hybrid approach of Container and Virtual Machine.

Container-based execution is arguably the most popular approach in the FaaS landscape. In this model,
each function runs inside a container, a lightweight standalone executable package, including the
function code, runtime, system tools, and libraries. Services like Azure Functions use this approach.
The container-based model’s primary strength is that containers are lightweight compared to virtual
machines, they can be started and stopped quickly, making them suitable for short execution time
for FaaS workloads. Moreover, containers are isolated from each other, improving the security and
reliability of functions. However, the container-based execution model also has some drawbacks.
The cold start time can sometimes be longer than desirable. Furthermore, this model requires careful

management of container resources to prevent functions from exhausting their allocated resources

[25].
E Worker instance

Your Code

Lambda Runtime

> Firecracker
Sandbox

Guest OS

Hypervisor
EC2 System

Host OS

Hardware

Figure 3: Architecture of Amazon Lambda Back-end [9]

The hybird method can be seen with Amazon Firecracker as seen in Figure [3], which provides a
unique approach to FaaS execution that combines elements of both VM-based and container-based
execution. In the context of AWS Lambda, a FaaS offering by Amazon Web Services, Firecracker
is used to provide a secure, multi-tenant isolation boundary. When a function is invoked, AWS
Lambda uses Firecracker to create a microVM for that function. This microVM provides a level of
isolation that is similar to what a traditional VM provides, but with the speed and resource efficiency
that is closer to what containers provide. This allows AWS Lambda to securely run functions from
multiple customers on the same physical machine without them being able to interfere with each
other. Firecracker’s microVMs can start up in as little as 125 ms and consume a fraction of the
resources compared to traditional VMs [2]].

3.2 Challenges with scaling in serverless computing

1. A key differentiator of serverless is the ability to scale to zero, or not charging customers
for idle time. Scaling to zero, however, leads to the problem of cold starts, and paying
the penalty of getting serverless code ready to run. The FaaS platform needs to allocate
resources for the function, load the runtime, and then start the function, which can result in
a significant delay. Techniques to minimize the cold start problem while still scaling to zero
are critical [4]).

2. Another challenge is that while serverless platforms handle many aspects of automatic
scaling, they do not completely remove the need to consider scalability in the application
design. For example, a serverless application that interacts with a traditional database may
become a bottleneck if the database cannot scale as quickly or efficiently as the serverless
functions.

4 Resiliency in Serverless Computing

The term resiliency is usually used to describe applications that are resistant to failure. A resilient
system should be stable under unexpected changes to infrastructure or data [[15]].

On the one hand, Serverless architectures have some benefits with regards to resiliency. For one, the
user can concern themselves less with damage and/or issues regarding the infrastructure, as many
issues and/or damages will be handled by the cloud provider. Most cloud providers have automatic
tests to check for any errors with hardware, and settings can be configured to restore and/or rerun any
failed processes. This is dubbed ‘retry based fault tolerance’.

Furthermore, a serverless architecture can also aid with communication between services. Cloud
providers often offer infrastructure services such as queues to help implement robust communication
patterns. Though they are not infallible, these services simplify the problem for developers, and are
usually less likely to fail than custom code.

However, as mentioned in [[17] , the reliability guarantees of the infrastructure provided by serverless
computing (i.e. ‘retry based fault tolerance’) is often insufficient for applications requiring stronger
notions of resilience such as in autonomous vehicles or analysis of live sensor feeds. It is especially
an issue for applications that modify a shared state, as failures can cause partial updates that introduce
faulty or outdated data into the state. Due to these issues, most reviews of Serverless Computing’s
state of the art consider resiliency to be insufficient in many cases, and it has been considered an open
challenge [21]].

4.1 Log-Based Runtimes

Recently, there have been many new attempts to address the challenge and improve resiliency of
applications utilising serverless architectures. One attempt to improve the fault tolerance of serverless
computing was made in [32]]. This paper addresses the struggle to achieve a consistent and fault-
tolerant critical state for stateful applications. An example to illustrate this problem is given in
[13]]: Suppose there is a travel reservation app built with serverless functions. When processing a
reservation, the application might call a function to book a hotel as well as a function to book a flight,
but if the functions fail it could result in an inconsistent state. The paper provides a solution to this by
introducing a runtime for composing stateful serverless functions named Beldi. It extends a prior
log-based approach, called Olive [26], with new data structures, algorithms, protocols, and garbage
collection. Thus, the previous fault-tolerance approach is extended to stateless serverless functions,
resulting in improved resiliency. The authors evaluated their approach by porting three applications
to their runtime: a movie review service, a travel reservation application, and a social media site.
Their results showed an increased, but still reasonable, latency (around 2-3x higher median response
time when compared with the baseline, depending on the number of requests per second).

This approach was improved a year later in [13]]. The authors implemented a new serverless runtime
which implemented distributed shared logs by use of a LogBook API. Evaluations performed by the
authors resulted in a performance improvement of up to 4.7x when compared to Beldi.

4.2 Fault-Tolerance Shims

As well as this, there are studies that aim to improve resilience for serverless computing in other ways,
such as A Fault-Tolerance Shim for Serverless Computing [29]]. In this paper, the authors introduce a
low-overhead shim for serverless computing that enforces a read atomic isolation guarantee. This is a
notion introduced in [3|], where the authors state that “a system provides Read Atomic isolation (RA)
if it prevents fractured reads anomalies and also prevents transactions from reading uncommitted,
aborted, or intermediate data". In order to facilitate the design of this shim, the authors developed
new protocols to guarantee read atomic isolation for shared storage, as well as a garbage collection
scheme for these protocols to reduce the storage overhead.

The Master’s Thesis by Saurav Chhatrapati, Towards Achieving Stronger Isolation in Serverless
Computing|8]], builds on this work. Here, the author suggests that Read Atomic Isolation does not
prevent all consistency anomalies, and still allows some anomalies such as Lost Updates, Missing
Dependencies, and Predicate-Many-Preceders, which can make it difficult for developers to reason
about their applications. The author introduces a new low-overhead shim for serverless computing
that enforces a stronger notion of consistency, Snapshot isolation, which guarantees Read Atomic
Isolation and extends this by also preventing the aforementioned anomalies.

S Designing Scalable and Resilient Serverless Applications

5.1 Designing Scalable Applications

As discussed in Section [3] Cloud platforms can scale Serverless applications for developers automati-
cally, so there is less need for the developer to engineer a scalable design. However, it may still be
necessary to consider the application design if the application interacts with other systems, such as
external databases and APIs.

l Input

Function handle(...}
{

B
| llll ! lllllillllllll:l

e 1T] . o T '-_

lll lll h‘lll Ll:illll

Figure 4: Scaling Patterns [T]]

Function handle(...)
{

<work>
return ...

}
l Output

The Google Cloud blog[[1]] explains how Faa$ scales using Figure[d] In 1, the most basic diagram, a
single function takes an input and gives an output. In 2, the function is extended by taking multiple
inputs and returning mulitple outputs. In 3, the serverless platform scales this horizontally, by
providing multiple instances of the function(s). Finally, the fourth diagram visualises a highly scaled
application, that may be bottle-necked by external systems.

Listed are some of the techniques that developers can use to solve the resulting problems, and ensure
their serverless applications scale well:

. Set Connection-Limits

. Limit Rate of Work

. Rate-Limit HTTP Requests

. Process work in Batches

. Use Managed Services

AN L AW =

. Perform Monitoring

5.2 Designing Resilient Applications

In order for a system to be resilient, it should be designed such that any unit/component can fail or be
temporarily inaccessible without causing the entire system to fail. Additionally, components of the
application should be able to resume after downtime with all data being preserved.

Even when using infrastructure services from a cloud provider, some consideration should be
given to the communication pattern between services. For Instance, Depending on the use-case it
may be preferable to use a Direct (Circuit Breaker) Communication pattern, or an Asynchronous
Communication Pattern (as pictured in Figure[5] In case of an Asynchronous Communication Pattern,
the developer will still need to account for downtime in a queue if one is being used, so the design
would ordinarily include some form of data storage to be used in this case.

As in designing applications for scalability, there is a series of best practices that can be followed by
developers to ensure good resiliency:

1. Modularity (Break the application into decoupled subprocesses)

2. Meaningful error handling and logging/monitoring

3. Design for idempotency, downtime, and high-throughput peaks

4. Build resiliency into workloads and communication patterns

calling called calling called
service call service service service | pyblish subscribe | Service
>l T request request
queue >
€ = m e e ! subscribe publish

L response: success ' handle response response

: H < queue| |«

! H response 1

o H

call service

internal
error

. publish subscribe
internal request request
/\ error
Sy < 0 S D queue g
internal
Q error
LSS0 L e

response: error

retry
internal
error
|

retry

retry

subscribe publish

/!\ timeout
handle response response
R T T F LT TT o P response | [€ queue|
send cancellation P

Figure 5: Direct Communication Pattern (Left) and Asynchronous Communication Pattern (Right)
(15]

6 Discussion

6.1 Summary of Current Research

From the research we investigated, we formed a few main judgments. One of these is that although
there are challenges to Scalability and Resiliency in Serverless Architectures, most users are satisfied
with the services and benefits that cloud platforms provide in these areas, for example the automatic
horizontal scaling of stateless serverless functions. Furthermore, by following best practices as
outlined in Section[5] the majority of developers can solve most problems they encounter.

This is corroborated by [30]], where authors analysed several hundred questions from Stack Overflow
and categorised them into relevant groups. The paper did not find scalability or resiliency to be a
common concern among developers.

We believe that scalability and resiliency become more significant problems in more specific use-case
scenarios, such as when working with stateful serverless applications or functions. In these cases
we have seen additional research that aims to solve these problems (at the cost of additional latency)
such as log-based runtimes and fault-tolerance shims as described in Section[d One compelling point
of discussion is whether or not serverless architectures should be used for stateful architectures at all,
or whether the drawbacks outweight the benefits. We consider this in the following section.

6.2 When to use Serverless (Stateful vs Stateless)

Common reasons not to use Serverless Architectures include Vendor Lock-In, Latency concerns and
unique security risks. We have mentioned some of these in Section[2] Another common critique of
Serverless computing is that it is not very compatible with Stateful applications or functions.

Indeed, there are some drawbacks to developing stateful applications using serverless architectures.
Firstly, there is limited scalability - the automatic horizontal scaling that is done with stateless
serverless functions does not translate directly to stateful functions as there may be a need for
synchronising a share state accross multiple instances of functions. Secondly, as explored in Section
Ml ‘retry-based fault tolerance’ is often inadequate in stateful applications, creating a need for
alternative solutions. Furthermore, the additional complexity of the application design due to the
need for synchronisation of state might result in a more difficult development process, as well as
higher latency and cost.

However, as we have seen in Section[d] there are ways to solve the problems introduced by Stateful
Serverless Computing, meaning it can be an effective approach in some use-cases. Moreover, there
exist other techniques for Stateful Serverless Computing that we have not explored in depth in this
literature review [28}, (165, 6].

In closing, we believe that the decision of whether to use Serverless computing for developing
stateful applications (or in general) depends highly on the specific use-case, and the requirements and
constraints associated with it. If, for example the serverless approach would introduce a large amount
of excess complexity, such as in the case of a machine learning application, it may be preferable to
use a traditional server based approach.

6.3 Future Research Possibilities

In future, researchers can continue looking into different techniques to increase the ease of Stateful
Serverless application development, such as novel approaches for managing the shared state. Re-
searchers could also improve scalability and resiliency by examining the strategies used by current
cloud platforms and considering improvements that could be made. For example, researchers could
look at different methods of resource allocation in the case of scalability, or investigate fault tolerance
by use of chaos engineering and fault injection. A final area that could be analysed in higher depth
are the emerging hybrid approaches to FaaS Execution at Scale, as discussed in Section 3]

7 Conclusion

In conclusion, We answered how serverless architectures impact application scalability and resiliency
by investigating existing studies based on existing applications, reviews of state of the art, and
other recent research in these topics. We established that serverless computing provides numerous
benefits to both scalability and resiliency, primarily in the form of automatic horizontal scaling of
stateless serverless functions and retry-based fault tolerance respectively. Moreover, we investigated
the drawbacks on scalability and resiliency in stateful applications, and discussed whether or not
serverless architectures should be used for them. Finally, We answered how to design serverless
applications that are scalable and resilient by describing some of the more relevant industry practices.
An implication of our study is that some of the main weak points of serverless architectures are in
developing stateful applications. We suggest that future research could continue to explore this area.

References

(1]
(2]
(3]
(4]
(5]

(6]

(71
(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

URL: https://cloud. google.com/blog/products/serverless/6-strategies-
for-scaling-your-serverless-applications.

Alexandru Agache et al. “Firecracker: Lightweight Virtualization for Serverless Applications.”
In: NSDI. Vol. 20. 2020, pp. 419-434.

Peter D. Bailis et al. “Scalable Atomic Visibility with RAMP Transactions”. In: ACM Transac-
tions on Database Systems (TODS) 41 (2014), pp. 1-45.

Ioana Baldini et al. “Serverless computing: Current trends and open problems”. In: Research
advances in cloud computing (2017), pp. 1-20.

Daniel Barcelona-Pons et al. “On the FaaS Track: Building Stateful Distributed Applications
with Serverless Architectures”. In: Proceedings of the 20th International Middleware Con-
ference. Middleware 19. Davis, CA, USA: Association for Computing Machinery, 2019,
pp- 41-54. 1SBN: 9781450370097. DOI:(10.1145/3361525.3361535, URL: https://doi
org/10.1145/3361525.3361535,

Daniel Barcelona-Pons et al. “Stateful Serverless Computing with Crucial”. In: ACM Trans.
Softw. Eng. Methodol. 31.3 (Mar. 2022). 1SSN: 1049-331X. DOI: 10.1145/3490386. URL:
https://doi.org/10.1145/3490386.

Paul Castro et al. “The rise of serverless computing”. In: Communications of the ACM 62.12
(2019), pp. 44-54.

Saurav Chhatrapati. “Towards Achieving Stronger Isolation in Serverless Computing”. MA
thesis. EECS Department, University of California, Berkeley, May 2021. URL: http://www2,
eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-141.html,

Damian. Anatomy of AWS Lambda. dev.to. [Online; accessed 1-June-2023]. 2019. URL: https:
//dev.to/sosnowski/anatomy-of-aws-lambda-1ile,

Geoffrey C Fox et al. “Status of serverless computing and function-as-a-service (faas) in
industry and research”. In: arXiv preprint arXiv:1708.08028 (2017).

Vania Gongalves and Pieter Ballon. “Adding value to the network: Mobile operators’ exper-
iments with Software-as-a-Service and Platform-as-a-Service models”. In: Telematics and
Informatics 28.1 (2011), pp. 12-21.

Hassan B Hassan, Saman A Barakat, and Qusay I Sarhan. “Survey on serverless computing”.
In: Journal of Cloud Computing 10.1 (2021), pp. 1-29.

Zhipeng Jia and Emmett Witchel. “Boki: Stateful Serverless Computing with Shared Logs”.
In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles. SOSP
’21. Virtual Event, Germany: Association for Computing Machinery, 2021, pp. 691-707. ISBN:
9781450387095. DOI: 10.1145/3477132.3483541. URL: https://doi.org/10.1145/
3477132.3483541.

Zhipeng Jia and Emmett Witchel. “Nightcore: efficient and scalable serverless computing for
latency-sensitive, interactive microservices”. In: Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems.
2021, pp. 152-166.

Benjamin Kettner and Frank Geisler. “Achieving Resiliency”. In: Pro serverless data handling
with Microsoft azure: Architecting ETL and data driven applications in the cloud. APRESS,
2022.

Anurag Khandelwal et al. “Jiffy: Elastic Far-Memory for Stateful Serverless Analytics”. In: Pro-
ceedings of the Seventeenth European Conference on Computer Systems. EuroSys *22. Rennes,
France: Association for Computing Machinery, 2022, pp. 697-713. ISBN: 9781450391627.
DOI: |10 . 1145 /3492321 . 35627539, URL: https ://doi . org/10. 1145 /3492321 |
3527539.

Sameer G Kulkarni et al. “Living on the Edge: Serverless Computing and the Cost of Fail-
ure Resiliency”. In: 2019 IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN). 2019, pp. 1-6. DOI:/10.1109/LANMAN.2019.8846970,

Sandeep Kulkarni and Shravanthi Denthumdas. Enhancing customer safety by leveraging
the scalable, secure, and cost-optimized Toyota Connected Data Lake. https : / / aws |
amazon . com/blogs /big- data/enhancing - customer - safety - by - leveraging -

the - scalable - secure - and - cost - optimized - toyota- connected - data- lake/.
Accessed: 2023-05-30. Amazon Web Services, Aug. 2020.

10

https://cloud.google.com/blog/products/serverless/6-strategies-for-scaling-your-serverless-applications
https://cloud.google.com/blog/products/serverless/6-strategies-for-scaling-your-serverless-applications
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3490386
https://doi.org/10.1145/3490386
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-141.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-141.html
https://dev.to/sosnowski/anatomy-of-aws-lambda-1i1e
https://dev.to/sosnowski/anatomy-of-aws-lambda-1i1e
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3492321.3527539
https://doi.org/10.1145/3492321.3527539
https://doi.org/10.1145/3492321.3527539
https://doi.org/10.1109/LANMAN.2019.8846970
https://aws.amazon.com/blogs/big-data/enhancing-customer-safety-by-leveraging-the-scalable-secure-and-cost-optimized-toyota-connected-data-lake/
https://aws.amazon.com/blogs/big-data/enhancing-customer-safety-by-leveraging-the-scalable-secure-and-cost-optimized-toyota-connected-data-lake/
https://aws.amazon.com/blogs/big-data/enhancing-customer-safety-by-leveraging-the-scalable-secure-and-cost-optimized-toyota-connected-data-lake/

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

Michael Kuperberg et al. Defining and quantifying elasticity of resources in cloud computing
and scalable platforms. KIT, Fakultit fiir Informatik, 2011.

Sebastian Lehrig, Hendrik Eikerling, and Steffen Becker. “Scalability, elasticity, and efficiency
in cloud computing: A systematic literature review of definitions and metrics”. In: Proceedings
of the 11th international ACM SIGSOFT conference on quality of software architectures. 2015,
pp. 83-92.

Yongkang Li et al. “Serverless Computing: State-of-the-Art, Challenges and Opportunities”.
In: IEEE Transactions on Services Computing 16.2 (2023), pp. 1522—-1539. DOI:{10.1109/
TSC.2022.3166553.

Sunilkumar S Manvi and Gopal Krishna Shyam. “Resource management for Infrastructure
as a Service (IaaS) in cloud computing: A survey”. In: Journal of network and computer
applications 41 (2014), pp. 424—-440.

Joao Menezes Carreira. “Practical and Scalable Serverless Computing”. PhD thesis. EECS
Department, University of California, Berkeley, Dec. 2021. URL: http: //www2 . eecs |
berkeley.edu/Pubs/TechRpts/2021/EECS-2021-238.htmll

Zoltan Micskei. “Dynamically Scalable Applications Cloud Environment”. PhD thesis. Disser-
tation, Budapest University of Technology and Economics, Budapest ...

Jungae Park, Hyunjune Kim, and Kyungyong Lee. “Evaluating Concurrent Executions of
Multiple Function-as-a-Service Runtimes with MicroVM”. In: 2020 IEEE 13th International
Conference on Cloud Computing (CLOUD). 2020, pp. 532-536. DOI:|10.1109/CLOUD49709 |
2020.00080.

Srinath T. V. Setty et al. “Realizing the Fault-Tolerance Promise of Cloud Storage Using Locks
with Intent”. In: USENIX Symposium on Operating Systems Design and Implementation. 2016.
Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. “Architectural implications of
function-as-a-service computing”. In: Proceedings of the 52nd annual IEEE/ACM international
symposium on microarchitecture. 2019, pp. 1063—-1075.

Simon Shillaker and Peter R. Pietzuch. “Faasm: Lightweight Isolation for Efficient Stateful
Serverless Computing”. In: CoRR abs/2002.09344 (2020). arXiv:|[2002.09344. URL: https:
//arxiv.org/abs/2002.09344,

Vikram Sreekanti et al. A Fault-Tolerance Shim for Serverless Computing. Mar. 2020.
Jinfeng Wen et al. “An Empirical Study on Challenges of Application Development in Server-
less Computing”. In: Proceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE
2021. Athens, Greece: Association for Computing Machinery, 2021, pp. 416—428. ISBN:
9781450385626. DOI: |10.1145/3468264 . 3468558, URL: https://doi.org/10.1145/
3468264 . 3468558,

Vladimir Yussupov et al. “FaaSten your decisions: A classification framework and technology
review of function-as-a-Service platforms”. In: Journal of Systems and Software 175 (2021),
p. 110906.

Haoran Zhang et al. “Fault-tolerant and transactional stateful serverless workflows”. In:
USENIX Symposium on Operating Systems Design and Implementation. 2020.

11

https://doi.org/10.1109/TSC.2022.3166553
https://doi.org/10.1109/TSC.2022.3166553
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-238.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-238.html
https://doi.org/10.1109/CLOUD49709.2020.00080
https://doi.org/10.1109/CLOUD49709.2020.00080
https://arxiv.org/abs/2002.09344
https://arxiv.org/abs/2002.09344
https://arxiv.org/abs/2002.09344
https://doi.org/10.1145/3468264.3468558
https://doi.org/10.1145/3468264.3468558
https://doi.org/10.1145/3468264.3468558

Addressing Challenges of Fog Computing Using
Blockchain Technology

Laréb Fatima Ahmad Vishal Kanteppa Mahesh
14118114 14740583
Computer Science Computer Science
University of Amsterdam University of Amsterdam
fatima.ahmad@student.uva.nl vishal.mahesh@student.uva.nl

Aditya Srivastava
14288060
Computer Science
University of Amsterdam
aditya.srivastava@student.uva.nl

1 Introduction

The concept of fog computing has gained significant attention as a potential solution for enhancing
how data is processed and analyzed. Rather than relying exclusively on distant servers like conven-
tional cloud computing approaches do, fog computing moves computation capabilities closer to the
data source. This shift makes it possible to quickly and efficiently draw meaningful insights from
large amounts of data before taking necessary actions [|1].

Although fog computing addresses challenges with cloud computing such as offering cloud services
with lower latency and with ad hoc adaptations, it comes with its own challenges. For instance, it is
integral to ensure secure connections between distributed fog nodes and between nodes and mobile
devices, guarantee nodes can scale according to network traffic and have a rigid fault tolerance system
in order to avoid possibly detrimental consequences of failures or significant loss of data [2], [3].

Blockchain’s cutting-edge encryption algorithms and consensus mechanisms can be used in fog
ecosystems and offer new ways of ensuring transparency, accountability, and resilience in environ-
ments including countless connected devices [4]], [S]. Blockchain is a novel technology made to
simplify interactions with multiple parties through distributing a shared database, also called a ledger.
By sharing copies of the ledger across a computer network, alterations of it become near impossible.
As such, blockchain can enhance security, reduce expenses, speed up processes, increase transparency
of fog computing[6].

This study seeks to answer a crucial research question: How can blockchain technology be effectively
utilized to enhance the security and trustworthiness of fog computing systems? Through literature
reviews, this paper sheds light on these two advancing domains and discusses solutions to challenges
with fog computing with the help of blockchain. It will consider how blockchain can enhance fog
computing by contributing to data integrity, managing access control and increasing privacy and
trustworthiness of data transactions in the fog.

The setup of the current paper is as following: section[2]and 3]describe fog computing and blockchain,
section [introduces some challenges with fog computing and section [5] discusses how the many
characteristics and many benefits of blockchain technology can be used to address the issues of fog
computing. Section [6]concludes the paper, and section [7]considers future studies on the highlighted
topic.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

2 Fog Computing

Fog Computing was introduced by CISCO in 2011 [7]]. Data is accessed typically at the "edge" of the
cloud. The fog originates from a wish to bring resources closer to the end-user by creating endpoints
at the edges of the network, for instance executing processing in the fog for online gaming, where
low latency is important [[7]].

Figure[I|shows an overview of the deployment of the fog. It is not separate from the cloud, but rather
an extension of it, or an additional layer between the cloud and the end-user devices. While some
processing is executed at the edge of the cloud, some are still sent to the cloud [|1f].

Architecturally, fog computing consists of three layers: the terminal layer, the fog layer and the cloud
layer. The terminal layer is where the end-user devices lie such as smart phones, tablets, computers
and other types of IoT devices such as smart home appliances [§]]. Data from the terminal layer is
transmitted to the edge of the network, to fog layer. This layer constitutes of numerous fog nodes,
such as servers, access points and gateways in which some computing, storage and transmission
happens [8]]. The fog layer interacts with both the terminal layer and the cloud layer. This layer is the
"cloud", which has the same capabilities as the fog layer but on a much larger scale and power level
and more resources [8]].

Devices of Clients

| 4 Edgen. T T Edgen. =~ =~ 4 Edge
Device Device Device

C
N

Centralized
| Hesven Network |
D sme wow wow sow se wow wow wdilobe e e soe sow wee wee woe]
| |
| |
Cloud
| Services |
FOG

Figure 1: Fog Computing’s deployment overview

What makes up the fog (and also the cloud) are resources for computing for data processing, secure
network to transfer data, and storage of client data for the cloud [1]. The fog is characterized by
having many devices deployed over large distances, such as on highways or spread across a city. In
contrast to the cloud, the fog is decentralized and distributed [7], [9], [10]]. Additionally, as fog nodes
are used in various environments, heterogeneity is another important factor of fog nodes, in terms of
adapting to their specific use cases, environments and devices in which they are deployed [/1]], [11]].
Fog nodes can be installed in devices that are static or moving, such as a car. A consequence of fog’s
localization abilities and heterogeneity is context awareness, contributing to the fog’s ad hoc abilities.

Fog computing primarily deals with sharing devices capable of running applications locally and
communicating directly with each other. This involves performing cloud-like functions, such as data
computation, data query, data storage, and data sharing services [9]], [11]], on decentralized devices
near the points of data creation. This allows for data to be processed closer to where it originates,
without necessarily having to send it back to a centralized server or the cloud [2]. This improves
efficiency and reduces latency and resource consumption through less raw data being transmitted over
large networks, and consequently reduces processing costs [1]], [3]]. Fog computing is thus especially
suitable for use cases such as real-time control and monitoring and handling large amounts of Internet
of Things (IoT) device data. [2], [9].

Another important feature of the fog is support for mobility by communicating with mobile devices
directly, and with a wide range of devices [3|], [7]]. The fog uses the LISP protocol, which contributes
to effective distribution over wide areas and connection of many fog nodes. LISP is a routing
architecture created by CISCO inc, which splits device location and device identity. Separating the
two improves scalability and routing [[12].

2.1 Cloud Computing

The cloud allows for more computational power and processing of large volumes of data, in one
centralized place. Software as a service (SaaS), platform as a service (PaaS) and infrastructure as a
service (IaaS) are the three main services which cloud computing is utilized for. Examples include
Amazon Web Services, Microsoft Azure, and Google Cloud Platform, all cloud services provided by
large technology corporations which offer one of more of the three services [1], [10].

Alternatively to fog computing, cloud computing processes data remotely on shared resources
accessed in remote servers over wide area networks such as the Internet or other centralized data
centers [11]. This data is usually stored far away from the user, thus may result in higher latency when
accessed as compared to data in the fog. As the cloud is online and relies on access to the Internet, it
is also susceptible to the same security issues as the Internet. Deployment in the fog mitigates this
issue to some degree as the data travels shorter distances and can be accessed offline [1]], [[10].

A precursor to the fog is "mini clouds" or "edge clouds", which are smaller clouds placed at the edges
of the network that work as entry points for IoT devices and in order to confine network traffic within
its bounds and bring resources closer to the end device, much like the purpose of the fog today, as
Vaquero and Rodero-Merino describe in their 2014 paper [9] and Chang et al discuss in their paper
from the same year [[13].

3 Blockchain

A blockchain serves as a digital ledger recording various types of transactions and interactions
occurring within its ecosystem. Each entry, called a block, holds numerous transactions, along with
a timestamp, a unique identifier representing the previous block (known as a parent hash), and a
randomly generated number value (a nonce) necessary for verifying the hash and that can only be
used once [4]]. Before a block gets added to the blockchain, these components undergo validation
processes agreed upon by participating nodes in the network [4], [14]. Every blockchain maintains
multiple copies of its entire history, stored on different nodes throughout the distributed system. To
guarantee consistency among nodes, a peer-to-peer (P2P) validation mechanism helps nodes compare
their local versions of the blockchain with each other [4]]. Figure 2 shows an exmaple of a blockchain,
and what a block consists of, where "TX" is a transaction.

The use of cryptographic techniques, such as hash functions, provides additional safety measures by
making it harder for potential cybercrime attacks [6]]. Changes made to transactions or files will also
change the corresponding hash values in subsequent blocks, making it easy to detect tampering [14].
Timestamp recording, in addition to the hash-values, lowers the risk of deception [6]. The distributed
nature of blockchain works as a safety mechanism in case of network disruptions as it lessens the
potential of single-point of failures. Another feature of the non-centralized structure is the lack of
third-parties involved, which again increases trustworthiness and user privacy by lowering the risk of
data breaches or access to user data by intermediaries [4]. Furthermore, once written, information
becomes essentially immutable, which makes blockchain a sturdy and secure technology that can

further promote data integrity [6]], [[14]. Overall, blockchain technology bring advanced security to
digital record-keeping by establishing confidence in the accuracy and integrity of transactions.

| Hash of blodk 0 | | Hash of block -1 I I Hash of block i I | Hash of block i+1 |

I Timestamp | [Monce I - |T|r||:starl|u | ’ Monee] - I Timestamp | | Nonce I L lTirnﬂ.I;lmD I I Nance |

e (e | e | EE- =
Genesis black Black i Block i+1 Black i+2

Figure 2: Example of a blockchain [4]

Section [3] discusses how the many inherent abilities of blockchain technology can provide many
benefits to fog computing.

3.1 Bitcoin

In 2008, the crypto currency Bitcoin was introduced by a person or several people under the name
"Satoshi Nakamoto" [[15]]. In 2009, Bitcoin was released as open source and has since become the
most popular usage of blockchains, specifically transactions in Bitcoin and the validation of these
[15].

Validating transactions through P2P reviews is the principle of Bitcoin mining. All computers on a
blockchain network has access to the exact same files. Bitcoin mining is essentially a race to validate
the hash of a newly added block in the chain for a reward in Bitcoins [[14], [[15]. Also called Token
Economics, this ensures that a transaction can only be sent if the sender has sufficient funds, and the
node selected to verify the transaction is rewarded in bitcoins [[16]].

4 Challenges with Fog Computing

This section includes an extensive discussion of challenges with fog computing. Specifically, the
context of the following discussion are challenges with privacy, security, scalability, mobility, fault
tolerance and reliability are addressed, why these challenges occur in fog ecosystems and the
requirements for mitigating these challenges.

4.1 Privacy and Security

Due to its scattered nature and the availability of linked devices, fog computing presents new
security and privacy problems. Fog nodes and devices must create encrypted channels to secure
data transmission from unauthorized access. Secure communication is essential as fog computing
involves processing sensitive data at the edge, privacy protection becomes particularly critical. User
privacy can be protected by using privacy-preserving methods such secure data aggregation and
data anonymization. While data anonymization [17] techniques protect personal information by
de-identifying or concealing data, secure data aggregation [18]] integrates data from numerous sources
while protecting individual privacy. For identifying and reducing security risks in fog computing,
continuous security monitoring, intrusion detection systems (IDS) [19], and anomaly detection
procedures are crucial. The security posture of the foggy environment is maintained through proactive
monitoring and prompt response to security issues [20]. While anomaly detection techniques enable
the detection of unexpected patterns or behaviors that may indicate a security breach, IDS can spot
possible threats and abnormalities.

4.2 Data Integrity

Data integrity is another critical aspect in fog computing. Fog nodes should verify the accuracy and
integrity of the data they receive from sensors or other devices before transmitting or processing it.
This verification helps ensure that compromised or tampered data does not propagate throughout the
fog network, maintaining the integrity of the overall system [21]]. Role-based access control and fine-
grained access control are two access control strategies that are crucial for preventing unauthorized

access to sensitive resources and data. Since fog computing includes processing sensitive data at
the edge, privacy protection is particularly crucial [22]. User privacy can be preserved via methods
like safe data aggregation and data anonymization. Detecting and reducing security risks requires
constant security monitoring, intrusion detection systems, and anomaly detection procedures [23]].

4.3 Scalability and Mobility

Due to its dynamic nature, where devices and services can enter or exit the network at any time,
fog computing presents substantial issues in terms of scalability and mobility [24]]. It is a difficult
task to guarantee uninterrupted service delivery while managing dynamic connectivity and ensuring
seamless handover [25]].

To deal with these issues, mechanisms like Mobile IP and seamless roaming have been created. As
the number of devices and services rises, load balancing becomes more and more important [26]. To
avoid performance bottlenecks and maximize system effectiveness, the workload must be distributed
among fog nodes efficiently while taking into account their processing power and resource availability.
It is a difficult task to manage network latency in a dispersed system with varied network conditions
and multiple devices. Cutting down on latency, increasing responsiveness, and boosting the user
experience all depend heavily on strategies like edge caching, adaptive routing, and real-time traffic
management [27]]. To efficiently manage the ever-increasing scale of fog computing environments,
scalable resource management techniques, decentralized decision-making algorithms, and effective
resource provisioning systems are also essential.

4.4 Fault Tolerance and Reliability

Fog computing systems must be fault tolerant and reliable in order to handle failures, disturbances,
and unstable network conditions successfully [28]]. Redundancy and fault-tolerant systems must
be put in place for reliable service delivery. Even in the event of failures or disruptions, the use
of redundant fog nodes, backup assets, and replication techniques helps ensure service availability.
Additionally, it’s crucial to control network congestion, which might happen as a result of a large
number of devices and data traffic [29].

Fog computing systems can reduce network congestion and guarantee reliable data transfer by
applying congestion-aware routing, traffic shaping, and Quality of Service (QoS) management
techniques. Due to the variety of resources and devices, detecting errors and failures in a distributed
fog environment can be difficult. To sustain system reliability, it is essential to integrate fault detection
systems, proactive health monitoring, and efficient fault recovery processes [30]. Fog computing
systems can achieve continuous operation and provide dependable services to end users by utilizing
fault-tolerant techniques and backup options.

S Addressing Challenges of Fog Computing with Blockchain

A possible paradigm for enabling effective and decentralized computation at the network’s edge is
fog computing. However, it also presents a number of difficulties, particularly in terms of privacy
and security. To achieve effective fog computing and overcome its challenges, establishing robust
security features is imperative. The incorporation of blockchain technology holds a lot of promise
for overcoming these difficulties. Blockchain, which is renowned for being decentralized[31]],
open, and impervious to manipulation, can offer ground-breaking solutions to improve security,
safeguard personal information, and build trust in fog computing environments. It can create secure
communication channels, maintain data integrity through tamper-proofed records, apply fine-grained
access controls, preserve privacy via encrypted data sharing, develop trust and reputation models, and
establish consensus protocols among fog nodes[32]. Furthermore, organizations seeking to adopt fog
computing can leverage these strengthened capabilities to deliver high-quality services, reduce costs,
and mitigate risks in today’s dynamic business landscape.

5.1 Secure Communication

Secure communication is a crucial component of fog computing, especially when dealing with
sensitive data, such as data concerning private health information. To address this concern, utilizing

blockchain as a decentralized framework establishes a highly resilient means for communication.
Blockchain uses advanced cryptographic protocols and consensus methods to guarantee immutable
records and prevent malicious intrusions [6]], [33]]. For instance, private keys can be generated
and securely distributed via blockchain, allowing fog nodes to safely communicate without risking
exposure to single points of failure. Blockchain’s immutability feature guarantees unchanging secret
key, reducing potential of attacks. Additionally, if a node were to be compromised, other nodes in the
network could continue functioning without incurring further damage as they are distributed.

Hash values stored onto the blockchain create irrefutable cryptographic proofs that specific data
was transmitted at a given point in time [[14]], [15]. Permanently recorded transmission records
provide accountability and deter against false claims or misinformation spread through fog networks.
Additionally, a secure connection enabled by blockchain’s solid structure protects sensitive data from
being exposed to potential threats outside of the fog network. This added layer of protection can
increase confidence and trust among participants.

These features create a robust foundation for secure data exchange within the fog environment,
solidifies the integrity of data and prevents unwanted access.

5.2 Data Integrity

Ensuring the authenticity and validity of sensor data becomes critical when implementing fog
computing systems. Utilizing blockchain as a validation tool provides multiple advantages for
achieving these objectives. One significant factor is its immutability feature, where once recorded,
data cannot be tampered with [4]. Thus, any changes made to the data must go through a validated
process involving multiple parties, ensuring data consistency and accuracy over time [4], [[14]]. By
employing blockchain technologies, fog nodes can thoroughly examine and affirm the accuracy of
information received from connected devices without fear of compromise. Any attempt to modify
data on the distributed ledger can be instantly detected and flagged by the nodes. This creates a robust
mechanism against fraudulent modifications and increases data trustworthiness.

Transparent record-keeping is another key attribute offered by blockchain, allowing stakeholders
to monitor transaction activity in real-time [6]. By having complete visibility into all aspects of
a fog network, stakeholders and decision makers alike can quickly identify anomalous behavior,
monitor and confirm data transactions and ensure accountability within the fog network. Additionally,
disputes concerning authenticity, authorship, or provenance can be resolved with high confidence
since every node shares identical copies of the shared history [5]], [34].

5.3 Access Control

Systems for managing identities based on blockchains in fog computing settings provide decentralized
and secure access control. By using blockchains to manage identities, one can ensure that each device
has a distinct digital signature that can be verified across the entire system. This makes it possible to
control access to data and resources in a decentralized manner [33]].

Smart contracts can be used to manage access rights, giving users granular control and lowering
the possibility of illegal access to private information. Smart contracts are self-executing pieces of
code that automatically enforce rules and terms as defined by their developers. They can be used to
manage access rights to different resources and services within the fog network [35]. For example,
a user might create a smart contract that specifies who has permission to view certain documents,
under what conditions those permissions may be revoked, and so forth. These contracts are stored on
the blockchain, making them immutable and transparent, which helps further increase security and
trustworthiness [36]], [37]].

5.4 Privacy Protection

Blockchain technology makes it possible for fog computing to use privacy-preserving processes like
private smart contracts and zero-knowledge proofs [35]]. These methods protect user privacy and the
confidentiality of their data by enabling sensitive data to be securely processed and authenticated
on the blockchain without disclosing the underlying data [|33]]. For instance, instead of revealing
customer names or addresses when conducting transactions between peers, encrypted tokens which
represent this data are used.

As data is spread over numerous nodes instead of concentrating it in centralized repositories, attack
surfaces decrease. Furthermore, as blockchain relies on a combination of cryptography and peer
validation, dependencies on and data exposure to external sources and third-parties is reduced.
Additionally, trustless architectures eliminate reliance on intermediaries, promoting greater individual
control over personal info, such as smart contracts and predefined consensus mechanisms. Smart
contracts also allow for specifications of detailed rules on access control [36], [37]].

5.5 Trust and Reputation Management

Blockchain’s decentralization and transparency enable reputation management inside the fog comput-
ing ecosystem. Stakeholders can build confidence and evaluate the dependability of fog nodes, devices,
and services by documenting transactions, interactions, and performance data on the blockchain .
Supply chain tracking helps ensure components are genuine and meet specified quality criteria [34].
This visibility and traceability enhances consumer trust as they can check whether a anything has
been tampered with along its journey. As a result, dangers brought on by hostile or untrustworthy
entities are reduced and a trustworthy atmosphere is fostered.

Additionally, blockchain offers opportunities for distributed storage across a network instead of using
cloud services to host data on fog devices. This also makes it more challenging to interfere with
transactions and ensures data integrity, thus enhancing privacy [14]], [22].

5.6 Consensus Algorithms and Distributed Ledger

Blockchain technology can allow for communities to organize and reach consensus on desired features
for next-generation fog devices. Token economics can be used, which enable effective alignment
of interests among all stakeholders and consumers [5], [16]]. This contributes to mutually beneficial
outcomes. As a result, customers will experience advancements which address their specific needs,
something which can lead to increased loyalty and trustworthiness.

Consensus algorithms are used in blockchain technology to ensure agreement and confirmation of
transactions within the fog network. The integrity and immutability of data recorded on the distributed
ledger are guaranteed by consensus techniques like Proof of Work (PoW) and Proof of Stake (PoS)
[[15], [38]. Fog computing systems can create a trustworthy, decentralized environment where fog
nodes can agree on the legitimacy of transactions by using consensus methods. The distributed
ledger offers a clear and impenetrable record of every transaction, enabling auditing, traceability, and
protecting the system’s integrity [6].

It is crucial to carefully design and evaluate the implementation of blockchain technology in fog
computing, considering factors such as scalability, latency, and energy efficiency. By taking these
considerations into account, fog computing can fully leverage the benefits of blockchain to address
security and privacy challenges effectively.

6 Conclusions

Fog computing works as an extra layer between the cloud and the end-user. The fog is a closer to
the user than the cloud, and consists of many of the same resources as it such as computation power,
storage capabilities and network for transmitting data between the users’ devices, the fog and the
cloud. It is decentralized, as opposed to the centralized cloud, and spread over large geographical
areas. As such, end-user devices can access the fog instead of the cloud for faster responses, such as
low-latency in online gaming.

Blockchain is a robust technology which works as a digital ledger for storing transactions between
nodes in a network. Additionally, it adheres to a distributed structure where every node in its network
keeps an exact copy of the ledger. Blockchain technology has many inherent perks, such as immutable
and historic record-keeping which increase the integrity of the data being stored, and raises flags
immediately is data is tampered with.

Fog computing and blockchain are two powerful technologies that have shown great potential
individually. When combined properly, however, these technology can blockchain can meet fog
computing where it lacks, and possibly build an even stronger, trustful, efficient, cost-effective, secure,
safe, private, and reliable fog computing framework.

The use of blockchain as a decentralized framework in fog computing ensures secure communication.
Cryptographic protocols and consensus techniques used in blockchain provide an impenetrable
channel of communication, such as with the use of private keys. Immutable storage of hash values
creates indisputable proof of data transmission, providing traceability. The combination of blockchain
and fog computing promotes reliability, security, and trustworthiness of sensitive data exchange. Data
cannot be tampered with once the block containing it is added to the ledger. Any changes must go
through a communal validation system, and all activities will be recorded by all nodes in the network.
Fog nodes can use this mechanism to enhance transparency and security among stakeholders. Fog
computing thrives under a decentralized setting; therefore, applying decentralized identity and access
control solutions befitting the fog’s structure is highly useful, such as with blockchain. Using smart
contracts that run on top of blockchain technology provides granular access rights to various resources
and services within the fog network. Smart contracts in blockchains are automatically executed
access management protocols.

Blockchain can significantly increase privacy protection and reduce risks associated with data breaches
by allowing secure processing and authentication of sensitive data without exposing it. Coupling
fog computing with zero-knowledge proofs also increases trust between parties through encrypted
representations of personally identifiable details. In addition to the decentralized structures, the
lack of third-parties involved, timestamp recording, supply-chain tracking and encrypted distributed
storaging provided by blockchain contributes to enhance the trust and and reputation of fog computing
for the stakeholders involved. Blockchain’s consensus algorithm also contributes to transparency
among stakeholders and end-users by providing full insight into all actions taken with the use of
immutable record-keeping.

7 Future Research

The combination of fog computing with blockchain technology is still in its infancy and requires
more research [[32]], [39]. The following section discusses some of the areas of the technology which
requires more attention and research.

7.1 Lack of Standardization

A significant challenge pertains to differences in protocol standards. Fog computing and blockchain
has evolved at varying rates and adopted distinct rules. To combine them successfully, standardization
efforts would need to catch up. If not addressed early enough, differing frameworks may disrupt
functioning.

7.2 Scalability Limitations

For fog computing to handle millions of IoT devices, scaling remains essential. Conventional
blockchain designs tend to face difficulties maintaining their original speeds because of high volumes
[4], [6], [37]. This problem might persist after combining fog and blockchain technology unless
addressed appropriately as blockchain does not necessarily improve the scalability issues of fog
computing. Therefore, research is required to optimize their integration to prevent bottlenecks and
slowdowns in decision-making and information sharing.

7.3 Energy Efficiency Concerns

Current economic models incentivize individuals to invest heavily in infrastructure, including spe-
cialized hardware and high-end cooling systems. While these additions improve overall efficiency,
they increase energy needs dramatically [4]], [[15]]. PoW is a popular consensus mechanism which
results in high levels of energy consumption [15]], [37]], [38]. With more users and transactions on the
network, the energy usage will rise proportionally. Lastly, as the size of the blocks increases and the
number of transactions grows, each block becomes heavier, leading to longer synchronization times
and increased bandwidth consumption [6], [[15]. This results in higher resource costs and greater
energy demand.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

V. Kumar, A. A. Laghari, S. Karim, M. Shakir, and A. Anwar Brohi, “Comparison of fog com-
puting and cloud computing,” International Journal of Mathematical Sciences and Computing,
vol. 5, no. 1, pp. 31-41, Jan. 2019. DOI:|10.5815/1ijmsc.2019.01.03. [Online]. Available:
http://www.mecs-press.org/ijmsc/ijmsc-v5-n1/IJMSC-V5-N1-3.pdfl

S. Chen, T. Zhang, and W. Shi, “Fog computing,” IEEE Internet Computing, vol. 21, no. 2,
pp- 4-6, 2017. DOI:|10.1109/MIC.2017.39. [Online]. Available: https://ieeexplore.
ieee.org/document/7867739,

S.Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,” in 2015 Third
IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), 2015, pp. 73-78.
DOI:/10.1109/HotWeb.2015.22. [Online]. Available: https://ieeexplore.ieee.org/
document/7372286/|

M. Nofer, P. Gomber, O. Hinz, and D. Schiereck, “Blockchain,” Business and Information
Systems Engineering, vol. 59, no. 3, pp. 183—-187, Mar. 2017. D0O1:/10.1007/s12599-017
0467 - 3. [Online]. Available: https://1link-springer-com.vu-nl.idm.oclc.org/
article/10.1007/s12599-017-0467-3#citeas,

J. Y. Lee, “A decentralized token economy: How blockchain and cryptocurrency can revolu-
tionize business,” Business Horizons, vol. 62, no. 6, pp. 773-784, 2019, Digital Transformation
Disruption, ISSN: 0007-6813. DOI: https://doi.org/10.1016/j.bushor.2019.08.003|
[Online]. Available: https : //www . sciencedirect . com/science /article/pii/
S0007681319301156.

U. Bodkhe, S. Tanwar, K. Parekh, et al., “Blockchain for industry 4.0: A comprehensive
review,” IEEE Access, vol. 8, pp. 79764-79 800, 2020. DOI: |10 . 1109 / ACCESS . 2020 |
2988579, [Online]. Available: https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/
abstract/document/9069885.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet
of things,” ser. MCC ’12, Helsinki, Finland: Association for Computing Machinery, 2012,
pp- 13-16, ISBN: 9781450315197. DOI: 10.1145/2342509.2342513. [Online]. Available:
https://doi.org/10.1145/2342509.2342513,

P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: Architecture, key technolo-
gies, applications and open issues,” Journal of Network and Computer Applications, vol. 98,
pp- 27-42, 2017, 1SSN: 1084-8045. DOI: https://doi.org/10.1016/j. jnca.2017.09.
002. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S51084804517302953.

L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards a comprehensive
definition of fog computing,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, pp. 27—
32, Oct. 2014, 1SSN: 0146-4833. DOI: 10.1145/2677046 . 2677052. [Online]. Available:
https://dl.acm.org/doi/10.1145/2677046.2677052.

H. Rashid Abdulqgadir, S. R. M. Zeebaree, H. M. Shukur, et al., “A Study of Moving from
Cloud Computing to Fog Computing,” Qubahan Academic Journal, vol. 1, no. 2, pp. 60—
70, Apr. 2021. DOI: 10 .48161/qaj . vin2a49. [Online]. Available: https://journal |
qubahan.com/index.php/qaj/article/view/49\

Z.Meng, Z. Guan, Z. Wu, A. Li, and Z. Chen, “Security enhanced internet of vehicles with
cloud-fog-dew computing,” Zte Communications, vol. 15, no. S2, pp. 47-51, Dec. 2017. DOI:
10.3969/j.1issn.1673-5188.2017.52.008. [Online]. Available: http://kns.cnki |
net/kcms/detail/34.1294.TN.20180102.1545.004 .html.

C. Inc., Cisco locator/id separation protocol (lisp). [Online]. Available: https : // www |
cisco.com/c/en/us/products/ios-nx-os-software/locator-id-separation-
protocol-lisp/index.html.

H. Chang, A. Hari, S. Mukherjee, and T. V. Lakshman, “Bringing the cloud to the edge,”
2014, pp. 346-351. DOI:|10.1109/INFCOMW. 2014 . 6849256, [Online]. Available: https:
//ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/6849256.

J. J. Bambara, P. R. Allen, K. Iyer, R. Madsen, S. Lederer, and M. Wuehler, “Introduction to
blockchain,” in Blockchain: A Practical Guide to Developing Business, Law, and Technology
Solutions. New York: McGraw Hill Professional, Feb. 2018. [Online]. Available: https :
//pdfuni.com/sample/IT/IT1-100/IT055/sampleEF/BC%8DBlockchain?201st},
201E%,20Joseph},20Bambara . pdf!

https://doi.org/10.5815/ijmsc.2019.01.03
http://www.mecs-press.org/ijmsc/ijmsc-v5-n1/IJMSC-V5-N1-3.pdf
https://doi.org/10.1109/MIC.2017.39
https://ieeexplore.ieee.org/document/7867739
https://ieeexplore.ieee.org/document/7867739
https://doi.org/10.1109/HotWeb.2015.22
https://ieeexplore.ieee.org/document/7372286/
https://ieeexplore.ieee.org/document/7372286/
https://doi.org/10.1007/s12599-017-0467-3
https://doi.org/10.1007/s12599-017-0467-3
https://link-springer-com.vu-nl.idm.oclc.org/article/10.1007/s12599-017-0467-3#citeas
https://link-springer-com.vu-nl.idm.oclc.org/article/10.1007/s12599-017-0467-3#citeas
https://doi.org/https://doi.org/10.1016/j.bushor.2019.08.003
https://www.sciencedirect.com/science/article/pii/S0007681319301156
https://www.sciencedirect.com/science/article/pii/S0007681319301156
https://doi.org/10.1109/ACCESS.2020.2988579
https://doi.org/10.1109/ACCESS.2020.2988579
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/9069885
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/9069885
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/https://doi.org/10.1016/j.jnca.2017.09.002
https://doi.org/https://doi.org/10.1016/j.jnca.2017.09.002
https://www.sciencedirect.com/science/article/pii/S1084804517302953
https://www.sciencedirect.com/science/article/pii/S1084804517302953
https://doi.org/10.1145/2677046.2677052
https://dl.acm.org/doi/10.1145/2677046.2677052
https://doi.org/10.48161/qaj.v1n2a49
https://journal.qubahan.com/index.php/qaj/article/view/49
https://journal.qubahan.com/index.php/qaj/article/view/49
https://doi.org/10.3969/j.issn.1673-5188.2017.S2.008
http://kns.cnki.net/kcms/detail/34.1294.TN.20180102.1545.004.html
http://kns.cnki.net/kcms/detail/34.1294.TN.20180102.1545.004.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/locator-id-separation-protocol-lisp/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/locator-id-separation-protocol-lisp/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/locator-id-separation-protocol-lisp/index.html
https://doi.org/10.1109/INFCOMW.2014.6849256
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/6849256
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/6849256
https://pdfuni.com/sample/IT/IT1-100/IT055/sample%EF%BC%8DBlockchain%201st%201E%20Joseph%20Bambara.pdf
https://pdfuni.com/sample/IT/IT1-100/IT055/sample%EF%BC%8DBlockchain%201st%201E%20Joseph%20Bambara.pdf
https://pdfuni.com/sample/IT/IT1-100/IT055/sample%EF%BC%8DBlockchain%201st%201E%20Joseph%20Bambara.pdf

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]
[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]

H. Vranken, “Sustainability of bitcoin and blockchains,” Current Opinion in Environmental
Sustainability, vol. 28, pp. 1-9, 2017, Sustainability governance, ISSN: 1877-3435. DOI:
https://doi.org/10.1016/j.cosust.2017.04.011. [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/S1877343517300015.

H. M. Kim, M. Laskowski, M. Zargham, H. Turesson, M. Barlin, and D. Kabanov, “Token
economics in real life: Cryptocurrency and incentives design for insolar’s blockchain network,”
Computer, vol. 54, no. 1, pp. 70-80, 2021. DOI: [10.1109/MC. 2020 . 2996572, [Online].
Available: https : //ieeexplore - ieee-org.vu-nl . idm. oclc . org/document /
9321727,

V. Puri, P. Kaur, and S. Sachdeva, “Data anonymization for privacy protection in fog-enhanced
smart homes,” in 2020 6th International Conference on Signal Processing and Communication
(ICSC), IEEE, 2020, pp. 201-205.

F. Y. Okay and S. Ozdemir, “A secure data aggregation protocol for fog computing based
smart grids,” in 2018 IEEE 12th International Conference on Compatibility, Power Electronics
and Power Engineering (CPE-POWERENG 2018), IEEE, 2018, pp. 1-6.

X. An, J. Su, X. Lii, and F. Lin, “Hypergraph clustering model-based association analysis of
ddos attacks in fog computing intrusion detection system,” EURASIP Journal on Wireless
Communications and Networking, vol. 2018, no. 1, pp. 1-9, 2018.

S. Khan, S. Parkinson, and Y. Qin, “Fog computing security: A review of current applications
and security solutions,” Journal of Cloud Computing, vol. 6, no. 1, pp. 1-22, 2017.

S.Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing: A survey,” in Wireless
Algorithms, Systems, and Applications: 10th International Conference, WASA 2015, Qufu,
China, August 10-12, 2015, Proceedings 10, Springer, 2015, pp. 685-695.

A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng, “Fog computing for the internet of things:
Security and privacy issues,” IEEE Internet Computing, vol. 21, no. 2, pp. 34-42, 2017.

M. Mukherjee, R. Matam, L. Shu, et al., “Security and privacy in fog computing: Challenges,”
IEEE Access, vol. 5, pp. 19293-19304, 2017.

A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya, “Fog computing:
Principles, architectures, and applications,” in Internet of things, Elsevier, 2016, pp. 61-75.
Y. Xiao and M. Krunz, “Dynamic network slicing for scalable fog computing systems with
energy harvesting,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 12,
pp. 2640-2654, 2018.

A. Chandak and N. K. Ray, “A review of load balancing in fog computing,” in 2019 Interna-
tional Conference on Information Technology (ICIT), IEEE, 2019, pp. 460—465.

G. Caiza, M. Saeteros, W. Odate, and M. V. Garcia, “Fog computing at industrial level,
architecture, latency, energy, and security: A review,” Heliyon, vol. 6, no. 4, e03706, 2020.
N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Towards fault tolerant fog computing for iot-based

smart city applications,” in 2019 IEEE 9th annual computing and communication workshop
and conference (CCWC), IEEE, 2019, pp. 0752-0757.

R. Mahmud, K. Ramamohanarao, and R. Buyya, “Application management in fog computing
environments: A taxonomy, review and future directions,” ACM Computing Surveys (CSUR),
vol. 53, no. 4, pp. 1-43, 2020.

H. Madsen, B. Burtschy, G. Albeanu, and F. Popentiu-Vladicescu, “Reliability in the utility
computing era: Towards reliable fog computing,” in 2013 20th International Conference on
Systems, Signals and Image Processing (IWSSIP), IEEE, 2013, pp. 43-46.

J. Zarrin, H. Wen Phang, L. Babu Saheer, and B. Zarrin, “Blockchain for decentralization of
internet: Prospects, trends, and challenges,” Cluster Computing, vol. 24, no. 4, pp. 2841-2866,
2021.

Y. I. Alzoubi, A. Al-Ahmad, and H. Kahtan, “Blockchain technology as a fog computing
security and privacy solution: An overview,” Computer Communications, vol. 182, pp. 129—
152, 2022, 1SSN: 0140-3664. DOI: https://doi.org/10.1016/j.comcom.2021.11.005.
[Online]. Available: https : //www . sciencedirect . com/science/article/pii/
S0140366421004321.

Y. Liu, J. Zhang, and J. Zhan, “Privacy protection for fog computing and the internet of things
data based on blockchain,” Cluster Computing, vol. 24, no. 2, pp. 1331-1345, Oct. 2020.
DOI:/10.1007/s10586-020-03190- 3. [Online]. Available: https://link-springer-
com.vu-nl.idm.oclc.org/article/10.1007/s10586-020-03190-3.

10

https://doi.org/https://doi.org/10.1016/j.cosust.2017.04.011
https://www.sciencedirect.com/science/article/pii/S1877343517300015
https://www.sciencedirect.com/science/article/pii/S1877343517300015
https://doi.org/10.1109/MC.2020.2996572
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/document/9321727
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/document/9321727
https://doi.org/https://doi.org/10.1016/j.comcom.2021.11.005
https://www.sciencedirect.com/science/article/pii/S0140366421004321
https://www.sciencedirect.com/science/article/pii/S0140366421004321
https://doi.org/10.1007/s10586-020-03190-3
https://link-springer-com.vu-nl.idm.oclc.org/article/10.1007/s10586-020-03190-3
https://link-springer-com.vu-nl.idm.oclc.org/article/10.1007/s10586-020-03190-3

[34]

[35]

[36]

[37]

[38]

[39]

P. Kochovski, S. Gec, V. Stankovski, M. Bajec, and P. D. Drobintsev, “Trust man-
agement in a blockchain based fog computing platform with trustless smart ora-
cles,” Future Generation Computer Systems, vol. 101, pp. 747-759, Dec. 2019. DOI:
10.1016/j.future.2019.07.030. [Online]. Available: https://www-sciencedirect-
com . vu - nl . idm . oclc . org / science / article / pii / S0167739X19301281 7
casa _ token = YwN7JQoGS7QAAAAA : tzKlazZ0j2ByWMKvPaIfGpTONd -
6kVkjlrCZdot1csFksJV2GGgmkRZaNMpsLWxeT3AzAYapng.

Y. Wu, G. Lu, N. Jin, L. Fu, and J. Zhuan Zhao, “Trusted fog computing for pri-
vacy smart contract blockchain,” in 2021 IEEE 6th International Conference on Sig-
nal and Image Processing (ICSIP), IEEE, Oct. 2021. [Online]. Available: https : / /
ieeexplore - ieee - org . vu - nl . idm . oclc . org / abstract / document /
9688746 7 casa _ token = sTwX1MS66ucAAAAA : bFsrDWPGPEDS8EWZQkXydCvQSLf _

fh9rcGj75Mal.GKZRf 20W8pv j 0GUFRIqahx9ykGYH8sTOULg,

S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F-Y. Wang, “Blockchain-
enabled smart contracts: Architecture, applications, and future trends,” IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 11, pp. 22662277,
2019. po1: 10 . 1109 / TSMC . 2019 . 2895123, [Online]. Available: https : / /
ieeexplore - ieee - org . vu - nl . idm . oclc . org / abstract / document /
8643084 7 casa _ token = G4ShhFvOdHsAAAAA : mwuJVMKGWjVrcSmpWkHfYw3vB

6I13KYnMWenUBrrUMWhWuyrAlmro3aojsTozGspkCXKWd4wRg.

S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and A. Bani-Hani, “Blockchain
smart contracts: Applications, challenges, and future trends,” Peer-to-Peer Networking and
Applications, vol. 14, no. 5, pp. 2901-2925, Apr. 2021. DOI: 110.1007/s12083-021-01127+
0. [Online]. Available: https://link.springer.com/article/10.1007/s12083-021-
01127-0.

P. R. Nair and D. R. Dorai, “Evaluation of performance and security of proof of work
and proof of stake using blockchain,” in 2021 Third International Conference on Intelli-
gent Communication Technologies and Virtual Mobile Networks (ICICV), IEEE, Feb. 2021.
[Online]. Available: https : / / ieeexplore - ieee - org . vu-nl . idm . oclc . org/
abstract/document /9388487 7 casa_token=SCMNOffxR78AAAAA : cTRLNmh(- o0 - 3Z -
pSzjCaX844964_MSu34bfV8adM-0sZgMnkv_sjWnIgChb0S8cbx3EuAsDYZ2Q.

R. B. Uriarte and R. DeNicola, “Blockchain-based decentralized cloud/fog solutions: Chal-
lenges, opportunities, and standards,” IEEE Communications Standards Magazine, vol. 2,
no. 3, pp. 22-28, 2018. DOI:110.1109/MCOMSTD . 2018. 1800020.

11

https://doi.org/10.1016/j.future.2019.07.030
https://www-sciencedirect-com.vu-nl.idm.oclc.org/science/article/pii/S0167739X19301281?casa_token=YwN7JQoGS7QAAAAA:tzKlazZOj2ByWMKvPaIfGpT0Nd-6kVkj1rCZdot1csFksJV2GGqmkRZaNMpsLWxeT3AzAYapng
https://www-sciencedirect-com.vu-nl.idm.oclc.org/science/article/pii/S0167739X19301281?casa_token=YwN7JQoGS7QAAAAA:tzKlazZOj2ByWMKvPaIfGpT0Nd-6kVkj1rCZdot1csFksJV2GGqmkRZaNMpsLWxeT3AzAYapng
https://www-sciencedirect-com.vu-nl.idm.oclc.org/science/article/pii/S0167739X19301281?casa_token=YwN7JQoGS7QAAAAA:tzKlazZOj2ByWMKvPaIfGpT0Nd-6kVkj1rCZdot1csFksJV2GGqmkRZaNMpsLWxeT3AzAYapng
https://www-sciencedirect-com.vu-nl.idm.oclc.org/science/article/pii/S0167739X19301281?casa_token=YwN7JQoGS7QAAAAA:tzKlazZOj2ByWMKvPaIfGpT0Nd-6kVkj1rCZdot1csFksJV2GGqmkRZaNMpsLWxeT3AzAYapng
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/9688746?casa_token=sTwX1MS66ucAAAAA:bFsrDWPGPED8EWZQkXydCvQSLf_fh9rcGj75MaLGKZRf2oW8pvj0GUfR9qahx9ykGYH8sT0Utg
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/9688746?casa_token=sTwX1MS66ucAAAAA:bFsrDWPGPED8EWZQkXydCvQSLf_fh9rcGj75MaLGKZRf2oW8pvj0GUfR9qahx9ykGYH8sT0Utg
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/9688746?casa_token=sTwX1MS66ucAAAAA:bFsrDWPGPED8EWZQkXydCvQSLf_fh9rcGj75MaLGKZRf2oW8pvj0GUfR9qahx9ykGYH8sT0Utg
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/9688746?casa_token=sTwX1MS66ucAAAAA:bFsrDWPGPED8EWZQkXydCvQSLf_fh9rcGj75MaLGKZRf2oW8pvj0GUfR9qahx9ykGYH8sT0Utg
https://doi.org/10.1109/TSMC.2019.2895123
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/8643084?casa_token=G4ShhFvOdHsAAAAA:mwuJVMkGWjVrcSmpWkHfYw3vB_6I3KYnMWenUBrrUMWhWuyrAlmro3aojsTozGspkCXKWd4wRg
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/8643084?casa_token=G4ShhFvOdHsAAAAA:mwuJVMkGWjVrcSmpWkHfYw3vB_6I3KYnMWenUBrrUMWhWuyrAlmro3aojsTozGspkCXKWd4wRg
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/8643084?casa_token=G4ShhFvOdHsAAAAA:mwuJVMkGWjVrcSmpWkHfYw3vB_6I3KYnMWenUBrrUMWhWuyrAlmro3aojsTozGspkCXKWd4wRg
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/8643084?casa_token=G4ShhFvOdHsAAAAA:mwuJVMkGWjVrcSmpWkHfYw3vB_6I3KYnMWenUBrrUMWhWuyrAlmro3aojsTozGspkCXKWd4wRg
https://doi.org/10.1007/s12083-021-01127-0
https://doi.org/10.1007/s12083-021-01127-0
https://link.springer.com/article/10.1007/s12083-021-01127-0
https://link.springer.com/article/10.1007/s12083-021-01127-0
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/9388487?casa_token=SCMNOffxR78AAAAA:cIRLNmhO-o-3Z-pSzjCaX844964_MSu34bfV8a4M-OsZqMnkv_sjWnIgCh5oS8cbx3EuAsDYZ2Q
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/9388487?casa_token=SCMNOffxR78AAAAA:cIRLNmhO-o-3Z-pSzjCaX844964_MSu34bfV8a4M-OsZqMnkv_sjWnIgCh5oS8cbx3EuAsDYZ2Q
https://ieeexplore-ieee-org.vu-nl.idm.oclc.org/abstract/document/9388487?casa_token=SCMNOffxR78AAAAA:cIRLNmhO-o-3Z-pSzjCaX844964_MSu34bfV8a4M-OsZqMnkv_sjWnIgCh5oS8cbx3EuAsDYZ2Q
https://doi.org/10.1109/MCOMSTD.2018.1800020

Cloud-Native, Distributed OLAP databases

Berry Chen Weiqiang Guo
Department of Computer Science Department of Computer Science
University of Amsterdam University of Amsterdam
berry.chen@student.uva.nl weiqiang.guo@student.uva.nl
Tianzheng Hu

Department of Computer Science
University of Amsterdam
tianzheng.hu@student.uva.nl

Abstract

This study aims to explore the characteristics and benefits of cloud-native OLAP
databases, comparing them to on-premise OLAP databases. The paper begins
by introducing OLAP and differentiating it from OLTP, emphasizing OLAP’s
capabilities in complex data analysis. The focus then shifts to the characteristics of
cloud-native OLAP databases, which are optimized for cloud environments. Key
features include scalability, elasticity, simplicity, performance, fault tolerance, and
cost-efficiency. The paper further examines the advantages of using cloud-native
OLAP databases over on-premise OLAP solutions. These benefits encompass
enhanced simplicity, elasticity, and cost-efficiency through pay-as-you-go models
and the cloud platform. In conclusion, the paper summarizes the key characteristics
and benefits of cloud-native OLAP databases, emphasizing the advantages of
leveraging cloud-native architectures for OLAP workloads.

1 Introduction

In recent years, there has been a remarkable shift in the way data is managed and stored, with a
significant increase in the adoption of cloud databases. The rise of cloud computing has transformed
the landscape of data storage and processing, offering unprecedented opportunities for organizations
to harness the power of the cloud. The cloud’s inherent features have made it a preferred choice for
businesses across various industries. Within the realm of cloud databases, two prominent categories
stand out: Online Transaction Processing (OLTP) and Online Analytical Processing (OLAP). While
OLTP databases excel in handling transactional workloads, OLAP databases are specifically designed
for complex data analysis and decision-making.

The distinguishing factor that sets OLAP apart from OLTP is its ability to provide advanced ana-
lytical capabilities, enabling organizations to extract valuable insights from large volumes of data.
OLAP databases are optimized for complex queries, aggregations, and multidimensional analysis,
making them ideal for business intelligence, reporting, and data exploration. By leveraging OLAP,
organizations can gain deeper insights into their data, identify trends, and make data-driven decisions
that drive strategic growth.

In the context of cloud-native architectures, where applications and services are designed to fully
harness the capabilities of cloud infrastructure, there is a growing interest in exploring the benefits
of cloud-native, distributed OLAP databases. These databases are specifically tailored to operate
seamlessly in cloud environments, taking advantage of the features offered by the cloud.

The main research question of this paper revolves around "What are the key characteristics and
benefits of cloud-native, distributed OLAP databases?" By examining the specific features and
comparing cloud-based OLAP to on-premise OLAP, we aim to shed light on how the OLAP databases
provide valuable insights to the users and developers.

The rest of the literature study is presented as follows. Section [2f will give an overview of OLAP
databases, comparing to OLTP databases. Section [3] will discuss the key characteristics of OLAP
databases. Section [4] will present the implementation of on-premise OLAP databases and their
drawbacks. Section [5|will introduce the implementations of cloud-native OLAP databases and the
way they mitigate the drawbacks that om-premise databases have. Section [6]gives an experimental
comparison between Vertica(an on-premise OLAP database) and Amazon Redshift(a cloud-native
OLAP database). Section [/| will summarize the paper and answer our research questions. Lastly,
Section[8 will address the future trends in OLAP databases field.

2 OLAP Introduction

2.1 Online Analytic Processing

Online analytic processing(OLAP) is a crucial part of decision support, which is gaining popularity
in the industry. It enables managers or analysts to make better and faster decisions. The functional
and performance requirements of OLAP databases are different from Online Transactional Process-
ing(OLTP) databases. OLTP databases usually look up a small number of records by some key, using
an index. It is typically designed for commercial transactions, such as making a sale, paying an
employee’s salary, etc. These tasks consist of atomic and isolated transactions. It tends to be hundreds
of megabytes to gigabytes in size. In such a scenario, consistency and fault tolerance are crucial to
the system. There are usually hundreds or thousands of users who access the databases concurrently.
The databases should be deployed in the cluster so that it handles so many concurrent requests. It
is a bad experience for users to get stale data or not be able to access the service normally. Hence,
it is indispensable to handle consistency and faults when supporting users’ activities. In addition,
concurrency conflicts need to be minimized. Many users might send requests to the same place at the
same time which might result in some conflict. In order to make it not harm the performance of the
databases and data consistency, developers need to pay much attention to how to solve concurrency
conflicts elegantly.

By contrast, an analytical query normally scans a large number of records, only reading a few
attributes per record, and computes aggregate statistics metrics, such as count, sum, mean, median, or
some more complex metrics, instead of returning a few records to the end users. It aims at helping
managers or analysts to analyze the data and make better decisions. For example, if your data consists
of sales transactions of a local supermarket, possible analytic queries might look like:

* Which kind of beer is most popular?
* How many potatoes we can sell every month?
* How many more apples than usual did we sells after we start the promotion?

The results of these queries are then analyzed by business analysts and put into reports to help the
management department of a company to make better decisions. A normal company tends to have
terabytes or petabytes of data to analyze. In OLAP applications, query throughput and response
time are more important since the newer the results the decision maker gets, the more accurate the
decision is. It normally read the data, hence it is rare to handle data consistency problems. The main
difference between OLTP and OLAP is summarized in Table [T]

Given that OLTP and OLAP databases have different access patterns and different performance
requirements, performing analytical queries in OLTP databases would result in unacceptable perfor-
mance and vice versa. Hence, most companies usually maintain two databases separately. However,
there are many researchers trying to handle two different workloads in a single database, which they
call HTAP databases|[2].

Table 1: Comparing properties of OLTP versus OLAP systems][1]]

Property OLTP OLAP

Read pattern small number of records aggregate over large number of
records

Write pattern Random access, low latency writes batch import

Used by End user/customer, via web appli- internal analyst, for decision sup-

cation port

What data represents Latest state of data History of events that happened
over time

Dataset size Gigabytes or terabytes Terabytes to petabytes

2.2 Data model

To mitigate the overhead of complex analytical queries, the data in the OLAP systems are modeled
multi-dimensionally. In a multidimensional data model, there are a set of numeric measures called
fact, such as sales, and budget. Each numeric measure depends on a set of dimensions, which provide
the context for the measure. Taking sales as an example, the associated dimensions could be product
name dimension, date dimension, etc. Each dimension is also described by a few attributes. For
example, attributes for date dimensions could be the year, month, day, timestamp, etc. Most OLAP
databases use star schema to represent the multidimensional data model. It consists of a single fact
table and a single dimension table for every dimension. A few columns in a fact table are normally
the foreign key to each of the dimension tables. An example of star schema is shown in Figure]|

Order ProdNo
OrderNo ProdName
OrderDate| ProdDescr
Fact table Category
Customer OrderNo ¥ Cat.ego'ryDescr
CustomerNo SalespersonID ggl;-l;nce
CustomerName Cus(;(l)\lmerNo s
CustomerAddress| > | ProdNo
City DateKey DateKey
CityName <— Date
Salesperson guafll;l}’ l\Y/Ionth
SalespersonID e " teaf
SalespesonName / 1y
City CityName
Quota < State
Country

Figure 3. A Star Schema.

Figure 1: An example of star schemal3]

3 Properties

Scalability, elasticity, cost efficiency, simplicity and fault tolerance are some of the most important
features of a typical cloud platform. OLAP databases offer high scalability and others key character-
istics service, allowing organizations to handle increasing data volumes and user concurrency without
compromising performance. In this section, these properties will be presented in detail.

3.1 Scalability and Elasticity

In the age of distributed computing, public cloud platforms can provide users with virtually unlimited
computing and storage resources. Traditional databases have to adapt to the fact that users cannot
afford the cost of traditional software-as-a-service and turn to take advantage of the scalability and
elasticity of the cloud. Most of the mainstream high-performance databases are now shared-nothing
architectures, due to their excellent scalability. This is because, in shared-nothing architectures, each

query processor node has its own local disk. Tables are split horizontally between the nodes and each
node is only responsible for the rows on its local disk. This design scales well for star-structured
queries because very little bandwidth is required to join a small (broadcast) dimension table to a large
(partitioned) fact table[4].

Scalability refers to how much more load a system can handle for a given amount of allocated
resources. A scalable system can handle a load that grows linearly according to the amount of
resources available. Conversely, a poorly scalable system cannot handle more load even if it is given
more resources. Scalability metrics typically include scalability range, resource scalability and cost
scalability. Scalability range is the segment between the number of users that can be handled by
a minimum deployment of resources and the maximum achievable capacity. Resource scalability
is a function of the increase in capacity as a function of the increase in resources. Cost Scalability
describes how capacity increases based on the minimum cost of the configuration, what the minimum
deployed capacity is and the capacity of the deployment of increasing resources until the capacity
plateaus.

There are some similarities between elasticity and scalability, with elasticity referring to the ability of
a system to automatically increase or decrease its provision of resources to cope with the workload. It
can usually be measured by counting the number of times the Service Level Objectives(SLO) rule is
violated in a given period of time, or by finding the slope at which the load grows fastest. Examples
include the average speed at which additional users can be processed without violating SLO criteria,
and the average time it takes for a resilient system to return to normal SLO levels after a sudden
increase in usage[J]].

3.2 Performance

In cloud-native databases, performance is typically measured using various metrics that evaluate the
efficiency and effectiveness of data processing and query execution. Improving a database’s perfor-
mance is essential to meet user expectations, enable faster decision-making, increase productivity,
support scalability, optimize costs, gain a competitive advantage, and effectively power data-driven
applications.

Some commonly used performance measurements for cloud-native databases, including query re-
sponse time, query throughput, latency, resource utilization, and benchmark performance. These
performance metrics provide insights into the efficiency, speed, and capacity of a cloud-native
database. They help assess its ability to handle workloads, process queries, and deliver timely and
accurate results. Monitoring and analyzing these metrics can guide performance optimization efforts
and ensure that the database meets the desired performance requirements.

To enhance the performance of cloud-native OLAP databases, methods such as columnar storage,
data compression, and vectorized processing are utilized.

Columnar storage is a key performance-enhancing feature of cloud-native OLAP databases. By
organizing data in a columnar format rather than the traditional row-based format, these databases
can achieve superior query performance. Columnar storage allows for efficient data compression
and enables selective data retrieval, as only the required columns need to be accessed during query
execution. This reduces I/O operations and improves overall query speed.

Data compression plays a crucial role in optimizing storage and query performance. Cloud-native
OLAP databases employ advanced compression techniques tailored for columnar data. These
techniques reduce the storage footprint and enhance I/O efficiency, resulting in faster data access and
improved query response times. The use of compression also minimizes the network transfer time
when moving data between nodes in distributed environments.

Vectorized processing is another performance-boosting technique employed by cloud-native OLAP
databases. It enables operations to be performed on entire sets of data in a single instruction, known
as SIMD (Single Instruction, Multiple Data) processing. By processing data in parallel, vectorized
processing improves computational efficiency and accelerates query execution. This technique is
particularly effective when working with large datasets and complex analytical operations.

3.3 Fault tolerance

Fault tolerance refers to a database’s ability to continue functioning and providing access to data
even in the presence of faults or failures. The goal of fault tolerance is to ensure the availability and
reliability of the database, minimizing the impact of failures on data access and system operations.
Handling fault tolerance is important because it ensures the continuous availability of critical systems,
maintains data integrity and reliability, enables business continuity, enhances customer satisfaction,
protects data and security, and reduces costs associated with failures and downtime.

The OLAP databases employ various mechanisms such as data replication, data durability techniques,
automatic failure detection, and recovery mechanisms to achieve fault tolerance.

Data replication involves maintaining multiple copies of data across different nodes or instances
within the cluster. This redundancy ensures that data remains available even if a node fails. By
accessing replicas of the data, the system can continue to serve queries and process data seamlessly.

(o]

Data durability is achieved through techniques such as write-ahead logging and persistent storage.
Write-ahead logging ensures that data changes are first recorded in durable storage before being
applied to the database. This allows for recovery in case of failures, ensuring data integrity and
durability.

3.4 Simplicity

Simplicity is a key characteristic of cloud-native, distributed OLAP databases, and it refers to the ease
of use, deployment, and management of these databases. Cloud-native OLAP databases prioritize
simplicity by leveraging various architectural paradigms such as Software-as-a-Service (SaaS) and
serverless computing. These approaches contribute to the ease of use and management of the
databases.

Cloud-native OLAP databases offer intuitive and user-friendly interfaces that simplify the process of
querying and analyzing data. They often provide visual query builders, drag-and-drop functionalities,
and interactive dashboards, enabling users to interact with data in a self-service manner without
requiring extensive technical expertise.

SaaS models further enhance the simplicity of cloud-native OLAP databases. With SaaS, users
can access the database through a web browser, eliminating the need for complex installations or
configurations. This not only reduces the upfront setup effort but also ensures that users are always
using the latest version of the database without needing to perform manual updates. SaaS also
enables easy collaboration and sharing of analytical insights by providing access to the database from
anywhere with an internet connection.[7]]

Serverless computing takes simplicity to the next level by abstracting away infrastructure manage-
ment. In a serverless environment, users do not have to worry about provisioning or scaling resources.
The database provider takes care of automatically scaling the infrastructure based on the workload,
ensuring optimal performance and eliminating the need for manual intervention. This allows users to
focus solely on their analytical tasks without being burdened by the complexities of infrastructure
management. For example, with the automatic on-demand provisioning and scaling capabilities of
Amazon EMR Serverless, Kyligence can quickly meet changing processing requirements at any data
volume.[8]]

3.5 Cost-efficiency

The cost-effectiveness of a cloud database is based on its inherent elasticity and scalability character-
istics. Scalability allows users to be as cost-efficient as they need to be and is an important aspect
to consider when evaluating a cloud database solution, referring to the balance between minimum
cost and maximum performance of the database service and how to maximize the efficiency of the
investment. Elasticity further improves cost efficiency by automatically increasing or decreasing
resources based on real-time demand, allowing businesses to pay only for the resources they need at
any given time.

Cloud database providers need to consider the cost of transferring and storing data, and optimising
query performance and database design can often reduce costs. An effectively designed database,

with proper indexing, partitioning, and data organization, can improve the query performance of data,
thereby reducing resource usage and ultimately cost.

4 Existing on-premise OLAP databases

On-premise OLAP databases are deployed in the on-premise cluster to handle analytical queries,
which help decision-makers make better and faster decisions. In this section, we cover several popular
OLAP databases which are commonly used in industry and describe each.

Vertica[9] The Vertica Analytic database(Vertica) is a commercial, columnar-oriented, distributed,
Massively Parallel Processing(MPP) database supporting efficient analytical workloads on large
datasets while still providing classic relational interfaces. It was founded in 2005 by Michael
Stonebraker with Andrew Palmer and then widely used in business intelligence systems. It originated
from the C-Store column-oriented DBMS[10]], an open-source project created by MIT and other
universities in 2005.

Greenplum Greenplum is a distributed MPP database focusing on analytical workloads based on
PostgreSQL[11]] technology. It was created in around 2005 in California, USA. It recently aims to be
a hybrid system that supports both OLAP and OLTP workloads[12].

Druid[13] Druid is a column-oriented, open-source, distributed OLAP database that is designed for
analyzing a large amount of real-time and historical data. It was created in 2011 to help the analytics
product of Metamarkets. It leverages columnar storage, shared-nothing architecture, and advanced
index techniques to speed up analytical queries. It provides several powerful features, such as low
latency data ingestion, arbitrary slice and dice data exploration, etc.

Krylin Krylin is an open-source distributed OLAP engine started by eBay in 2013. It is designed on
top of Apache Hadoop, Apache Hive, Apache HBase, and Apache Parquet to support the functionality
of analyzing extremely large data in low latency. It was widely adopted by many industry technology
companies, such as eBay, Yahoo!Japan, etc.

Almost all of these implementations have a few things in common. First, they leverage columnar
storage which stores data column by column, instead of storing data row by row. This idea is inspired
by the access pattern of OLAP workloads. Analytical queries tend only to access a few columns
of a table. Hence, there is no need to read all columns into memory. In addition, data in the same
column tend to have the same type, even fixed range which makes it possible to compress the data.
These techniques can reduce the I/O overhead significantly and as a result, speed up the query
throughput and performance remarkably. Second, some advanced index techniques optimized for
analytical workloads are deployed to enhance the query performance further. Ultimately, they are
all distributed systems leveraging multiple servers to perform tasks that are deployed in on-premise
clusters. Analytical workloads need to scan an extremely large number of data which is too expensive,
and even not possible to be handled by a single machine.

However, the on-premise OLAP databases have several serious drawbacks,

1. It is NOT Simple. If a user would like to exploit OLAP databases to extract insights from
the data, he needs to buy a cluster, install OLAP databases, and then configure and operate
them. In addition, security and authentication also require attention. It would take a lot of
effort.

2. Itis NOT Elastic. If a user would like to resize the databases, for example, by adding a node,
he might need to buy a new machine and configure it. It is obviously this would take time.
In addition, removing a node might result in wasting resources.

3. It is NOT cost-efficient. Users normally need to configure the databases according to the
requirements of the peak time in order to guarantee the service is always available. However,
peak time rarely happens in reality, which means that users are wasting their resources most
of the time.

The needs for solving these drawbacks drive people to build cloud-native OLAP databases which
leverage the power of cloud computing.

5 Existing Cloud-native OLAP databases

In this section, we present the Cloud-native OLAP databases and their implementations. In addition,
how cloud-native OLAP databases can mitigate the drawbacks of on-premise OLAP databases is also
presented.

Amazon Redshift[14] Amazon Redshift is the first mover in cloud data analysis systems, which is
based on the columnar analytical database Paraccel[[15]. It is a fast, fully-managed OLAP database
that aims to provide a simple and cost-effective way to analyze a large volume of data. It leverages
techniques that are commonly used in the OLAP field, including columnar layout, data compression,
efficient operators, and code generation. Using these mature techniques and a series of optimization
methods, the performance of Redshift is comparable to the traditional columnar analytical databases.

In terms of simplicity, Amazon Redshift aims to achieve Software-as-a-service(SaaS) that mitigates
the complexity of users’ experience. First, Redshift offers database administration functionalities,
such as provisioning, backup, monitoring, etc. Users could focus on the analysis of the data and
their business logic instead of spending much time and money on managing their databases. Apart
from that, Amazon Redshift also provides some tuning knobs which removes the burden of tuning
databases from users. The main things users need to consider are setting the type and number of
nodes for the cluster and the sort and distribution model. In this way, the complexity of managing
databases is significantly reduced and as a result, it is simple for users to analyze their data.

In terms of cost efficiency, unlike traditional on-premise OLAP databases, which require large upfront
payments, Amazon Redshift offers the pay-as-you-go cost model. Users pay only for compute and
storage capacity consumed while processing their workloads. When they finish their workloads,
they can simply shut down the cluster and save their money, which is hard to achieve in on-premise
clusters. In the on-premise cluster, the company needs to configure the resources according to the
requirements of peak time which rarely appears in order to meet the needs of end users. They have to
waste resources and money during low peaks. Cloud-native databases overcome this disadvantage
and make it cost-efficient by leveraging the power of cloud computing.

In terms of elasticity, Amazon Redshift leverages the Amazon Elastic Compute Cloud(EC2) and
Amazon S3. It can scale out the cluster automatically to meet the performance requirement. It is
deployed in shard-nothing architecture that every node has private CPUs and disks and communication
with each other via the network.

In terms of fault tolerance, Amazon Redshift relies on Amazon S3 which is highly available, and
durable. It also replicates the data to enhance the availability and fault tolerance. If one piece of data
is lost, users can access another replica.

Snowflake[4] Snowflake is a more recent cloud-native data warehouse system, developed especially
for cloud platforms. It shares many design ideas with Amazon Redshift, including column-oriented
storage, common techniques used in OLAP databases, SaaS service, and the pay-as-you-go cost
model which make it performant, elastic, fault-tolerant, and cost-efficient. However, it is more
elastic and scalable than Amazon Redshift. Unlike Amazon Redshift is deployed in the shard-
nothing architecture, Snowflake is deployed in the shared-data architecture. More specifically, it
provides computing via shared-nothing architecture where local disks act as a cache and storage
through Amazon S3. Shared-nothing architecture is the dominant choice in high-performance OLAP
databases since it is highly scalable. Nevertheless, this architecture has a serious shortcoming, that is,
the compute resources are tightly coupled with storage resources, which results in some problems. For
example, if the number of nodes in a cluster changes, either because users want to resize the cluster,
or due to node failures, the data needs to be redistributed which would consume a large amount of
time. In the shared-data architecture, the compute and storage are able to scale independently which
makes the system more elastic.

Apart from elasticity, Snowflake also adds more support for semi-structured and unstructured data. As
the need for machine learning increases, leveraging semi-structured and unstructured data becomes
more and more important.

An interesting finding from Snowflake is that performance turns out not to be a problem for most
users due to the high elasticity of the system. Users could add more nodes to boost performance
instead of optimizing the internal implementation, which makes them could focus on other important
issues.

BigQuery Google BigQuery originated from the Google Dremel[16] is designed for analytical
workloads. It provides a higher level of abstraction than Amazon Redshift and Snowflake. Unlike
Amazon Redshift and Snowflake, it is serverless[17]]. Amazon Redshift and Snowflake aim to offer
Software-as-a-service service, however, users still need to set up and configure the databases clusters.
For example, users need to choose the type and number of nodes in their clusters. By contrast, there
are no such notions in Google BigQuery. What users need to do is upload/choose the data and write
the query statements, and then BigQuery will run the query itself. Users do not need to know the
underlying systems and then could focus more on their business logic.

In summary, cloud-native OLAP databases generally use similar methods to achieve performance and
fault tolerance. More importantly, they deliver Software-as-a-service and serverless service which
removes the burden of configuring and operating databases from users in order that they can focus on
their business logic and make the systems simpler to use, more elastic and more cost-efficient.

6 Comparison

In order to provide the consumption cost comparison between on-premise and the cloud database,
Vertica and Redshift have been selected as two examples.

Elastic Block Store (EBS) and the Simple Storage Service (S3) are two kinds of storage services
provided by AWS. EBS is a remote network storage option that uses a standard file system API. It
offers both SSD (Solid State Disk) and HDD (Hard Disk Drive) options. It also provides persistent
storage that remains even when the compute node is shut down, which makes EBS a suitable choice
for DBMSs (Database Management Systems). On the contrary, S3 is an object store that operates on
specialized S3 nodes and is accessible via a web-based REST APIL. It is intended for scalable and
high-concurrency applications, however, it has higher latency and more unpredictability in throughput
than block storage. Both EBS and S3 are used in Vertica, while Redshift is AWS’s parallel processing
OLAP database service that leverages a typical shared-nothing architecture. It is accessible in instance
sizes that are not labeled the same as the compute types available on EC2, therefore it may be coupled
with additional hardware that is not available to common users.

The system evaluation is characterized between database-as-a-service offerings and cloud provider
agnostic OLAP DBMS, which are Redshift and Vertica individually. The system settings start as
"cold cache" to "warm cache". In the "cold start" case, researchers followed the all vendor instructions
for clearing the DBMS and OS caches after each query execution to avoid caches effect. For Redshift,
they also even restarted the system or recreated the clusters respectively. In the "warm cache" case,
researchers firstly ran the whole query after the cold start before taking further measurements on
subsequent executions.

No matter whether Vertica uses EBS or S3, Redshift always costs much less in computing than
Vertica as shown in Figure[2a]and Figure [2b] If Vertica uses EBS as a storage database, it will cost a
lot, but if it uses S3, the investment will be much lower as shown in Figure However, no matter
which storage Redshift uses, it spends the least amount of money.

20 N

N Subsequent| Run
. BN Cold Start

10 2! As vou Go 215 Pay|As You Go

5

i1 TR

Cost per Day (8)

Cost per Query Suite Run ($)

Cost per Query Suite Run ($)
o «a 5
[J
[J
(J
-
o S

A IR T B A SRS A A '
2 3| 2 81383 = 82 3§ | & ¥ 8% 2 57 ¥ B|%|% =
g 3 g Z|=|g = g £ g F e g 28 £ |8 <
; & 2|77 £ 2 : I
2 2 2

(a) Compute cost on all systems (b) Compute cost on subset of systems (c) Storage cost

Figure 2: System cost comparsion[18]]

7 Conclusions

The purpose of this research is to investigate the features and benefits of cloud-native OLAP databases
in comparison to on-premise OLAP databases. Key properties such as scalability, elasticity, simplicity,
performance, fault tolerance, and cost-efficiency are studied. From a developer’s point of view,
we believe that simplicity is the most important feature to consider, followed by scalability and
performance. The properties bring cloud-native OLAP databases a lot of benefits over traditional
OLAP. By comparing the on-premise databases and cloud-based databases, cloud-based OLAP
databases are particularly advantageous in terms of the additional cost.

8 Future

OLAP databases are used by more and more companies to analyze the data produced by their daily
activities and help them make faster and better decisions. It turns out that it is not replaced by
Big data technologies such as Hadoop and Spark, but it has complimented them. As the need for
analytical workloads increases continuously, the OLAP databases also keep evolving in order to meet
the requirements of new trends. By reviewing all papers mentioned in this article, we have identified
three main trends that seem to be crucial and would be likely to get more attention in the future:
HTAP databases, more support for semi-structured and schema-less data, and being a full self-service
model.

The first branch of the future work we identified is supporting both transactional and analytical
workloads in a single database. Nowadays, companies operate two separate systems for handling
transactional and analytical workloads. The data in the OLTP databases is transferred to OALP
databases and then analyzed by the data scientists, which obviously incurs many management
overheads. As a result, there is growing interest in handling both workloads in a single system
although it is a hard problem. The difficulty of merging two kinds of databases is that they have
different access patterns and requirements. OLTP databases focus on low latency and concurrency
conflicts. However, OLAP databases focus more on high throughput. There are already some
solutions for this problem, such as TiDB [19] which is based on the Raft consensus algorithm.

The second branch of improvement is adding more support for semi-structured and schema-less data.
In the age of machine learning, semi-structured and schema-less data are playing a more and more
important role in data analysis. There is a fast-growing need in processing these data and extract
useful information.

The third branch of future research is that make the OLAP databases a self-service model. Unlike in
traditional OLAP databases, users need to configure the clusters and databases themselves, cloud-
native OLAP databases allow users to focus on their business logic instead of configuring the
databases. However, in some circumstances, users still need to interact with underlying systems, such
as configuring the parameters of databases to improve performance, asking for the help of service
providers as a result of encountering some security issues, etc. More and more cloud providers are
searching for methods to automatically configure systems and achieve high performance concurrently
by leveraging machine learning techniques, such as Qtune[20], and also putting more attention on
security, and performance problems.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Martin Kleppmann. Designing data-intensive applications: The big ideas behind reliable,
scalable, and maintainable systems. " O’Reilly Media, Inc.", 2017.

Fatma Ozcan, Yuanyuan Tian, and Pinar T6ziin. Hybrid transactional/analytical processing: A
survey. In Proceedings of the 2017 ACM International Conference on Management of Data,
pages 1771-1775, 2017.

Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and olap technology.
ACM Sigmod record, 26(1):65-74, 1997.

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes, Jon
Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jiansheng Huang, et al. The
snowflake elastic data warehouse. In Proceedings of the 2016 International Conference on
Management of Data, pages 215-226, 2016.

Sebastian Lehrig, Richard Sanders, Gunnar Brataas, Mariano Cecowski, Simon Ivansek, and
Jure Polutnik. Cloudstore—towards scalability, elasticity, and efficiency benchmarking and
analysis in cloud computing. Future Generation Computer Systems, 78:115-126, 2018.

Hemant Saxena and Jeffrey Pound. A cloud-native architecture for replicated data services. In
Proceedings of the 12th USENIX Conference on Hot Topics in Cloud Computing, pages 19-19,
2020.

Catalin Strimbei. Olap services on cloud architecture. Journal of Software and Systems
Development, 2012:1, 2012.

Daniel Gu, Yolanda Wang, and Kiran Guduguntla. How kyligence cloud uses amazon emr
serverless to simplify olap, Nov 2022.

Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandier, Lyric Doshi, and
Chuck Bear. The vertica analytic database: C-store 7 years later. arXiv preprint arXiv:1208.4173,
2012.

Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel
Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, et al. C-store: a column-
oriented dbms. In Making Databases Work: the Pragmatic Wisdom of Michael Stonebraker,
pages 491-518. 2018.

Bruce Momjian. PostgreSQL: introduction and concepts, volume 192. Addison-Wesley New
York, 2001.

Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang, Jinbao Chen,
Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, et al. Greenplum: a hybrid database
for transactional and analytical workloads. In Proceedings of the 2021 International Conference
on Management of Data, pages 2530-2542, 2021.

Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep Ganguli.
Druid: A real-time analytical data store. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 157-168, 2014.

Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano Stefani, and
Vidhya Srinivasan. Amazon redshift and the case for simpler data warehouses. In Proceedings
of the 2015 ACM SIGMOD international conference on management of data, pages 1917-1923,
2015.

Yijou Chen, Richard L Cole, William J McKenna, Sergei Perfilov, Aman Sinha, and Eugene
Szedenits Jr. Partial join order optimization in the paraccel analytic database. In Proceedings of
the 2009 ACM SIGMOD International Conference on Management of data, pages 905-908,
2009.

Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt
Tolton, and Theo Vassilakis. Dremel: interactive analysis of web-scale datasets. Proceedings of
the VLDB Endowment, 3(1-2):330-339, 2010.

10

[17]

[18]

[19]

[20]

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, Qi-
fan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwadkar, et al. Cloud program-
ming simplified: A berkeley view on serverless computing. arXiv preprint arXiv:1902.03383,
2019.

Junjay Tan, Thanaa Ghanem, Matthew Perron, Xiangyao Yu, Michael Stonebraker, David De-
Witt, Marco Serafini, Ashraf Aboulnaga, and Tim Kraska. Choosing a cloud dbms: architectures
and tradeoffs. Proceedings of the VLDB Endowment, 12(12):2170-2182, 2019.

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu Tang, Yuxing
Zhou, Menglong Huang, et al. Tidb: a raft-based htap database. Proceedings of the VLDB
Endowment, 13(12):3072-3084, 2020.

Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. Qtune: A query-aware database tuning system
with deep reinforcement learning. Proceedings of the VLDB Endowment, 12(12):2118-2130,
2019.

11

Big data and Cloud in Medical Industry
Group 8

Yuna Chen Shutong Cai
Department of Computer Science Department of Computer Science
University of Amsterdam University of Amsterdam
14274310 14730960
yuna.chen@student.vu.nl shutong.cai@student.uva.nl

Yudong Fan

Department of Computer Science
University of Amsterdam
14729024

yudong.fan@student.uva.nl

Abstract

With the rapid development of technologies, digital data are generated and
collected at an unprecedented rate and scale. In recent times, the popularity
of "Big Data" and "Cloud" concepts and their applications has been steadily
increasing, causing significant transformations in numerous industries away from
their conventional norms. Particularly, medical industry, which is one of the
domains that has been actively adopting and embracing a digital evolution based
on the rise of big data and cloud technologies. Many novel applications and
opportunities emerge alongside the evolution, as well as a series of challenges.
This paper intends to answer one research question: How do big data and cloud
impact modern medical industry? To answer this question, this paper provides a
high-level overview of the big data and cloud technologies including the challenges
they impose within the medical industry. Furthermore, big data and cloud in two
specific contexts in medical industry, healthcare and biomedicine, are discussed
thoroughly to provide a more intuitive entry point to comprehend and answer the
research question.

Keywords: Big data, Cloud, Medical Industry, Healthcare, Biomedicine,
Parallel Computing, Security, Privacy

1 Introduction

Alongside the flood of digital data from a variety of digital earth sources such as sensors, smart
devices, Internet, etc., the idea of big data has become more and more important as it provides angles
to improve and/or enable research and decision-making with unprecedented value for various digital
earth applications [40]. That being said, the term "big data" is a rather vague and broad concept. By

studying existing definitions of big data, Mauro et al. [[12] proposes a nucleus definition for big data.

That is, "Big Data represents the information assets characterized by such a high volume, velocity
and variety to require specific technology and analytical methods for its transformation into value."
Moreover, according to Hashem et al., [20], big data can be characterized by three aspects: 1) data are
numerous; 2) data cannot be categorized into regular relational databases; 3) data are constantly and
rapidly generated, captured, and processed. Given these characteristics, big data presents challenges
to researchers from many perspectives including data storage, transportation, process, etc. As a matter

of fact, the emerging trend of big data is transforming many industries and even society from their
traditional profile. Particularly, the medical industry is one of the disciplines which is increasingly
adopting big data technologies. Nowadays, enormous amounts of biological and clinical data are
generated and collected at an unprecedented speed and scale [26]. As a result, a series of relevant
challenges and opportunities also emerge within the field.

Cloud computing plays a crucial role in solving challenges that big data imposes. It makes possible
for industrial applications to perform large-scale and complex computing. Not only because it enables
virtualization, parallel processing, security, scalable data storage and service, but also because it
reduces the cost and restriction for automation and computerization by individuals and enterprises
[25]. However, yet another major challenge is that the growth rate of big data exceeds the current
technology capability both in terms of properly designing cloud computing platforms and updating
intensive workloads [20]. In the medical industry domain, the challenges of storing, managing,
and analyzing massive medical data have been drawing researchers’ attention for many years [26].
Due to the characteristics of big data as discussed above, powerful big data and cloud computing
technologies are indispensable to facilitate the revolution for various applications within the industry.

This study intends to focus on two specific segments in the medical industry domain. Namely, the
biomedicine and healthcare systems. By carrying out a comprehensive investigation regarding the
current big data and cloud applications, challenges, opportunities, and concerns, we aim to provide
a heuristic and intuitive entry point to answer the research question about how big data and cloud
impact the medical industry.

The rest of this paper is conducted as follows. Section 2] gives an overview of the commonly used
big data and cloud technologies in the modern medical industry, as well as the challenges these
technologies impose. Section [3|and Section [elaborate on how big data and cloud technologies
are used specifically regarding biomedicine and healthcare segments respectively within the general
medical industry. More detailed contextual investigations are engaged, and possible solutions to
cope with the potential technological and ethical challenges are proposed. Section [3] initiates a
comprehensive discussion regarding the common pitfall and dilemmas, and Section [§] concludes the
entire paper.

2 Big data technologies and challenges in Medical Industry

The medical industry as a whole is a multi-dimensional system which aims to prevent, diagnose,
and treats health-related issues or impairments in human beings. Due to the sensitive nature and
complex composition of this industry, the big data repository for medical data is highly diversified
and requires advanced techniques to ensure relatively high-level security, correctness, relevancy,
consistency, stability, and accuracy regarding data storage, privacy, sharing, and processing [11]].
Given the high volume, velocity, and variety of characteristics of big data, the industry has adopted
different big data technologies to fulfil its essential requirements, which subsequently gave rise to a
series of challenges regarding some specific concerns in the medical industry.

2.1 Parallel Computing and Distributed Data Storage

Parallel computing is one of the key components to handle big data. The essence of parallel computing
is to distribute and process data across multiple nodes. This relates to both data storage and processing
frameworks as traditional monolithic data storage and processing technologies are no longer sufficient
or even feasible to handle big data in an effective and secure way. One of the most popular open-source
distributed applications is Hadoop [37]. In short, Hadoop is an implementation of the MapReduce
algorithm, which in essence tries to split a big problem into smaller ones by performing the mapping
procedure to create intermediate key/value pairs, and then solve the smaller problem in parallel
and merge the result based on the same keys via the reducing procedure [14]]. It runs on top of the
Hadoop Distributed File System (HDFS) which is a distributed file system that provides a scalable and
fault-tolerant infrastructure to store data in a distributed environment. Moreover, because it enables
redundant replicas of data chunks, it is less prone to data loss. Consequently, technologies which
enable parallel computing like Hadoop and its alternatives (e.g., Apache Spark) make it possible to
efficiently store and process big data in a distributed environment (i.e., a large-scale cluster consisting
of many machines). Nevertheless, such technologies also have its drawback. For instance, despite
the community has been actively upgrading Hadoop’s security mechanism, it still exposes security

vulnerabilities which might be exploited by malicious activities and potentially cause serious harm
[32]. This remains to be a key challenge for researchers in the medical industry because security is
one of the utmost important requirements for medical data.

2.2 Al-based Information Processing

Nowadays, machine learning and Al techniques becomes more and more popular to refine the
information processing capabilities in the medical industry. For example, the rise of natural language
processing (NLP) technology eases the process of generating, querying, retrieving, and analyzing
textual documents such as clinical notes [11]. Moreover, predictive machine learning models can
even learn from massive input and help physicians to make better clinical decisions or even replace
human judgement in certain functions. Nevertheless, sophisticated Al model tends to entail poor
interpretability because the underlining operations are usually black-box operations. Therefore,
concerns from both technical and ethical aspects for the credibility and security of Al-based data
processing techniques keep drawing people’s attention.

2.3 Concerns for Cloud

Notably, the big data technologies as discussed above are commonly associated with cloud envi-
ronments under the current context because cloud providers provide on-demand usage of resources
and therefore minimize the cost and restrictions for big data applications [25]]. However, this major
advantage of the cloud shifts into a disadvantage when it comes to the medical industry. From a
medical data perspective, many organizations are more comfortable with data storage on their own
premises because it guarantees control over security, access, and up-time. Since medical data are
very sensitive, even though an on-site cluster is more expensive to scale and maintain, medical
organizations still tend to show low willingness in terms of giving away their complete control over
their data to a third-party could provider [11]. Therefore, how to bridge this trust gap between medical
organizations and cloud providers and facilitate a cloud-based ecosystem for medical data become a
primary challenge that is worth studying.

3 Big Data and Cloud in Biomedicine

The field of biomedicine has emerged as a groundbreaking interdisciplinary subject that integrates
the principles and techniques of medicine, life science, and biology. Its primary objective is to apply
biological and engineering methods to address and explore issues related to life science, particularly
in the realm of medicine. Biomedical information, an integral component of the vast domain of
medical "big data," plays a pivotal role in shaping and advancing biotechnology in the 21st century.
It serves as a crucial engineering field that is instrumental in elevating the standards of medical
diagnosis and overall human health [31].

This section begins by discussing the implications and difficulties arising from the use of large-scale
data in the field of biomedicine. Subsequently, we delve into the introduction of cloud-based solutions,
focusing on the various services and systems available within the cloud-based paradigm.

3.1 Big Data applications in Biomedicine

The global big data market in healthcare is projected to exceed $70 billion USD by 2025, with the
United States expected to dominate over 90% of the North American market [8]]. The abundance of
healthcare data, including patient-specific clinical data is one of the main drives of this exponential
growth. Organizations are using analytical tools, artificial intelligence (AI), and machine learning
(ML) techniques to extract data-driven insights, leading to reduced costs, enhanced revenue streams,
personalized medicine, and proactive patient care.

Big data integration is transforming biomedical research by consolidating data from laboratory exper-
iments, clinical investigations, healthcare records, and the Internet of Things. Omics technologies,
such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and pharmacogenomics,
are generating vast amounts of information, presenting opportunities for advancements in person-
alized medicine and improved patient care [7]. The ultimate objective is to establish personalized
medicine programs that significantly enhance patient care. By applying big data and advancing our

understanding of omics information, researchers aim to identify causal genetic factors, enabling
tailored treatment approaches based on the right target, chemistry, and patient. This comprehensive
approach holds great potential for revolutionizing patient outcomes. The field of biomedicine is
experiencing significant advancements through the integration of omics technologies into big data
analysis. This progress has profound implications for disease diagnosis and patient care management.
Omics big data, particularly in research and healthcare, is primarily focused on enhancing diagnostic
capabilities [10] [19].

However, the most remarkable contribution of big data lies in its pivotal role in advancing Al and
machine learning techniques. These advancements have significant applications in the development
of biomedicine, which holds immense potential for transforming the future of healthcare delivery.
The convergence of big data and biomedicine has opened up unprecedented opportunities in the
field, particularly in personalized medicine, where tailored treatments can be designed based on
individual characteristics and needs. This convergence is poised to reshape the landscape of healthcare,
ultimately leading to improved patient outcomes and enhanced healthcare practices.

Misdiagnosis is a significant challenge in biomedicine and healthcare, as it hinders patients from
receiving appropriate treatment and care [8]]. The current diagnostic methods, reliant on manual
reviews by hospital staff and physicians, are error-prone. Diagnostic errors are complex, elusive, and
difficult to measure, with no clear threshold for identifying them. To address this issue, researchers
and clinicians at the Johns Hopkins School of Medicine have introduced a novel approach known as
Symptom-Disease Pair Analysis of Diagnostic Error (SPADE) [24]. This method harnesses big data
and Al algorithms to mine extensive clinical databases, encompassing numerous patient visits. By
identifying common clinical symptoms associated with doctor visits, SPADE enables the pairing of
these symptoms with diseases that are prone to misdiagnosis in specific clinical contexts. SPADE is
particularly effective for acute and subacute diseases, which frequently result in hospitalization or
disability.

The field of biomedicine and healthcare is undergoing a transformation with the integration of Al
and ML techniques. While traditional statistical methods have limitations in handling complex
biological datasets, ML algorithms offer powerful tools for analyzing big data and identifying
meaningful patterns and features [8]. ML techniques such as principal component analysis, graph-
based clustering, random forests, and deep learning have been successfully applied to genomics data,
aiding in the understanding of molecular details and disease states [26]. This approach holds great
promise for improving disease diagnosis, treatment, and prevention through customized approaches
tailored to individual patients.

3.2 Challenges in Biomedical Big Data

The advent of big data generation and acquisition has sparked a paradigm shift, posing significant
challenges pertaining to the storage, transfer, and security of information [7]. The cost associated with
generating data has now become comparatively lower than that of storing, securing, and analyzing
it. Notably, biological and medical data exhibit greater heterogeneity than data from other research
domains. Analysis reveals that biomedical data is characterized by its voluminous nature and the
inherent difficulties of handling it [41]].

The rapid growth of clinical data and advancements in Al technologies have presented researchers with
unprecedented challenges in managing data storage, scalable processing, and analysis capabilities
for diverse and multi-sourced datasets. One of the primary obstacles lies in the necessity for
substantial computational power and storage capacity [13]]. The processing and analysis of big
data necessitate extensive resources that often surpass the capabilities of individual institutions or
researchers. Moreover, the quality and accuracy of data used in machine learning models are pivotal
in ensuring reliable predictions. However, biomedical data can be afflicted with noise, incompleteness,
or bias, thereby potentially influencing the performance of machine learning algorithms.

Another challenge have to mention lies in the efficient transfer of data between locations. All
transfer protocols encounter obstacles when dealing with the transfer of large, unstructured datasets.
Consequently, tools that expedite the data transfer process and mitigate latency issues are imperative.

The security and privacy of individual data constitute an additional concern. Biomedical research
heavily relies on access to vast amounts of sensitive information. Patient data, stored in electronic
form within medical databases and bio-repositories, need to be queried, mined, and analyzed by

doctors and researchers [9]]. In light of the collaborative nature and the imperative for data sharing, it
becomes crucial to address data security and privacy concerns.

3.3 Cloud Adoption in Biomedicine

The challenges associated with ensuring secure data storage, establishing effective data integration
models, and implementing efficient data analysis methods can be effectively tackled through the
utilization of high-performance computing (HPC) and cloud solutions. Parallel computing and
cloud computing present orthogonal yet highly efficient and scalable solutions to address these
challenges. In practical terms, the utilization of parallel biomedical software on widely available
high-performance computers can be applied at a lower layer to preprocess and analyze biomedical
data [3]]. While numerous data analysis tools have been developed in the field of biomedicine, only a
few have been adapted to harness the full potential of high-performance computing resources [23]].
For certain tools, an appealing option is to employ a map/reduce strategy, allowing for improved
scalability and performance.

In contrast, cloud computing offers extensive capabilities for data storage, data sharing services, and
the flexibility of accessing resources and applications on-demand, regardless of time and location.
Furthermore, HPC tools can be executed in parallel on cloud platforms, further enhancing their
scalability and adaptability. This enables the development of elastic and scalable applications and
services in the context of biomedicine. It is noteworthy that the integration of HPC tools with cloud
platforms provides researchers and practitioners with enhanced computational power and efficient
data handling, thereby facilitating large-scale applications in biomedicine. In this section, our focus
is specifically on cloud-based biomedicine services and systems that are specifically designed to
address the demands of large-scale applications.

3.3.1 Cloud-based Services in Biomedicine

Over the past decade, cloud computing has gained significant traction in the healthcare and
biomedicine domains, finding extensive adoption in both academic and industrial settings [5]. The
Cloud computing model has witnessed a rapid proliferation in recent years as a means of delivering
IT resources, encompassing hardware and software, through network-accessible services. This
model offers several novel advantages, including access to massive and scalable computing resources
on-demand, the utilization of virtualization technology, and a pay-as-you-go pricing model based on
resource usage [3]. In the realm of biomedicine, Cloud-based services can be categorized into four
main models, which are outlined in the subsequent content.

Data as a Service (DaaS): The conventional approach to biomedical pipeline analysis involves down-
loading or accessing public datasets from repositories such as NCBI or Ensembl, installing software
locally, and performing in-house analyses. However, transitioning to a cloud-based environment
offers enhanced integration capabilities that optimize the analysis and storage of biomedical big data.
DaaS provides the dynamic virtual space provided by the cloud to facilitate data storage, ensuring
that the data remains up-to-date and accessible from a diverse range of connected devices via the
web. Notably, Amazon Web Services (AWS) offers a notable example of DaaS with its centralized
repository of public datasets. This repository includes archives of prominent databases such as
GenBank, Ensembl, the 1000 Genomes Project, Unigene, and Influenza Virus. AWS provides these
datasets as public services within their cloud infrastructure, allowing for seamless integration into
cloud-based applications.

Software as a Service (SaaS): In recent years, there has been a proliferation of cloud-based tools,
known as Software as a Service (SaaS), developed for various biomedical tasks, including genomics
analysis, sequence alignment, and gene expression analysis. These tools often use the parallel
execution capabilities of the open-source Hadoop implementation of MapReduce, which allows for
distributed processing across multiple compute nodes. One example is ProteoCloud [29]], a compre-
hensive cloud-based platform in the field of proteomics, offering five different peptide identification
algorithms and an easy-to-use graphical user interface. Another example is CloudBurst which stands
out as a parallel read-mapping algorithm optimized for mapping next-generation sequencing (NGS)
data to reference genomes in the genomic domain [34]]. These examples highlight the increasing

utilization of cloud-based platforms in biomedicine, which provide scalable and parallel processing
capabilities, improving the efficiency and performance of various analyses in biomedical big data.

Platform as a Service (PaaS): In the field of biomedicine, a Platform as a Service (PaaS) model
provides users with the flexibility to customize their solution deployments and exert full control
over their instances and associated data, distinguishing it from SaaS. Currently, several Cloud-based
platforms cater to the needs of researchers in this domain. Examples include CloudMan [2]], which
empowers individual biomedical researchers to effortlessly deploy, personalize, and share their
complete datasets, tools, and configurations. Another prominent biomedical PaaS offering is Eoulsan
[22], which is based on the Hadoop implementation of the MapReduce algorithm for high-throughput
sequencing data analysis. It provides a dedicated environment for processing large-scale sequencing
datasets efficiently. PaaS solutions exemplify the range of Cloud-based platforms available to
researchers, enabling them to tailor their computational workflows, streamline data analysis, and
facilitate collaboration and knowledge sharing in the field of biomedicine.

Infrastructure as a Service (IaaS): Within the field of biomedicine, the IaaS model contains a
computing infrastructure that encompasses servers, often virtualized, with dedicated computational
capabilities and storage resources. An example illustration of bioinformatics IaaS is BioNimbus [21],
an open-source cloud-computing platform specifically designed to process genomics and phenotypic
data. BioNimbus has been tailored to accommodate next-generation sequencing instruments and
incorporates cutting-edge technologies for efficient analysis and the seamless transfer of large
datasets. IaaS solutions exemplify the potential of cloud computing in facilitating the computational
infrastructure required for biomedical data analysis. By employing virtualized servers and flexible
storage resources, these platforms offer researchers the means to efficiently process and analyze
large-scale datasets, ultimately driving advancements in the field of biomedicine.

3.3.2 Cloud-based Ecosystems for Biomedical Research

As was shown in the part before, using cloud-based services with different models offers a workable
solution to the problems related to data storage and analysis. We will elaborate on the cloud-based
ecosystem solution in this section, which gives institutions and researchers the opportunity to improve
the chances of open science in the field of biomedical research [30].

The cloud-based ecosystem in biomedicine provides a range of benefits and opportunities for re-
searchers. It allows institutions to create a customizable digital infrastructure that supports collabora-
tion and open science. The principles of Findability, Accessibility, Interoperability, and Reusability
(FAIR) guide data management and enhance the reusability of data, algorithms, tools, and workflows.
Biomedical data ecosystems should be able to include indexing capabilities and align with initiatives
to facilitate efficient search and retrieval.

Linux container technologies like Docker and workflow languages such as WDL enable the packaging
and orchestration of complex software tools, while cloud providers offer batch-processing capabilities
for large-scale data analysis. The core of a cloud-based platform is a shared commons ecosystem,
where computing capacity, storage resources, databases, and informatics tools are co-located for
easy access and collaboration. Interoperability between multiple commons is facilitated by digital
IDs, metadata, APIs, data portability, data peering, and pay-for-compute mechanisms. Features like
indexing and search capabilities, meta-learning frameworks for algorithm selection, and integration
of established bioinformatics software tools enhance the functionality of the ecosystem.

Security is paramount in a cloud commons architecture, with robust controls, risk assessments,
and regular training programs, data users can protect sensitive data and minimize vulnerabilities.
Moreover, cryptographic techniques increase security in data outsourcing and collaboration in the
cloud. Through these technologies, the cloud-based ecosystem supports open biomedical data access
while maintaining security and privacy.

One example of the cloud-based ecosystem is Multi-X [[13]], which is a research-oriented platform de-
signed for collaborative and reproducible science. It provides a scalable and integrative computational
framework that fosters the development and integration of scientific tools. The platform comprises six
key components: DATA, for flexible data repositories; ANALISE, for multi-domain scientific tools;
COMPUTE, for on-demand computational resources; WORKFLOW, for automated data analytics
processes; EXPLORE, for analysis dashboards and visualizations; and COLLABORATE, for web-

based interfaces and sharing capabilities. Through these components, MULTI-X enables researchers
to connect with large-scale data repositories, gain immediate insights, and streamline collaboration
within and across different domains. It offers a comprehensive ecosystem for cross-domain research,
enhancing reproducibility and facilitating scientific exploration.

By embracing the cloud-based ecosystem, researchers can benefit from interoperability, scalability,
and flexibility, driving advancements in biomedical research and fostering open science initiatives.

4 Big Data and Cloud in Healthcare

Among the whole medical industry, healthcare attaches more importance to diagnosing, preventing
illnesses, and maintaining physical, mental, and emotional well-being. Considering its extensive
composition, it is also a highly information-intensive industry, characterized by a vast and constantly
updated collection of specialized data from diverse sources[18]]. And since the last decade of the
twentieth century, with the digitization of health data and the tendency of adopting electronic health
records(EHR)[38], the healthcare field has gained significant advances and breakthroughs by utilizing
both the collected digital health data and big data and cloud technologies[27]. This section will
explore the impact of big data and the cloud on the healthcare industry such as healthcare delivery
and personal health management. It will discuss their applications, advances, as well as the existing
inadequacies and challenges within the healthcare field.

4.1 Healthcare Big Data

Healthcare data is composed of a diverse range of information, which can be categorized into two main
types: biomedical data and non-medical data. As it has been mentioned in the last section, biomedical
data includes medical imaging data, EHR data(e.g. medical history, diagnoses, medications and etc),
public health surveillance data and etc. Making the most of biomedical data, there is a significant
potential to enhance the diagnosis and prevention of diseases as well as foster healthy habits and
practices[28]]. Biomedically unrelated data in healthcare refers to information that is not directly
related to the medical or clinical aspects but still holds relevance and impact on healthcare. Such as
the web and social media data from patients, publications(i.e. health reference materials and clinical
research reports), patients’ feedback, and other important non-medical data[39]. These sources
provide valuable insights into patient experiences, healthcare trends, public health issues, and other
factors that can influence healthcare decision-making, research, and policy development.

Healthcare data qualifies as big data due to several key factors. First, it involves large volumes
of datasets, namely there is a huge amount of data involved which is also increasing at a high
speed. Second, the high velocity. That is to say, the speed of continuously generating new data
and processing data for clinical decisions is very high. Finally, healthcare data also shows a great
variety which contains various formats and broad resources. Specifically, there are mainly three kinds
of formats, which are structured data, semi-structured data, and unstructured data. Structured data
is stored in a predefined format and it’s specific, such as clinical or health data, it’s easy to store,
manipulate and analyze. Unstructured data is stored in the original format without a predefined
manner while semi-structured is between these two formats with partially consistent characteristics
in format. Almost healthcare data is saved as unstructured or semi-structured, such as doctor notes,
office medical records, and images[33]].

Hence, with the integration of healthcare big data and advanced big data analysis techniques, along
with cloud computing, we shall present a more personalized and efficient healthcare industry.

4.2 Accurate analysis and prediction in healthcare

As it’s mentioned in the last section of the biomedical part, machine learning, such as deep learning
algorithms can be used in comparing new patients with large populations to support risk assessment,
treatment, and other critical clinical decisions. Considering the characteristic of healthcare big data
as complex sources with practical applications, achieving high accuracy in analysis and prediction
shall be more important in the healthcare industry, especially from the user’s perspective. The
reliability and precision of these analyses and predictions play a vital role in delivering effective and
personalized healthcare services. Therefore, this part shall focus more on accuracy improvement to
improve the quality of decision-making.

Machine learning focuses on developing algorithms and models that can learn from and make predic-
tions or decisions based on the processed data. To improve the accuracy of disease prediction, the
most intuitive and effective way is to get high-quality data with complete and accurate information.
The source of healthcare data is various and complex, it can be the data from patients’ descriptions or
doctors’ notes, it can also be biomedical data from medical devices, such as blood pressure, tempera-
ture, heart rate, etc. However, most of the raw data of healthcare is incomplete with missing values,
or vague with inaccurate and even incorrect descriptions. To address the challenges of undesired data,
there are two kinds of strategies, regarding the data source and data process respectively.

From the perspective of the data source, accurate healthcare data can be obtained directly from
medical sensors by combining the healthcare system with the Internet of Things (IoT). The IoT
refers to a network of embedded items, such as physical devices, vehicles, home appliances, etc,
that are equipped with electronics, software, sensors, actuators, and connectivity. This allows these
objects to connect with each other and exchange data[35]]. So for the healthcare of medical usage,
the development of wireless sensors and wearable technology has made it possible to monitor a
patient’s multiple vital signs anywhere and anytime. By utilizing wireless sensors and wearable
devices, healthcare providers can continuously monitor crucial parameters with accurate and real-time
values(e.g. heart rate). One important application of healthcare big data combining the IoT is the
medical body area networks (MBANS)[[1]], equipped with medical sensors, MBANs can continually
monitor the patients’ condition by sensing and transmitting the body measurements, like the body
temperature, blood pressure, respiratory rate, blood glucose, oxygen saturation and, etc. This data can
provide an accurate picture of a patient’s physical condition, which is invaluable for both diagnosis
and prediction through machine learning, as opposed to the vague descriptions that some patients
give of their own bodies.

From the perspective of the data process, there are still lots of methods to estimate and reconstruct the
incomplete data. One of a powerful way is to use the latent factor model[6]. This model serves as a
feature extraction tool to capture the relationship between observable variables and latent variables[4]].
The observed variables refer to those variables that can be directly measured and quantified while
the latent variables are measured indirectly through the relationships and patterns observed in the
observed variables, rather than measuring things that can’t be quantified. In order to reconstruct
missing values, the latent factors are able to capture the underlying structures and relationships within
the observed data. This enables estimating and filling in the missing values based on the information
captured by the latent factors so as to get the complete information.

4.3 Cloud system for healthcare big data

The rapid development in information technology indeed has brought significant progress to the
healthcare industry across different domains, like using healthcare big data to analyze and predict
diseases combing with machine learning and IoT as mentioned above. However, these advancements
have also resulted in an exponential increase in the volume and complexity of healthcare data, making
it increasingly challenging to handle and process effectively. Like the data collected from different
sensors in the MBANS, it’s with a huge amount that can be generated within a short time. Additionally,
it’s also heterogeneous as there are different kinds of formats(e.g. text, image, etc.), which needs
to be processed in advance. Hence, the high volume, velocity, and variety of healthcare big data
contribute to the complexities of processing, managing, and extracting valuable insights from those
data. Dealing with such data requires specialized techniques and technologies capable of handling
the scale and diversity of information effectively.

As cloud computing is a technology that is used for effective virtualization, process power, storage,
connectivity, and resource pooling[16]]. Specifically, the process power refers to advantage of cost-
effectiveness in terms of both energy and financial resources during data processing in a cloud-based
environment, while the connectivity enable data from different sources shall relate to each other and
the users within the cloud services are able to interact with the Internet. Regarding these features, the
introduction of the cloud allows these resources to be accessed and shared across multiple devices
effectively through a wide network, such as the Internet. With a cloud computing infrastructure
merging into the healthcare industry, patients can obtain services on demand, such as real-time
monitoring of the medical signs at home, information island, teleradiology, and telemedicine systems,
etc. In the meantime ensuring key concepts like isolation, security, distribution, and resilience are
upheld. Hence, cloud computing and cloud-based system perfectly matches the needs of healthcare big

data, namely integrating resources on a cloud platform that combines with state-of-the-art technology
shall solve most of the issues the healthcare big data faces, such as processing heterogeneous data,
data management, etc.

Such as the Healthcare Cyber-Physical System(Health-CPS) based on cloud and big data[42]]. It’s a
cloud-based and patient-centric system of three layers. Data collection layer, data management layer,
and application service layer. The data collection layer, it’s used to collect raw data from different
sources(e.g. clinics, research institutes, etc) from a data node. Then a built-in component named
adaptor shall preprocess data with a unified standard, and encrypt preprocessed data to ensure the
security of the collected data. The preprocessed and encrypted data includes data description, data
entity, and security tag. After that, it will get access to the data management layer, which includes
two modules, a distributed file storage (DFS) module and a distributed parallel computing (DPC)
module. The DFS module will enhance the performance of healthcare data with efficient storage,
high throughput, and high fault tolerance. The DPC supports both real-time analyses as well as offline
analysis, combing with some data mining and recommendations algorithms. Depend on different
situations, the focus shall also be different. The real-time analysis requires quick responses while
the offline focus more on personalization. And the last is the application service layer for practical
usages, such as the monitor-based application equipped with sensors, it can not only offer real-time
sensing and transmit some vital body measurements to prevent an emergency but also enable offline
analysis for long time conditioning.

5 Discussion

In the preceding sections, we provided detailed explanations of the utilization of big data in the
biomedical and healthcare domains, as well as the adoption of cloud-based solutions to address
associated challenges. While big data and cloud technologies have undoubtedly contributed to
substantial advancements in the medical sector, it is imperative to recognize the existence of certain
limitations and challenges. Given the accelerating trend towards patient-centric treatment and
healthcare, cloud platforms and services have introduced security measures to authenticate data
access and safeguard sensitive information. However, it is crucial to acknowledge that security and
privacy concerns have not been entirely overcome.

Regarding the issue of security, the prevailing trend in healthcare systems is the adoption of cloud-
based infrastructures. However, it is crucial to acknowledge the vulnerability of the cloud to cyber
attacks. Since all user information is stored in the cloud, any breach in the cloud systems poses
a significant risk of data leakage. Given the sensitive nature of the user data involved, such a
vulnerability would have severe consequences for user privacy and the reputations of healthcare
institutions. The potential harm resulting from the exposure of user data is, therefore, a matter of great
concern. One potential solution to mitigate the potential loss of critical data is the implementation
of the decoy technique [36]]. This approach involves the retrieval of decoy files when an attacker is
detected accessing the system data, thereby enhancing data security. Furthermore, to enhance the
security level, the original files can be automatically encrypted once attacks are detected. However,
despite the cloud providing a barrier to user access and the application of security techniques to
defend against attackers, there is no guarantee of complete data protection.

In terms of privacy, clinical records and healthcare data are obtained with the consent of patients and
are safeguarded by medical institutions and centers. As a result, organizations, research teams, and
analytical firms are required to obtain patient consent before utilizing any datasets in order to mitigate
the risks of data exploitation and identity misuse. It is crucial to acknowledge that the outcomes and
clinical characteristics of patients involved in studies become publicly accessible, thereby increasing
the potential for breaches in privacy and improper utilization of patient data. Consequently, the issue
of accessing patient data from publicly available sources remains a highly sensitive concern in the
healthcare domain, necessitating stringent measures to protect patient privacy and ensure responsible
data usage [15]. For this issue, there is an urgent need to address the inadequacy of policies related
to the utilization of patients’ data. It is crucial to establish more comprehensive policies that ensure
appropriate and ethical usage.

In the future, several key actions can be implemented to enhance the utilization of big data in the
medical industry. These approaches aim to promote collaboration among various entities such as
firms, industries, and data-generating teams to ensure equitable access to data while minimizing

the generation of redundant and low-quality data. This collaborative effort seeks to overcome the
challenge of data overload and improve the overall efficiency of data analysis. Additionally, the
approval of artificial intelligence (AI) and machine learning (ML) modules and methods by regulatory
agencies is crucial to facilitate their integration into therapeutic and drug discovery pipelines. This
regulatory endorsement will provide a framework for the safe and effective application of AI-ML
techniques in medical industries, enabling the development of innovative solutions and advancements
in medical research. It is also important to address compliance issues that arise throughout the process
of collecting, managing, and analyzing medical big data. All relevant stakeholders must be mindful
of their compliance obligations in accordance with the specific requirements of their respective fields.
This includes adhering to ethical guidelines, privacy regulations, and data protection laws to ensure
the responsible and lawful handling of medical big data [17] [8].

6 Conclusion

In summary, big data and cloud technologies play crucial roles in the modern medical industry.
The utilization of these technologies gives rise to a variety of novel applications and opportunities,
which are capable of enhancing various aspects within the medical industry. Nevertheless, a series
of challenges also emerge alongside this evolution. Specifically, this paper elaborates on two
segments within the general medical industry, namely biomedicine and healthcare, to provide more
contextual and intuitive insights into the comprehension of the research question: how do big data
and cloud impact the modern medical industry? Our investigation into the literature shows that big
data technologies have the potential to revolutionize the industry by providing valuable insights,
mitigating health risks, minimizing harmful environmental exposures, improving patient care, and
enhancing overall health outcomes [8]], while cloud technologies offer opportunities to deploy and
integrate big data applications with better usability, accessibility, interoperability, scalability, cost
efficiency, and flexibility. However, concerns with these technologies regarding security and privacy
are not yet entirely conquered. Through a thorough discussion section, this paper also exhibits
how researchers and developers are actively coping with these challenges from both technology
and political perspectives. Consequently, by conducting this literature review, we wish to provide
a comprehensive and coherent analysis which helps researchers to better understand and study the
concepts, applications, and challenges of big data and cloud technologies in the medical industry.

Work Distribution

Table 1: Work Distribution
Name Work

Yudong Fan Abstract, Section 1,2,6
Yuna Chen Section 3, 5
Shutong Cai Section 4, 5

10

References

[1] Asif Adil, Hushmat Amin Kar, Rajendra Jangir, and Shabir Ahmad Sofi. Analysis of multi-
diseases using big data for improvement in healthcare. In 2015 IEEE UP Section Conference
on Electrical Computer and Electronics (UPCON), pages 1-6, 2015.

[2] Enis Afgan, Brad Chapman, and James Taylor. Cloudman as a platform for tool, data, and
analysis distribution. BMC bioinformatics, 13:1-7, 2012.

[3] Giuseppe Agapito, Barbara Calabrese, Pietro H Guzzi, Gionata Fragomeni, Giuseppe Tradigo,
Pierangelo Veltri, and Mario Cannataro. Parallel and cloud-based analysis of omics data:
Modelling and simulation in medicine. In 2017 25th Euromicro International Conference on
Parallel, Distributed and Network-based Processing (PDP), pages 519-526. IEEE, 2017.

[4] Li Cai. Latent variable modeling. Shanghai archives of psychiatry, 24:118-20, 04 2012.

[5] Barbara Calabrese and Mario Cannataro. Cloud computing in healthcare and biomedicine.
Scalable Computing: Practice and Experience, 16(1):1-18, 2015.

[6] Min Chen, Yixue Hao, Kai Hwang, Lu Wang, and Lin Wang. Disease prediction by machine
learning over big data from healthcare communities. /EEE Access, 5:8869-8879, 2017.

[7] Fabricio F. Costa. Big data in biomedicine. Drug Discovery Today, 19(4):433-440, 2014.

[8] Conor John Cremin, Sabyasachi Dash, and Xiaofeng Huang. Big data: Historic advances and
emerging trends in biomedical research. Current Research in Biotechnology, 4:138-151, 2022.

[9] Vasiliki Danilatou and Sotiris Ioannidis. Security and privacy architectures for biomedical
cloud computing. In Proceedings of the 10th IEEE International Conference on Information
Technology and Applications in Biomedicine, pages 1-4. IEEE, 2010.

[10] Tuhin Das, Tushar Kanti Das, Anne Khodarkovskaya, and Sabyasachi Dash. Non-coding rnas
and their bioengineering applications for neurological diseases. Bioengineered, 12(2):11675—
11698, 2021. PMID: 34756133.

[11] Sabyasachi Dash, Sushil Kumar Shakyawar, Mohit Sharma, and Sandeep Kaushik. Big data in
healthcare: management, analysis and future prospects. Journal of Big Data, 6(1):1-25, 2019.

[12] Andrea De Mauro, Marco Greco, and Michele Grimaldi. What is big data? a consensual
definition and a review of key research topics. In AIP conference proceedings, volume 1644,
pages 97-104. American Institute of Physics, 2015.

[13] Milton Hoz de Vila, Rahman Attar, Marco Pereanez, and Alejandro F Frangi. Multi-x, a
state-of-the-art cloud-based ecosystem for biomedical research. In 2018 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 1726—1733. IEEE, 2018.

[14] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107-113, 2008.

[15] Khaled El Emam, Sam Rodgers, and Bradley Malin. Anonymising and sharing individual
patient data. bmj, 350, 2015.

[16] Faraz Fatemi Moghaddam, Touraj Khodadadi, Kasra Madadipouya, Mohammad Ahmadi, and
Mahsa Rohani. Cloud computing: Vision, architecture and characteristics. 08 2015.

[17] Xunjie Gou and Zeshui Xu. An overview of big data in healthcare: multiple angle analyses.
Journal of Smart Environments and Green Computing, 1(3):131-145, 2021.

[18] Ishita Goyal, Amritanshu Singh, and Jaspal Kaur Saini. Big data in healthcare: A review. In
2022 Ist International Conference on Informatics (ICI), pages 232-234, 2022.

[19] Stefan Graw, Kevin Chappell, Charity L Washam, Allen Gies, Jordan Bird, Michael S Robeson,
and Stephanie D Byrum. Multi-omics data integration considerations and study design for
biological systems and disease. Molecular omics, 17(2):170-185, 2021.

11

[20] Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah Mokhtar, Abdullah
Gani, and Samee Ullah Khan. The rise of “big data” on cloud computing: Review and open
research issues. Information systems, 47:98-115, 2015.

[21] Allison P Heath, Matthew Greenway, Raymond Powell, Jonathan Spring, Rafael Suarez, David
Hanley, Chai Bandlamudi, Megan E McNerney, Kevin P White, and Robert L. Grossman.
Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets. Journal of
the American Medical Informatics Association, 21(6):969-975, 2014.

[22] Laurent Jourdren, Maria Bernard, Marie-Agnes Dillies, and Stéphane Le Crom. Eoulsan: a cloud
computing-based framework facilitating high throughput sequencing analyses. Bioinformatics,
28(11):1542-1543, 2012.

[23] Johan Karlsson, Oscar Torreno, Daniel Ramet, Giinter Klambauer, Miriam Cano, and Oswaldo
Trelles. Enabling large-scale bioinformatics data analysis with cloud computing. In 2012 IEEE
10th International Symposium on Parallel and Distributed Processing with Applications, pages
640-645. IEEE, 2012.

[24] Ava L Liberman and David E Newman-Toker. Symptom-disease pair analysis of diagnostic error
(spade): a conceptual framework and methodological approach for unearthing misdiagnosis-
related harms using big data. BMJ quality & safety, 27(7):557-566, 2018.

[25] Chih-Wei Lu, Chih-Ming Hsieh, Chih-Hung Chang, and Chao-Tung Yang. An improvement to
data service in cloud computing with content sensitive transaction analysis and adaptation. In
2013 IEEE 37th Annual Computer Software and Applications Conference Workshops, pages
463-468. IEEE, 2013.

[26] Jake Luo, Min Wu, Deepika Gopukumar, and Yiqing Zhao. Big data application in biomedical
research and health care: a literature review. Biomedical informatics insights, 8:BII-S31559,
2016.

[27] D. Mendelson and D. Mendelson. Legal protections for personal health information in the
age of big data — a proposal for regulatory framework. Ethics, Medicine and Public Health,
3(1):37-55, 2017.

[28] Brent Daniel Mittelstadt and Luciano Floridi. The ethics of big data: Current and foreseeable
issues in biomedical contexts. Science and Engineering Ethics, 22(2):303-341, 2016.

[29] Thilo Muth, Julian Peters, Jonathan Blackburn, Erdmann Rapp, and Lennart Martens. Proteo-

cloud: A full-featured open source proteomics cloud computing pipeline. Journal of Proteomics,
88:104-108, 2013.

[30] Vivek Navale and Philip E Bourne. Cloud computing applications for biomedical science: A
perspective. PLoS computational biology, 14(6):¢1006144, 2018.

[31] Devansh Patel, Dhwanil Shah, and Manan Shah. The intertwine of brain and body: a quantitative
analysis on how big data influences the system of sports. Annals of Data Science, 7:1-16, 2020.

[32] Wahid Rajeh. Hadoop distributed file system security challenges and examination of unautho-
rized access issue. Journal of Information Security, 13(2):23-42, 2022.

[33] Satwik Sabharwal, Samridhi Gupta, and K. Thirunavukkarasu. Insight of big data analytics
in healthcare industry. In 2016 International Conference on Computing, Communication and
Automation (ICCCA), pages 95-100, 2016.

[34] Michael C Schatz. Cloudburst: highly sensitive read mapping with mapreduce. Bioinformatics,
25(11):1363-1369, 2009.

[35] Muhammad Shafiq, Zhaoquan Gu, Omar Cheikhrouhou, Wajdi Alhakami, and Habib Hamam.
The rise of “internet of things” review and open research issues related to detection and
prevention of iot-based security attacks. Wireless Communications and Mobile Computing,
2022:12, 08 2022.

12

[36] E Shanmugapriya and R Kavitha. Medical big data analysis: preserving security and privacy

[37]

[38]

[39]

[40]

[41]

[42]

with hybrid cloud technology. Soft Computing, 23:2585-2596, 2019.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop
distributed file system. In 2010 IEEE 26th symposium on mass storage systems and technologies
(MSST), pages 1-10. Ieee, 2010.

Chandrasekar Vuppalapati, Anitha Ilapakurti, and Santosh Kedari. The role of big data in
creating sense ehr, an integrated approach to create next generation mobile sensor and wearable
data driven electronic health record (ehr). In 2016 IEEE Second International Conference on
Big Data Computing Service and Applications (BigDataService), pages 293-296, 2016.

Lidong Wang and Cheryl Ann Alexander. Big data analytics in medical engineering and
healthcare: methods, advances and challenges. Journal of Medical Engineering & Technology,
44:267 — 283, 2020.

Chaowei Yang, Qunying Huang, Zhenlong Li, Kai Liu, and Fei Hu. Big data and cloud
computing: innovation opportunities and challenges. International Journal of Digital Earth,
10(1):13-53, 2017.

Tianyi Yang and Yang Zhao. Application of cloud computing in biomedicine big data analysis
cloud computing in big data. In 2017 International Conference on Algorithms, Methodology,
Models and Applications in Emerging Technologies (ICAMMAET), pages 1-3. IEEE, 2017.

Yin Zhang, Meikang Qiu, Chun-Wei Tsai, Mohammad Mehedi Hassan, and Atif Alamri. Health-
cps: Healthcare cyber-physical system assisted by cloud and big data. IEEE Systems Journal,
11(1):88-95, 2017.

13

Convergence of [oT, Edge Computing, and Cloud
Computing: An Overview and Comparative
Analysis

Boyuan Xiao
boyuan.xiao@student.uva.nl
Sanskar Bajpai
sanskar.bajpai@student.uva.nl
Yufei Wang
yufei.wang2@student.uva.nl

May 30, 2023

Abstract

The convergence of Internet of Things (IoT), Edge Computing, and
Cloud Computing has gained significant attention in recent years due to
its high performance and cost efficiency. In this paper, we provide an
overview and key components of these technologies, exploring their benefits
and challenges. We discuss how the combination of edge computing’s low
latency and high security, cloud computing’s scalability and flexibility, and
IoT devices’ ability to connect with the physical world can revolutionize the
capabilities of IoT devices. This paper also includes real-world examples
to illustrate how these technologies are being effectively utilized together
in various domains. Furthermore, the paper explores challenges and future
trends in the industry and offers observations on the potential impact of
this convergence across various domains.

1 Introduction

In the past few years, smart devices, such as smartphones and smartwatches,
gained a huge user base. Along with the advent of 4G and 5G networks, Edge
Computing, which benefits a lot from the rise of these two technology, becomes
popular in the industry. As the name suggests, Edge Computing mainly happens
at the edge of the internet and processes various data in a closer geographical
location to the user. Therefore, it is obvious that one of the biggest advantages of
Edge Computing is low-latency response|l]. In the meantime, Cloud Computing
thrives and changed our lifestyles significantly as well. As the era of Cloud
Computing 3.0 approaches, the enterprise I'T’s own application architecture has
gradually shifted from (relying on traditional business databases and middleware

—

business suites, specifically designed for each business application field, chimney-
like, high-complexity, stateful, large-scale) vertical scale application layered
architecture to (relying on open source enhanced, highly shared across different
business application domains) database, middleware platform service layer and
(more lightweight and decoupling functions, complete separation of data and
application logic) distributed stateless architecture[2|. This shift of focus, in
turn, enables a better interplay between Edge Computing and Cloud Computing.

Next to Edge Computing, another frequently mentioned concept is the
Internet of Things (IoT). The number of IoT devices that are active grows at an
incredible speed in recent years, and this number is expected to hit 50 billion
in 2025[3]. Moreover, the relationship between Edge Computing and IoT is
convoluted. IoT enables multiple new technologies while influencing existing
research fields, such as Machine Learning[4] and Deep Reinforcement Learning|).

This literature review aims to discuss the current development and con-
vergence of Cloud Computing, Edge Computing and IoT. Sections 2, 3 and 4
present a comprehensive view of Edge Computing, Cloud Computing and IoT
respectively. Section 5 gives a closer look of the relationship between Cloud
Computing and Edge Computing while Section 6 focuses on the convergence of
all three. Some of the existing obstacles faced by all three of them are listed in
Section 7. Finally, we show our observation of the future trends of the industry
and conclusion in Sections 8 and 9.

2 Edge Computing

2.1 Overview

As previously mentioned in Section 1, Edge Computing sits at the edge of the
network. It brings data processing and computation closer to the source of
data generation, rather than relying on a centralized cloud infrastructure. This
distributed computing paradigm benefits from the fact that the computation
power, namely the CPU, of edge devices grows significantly over the past few
years. Edge Computing has been acknowledged to overcome the issues caused by
the conventional centralized computation network formed by cloud computing
alone, e.g., single point of failure and excessive traffic/computation burden caused
by data aggregation|6]. It is common that people often mention IoT along with
Edge Computing. Edge-Computing-Driven IoT (ECDriven-IoT) is strong proof
for the fact that they are closely related. ECDriven-IoT is a promising solution
taking advantage of edge computing to build scalable and efficient IoT systems.
As a combination of the two, ECDriven-IoT managed to overcome issues, such
as how to achieve good interconnection and interoperability among IoT devices,
for traditional IoT with the help of Edge Computing]|1].

2.2 Key Components

Edge devices, which are the physical component of Edge Computing, is crucial.
Meanwhile, since the network architecture becomes rather distributed, it is
really essential that the network connections between edge devices have low
latency. The goal of such an architecture is to perform the delay-sensitive and
computationally intensive part of an application in the edge network|7]. As a
result, low-latency network plays an important role in Edge Computing.

3 Cloud Computing

3.1 Overview

Different from both Edge Computing and IoT, Cloud Computing is a well-known
concept with a history of longer than two decades|8|. It allows users to use IT
services as easily as using water from a water faucet. More importantly, users can
use them without worrying about purchasing the underlying hardware or coping
with the complex setup. Some of the main properties of Cloud Computing are
On-Demand Self-Service, Extensive Network Access, Resource Pooling, Fast and
Elastic Scaling and Measurable Services|2]. After more research and practice,
scholars believe that it is necessary to decentralize Cloud Computing. Boundaries
between Edge Computing and Cloud Computing blur as technologies like Ad-hoc
Edge Cloud architectures and Swarm computing emerge|9].

3.2 Key Components

There are many fundamental technologies which enable Cloud Computing. The
importance of Broadband Network and Internet Architecture goes without
saying. Data Center Technology, Virtualization Technology and Multi-
Tenant Technology defines the architecture of Cloud Computing. Web
Technology is often used as the realization medium and management interface
of cloud services|2].

4 Internet of Things (IoT)

4.1 Overview

Internet of Things was first introduced by Marc Weiser in 1991 in his book "The
Computer for the Twenty-first Century". IoT technology benefits a wide range
of fields including agriculture, healthcare, transportation & logistics and smart
cities. The definition of IoT also varies in different scientific fields. However, the
book|10] gives a comprehensive definition of IoT devices covering many aspects.
When looking at the hardware definition of IoT, sensors and actuators make
IoT distinguishable from others. By using sensors and actuators, IoT devices
manage to extract, pre-process, interpret and transfer data to other devices or
other receiving entities in the Internet.

4.2 Key Components

Except for sensors and actuators, [oT requires internet connectivity similar
to all the other internet-based technologies. On the other side of the network
connection, cloud infrastructures frequently communicate with IoT devices.
Cloud Computing plays a significant role in IoT deployments. Cloud infras-
tructure provides storage, computing power, and data processing capabilities
necessary for handling large volumes of IoT data. It enables scalable and flexible
data storage, analytics, and access to services and applications.

5 Relationship between Edge Computing and Cloud
Computing

To begin with, we take a look at the differences between these two computing
technologies. The crucial difference is that they process data at different locations,
which also results in their different features [11|. Edge computing processes
data closer to the data source. It brings computing resources and data storage
closer to the devices generating the data, such as IoT devices, sensors, or mobile
devices. Cloud computing, on the other hand, centralizes data processing and
storage in remote data centres or the cloud. It relies on a network of powerful
servers and infrastructure to handle data processing, storage, and computing
tasks. Users can only access and utilize cloud resources over the internet. Thus
it provides the different properties as follows.

Latency: edge computing excels in scenarios where low latency and real-time
processing are critical. By processing data locally at the edge, edge computing
can provide faster response times and immediate decision-making. This is
particularly advantageous for applications requiring real-time analysis, such as
autonomous driving, and remote monitoring. While cloud computing can handle
real-time tasks to some extent, it is not an ideal choice for applications that
require immediate responses. This is because the need for internet connection
and data transmission to the cloud introduces delays and latency, which makes
it less suitable for such time-sensitive applications. As Wan [12]| analyzes in
the paper, the current distributed Cloud introduces unpredictable latencies
caused by dispatching, network transmission and computation compared with
the traditional computing model. It challenges Cloud Computing and hinders
the effort to migrate applications to the Cloud. Liu et al. [13]| present the
opportunities and challenges of applying edge computing for automatic driving.
As the vehicle constantly collects data from various sensors, such as cameras,
lidar, and radar, edge computing is preferred over cloud computing since it allows
for immediate data processing and decision-making directly within the vehicle.
By processing the data locally, edge computing reduces the reliance on the cloud
and minimizes the latency introduced by transmitting data to a remote server.
Otherwise, the vehicle may react slowly and passengers can face dangers because
of the low efficiency of data flow and analysis.

Scalability: cloud computing is highly scalable. It can easily R/W comput-

ing resources and dynamically allocate computing resources. Edge computing,
however, typically operates on a smaller scale and involves localized resources.
The computing capabilities at the edge are limited by the physical hardware and
network infrastructure. Because cloud computing providers maintain large data
centres with extensive server infrastructure and storage capacity, applications on
the cloud are able to scale and handle increased workloads without limitations
imposed by local edge devices. Therefore, cloud computing is an essential part of
the big data field [14]. Various cloud performance benchmarks and evaluations
[15] [16] demonstrated that balancing the number and size of VMs as a function of
the specific applications is critical to achieving optimal scalability for geospatial
big data applications. It provides effective tools to manage, process, and analyze
for big data.

Security: edge computing performs better on data privacy and security since
sensitive data can be processed and analyzed locally without being transmitted
to the remote server. This can be crucial for industries with strict data privacy
regulations or applications dealing with sensitive user information. In Carlin
and Curran’s paper [17], they illustrate the main security risks and issues that
are currently present within the cloud computing industry. Although cloud
computing applies robust security measures implemented by cloud service to
protect data, there are still concerns over the data privacy caused by compliance
issues or authorized access.

In summary, even if edge and cloud computing are both state-of-the-art
computing methods nowadays, they are not perfect and have some defects in
some application scenarios. While edge computing enables real-time processing,
reduces latency, and protects data privacy, cloud computing provides scalable
infrastructure and better capabilities to handle large-scale processing. Therefore,
a hybrid approach combining both computing technologies can be adopted to
improve the performance of systems.

6 Convergence

As discussed above, edge computing and cloud computing have their pros and
cons. Thus how to make use of their advantages and combine them with IoT
becomes a transformative trend. The convergence is revolutionizing the way we
interact with technology and the capabilities of IoT devices. It brings the low
latency and high security of edge computing, scalability and flexibility of cloud
computing, as well as the ability of IoT devices to connect with the physical world.
We analyze how IoT benefits from edge and cloud computing with instances.

6.1 Real-time Solution

Edge computing enables rapid analysis and decision-making at the edge devices,
reducing latency and enabling real-time responses. Sood et al. [18] developed
an Edge Cloud-centric IoT-based smart traffic management system for traffic
inflow prediction and time-optimized smart navigation of vehicles. By accurately

predicting traffic movement, the system can adjust traffic signal timings at
intersections and prevent long waiting queues and congestion. Additionally,
through smart navigation, the system can distribute traffic optimally across
different paths, improving road safety at intersections. This system leverages real-
time data from connected devices, processes it locally with edge computing, and
utilizes cloud resources for complex analytics and decision-making. Therefore,
critical data can be processed locally, while non-time-sensitive data can be sent
to the cloud for further analysis, which makes provide real-time robust and smart
solutions to IoT systems.

6.2 Big Data Analysis

As cloud computing is widely used in IoT and big data field, IoT Cloud becomes
a term that represents the technology architecture that connects IoT devices to
servers housed in cloud data centres. While the Internet of Things refers to the
world’s collection of devices that gather and share information across various
industries and sectors, cloud computing offers storage and processing capabilities
for huge amounts of data among clusters. IoT Cloud is affecting our life in
every corner. Take healthcare for example, IoT Cloud is revolutionizing eHealth
and its whole ecosystem. Nowadays, [oT devices are indispensable in medical
systems. With combination with cloud computing, the systems are able to store
and process the immense volume of data generated by IoT devices. According to
the models learn from vast amounts of previous patients’ data, patients can get
detailed reports and even personalized healthcare. Aceto et al. [19] discussed
the relationship between health and these technologies, believing IoT, cloud
computing, and big data are moving it towards HealthCare 4.0. Besides the
medical field, cloud computing enables IoT deployments to grow rapidly and
adapt to changing requirements in various areas.

6.3 Data Privacy

IoT devices are not usually built with security solutions, leading to potential
vulnerabilities in a multiple-device system. Edge computing, however, can help
reduce these risks. It provides encrypted tunnels and access control to secure
access. Besides, edge computing is not centralized, it is able to implement
threat detection technologies to identify a potential breach as early as possible.
Security agents or micro data centres, for example, can be applied on edge
nodes to prevent unauthorized or malicious traffic from compromised IoT devices.
According to the levels of data sensitivity, systems are supposed to store and
process different data between edge and cloud computing, which will greatly
enhance data privacy issues.

6.4 Cost Efficiency

The distribution between edge and cloud computing can optimize the costs.
First, with edge computing, systems can send only relevant and delayed data to

the cloud, which will significantly reduce bandwidth requirements and associated
costs. It is particularly important in scenarios where network connectivity is
limited or expensive. Additionally, cloud computing offers elasticity, allowing it
to dynamically scale the computing resources based on demand. Some dynamic
task allocation algorithms were also studied by Ding et al. [20] and Du et al.
[21] to make the best use of the available resources.

Overall, the convergence of IoT, edge computing, and cloud computing op-
timizes how data is stored, processed, and managed. The convergence utilizes
the strengths of different technologies and creates a powerful and complemen-
tary ecosystem. It opens up new possibilities and opportunities across various
industries, ranging from traffic and healthcare to smart cities.

7 Challenges

7.1 Challenges of IoT

Rob et al. [22] states challenges regarding IoT devices, some the highlights are:

Zero-Entropy systems: Energy will be a major technological challenge in
the next five to 10 years, and research must be conducted in order to develop
systems that are able to harvest energy from the environment and not waste any
under operation.

Security & Privacy: It is crucial to effectively tackle and resolve the
challenge of ensuring adequate security on devices that have limited capabilities.
Additionally, there is a need to establish and implement technological frameworks
prioritising privacy protection, serving as the foundation for future advancements.

Scalability: The Internet of Things (IoT) is anticipated to consist of an im-
mense number of devices, potentially reaching trillions. Although it is improbable
for all devices to be interconnected in a mesh-like structure, they will likely be
organized into hierarchical subdomains. Nonetheless, the scale of interconnected
objects within the IoT is expected to surpass the current internet by several
orders of magnitude.

7.2 Challenges of Edge Computing

Varghese et al. [23] discuss the following challenges:

Heterogeneity: The edge computing landscape is highly heterogeneous, with
diverse devices, platforms, and network technologies. Achieving interoperability,
seamless integration, and efficient communication across this heterogeneous
environment is challenging.

Data Management and Analytics: Managing and processing data at the
edge efficiently is crucial for real-time decision-making. Edge analytics, data
aggregation, filtering, and synchronization techniques need to be developed to
handle data in a distributed and dynamic environment.

Quality of Service: Meeting the desired quality of service requirements in
terms of latency, reliability, and availability is a challenge in edge computing.

Efficient task scheduling, service placement, and network optimization techniques
are needed to deliver satisfactory performance.

Resource Constraints: Resource Constraints: Edge devices typically have
limited resources such as processing power, memory, and energy. Optimizing
resource utilization and designing lightweight algorithms and protocols are
essential to operate within these constraints.

7.3 Challenges of Cloud Computing in the Context of IoT
Devices

Sadeeg et al. |24] include the following challenges:

Storage and Computational performance: Systems that include the use
of cloud-based IoT devices require a high degree of performance goal requirements.
Such specifications can be difficult to meet in all settings because cloud-based
IoT devices are in motion for many applications

Reliablitiy: IoT devices are dependent on the Cloud to work providers for
time-critical apps, and the effect would directly reflect the program’s output. In
cars, surgical instruments, or in the security field, for example.

8 Trends

Carvalho et al. [25] states the following: The rapid growth of mobile devices
connecting to the network edge presents both opportunities and challenges. While
mobility enhances flexibility for users and applications, it also leads to frequent
disconnections between edge devices and the network, negatively impacting
service quality in terms of loss, delay, and bandwidth.

However, there is a need for a comprehensive management architecture that
facilitates seamless device and service handover, along with fault-tolerance sys-
tems to mitigate failures. Considering different network access technologies and
administrative domains, optimization of both horizontal and vertical handovers
is crucial. This optimization should account for factors beyond signal quality,
including movement direction, network cost-benefit analysis, and service quality.

Furthermore, the mobility of edge nodes intensifies requirements for resource
availability, resource discovery, task offloading, and resource provisioning [125].
User mobility also affects the number of hops between users and their services,
particularly at network boundaries. Therefore, efficient and dynamic migration
or replication of edge services becomes imperative in response to such network
transitions.

Edge computing can leverage the cloud to enhance reliability. By storing data
and running applications on Cloud servers, the risk of data and application loss
on mobile devices is reduced. However, it is crucial to establish dependable edge
systems that do not rely on Cloud servers. Additionally, addressing challenges
such as individual device failures, network coverage issues, network failures,
platform failures, and user interface failures requires the development of a
reliable and fault-tolerant edge environment.

9 Conclusion

The convergence of IoT, Edge Computing, and Cloud Computing has paved the
way for transformative advancements in the field of technology. This convergence
offers numerous opportunities to create intelligent, efficient, and interconnected
systems that can revolutionize industries and improve the quality of life for
individuals.

By leveraging the capabilities of IoT devices, data can be collected and
processed at the network edge through Edge Computing. This allows for real-time
analytics, reduced latency, and efficient resource utilization. The Edge Computing
layer complements the Cloud Computing infrastructure, which provides scalable
storage, computation, and services.

Together, IoT, Edge Computing, and Cloud Computing enable a distributed
architecture that offers several benefits. It enables efficient data processing and
analysis closer to the source, reducing the need for transmitting large amounts
of data to the cloud. This reduces network congestion, minimizes latency, and
enhances overall system performance.

Moreover, this convergence enables the seamless integration of various de-
vices, sensors, and applications, fostering the development of innovative solutions
across industries such as healthcare, transportation, manufacturing, and smart
cities. It facilitates real-time decision-making, predictive analytics, and automa-
tion, unlocking new possibilities for optimization, cost reduction, and improved
operational efficiency.

In conclusion, the convergence of IoT, Edge Computing, and Cloud Comput-
ing has its set of challenges but holds immense potential to drive innovation and
transformation across various domains. By effectively harnessing the capabilities
of these technologies, organizations can unlock new opportunities and deliver
enhanced services, ultimately shaping a more connected and intelligent future.

References

[1] Linghe Kong et al. “Edge-Computing-Driven Internet of Things: A Survey”.
In: ACM Comput. Surv. 55.8 (Dec. 2022). 1sSN: 0360-0300. DOI: |10.1145/
3555308, URL: https://doi-org.vu-nl. idm.oclc.org/10.1145/
3555308.

[2] “Introduction to Cloud Computing Computing”. In: Cloud Computing
Technology. Singapore: Springer Nature Singapore, 2023, pp. 1-58. ISBN:
978-981-19-3026-3. DOI: |10.1007/978-981-19-3026-3_1. URL: https:
//doi.org/10.1007/978-981-19-3026-3_1.

[3] Ericsson. “CEO to shareholders: 50 billion connections 2020”. In: https: //www.
ericsson. com/en/press-releases/2010/4 /ceo-to-shareholders-50-billion-connections-

2020 (2010).

[4] Eunice Likotiko, Yuki Matsuda, and Keiichi Yasumoto. “Garbage Content
Estimation Using Internet of Things and Machine Learning”. In: JEEE
Access 11 (2023), pp. 13000-13012. DOI: [10.1109/ACCESS. 2023 . 3242547

[5] Abdeladim Sadiki et al. “Deep reinforcement learning for the computation
offloading in MIMO-based Edge Computing”. In: Ad Hoc Networks 141
(2023), p. 103080. 1SSN: 1570-8705. DOL: https://doi.org/10.1016/5 .
adhoc.2022.103080. URL: https://www.sciencedirect.com/science/
article/pii/S1570870522002529.

[6] Hao Ran Chi. “Editorial: Edge Computing for the Internet of Things”.
In: Journal of Sensor and Actuator Networks 12.1 (2023). 1SSN: 2224-
2708. DOI: 10.3390/jsan12010017. URL: https://www.mdpi.com/2224-
2708/12/1/17.

[7] Patrick McEnroe, Shen Wang, and Madhusanka Liyanage. “A Survey on
the Convergence of Edge Computing and Al for UAVs: Opportunities and
Challenges”. In: IEEFE Internet of Things Journal 9.17 (2022), pp. 15435—
15459. pDOI:|10.1109/JI0T.2022.3176400.

[8] Kjell Bratbergsengen. “Cloud Computing in the 1970s: The Discovery of
Hash Based Relational Algebra”. In: History of Nordic Computing 3. Ed. by
John Impagliazzo, Per Lundin, and Benkt Wangler. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 368-374. I1SBN: 978-3-642-23315-9.

[9] Ana Juan Ferrer. “Setting the Scene: Cloud, Edge, Mobile and Ad-hoc
Computing Context”. In: Beyond Edge Computing: Swarm Computing
and Ad-Hoc Edge Clouds. Cham: Springer International Publishing, 2023,
pp- 13-20. 1SBN: 978-3-031-23344-9. DOI: 110.1007/978-3-031-23344-9_2.
URL: https://doi.org/10.1007/978-3-031-23344-9_2.

[10] Pascal Hirmer. “Foundations”. In: Model-Based Approaches to the Internet
of Things. Cham: Springer International Publishing, 2023, pp. 7-15. ISBN:
978-3-031-18884-8. DOI: 10.1007/978-3-031-18884-8_2. URL: https:
//doi.org/10.1007/978-3-031-18884-8_2.

10

https://doi.org/10.1145/3555308
https://doi.org/10.1145/3555308
https://doi-org.vu-nl.idm.oclc.org/10.1145/3555308
https://doi-org.vu-nl.idm.oclc.org/10.1145/3555308
https://doi.org/10.1007/978-981-19-3026-3_1
https://doi.org/10.1007/978-981-19-3026-3_1
https://doi.org/10.1007/978-981-19-3026-3_1
https://doi.org/10.1109/ACCESS.2023.3242547
https://doi.org/https://doi.org/10.1016/j.adhoc.2022.103080
https://doi.org/https://doi.org/10.1016/j.adhoc.2022.103080
https://www.sciencedirect.com/science/article/pii/S1570870522002529
https://www.sciencedirect.com/science/article/pii/S1570870522002529
https://doi.org/10.3390/jsan12010017
https://www.mdpi.com/2224-2708/12/1/17
https://www.mdpi.com/2224-2708/12/1/17
https://doi.org/10.1109/JIOT.2022.3176400
https://doi.org/10.1007/978-3-031-23344-9_2
https://doi.org/10.1007/978-3-031-23344-9_2
https://doi.org/10.1007/978-3-031-18884-8_2
https://doi.org/10.1007/978-3-031-18884-8_2
https://doi.org/10.1007/978-3-031-18884-8_2

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

GS Sriram. “Edge computing vs. Cloud computing: an overview of big
data challenges and opportunities for large enterprises”. In: International
Research Journal of Modernization in Engineering Technology and Science
4.1 (2022), pp. 1331-1337.

Zhitao Wan. “Cloud Computing infrastructure for latency sensitive appli-
cations”. In: 2010 IEEFE 12th International Conference on Communication
Technology. IEEE. 2010, pp. 1399-1402.

Shaoshan Liu et al. “Edge computing for autonomous driving: Opportunities
and challenges”. In: Proceedings of the IEEE 107.8 (2019), pp. 1697-1716.

Chaowei Yang et al. “Big Data and cloud computing: innovation oppor-
tunities and challenges”. In: International Journal of Digital Earth 10.1
(2017), pp. 13-53.

Amril Nazir et al. “Evaluation of virtual machine scalability on distributed
multi/many-core processors for big data analytics”. In: 2012 IEEE Confer-
ence on Open Systems. IEEE. 2012, pp. 1-6.

Sebastian Lehrig et al. “CloudStore—towards scalability, elasticity, and
efficiency benchmarking and analysis in Cloud computing”. In: Future
Generation Computer Systems 78 (2018), pp. 115-126.

Sean Carlin and Kevin Curran. “Cloud computing security”. In: Pervasive
and Ubiquitous Technology Innovations for Ambient Intelligence Environ-
ments. IGI Global, 2013, pp. 12-17.

Sandeep Kumar Sood et al. “Smart vehicular traffic management: An edge
cloud centric IoT based framework”. In: Internet of Things 14 (2021),
p. 100140.

Giuseppe Aceto, Valerio Persico, and Antonio Pescapé. “Industry 4.0 and
health: Internet of things, big data, and cloud computing for healthcare
4.0”. In: Journal of Industrial Information Integration 18 (2020), p. 100129.

Shiyao Ding and Donghui Lin. “Dynamic task allocation for cost-efficient
edge cloud computing”. In: 2020 IEEFE International Conference on Services
Computing (SCC). IEEE. 2020, pp. 218-225.

Mingzhe Du et al. “Algorithmics of Cost-Driven Computation Offloading
in the Edge-Cloud Environment”. In: IEEE Transactions on Computers
69.10 (2020), pp. 1519-1532. DOI: |10.1109/TC.2020.2976996.

Rob Van Kranenburg and Alex Bassi. “IoT challenges”. In: Communications
in Mobile Computing 1.1 (2012), p. 9.

Blesson Varghese et al. “Challenges and opportunities in edge computing”.
In: 2016 IEEE international conference on smart cloud (SmartCloud).
IEEE. 2016, pp. 20-26.

Mohammed Mohammed Sadeeq et al. “IoT and Cloud computing issues,
challenges and opportunities: A review”. In: Qubahan Academic Journal
1.2 (2021), pp. 1-7.

11

https://doi.org/10.1109/TC.2020.2976996

[25] Gongalo Carvalho et al. “Edge computing: current trends, research chal-
lenges and future directions”. In: Computing 103 (2021), pp. 993-1023.

12

Payment systems in clouds (models used by Cloud
Service Providers) for cloud-based application

Sybil Xie Serein Li
Department of Computer Science Department of Computer Science
University of Amsterdam University of Amsterdam
2757089 2760463
c.xie@student.vu.nl r.1li30student.vu.nl
Yue Zhang

Department of Computer Science
University of Amsterdam
2772421

y.zhang8@student.vu.nl

Abstract

The way that organizations and people access and use computing resources has
been changed by cloud computing. Understanding how payment system models
are changing is essential as demand for cloud services increases. In order to
provide light on how payment systems have evolved and what effect they have on
pricing models and user experiences, this literature review examines both past and
present payment system models used in cloud computing. The report explores fixed
pricing, dynamic pricing, and value-based pricing, highlighting their advantages,
disadvantages, and the importance of cloud service users understanding these
models.

1 Introduction

With the introduction of cloud computing, organizations now have access to a wide range of flexible,
scalable, and economical services. One crucial aspect of this digital transformation is the implemen-
tation of payment systems in clouds, which has become a focal point for Cloud Service Providers
(CSPs) [21]. This literature review delves into the various models used by CSPs for cloud-based
applications, providing a comprehensive understanding of the current landscape and future trends.

Cloud-based applications cannot work without payment mechanisms, which enable frictionless
interactions between consumers and service providers. Over time, these systems have changed to
accommodate both the changing needs of businesses and customers. The path has been characterized
by technology improvements and creative solutions, from conventional approaches to sophisticated
cloud-based systems.

The CSPs’ various models for these payment systems each have their own advantages and disad-
vantages. The "pay-as-you-go" business model is one that some service providers use to give their
clients flexibility and scalability. Others prefer a business plan that relies on subscriptions because it
provides a more steady and regular flow of income. Also increasing popularity is a hybrid model that
incorporates the greatest features of each.

In-depth examination of these models will be done in this paper using case studies from top CSPs
including Amazon Web Services, Microsoft Azure, and Google Cloud. The difficulties providers
have putting these systems in place will also be covered, along with possible answers.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Cloud-based payment systems have a bright future ahead of them as new trends emerge as technology
advances. This assessment tries to clarify these patterns and provide information on how cloud-based
applications and associated payment systems will develop in the future.

In conclusion, it is impossible to exaggerate the significance of effective payment mechanisms
in clouds. Understanding these systems and their implications is essential for both providers and
customers as cloud computing continues to rule the digital environment.

2 Evolution of Payment Systems in Clouds

In the early days of cloud computing, fixed pricing was the predominant pricing model. Customers
could choose a plan and then upgrade to a higher tier if it didn’t suit their needs. Most cloud services
now offer a form of dynamic billing where customers only pay for the resources they have used
[LO]. Service Level Agreements (SLAs) are a crucial component of cloud computing. They detail
the negotiations between the provider and the consumer. Other points included in the SLA are
the provision of services, the specific level of Quality of Service (QoS), and guarantees. The final
agreements are documented in a contract with the concerned parties [3].

Over time, payment systems began to adopt dynamic models that change based on supply and demand.
If a large amount of resources is required at a certain moment in time, the price per unit can rise. The
main advantage of this model is that the service provider has more control over the price and can
potentially generate more profits. For users, this introduces price risk, as they have to take this into
account when they reserve resources to prevent unintentional overpayment. Dynamic systems are
also more difficult to implement as they require more features: customers generally want to be able
to set upper and lower bounds to reduce their price risk, and algorithms are needed to determine the
current market price of the requested resources [15]].

Market-dependent pricing models are rarely used and are quite difficult to implement. In this model,
the price is not only based on supply and demand like dynamic pricing but a bid-ask marketplace is
also introduced, where multiple bidders can buy resources based on real-time market conditions. This
strategy can be profitable but is infrequently utilized because it is highly challenging to implement
because it requires a working marketplace. We may anticipate more advancements in payment
systems with more complex pricing models that better reflect the value offered to customers and the
costs incurred by providers as cloud computing continues to expand.

3 Models Used by Cloud Service Providers

3.1 Current models used by cloud service providers

The current models used by cloud service providers Cloud service companies offer a variety of pricing
models to suit the various needs of their clientele. Fixed pricing models, dynamic pricing models,
and value-based pricing models are the three main categories. Each has unique benefits and potential
disadvantages of its own. Customers must therefore be aware of their own requirements and available
resources before choosing a model.

Fixed pricing, also known as static or cost-based pricing, is perhaps the simplest and most commonly
used model among these. Customers subscribing to this model pay a predetermined fee for a specified
service unit. This could be charged monthly, per computing node, per CPU usage, or based on a
different metric. The primary advantage of fixed pricing is its ease of implementation.

For businesses seeking transparency and predictability, a clear pricing structure is essential. This
can be found in the fixed model, which provides stability around budgeting needs. However, there
is a drawback to this option as it doesn’t account for fluctuations in supply and demand within the
market. The other consideration is dynamic pricing models that base adjustments on supply and
demand changes in real time. While this offers flexibility, the user may experience price risk at peak
times. On the other hand, service providers can take greater control over their pricing with potential
profits that reflect market conditions.

It also necessitates a more complex implementation process, as the service provider needs to constantly
monitor and adjust their pricing in line with market conditions [15].

The third model is value-based pricing. It looks at the pricing issue from the perspective of the
customer’s value perception. Instead of setting a price based on the service cost or the current market
conditions, this model derives the price from the perceived value of the service to the customer.
This can allow CSPs to maximize their profits by charging a premium for highly valued services.
However, implementing a value-based pricing model has its own challenges, for it requires a thorough
understanding of each customer’s perceived value, which can be highly subjective and difficult to
quantify.

3.2 Fixed Pricing Model

Fixed pricing, also known as static pricing or cost-based pricing, is a pricing model where the price is
predetermined, providing transparency and stability between the Cloud Service Provider (CSP) and
the customer [5]. This model is predominantly used in the early stages of cloud computing, where
the market was less volatile and the demand was relatively predictable.

Fixed pricing models are typically adopted by companies that value predictability and stability in
their costs. These companies usually have a steady and predictable usage pattern, which aligns well
with the fixed pricing model. Major CSPs like Amazon Web Services, Microsoft Azure, and Google
Cloud Platform have offered fixed pricing models, especially for their Software as a Service (SaaS)
offerings [8]].

One of the main advantages of the fixed pricing model is its simplicity and ease of implementation.
The price is set in advance, and customers know exactly how much they will be charged, making it
easier for them to budget and plan their expenses. This model also provides stability for the CSP, as
they can predict their revenue based on fixed prices.

However, the fixed pricing model also has its disadvantages. The main one is that the price might not
reflect the actual market value. Customers might end up paying more than the market value if their
actual usage is less than the provisioned resources. This model also makes it difficult for providers to
change the price, limiting potential profits.

3.2.1 Subscription-based Model

The subscription-based model is a common type of fixed pricing model used in the cloud industry,
particularly for SaaS offerings. In this model, customers pay a fixed fee each month or year for a
specific level of service. The fee usually depends on the number of users, the amount of resources, or
the level of service required.

The subscription-based model is favored by businesses with predictable usage patterns, as it allows
for easy budgeting and cost control. It also provides transparency in pricing, as customers know
exactly how much they will be charged each month [6].

However, like the general fixed pricing model, the subscription-based model may not be cost-effective
for customers with variable or unpredictable usage patterns. Customers may end up paying for more
resources than they actually use. Furthermore, this model may not reflect the actual market value of
the resources, especially in a rapidly changing market like cloud computing.

3.2.2 Pay-as-you-go Model

The pay-as-you-go model is a payment method that provides users with flexibility by charging them
based on their specific usage or consumption of a product or service[2]. This model calculates charges
at regular intervals, such as hourly, daily, or monthly, ensuring that users only pay for the resources
or services they have actually utilized during that specific period[9]. In 2006, Amazon Web Services
recognized the significance of this concept and introduced a pay-as-you-go computing service that
required no contractual commitment. Customers simply needed a credit card to access and utilize the
services. The key advantage of this model lies in its ability to accommodate changing needs, allowing
users to easily scale their usage up or down as required, and adjust their payment accordingly. By
aligning costs with usage, the pay-as-you-go model offers a cost-effective and adaptable solution for
users.

3.2.3 Tiered and Volume-based pricing

Tiered and volume-based pricing are two distinct yet interrelated pricing strategies that businesses
utilize to incentivize larger purchases and optimize revenue.

Tiered pricing is a model where the unit cost of a product or service decreases as the quantity
purchased increases. It establishes different price points for different levels or "tiers" of product
quantities. For example, a company may charge $100 for 1-10 units, $90 for 11-20 units, and so on.
This method encourages customers to purchase in larger quantities to enjoy a lower unit cost. It also
allows businesses to cater to a wide range of customers with varying needs and budget constraints.

Volume-based pricing offers a flat discount on the total cost based on the quantity purchased. In
this model, the price per unit remains constant, but the total cost decreases as the volume of purchase
increases. For example, a company may offer a 5% discount on orders over 100 units and a 10%
discount on orders over 200 units. This strategy encourages bulk purchases and can be especially
effective in industries where marginal production costs decrease with volume [[15]].

3.3 Dynamic Pricing Model

The concept of the dynamic model entails that the price of the product or service is determined by
multiple dynamic factors, including time, customer demand, and other relevant variables[18]]. Many
companies employ this pricing strategy to effectively manage their limited capacity or resources.
The dynamic model has found extensive application in various service and utility industries. Cloud
Computing has transformed a large part of the IT industry, making computing a utility, so developers
of innovative internet services no longer face the need for significant upfront capital investment in
hardware or extensive human resources for operations. The unprecedented resource elasticity marks
a significant milestone in IT history[/11]].

Talking about payment or pricing models, the elasticity of the dynamic payment model follows
the core advantage of Cloud Computing services. There are a variety of dynamic payment models
offered by CSPs, providing cloud customers the chance to choose their most satisfying solutions in
the marketplace. The dynamic model offers many advantages for both CSPs and customers.

For the CSPs, the flexibility enables them to adapt to market conditions and optimize their pricing
strategies accordingly. By adjusting prices, they can incentivize customers to utilize underused
resources or shift demand to less busy periods, resulting in better spare cloud capacity utilization
and cost optimization. They can also respond quickly to market dynamics, optimize their pricing
strategies for more benefits, and stay ahead of competitors, bringing about a competitive edge in the
market.

For cloud customers, the flexibility enables a much closer alignment of resources with the workload
at hand. Real-world estimates of server utilization in data centers range from 5% to 20%. Another
observation is that the peak workloads for many services can surpass the average workload by factors
of 2 to 10 [11]. Since few users provision resources for less than the anticipated peak, they end
up provisioning for the peak and leaving resources idle during non-peak periods. The greater the
variation in workload, the more waste occurs. Elasticity provided by dynamic models can mitigate
this waste, compensating for the potentially higher cost per server hour associated with traditional
fixed payment models.

For example, AWS offer spot instances or spot blocks with pricing that can be categorized as dynamic-
based pricing in 2009. It can be considered as auction-based, cost-based, or time-based pricing due
to its multiple characteristics[[16]]. The shifting conditions of supply and demand have an impact
on these pricing alternatives. It might be challenging to classify one pricing model into a single
category because the CSPs frequently incorporate components from several pricing strategies into
their models. Pricing structures that exhibit traits of many pricing models may be produced as a result
of the dynamic nature of cloud computing and the variability in supply and demand.

We will examine two typical dynamic models used for cloud pricing.

3.3.1 Segment-based model

Segment-based pricing is a strategic approach employed by CSPs to categorize their customers into
segments based on specific criteria. This strategy allows CSPs to offer customized pricing plans and
services that cater to the unique needs and requirements of each customer segment.

The criteria used for segmentation may vary depending on the CSP and its target market. Common
factors considered for segmentation include usage patterns, resource demands, geographic location,
industry vertical, customer size, and specific service preferences. For example, Microsoft implements
segment-based pricing by offering student licenses for their MS Office package, recognizing the
specific needs and budget constraints of students. Another example is when a cloud service provider
offers discounted prices specifically tailored for students to access cloud services, understanding their
unique requirements and financial limitations. Another example is Amazon segments its customers
by combining operational revenue streams, such as e-commerce and cloud services, to offer bundled
pricing options and provide business customers with valuable advice on cost optimization and
efficiency[18]].

Segment-based pricing brings several benefits for both CSPs and customers. For CSPs, it allows
them to optimize revenue generation by setting different prices based on the perceived value of their
services within each segment. This approach maximizes profitability and ensures that customers in
high-value segments contribute proportionally to the provider’s overall revenue.

From a customer perspective, segment-based pricing offers greater flexibility and cost-effectiveness.
Different segments may have varying needs and usage patterns, and pricing plans can be tailored
accordingly. This ensures that customers only pay for the resources and services they actually utilize,
resulting in a more personalized and cost-efficient solution.

3.3.2 Auction-based model

Auction-based pricing is a dynamic pricing model widely utilized across various industries. Under
this model, prices are established through competitive bidding among buyers. Sellers present their
products or services, and buyers place bids to acquire them. The highest bidder emerges as the winner
of the auction and pays the amount they bid.

Auction-based pricing offers several advantages. The auction process is swift and devoid of intricate
processing steps. The pricing mechanism is transparent, with bidders only required to pay the
incremental cost at each bid. It also ensures fairness among all participating bidders who adhere to
the rules of the auction. However, this model has its limitations. Bidders face time constraints while
making decisions during the bidding process, which can result in bids surpassing the actual value of
the goods.

In the cloud market, the auction-based pricing model is specifically designed for niche and expanding
markets. Its objective is to capture additional value from customers at the lower end of the demand
curve. In 2009, AWS introduced its own auction-based spot instance. The AWS bidding process
initially functions as a blind auction, where bidders simultaneously submit their prices without
knowledge of other participants’ offers[18].

The auction-based model in the cloud market allows market forces to determine the price, establishing
a transparent and competitive environment. It facilitates price discovery, as buyers’ and sellers’
willingness to engage in transactions is unveiled through the bidding process. Auctions create a sense
of urgency and excitement, fostering competition among buyers and potentially maximizing revenue
for sellers.

3.4 Value-based pricing model
The models we previously introduced mainly focus on the cost or the market, but differently, the
value-based pricing model is driven by demands.

Value-based pricing is a subjective pricing strategy that focuses on the perceived value delivered to cus-
tomers, rather than market prices or service costs. It takes into account customers’ expectations[13]].

Customers’ perceived values consist of five dimensions: functional, conditional, social, emotional,
and epistemic values. The decision-making process for customers is influenced by these perceived

values. Value-based pricing offers the advantage of capturing a wide range of cloud service values,
including emotional and epistemic aspects.[17]]

A key challenge is defining value metrics that accurately measure customers’ subjective perceptions of
value. Hedonic pricing might be a useful model for estimating the value of new services if historical
data is available. [19]

4 Case Studies

4.1 Amazon Web Services

AWS is a cloud computing platform that provides a wide range of services to assist individuals,
enterprises, and organizations in efficiently and securely maintaining their applications, infrastructure,
and data. These services include computing power, storage options, networking capabilities, databases,
and machine learning. Furthermore, they cater to numerous industries and use cases with Artificial
Intelligence boosting the company’s abilities.

Currently, AWS operates on three pricing models basically.

Pay-as-you-go (Fixed Pricing Model) The pay-as-you-go model lets customers adjust resource
usage as needed without long-term commitments. Customers using AWS services pay based on
actual consumption under this arrangement. Businesses may respond to shifting demand without
running the risk of over-provisioning or idling capacity because of this flexibility.

Savings Plans (Fixed Pricing Model) Savings Plans offer cost savings for AWS Compute and
AWS Machine Learning services in exchange for a commitment to use a specific amount of service
over a one- or three-year period.[4] Customers can get lower prices compared to on-demand rates by
committing to a set amount of usage. While there is a commitment associated with Savings Plans,
AWS also provides freedom within that commitment. Customers are allowed to use the services they
have been given in a flexible way, changing how they use the resources according to their needs.

Volume-Based Discounts (Dynamic Pricing Model) As clients’ consumption grows, AWS offers
volume-based discounts that result in savings. In the case of certain services such as S3, the price per
unit (e.g. per GB) tends to decrease as more individuals avail the service. This kind of pricing system
encourages users to consume more resources due to the fact that the price per unit falls alongside
increasing volume.

This dynamic pricing model aligns with the concept of dynamically adjusting prices based on usage
levels. Customers benefit from economies of scale and pay less as their usage increases, which
reflects the dynamic nature of their resource consumption.

4.2 Microsoft Azure’s payment system

Azure, Microsoft’s cloud computing platform and service, offers a wide range of cloud services that
enable businesses to create, manage, and launch apps and services using Microsoft-run data centers.
Its offerings include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS) tools among several others. With Azure at their disposal, companies can scale
the performance of their applications while providing users with great experiences by deploying
them closer to their intended audiences. Notably, Azure has an adaptable architecture making it fit
for multiple workloads or applications since it supports diverse programming languages, platforms,
operating systems, etc. Businesses can select the Azure pricing model that best fits their requirements
and financial constraints from a variety of options offered. We list various Azure pricing models,
along with their benefits.

Pay-as-you-go (Fixed Pricing Model) This pricing model allows users to pay only for the resources
they consume on Azure, without any upfront costs or long-term commitments. It is a flexible and
affordable choice for companies with unpredictable workloads or those wishing to test new services
because users are charged based on hourly usage rates for the services they use.

Reserved Instances (Fixed Pricing Model) With Reserved Instances, customers can commit to
using particular Azure resources for a set amount of time (usually 1 or 3 years) in exchange for a
discount off the pay-as-you-go prices. Businesses with predictable workloads and long-term resource
needs are suitable to use this model since it allows them to cut expenses while ensuring resource
availability.

Hybrid Benefit (Value-based) The primary value of Azure Hybrid Benefit comes from the cost
savings it offers to users who already have on-premises Windows Server or SQL Server licenses. By
leveraging their existing licenses, users can significantly reduce the costs of running their workloads
on Azure virtual machines compared to the standard pay-as-you-go rates[7].

The Hybrid Benefit can be categorized as a cost-saving option in conjunction with other pricing models
like Pay-as-you-go. It can also be considered as a value-based pricing option from the perspective of
the value it provides to users by maximizing existing investment and offering customized pricing. It
delivers value to users, aligning the cost of the service more closely with the users’ perceived value.

Spot Instances(Dynamic Pricing Model) This pricing model falls under the category of dynamic
models because it enables companies to bid on available Azure capacity, which can save them a lot of
money.

4.3 Google Cloud’s payment system

The full range of cloud computing services provided by Google is known as Google Cloud. It
offers both businesses and people a vast range of information and tools for creating, deploying,
and managing their cloud applications and services. Users get access to scalable and trustworthy
infrastructure, storage options, machine learning capabilities, data analytics, and more with Google
Cloud. Businesses can efficiently innovate, cooperate, and grow their operations thanks to the flexible
and secure environment that it provides. Because of its broad ecosystem and wide range of offers,
Google Cloud is a well-liked option for businesses, developers, and individuals looking for innovative
cloud solutions. The main pricing models available on the Google Cloud Platform are as follows.

Pay-as-you-go (Fixed Pricing Model) In this pricing model, Google Cloud enables users to access
and utilize cloud services without any upfront expenses or long-term obligations. This pricing strategy
is basically the same as the other two companies we mentioned in previous chapters.

Reserved Instances (Fixed Pricing Model) In exchange for committing to a longer period of
service usage, Google Cloud provides users with significant discounts compared to the pay-as-you-go
model. Users can commit to using Google Cloud services for a predetermined amount of time by
choosing this pricing plan, which enables them to enjoy significant cost savings. Organizations can
efficiently save costs while assuring the reliable availability of Google Cloud services by using the
longer-term commitment approach. Businesses that can predict their resource needs and are prepared
to commit to Google Cloud for a certain period of time stand to gain the most from this strategy.

Free tier plan (Value-based) This plan provides a free tier option for those who are not yet ready
to fully transition to a cloud service[12]. It offers a predefined amount of resources over a specific
period, allowing users to try out the service without incurring costs. Google also offers "always free"
cloud services, which are suitable for organizations with minimal usage requirements and are not
concerned about potential interruptions in operations.

By doing this, Google Cloud allows potential customers to experience and evaluate the value of their
services firsthand. Google Cloud aims to attract and retain users based on the perceived worth of their
offerings, which can be interpreted as having elements of a value-based pricing model.

5 Challenges and Solutions

5.1 Challenges

As cloud computing adoption grows, in order to put in place effective payment systems for its clients,
CSPs must overcome a number of obstacles. The main obstacles that CSPs must overcome are
covered in this chapter in order to provide their users with a simple and efficient payment experience.

Managing Diverse Pricing Models CSPs face a significant challenge in managing the diverse pric-
ing models available to customers, including pay-as-you-go, subscription-based, reserved instances,
and hybrid benefits. Each model has distinct billing and payment requirements, posing difficulties in
developing a unified and efficient payment system that accommodates all customer needs

Security Concerns Security and compliance are one of the most paramount concerns for CSPs when
it comes to their payment systems. It is crucial for them to maintain the integrity and confidentiality
of customer data. To achieve this, CSPs must comply with stringent data protection and privacy
regulations, including the General Data Protection Regulation (GDPR) and the Payment Card Industry
Data Security Standard (PCI DSS). By adhering to these regulations, CSPs can safeguard customer
information, prevent unauthorized access, and mitigate the risks of data breaches.

5.2 Solutions

To address the challenge of managing diverse pricing models, more customer research can be
conducted upfront to understand customers’ true needs and preferences[20].

In order to solve security issues and ensure the security of the payment system, the payment system
can be specially designed to enable regulatory compliance and ensure compliance with relevant
data protection and privacy regulations. It is not possible for a company like Amazon Web Services
(AWS), for example, to offer its customers a compliance solution. However, what it can and does do
is guarantee users that rigorous data-privacy policies are in place and give full disclosure on exactly
where a brand’s data is stored at all times][1]].

6 Future Trends

In the previous section, we discussed the popular models of payment systems and provided some well-
known cases of cloud service providers. However, with the continuous advancement of technology
and evolving market demands, payment system models are also expected to change. Here are the
future trends that we have identified:

Exploring Consumer Self-Selection and Complex Models In the future, there is a potential for
consumers to have the ability to self-select from multiple pricing schemes[3]]. This has the potential
to impact the optimal pricing choices made by service providers. As a result, it becomes crucial to
examine the dynamics of complex models involving both providers and consumers. Addressing this
evolving landscape would present an exciting and promising area for future research in the field of
pricing strategies and models.

Cost-based to Value-based Pricing The traditional approach to cloud pricing has primarily been
based on the cost incurred by the cloud service providers. As cloud computing evolves, the importance
of considering the value delivered to customers is becoming more apparent. With value-based pricing,
customers are able to get the most out of cloud services by taking into account the benefits and
outcomes they will receive. This approach involves understanding customers’ needs, expectations,
and the impact that cloud services have on their businesses. Pricing structures can be established
that accurately reflect the worth of providers’ offerings by considering the value they create for
customers|18]].

Emerging Technologies Shaping Cloud Pricing Serverless Computing, Docker Containers, Open
API, DevOps, Desktop Grid, Microservices[18]], by introducing new technologies, optimizing re-
source utilization, and enabling more granular and flexible pricing models, these emerging technolo-
gies are changing cloud pricing.

Cost Based Pricing

Pricing Strategy

Value Based Pricing Hyperconverged

Resource Pool

Shared Extrinsic Value
Infrastructure [ESCI{RANEINI Public Cloud Functional Functional level: Web mail,
A Partition (Image/Instance) Microservices * Google Docs, Cloud SQL in
secured sandbox
. Colo: Rack, Rack Hybrid Cloud Serverless/ Containers are isolated but
= unit, Blade:-- (Image/Instance) Containers g share 0S, where there are
2 2 | appropriate bins/Libraries
2 . Docker, Kubernets [JB=
© Data Center Private Cloud / & .
T) . . Docker Host /Open Docker Engine
Container(physical) (image/Instance) AP
Build own.Data Baremetal As A i
. N Environment, Combination of XaaS
Dedicated Centers Service & Vblock Multi
Hardware ulti-tenancy o
: ' : ' Distribution
Intrinsic Value E. Physical Resources i Virtual Resources | Stateless Resources | Source code licensing
' >}
Isolated ! !) ' '
Resource Pool Computation Resource .
Statefulness Stateless

Figure 1: Future trends in cloud technologies and cloud pricing strategy by Wu et al. [18]]

Serverless computing involves cloud providers managing the infrastructure and allocating resources
automatically without the need for server management. This technology enables developers to focus
solely on writing and deploying functions or applications without concerning themselves with the
underlying infrastructure. Serverless computing is revolutionizing cloud pricing by introducing a
pay-as-you-go model based on actual usage rather than fixed resource allocation.

Docker containers make it simpler to scale and manage applications by enabling uniform application
deployment across many environments. The adoption of containerization technologies like Docker is
having an impact on cloud pricing models since they allow for effective resource consumption and
flexible resource allocation based on application requirements.

Microservices design has an impact on cloud pricing since it enables cost minimization and fine-
grained resource allocation by scaling only the essential parts of an application. Complex programs are
divided into smaller, deployable services that may be built and scaled separately using a microservices
architecture. This method improves the software systems’ flexibility, scalability, and fault isolation.

By utilizing these technologies, cloud service providers are better able to meet client requests, allocate
resources optimally, and develop creative pricing plans that complement certain service offerings.

7 Conclusion

The terms "cloud computing" and "cloud services" are often used today. We go over the most
prevalent cloud payment system models in this review. The evolution of cloud payment systems has
changed significantly over time. From the early days of fixed pricing models, where customers paid a
predetermined fee for a specified unit of service, to the introduction of dynamic pricing models based
on supply and demand adjustments, and even market-dependent pricing models based on real-time
market conditions, payment systems have become more complex.

For both users and cloud service providers, fixed pricing models offer transparency and predictability
while being straightforward and stable[[14]]. Overpayments, however, may result if prices do not
accurately reflect market values and are not flexible enough to be adjusted.

Dynamic pricing methods give service providers more flexibility over pricing and could result in
bigger margins. Customers gain from having the option to increase usage as needed. However,
dynamic pricing introduces price risk to users and requires a more complex implementation process.

Value-based pricing models focus on the perceived value delivered to customers and take into
account their expectations. By aligning prices with customers’ perceived value, service providers can
maximize profits. This is the future trend of pricing models for cloud payment systems. Implementing
a value-based pricing approach, however, makes it difficult to quantify how people perceive value.

Cloud service providers use a variety of models in these categories, such as subscription-based
models, pay-as-you-go models, tiered and volume-based pricing, segmentation-based pricing, and
auction-based pricing. Each model caters to various consumer needs and usage patterns and has its
own advantages and disadvantages. We may anticipate more advancements in payment systems, with
more complex pricing models that better reflect the value offered to customers and the costs spent
by providers, as cloud computing continues to expand. The challenge is to find the right balance
between simplicity, transparency, flexibility, and profitability to meet the different needs of cloud
service providers and customers.

References

[1] The future of payments in the cloud — techradar.com. https://www.techradar.com/news/
the-future-of-payments-in-the-cloud. Date Accessed: 05-Jun-2023.

[2] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. Deconstructing
amazon ec2 spot instance pricing. ACM Transactions on Economics and Computation (TEAC),
1(3):1-20, 2013.

[3] May Al-Roomi, Shaikha Al-Ebrahim, Sabika Buqrais, and Imtiaz Ahmad. Cloud computing
pricing models: a survey. International Journal of Grid and Distributed Computing, 6(5):93—
106, 2013.

[4] AWSpricing. https://aws.amazon.com/pricing, 2023. Date Accessed: 05-06-2023.

[5] Byong-Sam Chun, Se-Hak; Choi. Service models and pricing schemes for cloud computing.
Cluster Computing 2013-sep 14 vol. 17 iss. 2, 17, sep 2013.

[6] Se-Hak Chun et al. Cloud services and pricing strategies for sustainable business models:
analytical and numerical approaches. Sustainability, 12(1):1-1, 2019.

[7] CsharpCorner. https://www.c-sharpcorner.com/article/azure-pricing-models-understanding-the-
different-pricing-options/, 2023. Date Accessed: 04-06-2023.

[8] Ilias Daia, Lennart Kerkvliet, Lloyd Nyarko, and Mick Vermeulen. Pricing models in clouds
and for cloud-based applications - literature review. Unpublished manuscript, 2023.

[9] Nicola Dimitri. Pricing cloud iaas computing services. Journal of Cloud Computing 2020-mar
03 vol. 9 iss. 1,9, mar 2020.

[10] AWS Economics 2 (EC2). https://aws.amazon.com/ec2/pricing/on-demand/, 2021. Date
Accessed: 20-05-2021.

[11] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Konwinski, Gunho Lee,
David Patterson, Ariel Rabkin, Ion Stoica, et al. Above the clouds: A berkeley view of cloud
computing. Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley,
Rep. UCB/EECS, 28(13):2009, 20009.

[12] GoogleCloud. https://cloud.google.com/free, 2023. Date Accessed: 04-06-2023.

[13] Navendu Jain, Ishai Menache, Joseph Naor, and Jonathan Yaniv. A truthful mechanism for
value-based scheduling in cloud computing. Theory of Computing Systems, 54:388—406, 2014.

[14] C. N. Hofer; G. Karagiannis. Cloud computing services: taxonomy and comparison. Journal of
Internet Services and Applications 2011-jun 19 vol. 2 iss. 2, 2, jun 2011.

[15] Devesh Lowe and Bhavna Galhotra. An overview of pricing models for using cloud services
with analysis on pay-per-use model. International Journal of Engineering & Technology, 7:248,
2018.

10

https://www.techradar.com/news/the-future-of-payments-in-the-cloud
https://www.techradar.com/news/the-future-of-payments-in-the-cloud

[16] Stamatia Rizou and Ariana Polyviou. Towards value-based resource provisioning in the cloud. In
4th IEEE International Conference on Cloud Computing Technology and Science Proceedings,
pages 155-160. IEEE, 2012.

[17] Wolfgang Ulaga and Samir Chacour. Measuring customer-perceived value in business markets:
a prerequisite for marketing strategy development and implementation. Industrial marketing
management, 30(6):525-540, 2001.

[18] Caesar Wu, Rajkumar Buyya, and Kotagiri Ramamohanarao. Cloud pricing models: Taxonomy,
survey, and interdisciplinary challenges. ACM Computing Surveys (CSUR), 52(6):1-36, 2019.

[19] Caesar Wu, Adel Nadjaran Toosi, Rajkumar Buyya, and Kotagiri Ramamohanarao. Hedonic
pricing of cloud computing services. IEEE Transactions on Cloud Computing, 9(1):182—196,
2018.

[20] Amoy X. Yang. Price differentiation model: its challenges and solutions. Journal of Revenue
and Pricing Management 2019-feb 27 vol. 18 iss. 2, 18, feb 2019.

[21] Fuw-Yi Yang, Chih-Wei Hsu, and Su-Hui Chiu. An e-cash payment system on cloud, 2013.

11

How does mobile cloud computing contribute to
sustainable development and green computing

initiatives?

Joshua Offermans Mattheus Hanna Maurits Dijk
13846183 1473796 14743663
University of Amsterdam University of Amsterdam University of Amsterdam
Amsterdam Amsterdam Amsterdam
The Netherlands The Netherlands The Netherlands
.j.a.offermans@uva.nl m.hanna@vu.nl m.r.dijk@uva.nl

Abstract

Now more than ever do we need to look at finding ways to improve the environmen-
tal impact we have on the world. Also in cloud computing do we need to find ways
to improve efficiency and decrease the carbon footprint from these technologies.
Cloud computing is becoming more ubiquitous everyday and with this growth the
demand for energy and other resources is growing as well. There is a clear need for
finding less resource intensive ways for computing and mobile cloud computing
can as this goal. In this paper we present mobile cloud computing, it’s strength and
weaknesses, and how it is contributing to the green IT initiative.

1 Introduction

1.1 Background

Mobile cloud computing has emerged as a game-changing model that has transformed the way we
use mobile devices and access computational resources. To take around the ambiguity around the
term Mobile cloud in this literature study. We define Mobile cloud as dedicated cloud infrastructure
for Mobile devices. There is a need for more research on this topic the increasing popularity of
smartphones and tablets has led to a growing demand for mobile applications and services. However,
these devices face significant limitations in terms of processing power, storage capacity, and battery
life, making it challenging to meet these growing demands [12].

To overcome these challenges, mobile cloud computing has created considerable attention as a
promising solution. By using the power of cloud computing, mobile cloud computing allows for the
offloading of computationally intensive tasks and data storage to remote servers. This improves the
capabilities of mobile devices by allowing users to access a variety of services and resources without
being limited by the capabilities of their devices. [1].

Meanwhile, the concept of sustainable development and the green computing initiative have become
more important in the era of digital transformation. The environmental impact of information
and communication technologies (ICT) has raised significant concerns, given their rapid growth
and energy consumption. Sustainable development points out the need to create balance between
economic growth, social development, and environmental protection. Green computing, a subset of
sustainable development, aims to minimize the ecological footprint of ICT through energy efficiency,
resource optimization, and responsible technology practices [19]].

Taking these considerations in mind, this thesis addresses the research question: "How does mobile
cloud computing contribute to sustainable development and the green computing initiative?" This

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

—

ocC

question seeks to explore the potential benefits and implications of integrating mobile cloud computing
with the objectives of sustainable development and the practices of green computing. By researching
the environmental, social, and economic impacts of mobile cloud computing, this paper aims to shed
light on its potential role in promoting sustainability and minimizing the environmental footprint of
mobile technologies.

Through a comprehensive analysis of service models, infrastructure requirements, platforms, and
applications in mobile cloud computing, this thesis aims to provide valuable insights into the contri-
bution of mobile cloud computing to sustainable development and the green computing initiative.
Understanding the potential benefits and challenges associated with this integration can empower pol-
icymakers, industry practitioners, and researchers to make informed decisions and develop strategies
to leverage the potential of mobile cloud computing in a sustainable and environmentally responsible
manner.

1.2 Mobile Cloud Computing: Service Models and Infrastructure Requirements

Mobile cloud computing offers three service models: Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS). [aaS provides virtualized computing resources, like
virtual machines, storage, and networking, allowing mobile applications to perform tasks and access
infrastructure on-demand. PaaS offers a complete development environment with built-in services
for mobile app development, while SaaS delivers fully functional software applications to mobile
devices over the cloud.

To support mobile cloud computing, infrastructure requirements include cloud data centres, wireless
networks, and edge computing. Cloud data centers host servers, storage, and networking equipment,
providing resources for data processing, storage, and service delivery. Wireless networks, such as
cellular and Wi-Fi, connect mobile devices to the cloud infrastructure, enabling access to cloud
services and data exchange. Edge computing brings computation and storage closer to mobile devices,
reducing latency and improving responsiveness by processing data near the source.

In short, mobile cloud computing’s service models (IaaS, PaaS, and SaaS) enable the delivery of
services to mobile devices, while infrastructure components like cloud data centers, wireless networks,
and edge computing support the computational and storage needs of mobile applications.

1.3 Platforms and Applications Analysis

The analysis of platforms and applications in mobile cloud computing is essential for understanding
their implementation and usage. Mobile cloud computing platforms enable the development, deploy-
ment, and management of mobile applications in the cloud. They provide developers with tools and
resources to optimize mobile apps using cloud services.

Platform analysis considers factors like ease of use, scalability, security, and compatibility with
different mobile operating systems. It also focuses on applications across domains like healthcare, e-
commerce, entertainment, and productivity. Understanding their use cases and requirements provides
insights into the advantages and challenges of integrating mobile cloud computing into diverse
industries.

Performance and user experience are crucial. Factors like response time, data transfer rates, and
reliability impact the success and usability of mobile cloud applications. Real world case studies and
user feedback offer valuable insights into their performance and satisfaction levels.

1.4 Mobile Cloud Computing and Sustainable Development

Sustainable development is all about finding a balance between economic growth, social progress, and
protecting the environment. In the context of mobile cloud computing, it’s important to understand
how it contributes to sustainability and its impact on society and the environment.

This paper will focus on the environmental side of mobile cloud computing and how it can help
reduce the environmental impact of mobile technologies. It explores how offloading computational
tasks to remote servers can save energy, which means our mobile devices will use less power and
last longer on a single charge. Also it will take a look into how cloud data centers can adopt green
practices like using energy-efficient hardware and renewable energy sources.

It will also dive into the social and economic effects of mobile cloud computing on sustainable
development. investigating how it can make advanced services more accessible and affordable
for everyone, promoting inclusivity and also mentions the economic benefits for businesses and
individuals, like saving money, boosting productivity, and creating job opportunities.

2 Research

2.1 Research questions

To answer our main research question How does mobile cloud computing contribute to sustainable
development and green computing initiatives? We will divide our research into the following sub-
questions: How does Mobile cloud work and how does it distinguish itself from other cloud solutions?
In what kind of applications is Mobile cloud used? What is the environmental impact of traditional
cloud and how does mobile cloud compare? What are the barriers and challenges of implementing
Mobile cloud?

2.2 How does Mobile cloud work and how does it distinguish itself from other cloud
solutions?

As mentioned in the introduction mobile devices face shortcomings in the aspect of processing power,
storage capacity, and battery life. The goal of mobile cloud is to mitigate these shortcomings and it
does so in the following ways. Lowering the latency, minimising data transfer and faster response
times. This is achieved by applying the following strategies. Network bandwidth strategy: using
regional data centres closer the mobile broadband. Network latency strategy: Move the nodes that
need to process on request closer to the mobile broadband. Mobile cloud application elasticity:
Dynamically optimizing the application for delivery and execution between device and network [19].
On the topic of application elasticity offloading plays a vital role in mitigating the problem of the
lesser amount of computational resources available on a mobile device. Heavy computational issues
like speech recognition, natural language processing, computer vision and graphics, machine learning,
and augmented reality will then be offloaded to the mobile cloud infrastructure [5].

2.2.1 Alternative cloud programming models

As mentioned earlier, data efficiency is crucial for mobile devices due to bandwidth constraints. In
order to improve data efficiency, alternative programming models can be explored, as the currently
dominant method of communication on the web is REST (Representational State Transfer). According
to a recent survey conducted by Postman, 89% of developers use REST as their API architecture
style (multiple answers were possible) [23].

However, REST is known to retrieve more data than necessary and introduce unnecessary overhead.
This has led to the exploration of other protocols, such as MQTT (Message Queuing Telemetry
Transport), for the development of mobile cloud solutions. In a study that compared MQTT to HTTP
in combination with REST, MQTT was found to be 300% faster than its counterpart [3].

By adopting MQTT or similar protocols, mobile cloud solutions can achieve higher data efficiency
and reduce unnecessary overhead, leading to improved performance and faster data transfer between
mobile devices and the cloud infrastructure.

2.3 Mobile cloud applications

To get a better understanding of how Mobile Cloud distinguish itself from traditional Cloud Comput-
ing. There can be looked at what kind of applications Mobile Cloud is used. A survey conducted by
researchers at Nanyang Technological University supplies a list of applications where the Mobile
cloud is used[10]]. A few of those applications are listed below and reviewed more in-depth also other
applications are added to the list gathered from other sources.

2.3.1 Mobile Cloud Computing and IoT

The internet of things consists of three main parts: the devices collecting the data, the communication
networks that connect everything and the system using the data. IoT suffers from very similar

problems as regular mobile devices. Mainly limited resources. The sheer volume of data is pushing
the boundaries of communication and network technology [6]. The mobile cloud allows IoT devices to
outsource data processing and computation through the internet allowing for more efficient use of the
IoT device and basically unlimited storage. In addition, since cloud computing can be implemented
scalable, users can pay based on their demand and the computation can take place in a different
geographical location providing access to people in less developed areas of the world [23]].

Green IoT Green IoT is at the intersection of Green IT and the Internet of Things. Green IoT has
two goals. The first one is to minimize the negative environmental impact of ICT by trying to develop
new technologies that can save information and communication energy. The second goal is to use
this technology to solve environmental issues.By having the cloud act as a front end for IoT, it is
very similar to the way mobile cloud operates [26]. Cloud computing represents two major trends in
information technology, one of which is IT efficiency where power is utilized more efficiently through
scalable hardware and software resources [23]. Mobile cloud computing allows IoT to take advantage
of what cloud computing has to offer. Mobile cloud offers flexible and scalable service, unlimited
data storage, improved performance with data processing and extended battery performance.

Edge computing Edge computing is an extension of cloud computing that deploys computing and
storage resources at the edge of the network closer to the mobile devices. It does this by utilizing
edge devices without uploading to the central cloud platform. This results in faster transferring of
data due to it being closer to the data source [8]]. This makes it particularly useful for mobile cloud
computing. The lower latency allows for faster offloading and thus a larger portion of the data can be
offloaded, which can help save energy and reduce overall latency of the system [22].

2.3.2 M-commerce

An application where Mobile cloud plays an important role especially if looked at in terms of revenue
is E-commerce or as it is also called when used from a mobile phone M-commerce. Especially
convenience attracts users to mobile shopping as shown in research [32] 76% give this as their main
reason. If looked at it in terms of revenue the data shows that M-commerce is becoming a bigger
and bigger part of total retail sales. In 2022 M-commerce was 6.0% of the total retail revenue and
growing with an expected share of 6.5% in 2023 [17]. This shows especially how dominant mobile
applications are becoming in the retail space. With these mobile applications also the mobile cloud
infrastructure behind them become more important for the vendors because it makes a growing
portion of their revenue.

2.4 Healthcare

Another example where mobile cloud computing can play a significant role is in healthcare applica-
tions. With the increasing prevalence of mobile devices, numerous opportunities arise, particularly
in the healthcare sector, especially when mobile devices are connected to specialized sensors. In
research conducted on this topic, positive results have been observed in both patients and healthcare
practitioners [7]].

The researchers specifically reviewed promising applications in the areas of vital sign monitoring
and blood glucose monitoring. In these applications, mobile cloud infrastructure could play a vital
role, particularly in real-time Al analysis and providing feedback on the collected data. By offloading
computationally heavy tasks to the mobile cloud infrastructure, the processing capabilities of the
mobile device can be augmented.

However, the research also emphasizes the need for caution when it comes to the use of mobile
applications in healthcare. Given the critical nature of healthcare, it is essential to prioritize reliability,
efficiency, security, and privacy when developing such applications, considering the sensitive nature
of the data being handled.

2.4.1 Mobile gaming

Mobile gaming is a rapidly growing industry that has emerged as a dominant form of gaming.
Research in this field highlights the increasing popularity of mobile gaming and also explores the

challenges and disruptions it faces. One significant factor contributing to the rise of mobile gaming is
the improvement in internet speed and the advancement of online infrastructure [[11]].

Considering this information, it can be assumed that in order to further expand user bases in the
future, it is crucial to have adequate cloud infrastructure capable of accommodating even more
high-performance games than those currently available on the market. This emphasizes the need for
robust and scalable cloud systems that can handle the increasing demand for mobile gaming.

In particular, cloud infrastructure for mobile gaming should prioritize low latency. Low latency is of
utmost importance in online gaming, as it directly impacts the responsiveness and real-time interaction
between players. To ensure a seamless and enjoyable gaming experience, the cloud infrastructure
should minimize network delays and provide efficient data transmission between players and game
servers.

By investing in cloud infrastructure with low-latency capabilities, the mobile gaming industry can
enhance multiplayer experiences, reduce lag, and provide a competitive advantage to game developers.
Furthermore, an efficient and reliable cloud infrastructure can also facilitate cross-platform gaming,
enabling players to seamlessly switch between mobile devices, consoles, and PCs without losing
progress or experiencing significant disruptions.

In conclusion, the growing popularity of mobile gaming calls for the development of robust cloud
infrastructure that can support the increasing demands of high-performance games. Emphasizing
low latency in the cloud infrastructure will be crucial in providing a seamless and immersive gaming
experience for mobile gamers.

2.5 What is the environmental impact of traditional cloud and how does mobile cloud
compare?

The environmental impact of traditional cloud computing and its comparison to mobile cloud
computing are crucial factors in evaluating the sustainability of these technologies. Traditional
cloud computing relies heavily on large scale data centers, which present significant challenges
in terms of energy consumption, carbon emissions, and resource use. In contrast, mobile cloud
computing has the potential to reduce the environmental impact by leveraging centralized resources
and offloading computational tasks from individual mobile devices.

2.5.1 Environmental Impact of Traditional Cloud Computing

The structure of traditional cloud computing, which is defined by data centers that include many
servers, requires a significant amount of electricity to operate and cool, leaving a huge carbon footprint.
The ICT sector, which includes data centers and telecommunication networks, is responsible for
around 2% of the world’s greenhouse gas emissions, which is equal to the emissions of the aviation
sector, according to a research by Greenpeace [[15]. Concerns about energy use and carbon emissions
have been increased by the expansion of data centers and the rising demand for cloud services.

For cooling purposes, data centers also need a lot of water. The significant water footprint of data
centers can worsen the world’s rising water shortage problem. To reduce the environmental impact
of data center operations, effective water management technologies and methods are necessary.
Implementing advanced cooling techniques, such as liquid cooling and reclaimed water systems, can
significantly reduce water consumption in data centers.

As said before, large-scale data centers are the core for traditional cloud computing, which uses a lot
of power. Numerous servers are stored in these data centers, which need constant electricity. The
energy demand of data centers contributes to greenhouse gas emissions and strains global energy
resources. According to a report by the International Energy Agency (IEA), data centers consumed
around 205 terawatt-hours (TWh) of electricity in 2020, accounting for about 1% of global electricity
consumption [18]]. This energy consumption is projected to continue growing with the increasing
demand for cloud services.

2.5.2 The potential of mobile cloud computing

On the other hand, mobile cloud computing has the potential to help the environment by lowering
the energy usage of individual mobile devices. The processing, storage, and battery life of mobile

devices like smartphones and tablets are constrained. Mobile cloud computing makes use of remote
cloud servers to offload expensive operations, resulting in energy savings and longer battery life for
mobile devices [31]]. The entire energy use and carbon emissions connected with mobile computing
could be reduced by this offloading procedure

Mobile cloud computing can also help reduce electronic waste by extending the lifespan of mobile
devices. Traditional cloud computing requires powerful local devices to handle complex computations.
However, this can lead to faster device obsolescence and increased electronic waste. By offloading
computational tasks to the cloud, the processing capabilities of mobile devices are not strained,
leading to lower wear and tear on device components. This can result in longer device lifetimes,
reducing the need for frequent device upgrades and replacements.

Additionally, by combining resources in data centers, mobile cloud computing could use green
computing techniques. Green computing aims to optimize energy efficiency and minimize the envi-
ronmental impact of IT infrastructure. By using energy-efficient hardware, such as servers equipped
with low-power processors and advanced power management features, data centers can effectively
reduce energy consumption [30]]. Server virtualization is another method which could enhance
resource usage and energy efficiency. Studies have demonstrated that virtualization technology in
data centers could reduce energy consumption up to 30% [21]].

2.6 Security Challenges

The adoption of renewable energy sources plays a crucial role in mitigating the environmental impact
of cloud computing. Leading cloud providers have made commitments to powering their data centers
with renewable energy. For instance, Google has successfully matched 100% of its worldwide
operations with renewable energy, including its data centers [14]. Similarly, Amazon Web Services
(AWS) has made substantial investments in renewable energy projects to power its infrastructure [4].
These initiatives significantly contribute to the overall reduction of carbon emissions associated with
cloud computing.

To address the environmental impact of cloud computing, various projects and guidelines have
been established. The Green Grid, an industry consortium, focuses on promoting energy efficiency
and sustainability in data centers [16]. The European Code of Conduct for Data Centers provides
guidelines and best practices for improving energy efficiency and reducing environmental impact in
data center operations [20]. These programs seek to encourage the use of sustainable practices and
raise awareness regarding the environmental implications of cloud computing.

In conclusion, traditional cloud computing has environmental issues due to its energy consumption,
carbon emissions, and resource usage. However, mobile cloud computing offers potential benefits in
terms of reducing environmental impact. By leveraging centralized resources, offloading computa-
tional tasks, implementing green computing practices, and utilizing renewable energy sources, mobile
cloud computing can help to save energy and could decrease carbon emissions. Further research is
required to improve energy efficiency, increase the share of renewable energy in data centers, and
ensure the widespread adoption of sustainable practices throughout the mobile cloud computing
ecosystem.

2.7 What are the challenges and barriers of implementing a mobile cloud?

Mobile cloud computing faces a number of challenges. The major challenges that mobile cloud
computing face are inherent problems from mobile devices and the mobile nature of their application
in daily life. These range from limited processing resources due to the small form factor to availability
issues due to network fluctuations. There is still a lot of research to be done improving on the
shortcomings of mobile cloud computing. If we can overcome, or at least diminish, some of these
aspects this could help increase adoption of mobile cloud computing and thereby help support
sustainable IT.

2.7.1 Energy efficiency and limited bandwidth

Even though mobile cloud computing can improve mobile devices it still has a problem with limited
resources available [27]. Energy efficiency is a very important topic when looking at mobile cloud
computing. Mobile devices have limited electricity available to perform tasks and it is therefore a

key resource that needs to be considered carefully. One of the main things to consider when dealing
with the limited capacity is deciding whether the benefits outweigh the costs of offloading. There are
conflicting objectives at play with mobile devices [13]]. These three goals are performance, battery
lifetime and quality of the data. While having high performance and fast execution is nice to have, this
also compromises energy usage and therefore battery life. And many low-resource mobile devices
might only be able to provide lower quality data transfer due to severely lacking bandwidth. There
is a fine balance to be found in between these three goals to maximize the experience. Where with
some applications slightly more performance would be preferable at the cost of decreased battery
life. Similarly, because we cannot just connect an internet cable to a mobile device. This means that
mobile devices have limited bandwidth available, compared to traditional cloud solutions, to connect
with cloud services. These limitations in resources form the biggest challenges but mobility causes
other problems. These are availability [10]] and heterogeneity [24].

2.7.2 Service availability and Heterogeneity

Mobile cloud services need to be able to support this mobility while providing seamless service to
its users [12]. With traditional cloud services the users access it from a known location where the
conditions can be optimized for the user. Mobile devices need to be able to provide service from
basically anywhere which increases the complexity of the system. Mobile devices could face changes
in environment at any given moment [28]. Connection issues are ever present in a mobile environment.
While moving a mobile device could change networks many times in short period, for example while
moving in a train or car. The connection could go from strong to weak, and vice versa. Or it could
disconnect altogether. While going from a strong to a weak connection might be inconvenient it does
not pose any serious threat. Tasks could still be executed, although slower. However when a user
moves effectively out of range of the available service network during the execution of a tasks, and
a complete disconnect happens, the tasks is aborted. This is not only inconvenient for the user, but
it also wastes resources. These environmental changes are problematic for the simple reason that
we do not, and cannot, know every network. This heterogeneity can make it difficult to maintain an
adequate level of service for the users. In addition mobile clouds need to be able to provide service to
many different devices, networks and data formats [2].

2.7.3 Security and privacy

Finally mobile clouds face additional security challenges on top of the ones that come with traditional
cloud computing. These challenges are: privileged user access, regulatory compliance, physical
location of the data, data separation between different users, proper recovery mechanisms and long-
term availability [12]. The point of mobile cloud services is to move resources intensive tasks away
from the mobile device. As a result of this, data needs to be moved to and from the cloud provider
for storage and processing. This process introduces a risk of data loss, data breach, data recovery,
data locality and data privacy [24]. Due to the dynamic nature of mobile devices mobile clouds can
be accessed from many different unknown and wireless networks which increase the security risks
[12} 29]. This can be problematic since the users often are transferring data from a personal mobile
device. Data that would otherwise have remained private. Users have no control over the offloading
process. This means there is an increased risk of unauthorized access to the data, a data breach.
Which increases the potential of violating the integrity, confidentiality and availability of the data [2].
There have been offloading algorithms proposed that would try to mitigate this risk by only offloading
less sensitive data [9]. Furthermore, because the users have no control over this process they are
unaware of any potential data that could be collected while offloading. The cloud providers could be
scanning the data that is being offloaded or they could be recording location data. The sensors on
mobile devices allows the cloud providers to give the users context, like the current location of the
user, but it also raises additional privacy concerns over the collection and processing of this data [24].

3 Discussion

In this paper, we explored the field of mobile cloud computing across various applications, along
with potential environmental benefits. Our research delved into several resources, yet we encountered
a challenge: a noticeable lack of recent research on mobile cloud computing. Most existing literature
dates back to around 2012.

The likely reason behind this research gap is the significant advancements in mobile performance
and bandwidth over the years, which have mitigated many previous problems and diminished the
immediate need for new solutions through research.

However, certain areas still warrant further investigation. For example, the role of Al in mobile
applications, which demands high computational power and resources, would benefit from more
focused research. Likewise, the Internet of Things (IoT) is another area ripe for more extensive study,
given the limited resources available for such devices.

Lastly, the issue of energy efficiency in mobile cloud computing requires further attention, particularly
in light of the ongoing climate crisis. Future research should focus on how mobile cloud computing
can be leveraged to further enhance energy efficiency and contribute to global sustainability efforts.

4 Conclusion

The mobile cloud is a powerful technology that can significantly enhance the capabilities of mobile
devices. Mobile cloud computing can extend battery lifetime off mobile devices by offloading
complicated processes and computations. Mobile cloud allows us to leverage increased processing
power and storage capacity without increasing the cost which can improve reliability and scalability.
And by using renewable energy mobile cloud computing can help save energy and decrease the
emission of greenhouse gases. It involves unique strategies and models to overcome the limitations
of mobile devices, but it also faces its own set of challenges. These challenges involve the limited
resources associated with mobile devices and the dynamic nature of mobile devices. Nevertheless,
with ongoing advancements in technology and security practices, the mobile cloud will continue to
play a critical role in the evolution of mobile computing and green IT.

References

[1] Khadija Akherfi, Michael Gerndt, and Hamid Harroud. Mobile cloud computing for computation
offloading: Issues and challenges. pages 1-16, 2018.

[2] Samaher Al-Janabi, Ibrahim Al-Shourbaji, Mohammad Shojafar, and Mohammed Abdelhag.
Mobile cloud computing: Challenges and future research directions. 2017 10th International
Conference on Developments in eSystems Engineering (DeSE), 2017.

[3] Harry Kasuma Aliwarga, Alwy Herfian Satriatama, and Bruno Fandi Adi Pratama. Performance
comparison of fleet management system using iot node device based on mqtt and http protocol.
In AIP Conference Proceedings, volume 2217, page 020009, 2020. Published Online: 14 April
2020.

[4] Amazon. Amazon investing in 274 renewable energy projects globally, adds 18 new projects in
europe and u.s., 2021.

[5] Paramvir Bahl, Richard Y Han, Li Erran Li, and Mahadev Satyanarayanan. Advancing the
state of mobile cloud computing. In Proceedings of the third ACM workshop on Mobile cloud
computing and services, pages 21-28, 2012.

[6] Mehdi Bahrami, Arshia Khan, and Mukesh Singhal. An energy efficient data privacy scheme
for iot devices in mobile cloud computing. 2016 IEEE International Conference on Mobile
Services (MS), 2016.

[7] Mirza Mansoor Baig, Hamid GholamHosseini, and Martin J. Connolly. Mobile healthcare
applications: system design review, critical issues and challenges. Australasian Physical &
Engineering Sciences in Medicine, 2015.

[8] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on edge computing
research. IEEE Access, 8:85714-85728, May 2020.

[9] N. M. Dhanya and G. Kousalya. Adaptive and secure application partitioning for offloading in
mobile cloud computing. Communications in Computer and Information Science, page 45-53,
2015.

[10] Hoang T. Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of mobile cloud computing:
Architecture, applications, and approaches. Wireless Communications and Mobile Computing,
13(18):1587-1611, 2011.

[11] Claudio Feijoo, José-Luis Gomez-Barroso, Juan-Miguel Aguado, and Sergio Ramos. Mobile
gaming: Industry challenges and policy implications. Telecommunications Policy, 2012.

[12] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Mobile cloud computing: A survey.
Future generation computer systems, 29(1):84-106, 2013.

[13] J. Flinn, S. Park, and M. Satyanarayanan. Balancing performance, energy, and quality in
pervasive computing. Proceedings 22nd International Conference on Distributed Computing
Systems, 2002.

[14] Google. Google - clean energy, 2023.

[15] Greenpeace. Clicking clean: Who is winning the race to build a green internet? https://www,
greenpeace.de/publikationen/20170110_greenpeace_clicking_clean.pdf, 2017.
[Online; accessed May 24, 2023].

[16] The Green Grid. The green grid.

[17] Insider Intelligence. Mobile commerce 2023: Latest trends and statistics, 2023. [Online;
accessed 5-June-2023].

[18] International Energy Agency. Data centres and data transmission networks. https://www,
iea.org/reports/data-centres-and-data-transmission-networks, 2022.

https://www.greenpeace.de/publikationen/20170110_greenpeace_clicking_clean.pdf
https://www.greenpeace.de/publikationen/20170110_greenpeace_clicking_clean.pdf
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/reports/data-centres-and-data-transmission-networks

[19] Gaurav Jindal and Manisha Gupta. Green computing “future of computers”. Journal of
Emerging Research in Management and Technology, 2012.

[20] European Commission Joint Research Centre. Code of conduct on energy efficiency for data
centres.

[21] N. Satish Kumar and B. Karunakar Reddy. Implementation of server virtualization to build
energy-efficient data centers. International Journal of Computer Applications, 94(8):6-11,
2014.

[22] Mohammed Maray and Junaid Shuja. Computation offloading in mobile cloud computing and
mobile edge computing: Survey, taxonomy, and open issues. Mobile Information Systems,
2022:1-17, 2022.

[23] S Marston, Zhi Li, S Bandyopadhyay, and A Ghalsasi. Cloud computing - the business
perspective. 2011 44th Hawaii International Conference on System Sciences, 2011.

[24] Muhammad Bager Mollah, Md. Abul Azad, and Athanasios Vasilakos. Security and privacy
challenges in mobile cloud computing: Survey and way ahead. Journal of Network and
Computer Applications, 84:38-54, 2017.

[25] Postman. State of the api: Api technologies, 2023. Accessed: 2023-06-03.

[26] K.E. Psannis, S. Xinogalos, and A. Sifaleras. Convergence of internet of things and mobile
cloud computing. Systems Science and Control Engineering, 2(1):476-483, 2014.

[27] Han Qi and Abdullah Gani. Research on mobile cloud computing: Review, trend and per-
spectives. 2012 Second International Conference on Digital Information and Communication
Technology and it’s Applications (DICTAP), 2012.

[28] MingJian Tang and Jinli Cao. A dynamic mechanism for handling mobile computing envi-
ronmental changes. Proceedings of the st international conference on Scalable information
systems; - InfoScale 06, May 2006.

[29] Yating Wang, Ing-Ray Chen, and Ding-Chau Wang. A survey of mobile cloud computing appli-
cations: Perspectives and challenges. Wireless Personal Communications, 80(4):1607-1623,
2014.

[30] Yu Wang, Bingpeng Zhou, Yang Xiang, Wei Xu, and Yuanyuan Zhang. Energy-efficient server
virtualization for mobile cloud computing. Cluster Computing, 25(1):681-689, 2022.

[31] Jianlong Xu, Guiyi Wei, Xiaowen Chu, and Zili Shao. Energy saving in mobile cloud computing.
2014.

[32] Dynamic Yield. State of personalization in mobile commerce, 2023.

10

Critical Factors to the Adoption of Identity as a
Service (IDaaS) in Organisations: a Literature Review

Mauricio Bernardo da Silva Elif Ipek Uysal Daniel Yazbek
Faculty of Science Faculty of Science Faculty of Science
University Van Amsterdam University Van Amsterdam University Van Amsterdam
Amsterdam, Netherlands Amsterdam, Netherlands Amsterdam, Netherlands
Abstract

Identity as a Service (IDaaS) is a model for identity management aligned with
the paradigm of cloud computing: as a third-party standalone service offered to
enterprises, readily available, flexible, convenient and elastic. From its inception
as proposed architectures for identity management, to a growing industry in itself,
it has gone through many definitions and iterations. In this literature review, we
offer a historical and contextual analysis of IDaaS from 2007 to 2023, focusing on
the factors that hinder or enable its adoption in organisations. Evidence is given
that security and trust, complexity and lack of compatibility are widely mentioned
hindrances, as breaches and outings on sensitive processes such as authentication
and authorization are major risks to organisations. On the other hand, the perceived
relative advantage and reduction in costs, including speed and ease of set-up and
management (being offered by a third party) are incredibly valuable. The portability
and interoperability of these systems are very beneficial for organisations and users
alike, and if these systems are correctly set up, security and trust can be massively
increased. Finally, this work demonstrates that literature specific to this topic is
lacking, and as a rapidly growing and mature service model, more attention should
be given to the subject.

1 Introduction

Identity as a Service (IDaaS) is a term closely associated with cloud computing. In cloud computing,
there are three comprehensive service models: Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS). IDaaS is a subset of the Software as a Service category.
[1] IDaaS was originally proposed as an identity management architecture that would enable the
interoperability of many different services in a service-oriented architecture, following the paradigm
of loose coupling of identity management with the core services. [2]

The advantages provided by utilising IDaaS are linked to the main selling points of cloud comput-
ing: “flexibility, scalability of resources, reliability, broad network access, cost-effectiveness and
sustainability”. [3] Specifically to IDaaS, the added promised advantages are the convenience for the
end-user, related to a single sign-on approach or on every access; as well as interoperability for easy
integration of business functionality on the side of organisations. [2]

Although cloud computing rapidly grew from its early development from Amazon in 2007 (IaaS),
Salesforce (PaaS) and Google in 2010 (SaaS), until recently, IDaaS was a nascent yet promising
portion. [1]. Therefore, the factors that impact the adoption of this specific model of Identity Access
Management (IAM) in organisations have not been studied at length.

Overall, five key capabilities are required to make enterprise IDaaS solutions possible [3]:

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

* Single Sign-on (SSO)

¢ Multi-factor Authentication (MFA)
* Access Security

* Directory

* Provisioning

EEEEN
EEn
L
EEn
)

@

Easily Add SaaS &
@ \ Cloud Apps

Quickly Integrate
Existing Identities ¢ 3 &
App
Catalog

®

User Self-Registration

Figure 1: Identity as a Service (IDaaS) [15]

The goal of this literature review is to identify and analyse the relevant scientific literature when it
comes to the decision-making process that leads organisations to adopt or not adopt IDaaS as the
IAM model for their case. This paper will also include, where relevant, a review of factors in the
adoption of cloud computing at large, as IDaaS is a subset of this service model.

2 Research method

We utilised Google Scholar as our primary search tool. Our search included the keywords “Identity
as a service”, “IDaaS”, “Cloud Computing” and “Adoption”, either standalone or in combination
with one another. We also browsed the following databases:

* [IEEE Xplore
* San Jose State University, Dr. Martin Luther King, Jr. Library|

The selection criteria were to focus on papers that provided historical context to the development of
IDaaS, Cloud Computing and Cloud Services; papers assessing opportunities and challenges of the
aforementioned topics; and papers analysing factors for their adoption in organisations. The review
will follow a chronological order.

3 Literature review

The term Identity as a Service (IDaaS) was first proposed by Emig et al. in 2007 in their work
“Identity as a Service - Towards a Service-Oriented Identity Management Architecture”. They
predicted that service-oriented architectures (SOA) would be the basis of future information systems,

and highlighted the lack of a blueprint to create an identity management (IdM) architecture tailored
to SOA. [2] With a major advantage of web-service-oriented architecture being the interoperability
of services, the IdM need to account for that, facilitating authentication and authorization of users
across services.

Their main contribution is to define that “the complexity of the IdM architecture is encapsulated at a
set of service interfaces which should not have business domain-specific characteristics.”, aligning
the IdM architecture with the paradigm of SOA, and then proposing and testing an initial design
to validate it. Hence, the IdM is designed as a decoupled service: IDaaS. However, as a starting
proposition for IDaaS, their work did not include or predicted any of the commercial ramifications,
such as companies offering IDaaS as a third-party alternative, making IDaaS a de-facto product in the
cloud ecosystem. With the growth of digital data generation and storage, and the growing need for
trust and security, some authors propose an essential shift in how digital identities are maintained and
utilised on the internet.

Ates et al. proposed an identity-centric internet in 2011, as a way to defragment personal data. [4]
Not just as a matter of decentralised storage, but of multiple systems containing just fragments of a
person’s information, often without that person’s knowledge or consent.

Although this work is tangential to our research question, it provides historical context and describes
some challenges in identity management, from societal and technical perspectives. Mainly, the
authors bring attention to the notion of ownership of personal data, a topic closely linked with
authentication and authorisation, since forms of authentication often require personal information,
and that data generated while a user is signed in is often linked to the individual, even if they don’t
own 1t.

An interesting proposition in this paper is the Identity in the Cloud Agent (IC-Agent), which is
a user-owned and controlled logical system to manage an entity (e.g. person) identity, including
personal data, on the cloud.

As interesting as that idea might be, and the claim by the authors that it is a “necessary and tangible
objective”, it did not come close to materialising since. The security and technical issues when
it comes to hosting and integrating such a solution were not addressed at length (except for a
brief discussion on the hosting for the IC-Agent). Furthermore, the authors did not address users’
motivation in technology adoption, nor the very diverse cultural and regulatory landscape across the
globe when it comes to personal data management.

In Samlinson & Usha (2013), it is demonstrated that “cloud computing is the next wave of information
technology revolution”, but that security is a major hurdle in its adoption.[5] To adapt to the cloud
model, organisations would be forced to move away from traditional security methods in-premises
and move to higher-level security. Expanding on the idea of Ates et al., they proposed a Trust Agent
to allow users to log into multiple cloud service providers (CSP) - a federated environment. Briefly
described, the IdM would allow users to “securely traverse in the federated cloud environment without
creating new identity credentials for each service they access”.

The value add of this work is the description and diagraming of how these Trust Agents can enable
identity management in an intercloud scenario, and that it can be achieved with open standard
protocols. Additionally, it demonstrates the need for convenience and trustworthiness in this scenario.
However, this proposed model was not empirically verified, as the authors suggest it be done in future
work.

Stieninger et al. (2014) offer a more comprehensive review of drivers and barriers to the adoption of
cloud services. They utilise and compare theories for innovation and IT adoption such as Diffusion
of Innovations (Dol) theory by Everett Rogers (1962), from his book of the same name; and
the Technology Acceptance Model (TAM) by Fred Davis (1987). Importantly, they acknowledge
that, although Davis’ TAM focuses on individuals instead of organisations, many IT decisions in
organisations are made by single individuals at the executive level. Therefore, it’s acceptable to use
both these theories to investigate organisational disposition to these factors.

Their paper focuses on and reconceptualises five factors accepted as influential in technology adoption:
compatibility (CPT), relative advantage (RA), complexity (CPX), image (I) and security & trust
(ST).[6]

» Compatibility: the degree to which the innovation is perceived as consistent with the
“existing values, past experiences and needs of potential adopters.” It can also encompass
process and data compatibility, and considerations of lock-in effects on a vendor on costs
for migration and integration. According to the authors, this factor is frequently cited.

Relative advantage: “how much is the innovation perceived as being better than the idea
it supersedes”. In this, cloud computing solutions showcase several relative advantages of
simpler administration, potential cost savings and flexibility, among others.

Complexity: the perceived difficulty to understand and use the innovation. High complexity
is likely to turn into a barrier to adoption, but there were indications that subject matter
experts consider cloud implementation as not very complex, as it has simple administration
tools, and high usability and degree of automation.

Image: the perceived enhancement of the organisation’s image or status in its social context.
A good image can offer a competitive advantage in attracting and negotiating with customers.
Because of association, an organisation can be at risk of negative impact due to issues with
the cloud service provider, such as data loss incidents, outages, or even sharing cloud
resources with a malicious organisation.

Security & trust: for their work, trust is “considered as the ability of the involved actors to
convey the perception of trustfulness”. Due to its novelty at the time, there was still a lack
of trust, and perceived security and safety heavily influence trust in the context of cloud
services. In particular, we highlight data security and geographical location for data storage
and processing as impactful items for trust.

The aggregation of many factors presented in previous theories, and its reconceptualisation, is
particularly useful here. The authors compare a somewhat extensive body of research and cite studies
that map these factors to positive and negative attitudes toward the adoption of cloud computing.
In relation to our original question of factors influencing the adoption of IDaaS, it goes beyond the
previously mentioned issues of convenience and security, demonstrating that the organisational context
and perception of the innovation play an important role. In this paper, the approach to organising and
counteracting some gaps in previous theoretical models is logically explained. However, the findings
are related to the broader topic of cloud computing, and there are no specifics on IDaaS, so they have
to be interpreted in a more general way.

In a more narrow scope, Habiba et al. (2014) explore cloud identity management security issues and
solutions. They define cloud Identity as a Service (IDaaS) as “the management of identities in the
cloud, outside the organisational boundary and applications that use them.” [7]

They point to the benefits that IDaaS offer that are common to cloud services, such as reduced
hardware cost and easier integration, but many challenges exist in security and privacy. They advocate
that identity management is still best to be managed internally because the risks lie on the organisation,
and not the IDaaS provider, if critical information is lost or compromised.

In the paper, many models of identity management systems are classified and explained, with their
respective advantages and disadvantages, as well as a list of open-source cloud computing platforms
alongside their identity management services.

As a factor inhibiting adoption, the security of Cloud IdMs was at the time in its nascent stages,
and it was “categorically considered as the most important requirement”. Security and performance
bottlenecks limited adoption in a dynamic cloud environment. The authors bring attention that the
domain of cloud IdMs warranted more attention from the research community and IT industry.

The added value of this research was comprehensive research on cloud IdMs, with a classification of
models, an in-depth list of possible attacks targeting cloud IdMs, and the development of a taxonomy
to evaluate cloud-based IdMs. They present evidence that security is a top concern in the adoption of
IDaaS.

Sherlock 2014 [8] discusses the concepts of Identity as a Service (IDaaS) and Federated Identity
Management (FIM) and their acceptance among various institutions and the general population.
FIM and IDaaS have been well received in educational, commercial, and government organizations
but amongst the general population, it is a lot less accepted due to trust issues. One of the main
hindrances to the adoption of FIM and IDaasS is the lack of understanding and trust among the general
population [17]. Despite government efforts, notably in the European Community, to establish a

common credential provider and broker-based approach, there are still barriers to acceptance, such
as concerns over the unauthorized release of private information and the lack of a clear definition
of what constitutes an electronic identity (eID). The paper further emphasises the questions arising
orientating around the truthfulness of IDaaS, such as risks of Man-in-the-Middle attacks, misuse
of IdP and SP with user identity information, and the clear definition of liability arrangements are
identified as potential risk areas.

In summary, while technological solutions for identity management, such as IDaaS have been proven
to be viable and cost-effective, a full-scale implementation is currently constrained by trust issues
among the general population [8].

Ducatel (2015) proposes a Horizontal Service design in turning Identity and Access Management
(IAM) solutions into IDaa$S, consisting of reusable, policy-driven feature enforcement to guarantee
compliance integrity offered by a subscription-based service.[9] Bringing the concept of IDaaS closer
to SaaS when it comes to business model.

The author describes trust and security as drivers of the adoption of cloud services, and that cloud
service providers (CSPs) can demonstrate to customers (organisations or end consumers) how identity
management is done: how is it protected, where is it stored, how do they mitigate identity-related risks.
To that end, a classification framework for the level of mitigation for risks is offered. The need for
transparency regarding exposure is important since “IDaaS for cloud services implies a fragmented
model of identity responsibilities”. In short, the author concludes that mitigating risk can not be done
without transparency on the liability of each component in the system. Finally, the issue of storing
identity is discussed, since this presents legal and regulatory ramifications. IDaaS customers should
request and understand the Service Level Agreement (SLA) of the service to ensure it complies with
internal policies and external regulations. This Horizontal Service architecture addresses trust-related
issues for customers while being appropriate for multi-tier and multi-cloud deployments, it is argued,
and therefore contributes to cloud adoption. Vo et al. 2016 [10], discuss three key roles in any
cloud computing environment according to IBM’s Cloud Computing Reference Architecture, namely
service creator, cloud provider, and cloud consumers or end users. Three scenarios are showcased
in these environments, including dynamic single-sign-on (SSO) issues where a user has to manage
different credentials for different services within the same cloud provider, dynamic service binding
where a service may need to partner with another service based on user behaviours, and identities
roaming (users moving geographically and accessing services from different locations). The model
described in the paper [10] discusses several components of an IDaaS model including:

* Policy Enforcement Point (PEP): This intercepts the authentication request and handles
authorization for the service provider.

* Policy Decision Point (PDP): This is a mechanism for analyzing and deriving any elements
related to Security Policy from an existing implementation.

* Policy Information Point (PIP): This provides user information for the PDP to make decisions
and also handles identity roaming between IDaaS in different security domains.

* Policy Administration Point (PAP): This endpoint provides functionalities for operators of
tenant applications to review the derived policies and configure them on demand [10].

The authors further explore identity roaming, adhering to privacy guidelines, and ensuring that user
data is protected from unauthorised access or disclosure. The future work is an interesting suggestion:
it is proposed to extend Topology and Orchestration Specification for Cloud Applications (TOSCA),
a standard to describe topology for Cloud applications. The author suggests an extension of TOSCA
to describe a model for IDaaS components, developing a mechanism to protect identity roaming
against identity theft, and considering automated trust negotiation between IDaaS based on existing
trust between mobile network operators [10].

In their following work, the authors present a novel approach to preserving privacy in IDaaS. In
particular, they focus on how Personal Identifiable Information (PII) can be disseminated across
multiple cloud services, via federated identity management, while still ensuring PII is not misused or
accessed by unauthorised entities. The proposed technical solution combines Purpose-based Access
Control (PBAC) and Attribute-based Encryption (ABE). [11]

They go into detail on the implementation of such system, including how authentication and encryp-
tion would work. In terms of adoption, they explain how this solution can support organisations

30%

28%

Y]
v

23%

f respondent

Are

10%

v

2013 2017

®© Statista 2018

Figure 2: Graph showing increase of acceptance of IDaaS from 2013 to 2017 [16]

in keeping compliance: “‘European Union Data Protection Directive’ prohibits data transfer or
processing by a service that is hosted in a country with a weak privacy protection law. By applying
these guidelines, our access control model takes time, purpose, location, and domain as the main
factors for describing the disclosure policy.” Interestingly, this work focused on preserving user
privacy in IDaaS for federated environments, whereas previous work focused more on the issue of
security and trust. PII might have more specific regulations, such as the “European Union Data
Protection Directive”, and therefore it is valuable to design a system that is convenient for the end
users and services in terms of its portability and usability but that accounts for the sensitivity of the
information being disseminated.

In his work ’The rise and rise of ID as a Service’ (2018), John Mears describes how IDaaS is changing
how biometric matching and identity services are provided. [1] The author describes the ambiguity
of the term IDaaS (in some contexts, only describing a cloud-based subscription service, in others
as any identification function open to multiple entities, regardless if in the cloud or not). In any
case, the author describes the main functionalities of IDaaS as: Authentication (with authorization
included here): enables a service “to verify that a person asserting an identity is indeed the person
they claim to be”. Identification: “the comparison of an unknown person or user to a potentially
large gallery of known subjects”. [1] So far in this review, only the aspect of authentication (and
authorization) was included, but not services for identification. The author states that “organisations
have adopted a cloud-first or cloud-only strategy to ensure they can reap the benefits described in
the NIST definition”, namely: that cloud computing provides ubiquitous and convenient access to
configurable computing resources, that can be easily and quickly provisioned and released.

In that sense, the financial and competitive drivers in adopting IDaaS are highlighted: the ready
availability of these services and the flexibility to scale them as demand requires. Also, regulatory
motives, such as data security and regulation specific to certain industries. IDaaS appear as a solution
to these challenges. Three main types of organisations and industry sectors are listed as being attracted
to IDaaS: government agencies, due to the elasticity and scalability of IDaaS systems; financial
industry, due to regulatory, performance and security considerations; and the healthcare industry,
to reduce errors and fraud. The paper also focuses on biometric modalities in IDaaS applications:

fingerprints; facial, iris and voice recognition; and other less common methods (e.g. DNA). With the
mass adoption of mobile and other devices with biometric and behavioural authentication capabilities
built-in, the acceptance of advanced authentication increases.

A hindrance to adoption is that “IT staff perceive there is a loss of control of data, and subjects worry
about the security of their data being stored in the cloud”. Once more, concerns with security are
a blocker, but the growth of SaaS (and IDaaS as its subset) suggests that the benefits previously
mentioned are worth it. In this work, many specific cases and solutions are mentioned, and the author
makes a logical case for the rise of IDaaS, linking it to the development of other technologies, such
as biometrics in customer devices.

On their work in 2019, Vo et al. expand on their previous work of IDaaS as a way to preserve user
privacy while offering interoperability in a federated system.[12] They emphasise that there is a
demand for "highly secure and flexible access control for identity federation" but this security feature
is not a core competency of service providers, leading cloud services to prefer outsourcing IAM to
third parties. Another factor is that the human-PC (personal computer) link is the weakest link when
it comes to identity protection, more so than the links between PC, service provider and identity
provider, and therefore, reducing human interaction from identity disclosure is desirable.

The main content of this paper is the architecture design of their proposed system, which enables the
preservation of user privacy, while providing identity propagation between services or intermediaries
in a secure way (i.e. with PII encrypted in the identity provider). They offer a solution for many of
the challenges in IDaaS adoption and disclaim the technical considerations in doing so.

Chau 2019 [13] focuses on exploring the factors that drive the adoption and usage of cloud services
in organisations. Cloud computing provides an alternative model to traditional IT deployment and
governance, enabling businesses to focus on their core competencies instead of managing large-scale
IT infrastructures, such as users’ identities. This study looks into the decision-making process of
whether or not to move an IT operation to the cloud. A survey was carried out, examining factors
such as extrinsic motivation, intrinsic motivation, perceived risks, and resource constraints. Cloud
services can be delivered through three models:

* Software as a Service (SaaS)
e Infrastructure as a Service (IaaS)

¢ Platform as a Service (PaaS)

and can be deployed using private, public, community, or hybrid infrastructures [13]. IDaaS specifi-
cally focuses on managing user identities and access control.

Similar to the aforementioned cloud services, IDaaS is influenced by the same factors such as
extrinsic motivation, intrinsic motivation, perceived risks, and resource constraints. For example, a
company might be motivated to use IDaaS due to its benefits of centralised identity management and
reduced overhead costs (extrinsic motivation), or because it aligns with the company’s values of using
modern, cloud-based technologies (intrinsic motivation). Chau 2019 [13], emphasises which factors
can influence the potential adoption of IDaaS. Understanding these factors can help cloud service
providers improve their offerings and address the concerns of potential customers, thus facilitating
wider adoption of these technologies [13].

Gomma 2020 [14], paper focuses on the concept of IDaaS in the context of cloud computing.
It acknowledges that while IDaaS brings many benefits, it also introduces security challenges,
particularly regarding identity theft, as previously discussed. The paper proposes the use of Virtual
Identity (VID) as a solution to enhance security within the IDaaS framework [14].

The paper explains that IDaaS is commonly used for authentication in Software as a Service (SaaS)
cloud deployment models and can be provided by third-party identity providers. The authors propose
the use of VID, which allows for anonymous Single Sign-On (SSO) in distributed cloud service
environments. They design a VID creation framework using Elliptic Curve Cryptography (ECC) and
implement two approaches:

* Identity Based Encryption (IBE)
* Pseudonym Based Encryption (PBE) using the MIRACL security library

To assess the security of their proposed solutions, the authors use the AVISPA tool, which analyzes
the formal models of security protocols. The analysis shows that both the IBE and PBE protocols
are secure with no vulnerabilities found. The authors conclude that their VID approaches based on
IBE and PBE are suitable and scalable for securing anonymous communication in cloud services
environments.

The contributions of the paper include the design and modelling of the VID framework, the imple-
mentation of the models using the MIRACL security environment, the validation of the protocols
using AVISPA to assess their security measures, and the comparison of the proposed solutions with
related work in terms of security and cost. It provides context and an indication of how IDaaS can be
further developed and possibly be more generally accepted.

Future directions for the research include integrating the proposed VID solutions into a running cloud
environment and further studying their implementation and performance in real-world scenarios [14].

Sharma et al. (2020) provide a systematic literature review on the topic of cloud computing adoption,
using manual analysis and natural language processing (NLP). [3] It’s an extensive work, ranging
from describing which theoretical frameworks are utilised for studying cloud computing adoption
(with the most common being TOE - Technology Organization Environment by Tornatzky et. al;
and TAM - Technology Acceptance Model by Davis); the critical factors in the adoption of cloud
computing; what are the significant causal relations of influencing factors are important; and if there
are any differences in these factors, with respect to developed and developing countries.

In their review, the authors compiled and aggregated commonly mentioned keywords across 201
curated studies based on their criteria.

Market Scope = 2
Industry == 2
Uncertainity = 2
Performance risks = 5
Organisational Readiness = 5
Reliabilty w6
Trialability —m——§
Trading Partner Pressurc o 8
Innovativeness m——]2
Social Influence T— 13
Technology Readiness m———— 15
Trust ————]

Factors

Firm size m—)]
Privacy meesssssssssss——)]

Top Management Support FEEEEEE——————)7

Competitive Pressure n—)3

Compatibility F——— 3(
Complexity —— 33
Relative Advantage EEEEEEEEE————— 38
Cost T 4§

Security 1S K 73

0 10 20 30 40 50 60 70 80
Number of Studies

Figure 3: Factors influencing cloud computing adoption (worldwide) [3]

The most commonly cited words/phrases in the studies the authors reviewed are security, cost, trust,
privacy, risk and virtualization. Figure 2 shows the keywords already aggregated in factors, with the
five most commonly cited being security risks, cost, relative advantage, complexity and compatibility.
Additionally, they uncovered a strong association between the terms security, privacy and lock-ins.
Existing users of cloud services considered compatibility, security and technical support from the
service provider as important factors.

An important finding in this work is that "most of the research examined specific aspects of the
first-time adoption (...), but only a handful of researchers usually focus on which factors led to the
continued urge and usage of adoption". And only one study mentioned factors that could lead to
attrition of cloud services. These are areas in need of more research.

The landscape in the adoption of cloud, and hence how identity is managed in systems, has changed
considerably in the last decades. Today, there is a great need for robust identity management, given
the constant risk and massive negative impacts of breaches and attacks. At the same time, due to
the multiplicity of users’ devices, and applications and services on the internet, identity have to be
easily manageable. IDaasS is an apt solution for this, and hence it is also known as "modern identity",
possessing the capabilities of: directory (i.e. storage of data, metadata and policies on identity); single
sign-on (SSO); multi-factor authentication (MFA); and provisioning and workflows (capabilities on
managing the service, including automation).[18]

More recently, there are many providers for IDaaS as an enterprise product, with different capabilities.
Organisations can evaluate them based on their needs and the capabilities of each of these products,
such as single sign-on (SSO), multi-factor authentication (MFA) and type of authentication. [19] The
size of the IDaaS market was valued at $5.5 billion dollars in 2021, and is projected to reach $41.9
billion dollars by the end of 2031, proving that the technology is being adopted at a high pace. [20]

4 Discussion and conclusion

As is the case for a novelty approach in a rapidly changing cloud computing ecosystem, the earlier
works in identity management, specifically related to IDaaS, describe different possible architectural
implementations. With the growth and adoption of cloud services from 2007 to today, a need for a
scalable and robust approach to identity management is required, and IDaaS (with its many different
possible implementations) is an apt solution for it.

The most commonly cited hindrance to the adoption of IDaaS is the issue of security and trust, even
more so in its nascent stages. But with advancements in technology and many providers specialised
in these solutions, it has matured and offers many advantages over developing and maintaining
identity-management on-premises for organisations.

The main advantages of IDaaS closely resemble those commonly associated with cloud services:
ready to use, with low cost of implementation, interoperability, easy to manage, elastic and flex-
ible. However, externalising identity and access management can be perceived as a big risk for
organisations, due to the lack of control.

These advantages propelled the adoption of IDaaS. Specifically to IDaaS: the possibility of managing
identities in federated environments, reducing usability issues (such as the creation of multiple logins
and passwords by users), and even security issues (with encryption, multi-factor authentication, and
biometrics).

This literature review also brings attention to the fact that research on adoption (and attrition)
factors specific to IDaaS is rare. For that reason, gaps had to be addressed by analysing factors
related to cloud services adoption, and then putting them linking them to the context of identity
management. Also worth noting is that the term IDaaS had different meanings from its inception
(as a technical implementation) to now (fully-fledged enterprise products offered by third parties via
cloud capabilities).

References

[1] Mears, J. (2018). The rise and rise of ID as a Service. Biometric Technology Today, 2018(2), 5-8.
doi:10.1016/s0969-4765(18)30023-7 10.1016/s0969-4765(18)30023-7

[2] Emig, C., Brandt, F., Kreuzer, S., & Abeck, S. (2007). Identity as a Service — Towards a Service-Oriented
Identity Management Architecture. Lecture Notes in Computer Science, 1-8. doi:10.1007/978-3-540-73530-
4110.1007/978 — 3 — 540 — 73530 — 4,

[3] Sharma, M., Gupta, R., & Acharya, P. (2020). Analysing the adoption of cloud computing service: a system-
atic literature review. Global Knowledge, Memory and Communication, 70(1/2), 114-153. doi:10.1108/gkmc-
10-2019-0126 10.1108/GKMC-10-2019-0126

[4] Ates, M., Ravet, S., Ahmat, A. M., & Fayolle, J. (2011). An Identity-Centric Internet: Identity in the Cloud,
Identity as a Service and Other Delights. 2011 Sixth International Conference on Availability, Reliability and
Security. doi:10.1109/ares.2011.85 10.1109/ARES.2011.85

[5] Samlinson, E., & Usha, M. (2013). User-centric trust based identity as a service for federated cloud environ-
ment. 2013 Fourth International Conference on Computing, Communications and Networking Technologies
(ICCCNT). doi:10.1109/iccent.2013.6726636

[6] Stieninger, M., Nedbal, D., Wetzlinger, W., Wagner, G., & Erskine, M. A. (2014). Impacts on the Organiza-
tional Adoption of Cloud Computing: A Reconceptualization of Influencing Factors. Procedia Technology, 16,
85-93. doi:10.1016/j.protcy.2014.10.071 10.1016/j.protcy.2014.10.071

[7] Habiba, U., Masood, R., Shibli, M. A., & Niazi, M. A. (2014). Cloud identity management security
issues solutions: a taxonomy. Complex Adaptive Systems Modeling, 2(1). doi:10.1186/s40294-014-0005-9
10.1186/s40294-014-0005-9

[8] Sherlock, J. (2014) Review of Barriers for Federated Identity Adoption for Users and Organizations. Available
at: https://arxiv.org/ftp/arxiv/papers/1810/1810.06152.pdf (Accessed: 30 May 2023).

[9] Ducatel, G. (2015). Identity as a service: A cloud based common capability. 2015 IEEE Conference on
Communications and Network Security (CNS). doi:10.1109/cns.2015.7346886 10.1109/CNS.2015.7346886

[10] Vo, T.H., Fuhrmann, W., & Fischer-Hellmann, K.P. (2016) Identity-as-a-Service (IDaaS): a Missing Gap
for Moving Enterprise Applications in Inter-Cloud. Available at: https://www.cscan.org/openaccess/?id=306
(Accessed: 30 May 2023).

[11] Vo, T. H., Fuhrmann, W., & Fischer-Hellmann, K.-P. (2018). Privacy-preserving user identity in Identity-
as-a-Service. 2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN).
doi:10.1109/icin.2018.8401613 10.1109/ICIN.2018.8401613

[12] Vo, T. H., Fuhrmann, W., Fischer-Hellmann, K.-P., & Furnell, S. (2019). Identity-as-a-Service: An Adaptive
Security Infrastructure and Privacy-Preserving User Identity for the Cloud Environment. Future Internet, 11(5),
116. doi:10.3390/£111050116

[13] Agrawal, V. K., Agrawal, V. K., Taylor, A. R., & Chau, N. (2019). An Exploratory Study Of Factors Driving
Decision Maker Intentions To Adopt Cloud Computing. Information Technology and Management Science, 22,
37-46. https://doi.org/10.7250/itms-2019-0006

[14] Gomaa, 1., Abd-Elrahman, E., Hamdy, A., Saad, E. M. (2020). Automated Security Assessment for IDaaS
Framework. Wireless Personal Communications. doi:10.1007/s11277-020-07860-8

[15] Ping identity (no date) Identity as a Service. Available at:
https://www.pingidentity.com/en/resources/content-library/articles/identity-as-a-service-idaas.html (Ac-
cessed: 31 May 2023).

[16] Ani Petrosyan, Jul 7, 2022, Use of two-factor authentication among U.S. online users 2013-2017

[17] Roberts, B., & Chen, Y. (2023). Business Agility through Cloud-Based Services: An Examination of IDaaS
Adoption. Journal of Information Systems Cloud Computing, 11(3), 256-269.

[18] Miller, L., & Hakamine F. (2020) Identity as a Service (IDaaS). John Wiley & Sons. Available at:
https://www.okta.com/resources/whitepaper-identity-as-a-service-for-dummies/ (Accessed: 31 May 2023).

[19] Murphy, M. (2020) Comparing IDaaS (Identity-as-a-Service) Providers. Available at:
https://jumpcloud.com/blog/comparing-identity-as-a-service-idaas-providers (Accessed: 31 May 2023).

[20] Transparency Market Research (2020). Identity-as-a-Service (IDaaS). Available at:
https://www.transparencymarketresearch.com/identity-as-a-service-market.html (Accessed: 31 May
2023).

10

The Impact of Cloud Computing on High-Performance
Computing, with a Focus on Performance, Latency,
Security and Cost

Yihong Xi Xingyou Li
Faculty of Science Faculty of Science
14720035 14741628
University of Amsterdam University of Amsterdam
yihong.xi@student.uva.nl xingyou.li@student.uva.nl

Zhiheng Yang
Faculty of Science
14483262
University of Amsterdam
zhiheng.yang@student.uva.nl

Abstract

High-Performance Computing (HPC) has been traditionally executed on dedicated
supercomputers, however, with the emergence of cloud computing, there’s an
increasing interest in leveraging its scalable and flexible infrastructure for HPC
applications. This review focus on this intersection, including the performance,
latency, data security, and cost issues associated with running HPC workloads
in cloud environments. We outline the challenges that arise due to architectural
differences between traditional supercomputers and cloud environments, the im-
plications of latency on cloud workloads, the complex data security concerns, and
the cost-effectiveness of utilising cloud resources for HPC. Despite the challenges,
the flexibility and scalability offered by cloud environments present significant
opportunities for HPC. This review thoroughly covers the challenges and current
state of HPC in the cloud, providing a strong foundation for future research in this
promising field.

1 Introduction

High-performance computing (HPC) is a method of processing large amounts of data and performing
complex calculations at high speeds[[1]]. HPC has traditionally been associated with physical clusters
of powerful computers, deployed and maintained by experts in buildings which are designed for
cooling the whole system with best efficiency[2]. In traditional HPC architecture, multiple computers
or computing units are networked together to form a cluster which contains much more powerful
performance than one single computer[/1]. These traditional, on-premise HPC clusters offer the
advantage of dedicated resources, enabling high-speed computation and communication capabilities,
which are especially beneficial for tasks with significant data transfer and synchronization needs.

HPC contributes to solving complex problems with reasonable time costs but is also a significant
investment which is not affordable for normal consumers and small enterprise businesses, especially
when they need to make a profit at first. However, the new emergence of cloud computing has

—
@)

introduced a new paradigm for HPC. In that case, compared to the traditional situation, computing
resources are provided as a service over the Internet, which eliminates the demand for building cooling
systems, purchasing expensive computers and maintaining the running of the whole computing
system.

As a result, HPC with the cloud can help users or organisations to save a significant number of money
spent on building infrastructure and scale their computing needs dynamically according to their
real-time workload requirement, offering advantages such as on-demand resource provisioning, cost
flexibility, and ability to scale resources according to workload requirements.

While cloud-based HPC offers numerous benefits and has transformed the landscape of high-
performance computing, it has not completely replaced traditional HPC. When we try to transform
from the traditional cluster-based model to cloud-based HPC, are there some impacts happening
or some issues arising? What cons and pros do cloud computing brings to the HPC? A thorough
evaluation of its capabilities and limitations is necessary to address these questions and gain a com-
prehensive understanding of the impact of cloud-based HPC. To answer these questions, we try to
evaluate cloud-based HPC in the aspects of performance, data security, latency and cost.

2 Performance

To dig into the performance of different, it is needed to figure out what impact the computing
speed of HPC the most. According to Lisa Morgan’s study [3]], the speed of an HPC depends on
its configuration, which means more clusters and cores enable faster enable parallel processing.
Performance is also affected by the software that runs on the machine, including the operating system
design and application design, and the complexity of the problem being solved. Another study
mentions that the network speed and bandwidth are also significant for the computing speed of
HPC[4]. As a result, to evaluate HPC’s performance, we introduce two metrics: execution time and
turnaround time.

2.1 Execution Time

Gupta[5] conducted a series of experiments on different computing environments, including super-
computers and clouds, to find the answers of what advantages the cloud-based HPC have, what kinds
of applications are suitable for the cloud environment of HPC and how the applications can be used or
optimized for cloud-based HPC. They explored OS-level containers, hypervisor- and application-level
CPU affinity and their impact on performance.

The relative result shows in Figurd] In that experiment, benchmark applications including NPB[6],
Jacobi2D, NAMD[7]], ChaNGa[8]], Sweep3D[9], NQueens[10]. The figure illustrates when the num-
ber of cores increases, the execution time of cluster-based HPC environments is less than cloud-based
HPC environments due to InfiniBand network and better processors. However, in some applica-
tions such as NPB Embarrassingly parallel, coresJacobi2D and NAMD, the cloud-based HPC Open
Cirrus can achieve similar performance with cluster-based HPC, probably due to those benchmark
applications are not intensive on the communication between computing nodes. Nevertheless, in
communication-intensive benchmark applications such as NPB IS and CHaNGa, cloud platforms
may not be able to achieve optimal scalability due to bandwidth limitations. In contrast, cluster
environments have infinite bandwidth, making them a better option for these applications.

The results of their study revealed that public clouds are cost-effective for small-scale applications
and can be used in conjunction with supercomputers through techniques like cloud bursting and
application-aware mapping. Besides, they also identified network latency as a significant limitation
that affects the scalability of applications in cloud environments.

In another study, Gupta[11] conducted performance evaluations of HPC benchmarks on clusters, grids,
and a private cloud, in which it was confirmed that HPC applications could experience performance
degradation in the cloud if they heavily rely on communication. But if they are not communication-
intensive, the performance of the cloud is relatively satisfactory, especially considering the favourable
cost-performance ratio of the cloud environment.

NPB Class B - EP NPB Class B - LU NPB Class B - IS Jacobi2D - 4K by 4K matrix

T T T T T T T AT T T T T T
8 N :
'28 Glou K
Private Cloud - - ¥ - 256 - +
32 [N OpenﬂCirrus -43- B
anger —fil— -
6l + TSR o B et ¥ 'X;II
N, ~ e
- +. 16 : -
& R xi g_..ﬂ
4 - 4 -_'n:ﬁ’
2 2
1
1
: ®.g
s 025 |- .67
oL 11 1 11 pogzs L L L 11 1 11
12 4 8 16 32 64 12825 12 4 8 16 32 64 12825 12 4 8 16 32 64 128256
NAMD (Molecular Dynamics) NQueens (State Space Search) ChaNGa (Cosmology)
ST T T T T T
256
128
64
32
16

f T T T T N T x 3
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256 1 2 4 8 16 32 64 128256

Figure 1: Time in seconds (y-axis) vs. core count (x-axis) for different applications (strong scaling
except Sweep3D). All applications scale well on supercomputers and most scale moderately well on
Open Cirrus. On clouds, some applications scale well (e.g., EP), some scale till a point whereas some
do not scale[12].

Distribution of turnaround time assurming 5-hour EC2 job for 256 tasks
W Cab W Siemra W Hera [Hyperion [J uDawn -

Normalized turnaround time
5 6
]
— 1
—

- -
- = = P - _ = - o
= = - o

Pure Wait Time EP LAMMPS L SMG2000 Sweep3D

Benchmarks
© Distribution of tumnaround time assuming 5—hour EC2 job for 512 tasks : T
m Cab W Siemra W Hera [Hyperion [uDawn - U H
~ :

Normalized turnaround time
5 6
%
%

~ ._ = =] = - 8
T - - -1 o
‘ ‘ a-fa ‘ ; , — ‘
Pure Wait Time EP LAMMPS L SMG2000 Sweep3D
Benchmarks
® Distribution of turnaround time assuming 5-hour EC2 job for 1024 tasks - -
o W Cab W Siera B Hera O Hyperion [uDawn T :
£" : :
= :
2o
3 T -
S o : :
£ H H
2 : :
3" U D
o -
N T
5 o :
£ i
5o ‘ B g
z = IV ML
al O] - i} o
- L] - vlﬁ IY L o
.m- L all _g 0 8
T T T - T T T T = T T
Pure Wait Time EP LAMMPS L SMG2000 Sweep3D

Benchmarks

Figure 2: Comparison of total turnaround times on EC2 and LLNL clusters on 256, 512, and 1024
tasks. The figure shows turnaround times on LLNL clusters normalized to the EC2 turnaround times
assuming 5-hour jobs on EC2. The y-axis represents multiples of EC2 turnaround time[13]].

2.2 Turnaround Time

The study conducted by Marathe et al.[[13] yielded intriguing results, highlighting the contrast between
HPC clusters and EC2 clusters. The relative results are shown in Figure 2] which shows in many
cases, the EC2 execution time is better at lower scales. When increasing the number of MPI tasks,
higher-end LLNL clusters scale better than EC2, but it brings more queue wait time due to the demand
for higher computation resources. Consequently, the turnaround time is longer in most clusters.

Although the HPC clusters exhibited superior raw performance, it was the EC2 clusters that achieved
better turnaround times. In fact, the turnaround times for HPC on-premise resources were more than
four times longer compared to their cloud counterparts, despite the local clusters executing tasks at a
greatly faster pace. This discrepancy emphasizes the significance of considering turnaround time,
a frequently overlooked but crucial factor in viability studies that focus on ensuring the quality of
service (QoS)[I13]].

3 Latency

Traditional HPC systems have long been focused on optimising algorithms and memory management
to achieve high computational performance. However, with the emergence of cloud-based HPC, new
challenges related to latency have surfaced.

Latency refers to the delay or the time it takes for data or tasks to travel from a source to a destination
within a cloud-based HPC system. It is influenced by various factors, including network infrastructure,
data transfer protocols, scheduling schemes, and application characteristics. The network latency is a
key limitation for the scalability of applications in the cloud[14]].

3.1 Network latency

There are mainly two ways of big data stream processing: Continuous Data Streaming and Mini-
batch Data Streaming. Continuous Data Streaming category includes Apache Flink streaming[15]],
Storm[[16], and Twitter Heron[17]]. The Mini-batch Data Streaming category includes Apache Spark
streaming[/15]] and Dask Streamz[/18]], which also has better overall results (despite the stress of
scheduling). While network latency is unavoidable due to limitations associated with the physical
dimension. In HPC, where large-scale computations are performed on distributed systems, even small
delays in network communication can have a significant impact on overall system performance[19].
High network latency can introduce bottlenecks and limit the ability of HPC systems to utilize
computational resources effectively.

The impact of network latency on HPC applications is particularly pronounced in scenarios that
require frequent communication and data exchange between computing nodes. For example, par-
allel applications that rely on message passing interfaces (MPI) heavily depend on low-latency
and high-bandwidth network connections to achieve efficient inter-node communication[20]. La-
tency can directly affect the speed at which messages are sent and received, resulting in increased
communication overhead and decreased parallel efficiency.

Various techniques have been employed in HPC systems to mitigate the effects of network latency.
Network optimizations[21]], such as reducing message size or employing efficient communication
protocols, aims to minimize the impact of latency on application performance. Additionally, ad-
vancements in network technologies, such as high-speed interconnects and low-latency fabrics, have
contributed to improving the overall performance of HPC systems by reducing network latency. In
recent years, compared with traditional network architecture, another promising technology called
Software-defined networking (SDN) has emerged as a potential solution[22] (shown in figure [3).

3.2 Data Transfer Protocols

TCP is widely recognized as the principal protocol for ensuring reliable data transfer in IP networks,
demonstrating its effectiveness since its inception and remaining the preferred choice for most
communication scenarios. Nevertheless, TCP’s suitability is limited when it comes to latency-
sensitive processing.

For example, in data centre environments, TCP latency can vary significantly. While best-case round-
trip latency can be as low as 25 ps, latency outliers occur during congestion or link faults. These
outliers range from 50 ms to several seconds, even with alternative network paths. Retransmission of
lost TCP packets contributes to these outliers, as TCP implementations maintain high retransmission
timeouts to accommodate potential delays within the operating system([23]]. Thus, developers often
prioritize optimizing other aspects, relegating TCP/IP to a secondary role. This becomes especially
significant in streaming systems where the primary performance limitation stems from I/O constraints
due to the need to transfer a large number of small messages[24]].

Indeed, the existing protocols exhibit both strengths and weaknesses. However, achieving compre-
hensive optimisation of latency that meets the demanding requirements of HPC is a challenging
task. Figure[dexplains some presented congestion control schemes, which also shows the lack of the
ability to control latency[23].

f Application Layer)
Network Applications | Application 1 Application 2 Application 3 |
Specific Specific Specific S e R g J
Interface Interface Interface 1 Nouthbound Interface
(e sl Rt eyl oo, chaions IR, S
| ControlModule 1 | Control Modute2 | | ControlModule3 [Control Layer)
| | : t : | | Lan Controller 1 £ SDN Controller2 $3 SDN Controller 3)|
| f;‘ | | Data | | ISouthbound Interface
| E % Forwarding Module * | | ________________
| ‘,"‘ , | Data Layer |
(__Private Device2) | SDN Data
| l?ata Protocol 2 | D'ala | | < Forwarding Device ‘_‘ |
| Forwarding Module < # Forwarding Module %) |
J | | SDNData * A SDNData
l Private Device 1) l Private Device 3) | Forwarding Device < » For g Device |
J
—_—
Physical Link ~4—— Logical Control S et et # Data Stream

(a) Traditional Network Architecture

(b) SDN Network Architecture

Figure 3: Comparison of traditional network structure and SDN network structure[22]]

Type Algorithm ‘ Congestion control mechanism Pros Cons
Loss-based NewReno AIMD Proven convergence, fairness Inefficient in LFNs
BIC Binary search increase function Higher efficiency Too aggressive
CUBIC Cubic CWND function RTT-independent fairness High number of retransmissions
‘Wave Burst-based adaptation Fairness and efficiency Highly volatile RTT
. T Fewer retransmissions, lower N e .
Delay-based Vegas RTT changes as congestion signal Jatency Suppressed by loss-based flows
Verus Delay profile-based AIMD Adaptability to volatile channels High sender-side CPU load
. Explicit queue and cross traffic Scalable aggressiveness to deal .
Nimbus modeling with CUBIC Unfair to Vegas and BBR
LEDBAT Extra delay to high-priority flows Does not affect other flows Limited to low-priority traffic
Capacity-based Westwood Bandwidth esg‘n)}?\‘llbon to decrease Good in wireless and lossy links No latency control
Sprout HMM capacity model Low delay, customizable Needs one buffer per flow
Hybrid Compound Sum of Reno and Vegas windows Fast in LFNs, fair to CUBIC No latency control
linois Delay used “Zh‘f‘;;“""e Sl Fast in LFN, fair to CUBIC No latency control
Veno Explicit model of the buffer Fast in LFNs, fair to CUBIC No latency control
BBR Capacity and RTT measurement High throughput, low delay Fairness and mobility issues
Learning-based Remy Monte Carlo-based policy Reaches capacity with low delay Fairness issues with other TCPs
TAO Advancement on Remy Fairness issues solved Requires knowledge of the network
PCC Online experiments to determine Good in high RTT networks Untested with bufferbloat
Reinforcement learning to .. . Untested in highly dynamic
TCP-RL determine CC algorithm Self-organizing capabilities environments
QTCP Reinforcement learning to select Higher throughput than NewReno Limited performance evaluation

Figure 4: Main Presented Congestion Control Schemes[25]]

3.3 Scheduling Latency

This refers to the delay in scheduling and executing tasks across distributed computing clusters due
to resource contention and scheduling algorithm effects. Task scheduling involves allocating tasks
to computing nodes to achieve efficient parallel computing. In a multi-node HPC system, the task

scheduler needs to consider factors such as node load, task dependencies, communication overhead,
etc., to determine where and when tasks should be executed. This process takes time, resulting in
increased waiting time for tasks and introducing task scheduling latency. In the functional model of
schedulers, the architecture of every job scheduler comprises four essential functions: job lifecycle
management, resource management, scheduling, and job execution[26]], shown in figure 6]

As shown that scheduling latency is involved in all components because of the resource contention,
complexity of scheduling algorithms, scheduling decisions, and dependencies between jobs. Currently,
the industry is focusing on scheduler algorithms as hardware resources are not unlimited. There are a
number of schedulers available, and they have been improved in terms of reducing latency, each with
its own advantages. Figure[6]and Figure[7] show the results of a controlled experiment to measure
scheduler latency[26].

' Job Lifecycle Scheduling ! Resource H

F Management e Management :

i Allocation i H

Queue Policies H .

H Management : i

: Policies : H

: i IS

H) -y
—~ ii[Current : g
\3‘ L Job i Resource -
g : Assignment States -1

i . o
T -
g Job Queues i 8
= B N -
= | Job Dispatch i 2

H H e H m
| ‘J.' ' | : =
3| B

- Job M;nitorlng & Compute Resource Monitoring P B

: gmt Cluster & Management R

- Job i

: R H

i | JobLogFiles Retirement e, |

H Job Execution oy

Figure 5: Key Components of Cluster Schedulers[26]]

= Rapid Fast Medium Long
Configuration Tasks tasks tasks tasks
Task time t 1s 5s 30s 60s
Job time per processor Tjop 240s 240's 240s 240's
Tasks per processor n 240 48 8 4
Processors P (cores) 1408 1408 1408 1408
Total tasks N 337,920 67,584 11,264 5632
Total processor time 93.7h 937h 937 h 93.7h
Runtimes (sec)
Slurm 2774, 2787,2790 622, 603, 606 280,278, 255 287, 264, 300
GE 3057, 3073, 3082 622,634,623 278,279,277 275,281,274
Mesos 1794, 1795, 1792 366, 364, 367 280, 280, 281 306, 306, 305
Hadoop YARN - 2013, 1798, 1710 479,472,510 342, 445, 347

Figure 6: Comparison of Performance in Schedulers (Hadoop YARN Rapid Tasks failed executed)[26]]

10* 104 10 10*
10% 10° 10% 10°
2 8 8 8
= = = = */
g2 g .2 g2 I b
s -] 2 2
2 10 2 10 =2 10 2 10
[W [[
= = =
< a < El
10" 10' 10" 10'
o Slurm measured ©O GE measured Mesos measured x Hadoop-Yarn measured
AT=22n"? AT=28n"? AT=34n" AT=33n'
0 0
10 10 . 10 10°
10° 10’ 102 10° 10° 10’ 102 10° 10° 10! 102 10° 10° 10! 102 10°
n = tasks per processor n = tasks per processor n = tasks per processor n = tasks per processor
(a) Slurm. (b) Grid Engine. (c) Mesos. (d) Hadoop YARN.

Figure 7: Comparison of Performance in Schedulers (tasks per processor)[26]

4 Data Security

In traditional HPC environments, data is often stored and processed on local servers or clusters,
which means data transfer typically occurs over local networks, which can be fast but also limited
by the capacity of the local infrastructure. In contrast, the advent of cloud computing allows data
to be stored and processed on remote servers(data centres), which can be located anywhere in the
world[27]. Thus, the data security problem is crucial. Wang et al.[28]] introduced seven aspects of
data security concerns, and this study discussed Data Destruction Security, Data Integrity Security
and Data Sharing Security.

4.1 Data Destruction Security

In the cloud computing environment, after data simulation, to ensure data security or free storage
capacity, users may delete some data. However, if the data is not destroyed immediately or completely,
and even secretly stored, problems such as data leakage and illegal usage may occur[29]]. Indeed,
even if the user successfully removed the data from the cloud, some technologies can recover the
deleted data from the hard disk[30]]. It is possible to recover the data for memory locations not written
with new contents[31]]. Thus, assured deletion is needed. Deletion is assured when deleted data is
irrecoverable or not accessible. To address this issue, Tang et al. proposed the FADE[32] system,
which is a trusted third-party system that helps manage encryption keys for cloud data storage. It is
designed to ensure that deleted data remains permanently inaccessible by making the encryption key
unrecoverable once the data is deleted. Thus, as long as the user encrypts the data before uploading,
and after deletion, if the malicious cloud provider could recover the data, they cannot access the data
without the encryption key. However, if the cloud provider is not trusted, so is the third-party system.

Regarding this problem, Yang et al.[33] propose a new counting Bloom filter-based scheme for
secure data transfer and deletion in cloud computing. The proposed scheme guarantees verifiable data
transfer and deletion without requiring any trusted third party. When a deletion request is received,
the cloud server checks whether the hash value of the requested item exists in CBF by performing a
lookup operation. In most cloud setups, there are usually multiple versions of a file. Unfortunately,
these approaches do not take that scenario into account. Rahumed et al. extended FADE to a new
system FadeVersion[34], which supports both version control and assured deletion, each version of a
file has its own encryption key. If this key is revoked, it can be assumed that the version of the file
will be permanently deleted.

Nevertheless, Mo et al.[35] pointed out the FadeVersion creates a heavy burden on users because
the volume of the keys can be huge if fine-grained deletion is required. They designed a new data
structure called Recursively Encrypted Red-black Key tree (RERK). RERK assumes the responsibility
of securing data and encryption keys stored in the cloud. The cloud user still maintains a master key
or metadata, which helps to manipulate encryption keys and data stored by the provider. Fine-grained
deletion is supported, but the issue of deleting multiple copies still needs to be addressed.

Maintaining accessibility and reliability of data in the cloud demands multiple replications. However,
deleting this data can pose a challenge as it requires ensuring the complete removal of all copies. The
traditional schemes are only aware of the existence of the copies but do not know the quantities and
locations[36} 137]]. Lai et al. present a scheme that uses the collision-resistant hash function and the
key modulation algorithm to remove duplicate data and achieve fine-grained assured deletion without
a third-party system[38]].

4.2 Data Integrity Security

The data integrity assures there is no modification without users’ knowledge, which is useful for the
validity of data, and also promises the reliability and uniformity of data. Lack of integrity allows when
intruders or malicious users gain the stored data, they can attack the data, including data modification
attack, data leakage attack and Tag forgery attack. Some schemes[37, 139, 36} 40, 41]] have been
proposed, which are useful to ensure the storage correctness and do not need users to process the
data, but these schemes are focus on a single server and most of them do not consider the dynamic
data, they can not solve all security threats. Some complementary protocols[42) 43| 44]] ensure
storage correctness across multiple servers or peers. However, none of the above approaches involves
dynamic data operations, since the cloud-stored data can be updated dynamically, it is a limitation

for the data storage. A new protocol has been suggested by Luo et al.[45]], aimed at enhancing
the checking of remote data possession. This innovative protocol leverages Hierarchical Linear
Aggregation (HLAs) and RSA construction, substantially boosting data integrity. An added feature
of the protocol is its public verifiability, increasing its adaptability and supporting data dynamics. He
proved his protocol is security against server, and ensures file privacy against third-party auditors.
This makes it an ideal solution for cloud storage systems.

Nevertheless, the schemes above do not take into account the computation capability of the users,
while the verification cost is expensive. Zhang et al.’s scheme[46]] is more efficient, which the
overhead is independent of the number of verification tasks. It also supports dynamic operations, and
he use performance analysis proved his scheme achieves lightweight verification.

4.3 Data Sharing Security

Since the data was stored in the data centres, it also introduces security problems. For example, the
data centres can be attacked by malicious individual users or other cloud platforms. In this scenario,
users can implement four kinds of common security mechanisms which are also suitable for the
traditional HPC to protect the data, including file-level, database-level, media-level and application-
level data security. However, Cheng et al.[47/] pointed out that traditional security mechanisms may
not be able to keep up with the volume and velocity of data being generated and processed in modern
information systems. Additionally, some schemes that have been proposed to enhance the security
of cloud client data in data centres mainly focus on designing algorithms to keep data confidential,
which can be costly and inefficient when applied to big data. Cheng proposed a method that splits the
data into parts, each of these parts is then encrypted using a cryptographic virtual mapping technique
and uploaded to different cloud storage service providers. It addresses the efficiency problem of
traditional security mechanisms by finding a better balance between the overhead of data partition
and data uploading, ensuring the storage and sharing of confidential big data.

Besides, Razaque et al.[48] proposed a simplified approach, which divides the data into n parts,
encrypts them and uploads them to multiple clouds, like the first step of Cheng’s method[47]. The
principle of this method is that the data was split defined by a polynomial function, only the user
obtains at least k parts of the data with the same polynomial function, they can reconstruct the original
data. In this strategy, the prerequisite of at least k data parts and the polynomial function secure
the data at the same time. Apart from the procedure in the paper, we can improve the scheme by
encrypting different sets of data parts with different public keys.

However, those schemes can only be considered to ensure the security problem of the individual
data owner, but not for data sharing between several group members, which is common in current
scientific research. Hence a protocol that supports secure group data sharing under cloud computing
is needed. Such protocol is called key agreement protocol, which as first designed by Diffie-Hellman
in their seminal paper[49], aims to generate a conference key for multi-user to ensure data sharing
security. Diffie-Hellman key agreement can only support two parties, and it does not provide an
authentication service which makes it vulnerable to attacks. Currently, many researchers have
improved the key agreement and gained better variants, like Shen et al.[S0] introduced the symmetric
balanced incomplete block design (SBIBD) that supports group data sharing in cloud computing,
which reduced the complexity of communication and computation of the key agreement protocol.

4.4 Challenges and Limits

Data encryption plays a significant role in cloud data security, and the overhead of emerging solutions
is expensive, they need notable computation for encryption and verification, so the development of
encryption-ready cloud applications could be an area to be explored. Trusted computing is such
an alternative solution, cloud providers could offer secured hardware containers within their cloud
infrastructures, but the secure hardware is expensive, and it requires secret key handover from the
user to trusted hardware; the adaptability is also limits[S1]].

5 Cost

The movement of HPC workloads to the cloud has become a trend in recent years. Many businesses
embark on this journey by conducting a total cost of ownership (TCO) analysis, assessing whether

cloud-based HPC solutions provide a more cost-effective alternative to traditional on-premise systems
[52]. In this section, the cost of ownership of cluster-based HPC and the pricing methodology will be
discussed. Then we will introduce a comparison of computing costs for running small jobs between
cluster-based HPC and cloud-based HPC.

5.1 Cluster-based HPC Ownership Cost

It is a significantly large investment to build and own a cluster-based HPC infrastructure. Here’s a list
of typical direct costs of cluster-based HPC ownership[53]:

» Hardware: This category comprises the cost of physical servers, replacement parts, and
associated materials.

* Security Measures: This includes tools like antivirus software.
* Software

 Storage

* Various Licenses

e User Support

* Off-site Backups

The list illustrates that to build an on-premise HPC system, people should consider amount of
expenses. For example, SURF, the Dutch cooperative association in which educational and research
institutions join forces, builds its supercomputer Snellius. According to the statistics, Snellius will
give even more calculating power to scientific research in the Netherlands with a peak performance
of 14 petaflops/s. However, the cost of Snellius is about 20 million euros which is unaffordable for
most businesses[54].

5.2 Cloud HPC Pricing Methodology

Cloud-based HPC is more cost-effective for consumers due to flexible resource allocation, on-
demand pricing, high resource utilisation, and versatile service options. This fee-based model,
known as the pay-as-you-go approach, is friendly to persona users. Likewise, in dynamic markets,
small and medium enterprises with expanding operations and an existing HPC infrastructure may
hesitate to invest in on-premise resources and instead prefer adopting a pay-as-you-go model[5]].
Leveraging diverse architectures with various interconnects, processor types and memory sizes
enables improved resource utilisation on a global scale, surpassing the limited options available
within a single organisation.

5.3 Cost Comparison

From Figure 8] the "Cray XC-40" is one instance of the cluster-based HPC system SahasraT[55],
while the left columns are instances of HPC cloud platforms such as Amazon Web Server, Google
Cloud Platform and Microsoft Azure. The cost of raw computation on the cloud is approximately
2.8 times higher than on SahasraT($4,836,888), while EC2 provide the best price($13,435,823). It
should be mentioned that the cost comparison only considers the raw computing fee, regardless of
some hidden expenses[53]:

* Tools used for temperature control in the data center

* The cost of set up, configuration, and ongoing upgrades

* Staff salaries for administrators that maintain an on-premise data center
* Networking infrastructure set up and ongoing maintenance
 Depreciation of the hardware and software

 The cost of keeping the servers powered 24/7

One possible reason why Cloud cost more than on-premise is that existing HPC centers are already
consolidated and typically have high average utilisation, thus they are usually more cost effective[56].

Moreover, dedicated HPC systems usually provide performance benefits and essential services such
as user support and training that are not available in commercial clouds, which can be thought as
another cost benefit for consumers.

However, in the field of HPC, it should be emphasized that Cloud computing is cost-efficient for users
with sporadic and varied compute resource needs, especially when the users’ workload is relatively
low. But for large computing job with a continuous workload, the pricing model pay-as-you-go would
be considerably more expensive.

In conclusion, both cloud-based and on-premise HPC systems have their unique cost structures and
advantages. The choice between the two should be driven by a careful analysis of an organisation’s
specific computational needs, financial capabilities, and long-term strategic objectives.

Cray XC-40 AWS c4.8xlarge Google n;;hnd“rd- Sabalcore Azure Standard_F16s

Cost per physical core hour - 5 Year lifetime of < <
Cray @10% AMC $0.0126 $0.0350 $0.0540 $0.0700 $0.0620
Cost of 10 GB (Ingress + Egress + Storage) $0.000 $0.023 $0.047 $0.006 $0.083
Cost of running a 48 core job for 24 hours
(10GB of data) $14.52 $40.34 $62.26 $80.65 $71.51
Cost of 100 GB (Ingress + Egress + Storage) $0.000 $0.234 $0.467 $0.231 $1.083
Cost of running a 240 core job for 24 hours . n < Y

100 GB of data) §72.58 $201.83 $311.51 $403.43 $358.20
Cost of 1 TB (Ingress + Egress + Storage) $0.000 $2.343 $4.667 $3.810 $8.035
Cost of running a 240 core job for 24 hours $72.58 $203.94 $315.71 $407.01 $365.16

1TB of data)
Cost of 10 TB (Ingress + Egress + Storage) $0.000 $23.433 $43.333 $39.600 $80.533
Cost of running a 240 core job for 24 hours
(10TB of data) §72.58 $225.03 $354.37 $442.80 $437.65

Total Number of Core Hours used by small jobs (less than 1200 cores) from April 2015 - December 2017 is 383.88 Million Core Hours

Cost of running jobs worth 383.88 Million $4.836888 $13.435.823 $20.729.563 $26871.640 23,800,641
Core Hours (10TB of data)

Figure 8: Cost of running small HPC jobs (cluster vs Cloud)[56]

6 Discussion and Conclusions

Our study focused on the complexities of moving High-Performance Computing (HPC) applications
to the cloud, which presents both advantages and obstacles. The objective of the study is to assess the
potential and feasibility of cloud-based HPC in four crucial dimensions: performance, latency, data
security, and cost.

In terms of performance, while cloud platforms can bring shorter turnaround time for HPC applica-
tions, challenges related to architectural differences persist, requiring effective optimisation strategies.
Latency in the cloud environment presents another challenge, necessitating advances in technology
to ensure seamless communication between tasks, especially for applications that require real-time
responses. Data security emerges as a significant concern, with data destruction, data integrity, and
data sharing requiring careful consideration. While solutions have been proposed, further refinement
is needed to meet the rigorous security demands of HPC workloads in the cloud. It’s important to
note that the cost-effectiveness of using HPC in the cloud is flexible and can vary according to scale
of the project and its specific workload requirements while the cost of ownership on on-premise HPC
is usually tremendous, which is unaffordable for most consumers and small businesses.

This study has contributed to a better understanding of the complexities associated with transitioning
HPC to the cloud. Nevertheless, given the technological complexities involved, more research is
needed to delve deeper into the intricacies of this transition and to develop robust strategies to address
the identified challenges.

To improve cloud performance for HPC applications, future research should concentrate on improving
bandwidth and hardware specification, optimising scheduling algorithms, strengthening data security
schemes, and minimizing trusted computing costs. It’s also important to examine the implications of
cost in transitioning to the cloud, especially considering different application scales and usage scenar-

10

ios. Additionally, exploring how emerging technologies and advancements in cloud infrastructure
can enhance HPC and bridge the gap between HPC and the cloud would result in better performance,
security, and cost benefits.

11

References

[1] Hpc Architecture Explained. https://www.weka.io/learn/ai-ml/hpc-architecture/, sep 24 2021.
[2] High-performance computing data center cooling system energy efficiency.

[3] L. Morgan. High-Performance Computing | Datamation. https://www.datamation.com/data-
center/high-performance-computing/, apr 5 2019.

[4] A. Abdullahi. 10 Networking Trends in High-Performance Computing | Enterprise Network-
ing Planet. https://www.enterprisenetworkingplanet.com/data-center/networking-trends-high-
performance-computing/, jul 20 2022.

[5] Abhishek Gupta, Laxmikant V Kale, Filippo Gioachin, Verdi March, Chun Hui Suen, Bu-Sung
Lee, Paolo Faraboschi, Richard Kaufmann, and Dejan Milojicic. The who, what, why, and how
of high performance computing in the cloud. In 2013 IEEFE 5th international conference on
cloud computing technology and science, volume 1, pages 306-314. IEEE, 2013.

[6] Nas Parallel Benchmarks. https://www.nas.nasa.gov/software/npb.html, mar 23 2023.

[7] Abhinav Bhatele, Sameer Kumar, Chao Mei, James C Phillips, Gengbin Zheng, and
Laxmikant V Kale. Overcoming scaling challenges in biomolecular simulations across multiple
platforms. In 2008 IEEE International Symposium on Parallel and Distributed Processing,
pages 1-12. IEEE, 2008.

[8] Pritish Jetley, Filippo Gioachin, Celso Mendes, Laxmikant V Kale, and Thomas Quinn. Mas-
sively parallel cosmological simulations with changa. In 2008 IEEE International Symposium
on Parallel and Distributed Processing, pages 1-12. IEEE, 2008.

[9] Chunye Gong, Jie Liu, Haitao Chen, Jing Xie, and Zhenghu Gong. Accelerating the sweep3d
for a graphic processor unit. Journal of Information Processing Systems, 7(1):63-74, 2011.

[10] Vikas Aggarwal, Ian A Troxel, and Alan D George. Design and analysis of parallel n-queens on
reconfigurable hardware with handel-c and mpi. In 2004 MAPLD Intl. Conference. Citeseer,
2004.

[11] Abhishek Gupta, Paolo Faraboschi, Filippo Gioachin, Laxmikant V Kale, Richard Kaufmann,
Bu-Sung Lee, Verdi March, Dejan Milojicic, and Chun Hui Suen. Evaluating and improving
the performance and scheduling of hpc applications in cloud. /EEE Transactions on Cloud
Computing, 4(3):307-321, 2014.

[12] A. Gupta, P. Faraboschi, F. Gioachin, L. V. Kale, R. Kaufmann, B. S. Lee, V. March, D. Milojicic,
and C. H. Suen. Evaluating and Improving the Performance and Scheduling of HPC Applications
in Cloud. IEEE Transactions on Cloud Computing, 4(3):307-321, jul 1 2016.

[13] Aniruddha Marathe, Rachel Harris, David K Lowenthal, Bronis R De Supinski, Barry Rountree,
Martin Schulz, and Xin Yuan. A comparative study of high-performance computing on the
cloud. In Proceedings of the 22nd international symposium on High-performance parallel and
distributed computing, pages 239-250, 2013.

[14] Marco AS Netto, Rodrigo N Calheiros, Eduardo R Rodrigues, Renato LF Cunha, and Rajkumar
Buyya. Hpc cloud for scientific and business applications: taxonomy, vision, and research
challenges. ACM Computing Surveys (CSUR), 51(1):1-29, 2018.

[15] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache flink: Stream and batch processing in a single engine. The Bulletin of the
Technical Committee on Data Engineering, 38(4), 2015.

[16] Jan Sipke Van Der Veen, Bram Van Der Waaij, Elena Lazovik, Wilco Wijbrandi, and Robert J
Meijer. Dynamically scaling apache storm for the analysis of streaming data. In 2015 IEEE First
International Conference on Big Data Computing Service and Applications, pages 154-161.
IEEE, 2015.

12

[17] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh
Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja. Twitter heron: Stream
processing at scale. In Proceedings of the 2015 ACM SIGMOD international conference on
Management of data, pages 239-250, 2015.

[18] Matthew Rocklin. Dask: Parallel computation with blocked algorithms and task scheduling. In
Proceedings of the 14th python in science conference, volume 130, page 136. SciPy Austin, TX,
2015.

[19] Robert Underwood, Jason Anderson, and Amy Apon. Measuring network latency variation
impacts to high performance computing application performance. In Proceedings of the 2018
ACM/SPEC International Conference on Performance Engineering, pages 68—79, 2018.

[20] Hugo A Lopez, Eduardo RB Marques, Francisco Martins, Nicholas Ng, César Santos,
Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Protocol-based verification of message-
passing parallel programs. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pages 280-298,
2015.

[21] Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Jyh Tsang, Stein
Gjessing, Gorry Fairhurst, Carsten Griwodz, and Michael Welzl. Reducing internet latency: A
survey of techniques and their merits. IEEE Communications Surveys & Tutorials, 18(3):2149—
2196, 2014.

[22] Binghao Yan, Qinrang Liu, JianLiang Shen, Dong Liang, Bo Zhao, and Ling Ouyang. A
survey of low-latency transmission strategies in software defined networking. Computer Science
Review, 40:100386, 2021.

[23] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. A cloud-optimized transport protocol
for elastic and scalable hpc. IEEE Micro, 40(6):67-73, 2020.

[24] Pierre Matri and Robert Ross. Neon: Low-latency streaming pipelines for hpc. In 2021 IEEE
14th International Conference on Cloud Computing (CLOUD), pages 698—707. IEEE, 2021.

[25] Michele Polese, Federico Chiariotti, Elia Bonetto, Filippo Rigotto, Andrea Zanella, and Michele
Zorzi. A survey on recent advances in transport layer protocols. IEEE Communications Surveys
& Tutorials, 21(4):3584-3608, 2019.

[26] Albert Reuther, Chansup Byun, William Arcand, David Bestor, Bill Bergeron, Matthew Hubbell,
Michael Jones, Peter Michaleas, Andrew Prout, Antonio Rosa, et al. Scalable system scheduling
for hpc and big data. Journal of Parallel and Distributed Computing, 111:76-92, 2018.

[27] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and grid computing
360-degree compared. In 2008 grid computing environments workshop, pages 1-10. Teee, 2008.

[28] Fengling Wang, Han Wang, and Liang Xue. Research on data security in big data cloud
computing environment. In 2021 IEEE 5th Advanced Information Technology, Electronic and
Automation Control Conference (IAEAC), volume 5, pages 1446-1450. IEEE, 2021.

[29] Qingjie Liu, Xiaoying Wang, and Zhian Pan. Development and application of massive unstruc-
tured big data retrieval technology based on cloud computing platform. Journal of Intelligent &
Fuzzy Systems, 38(2):1329-1337, 2020.

[30] Yunchuan Sun, Junsheng Zhang, Yongping Xiong, and Guangyu Zhu. Data security and privacy
in cloud computing. International Journal of Distributed Sensor Networks, 10(7):190903, 2014.

[31] Jayachander Surbiryala and Chunming Rong. Data recovery in cloud using forensic tools.
In 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis
(ICCCBDA), pages 309-314. IEEE, 2018.

[32] Yang Tang, Patrick PC Lee, John CS Lui, and Radia Perlman. Fade: Secure overlay cloud
storage with file assured deletion. In Security and Privacy in Communication Networks: 6th
Iternational ICST Conference, SecureComm 2010, Singapore, September 7-9, 2010. Proceedings
6, pages 380-397. Springer, 2010.

13

[33] Changsong Yang, Xiaoling Tao, Feng Zhao, and Yong Wang. Secure data transfer and deletion
from counting bloom filter in cloud computing. Chinese Journal of Electronics, 29(2):273-280,
2020.

[34] Arthur Rahumed, Henry CH Chen, Yang Tang, Patrick PC Lee, and John CS Lui. A secure
cloud backup system with assured deletion and version control. In 2011 40th International
Conference on Parallel Processing Workshops, pages 160-167. IEEE, 2011.

[35] Zhen Mo, Qingjun Xiao, Yian Zhou, and Shigang Chen. On deletion of outsourced data in
cloud computing. In 2014 IEEE 7th International Conference on Cloud Computing, pages
344-351. IEEE, 2014.

[36] Kevin D Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory and implementa-
tion. In Proceedings of the 2009 ACM workshop on Cloud computing security, pages 43-54,
2009.

[37] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In Proceedings of
the 14th ACM conference on Computer and communications security, pages 584-597, 2007.

[38] Junzuo Lai, Jie Xiong, Chuansheng Wang, Guangzheng Wu, and Yanling Li. A secure cloud
backup system with deduplication and assured deletion. In Provable Security: 11th International
Conference, ProvSec 2017, Xi’an, China, October 23-25, 2017, Proceedings 11, pages 74-83.
Springer, 2017.

[39] Hovav Shacham and Brent Waters. Compact proofs of retrievability. Journal of cryptology,
26(3):442-483, 2013.

[40] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary
Peterson, and Dawn Song. Provable data possession at untrusted stores. In Proceedings of the
14th ACM conference on Computer and communications security, pages 598-609, 2007.

[41] Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini, and Gene Tsudik. Scalable and efficient
provable data possession. In Proceedings of the 4th international conference on Security and
privacy in communication netowrks, pages 1-10, 2008.

[42] Thomas SJ Schwarz and Ethan L Miller. Store, forget, and check: Using algebraic signatures to
check remotely administered storage. In 26th IEEE International Conference on Distributed
Computing Systems (ICDCS’06), pages 12—12. IEEE, 2006.

[43] Mark Lillibridge, Sameh Elnikety, Andrew Birrell, Michael Burrows, and Michael Isard. A
cooperative internet backup scheme. In USENIX Annual Technical Conference, General Track,
volume 2003, pages 29-41, 2003.

[44] P Ramesh Naidu, N Guruprasad, and V Dankan Gowda. A high-availability and integrity layer
for cloud storage, cloud computing security: from single to multi-clouds. In Journal of Physics:
Conference Series, volume 1921, page 012072. IOP Publishing, 2021.

[45] Wenjun Luo and Guojing Bai. Ensuring the data integrity in cloud data storage. In 2011 IEEE
International Conference on Cloud Computing and Intelligence Systems, pages 240-243. IEEE,
2011.

[46] Yuan Zhang, Chunxiang Xu, Xiaohui Liang, Hongwei Li, Yi Mu, and Xiaojun Zhang. Effi-
cient public verification of data integrity for cloud storage systems from indistinguishability
obfuscation. IEEE Transactions on Information Forensics and Security, 12(3):676-688, 2016.

[47] Hongbing Cheng, Chunming Rong, Kai Hwang, Weihong Wang, and Yanyan Li. Secure big
data storage and sharing scheme for cloud tenants. China Communications, 12(6):106-115,
2015.

[48] Abdul Razaque, Saty Siva Varma Nadimpalli, Suharsha Vommina, Dinesh Kumar Atukuri,
Dammannagari Nayani Reddy, Poojitha Anne, Divya Vegi, and Vamsee Sai Malllapu. Secure
data sharing in multi-clouds. In 2016 international conference on electrical, electronics, and
optimization techniques (ICEEOT), pages 1909-1913. IEEE, 2016.

14

[49] Whitfield Diffie and Martin E Hellman. New directions in cryptography. In Democratizing
Cryptography: The Work of Whitfield Diffie and Martin Hellman, pages 365-390. 2022.

[50] Jian Shen, Tianqi Zhou, Debiao He, Yuexin Zhang, Xingming Sun, and Yang Xiang. Block
design-based key agreement for group data sharing in cloud computing. IEEE Transactions on
Dependable and Secure Computing, 16(6):996-1010, 2017.

[51] Mahmoud Barhamgi, Arosha K Bandara, Yijun Yu, Khalid Belhajjame, and Bashar Nuseibeh.
Protecting privacy in the cloud: Current practices, future directions. Computer, 49(2):68-72,
2016.

[52] W. Gentzsch. Squashing Total Cost Rumors of In-House vs. Cloud Com-
puting. https://blog.theubercloud.com/squashing-total-cost-rumors-of-in-house-vs.-cloud-
computing, jan 12 2021.

[53] Calculating On-Premise vs Cloud Costs — PMsquare. https://pmsquare.com/analytics-
blog/2022/6/9/calculating-on-prem-vs-cloud-costs, jun 9 2022.

[54] Netherlands to build new national supercomputer | Computer Weekly.
https://www.computerweekly.com/news/2525003 14/Netherlands-to-build-new-national-
supercomputer.

[55] B. Joshi. Tisc’s supercomputer SahasraT adds to Indian computing might.
https://economictimes.indiatimes.com/news/science/iiscs-supercomputer-sahasrat-adds-
to-indian-computing-might/articleshow/47380491.cms.

[56] Akhila Prabhakaran and J Lakshmi. Cost-benefit analysis of public clouds for offloading in-
house hpc jobs. In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD),
pages 57-64. IEEE, 2018.

15

TOC

Application of Machine Learning algorithms in Cloud
resource scheduling - Literature Study

Lixiang Zhang Dingran Qi
Department of Computer Science Department of Computer Science
Universiteit van Amsterdam Universiteit van Amsterdam
142300540uva.nl 147285750uva.nl

Qingxian Lu
Department of Computer Science
Universiteit van Amsterdam
147236970Quva.nl

Abstract

Resource scheduling is one of the important tasks in a cloud computing environment
that involves assigning different types of tasks and workloads to the available
computing resources. Traditional static scheduling algorithms have become difficult
to cope with these challenges, so the introduction of machine learning algorithms
has become an effective way to solve the resource scheduling problem. In this
article, we discussed the current investigation and application of machine learning
algorithms in cloud resource scheduling and analyze the future trends of the
application of Machine Learning in cloud resource scheduling.

1 Introduction

This article aims to give an overview of the literature regarding the application of Machine Learning
and Deep Learning algorithms in a specific field of Cloud Resource and Monitor, Cloud resource
rescheduling. The studies have been categorized into three sections, namely Machine Learning, Deep
Learning, and Reinforcement Learning.

This paper aims to answer the following questions: What can Machine Learning do in the field of
cloud resource scheduling? How does the application of ML improve the performance of resource
scheduling in terms of QoS and SLA? What are the future trends? The research in this area covers
different types of studies, ranging from theory to quantitative.

1.1 Cloud resource scheduling

Cloud resource scheduling is a complex concept. Cloud resources refer to various computing
resources and services provided in the cloud computing environment, including virtual machines,
storage space, bandwidth, databases, etc. Cloud resources are highly scalable and flexible, and users
can elastically acquire and release resources according to their needs and pay on demand. [20]]

Cloud resource scheduling refers to the process of efficiently allocating and managing available
resources in a cloud computing environment. Due to the limited and diverse nature of resources
in a cloud environment, the design of scheduling algorithms and policies is critical to achieve high
performance, efficiency, and fairness.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

1.1.1 Objectives

The goal of cloud resource scheduling is to achieve optimization in the following areas:

1. Performance optimization: Allocate resources to different tasks or services in a reasonable
manner to maximize overall system performance and response time.

2. Resource utilization optimization: Avoid resource waste and over-allocation by dynamically
adjusting resource allocation.

3. Load balancing: Balance the load of each node or server in the cloud environment to improve
the reliability and scalability of the system.

4. QoS assurance: Ensure the quality of cloud services, such as response time, usability, and
throughput, according to user needs and contractual requirements.

1.1.2 Auto-scaling

Elasticity is a prominent feature of cloud computing that allows for the dynamic acquisition and
release of computing resources in response to resource requests within a cloud system. This capability
empowers cloud service providers to deliver a good user experience by meeting the QoS requirements
with high efficiency.

To effectively harness the benefits of elasticity, manual management of this dynamic process is not
practical. Instead, adopting an automated and timely resource scheduling approach is crucial[13]].
This approach is well known as auto scaling. By automatically scaling resources up or down, auto-
scaling addresses the problems of over-provisioning and under-provisioning, optimizes resource
utilization, better meets QoS requirements, and reduces SLA violations.

1.2 Machine Learning, Deep Learning and Reinforcement Learning

ML is a subset of artificial intelligence that focuses on developing computer systems capable of
learning and improving their performance without explicit programming. ML algorithms enable
machines to carry out tasks such as prediction, classification, and clustering by learning from data
and recognizing patterns [11].

DL is a specialized branch within machine learning that specifically emulates the structure and
functionality of neural networks in the human brain. By utilizing multi-level neural network models,
DL enables computers to learn and process information like human brain. Deep learning models are
consisted of multi-layer neural networks, including input layer, hidden layer, and output layer. The
models are usually trained with large scale data and optimized by back propagation algorithm.

Reinforcement learning is another branch of machine learning, aside from supervised and unsuper-
vised learning. It takes inspiration from the way humans learn through trial and error. In reinforcement
learning, computer agents interact with an environment, taking actions and receiving rewards or
penalties in return. By maximizing the cumulative rewards or minimizing penalties, these agents
learn an optimal policy that determines which actions to take in different situations.

Combining Deep Learning and Reinforcement Learning, Deep Reinforcement Learning, DRL is
a new methodology for solving problems when intelligent systems make decisions and learn in
complex environments. In reinforcement learning, an agent learns optimal strategies by interacting
with the environment to maximize cumulative rewards. It learns optimal strategies by taking different
actions and observing the feedback from the environment. DRL uses deep neural networks as
function approximators to learn the complex mapping relationships between states and actions. Deep
neural networks can automatically learn abstract feature representations and train them end-to-end on
large-scale datasets.[S]]

2 Application of ML algorithm in Cloud Resource Scheduling

2.1 Resource Provisioning Through Machine Learning in Cloud Services

By combining machine learning for workload prediction and queuing theory for resource allocation,
Mahendra, Rohit and Dharmendra proposed a framework optimizes system performance and ensures

efficient resource utilization with less waste of resource[17]. This study focuses on the task of
resource provisioning, specifically aiming to find the best model for predicting traffic load on servers
and estimating the required number of computing resources.

Workload prediction plays a significant role in auto-scaling, which refers to the ability to scale the
resource up or down according to the incoming traffic load. It ensures efficient resource provisioning
and helps implement service elasticity, reduce power consumption, and improve the quality of
service (QoS). To get to know the incoming work load in the future, a machine learning-based auto-
scaling mechanism is employed. This study investigates different models for workload prediction,
including auto-regressive models, support vector machines (SVM), and long short-term memory
(LSTM) networks. The data used for this study is time series data. Auto-regressive models, such
as autoregressive (AR) and moving average (ARIMA), provide a linear estimation of server load
based on historical data. However, they fail to capture the linear features of incoming workload
patterns. In contrast, machine learning-based models can learn both the linear and non-linear patterns
in incoming traffic loads, thereby improving prediction accuracy. SVM models with a radial basis
function (RBF) kernel are one such example. Additionally, neural network models, particularly
LSTM networks, are effective in predict workload in the future. For resource allocation decisions,
queuing theory-based models are used. The MIMIC queuing model helps determine the most efficient
allocation of resources. Performance metrics such as the average number of requests, average task
response time, and throughput are used to evaluate the system’s performance.

Sr. no. Model name MAE RMSE SLA Violations (%) Unserved requests (%) o} p Under-pi
1 AR 0.1012 0.1279 45.2 5.1 39 — 82

2 MA 0.1006 0.1230 41.8 5.1 80 — 53

3 ARIMA 0.1655 0.2013 42.0 5.0 64 — 145

4 SVR() 0.0939 0.1131 431 49 47 —93

5 SVR(Il) 0.1017 0.1187 439 4.8 47 — 80

6 SVR(IIN 0.1330 0.1532 44.2 4.5 37 —92

7 LSTM-Relu 0.0715 0.930 40.2 40 23 — 164

8 LSTM-sigmoid 0.0768 0.0986 409 4.1 34 — 194

9

LSTM-tanh 0.0663 0.0856 41.0 4.0 46 — 119

Figure 1: Summary table showing the benefits of LSTM over other methods

In conclusion, the authors proposed a machine learning-based auto-scaling framework that optimizes
resource allocation. As figrue|l|summarized, LSTM is the best model for executing this task with
the lowest over-povisioning rate and SLA violation percentage. By using an LSTM forecasting
model, the researchers accurately predict future workload. Subsequently, the queuing theory-based
MIMIC model is employed to efficiently allocate resources. Allocate resources to meet the estimated
workload demand can avoid SLA violation and over-provisioning at the same time.

2.2 Efficient resource provisioning for elastic Cloud services based on machine learning

This paper proposed an efficient solution to provisioning of resources for Cloud services using
machine learning techniques[9]. It is similar to last work but places greater emphasis on comparing
Support Vector Machines (SVM) with different kernels and parameters to identify the best SVM
model for workload prediction.

The proposed method in this study involves using time series data to forecast the traffic load over
server. This method builds forecasting models based on past observations of the server load, enabling
accurate predictions of workload in the future by Utilizing machine learning to capture underlying in
the data. By leveraging the MIMIC model, the optimal number of resources required to satisfy the
predicted traffic load can be estimated. This approach aims to optimize the efficiency of resource
scheduling by reduce service response time and over-provisioning.

Compared to simple linear models, machine learning models, particularly SVM, demonstrate superior
performance in capturing non-linear behavior patterns. Compared last work we discussed about,
which claims neural network-based (NN) model is the best model for workload predicting, this
paper believes that NN is deficient in being trapped in multiple local minima due to empirical risk
minimization (ERM) rules. Meanwhile, SVM can obtain a unique and globally optimal solution
based on structural risk minimization (SRM) [2]. The paper trains SVM models with different

kernels (polynomial, normalized polynomial, and RBF) and parameters. Evaluation of the models is
conducted using measurements like MAE and RMSE, demonstrating that SVM models outperform
simple linear models in terms of prediction accuracy. Based on the prediction results, resources are
allocated using the queuing-theory method MIMIC and evaluated by performance metrics such as
system utilization factor, average queue time, and average response time.

The result of this work shows that the resource management framework (SVM+MIMIC) accurately
predicts the incoming server load, and efficiently estimates and allocate the required number of
resources, reducing service time and fulfilling the SLA contracted by the user, as evidenced by
significantly lower SLA violations.

2.3 VM Reservation Plan Adaptation Using Machine Learning in Cloud Computing

To achieve elasticity in cloud services, instead of using machine learning to predict workload and
allocate resources accordingly, Sniezynski takes a different approach by considering a resource
reservation-based auto-scaling method[14].

Resource reservation is an effective approach to mitigate the waste of energy caused by low resource
utilization in cloud services. It involves reserving cloud capacity within specific time windows[/18]].
The use cases of resource reservation can be categorized into two main types: immediate use and
future use. For immediate use, the challenge lies in the latency period between the request for
resources and their allocation. During this period, the system must ensure the validity of the reserved
resources, which will be utilized immediately. Meanwhile, for future use, resource reservation is
aimed at preventing request failures due to predicted factors like traffic congestion or insufficient
resource capacity.

1 begin

2 Download the plan P used and monitoring data R;

3 Train the model M, on R;

4 Update the plan P — correct the number of machines in the plan
according to the knowledge M,.:

5 end

Figure 2: Adaption based on machine learing

This work focuses on the second type of use case, where the authors define the reservation time
window based on the starting time of the reserved resources. They aim to adapt the reservation plan
using machine learning techniques. The reservation plan refers to a dynamic quota on the number of
virtual machines that ensures an optimal balance. To achieve adaptation, the system monitors the
capacity, such as CPU usage, and utilizes this data to predict the best reservation plan through machine
learning. The current plan is then compared with the predicted plan and adjusted accordingly to align
with the current system capacity as the process stated in figurg2] Different machine learning models,
including the Neural Network, linear regression, RepTree, and MS5P, are applied for prediction. The
evaluation of these models considers factors such as model learning time, prediction accuracy, and
the performance metric Q, which measures the extent to which the number of reserved VMs deviates
from the CPU limits. Among the models tested, RepTree persent a generally good performance with
fast learning and relatively accurate results. However, the Neural Network outperforms RepTree in
terms of resource utilization, as evidenced by significantly lower Q.

3 Application of DL algorithm in Cloud Resource Scheduling

3.1 DEARS:Deep Learning based Elastic and Automatic Resource Scheduling framework for
cloud applications

Muhammad , Chen and Yutong Liu proposed an innovative DL Virtual Machines arrangement
algorithm named DEARS to reduce the service latency and save energy and costs, thus improve the
performance and efficiency of cloud applications.[[10]

Basically, the DEARS model applies LSTM models to predict the resource demands of cloud
applications based on the observed historical workload data of cloud servers. The structure of this
model can be seen in figurd3] It is made up of 5 modules, including:

* Workload Prediction Module: Get the input of workload trace and accordingly forecast the
number of requests for the following time stamp

* Restriction Assessing Module: Calculate the required CPU cycles based on the number
of requests passed in and assess the average utilization of virtual machines and physical
machines.

* Virtual Resource Provision Module: Compare the current utilization status of VMs and the
workload requirements

* Dynamic Consolidation Module: Screen physical machines, select and map virtual machines
* SLAs Feedback Module: Supervise the QoS and SLAs

For the LSTM model, at a specific time stamp ¢, the number of requests and responses are sepa-
rately Nt and Rt. The input transformation works as follows: arrange N_t, R_t,t as the label of
N_t—1,R t—1,t — 1. The model consists of one 50-neuron input layer, a 250-unit hidden layer,
and one fully connected hidden layer as an output layer with 2 units. They applied a dropout mask of
0.2 to the output of each LSTM as well. Regarding the critical metric for resource allocation in the
modules, namely the calculation of the utilization, the authors calculated the utilization of virtual
machines as follows:

CPUCyclesRequired + o - SLAs
t. > NumberO fCores; - fi

The numerator needs to calculate the required CPU cycles from the workload prediction and the SLA
feedback. The parameter o can be known from multiple attempts.

ey

Utilizationg,g =

The utilization of physical machines is calculated as follow:

t-> NumberOfCores; - f; - Util; + 8- SLAs
t.> NumberOfCorespnr - fpu

Utilizatioan = (2)
Basically, the nominator is the available capability of the physical machine and the numerator refers
to the utilization of corresponding VMs plus the violation of SLAs multiplied by a parameter 8 which
can be learnt.

They chose the 1998 French World Cup workload traces as the target data set to evaluate the
performance, because that data set contains bursty and fluctuation of requests throughout the world,
which is exactly the challenge they aimed to tackle.As for the evaluation of the algorithm, the authors
took the violation of SLAs(Service Level Agreements) and the he VMs’ demands and PM’s supply
into consideration. In their evaluation experiment, they compared the DEARS with other four resource
scheduling methods, the results demonstrated that DEARS achieved better resource utilization and
reduced the number of resource allocation violations compared to traditional resource scheduling
approaches.

As for the strengths and shortcomings, we found that this paper focused mainly on automatic
resource management and the elasticity of the scheduling, which improved efficiency, reduced human
effort, and response times in handling workload fluctuations. On the other hand, the scalability of
the proposed framework is not extensively discussed in the paper. And they did not compare the
framework with state-of-the-art frameworks, and we saw no indication of the description of how to
integrate this framework into existing cloud platforms.

3.2 A deep learning model based on a diffusion convolutional recurrent neural network

Mahfoudh Saeed Al-Asaly et al. proposed another DL-based model to forecast the workload for cloud
resources. The core idea of the DCRNN model is to combine Graph Convolutional Network (GCN)
with Recurrent Neural Network (RNN). It captures spatial correlation through graph convolutional
operations and models temporal correlation using a recurrent neural network model. In DCRNN,
graph convolution operations are used to learn spatial dependencies between nodes for information

Monitered Workload Prediction Real time
Worldead Traces 7] Module N Feedbacks
Applications Predicted Namber of Requests
'
Restriction Assessing i Retime
Module Feedbacks
Clond
L QoS & SLAs Feedback
Filation foukements Viodule
VMs & PMs Virtnal Resource Provision Reaktime
Modale F Feedbacks
T
Comnbiata cmﬂ:’n Vs
Schme
Dictribmted Dynamic Consolidation Eeal-fime
" Information Module Feedbacks

Figure 3: The framwork of DEARS

propagation in spatio-temporal data. These nodes can represent locations or regions in a transportation
network in a city. By performing the convolution operation on the graph, the model can obtain
information about the neighbours between the nodes and combine this information into the feature
representation. [[7]

The given data CPU utilization set consists of a series of timestamp. The DCRNN they applied was
made up of two models: one encoding module and one decoding module. The architecture consists
of two layers, each including four diffusion convolutional gated recurrent units. The details of the
proposed structure can be seen in Figure[].

Diffusion Convolutional Diffusion Convolutional Diffusion Convolutional Diffusion Convolutional
Recurrent Layer Recurrent Layer Recurrent Layer Recurrent Layer
------------- ~ _——— e — —————
g /ﬁ\\ 8 N
VY S 9 e A e N
Input CPU Utilization I) V' CPU Predictions Values
I ‘% ‘ I ‘@ : N
A L} | |
&]
& - a_&) - @
4 | : |
{ 1
{]
{ 1
] 1 ‘
[} 1 ‘
Virtual : . 1T
Machines i ’| !) L
\ 7 | \\\ L\
N ’ H N
Qi B e e e ' e ?_ _______
Encoder Copy States Decoder

Figure 4: DCRNN system architecture

For model evaluation, they collected data from PlannetLab containing workloads for 10 different
days and for each day with 288 samples. They then carried out data normalization to [0,1] scale and
applied RMSE and MAPE as evaluation metrics. They compared the proposed model with other
three models[4], conducting the experiment on 20 VMs that ran continuously for 10 days and on all
VMs in PlanetLab. [[12] The results showed that the proposed model outperformed other existing
deep-learning approaches.

Regarding the strengths and weaknesses, this algorithm can learn directly from data without feature
engineering, which can capture complex patterns in the data set. As for the evaluation, they provided

a comprehensive evaluation of the proposed DCRNN model using real-world traffic datasets and
compared the proposed algorithms against several baseline methods to illustrate its superiority.
However, we found that this paper fell short of implementation details such as how to configure
the hyperparameters, moreover, they did not cover an analysis of its performance in real-world
deployment scenarios.

4 Application of RL algorithm in Cloud Resource Scheduling

4.1 QL-HEFT: a novel machine learning scheduling scheme base on cloud computing
environment

A cloud computing environment contains different tasks from different users. These tasks are executed
by different cloud computing nodes, such as virtual machines. The dependency relationship between
tasks varies and changes, which is hard for heuristic algorithms to handle.

The RL provides a method for agents to interact with a changing environment. The agent takes action
from an action space and gets rewards from the environment. The state is also changed in certain state
spaces. The rewards can be divided into immediate feedback and long-term feedback [[19]. The agent
learns strategy through some exploration-exploitation algorithms, such as the e-greedy algorithm.

Tong Z, Deng X, Chen H et al propose a QL-HEFT reinforcement learning algorithm to schedule
tasks efficiently. The QL-HEFT algorithm combines a heuristic scheduling method, HEFT, and
Q-learning. It can be seen as an improved algorithm of HEFT to reduce the makespan. [15]]

The model in which the algorithm is applied is the DAG-based task scheduling model. The basic
model is shown in Fig[5] The users submit their jobs (tasks) to the cloud computing system. These
tasks may be dependent on other tasks. Therefore, a directed acyclic graph (DAG) is used to describe
the dependencies of tasks. The simple application of DAG is shown in Fig[5] The node represents a
task with execution cost. The edge represents communication between two processors with a cost.

Submitting Jobs. /m_. DAG 1 Cloud
@ User Scheduling and Results Back Node 1
f-—-.lobl r—-__DAGZ
Cloud
@ User2, 1{ Job3 I__"I DAG3 I |Task heduli : Node 2
Cloud
- 3‘&4 Job4 H—s DAG4 Nod
ser
—» DAGS | Lvi
. . Datacenter’
Broker

hd ° Cloud
@® Usern Jobt }——--| DAG ¢ Node m

Figure 5: DAG model with a simple application

The goal of task scheduling is to minimise the execution time of tasks. It is achieved by the Q-learning
algorithm, which is defined by the following formula.

Qu1(5.0) = Quls,0) + o (r+ ymax Qi (5',0') = Qu(s,0))

The s is the state that represents the task. The a is the action that assigns the task to a processor. The
value (s, a) is the cumulative value, which can be calculated iteratively. The r is the immediate
reward which is rank_u [16]]. The « is the learning rate and the + is the discount factor. After getting
the optimal task execution order, the algorithm allocates the task to an appropriate processor by the
HEFT algorithm.

The algorithm is tested on CloudSim [3] using serval metrics such as makespan, speed up and CCR.
When tested with different numbers of VMs and tasks, the QL-HEFT algorithm outperforms four
similar algorithms. Another experiment shows that it accelerates the execution time of tasks from
communication-intensive applications by 66.7%.

In this use case, the model combines heuristic algorithm and reinforcement learning and gets the
optimal strategy to schedule tasks with dependencies. The results show the good performance of the
model. But the computational complexity is a crucial concern. The large Q-table costs too much time
and computational resources during updating.

4.2 Cloud Resource Scheduling With Deep Reinforcement Learning and Imitation Learning

As introduced in QL-HEFT, the RL finds an optimal strategy in a certain state and action space. For
cloud resource scheduling, the state space might be too huge to calculate. Thus, deep learning is
employed as an approximation function to avoid this situation. The new algorithm is called deep
reinforcement learning, DRL.

Guo W, Tian W and Ye Y et al propose a deep reinforcement learning model called DeepRM_Plus[6].
The model is an upgraded version of DeepRM[8] through imitation learning. The model is not
designed for dependent tasks but for independent tasks in online scheduling. In online scheduling, a
task’s arrival time and other critical information are usually unknown and may change before the task
is executed. The online scheduling algorithm must select the appropriate task to execute based on the
currently available resources and the attributes of the task.

Both two models work at a higher level of abstraction, combining cloud resources from different
servers to schedule jobs. The following figure shows the resource state space(see Fig. [6). The job/task
is decoded as a square in an image. The size of a square is the amount of resources required and the
time slot.

Resource

Cluster i Job Slot 1 Job Slot 2 Job Slot 9 Job Slot 10

P

Time

CPU

Backlog

-
r;:

Figure 6: Resource state space

The state space image is fed into a six-layer CNN. The last fully connected layer outputs the action to
allocate jobs. The agent will take action a and receive a reward r. The rewards are set for different
objectives, such as minimising the average weighted turnaround time or minimising the average
cycling time. The CNN is pre-trained by imitation learning of expert strategies. The model is shown
below in Figure[7]

l Reward r

2 Take action

job slot 1 a X

: Environment
job slot m

Observe state s

Imitation Learning Agent
CNN

policy
CNN s, a)

parameter
;]

arameter 8

o
l e

Figure 7: DeepRM_Plus model

In order to evaluate the model, the authors performed several experiments in terms of training,
turnaround time and cycling time. The results show that DeepRM_Plus performs better than the
SOTA model DeepRM.

As for this model, it shows the big potential of imitation learning which saves training time and cost.
The DRL covers the shortage of exclusively huge state space. The model can handle different goals in
resource scheduling. However, the way of representing tasks is more suitable for independent tasks.

5 Discussion and Conclusion

The main goals of cloud resource scheduling are to determine or predict the right amount of resources
required for a task and to achieve optimal scheduling by using an efficient resource provisioning
strategy. Another objective is to meet the requirements of QoS and SLA through parameters like cost,
time, resource availability, and utilization by assigning suitable resources to jobs.[/1]

In summary, machine learning algorithms can effectively handle resource management tasks in cloud
resource scheduling. ML has been applied in various areas such as workload prediction, auto-scaling,
VM arrangement, and task scheduling. Different machine learning techniques are suitable for different
objectives in cloud resource scheduling. Prediction tasks can benefit from these techniques, such
as SVM, neural networks, and deep neural networks. However, reinforcement learning and deep
reinforcement learning are more suitable for finding optimal scheduling strategies. Overall, these ML
techniques have contributed to improved performance metrics in cloud computing.

Machine learning algorithms excel in capturing target features during the scheduling process by
learning nonlinear relationships and adapting to diverse behaviours. Reinforcement learning, in
particular, demonstrates excellent performance by interacting with the environment and leveraging
current information.

Looking ahead, deep learning and reinforcement learning continue to be prominent areas of research.
Deep reinforcement learning has also shown significant potential in task scheduling. However, the
complexity of these models introduces computational challenges. Addressing the issue of reducing
computational complexity is a major consideration when applying ML techniques to practical cloud
resource scheduling. Additionally, model interpretability and worst-case performance in different
scenarios should be carefully considered. Furthermore, further research is necessary to explore the
application of ML in complex and stochastic cloud environments.

References

[1] Aron, Rajni, and Ajith Abraham. "Resource scheduling methods for cloud computing environment: The
role of meta-heuristics and artificial intelligence." Engineering Applications of Artificial Intelligence 116
(2022): 105345.

[2] Byun, Hyeran, and Seong-Whan Lee. “Applications of Support Vector Machines for Pattern Recognition:
A Survey.” Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), vol. 2388, Springer Berlin Heidelberg, 2002, pp. 213-36,
doi:10.1007/3-540-45665-1_17.

[3] Calheiros R N, Ranjan R, Beloglazov A, et al. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms[J]. Software: Practice and
experience, 2011, 41(1): 23-50.

[4] Deng, Li, and Dong Yu. "Deep learning: methods and applications." Foundations and trends® in signal
processing 7.3—4 (2014): 197-387.

[5] Frangois-Lavet V, Henderson P, Islam R, et al. An introduction to deep reinforcement learning[J]. Founda-
tions and Trends® in Machine Learning, 2018, 11(3-4): 219-354.

[6] Guo W, Tian W, Ye Y, et al. Cloud resource scheduling with deep reinforcement learning and imitation
learning[J]. IEEE Internet of Things Journal, 2020, 8(5): 3576-3586.

[7]1 Li Y, Yu R, Shahabi C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic
forecasting[J]. arXiv preprint arXiv:1707.01926, 2017.

[8] Mao H, Alizadeh M, Menache I, et al. Resource management with deep reinforcement learn-
ing[C]//Proceedings of the 15th ACM workshop on hot topics in networks. 2016: 50-56.

[9] Moreno-Vozmediano, Rafael, et al. “Efficient Resource Provisioning for Elastic Cloud Services Based on
Machine Learning Techniques.” Journal of Cloud Computing: Advances, Systems and Applications, vol. 8,
no. 1, 2019, pp. 1-18, https://doi.org/10.1186/s13677-019-0128-9.

[10] M. Hassan, H. Chen and Y. Liu, "DEARS: A Deep Learning Based Elastic and Automatic Resource Schedul-
ing Framework for Cloud Applications,"” 2018 IEEE Intl Conf on Parallel Distributed Processing with
Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing
Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom),
Melbourne, VIC, Australia, 2018, pp. 541-548, doi: 10.1109/BDCloud.2018.00086.

(11]

[12]

[13]

[14]

[15]

(16]

(171

(18]

[19]

(20]

P. Ongsulee, "Artificial intelligence, machine learning and deep learning," 2017 15th International Confer-
ence on ICT and Knowledge Engineering (ICTKE), Bangkok, Thailand, 2017, pp. 1-6, doi: 10.1109/IC-
TKE.2017.8259629.

Qiu, Feng, Bin Zhang, and Jun Guo. "A deep learning approach for VM workload prediction in the
cloud." 2016 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD). IEEE, 2016.

Qu, Chenhao, et al. “Auto-Scaling Web Applications in Clouds: A Taxonomy and Survey.” ACM Comput-
ing Surveys, vol. 51, no. 4, 2018, pp. 1-33, https://doi.org/10.1145/3148149.

Sniezynski, Bartlomiej, et al. “VM Reservation Plan Adaptation Using Machine Learning in Cloud
Computing.” Journal of Grid Computing, vol. 17, no. 4, 2019, pp. 797-812, https://doi.org/10.1007/s10723-
019-09487-x.

Tong Z, Deng X, Chen H, et al. QL-HEFT: a novel machine learning scheduling scheme base on cloud
computing environment[J]. Neural Computing and Applications, 2020, 32: 5553-5570.

Topcuoglu H, Hariri S, Wu M Y. Performance-effective and low-complexity task scheduling for heteroge-
neous computing[J]. IEEE transactions on parallel and distributed systems, 2002, 13(3): 260-274.

Yadav, Mahendra Pratap, et al. “Resource Provisioning Through Machine Learning in Cloud Ser-
vices.” Arabian Journal for Science and Engineering (2011), vol. 47, no. 2, 2022, pp. 1483-505,
https://doi.org/10.1007/s13369-021-05864-5.

Zhang, Xingian, et al. “Energy-Aware Virtual Machine Allocation for Cloud with Resource Reservation.’
The Journal of Systems and Software, vol. 147, 2019, pp. 147-61, https://doi.org/10.1016/].jss.2018.09.084.

Zhou G, Tian W, Buyya R. Deep reinforcement learning-based methods for resource scheduling in cloud
computing: A review and future directions[J]. arXiv preprint arXiv:2105.04086, 2021.

>

Zhu W, Zhuang Y, Zhang L. A three-dimensional virtual resource scheduling method for energy saving in
cloud computing[J]. Future Generation Computer Systems, 2017, 69: 66-74.

10

Evolution of Data Centers and Emergence of
Hyper-Converged Infrastructure

Anusha Ali Jeewon Heo Priyanka Roy
June 3, 2023

Abstract

Data centers emerged as a response to the increasing demand for efficient and scalable
data storage and computing. They are constantly evolving to meet the ever-increasing
volume of data and other requirements that follows from it. This paper explores the
evolution of data centers, from their traditional forms to hyper-converged infrastructures.
We introduce the technological milestones in data center architecture including software-
defined data centers and newly emerging converged and hyper-converged infrastructures
(HCI). We also delve into the emergence of HCI, the selection of HCI solutions, as well
as its benefits and use cases. This article offers insights into the evolution of data centers
leading up to HCI, thereby providing assistance in understanding various data center
architectures and benefits of adopting HCI in businesses.

1 Introduction

The exponential growth of data in the rapidly growing IT industry has posed significant chal-
lenges and limitations for traditional data center infrastructures. As a result, data centers
are undergoing a transformative evolution, shifting their focus from traditional architecture to
converged and hyper-converged infrastructures (HCI). The primary objective of this transfor-
mation is to ensure high data availability in the face of ever-increasing data volumes [21]. A
traditional data center design typically involves separate storage silos with different computing
and networking-related components. This architecture often gives rise to challenges like more
complexity, performance bottlenecks, limited scalability, and high costs. On the other hand,
hyperconverged architecture offers a software-based integrated and consolidated approach to
combine storage, computing, and networking resources into a single system. With HCI, all
components are bound together [I6]. In this paper, we aim to explain the evolution of data
centers leading up to the hyperconverged infrastructure.

In Section 2, we introduce the types of data centers and traditional architectures, as well as
their benefits and limitations. Section 3 illustrates the virtualization of data centers and the
changes in architectural principles. Section 4 describes the concept of the software-defined data
center. Section 5 explains convergence and hyper-convergence infrastructures in data centers.
Section 6 concludes the paper.

2 Data Center

A data center is a facility that houses computer systems and their associated components,
which provides storage capabilities and computing power [12]. Data centers emerged due to
the rising need for organizations to manage large amounts of data, as well as the need for
reliable operations.

2.1 Types of Data Centers

There are three major types of data centers which are discussed below

2.1.1 Enterprise Data Centers:

An enterprise data center is completely owned by a company dedicated to supporting a com-
pany’s internal data processing needs and hosting critical applications. Many companies opt
to have their data centers for higher control over their data, security, and regulations, such as

GDPR[[| or HIPAAP| [12].

2.1.2 Cloud Data Center

Cloud data centers, on the other hand, are hosted off-premise and serve their infrastructures
to multiple users. The three major cloud service providers are Amazon Web Services (AWS),
Google Cloud Platform (GCP), and Microsoft Azure. Cloud platforms now provide general
services such as infrastructure as a service (IaaS), software as a service (SaaS), and platform as
a service (PaaS) [14]. Other types of data centers include colocation, hybrid, edge, and micro
data centers.

2.1.3 Colocation Data Centers

A colocation data center, often referred to as a “colo,” is a facility that provides businesses the
opportunity to lease dedicated space for their data center components. In essence, colocation
data centers provide a highly secure and robust environment where companies can house their
servers and other equipment. Colocation data centers are already equipped with backup gen-
erators, fire suppression systems, cooling systems, uninterruptible power supplies (UPS), and
physical security measures such as security cameras and cooling systems. Internet services and
connections to private networks are also often included in the facility.

2.2 Infrastructure Components

Servers, storage, and networking are considered as the building blocks of the data center
infrastructure. Power supply and cable management, redundancy/disaster recovery (tier 1234),
and environmental controls are also some other essential components of data center.

2.2.1 Servers

Servers are the most critical component of data center infrastructure. These can be considered
as computers with high computing power to perform computationally expensive tasks. Data
center servers can further be categorized as rack-mount servers, blade servers or mainframes.

2.2.2 Storage

The majority of the servers include direct attached storage (DAS), which is a local storage
capability that keeps frequently used data close to the CPU. It can be considered as a cache of
the servers. There are two other storages: storage area network (SAN) and network-attached
storage (NAS). NAS devices usually have multiple storage devices like hard disks and solid-state
drives. SAN also provides shared storage to the server but has a more complex infrastructure
of storage management software, application servers, and storage servers.

2.2.3 Networking

Different types of routers, switches, and fiber optic cables are involved in the networking of
data centers. These components aid in transferring the network traffic across different servers
and clients.

LGeneral Data Protection Regulation, https://gdpr.eu
2Health Insurance Portability and Accountability Act, https://www.hhs.gov/hipaa/index.html

https://gdpr.eu
https://www.hhs.gov/hipaa/index.html

2.3 Challenges

Traditional data centers have served as the backbone of computing infrastructure for many
years. However, as technology advances and data volumes explode, traditional data centers
face several limitations. We describe some of the challenges below.

2.3.1 Scalability

Traditional data centers often face problems in scaling effectively to incorporate the rapidly
increasing data demands of modern applications. These infrastructures have a siloed architec-
ture with different components for storage, computing, and networking. To meet the sudden
increase in data, scaling each component independently requires complex integration and can
result in inefficient resource allocation and underutilization. Additionally, traditional data
centers are not able to scale dynamically to cater to unpredictable workloads.

2.3.2 Performance Bottlenecks

The architecture of traditional data centers can lead to performance bottlenecks. The inter-
action between separate components over complex network configurations introduces latency
issues. Thus, impacting the responsiveness and overall performance of applications.

2.3.3 Cost and Infrastructure Complexity

Significant upfront capital investments are required to build the infrastructure of traditional
data centers. Management of separate hardware components like storage devices, servers, and
network equipment is required in traditional data centers. The complexity of integrating these
components and the need for specialized expertise in each area contribute to higher costs and
resource-intensive maintenance.

2.3.4 Management and Operational Challenges

Dedicated teams with expertise in different components of the whole infrastructure are often
required in traditional data centers. This often increases operational complexity, response
times, and inefficiencies. Ensuring high availability, and security management among the
communication between different components can also become complicated to handle.

2.3.5 Limited Resilience and Disaster Recovery

Proper data replication strategies are hard to implement in the traditional data center infras-
tructure. Managing all the infrastructure configurations for different components gives rise to
a lot of unknown challenges. Without implementing proper disaster recovery strategies, the
risk of losing important data and high downtimes becomes hard to ignore in traditional data
centers.

3 Virtualization

Traditionally, data centers ran on their own dedicated physical hardware resources. Nowadays,
most data centers have virtualized their infrastructures, meaning they are not limited to the
capabilities of the physical resources. Virtualization is the process of operating multiple virtu-
alization machines (VMs) on a single physical server. This process is handled by a hypervisor,
a software that allocates and manages resources between VMs. This type of virtualization is
called server virtualization (or compute virtualization). With server virtualization, data
centers can run from 10 to 40 virtual servers on a single physical server [7, Chapter 20]. Fig-
ure [1| shows the diagram of a network architecture of virtualized data center servers. Users
of virtualized data centers must have access to their own set of VMs — or VDC (virtual data
center).

In the following subsections, we lay out the benefits of virtualization and describe other
forms of virtualization as well as the transformations of data centers that were made possible
with the help of virtualization.

Physical Data Center

————— Mapping of a VM to a server
O-—----—-2 Mapping of a virtual switch to a physical switch

Figure 1: Diagram of virtualized data center network.

3.1 Benefits

Virtualization offers flexibility to data centers. With the physical infrastructures, deployment
of servers used to take days or even months [7]. This has been significantly reduced to minutes
thanks to virtualization. Moreover, it is capable of supporting legacy software or various
operating systems. Furthermore, unlike physical servers, virtual data centers are inexpensive
and simple to set up. This allows for increased scalability to quickly configure and provision
infrastructures based on the need. In addition, virtualization reduces the costs of using data
centers. Virtualized data centers are usually offered and maintained by third-party providers.
This eliminates the maintenance cost of physical resources. Also, the providers usually have a
consumption-based business model, meaning that they charge for the resources the companies
actually use.

3.2 Software Defined Networking

Bari et. al. [3] states that the main challenge of virtualization arises from the network. We
briefly describe each challenge as follows:

1. Multitenancy: managing shared data centers among multiple users.
2. Topology: the topology largely impacts the networking and the bandwidth between VMs.
3. Workload Mobility: live migration has strict network restrictions.

4. T/O Blocking: VMs on the same server share one network interface card (NIC). A hy-
pervisor must carefully manage the traffic.

One of the main management issues is multitenancy, which is illustrated in Figure [2| [7, Chap-
ter 20]. Each tenant requires isolated networking functions and different security and privacy
levels. Most importantly, one tenant’s traffic must be protected from another tenant.

Many of these networking challenges could be solved using software-defined networking,
or SDN. SDN uses software-based controllers or application programming interfaces (APISs) to

,
[}
L}
1
I
1
1
1
1

Tenant A Tenant C

Figure 2: Multitenancy in data centers.

manage and configure network infrastructures [10, 22]. In traditional settings, the control pane,
which is in charge of network devices, is bound with the data plane, which forwards network
traffic. SDN, however, abstracts the control plane and decouples it from the data plane. Now,
SDN can create and control virtual networks via software [26]. In essence, SDN can be defined
with the following three principles: (1) separation of the control plane from the data plane,
(2) centralized control, and (3) interface to communicate control of the networks [13].

There are three main components to a typical SDN architecture [20, [13]:

1. Controllers are the centralized entity in charge of managing network devices, translat-
ing requirements from applications, enforcing network policies, and monitoring network
status.

2. Applications communicate network requirements to SDN controllers via a northbound
interface (NBI).

3. Networking devices receive information from the controllers via a southbound interface
(SBI) about moving data

SDN provides several advantages compared to hardware-based traditional networking. As
the controllers are software-based, SDN provides more flexibility to control, customize,
and provision network resources from a centralized interface, bypassing hardware entirely.
Moreover, the abstraction of the controllers provides a better view of security threats [24].
SDN also has a positive effect on reducing the costs and complexity [9].

3.3 Infrastructure as a Service

Virtualization has enabled the infrastructure as a service (IaaS) on the cloud. IaaS offers
businesses computing, storing, and networking resources on demand [27]. It allows the users
to access their individual infrastructure which lie on the same physical hardware. The biggest
benefit of TaaS is that it allows businesses to scale and shrink resources on a need basis.

4 Software-Defined Data Center

Software-defined data centers (SDDC) virtualize all infrastructure components in a data center
including server, storage, and network with abstraction, pooling, and automation by software
[I1]. We have covered server virtualization in Section [3| and network virtualization
(software-defined network) in Section Storage virtualization among the virtualization of
other components is newly introduced in SDDC. Like server virtualization, storage virtual-
ization pools resources. More concretely, it gathers all blocks of storage in to a centralized
shared pool from which they can be assigned to any VM on network as needed. This way,
storage virtualization can improve flexibility and scalability [I1].

SDDC is the integration of the entire infrastrcture components, creating a single centralized
entity that manages the data center [6]. Figuredisplays two diagrams, one for traditional and

‘Datacenter [[

Virtual Emanagement e | ‘ @
! |[@ @ @ i VM resource utilization | Virtual @
e ! | level @
B | ‘!a

utilization
Pod’ |
C?mp" ‘[Phys. || Phys. |i i[Phys. || Phys. [i ¢ [ST AT
Ve i server| |serve

Pod’ | SDDC Manager
[ToR switch) (ToR switch

{Data center
management network

VM resource

VM
allocation
manager

VM allocation

utilization

& migration
Network
manager

Comp. | Phys. | | Phys. Migration] [Comp
level| : et (e model model
? i Time Net

net| |(SDNSwitch)i {(_SDN Switch)i model | | _model

level

network VM allocation | (SDN Switch) network VM allocation
i configuration & migration | configuration & migration

Net H
level = 4
(___DataCenter core network) !

(a) Traditional architecture [4]. (b) SDDC architecture [4].

Figure 3: Diagrams of data center architectures.

another for SDDC architecture. Figure|3b|shows that a SDN Switch is added compared to the
traditional model in Figure Canali et. al. use includes different “models” or components
in the diagram, namely migration and time. A migration model is a component in charge of a
migration process that occurs when a VE (virtual element — virtual machine or virtual element)
is moved from one host to another one. A time model is there to reduce energy consumption or
triggered when physical hosts overload [4]. While the terminologies or the components included
in the diagram differ, the concept that SDDC provides an integrated process that combines all
components remain the same. We can see that all requests are handled by an SDDC manager

internally (Figure [3b)).

4.1 Benefits

SDDC inherits the advantages of virtualization — flexibility and scalability. It can quickly
provision resources and eliminates the time to set up new physical infrastructures. It also
improves the performance with respect to compute, storage, and networking, by optimizing
each components without making physical changes [II]. Also, SDDC allows policy-driven
automation of provisioning and management, which “speeds delivery of resources and enhances
efficiency” [I1]. Moreover, SDDC is cost-effective in the long run. Resource pooling increases
utilization, meaning that less fraction of infrastructure is idle. This leads to less purchase for
physical resources, reduces real estate cost and power consumption.

4.2 Challenges

Switching to SDDC requires careful planning and management. First, standardization across
teams is crucial. Aligning all teams, from procurement, development, and system administra-
tor, can be time-consuming [II]. Furthermore, changing the data center architecture could
cause application downtimes. Hence, it is important to plan ahead and proceed the adaption
in phases to minimize unwanted downtimes [I1]. However, once companies commit to this
change, SDDC will improve the overall data center performances.

5 Hyper-Converged Infrastructure

Data centers have gone through different stages of evolution, starting from large mainframes to
centralized storage servers and eventually to converged and hyper-converged infrastructures.
Each stage aimed to address the shortcomings of the previous generation while bringing its
own advantages and disadvantages [23]. In this section, we draw our attention to what Hyper-
converged Infrastructure (HCIT). Before that, it is important to understand its predecessor,
Converged Infrastructure (CI), and how it leads to the emergence of HCI.

5.1 Path to Hyper-Converged Infrastructure

Definition Converged Infrastructure (CI) is referred to as a hardware-based approach to
converging storage and processes that reduces compatibility issues, complex deployments, and
overall costs. It works by using building blocks [2]. In other words, it is an ensemble of hardware
and software components that, from a logical perspective, integrates all of these tasks into a
single physical node. It is often packaged by a single vendor [25]. This strategy offers quicker
deployment at times, and easier management. With CI one or more manufacturers define a
validated design that has been pre-tested to operate consistently and reliably. This reduces
the time to build the system.

HCI is a way to integrate multiple IT technologies, such as servers, storage, networking
equipment, virtualization, and/or software applications into a larger solution. They allow the
stacking of additional nodes to increase computing power, storage, and memory [23, [15].

Limitations of CI The drawback of this infrastructure is that it leads to vendor lock-in,
which can result in fewer functionalities and limited options for customization. Also, adding
new components to an already existing CI is a complex and expensive process [I]. CI solutions
are largely adopted by larger enterprises moving from a traditional three-tier data center ar-
chitecture [23]. Even though it requires specialized staff to manage the infrastructure it scales
out horizontally very well. Figure [4| shows the constituents of a rack in CI [23].

Difference between CI and HCI Converged and hyper-converged infrastructures have sim-
ilar objectives but have different implementations. The major distinction between the two
solutions is that HCI is a software-defined solution and is made of software building blocks
rather than physical hardware [2, 23]. While the network is still physically distinct and has a
separate management plane, compute and storage are merged into a single solution and have a
single control plane in HCT solutions [19]. A single, centralized management software may be
used to manage all of the integrated technologies in a HCI while also allowing for the expansion
of the basic systems with extra nodes to offer new capabilities. In short, HCI is an alternative
to CI, it is software-defined. In contrast, CI is hardware-defined. Figure [5| shows a sample
hyper-converged cluster [23].

A converged rack unit

Server

Network and Storage

Storage

Figure 5: Three-node hyper-converged cluster
Figure 4: CI architec-
ture.

Overview of non-converged, converged, and hyper-converged infrastructures Fig-
ure [6] shows three diagrams that depict how the architecture has evolved from non-converged
to converged and presently hyper-converged [I8]. The leftmost figure shows how all the com-
ponents are isolated in a non-converged infrastructure whereas the right-most figure depicts
how the storage and server components are tightly coupled in contrast to the network layer,
which is still isolated. This is a compact version of the middle figure that depicts a converged

infrastructure.

Non-Converged Converged Hyper-Converged
— —
— O —
— —o
Server Server Network Switch
Network Fibre Channel Network &
Switch Switch Storage Switch - 5
t
\ / (g = ;
1 — O II
AY
@ @ K — J
e e e - o
Storage Storage Storage & Server

Figure 6: Architectural components of three types of Infrastructure [I].

5.2 Benefits of Hyper-Converged Infrastructure

e Balance-workload The vendor lock-in problem with CI solutions is addressed by HCI,
which is built on common hardware that is easily replaceable. Bein a software-defined
storage framework, each node’s storage controller essentially is a service that runs contin-
uously [23]. There is no downtime or extra hardware needed when HCI components are
temporarily moved to different nodes for repair. Users can continue working normally
throughout the maintenance window because it is transparent to them [I8]

e Cost -Effective Numerous small to mid-sized businesses are drawn to the utilization
due to the flexibility of adding hardware from any vendor and the ease of management
along with considerably faster implementation (in hours). The price of the underlying
hypervisor affects how much HCI costs. For instance, the cost of commercial versus
open-source systems differs. Interoperability and complexity issues are also reduced or
resolved as a result of lower operational costs (and TCO).

e Effective resource distribution and data utilization VMs can be moved between
hosts. This makes it possible to reuse VM-specific functionality across several platforms.
An organization can use HCI to give teams access to specialized environments, such as
those for testing, development, or applications that are exclusive to a given industry
[18]. Storage utilization is increased by keeping storage close to the computation and
dividing access to it throughout the group of compute servers, which also reduces storage
IO latency [23]. By simply adding a new node (computer and storage) to the current
cluster (group of nodes), the infrastructure may be scaled out linearly [23].

e Easy Management HCI platform is significantly simpler to manage, operate, and mon-
itor than traditional infrastructure. IT administrators may set up the HCI system to
automatically allocate resources, conduct duplicate activities, eliminate all administra-
tive silos, and execute data backup and restore as normal because it is software-driven
[18]. In a variety of virtual environments, HCI provides single-view analysis. This aids
management to perform high-level system evaluations and monitoring inside a company.
In order to track the effectiveness of virtual environments, modern HCI adds AI com-
ponents. Moving HCI workloads from one guest machine to another is simple. In agile
contexts, this functionality facilitates the quick development and deployment of software
17

Drawbacks If the Operating System license is per CPU core, this is a disadvantage to cus-
tomers who only require storage as horizontal scaling in HCI is expensive because a completely
new node has to be added even if they just want to scale up computation or storage capac-
ity. HCI solutions have resource consumption overhead as a result of various management
applications. [23].

5.3 Selecting the right HCI Solution

There are various HCI solutions available in the market. There are numerous factors that
are important to consider when evaluating HCI solutions. Depending upon the use-case an
organization might choose to go for a specific implementation of HCI. Nowadays organizations
might consider some of the following characteristics when trying to choose the right HCI
solution for them :

1. Edge-core cloud integration When it comes to linking current infrastructure, clouds,
and edge services, organizations have a wide range of requirements. For instance, a
company could merely use the cloud’s storage tier. When switching cloud providers,
it can also wish to replicate or convert configurations. An HCI solution should enable
an organization to modify, update, and adapt as infrastructure requirements change
[8]. Integration with various forms of storage, processing, and network resources as well
as cloud services is essential for the HCI platform. If an organization wants to start
container orchestration as a future endeavor, having container support may also be an
essential requirement.

2. Analytics Since HCI aggregates storage, computation, and network resources, organi-
zations must be able to monitor resource allocation, use, and health. It might be quite
advantageous to select an HCI platform that provides centralized dashboards with pre-
made and custom metrics as well as reporting capabilities [I7]. It should enable means
to drill deeper into data, acquire information on what is happening, and provide access
via a single dashboard. Additionally, this aids in capacity planning and trend analysis

3. Storage management An ideal HCI solution should let easy integration and configure
a wide range of storage systems. Additionally, mapping these storage systems to the
changing requirements of an organization’s I'T ecosystem should be feasible. Some mod-
ern HCI systems are offering support for NVMe-OF (non-volatile memory express over
fabrics), a technology that simplifies storage re-architecture using flash memory.

5.4 Use-case scenarios for HCI solutions

HCI is cost-effective, it offers a low price point per unit. It is also extremely easy to roll out
and is highly scalable. Following are the scenarios where HCI could be used.

1. DTAP Environment Before applications are deployed to production settings, HCI is
frequently used to develop, test, and ensure the quality of the applications. The isolation
of virtualized servers prevents problems from affecting other active applications [8,[2]. By
replicating resources from the production environment, HCI offers a suitable match for
development and testing environments. In the case of HCI, the development, testing, and
fine-tuning phases of a test environment do not overlap with the production cluster [5]. In
this manner, HCI offers a reliable and affordable test environment that does not interfere
with the performance of current IT clusters. The processes are moved to the production
side once the testing and development phases are over and they have stabilized.

2. VDI and ROBO Hosting VDI solutions is one of the key use cases for HCI. VDI is
the practice of running desktop operating systems in the cloud using virtualized desktop
software. Users of laptops or mobile devices may remotely access virtual desktops thanks
to VDI. A virtual machine (VM), which is kept on a centralized server, houses the VDI

software. Examples of VDI use cases include remote workers connecting through VDI
software to an organization’s platform or support center employees connecting remotely
to a main workstation to react to client inquiries around-the-clock [8, [2].

3. Typical organizational candidates HCI is a useful tool in scenarios where different
applications are required to concurrently perform day-to-day processes, for example,
finance, HR, and IT support [I§]. Another example is where storage needs to be scalable
on demand because there is a surge in online requests [I§]. HCI can also be used where
a reliable repository is needed for large amounts of structured and unstructured data
that is in low demand such as a library archive [I8]. A small start-up company that is
starting to grow might not be open to the complexities of setting up a big data center
which could bring high costs, and complexity in setting up or might demand expertise
and knowledge. They might need an infrastructure that is cost-effective, scalable, simple
to manage, and flexible.

Remark While the architecture of data centers have evolved, prior solutions are still relevant.
The architecture that an organization adopts depends on its requirements. This means HCI
might not be a solution for every organization. They must carefully investigate and check if
HCI is the right option for them. After reading many scientific articles we also tried to find
some use-case scenarios for HCI. This led us to realize that if it is a small enterprise or a start-
up whose priority is to implement its solutions quickly and affordably then it might choose
converged or hyper-converged infrastructure solutions over a typical three-tier design. But
even large organizations can also opt for HCI because of its numerous benefits as mentioned
above over a three-tier architecture. When an organization’s main concern is data, servers with
centralized storage are implemented to provide the data with high availability and security with
centralized administration [23].

6 Conclusion

This paper has provided a comprehensive overview of the evolution of data centers, from main-
frames to the newly emerging hyper-converged infrastructure (HCI). We defined the types and
components of data centers, their traditional setups, and their revolution via virtualization
technology. We also discussed the concepts of software-defined networks (SDN) and infras-
tructure as a service (IaaS), which stem from the application of virtualization. We then ex-
plained the software-defined data center (SDDC), which takes a step further in virtualizing
data centers. Finally, the paper introduces converged infrastructure (CI) and HCI, which aim
to converge data center components into a software-defined platform. We delve deep into the
concept of HCI and its benefits, as well as the selection of HCI solutions and their use cases.

In conclusion, the evolution of data centers has been a dynamic process driven by techno-
logical advancements and the need for greater efficiency, scalability, and agility As data centers
continue to evolve, HCI presents an exciting opportunity for organizations to revolutionize
their data center strategies and unlock new levels of performance and innovation.

In conclusion, technical improvements and the demand for higher efficiency, scalability, and
flexibility have pushed the dynamic growth of data centers. As data centers continue to evolve,
HCI offers organizations an opportunity to transform their data center setups and achieve a
higher level of performance.

10

References

[1]

AZEEM, S., AND SHARMA, S. Study of converged infrastructure & hyper converge infras-

tructure as future of data centre. International Journal of Advanced Computer Research
8 (09 2019), 900.

AZURE, M. Azure Stack HCI: Use cases and scenarios. https://azure.microsoft.
com/mediahandler/files/resourcefiles/azure-stack-hci-use-cases-and-
scenarios/MSFT-AzureStackHCIBoM-UseCases-WP-Final.pdf, 2020. [Accessed
25-May-2023].

BAri, M. F., BouTaBA, R., ESTEVES, R., GRANVILLE, L., PODLESNY, M., RABBANI,
M., ZHANG, Q., AND ZHANI, M. F. Data center network virtualization: A survey. IEFE
Communications Surveys & Tutorials 15 (01 2013), 909-928.

CanALIL, C.; LANCELLOTTI, R., AND SHOJAFAR, M. An Optimization Model to Reduce
Energy Consumption in Software-Defined Data Centers: 7th International Conference,
CLOSER 2017, Porto, Portugal, April 24—26, 2017, Revised Selected Papers. Springer
New York, NY, 07 2018, pp. 137-156.

DINCLoUD. Use Cases for Hyper Converged Infrastructure (HCI). https://www.
dincloud.com/blog/hyper-converged-infrastructure-hci-use-cases, [Accessed

24-May-2023].

Fung, H. P. A Glimpse into Software Defined Data Center UM GLIMPSE EM SOFT-
WARE DEFINED DATA CENTER. Journal of Management of Roraima 4 (07 2014),
34-49.

GENG, H., Ed. Data Center Handbook. John Wiley & Sons, Ltd, 2021.

GREENGARD, S. Top 10 Hyperconverged Infrastructure (HCI) Solutions. https:
//www.datamation.com/data-center/top-10-hyperconverged-infrastructure-
hci-solutions/, 2020. [Accessed 24-May-2023].

HaMPEL, G., STEINER, M., AND Bu, T. Applying software-defined networking to the

telecom domain. In 2013 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS) (2013), pp. 133-138.

HorvATH, R., NEDBAL, D., AND STIENINGER, M. A literature review on challenges and
effects of software defined networking. Procedia Computer Science 64 (2015), 552-561.
Conference on ENTERprise Information Systems/International Conference on Project
MANagement/Conference on Health and Social Care Information Systems and Technolo-
gies, CENTERIS/ProjMAN / HCist 2015 October 7-9, 2015.

IBM. Software-Defined Data Centers. https://www.ibm.com/topics/software-
defined-data-centerl. [Accessed 22-May-2023].

IBM. What is a data center? https://www.ibm.com/topics/data-centers, 2021.
[Accessed 26-May-2023].

JAMMAL, M., SINGH, T., SHAMI, A., AsAL, R., AND L1, Y. Software defined networking:
State of the art and research challenges. Computer Networks 72 (2014), 74-98.

KanT, K. Data center evolution: A tutorial on state of the art, issues, and challenges.
Computer Networks 53, 17 (2009), 2939-2965. Virtualized Data Centers.

MAGsI, Z., KOONDHAR, M. Y., HYDER DEPAR, M., PATHAN, Z. H., MEMON, F.-U.-
D., AND SOLANGI, S. Conceptual framework transformation of converged infrastructure
(ci) into hyper converged technology for virtualization of server infrastructure. In 2020
IEEE 7Tth International Conference on Engineering Technologies and Applied Sciences
(ICETAS) (2020), pp. 1-4.

11

https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-stack-hci-use-cases-and-scenarios/MSFT-AzureStackHCIBoM-UseCases-WP-Final.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-stack-hci-use-cases-and-scenarios/MSFT-AzureStackHCIBoM-UseCases-WP-Final.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/azure-stack-hci-use-cases-and-scenarios/MSFT-AzureStackHCIBoM-UseCases-WP-Final.pdf
https://www.dincloud.com/blog/hyper-converged-infrastructure-hci-use-cases
https://www.dincloud.com/blog/hyper-converged-infrastructure-hci-use-cases
https://www.datamation.com/data-center/top-10-hyperconverged-infrastructure-hci-solutions/
https://www.datamation.com/data-center/top-10-hyperconverged-infrastructure-hci-solutions/
https://www.datamation.com/data-center/top-10-hyperconverged-infrastructure-hci-solutions/
https://www.ibm.com/topics/software-defined-data-center
https://www.ibm.com/topics/software-defined-data-center
https://www.ibm.com/topics/data-centers

[16]

[17]

[18]

[19]

MILLER, A. Converged vs Hyperconverged Infrastructure: The Differences Between
Cl & HCI. https://www.bmc.com/blogs/converged-infrastructure-vs-hyper-
converged-infrastructure/#: ~:text=Converged)20Infrastructure’20(CI)%20is%

20a, to%20convergingy,20storage%20and’20processes.} 2021. [Accessed 26-May-2023].

MUDRAKOLA, S. What Are the Best Hyperconverged Infrastructure (HCI) Solu-
tions on the Market? https://petri.com/top-5-hyperconverged-infrastructure-
platforms/} 2023. [Accessed 24-May-2023].

PAESSLER. IT Explained: HCI. https://www.paessler.com/it-explained/hci. [Ac-
cessed 24-May-2023].

PraBowoO, R. J., HIDAYANTO, A. N., SANDHYADUHITA, P. I., AzzZAHRO, F., AND
CHAIRUNNISA, A. The determinants of user’s intention to adopt hyper-converged in-
frastructure technologies: An integrated approach. In 2018 International Conference on
Information Technology Systems and Innovation (ICITSI) (2018), pp. 306-311.

PRIYADARSINI, M., AND BERA, P. Software defined networking architecture, traffic
management, security, and placement: A survey. Computer Networks 192 (2021), 108047.

RAMANATHAN, M., AND NARAYANAN, K. Analysis of substantial growth on data center
in virtualization local area network applications. In 2019 International Conference on
Smart Systems and Inventive Technology (ICSSIT) (2019), pp. 1097-1100.

SHARMA, R. A review on software defined networking. International Journal of Scientific
Research in Computer Science, Engineering and Information Technology (03 2021), 11-14.

SHETTY, A. J., AND GANASHREE, K. Comprehensive review of datacenter architecture
evolution. In 2020 International Research Journal of Engineering and Technology (2020),
vol. 7, pp. 7420-7426.

URREA, C., AND BENITEZ, D. Software-defined networking solutions, architecture and
controllers for the industrial internet of things: A review. Sensors 21, 19 (2021), 6585.

VEICGA, A. P. Hyper converged infrastructures: Beyond virtualization, 2017.

VMWARE. What is Software-Defined Networking (SDN)? https://www.vmware.com/
topics/glossary/content/software-defined-networking.html. [Accessed 26-May-
2023].

Yanag, C.-T., Huang, K.-L., Cau, W. C.-C., Leu, F.-Y., AND WANG, S.-F. Im-
plementation of cloud iaas for virtualization with live migration. In Grid and Pervasive
Computing (Berlin, Heidelberg, 2013), J. J. J. H. Park, H. R. Arabnia, C. Kim, W. Shi,
and J.-M. Gil, Eds., Springer Berlin Heidelberg, pp. 199-207.

12

https://www.bmc.com/blogs/converged-infrastructure-vs-hyper-converged-infrastructure/#:~:text=Converged%20Infrastructure%20(CI)%20is%20a,to%20converging%20storage%20and%20processes.
https://www.bmc.com/blogs/converged-infrastructure-vs-hyper-converged-infrastructure/#:~:text=Converged%20Infrastructure%20(CI)%20is%20a,to%20converging%20storage%20and%20processes.
https://www.bmc.com/blogs/converged-infrastructure-vs-hyper-converged-infrastructure/#:~:text=Converged%20Infrastructure%20(CI)%20is%20a,to%20converging%20storage%20and%20processes.
https://petri.com/top-5-hyperconverged-infrastructure-platforms/
https://petri.com/top-5-hyperconverged-infrastructure-platforms/
https://www.paessler.com/it-explained/hci
https://www.vmware.com/topics/glossary/content/software-defined-networking.html
https://www.vmware.com/topics/glossary/content/software-defined-networking.html

How Can Peer-to-Peer Deep Learning Enhance Edge
Computing in IoT Devices?

Rounak Vyas Kemal Sheker Punya Kapoor
Universiteit van Amsterdam Universiteit van Amsterdam Universiteit van Amsterdam
r.vyas@student.vu.nl k.sheker@student.vu.nl p.kapoor@student.vu.nl
Abstract

This literature study explores the potential of peer-to-peer deep learning to improve
edge computing in [oT devices. In order to improve the functionality of IoT
devices, the study examines a number of strategies, such as federated learning,
peer-to-peer deep learning, and coupled orchestration of edge and fog computing.
The study focuses on the challenges posed by resource constraints and the need for
collaborative learning techniques to decrease these limitations. The integration of
deep learning with edge computing in IoT is crucial for efficient data processing
and real-time decision-making. The study also talks about the peer-to-peer security
issues that come with IoT edge computing and possible solutions to these issues.

1 Introduction

The exponential growth of Internet of Things (IoT) devices has led to a massive influx of data at the
network edge. These devices, ranging from smart sensors to wearables, generate a continuous stream
of data that presents both opportunities and challenges for efficient processing and analysis. However,
the limited computational resources and energy constraints of edge devices make it challenging to
perform computationally intensive tasks like deep learning. To address these challenges, researchers
have explored the integration of edge computing and peer-to-peer deep learning as a promising
approach to enhance the capabilities of IoT devices.

Collaborative learning in edge computing has gained significant attention as it enables the utilization
of distributed data sources and facilitates knowledge sharing among edge devices. Several research
papers have contributed to this area of study. Chen and Ran [1] provided a comprehensive review
of deep learning with edge computing, highlighting the potential benefits and challenges. They
discussed various techniques and methodologies employed in the integration of deep learning with
edge computing, shedding light on the advancements in this field.

Moreover, Sajina, Tankovic, and Ipsic [2] proposed a novel approach called peer-to-peer deep learning
with non-IID data. Their work demonstrated the feasibility of leveraging peer-to-peer communication
for deep learning tasks with non-identically distributed (non-1ID) data in IoT networks. This approach
enables collaborative learning and knowledge exchange among edge devices, allowing them to
collectively train deep learning models without relying on centralized servers. By utilizing non-1ID
data, the proposed approach addresses the heterogeneity of data distributions across edge devices,
leading to improved learning performance.

In addition to the works mentioned above, Nguyen et al. [3] conducted a comprehensive survey on
federated learning for the Internet of Things (IoT). Their study explored the potential of federated
learning in IoT scenarios, considering aspects such as data privacy, communication efficiency,
and model accuracy. The survey provided insights into the methodologies, challenges, and future
directions of federated learning in the context of IoT.

Universiteit van Amsterdam, Amsterdam, The Netherlands.

Motivated by the findings of Chen and Ran [1], §ajina et al. [2], and Nguyen et al. [3], this research
paper aims to investigate the potential of peer-to-peer deep learning in enhancing edge computing for
IoT devices. The objective is to explore the effective employment of collaborative learning techniques
in an edge computing environment to mitigate the limitations of individual edge devices and improve
overall performance.

In the subsequent sections, we will explore the potential of peer-to-peer deep learning in enhancing
edge computing for IoT devices. We will discuss federated learning for IoT, peer-to-peer deep learning
in IoT environments, collaborative deep learning in resource-constrained IoT edge devices, and the
integration of deep learning with edge computing. By examining these topics, we aim to provide a
comprehensive understanding of how peer-to-peer deep learning can improve the capabilities of IoT
devices at the network edge.

2 Peer-to-Peer Deep Learning and Edge Computing

In this section, we will dive deep into how deep learning can change the edge computing scene. We
will explain how P2P IoT, which has become widespread, can get better with deep learning and how
deep learning is done. We will talk about the differences between IoT and edge computing devices
from cloud computing, their resource constraints, and low-latency expectations. Next, we’ll discuss
the P2P security issues that come with IoT edge computing and possible solutions to these issues.

2.1 P2P Deep Learning in IoT Edge Computing

In recent years, integrating peer-to-peer (P2P) deep learning techniques with edge computing in IoT
devices has garnered significant attention. This section explores the advancements, challenges, and
potential research directions in this domain.

One area of interest is federated learning for IoT, which enables IoT devices to collaboratively
train models without exchanging raw data. Nguyen et al. [3] provide a comprehensive survey of
federated learning, discussing its recent advances and future directions. This approach addresses
privacy concerns and reduces communication costs, making it suitable for IoT edge computing
scenarios. However, challenges such as heterogeneous device capabilities, network connectivity, and
data heterogeneity need to be addressed to fully exploit the potential of federated learning in IoT
edge environments.

Another approach that has gained attention is peer-to-peer deep learning in IoT environments. Joshi
et al. [4] delve into recent advances and research challenges in this field. P2P deep learning
enables IoT devices to collectively train models through peer-to-peer communication, leveraging their
computational capabilities. This approach offers reduced latency, improved scalability, and efficient
resource utilization. However, it also poses challenges related to resource constraints and network
dynamics. Optimizing communication protocols, load balancing, and fault tolerance mechanisms are
important research directions in this context.

Collaborative deep learning in resource-constrained IoT edge devices is another important area of
research. Zhang et al. [5] propose a trusted and collaborative framework for deep learning in IoT,
focusing on efficient model aggregation and exploring the trade-off between model accuracy and
resource consumption. Collaborative deep learning in such environments harnesses the collective
intelligence of IoT devices while respecting their limitations. Addressing challenges related to limited
computational power, energy constraints, and communication overheads is crucial for effective
collaborative deep learning in IoT edge computing.

The integration of deep learning with edge computing in IoT is crucial for efficient data processing and
real-time decision-making. Li et al. [6] discuss various approaches for incorporating deep learning
models into edge devices, enhancing their capabilities to handle IoT-generated data. This integration
offers benefits such as reduced latency and improved privacy. Their work emphasizes the significance
of edge computing in enabling intelligent processing at the network edge. Overcoming challenges
related to limited storage capacity, energy efficiency, and model deployment on resource-constrained
edge devices is critical for the successful implementation of deep learning in IoT edge environments.

Furthermore, Sajina, Tankovic, and Ipsic [2] proposed peer-to-peer deep learning with non-IID data,
which addresses the heterogeneity of data distributions across IoT devices. Their work focuses

on enabling collaborative learning and knowledge exchange among edge devices. By leveraging
peer-to-peer communication, this approach allows edge devices to collectively train deep learning
models, minimizing reliance on centralized servers and reducing latency and bandwidth consumption.

To enhance the understanding of P2P deep learning in IoT edge computing, including a figure
illustrating the architecture or workflow can be beneficial. Figure 1 illustrates a possible architecture
for P2P deep learning in IoT edge computing, showcasing the collaborative training process among
edge devices. This figure can help visualize the concept and highlight the interactions between

devices.
Cloud data = AT N
center
Eit
Deep learning
/ Deep
learning

Edge Edge E i% t
server server
/ \ —— Edge devices

End devices

learning
Figure 1: P2P Deep Learning Architecture in IoT Edge Computing[1]

Based on the insights from these studies, the research on peer-to-peer deep learning in IoT edge
computing is poised to address challenges such as resource constraints, privacy preservation, and net-
work dynamics. Future research directions may involve optimizing communication and computation
efficiency, developing robust and secure algorithms, exploring innovative approaches for federated
learning and collaborative deep learning, and investigating the integration of edge intelligence with
cloud-based infrastructures. These advancements will pave the way for intelligent IoT systems with
enhanced capabilities and efficient data processing at the network edge.

2.2 Resource-Constrained Environments and Low-Latency Requirements

In this section, we will talk about doing deep learning on IoT edge devices. These devices are limited
by computational resources, restricted power budgets, and the need for near real-time decision-making.
In addition to the benefits that deep learning provides to these devices, it addresses the difficulties of
doing deep learning on these devices and the reasons for these difficulties. Possible solutions to these
problems and evaluation of these solutions will be made.

Due to budget constraints, fail-over options are limited in IoT edge computing compared to traditional
centralized cloud-based environments. Saurabh Bagchi et al.(2019)[7], listed various dependability
issues on [oT edge computing. Based on this article, we can address the dependability problems we
will encounter while doing deep learning in edge computing. One of the first problems is the lack
of a common edge computing standard for IoT devices. The article suggests that new standards or
mediation layers should be designed to coordinate devices and provide useful functionality, such that
an edge device can seamlessly communicate with and control multiple end-user devices[7]. This
is one of the problems in front of edge computing becoming more widespread and popular. Deep
learning in centralized cloud computing is already an established and applied method. However, there
are numerous reasons why existing cloud computing standards cannot be immediately transferred

Latency > constraint __ -

Ell Original Model — (N7 LEI Redundant Model
. E|[IQ rigin oerli‘)’_._{zgmeui?]:: H [|/| eunan_ ode

X Latency < constraint g
D i
d Edge Devices Zr-L Latency Predictor 1 5

Y o b | g g

<L =

P

H EI G Optimized Model < ——— g< Compactor

Figure 2: The overview of Latency-Constrained DNN Architecture Learning for Edge Systems.[10]

to edge computing. In contrast to edge computing, which involves more frequent and lighter
communication, cloud computing typically involves heavier computational tasks and large amounts of
data transfer. As a result, the latency and bandwidth problems associated with service delivery must
be handled differently due to the resource-constrained environments of edge computing[7]. In this
area, developers and manufacturers in the industry need to take steps together to build a framework
for edge computing.

Another method to overcome the difficulty of deep learning in the resource-constraint environments
of edge computing is the Joint orchestration of Edge and Fog computing[8]. The fog nodes, which are
computing devices located at the edge of the network, are responsible for processing and analyzing
the data in real-time. One opportunity in this orchestration is resource utilization enhancement
introduced by L.Comardi et al.(2018)[8]. It offers the distribution of computing and networking
tasks across both edge and fog resources, including any type of devices that possess networking and
computing capabilities. This naturally creates a larger pool of resources dispersed close to the end
consumers, enabling better computational gains and improved resource usage. In this article, deep
learning is not mentioned, but in this way, an environment where deep learning algorithms can be run
better in these systems is created. In this area, it is possible to investigate the use of deep learning
further and understand what can be done in the future.

Another challenge of working in a resource-constrained environment is the lack of efficient tools
to protect data privacy and security at the edge of the network. Shi, W., et al.(2016)[9], addresses
this issue. Some devices have limited resources, making it difficult to implement existing security
protection techniques on them because they are resource-hungry[9]. This means that security
measures that require a lot of resources, such as encryption or complex authentication protocols,
may not be feasible to implement on these devices without significantly impacting their performance
and functionality. For example, using these security applications on an AR device that requires low
latency will increase latency and cause slowdowns in a device that requires low latency. There are
not many tools in this field for now.

There is research about Latency-Constrained DNN(Deep Neural Network) Architecture Learning for
Edge Systems. Shuo Huai et al.(2023) propose a latency-oriented neural network learning method
to optimize models for high accuracy while fulfilling the latency constraint in edge systems[10].
They introduce a universal hardware-customized latency predictor by using a Backpropagation in
Neural Network. This procedure learns a model that satisfies the latency constraint by only a one-shot
training process. One-shot training describes a DNN training in which a model is trained on a tiny
dataset with one example per class or category. With this method, they can do deep learning faster
using fewer resources, which is what we need in edge computing. Within the main framework, to
prevent time-consuming on-device measurements during each Zero training phase, we provide a
machine learning-based latency predictor that is integrated into our adaptive learning architecture[10].
Experiments were made in latency-constrained environments to see how well this framework was
developed in the end. The results of their experiments showed that this framework has high accuracy
in latency-constrained edge systems. We can foresee that this research and the framework created can
be done for other constraints in edge computing. For example, explore the trade-off between energy

efficiency and latency in edge systems. By developing new approaches, a balance between energy
and latency can be established and deep learning can be done.

2.3 Data Privacy and Security in P2P Deep Learning

Large amounts of data can be generated by Internet of Things (IoT) edge devices, much of it related to
human behavior and activity. Individuals face serious privacy risks when personal data is collected and
machine learning models are trained on a central cloud server. There are also difficulties when sending
this data to the cloud. To create high-performance prediction models, insights based on machine
learning, particularly deep learning, considerably benefit from enormous amounts of data. Moreover,
there are significant cybersecurity problems due to the growing use of mobile devices. Deep learning
(DL) models are used by mobile services and applications for the modeling, categorization, and
identification of complex data, such as photos, audio, video, or text. Users gain from the numerous
services and applications that these devices provide, but at a significant cost: the privacy of their data.
Mobile services gather a wide variety of user information, including sensitive personal information,
images, videos, clinical data, banking information, etc. Big firms use all of this data that has been
gathered from consumers to train their worldwide DL models, which obviously raises severe privacy
concerns. In this section, we will talk about how P2P deep learning helps with overcoming the above
challenges. In addition to this, we will review several privacy-preserving deep learning methods that
can enhance edge computing in IoT devices.

2.3.1 Privacy Preserving in Federated Learning

Briggs et al.[12] review privacy-preserving federated learning for IoT devices. Federated learning
extends the idea of distributed machine learning, making use of decentralized learning. The decen-
tralized distribution of training data does not rely on a centralized parameter server to coalesce model
updates from edge devices but instead allows the edge devices to communicate with one another,
resulting in each edge device performing aggregation on data from the parameters it receives. To
simplify, rather than randomly partitioning a dataset to many compute nodes, model training occurs
on edge devices using the distributed data owned by individual users. In the field of robotics, federated
learning is used to secure privacy-sensitive tasks and more generally to help different robots share
imitation learning methodologies. In edge computing environments, federated learning has been used
to predict demand in the deployed applications and for improving content caching mechanisms.

Due to the decentralized nature of client participation required for federated learning, the protocol is
vulnerable to adversarial attacks. Bagdasaryan et al.[13] outline techniques for poisoning the global
model in a federated learning environment by using an adversary as a client. It builds an update that
endures the averaging process and significantly affects or replaces the global model. Additionally,
even though the training data itself is never exposed to a third party, it is possible that the parameter
adjustments could reveal something about an individual’s training data.

Bonawitz et al. [14] propose an approach to preserve the privacy of individual users in a federated
learning setting. Their work uses secure multiparty computation (MPC) to compute averages of
model parameter updates from individual edge devices in a secure manner. The approach uses secure
aggregation that computes a multiparty sum where no party reveals its updates. The benefit of this
approach is that edge devices can share an update knowing that the service provider will only see
that update after it has been averaged with those of other edge devices. However, their work focused
primarily on the setting of mobile devices, where dropouts are trivial and communication is expensive.

In Figure 3, user edge devices interact with cloud-hosted models in the cloud-centric approach to
machine intelligence, creating logs that can be utilized as training examples. Numerous users’ logs
are merged and utilized to enhance the model, which is subsequently used to fulfill requests from
new users. Federated learning sends ML models to consumers’ devices where they are locally trained
and assessed. The server receives summaries of updated models, which are then combined into
a new model and distributed to user devices. When secure aggregation is introduced to federated
learning, the cloud provider only learns the aggregated model update since the aggregation of model
updates is logically performed by the virtual, incorruptible third party caused by the secure multiparty
communication.

The time it takes for federated learning to learn a model relies on the number of training steps and
the ML parameter transmission per step. This is because federated learning requires edge devices to

Cloud-Hosted Mobile Intelligence Federated Learning Federated Learning with Secure Aggregation

R e
D A TR T N B

Figure 3: Comparision between cloud-hosted mobile intelligence, federated learning, and federated
learning with secure aggregation.

share their ML parameters iteratively. In reality, several participating edge devices frequently transmit
model parameters through communication networks with constrained resources, such as wireless
networks with constrained bandwidth and power. As a result, the frequent transfer from edge devices
results in a delay that may be orders of magnitude longer than the time required to train an ML model.
Delay in communication is hence a significant bottleneck in federated learning. Chena et al. [15]
propose an approach to improve the convergence time and the training loss using a communication-
efficient federated learning framework. In this framework, a probabilistic device selection system
is created such that edge devices that can improve the convergence speed and training loss have a
greater probability to be selected for model transmission. Moreover, a quantization technique is
suggested to decrease the volume of model parameters transferred among devices and an effective
wireless resource allocation strategy is created in order to further shorten the convergence time.

2.3.2 Privacy Preserving in Fog Computing

Apart from federated learning, fog computing environments have been improved to include privacy
preservation frameworks. Gutiérrez et al. [16] propose a similar framework that uses a distributed
deep learning approach. Instead of disclosing their sensitivity to the cloud server, Internet of Things
(IoT) end nodes communicate a portion of the users’ data with a nearby Fog node that has been
masked with Gaussian noise. The framework is designed to preserve users’ privacy. It consists of a
three-level architecture which consists of multiple edge devices at the bottom (also called V devices)
or end nodes, Fog nodes in the middle level, and the cloud server at the top level. The edge devices
do not reveal their data to the cloud server by only sharing a fragment of their data with a nearby Fog
node. In addition to this, Gaussian noise has been introduced to provide an additional layer of privacy
to users’ sensitive data. The edge devices have all the training data to train the model. Each device
opts for a specific portion of the dataset and preprocesses the data. Once the data is preprocessed,
it is sent to its corresponding Fog node. In this fog-embedded architecture, the Fog nodes train the
model in addition to preprocessing the data in the end nodes, leaving the cloud server with simply the
duty of validating and updating the model so that it is accessible to other fog nodes.

2.3.3 Private P2P Network for Distributed Machine Learning

In 2021, researchers (Zhou et al.) introduced a network architecture focused on enhancing efficiency
in communication, computation, and time. The architecture draws inspiration from Dempster-Shafer’s
theory and utilizes a Scalable Chord Peer-to-Peer Network. Additionally, it suggests a Trust-based
P2P overlay network for creating vehicle clusters. To simplify network management, a consistent
hashing technique (chord) is employed, reducing complexity. Each Trust-based P2P group applies
evidence theory and control flow to determine the optimal outcome for transmission to the global
server. The proposed method also claims to achieve faster learning compared to convolutional
federated learning.

3 Discussion

P2P Deep Learning really holds a great opportunity for Edge Computing. We have observed that
being able to perform p2p deep learning in this field can provide us with various benefits. This
approach enables IoT devices to collectively train models through peer-to-peer communication,
leveraging their computational capabilities. In this way, edge devices will become smarter and the
task of deep learning will be lifted from the central cloud alone. However, there are still various

difficulties in doing so. This is because although deep learning is an existing and well-researched field,
performing it in edge computing environments, [oT devices or Fog layers has its own challenges.

Federated learning has been one of the issues we focused on in IoT edge computing. This method
takes privacy and communication into account and does deep learning on IoT devices collaboratively
without sharing raw data. In this way, data processing can be done in a decentralized way at the
edge of the network. To fully utilize federated learning in IoT edge contexts, however, issues
including diverse device capabilities, network connection, and data heterogeneity must be resolved.
We mentioned the lack of standardization in IoT devices among the environmental problems.

Collaborative deep learning was another method we focused on in this regard. This strategy analyzes
the trade-off between model accuracy and resource usage while concentrating on effective model
aggregation. Of course, the fact that IoT devices are resource-constrained devices is one of the most
important points that this method tries to pay attention to and overcome.

These deep learning methods can provide us with various advantages in the IoT environment. A Latif
U. et al.(2020), study by Edge-Computing-Enabled Smart Cities shows us what deep learning can
add[18]. By making decision-making processes smarter, it helps IoT devices in smart cities work
more efficiently and well. Deep learning, for instance, can be used to forecast popularity and enable
wise cache. Additionally, it can be applied to the efficient scheduling of mobility-aware caching and
the creation of simple systems for commercial applications[18]. It can be used to optimize all areas
in the city where IoT devices are used and integrated. We can pave the way for more efficient use of
most areas, from car parks to the health sector, by deep learning in edge computing.

Besides these methods and benefits, how could we address the low-latency expectation and the
resource-constrained edge computing area that makes it difficult to perform P2P deep learning on IoT
devices? The coordination of edge and fog computing is one method for overcoming the resource
limitations in edge computing. It is possible to increase computational benefits and improve resource
usage by dividing computing and networking workloads among edge and fog resources[8]. However,
we could not find any research that carried out deep learning with this orchestration. In our opinion,
this fog edge can work together to benefit from increased computation power deep learning. Research
is needed in this area.

Additionally, interesting findings have been obtained from research on latency-constrained deep
neural network (DNN) architecture learning for edge systems. Deep learning can be carried out more
quickly and with fewer resources by optimizing models for high accuracy while meeting low latency.
The framework uses a machine learning-based latency predictor that allows for forecasts without the
need for time-consuming device measurements[10].

Regarding data privacy and security in P2P deep learning, several methods were discussed in different
contexts: federated learning, fog computing, and a private peer-to-peer network for distributed ma-
chine learning. Each method addresses the challenges of privacy preservation and introduces specific
techniques to ensure the confidentiality of user data. While federated learning offers advantages in
terms of privacy by keeping the training data decentralized, it is also vulnerable to adversarial attacks.
This demonstrates a weakness in federated learning’s security. Additionally, there is cause for concern
that parameter adjustment could reveal information about a user’s training data, compromising privacy.
By employing MPC, the computation of model parameter averages can be done in a secure manner
without revealing individual updates. However, this approach primarily focused on mobile devices
and does not consider scenarios with limited communication resources.

In the context of private peer-to-peer networks for distributed machine learning, the authors claim that
this method achieves faster learning compared to convolutional federated learning, but the specifics
of privacy preservation within this architecture are not discussed in detail. A blockchain-based
solution was proposed by Du et al. [20]. It discusses the challenges of transmitting private data about
personal identity and financial account information to nearby servers for computation and the need
for a computing resource trading and data-sharing framework or platform to motivate edge servers.
While this proposed solution aids the privacy concerns across loT devices, it requires a centralized
training process. Alwarafy et al. [19] did a survey on security and privacy issues in edge computing
assisting [oT devices. It highlights the risks associated with the massive growth of IoT devices and
the corresponding huge data traffic generated at the edge of the network, which created additional
burdens on the state-of-the-art centralized cloud computing paradigm due to bandwidth and resource
scarcity. This literature survey reinstates the need of peer to peer deep learning for IoT devices.

4 Conclusion

This literature study describes how peer-to-peer deep learning can help enhance edge computing in
IoT devices. It emphasizes the difficulties brought on by resource limitations and the demand for
collaborative learning strategies to lessen these restrictions. In order to increase the functionality of
IoT devices, this study investigates a number of techniques, including federated learning, peer-to-peer
deep learning, and combined orchestration of edge and fog computing. The importance of edge
computing in enabling intelligent processing at the network edge and the demand for standardization
in IoT devices are both emphasized in the study above. With the help of this study, we contend
that these constraints can be removed and resource efficiency increased by combining edge and fog
computing. Moreover, several privacy methods were discussed that could help preserve users’ privacy
while training models using peer-to-peer deep learning. Overall, the work underscores the need
for more research in this field and offers insightful information about how deep learning and edge
computing are combined in IoT devices.

5 References

[1]J. Chen and X. Ran, "Deep Learning With Edge Computing: A Review," in Proceedings of the IEEE, vol.
107, no. 8, pp. 1655-1674, Aug. 2019, doi: 10.1109/JPROC.2019.2921977.

[2] Sajina, Robert & Tankovic, Nikola & Ipsic, Ivo. (2022). Peer-to-peer deep learning with non-IID data.
Expert Systems with Applications. 214. 119159. 10.1016/j.eswa.2022.119159.

[3] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li and H. Vincent Poor, "Federated Learning for
Internet of Things: A Comprehensive Survey," in IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp.
1622-1658, thirdquarter 2021, doi: 10.1109/COMST.2021.3075439.

[4] P. Joshi, M. Hasanuzzaman, C. Thapa, H. Afli and T. Scully, "Enabling All In-Edge Deep Learning: A
Literature Review," in IEEE Access, vol. 11, pp. 3431-3460, 2023, doi: 10.1109/ACCESS.2023.3234761.

[5] Zhang, Qingyang & Zhong, Hong & Shi, Weisong & Liu, Lu. (2021). A trusted and collaborative framework
for deep learning in IoT. Computer Networks. 193. 108055. 10.1016/j.comnet.2021.108055.

[6] Li, He & Ota, Kaoru & Dong, Mianxiong. (2018). Learning IoT in Edge: Deep Learning for the Internet of
Things with Edge Computing. IEEE Network. 32. 96-101. 10.1109/MNET.2018.1700202.

[7] Saurabh Bagchi, Muhammad-Bilal Siddiqui, Paul Wood, and Heng Zhang. 2019. Dependability in edge
computing. Commun. ACM 63, 1 (January 2020), 58—66. https://doi.org/10.1145/3362068

[8] Cominardi, L., Abdullaziz, O.I., Antevski., K.,Chundrigar, S.B., Gdowski, R., Kuo, P.H., Mourad,A., Yen,
L.H., Zabala, A. (2018). Opportunities and Challenges of Joint Edge and Fog Orchestration. In 2018 IEEE
Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, Spain, 2018, pp.
344-349.

[9] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision and Challenges," in IEEE Internet of
Things Journal, vol. 3, no. 5, pp. 637-646, Oct. 2016, doi: 10.1109/JI0T.2016.2579198.

[10] Shuo Huai, Di Liu, Hao Kong, Weichen Liu, Ravi Subramaniam, Christian Makaya, Qian Lin, Latency-
constrained DNN architecture learning for edge systems using zerorized batch normalization, Future Generation
Computer Systems, Volume 142, 2023, Pages 314-327.

[11] Zheng, Z., Lyu, H., Zhang, Z., Niyato, D., & Kim, D. L. (2019). Towards collaborative deep learning in
edge computing environments. IEEE Network, 33(5), 60-65.

[12] Briggs, C., Fan, Z., & Andras, P. (2020). A Review of Privacy-preserving Federated Learning for the
Internet-of-Things. ArXiv. /abs/2004.11794

[13] E.Bagdasaryan, A.Veit, Y.Hua, D.Estrin, and V.Shmatikov, “How To Backdoor Federated Learning,”
arXiv.org, p. arXiv:1807.00459, Jul. 2018.

[14] Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal A, Seth K
(2017) Practical Secure Aggregation for Privacy-Preserving Machine Learning. In: ACM SIGSAC conference
on computer and communications security, pp 1175-1191

[15] Chen, M., Shlezinger, N., Poor, H. V., Eldar, Y. C, & Cui, S. (2021). Communication-
efficient federated learning. Proceedings of the National Academy of Sciences, 118(17), e2024789118.
https://doi.org/10.1073/pnas.2024789118

[16] 1.Gutiérrez, N., Rodriguez, E., Mus, S., Otero, B., Canal, R.: Privacy Preserving Deep
Learning Framework in Fog Computing, https://link.springer.com/chapter/10.1007/978-3-030-64583-0_45.
https://doi.org/10.1007/978-3-030-64583-0_45.

[17]J. M. Jeon and C. S. Hong, "Scalable Private P2P network for distributed and Hierarchical Machine Learning
in VANETS," 2021 International Conference on Information Networking (ICOIN), Jeju Island, Korea (South),
2021, pp. 627-629, doi: 10.1109/ICOIN50884.2021.9333988.

[18]Khan, Latif U. , Yaqoob, Ibrar , Tran, Nguyen , Kazmi, S.M. , Nguyen Dang, Tri , Hong, Choong Seon.
(2020). Edge-Computing-Enabled Smart Cities: A Comprehensive Survey. IEEE Internet of Things Journal. PP.
1-1. 10.1109/J10T.2020.2987070.

[19] A. Alwarafy, K. A. Al-Thelaya, M. Abdallah, J. Schneider and M. Hamdi, "A Survey on Security and
Privacy Issues in Edge-Computing-Assisted Internet of Things," in IEEE Internet of Things Journal, vol. 8, no.
6, pp. 4004-4022, 15 March15, 2021, doi: 10.1109/J10T.2020.3015432.

[20] Du, Yao & Wang, Zehua & Leung, Victor. (2021). Blockchain-Enabled Edge Intelligence for IoT:
Background, Emerging Trends and Open Issues. Future Internet. 13. 48. 10.3390/{113020048

Machine Learning and Deep Learning for the
Internet of Things with Edge Computing in Smart
City
Assignment 4a. Literature Study
Group 21

Zhuofan Mei
Universiteit van Amsterdam
zhuofan.mei@student.uva.nl
Pengju Ma
Universiteit van Amsterdam
pengju.ma@student.uva.nl
Lin Tian
Universiteit van Amsterdam
lin.tian@student.uva.nl

Abstract

In this paper, we discuss the machine learning and deep learning methods for the
Internet of Things (IoT) with edge computing in smart city applications. Specif-
ically, we analyze the implementation of these technologies in healthcare, traffic
management, urban and rural planning and resource management in recent years,
and compare the strengths and possible improvement perspectives of these studies.
We also discuss future research directions and open issues in this emerging field.

1 Introduction

Machine learning and deep learning have revolutionized various fields, including the Internet of
Things (IoT) and edge computing, contributing to the advancement of smart cities. In this era of
rapid technological growth, cities are embracing intelligent systems to enhance efficiency, sustain-
ability, and overall quality of life. The amalgamation of machine learning and deep learning tech-
niques with IoT and edge computing offers unprecedented opportunities for developing innovative
solutions to address the challenges faced by urban areas.

This article aims to explore the application of machine learning and deep learning methodologies in
the context of smart cities, specifically focusing on the Internet of Things and edge computing. We
will examine these technologies from various perspectives, delving into the theoretical foundations
and their practical implementation in intelligent urban environments. By analyzing the methods
used and their potential benefits, we can gain insights into how machine learning and deep learning
contribute to the evolution of smart cities.

2 Search Query

(("machine learning" OR "ML") AND ("deep learning" OR "DL") AND ("internet
of things" OR "IoT") AND ("edge computing" OR "edge") AND ("smart city"

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

—
a

OR "healthcare" OR "environment" OR "urban planing" OR "resource")) AND (
LIMIT-TO (SRCTYPE,"j") OR LIMIT-TO (SRCTYPE,"p")) AND (LIMIT-TO (
SUBJAREA,COMP) OR LIMIT-TO (SUBJAREA,ENGI) OR LIMIT-TO (SUBJAREA,MATH
)) AND (LIMIT-TO (PUBYEAR,2023) OR (LIMIT-TO (PUBYEAR,2022) OR

(LIMIT-TO (PUBYEAR,2021) OR LIMIT-TO (PUBYEAR,2020) OR LIMIT-TO (
PUBYEAR,2019) OR LIMIT-TO (PUBYEAR,2018) OR LIMIT-TO (PUBYEAR,2017) OR
LIMIT-TO (PUBYEAR,2016) OR LIMIT-TO (PUBYEAR,2015)) AND (LIMIT-TO (
LANGUAGE,English))

Here is some criteria when we search the relevant paper, the date of publishing is limited to 2015 to
2023.

3 Methodology

3.1 Machine Learning and Deep Learning

Machine learning is a field that addresses two fundamental questions: how to design computer sys-
tems that can improve automatically through experience, and what are the underlying statistical,
computational, and information-theoretic principles governing learning systems[I3]. The study of
machine learning has both theoretical and practical significance, as it provides insights into funda-
mental scientific and engineering questions and has resulted in the development of practical software
for various applications.

One of the most commonly used machine learning approaches is supervised learning, which involves
training models using labelled data to make predictions. Examples of supervised learning systems
include spam classifiers, face recognition systems, and medical diagnosis systems. In these systems,
the training data consists of pairs of input-output (x, y) examples, and the goal is to produce accurate
predictions (y*) in response to new input queries (x*).

On the other hand, unsupervised learning focuses on analyzing unlabeled data based on assumptions
about the underlying structural properties. This can involve techniques such as algebraic, combina-
torial, or probabilistic analysis of the data.

Deep learning (DL) has emerged as a powerful subset of machine learning that has revolutionized
various fields, including computer vision, natural language processing, and speech recognition. DL
has been actively utilized in many IoT applications in recent years[26]. DL has shown great poten-
tial in revolutionizing the Internet of Things (IoT) landscape by enabling intelligent and autonomous
systems. DL techniques can be effectively applied to IoT devices, which generate massive amounts
of data, to extract valuable insights, make real-time decisions, and enhance overall system perfor-
mance. DL algorithms, such as convolutional neural networks (CNNs) and recurrent neural net-
works (RNNs), can be deployed at the edge of the IoT network to process data locally, reducing
latency and bandwidth requirements. This enables tasks such as real-time object detection, anomaly
detection, predictive maintenance, and smart resource management. DL in IoT opens up opportuni-
ties for improved efficiency, reliability, and security, making it a promising technology for a wide
range of applications, including smart cities, healthcare monitoring, environmental monitoring, and
intelligent transportation systems.

3.2 Edge Computing

Edge computing is a paradigm change in which computer resources and data processing are moved
closer to the data source, i.e., "the edge" of the network, rather of depending on a centralized cloud-
based system. This architectural solution tackles numerous major issues that have arisen as a result
of the increasing development of 10T devices, including latency, bandwidth utilization, and privacy
[36].

Edge computing seeks to limit the quantity of data sent to the cloud for processing, analysis, and
storage. This is accomplished by processing the data directly on the IoT devices or on local edge
servers. Edge computing’s concentrated data processing is ideal for applications that require real-
time or near-real-time response, such as autonomous vehicles or remote health monitoring systems.
The incorporation of machine learning and deep learning into edge computing systems improves the
capabilities of IoT devices even further. For example, by placing ML/DL models on edge devices,

they can assess and act on data generated locally without requiring constant cloud access. By retain-
ing critical data on-device, this integration can increase system responsiveness, conserve bandwidth,
and improve privacy [&7].

However, applying ML/DL at the edge presents a number of issues. Because of the limited pro-
cessing capabilities on edge devices, running complicated and resource-intensive ML/DL models
on these devices may be impractical. Furthermore, due to the decentralized nature of edge com-
puting, effective solutions for distributed learning and model updates are required. Several works
have proposed solutions to these challenges. For instance, Kang et al [I6]. proposed Neurosurgeon,
a system that partitions DL inference between the cloud and edge, minimizing latency and energy
consumption. Similarly, Wang et al. introduced an adaptive learning system for edge computing,
which leverages reinforcement learning to optimize model partitioning between the edge and the
cloud [&1].

3.3 Internet of Things

The Internet of Things (IoT) is a paradigm for connecting billions of smart devices that can commu-
nicate with each other with minimal human intervention. Among the many industries where the IoT
has applications are smart cities, healthcare, and industry. However, there were some issues during
the development of the IoT, such as limited resources and computing power and the corresponding
security concerns [B]. Therefore, many loT-related tasks had been introduced to machine learning
and deep learning techniques, and the preliminary results are promising. For instance, to enhance
the power supply of smart grids, Li et al. built an IoT-based deep learning system that automatically
extracts features from captured data and eventually provides accurate estimates of future load values
[23]. Deep learning would be crucial to the development of IoT services in the future due to its high
efficiency in analyzing complex data with edge computing as mentioned in the earlier section, and
Alsheikh et al. suggest a framework that blends deep learning methods with Apache Spark. The
inference phase was carried out on a mobile device, while Apache Spark was set up on a cloud
server to enable data training. It is possible to offload processing activities from the cloud using this
two-tiered system, similar to edge computing [&].

Besides, due to its heterogeneous, dynamic, and distributed nature, the IoT also faces several security
issues. As a result, the security risk of IoT systems is higher than that of other computing systems.
Traditional security measures, such as encryption, authentication, and access control, are insufficient
to protect IoT systems from a variety of threats and attacks. Additionally, IoT solutions produce a
ton of useful data, serious privacy violations could happen if this data is not sent and evaluated in
a secure manner [B]. In order to improve network performance and safeguard user privacy when
uploading data, Li et al. introduced deep learning for IoT into the edge computing environment.
They also proposed algorithms to maximize the number of tasks in the edge computing environment
by taking into account the constrained service capacity of edge nodes [21]. Admittedly, smart cities
are composed of and built by various IoT devices, and the deployment of technologies, deep learning
and edge computing, can effectively help solve such problems and improve performance.

Application in Smart City

4 Healthcare and Well-being

Health and well-being are important aspects of smart city development, as smart cities aim to im-
prove citizens’ quality of life and health outcomes through the use of digital technology, data analyt-
ics and innovative solutions. Benefits include enhanced computational efficiency of medical sensors
for better body monitoring, optimal allocation of transmitted data volumes and computational re-
sources, and security of patient data. This section focuses on applications in this area.

At the initial stage, Chen et al. [T2] and O’Shea et al. [29] emphasised the importance of machine
learning and deep learning for disease prediction and accurate analysis of medical data for patient
care and community services. Recognising that this can help in disease prediction even in the pres-
ence of incomplete data, they proposed latent factor models to fill the gaps left by the data, as well as
CNN disease risk prediction models based on structured and unstructured real-world hospital data.
Deep learning can characterise images to compensate for the lack of machine learning algorithms
in this area and the occasional inaccuracy of mathematical models on real images. Also In terms of

Data
K Training Data

Test Data

Classifier C (machine learning)

N\ Predicted
Sensor|(
_ // value

Figure 1: General application process

energy saving, Bassoli et al. [[] also proposed an intelligent plug-and-play system based on Wi-Fi
connectivity that is suitable for body monitoring, which reduces the cost and difficulty of implemen-
tation by using an Internet connection based on a standard modem router and introduces a dedicated
operating cycle that can save up to 91% of energy.

Regarding sensor-based applications. The general process of the machine learning algorithm im-
plementation is shown in Figure [, after the data is trained in the classifier, the trained classifier
would assist the sensor in making appropriate judgments about the patient. Vippalapalli and Anan-
thula developed and implemented a prototype for a low-cost patient monitoring system based on a
Body Sensor Network (BSN), which uses lightweight wearable sensors and sensor nodes to collect
and analyse patient health data in real-time. These devices are designed to collect and share data,
facilitating data storage and analysis while increasing productivity, meanwhile, they introduced a
wearable device based on the Arduino Fio body sensor network platform for patient data collection,
integrated with LabVIEW software to enable remote monitoring capabilities [A0].

Nweke et al. [28] successfully analysed human physical activity and heart patterns using recursive
neural algorithms, convolutional neural algorithm analysis, and data-intensive analysis, enabling
sensitive body monitoring, but with problems related to high computational energy consumption
and high error rates. To address this issue more effectively, condition-based monitoring has been
implemented in multi-channel body monitoring systems [B]. This method would track a variety of
body signals to detect abnormal activity in organs and other regions of the body at an early stage.

However, in some circumstances, network congestion between devices can lead to problems with the
input and output of healthcare data and extra computation. Systems with IoT sensors provide health-
care data with much shorter response times and processing intervals to address network congestion
and other issues due to potential interruptions or discontinuities in data transmission from remote
physical monitoring systems [35]. Medical data privacy can also be compromised by interruptions
in remote data processing intervals and potentially discontinuous data transmission. These led the
researchers involved to introduce edge computing and in the early stages of applying this technology,
Kumar et al. [I9] suggested using an IoT protocol such as MQTT, deployed on medical endpoint
IoT devices, to collect data from the cloud and perform offload operations (i.e. there is an MQTT
client on the IoT device and an MQTT server on the edge device that can request other network ser-
vices from the cloud) while considering multiple IoT edge servers, their interactions, and endpoint
devices, which would be helpful to address the network latency caused by cloud computing.

With the development of methodology, Aazam et al. [I] provided various forms of intelligent and
opportunistic healthcare by leveraging machine learning-based approaches to edge computing, ap-
plying K-nearest neighbour, simple Bayesian and support vector classification algorithms to real-
world data tracking in healthcare and security scenarios, analysing indoor and live scenes, and im-
plementing machine learning-based task offloading for edge computing, as a result, this technique
improved efficiency and reduces the required computational resources. Besides, Manogaran et al.
[?5] designed and implemented wearable smart log patches with IoT sensors and deployed them in
a multi-channel body monitoring system. The system uses multimedia technology, edge computing,
agile learning, IoT sensors and real-time body data analysis. It also combines these technologies
with Bayesian networks to track users’ physical activity in real-time and process wearable IoT data.
Tests show that edge computing with EC Bayesian Neural Networks (EC-BNN) can infer and iden-

Coro Layer

]
Edgo Layer ‘Eb
S e :l%

ol /S8
e Ooodet 3

R
5

B S
e

Figure 2: (Source: J. Li et al., "A Secured Framework for SDN-Based Edge Computing in loT-
Enabled Healthcare System," in IEEE Access, vol. 8, pp. 135479-135490, 2020, doi: 10.1109/AC-
CESS.2020.3011503.)

tify collected human body data and classify health and physical activity data in a highly predictive
manner. Therefore, it could be applied to real medical analysis scenarios, with promising potential
for improvement. These applications were also very helpful during the COVID-19 period, Lydia et
al. [20] implemented a federated deep learning-based FDL-COVID detection model running on an
IoT edge computing platform. The SqueezeNet model is used to create DL models from patient data
captured by IoT devices, and servers use encrypted variables obtained from IoT devices to create the
final global cloud model. And, Kong et al. [['/] proposed an edge computing-based mask (ECMask)
identification framework to support public health prevention and ensured the real-time functionality
of low-power camera devices.

Rajavel et al. [B1]] proposed a cloud-based intelligent medical object tracking and behaviour recogni-
tion system (COTBIS) with a framework that combines moving object combination using improved
background subtraction and deep CNN algorithms, abnormal fall activity monitoring detection and
classification using hierarchical voting, and edge computing capabilities at the gateway level. This
minimized network traffic and response times while increasing the accuracy of fall behaviour pre-
diction. In terms of security, Li et al. [22] proposed a software-defined network (SDN) security
framework for edge computing in healthcare systems. Patient data would be sent to the edge server
for storage, processing and analysis after IoT devices are authenticated by it using a lightweight
authentication scheme. SDN-based edge computing can then perform better load balancing, net-
work optimisation and efficient resource utilisation through optimised network configuration. The
framework of SDN-based Edge Computing is shown in Figure D.

S Intelligent Transportation System

5.1 Route Planning Algorithms

Route planning is important in the context of intelligent transportation systems. The demand for
effective, affordable, and ecological transportation options is greater than ever as urban populations
rise and automobile use rises. Choosing the most effective route for a trip is a process known as
route optimization, and it is without a doubt the hottest topic in modern intelligent transportation.
Along with convenience, it has an impact on a number of social factors, such as lowering fuel usage,
lowering carbon emissions, and enhancing overall transportation effectiveness. Delivery firms can
guarantee timely and economical deliveries with the aid of smart route optimization, emergency
services can reach their locations more quickly, and commuters may cut down on travel time and
enhance their travel experience.

In terms of algorithms, we can use this model to think about urban traffic network: the overall urban
traffic network consists of countless nodes and edges, where intersections are equivalent to nodes
and the roads connected between intersections form edges. Traditional graph algorithms such as
Dijkstra’s algorithm can calculate the shortest path based on the weight of each edge [34], however,
the real-world traffic network is not static, such as there are special circumstances such as road
construction and destruction, traffic control, etc. In addition, there are other factors such as user
preferences, for example, some users tend to spend more time to go farther to bypass the weak

safety control in the city, and there are other factors such as traffic costs, etc. The application of
traditional algorithms in multi-factor dynamic traffic networks is extremely limited.

Traffic forecasting has frequently employed supervised learning. For example, regression models
have been used to forecast journey times, and classification models can be used to foretell whether
a route would be congested or free-flowing. Pfeiffer, Mark, et al. [B0] proposed supervised learn-
ing approach uses CNN to analyze and process the laser information collected by sensor devices,
and uses the classical A* algorithm as the training marker information. Nevertheless, despite Su-
pervised Learning’s success in these fields, it still faces substantial obstacles in its application to
dynamic route optimization. For example, the approach mentioned above relies strongly on the tag-
ging algorithm. In essence, Supervised Learning mainly relies on fixed labels and past data to train
the model. This is a drawback in dynamic traffic settings when conditions are ever-changing and
past patterns might not be a reliable indicator of present ones. Furthermore, Supervised Learning is
unable to draw lessons from novel circumstances that did not exist in the training data.

This is where Reinforcement Learning (RL) comes in. RL is a subset of Machine Learning that en-
ables learning from the results of decisions rather than relying exclusively on past data [B7]. Route
planning is a standard MDP(markov decision processes) problem [3Y] in the context of reinforce-
ment learning scenarios, using value iteration methods [BS] to derive mapping information between
all location states and specific action decisions. In this way, the next movement path can be quickly
determined regardless of the current location in the traffic network. An RL agent can continually
interact with the dynamic traffic environment, make decisions, and learn from the rewards or pun-
ishments it receives in the context of route optimization. The use of RL for route optimization offers
a possible countermeasure to the drawbacks of supervised learning. RL can adapt to new circum-
stances that weren’t present in the training data, unlike supervised learning. This is particularly
useful in situations with dynamic traffic, when unforeseen occurrences like accidents, construction
zones, or abrupt changes in the weather are possible. Although RL offers these important benefits, it
is not without difficulties. In order to learn properly, RL often necessitates several interactions with
the environment, which can be time-consuming and computationally costly.

5.2 System Architecture

Intelligent Transportation Systems (ITS)’s (ML) and Deep Learning (DL) models must be deployed
and used in a way that is compatible with the underlying software architecture for them to be ef-
fective. Frameworks for data processing and storage that are reliable and scalable are required due
to the complexity and volume of data’s growth. Distributed computing platforms like Hadoop’s
Hadoop Distributed File System (HDFS) and Apache Spark stand out as crucial technologies in this
setting.

Massive volumes of data collected from numerous sources, including sensors, GPS systems, traffic
cameras, and linked vehicles, are stored using HDFS, which is essential to ITS. Due to HDFS’s
distributed architecture, it can store and retrieve huge data sets over numerous nodes while yet
maintaining data availability and fault tolerance. This is especially important in ITS, where data
loss can result in serious operational inefficiencies [9]. Apache Spark, on the other hand, provides an
efficient distributed processing solution for data analysis and ML/DL model training on large-scale
data stored in HDFS. In the context of ITS, Spark can help to speed up activities like traffic pattern
analysis, congestion prediction, and route optimization by allowing for fast, distributed processing
of big datasets and efficient training and deployment of ML/DL models. Spark’s MLIib, for example,
may be used to train a deep learning model on a huge corpus of traffic data stored in HDFS, allowing
the system to forecast future traffic conditions and optimize traffic flow [43]. Furthermore, for real-
time traffic management, these tools can be integrated with real-time data processing frameworks
such as Apache Kafka and Apache Flink. Kafka can receive real-time data from various traffic
sensors and devices, which Flink can then use for real-time analytics and ML/DL model inference.
For example, on Flink, a machine learning model can be implemented to analyze real-time data from
Kafka, detecting possible issues or congestions and delivering rapid input to the traffic management
system [[[R].

To summarize, the utilization of distributed storage and processing technologies such as HDFS and
Spark, as well as real-time data processing systems like as Kafka and Flink, enables ITS to manage
massive volumes of data and deploy ML/DL models for both historical data analysis and real-time

decision-making. This combination of big data technology and machine learning/deep learning
models provides the door for more intelligent, efficient, and responsive transportation systems.

6 Urban Planning and Resource Optimization

6.1 Land Use Planning

Land use planning is an important urban planning activity that aims to rationalize different uses of
land for sustainable urban development and optimal spatial utilization. Through land use planning,
urban planners and policy makers can determine the best use of land, including residential, com-
mercial, industrial, agricultural, and nature conservation areas, to meet people’s needs for housing,
employment, transportation, and greenery.

Land use planning takes into account several factors, including population growth trends, economic
development needs, environmental protection, and social equity. By analyzing and evaluating the
city’s existing land resources, land use, citizens’ needs and future development trends, appropriate
planning strategies and goals are formulated to guide the development and use of land.

Advanced technologies such as machine learning and deep learning are increasingly being applied
in the land use planning process. These technologies are able to process and analyze large amounts
of geographic data, remotely sensed imagery, and spatial information to provide more accurate land
use classification and change simulation predictions. Machine learning algorithms such as support
vector machines and random forests are able to classify and predict based on known land use sam-
ples, helping planners understand the characteristics and trends of different land types. In contrast,
deep learning methods such as convolutional neural networks are able to learn and extract complex
features of land use from large-scale data, providing more comprehensive information for planning
decisions.

Support Vector Machine (SVM) is a machine learning algorithm widely used for land use classifica-
tion. It is designed to handle high-dimensional data and nonlinear relationships to classify different
classes of land use by constructing a separating hyperplane in the feature space.

The basic idea of SVM is to find an optimal hyperplane that correctly separates the different classes
of land use samples. The selection of the hyperplane is based on the attributes of the training samples
and their distribution in the feature space. Specifically, SVM determines the optimal hyperplane by
maximizing the spacing between the data points and the decision boundary, which is called the
maximum spacing method[I{].

In conclusion, the support vector machine is a powerful machine learning algorithm that plays an
important role in land use planning. It can effectively handle high-dimensional data and nonlinear
relationships, and improve the accuracy of classification by controlling the overfitting problem. By
applying SVM, land use identification, classification and prediction can be achieved, providing an
effective tool and method for land use planning.

The performance of the Random Forest (RF) algorithm was evaluated in a study on land use classifi-
cation in the province of Granada, Southern Spain, using multitemporal Landsat-5 thematic mapper
data (Rodriguez-Galiano et al,2012) . The study compared the performance of RF with conven-
tional classification trees (CT) and concluded that RF provided more significant differentiation of
land cover categories.

Another study adopted a hybrid approach for land use classification, combining the object-oriented
method with deep Convolutional Neural Network (CNN) known as COCNN. The object-oriented
method was utilized to construct a multiscale sample set, providing high precision training data.
Remote sensing images covering an area around Fuxian Lake were used to classify ten land use

types.

In the modified approach, convolution kernels, which directly extract low-level features from the
original image, were considered the most sensitive element of the CNN. The results of the hybrid
approach were compared with those obtained from a standalone CNN, and it was observed that
the modified approach yielded improved results. The paper concluded that the choice of kernel
size played a crucial role in the outcome, and a kernel size of 3x3 was used for the object-oriented
training sets[T0].

Deep learning methods, such as Convolutional Neural Network (CNN) and Artificial Neural Net-
work (ANN), also have important applications in land use planning. Deep learning methods per-
form feature learning and representation learning through a multilayer neural network structure, and
are capable of handling large-scale geographic and image data. For example, in land use classifica-
tion tasks, CNNs can extract spatial and texture features from satellite images to achieve accurate
classification of different land use types.

Water resource management is a notoriously difficult problem, mainly because of the uncertainty
regarding inflows to the system, thereby making inevitable the probabilistic approach, which accord-
ingly sets a framework of policy decisions related to the acceptable risk of failure[33].

6.2 Water Resources Management

Machine learning can be used for prediction and optimization of water resources systems. By ana-
lyzing and learning from historical data, machine learning models can predict trends and probability
distributions of future hydrologic variables (e.g., rainfall, water levels, runoff, etc.). This provides
important information for water resources planning and decision making. In addition, machine
learning can help determine the best water resource allocation and utilization options through opti-
mization algorithms to improve water resource utilization efficiency and system performance[I4].

Plus, these techniques can be applied to decision support systems in water resources management.
By building sophisticated machine learning models and algorithms, water resources systems can be
simulated and optimized to support decision makers in making informed decisions. These decisions
may involve reservoir scheduling, water allocation, irrigation management, etc. Machine learning
models can consider multiple factors and constraints to provide feasible solutions and decision rec-
ommendations.

In addition, for anomaly detection, and troubleshooting in water resources management. By monitor-
ing the operational data of water resources systems, machine learning models can identify abnormal
events and faults and provide real-time alerts and recommendations. This helps to take timely action
to respond to problems and ensure the stable operation of water resources systems.

However, there are some challenges because of the edge computing combining with the machine
learning and deep learning.

1.Data quality and availability: there are often problems with missing, incomplete or inaccurate
data. This can affect the accuracy and reliability of machine learning and deep learning algorithms.
Ensuring the quality and availability of data is therefore an important challenge.

2.Data privacy and security: Smart cities involve a large amount of data collection and sharing.
These data often contain personal privacy and sensitive information. Therefore, ensuring data pri-
vacy and security when processing such data using machine learning and deep learning algorithms is
an important challenge. Appropriate data protection and security measures must be taken to prevent
data leakage and misuse.

3.Algorithmic and computational resource limitations: Therefore, computational resource limita-
tions need to be addressed when applying these algorithms in smart cities. It may be necessary
to optimize the algorithms, use distributed computing, or select appropriate hardware to overcome
these limitations.

4 Interpretability and transparency: Machine learning and deep learning algorithms are often pre-
sented in a black box format, making it difficult to explain their decision processes. Transparency
and interpretability are crucial so that decision makers can understand the basis of the algorithms’ de-
cisions. Therefore, improving the interpretability of machine learning and deep learning algorithms
is a challenge[TT].

7 Discussion

Edge computing allows data to be processed closer to its source, reducing latency and bandwidth
consumption, while leveraging machine learning and deep learning to solve as many challenges as
possible in Smart City applications. Specifically, the heterogeneity of edge devices, data security
and privacy, the scalability and reliability of edge networks, and the complexity and efficiency of

machine learning and deep learning models are some of the challenges and limitations that need to
be further overcome [8], and while these issues have been addressed upfront to the extent possible,
there is still room for improvement, some efforts made are shown below.

- Develop distributed, adaptive machine learning and deep learning algorithms that can operate on a
variety of heterogeneous edge devices with limited hardware and software. Luo et al. [?4] proposed
the ProbComp-LPAC algorithm to implement probabilistic compression and adaptive compression
of layer parameters to reduce communication costs and increase the training efficiency of distributed
deep learning. The algorithm uses probabilistic equations to select gradients. It uses different com-
pression rates in different layers of the deep neural network, resulting in state-of-the-art performance
compared to other approaches in the same time frame.

- Implement security and privacy mechanisms to protect against unauthorised access and manipu-
lation of data and models at the edge. The Multi-Access Edge Computing (MEC) paradigm was
previously introduced by the European Telecommunications Standards Institute to enable efficient
and fast data processing in mobile networks. Ranaweera [37] examined the security and privacy
vulnerabilities of MEC systems and the threats they pose. They also identified and investigated the
threat vectors, proposed potential security solutions and focused on the privacy concerns of MEC
systems.

- Improve resource allocation, fault tolerance, load balancing and network slicing capabilities of edge
networks to improve their scalability and reliability. And use methods such as model compression,
pruning, quantization and refinement to optimize the complexity and effectiveness of machine learn-
ing and deep learning models. There are already some applications using federated learning, which
improves the security of IoT applications at the edge, but how to deal with the communication load
it imposes is an issue that needs to be further explored in the future [[].

Also, we found there were some research and work based on fog computing [27]. Fog computing
works by inserting a processing layer between the edge device and the cloud, filtering out unnec-
essary data and sending only relevant data to the cloud for further processing or storage. It can
offer advantages over edge computing in terms of scalability, security and reliability, and can handle
large amounts of data from multiple sources, providing backup and recovery options in the event of
network failure [[3]. However, edge computing offers lower latency and lower network bandwidth
consumption by bringing computing closer to the data source. Overall, the decision between fog
and edge computing is influenced by a number of variables, including the depth of the deep learning
model, the volume of data to be processed, the computing capabilities of the device, and the required
response time.

8 Conclusions

We delved into the nuanced applications of machine learning and deep learning within the ambit of
smart cities. We particularly emphasized their interplay with the Internet of Things (IoT) and edge
computing. This investigation allowed us to appreciate how these advanced technologies drive the
smart city revolution, enabling us to address pressing urban challenges with data-driven insights and
automated solutions.

Machine learning and deep learning, we discovered, serve as potent solutions to numerous urban
dilemmas, including traffic congestion, energy efficiency, and waste management. When coupled
with IoT and edge computing, they form a formidable alliance that powers innovative solutions,
elevating urban efficiency, sustainability, and the overall quality of life. We further expanded on
real-world implementations of these technologies, providing tangible examples such as health care
and well-being, intelligent transportation systems and efficient resource management.

Our literature review highlights the critical significance of machine learning and deep learning in
shaping smart city architecture. These aren’t just tools; they’re the engines that are transforming
cities into technologically advanced, data-driven, and responsive ecosystems. As we continue to
harness and enhance these technologies, the future of smart cities holds limitless possibilities. An-
ticipating these future advancements excites us and motivates us to continue exploring, trying, and
developing.

References

(1]

(2]

(3]

[4

—

(5

—

[6

—_

[7

—

[8

—_—

[9

—

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(7]

(18]

[19]

(20]

Mohammad Aazam, Sherali Zeadally, and Eduardo Feo Flushing. Task offloading in edge computing for
machine learning-based smart healthcare. Computer Networks, 191:108019, 2021.

Haftay Gebreslasie Abreha, Mohammad Hayajneh, and Mohamed Adel Serhani. Federated learning in
edge computing: a systematic survey. Sensors, 22(2):450, 2022.

Mohammed Ali Al-Garadi, Amr Mohamed, Abdulla Khalid Al-Ali, Xiaojiang Du, Ihsan Ali, and Mohsen
Guizani. A survey of machine and deep learning methods for internet of things (iot) security. [EEE
Communications Surveys & Tutorials, 22(3):1646-1685, 2020.

Mohammad Abu Alsheikh, Dusit Niyato, Shaowei Lin, Hwee-Pink Tan, and Zhu Han. Mobile big data
analytics using deep learning and apache spark. IEEE network, 30(3):22-29, 2016.

Hamidreza Arasteh, Vahid Hosseinnezhad, Vincenzo Loia, Aurelio Tommasetti, Orlando Troisi, Miadreza
Shafie-khah, and Pierluigi Siano. Iot-based smart cities: A survey. In 2016 IEEE 16th international
conference on environment and electrical engineering (EEEIC), pages 1-6. IEEE, 2016.

Yuequan Bao, Zhiyi Tang, Hui Li, and Yufeng Zhang. Computer vision and deep learning—based data
anomaly detection method for structural health monitoring. Structural Health Monitoring, 18(2):401—
421, 2019.

Marco Bassoli, Valentina Bianchi, and Ilaria De Munari. A plug and play iot wi-fi smart home system for
human monitoring. Electronics, 7(9):200, 2018.

Pierfrancesco Bellini, Paolo Nesi, and Gianni Pantaleo. Iot-enabled smart cities: A review of concepts,
frameworks and key technologies. Applied Sciences, 12(3):1607, 2022.

Dhruba Borthakur. The hadoop distributed file system: Architecture and design. Hadoop Project Website,
11(2007):21, 2007.

Vineet Chaturvedi and Walter T de Vries. Machine learning algorithms for urban land use planning: A
review. Urban Science, 5(3):68, 2021.

Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review. Proceedings of the IEEE,
107(8):1655-1674, 2019.

Min Chen, Yixue Hao, Kai Hwang, Lu Wang, and Lin Wang. Disease prediction by machine learning
over big data from healthcare communities. leee Access, 5:8869-8879, 2017.

Koustabh Dolui and Soumya Kanti Datta. Comparison of edge computing implementations: Fog comput-
ing, cloudlet and mobile edge computing. In 2017 Global Internet of Things Summit (GloTS), pages 1-6.
IEEE, 2017.

Jeffery S Horsburgh, David G Tarboton, David R Maidment, and Ilya Zaslavsky. A relational model for
environmental and water resources data. Water Resources Research, 44(5), 2008.

Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and prospects. Science,
349(6245):255-260, 2015.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang.
Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM SIGARCH Computer
Architecture News, 45(1):615-629, 2017.

Xiangjie Kong, Kailai Wang, Shupeng Wang, Xiaojie Wang, Xin Jiang, Yi Guo, Guojiang Shen, Xin Chen,
and Qichao Ni. Real-time mask identification for covid-19: An edge-computing-based deep learning
framework. IEEE Internet of Things Journal, 8(21):15929-15938, 2021.

Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system for log processing. In
Proceedings of the NetDB, volume 11, pages 1-7. Athens, Greece, 2011.

S Mohan Kumar and Darpan Majumder. Healthcare solution based on machine learning applications in
iot and edge computing. International Journal of Pure and Applied Mathematics, 119(16):1473-1484,
2018.

E Laxmi Lydia, CSS Anupama, A Beno, Mohamed Elhoseny, Mohammad Dahman Alshehri, and Mah-
moud M Selim. Cognitive computing-based covid-19 detection on internet of things-enabled edge com-
puting environment. Soft Computing, pages 1-12, 2021.

10

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]
(38]

[39]

(40]

He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in edge: Deep learning for the internet of things
with edge computing. IEEE network, 32(1):96-101, 2018.

Junxia Li, Jinjin Cai, Fazlullah Khan, Ateeq Ur Rehman, Venki Balasubramaniam, Jiangfeng Sun, and
P. Venu. A secured framework for sdn-based edge computing in iot-enabled healthcare system. [EEE
Access, 8:135479-135490, 2020.

Liangzhi Li, Kaoru Ota, and Mianxiong Dong. When weather matters: Iot-based electrical load forecast-
ing for smart grid. IEEE Communications Magazine, 55(10):46-51, 2017.

Peng Luo, F. Richard Yu, Jianyong Chen, Jianqiang Li, and Victor C. M. Leung. A novel adaptive gradient
compression scheme: Reducing the communication overhead for distributed deep learning in the internet
of things. IEEE Internet of Things Journal, 8(14):11476-11486, 2021.

Gunasekaran Manogaran, P Mohamed Shakeel, Hassan Fouad, Yunyoung Nam, S Baskar, Naveen Chil-
amkurti, and Revathi Sundarasekar. Wearable iot smart-log patch: An edge computing-based bayesian
deep learning network system for multi access physical monitoring system. Sensors, 19(13):3030, 2019.

Mehdi Mohammadi, Ala Al-Fugqaha, Sameh Sorour, and Mohsen Guizani. Deep learning for iot big data
and streaming analytics: A survey. IEEE Communications Surveys & Tutorials, 20(4):2923-2960, 2018.

Ammar Awad Mutlag, Mohd Khanapi Abd Ghani, Net al Arunkumar, Mazin Abed Mohammed, and
Othman Mohd. Enabling technologies for fog computing in healthcare iot systems. Future Generation
Computer Systems, 90:62-78, 2019.

Henry Friday Nweke, Ying Wah Teh, Ghulam Mujtaba, and Mohammed Ali Al-Garadi. Data fusion and
multiple classifier systems for human activity detection and health monitoring: Review and open research
directions. Information Fusion, 46:147-170, 2019.

Timothy Oshea and Jakob Hoydis. An introduction to deep learning for the physical layer. IEEE Trans-
actions on Cognitive Communications and Networking, 3(4):563-575, 2017.

Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and Cesar Cadena. From perception to
decision: A data-driven approach to end-to-end motion planning for autonomous ground robots. In 2017
ieee international conference on robotics and automation (icra), pages 1527-1533. IEEE, 2017.

Rajkumar Rajavel, Sathish Kumar Ravichandran, Karthikeyan Harimoorthy, Partheeban Nagappan, and
Kanagachidambaresan Ramasubramanian Gobichettipalayam. Iot-based smart healthcare video surveil-
lance system using edge computing. Journal of Ambient Intelligence and Humanized Computing, pages
1-13, 2022.

Pasika Ranaweera, Anca Delia Jurcut, and Madhusanka Liyanage. Survey on multi-access edge comput-
ing security and privacy. IEEE Communications Surveys Tutorials, 23(2):1078-1124, 2021.

Evangelos Rozos. Machine learning, urban water resources management and operating policy. Resources,
8(4):173, 2019.

Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. ACM J. Exp. Algorithmics, 5:12es, dec 2001.

P Mohamed Shakeel and Gunasekaran Manogaran. Prostate cancer classification from prostate biomed-
ical data using ant rough set algorithm with radial trained extreme learning neural network. Health and
Technology, 10:157-165, 2020.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing: Vision and challenges.
IEEE internet of things journal, 3(5):637-646, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks. Ad-
vances in neural information processing systems, 29, 2016.

Martijn Van Otterlo and Marco Wiering. Reinforcement learning and markov decision processes. Rein-
forcement learning: State-of-the-art, pages 3—42, 2012.

Vikas Vippalapalli and Snigdha Ananthula. Internet of things (iot) based smart health care system. In

2016 International Conference on Signal Processing, Communication, Power and Embedded System
(SCOPES), pages 1229-1233, 2016.

11

[41] Shuo Wang, Xing Zhang, Yan Zhang, Lin Wang, Juwo Yang, and Wenbo Wang. A survey on mobile edge
networks: Convergence of computing, caching and communications. leee Access, 5:6757-6779, 2017.

[42] Shanhe Yi, Zhengrui Qin, and Qun Li. Security and privacy issues of fog computing: A survey. In Wireless
Algorithms, Systems, and Applications: 10th International Conference, WASA 2015, Qufu, China, August
10-12, 2015, Proceedings 10, pages 685—695. Springer, 2015.

[43] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui
Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin, et al. Apache spark: a unified engine
for big data processing. Communications of the ACM, 59(11):56-65, 2016.

12

What are the emerging technologies being adopted in
cloud computing to address the privacy and data
protection requirements for the GDPR-specific
challenges?

Group 21

Abstract

This literature research explores the challenges of GDPR compliance in cloud
computing and investigates technologies and techniques to address them. It focuses
on data retention, data portability, and visibility of metadata and data minimiza-
tion. This research discusses approaches such as data classification, encryption,
interoperability standards, and data anonymization. It highlights the importance of
GDPR compliance for cloud service providers and offers insights into existing and
emerging solutions. Overall, it provides valuable guidance for organizations aiming
to protect personal data in the cloud while adhering to GDPR requirements.

1 Introduction

In recent decades, cloud services are getting popular deployment in various business sectors which
also led to data leaks and privacy issues. The previous research of Arcserve [3] stated that there are
seven infamous cloud security breaches. To name a few, 530 million Facebook users’ personal data
were breached around August 2019, in November of 2019 1.1 billion user data from Alibaba were
illegally scraped, and in 2021 LinkedIn also fell victim to the data breach. As the cases show, this
issue is not only bounded to small firms but also to large tech companies.

GDPR compliance data protection in the cloud is an extensive research field with various protection
layers to be considered, Takabi et al. [20]. As a result, it is difficult to derive a single solution that
fulfills all the requirements of the GDPR. In a previous study, regarding the GDPR impact on cloud
computing, conducted by Tolsma [21]], nine main GDPR-specific challenges were proposed. The
first challenge is implementing retention effectively in the cloud which comprises identifying and
managing multi-jurisdictional retention requirements, securing backup, and managing data deletion.
Second, data portability for the controller denotes the technical ability to ensure the data subject
rights. Third, the visibility and minimization of metadata illustrate control on intended use/access and
level of protection on the metadata. The remaining six challenges are, namely, response to the breach,
strategy to process personal data outside of the European Economic Area, risk management of the
cloud provider, monitoring architecture of the cloud provider’s system to be alerted of changes and
updates of the system, assessment of IT security requirements, and control over the data ownership.

In this paper review, we will concentrate on how existing or emerging technologies and data
protection techniques can adhere to the three GDPR-specific challenges: implementing retention
effectively in the cloud, data portability for the controller, and visibility regarding metadata and data
minimization. Section 2 will be dedicated to the inspection of prior research that introduced possible
techniques that deal with the proposed three challenges and the weaknesses of the proposed solution.
We will explore solutions to the challenges starting from retention implementation in the cloud
followed by data portability, and visibility and minimization of metadata. In Section 3, a general
conclusion of our review will be provided with future research directions in terms of GDPR-specific
data protection in the cloud.

—
@

2 Three GDPR-specific challenges

In this section, we will delve into how existing data protection technologies can solve or comply with
the three GDPR-specific challenges in cloud computing: implementing retention effectively in the
cloud, data portability for the controller, and visibility regarding metadata and Data Minimization.
Furthermore, we will highlight the strengths and weaknesses of these underlying protection solutions.

2.1 Implementing retention effectively in the cloud

Under the GDPR, personal data should not be stored for longer than necessary for the intended
purpose, stated by Politou et al. [16]]. This requires implementing retention periods and effectively
deleting data when those retention periods expire, according to Rhahla et al. [[18]]. However, managing
retention and the deletion of data becomes challenging due to data being stored across multiple
locations and jurisdictions by cloud service providers. Additionally, deleting data completely involves
considering backups, which makes the process even more complex. Therefore, it is crucial to have a
clear understanding of how cloud service providers secure backups and manage data retention. To
ensure compliance with GDPR privacy and data protection requirements, emerging technologies and
practices in cloud computing are being adopted to address the challenge of effective data retention in
the cloud. These approaches aim to manage retention periods, facilitate data deletion, and handle
multi-jurisdictional retention requirements.

Approaches for retention challenges

Data Classification and Tagging: Cloud service providers use data classification and tagging to
organize and label data based on its sensitivity, purpose, and retention requirements which helps
organizations manage and track data in the cloud as stated by, Politou et al. [15]. Abiteboul and
Stoyanovich [[1], argue that by categorizing data and assigning specific tags (tagging), organizations
can improve their management regarding retaining and deleting data, ensuring compliance with the
regulations of GDPR.

Wang and Shah [23], shows that a specific technology in the field of classification and data tagging
for data retention is the use of metadata-based tagging systems. These systems use metadata, such as
data attributes, labels, or keywords, to categorize and tag data based on its sensitivity, purpose, and
retention requirements. According to Politou et al. [15]], by implementing metadata-driven tagging
mechanisms, organizations can manage and track data, and therefore be able to ensure compliance
with GDPR’s privacy and data protection requirements.

Encryption and Tokenization: Cloud providers are using encryption and tokenization techniques
to improve data security and privacy. These technologies can help protect data while being stored and
transferred, ensuring that even if data is retained for longer periods, it remains secure and unreadable
by unauthorized parties, as stated by Rhahla et al. [[18]]

An emerging technology in the field of encryption and tokenization is Differential Privacy. Differential
Privacy is a technique that adds random or noisy data to datasets to protect the privacy of individuals,
according to Holzel [9]]. It helps ensure that personal information stays private while still allowing for
insights to be drawn from the combined data. Because of the randomness, it becomes more difficult
to identify specific individuals within the dataset, thus ensuring their privacy, as shown by Holzel
[9]. Differential Privacy is gaining attention and being explored as a promising approach to address
privacy concerns and comply with GDPR’s privacy and data protection requirements.

Data Lifecycle Management: Cloud platforms include Data Lifecycle Management (DLM) features
for better data control. This includes automated data expiration, options for long-term storage, and
policy-driven data deletion. These capabilities help organizations in complying with retention periods
and effectively manage data, even across multiple jurisdictions, as proposed by Rahul and Banyal
[17].

DLM plays a necessary role in the compliance of GDPR requirements regarding data retention.
According to Rahul and Banyal [17] it enables organizations to set up and enforce retention periods for
personal data, ensuring that data is not stored longer than necessary. By implementing DLM features,
organizations can manage data throughout its lifecycle, which includes correct archival and deletion
when retention periods expire. This helps organizations meet GDPR’s data retention obligations,
protect individuals’ privacy rights, and demonstrate compliance with regulatory requirements.

Geographically Distributed Data Storage: Cloud service providers (CSP) are offering options
for geographically distributed data storage. According to Zhou et al. [27]], CSPs allow organizations
to choose data centers located in specific regions where their data will be stored. This ensures that
data is kept within the desired jurisdiction and complies with local data protection laws. Based on
Vogt et al. [22], cloud providers have multiple data centers within a region, known as availability
zones. Organizations can select specific availability zones to store their data and ensure services
and data remain accessible even if one zone experiences issues. It improves reliability and provides
compliance with multi-jurisdictional retention requirements. As mentioned in Abualkishik et al.
[2]], cloud providers offer replication services that automatically duplicate data across different
regions. This helps organizations meet compliance requirements by ensuring data is stored in multiple
locations and facilitating disaster recovery. Cloud providers offer data sovereignty options that
allow organizations to store data exclusively within a specific country or region. This helps ensure
compliance with local data protection and privacy laws, as mentioned in Kushwaha et al. [11].

Transparent Data Deletion Processes: Based on Abiteboul and Stoyanovich [1]], cloud providers
are creating clear and open procedures for deleting data, giving organizations and individuals a better
understanding of how data is removed and how backups are managed. This involves establishing
guidelines for data deletion, keeping track of actions taken in this process through audit trails, and
offering tools or interfaces that allow users to request data deletion.

To ensure accountability, transparency, and the ability to track and verify data processing. ledgers,
distributed ledger technology, can be used and refers to a transparent and unchangeable record that
documents all data transactions and activities related to data processing, as mentioned in Bonatti et al.
[S] and Kuperberg [10]. As stated by Bonatti et al. [3]], it serves as a broad log of who shared data,
with whom, and for what purpose. The ledger captures important information such as data collection,
storage, processing, transmission, and any other relevant operations. It enables individuals, to have
insights into how their data is being handled and allows companies to be and show their compliance
with GDPR regulations, according to Kuperberg [10].

2.2 Data portability for the controller

Several cutting-edge techniques and technologies have been used to fulfill the General Data Protection
Regulation’s (GDPR) requirement for data portability in the context of cloud computing. With these
developments, personal data can be seamlessly transferred between different cloud service providers
or controllers while maintaining privacy and data protection. Here are a few crucial strategies being
used:

Interoperability Standards: Data portability is made easier by the creation and application of
interoperability standards, which make it possible for data to be seamlessly transferred between
various cloud platforms. In order to extract and transport personal data in a consistent manner,
controllers might use these standards, which define common data formats, protocols, and interfaces.
For example XML and JSON formats. XML (Extensible Markup Language) and JSON (JavaScript
Object Notation) are widely used formats for structured data. They provide a common syntax and
structure that can be understood by different systems and programming languages. XML has been a
longstanding standard, while JSON has gained popularity due to its simplicity and compatibility with
JavaScript-based applications according to De Hert et al. [7]]. A weakness of this technique is that
not all systems or platforms may fully adhere to the same interoperability standards. So in essence
this method can only work perfectly if all data controllers are on the same page when it comes to
interoperability standards. A slight variation in the interpretation of standards could hinder seamless
integration and data exchange between different systems.

Application Programming Interfaces(APIs): More and more cloud service providers are providing
APIs that let controllers access and retrieve personal data from their platforms using programming.
These APIs offer a safe and consistent mechanism to retrieve data, enabling controllers to quickly

satisfy data portability needs according to Petcu [14]. An example of such a technology is the
RESTful API. RESTful APIs provide a standardized and lightweight approach to building APIs
that can be easily consumed by different systems and programming languages. They typically use
common HTTP methods (such as GET, POST, PUT, and DELETE) for data retrieval, creation,
updating, and deletion. A flaw of this approach is that APIs may change over time, introducing
compatibility issues or requiring periodic modifications. Developers need to stay up-to-date with API
changes and plan for potential disruptions during upgrades or API deprecations. Developers need to
also be aware of unauthorized access, injection attacks, or exposure of sensitive data that can occur if
API security measures are not implemented effectively.

Containerization and Virtualization: Applications and their dependencies can be encapsulated
using virtualization techniques and containerization technologies like Docker and Kubernetes, making
them portable across various cloud environments by Pahl [13]]. These technologies enable controllers
to bundle their applications and related data, facilitating data portability and facilitating easier
migration between cloud providers. A downside of this technology is the performance overhead that
can occur from the additional layers of abstraction that containerization and virtualization introduce.
Running applications directly on bare-metal infrastructure can be more efficient.

kubernetes

APP
‘ { LIBRARIES ‘ _[APP
OPERATING SYSTEM LIBRARIES
Virtual machine Docker container

Hypervisor %’docker %docker

E— R —
s e
U-'docker Wdocker

Virtualized deployment Container deployment Kubernetes deployment

Figure 1: Containerization using Docker and Kubernetes.

Data Minimization and Anonymization: Cloud service providers are implementing techniques like
data minimization and anonymization in order to reduce the hazards connected with data portability.
Data minimization entails storing or processing less personal data and decreasing the amount of data
that must be transferred. Anonymization techniques reduce privacy risks throughout the portability
process by converting personal data into a format that prevents individual identification.

Secure Data Transfer Mechanisms: Strong authentication systems, reliable encryption techniques,
and secure data transfer channels are essential elements for assuring the secure transfer of personal
data during the portability process. multiple encryption techniques and secure communication
protocols, such as Transport Layer Security (TLS), are used by cloud service providers to protect
data when it is being transferred between multiple cloud environments.

These technologies not only fulfill the GDPR requirements but also mitigate the risk of vendor lock-in.
Vendor lock-in is when customers are so dependent on a cloud service provider that migrating to
other cloud providers becomes almost impossible as stated by Armbrust et al. [4]]. The obstacles that
customers face are often significant expenses, restrictions from the law, or technical incompatibility.
The findings of Opara-Martins et al. [12] highlight the significance of interoperability, portability,
and adherence to standards in the realm of cloud computing.

GDPR PERSONAL DATA

The EU's General Data Protection Regulation defines personal data as any information
related to a person that can be used to directly or indirectly identify them, including:

Location data._.""

Online identifiers @
(including an :
1P address) :

® Economic, cultural
. or social identity
of a person

An identification ®
number

Figure 2: Personal Data defined by the GDPR.

2.3 Visibility regarding metadata and data minimization

According to Tolsma [21]], the challenge of visibility and minimization of metadata encapsulate
intended use and access rights, and the protection level afforded to metadata. In a nutshell, this boils
down to data protection of metadata itself and access control as the mean of data protection. We
have evaluated the data protection technologies with the CIA triad which stands for confidentiality
(disclosure and restricted access to data), integrity (protecting data from improper alternation and
destruction), and availability (ensuring reliable timely access and use of data) to check the compliance
of the GDPR specific challenge, minimization and visibility of the data.

Data protection in terms of metadata

In general, Hassan et al. [8] stated that data privacy techniques can be divided into two main categories
of non-cryptographic and cryptographic approaches. See Figure [3]for the diagram of an overview of
data protection techniques.

The non-cryptographic techniques can be subdivided into variants of data anonymization, data
splitting, and steganography. To begin with, data anonymization hides privacy information such as
identifiers or attributes in the data by removing, covering, or adding noise to the data. Zhang et al.
[26] introduced a historical probability-based noise generation strategy that injects noise to modify
records based on the historical probability of noise requests. Although this idea significantly increased
the availability compared to the traditional anonymization techniques by decreasing communication
overhead and increasing the ease of computation, it is still vulnerable to unauthorized access to the
data.

Second, data splitting divides sensitive data into different segments and randomly stores each fragment
on different clouds. Therefore, even if a malicious user gets hold of a fragment of the data the whole
data cannot be fully interpreted. Nonetheless, as a portion of the data can still be retrieved the privacy
protection level is low.

Lastly, steganography is the practice to hide data within another message or object. Despite this
practice creating low computation and offering a moderate level of protection, the data is not retainable
compared to other techniques.

In contrast, cryptographic approaches are branched into diverse encryption methods. First, Yang
et al. [25]], Hassan et al. [8]], Sun [[19]] advocated that in attribute-based encryption, the central main
authority distributes generated private key to registered users and this key can be used to encrypt the
data. This hinders unauthorized users, who do not have a matching set of ciphered attributes, from
accessing the data and is effective when the registered number of users is very large. The drawback
of this encryption is that it causes difficulty in updating the encryption file in the cloud.

An alternative encryption mechanism is searchable key encryption as discussed in Yang et al. [25]],
Hassan et al. [8], Sun [19]. In this encryption, the data is first encrypted locally before being uploaded
to the cloud database and grants authorized users to perform query searches on encrypted data in the
cloud database. In this way, users can avoid having to download and decrypt the data locally while
providing a high level of protection.

The most dominant and promising approach was homomorphic encryption. In the studies, Takabi et al.
[20], Yang et al. [25]], Hassan et al. [8]], homomorphic encryption displayed superiority in terms of
protection and update issues that arose with attribute-based encryption. In homomorphic encryption,
the data owner can encrypt the data by the homomorphic encryption algorithm and directly send the
respective data to the cloud as it permits users to perform computations on encrypted data without
decryption.

All in all, the proposed techniques in this subsection do indeed comply with the CIA with some
shortcomings based on the property of the implementation. In short, non-cryptographic approaches
depicted a lower level of security and data accuracy retainment due to the characteristic of modifying
the metadata but provides lower overhead in computation compared to cryptographic methods.
Conversely, cryptographic methods tend to create large overhead in computation and lead to lower
availability but are suitable for a high level of protection while maintaining the data as it is.

Data Privacy Techniques

,7‘ Non-Cryptographic }—‘ r‘ Cryptographic
[I

Searchable Homomorphic -
Data Data Split . Encryption Eneryption Encryption Signeryption
Anonymization ata Splitting Steganography ’
Byte Level cearchs) Partially
Non-Perturbativ yie Level Linguistic Technical Searchable || | Public Key " e
Perturbative Non-Perturbative Splitting Steganography | | Steganography [Symmetric Eneryption omemorp e
’ Encryption Eneryption
s
- . } Symmetric Somewhat
Data Swapping Bucketization Splitting Semagrams Methods Key '
searchable |H) Homomorphic
Encryption Encrytion
Asymmetric N
Noise Add sl I Bytelevel Encryption
Fose Addition s With Replication Open cades e -
| | Functional -
Eneryption Fully Homomorphic
Microaggregation { Sampling ‘ Byte Level)] Encrytion
1 Splitting
_ With Encryption Identity-Based
Pseudonymization Generalization ! I oy
’ Encryption

Vertical Splitting

|

Attribute-Based

Encryption

Figure 3: Overview of data protection techniques.

Data protection in terms of access control

Yang et al. [24] proposed a new blockchain-based access control framework in the cloud called
AuthPrivacyChain. The main idea is to replace the traditional database-based access control with
an immutable database, blockchain. This was achieved by first registering the cloud, data user, and
metadata of the published resources and data owner to the blockchain via smart contracts. Next,
whenever a user request for access to a resource the blockchain will intervene, and approval of

access will only be granted based on the permission record stored in the blockchain. See Figure []
for a detailed system model of the framework. Experiments have shown that AuthPrivacyChain is
capable of controlling the confidentiality and integrity of metadata with blockchain’s characteristics of
immutable blocks. In addition, they were able to mimic the throughput of the workloads of traditional
database access control up to 400 smart contract transactions per second. Thus, the recommended
approach can comply with all CIA triads with restrictions on availability. However, the study merely
mentioned the issue in the context of big data in which workload throughput can be larger than
1000 workloads per second, and background on how to handle access updates of the permission in a
blockchain-based access control system.

Davari and Bertino [6] disputed that blockchain-based access control in combination with an extension
of XACML, attribute-based access control policy language, can offer data protection. The general
idea of applying blockchain to permission control on access was similar to that of the previously
discussed AuthPrivacyChain. The difference lies in extending existing XACML to adhere to the
GDPR requirements. To accomplish this, they have included a policy that can describe and manage
attributes of the resources, such as data subjects’ identity, the purpose of data subjects’ intention of
sharing the data, validity time of the data, and resource type. In short, this approach also complies
with CIA triads but has not been proven to be scalable in situations with large users and data.

Cloud

COUES] resoures

Respohse permissmn NEC MERMITCE

uery germissign
(k18]

Publish accesslog

]r

; a "u?:' hentication

and search

anel authriza

Blockcliain

Figure 4: Blockchain-based access control architecture.

3 Discussion and Conclusion

To conclude, our review concentrated on how current or developing research in terms of data
protection can address three GDPR-specific challenges: effective implementation of retention in
the cloud, data portability, and visibility & minimization of metadata, proposed by the previous
study, Tolsma [21]]. The outcome depicted that all three challenges can be handled with existing and
emerging practices with some weaknesses.

To address the challenge regarding implementing data retention effectively in the cloud, various
approaches and technologies are being adopted, such as data classification and tagging, encryption and
tokenization, data lifecycle management, geographically distributed data storage, and transparent data
deletion processes. These approaches aim to improve data management, security, and privacy while
meeting GDPR requirements. Implementing effective data retention strategies in the cloud, however,
can be complex and challenging, especially when dealing with multi-jurisdictional requirements and
managing backups. Organizations may require specialized knowledge and resources to navigate and
comply with GDPR’s privacy and data protection requirements.

In relation to the challenge of visibility and minimization of metadata, a number of researchers
asserted visibility and minimization of the metadata itself by applying data anonymization, data
splitting, steganography, and various encryptions. In brief, non-cryptographic practices depicted
higher availability, but lower confidentiality and integrity in the CIA triad while cryptographic
approaches demonstrated completely opposite behavior. This is because cryptographic approaches
conceal the metadata and create more overhead during encryption or computing with the encrypted
data. On the other hand, non-cryptographic techniques do not fully obscure the metadata, hence
leading to different consequences. The remaining studies were concerned with promoting blockchain-
based access control of the data. These approaches have been proven to be effective in terms of
restricting unauthorized access to the data. However, the experiments were solely concentrated on
data protection, and neither a proof of scalability in the context of big data nor a description of how
to deal with the access permission update of this immutable access control system was provided.

Various strategies and technologies are being used to solve the problem of data portability for the
controller. The objective of implementing these methods is to enrich the data portability experience
for the customers and for the cloud providers (data controllers) themselves. Interoperability standards
have a weakness and that is that a great number of participants is needed for it to work properly, but
once it is widely used it can offer seamless data transfer. The use of APIs means that developers
need to stay up to date with all the changes that can take place with an API, but it can provide a
standardized way of communicating with the data controllers thus resulting in a more efficient data
portability process. Containerization and virtualization can have extra performance overhead however
encapsulating applications and their dependencies comes with benefits such as the consistent way of
migrating from one cloud environment to another cloud environment.

On the basis of this literature review, further researches need to be conducted as there is no one-size-
fits-all approach to solve the proposed challenges. Moreover, exploration is needed to come up with
a uniform metric to evaluate all GDPR compliance in cloud computing. Another possible future
research could be to evaluate the existing data protection technologies on, the upcoming, Al Act.

References

[1] S. Abiteboul and J. Stoyanovich. Transparency, fairness, data protection, neutrality: Data
management challenges in the face of new regulation. Journal of Data and Information Quality
(JDIQ), 11(3):1-9, 2019.

[2] A.Z. Abualkishik, A. A. Alwan, and Y. Gulzar. Disaster recovery in cloud computing systems:
An overview. International Journal of Advanced Computer Science and Applications, 11(9),
2020.

[3] Arcserve. 7 most infamous cloud security breaches. URL https://www.arcserve.com/
blog/7-most-infamous-cloud-security-breaches,

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, et al. A view of cloud computing. Communications of the ACM, 53(4):
50-58, 2010.

[5] P. Bonatti, S. Kirrane, A. Polleres, and R. Wenning. Transparent personal data processing: The
road ahead. In Computer Safety, Reliability, and Security: SAFECOMP 2017 Workshops, AS-
SURE, DECSo0S, SASSUR, TELERISE, and TIPS, Trento, Italy, September 12, 2017, Proceedings
36, pages 337-349. Springer, 2017.

[6] M. Davari and E. Bertino. Access control model extensions to support data privacy protection
based on gdpr. 2019 IEEE International Conference on Big Data (Big Data), 2019.

[7] P. De Hert, V. Papakonstantinou, G. Malgieri, L. Beslay, and I. Sanchez. The right to data
portability in the gdpr: Towards user-centric interoperability of digital services. Computer law
& security review, 34(2):193-203, 2018.

[8] J. Hassan, D. Shehzad, U. Habib, M. U. Aftab, M. Ahmad, R. Kuleev, and M. Mazzara. The
rise of cloud computing: data protection, privacy, and open research challenges—a systematic
literature review (slr). Computational Intelligence and Neuroscience 2022, 2022.

[9] J. Holzel. Differential privacy and the gdpr. Eur. Data Prot. L. Rev., 5:184, 2019.

https://www.arcserve.com/blog/7-most-infamous-cloud-security-breaches
https://www.arcserve.com/blog/7-most-infamous-cloud-security-breaches

[10] M. Kuperberg. Towards enabling deletion in append-only blockchains to support data growth
management and gdpr compliance. In 2020 IEEE International Conference on Blockchain
(Blockchain), pages 393—400. IEEE, 2020.

[11] N. Kushwaha, P. Roguski, and B. W. Watson. Up in the air: Ensuring government data
sovereignty in the cloud. In 2020 12th International Conference on Cyber Conflict (CyCon),
volume 1300, pages 43-61. IEEE, 2020.

[12] J. Opara-Martins, R. Sahandi, and F. Tian. Critical analysis of vendor lock-in and its impact on
cloud computing migration: a business perspective. Journal of Cloud Computing, 5:1-18, 2016.

[13] C. Pahl. Containerization and the paas cloud. IEEE Cloud Computing, 2(3):24-31, 2015.

[14] D. Petcu. Portability and interoperability between clouds: challenges and case study. In
Towards a Service-Based Internet: 4th European Conference, ServiceWave 2011, Poznan,
Poland, October 26-28, 2011. Proceedings 4, pages 62—74. Springer, 2011.

[15] E. Politou, E. Alepis, and C. Patsakis. Forgetting personal data and revoking consent under the
gdpr: Challenges and proposed solutions. Journal of cybersecurity, 4(1):tyy001, 2018.

[16] E. Politou, A. Michota, E. Alepis, M. Pocs, and C. Patsakis. Backups and the right to be
forgotten in the gdpr: An uneasy relationship. Computer Law & Security Review, 34(6):
1247-1257, 2018. ISSN 0267-3649. doi: https://doi.org/10.1016/j.clsr.2018.08.006. URL
https://www.sciencedirect.com/science/article/pii/S0267364918301389.

[17] K. Rahul and R. K. Banyal. Data life cycle management in big data analytics. Procedia
Computer Science, 173:364-371, 2020.

[18] M. Rhahla, S. Allegue, and T. Abdellatif. Guidelines for gdpr compliance in big data systems.
Journal of Information Security and Applications, 61:102896, 2021.

[19] P. Sun. Security and privacy protection in cloud computing: Discussions and challenges. Journal
of Network and Computer Applications, 160:102642, 2020.

[20] H. Takabi, J. B. Joshi, and G.-J. Ahn. Security and privacy challenges in cloud computing
environments. IEEE Security & Privacy, 8.6:24-31, 2010.

[21] A. Tolsma. Gdpr and the impact on cloud computing. URL
https://www2.deloitte.com/nl/nl/pages/risk/articles/
cyber-security-privacy-gdpr-update-the-impact-on-cloud-computing.html|

[22] M. Vogt, A. Stiemer, and H. Schuldt. Polypheny-db: towards a distributed and self-adaptive
polystore. In 2018 IEEE International Conference on Big Data (Big Data), pages 3364-3373.
IEEE, 2018.

[23] Y. Wang and A. Shah. Supporting data portability in the cloud under the gdpr, 2018.

[24] C. Yang, L. Tan, B. X. Na Shi, Y. Cao, and K. Yu. Authprivacychain: A blockchain-based
access control framework with privacy protection in cloud. IEEE, 8:70604-70615, 2020.

[25] P. Yang, N. Xiong, and J. Ren. Data security and privacy protection for cloud storage: A survey.
IEEE Access, 8:131723-131740, 2020.

[26] G. Zhang, Y. Yang, and J. Chen. A historical probability based noise generation strategy
for privacy protection in cloud computing. Journal of Computer and System Sciences, 78.5:
1374-1381, 2012.

[27] A.C. Zhou, Y. Xiao, Y. Gong, B. He, J. Zhai, and R. Mao. Privacy regulation aware process
mapping in geo-distributed cloud data centers. IEEE Transactions on Parallel and Distributed
Systems, 30(8):1872-1888, 2019. doi: 10.1109/TPDS.2019.2896894.

https://www.sciencedirect.com/science/article/pii/S0267364918301389
https://www2.deloitte.com/nl/nl/pages/risk/articles/cyber-security-privacy-gdpr-update-the-impact-on-cloud-computing.html
https://www2.deloitte.com/nl/nl/pages/risk/articles/cyber-security-privacy-gdpr-update-the-impact-on-cloud-computing.html

How are DevSecOps, ISO compliance, Security Audits,
and AWS GovCloud contributing to cloud security

practices?
David Freina Sushmita Thakur
Department of Computer Science Department of Computer Science
University of Amsterdam University of Amsterdam
14181789 14113430
david.freina@student.uva.nl sushmita.thakur@student.uva.nl

Jonas Wagner
Department of Computer Science
University of Amsterdam
14491818
jonas.wagner2@student.uva.nl

Abstract

This literature survey explores the unique challenges of cloud security and presents
emerging approaches specific to different cloud computing domains. It analyses
the topics of DevSecOps practices, ISO compliance, and dynamic auditing in the
context of cloud computing. The survey examines the challenges and solutions
related to achieving ISO compliance, integrating security into the software de-
velopment lifecycle through DevSecOps, and addressing the unique challenges
involved with cloud security audits and the need for dynamic auditing in cloud
environments. The article concludes by examining AWS GovCloud as a practical
solution developed to assess security audits, security-relevant features, and other
services in detail. Additionally, this survey provides valuable insights into how
cloud security, compliance, and auditing, contribute to enhancing trust and ensuring
the security of cloud services.

Keywords: Cloud computing, Security, DevSecOps, [SO compliance, Auditing,
AWS GovCloud.

1 Introduction

Cloud computing has revolutionized the way businesses and individuals store, access, and manage
their data and applications. It offers a flexible and scalable solution by leveraging shared resources
and virtualization technology. In this digital era, where data is generated at an unprecedented rate,
cloud computing has become an integral part of our daily lives.

The concept of cloud computing dates back to the 1960s when the idea of resource-sharing and
utility computing emerged. However, until the 2000s cloud computing didn’t gain significant traction
with the advancements in internet technology and virtualization. Tech giants like Amazon, Google,
and Microsoft pioneered cloud services, facilitating infrastructure, platforms, and software over the
Internet. Cloud computing offers a wide range of services that cater to diverse needs and requirements
which includes on-demand access to computing resources, including storage, processing power, and
software, without the need for on-premise physical infrastructure or hardware. This allows small or

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

large businesses to easily adjust and scale their resource allocation on a pay-as-you-go basis, ensuring
cost efficiency and flexibility. Here are some examples of cloud computing services:

* Infrastructure as a Service (IaaS): With [aaS, users can access virtualized computing
resources (servers and storage), while the provider manages the underlying infrastructure.
Examples - AWS EC2, Microsoft Azure Virtual Machines, etc.

* Platform as a Service (PaaS): Developers can build, deploy, and manage applications
using the provided platform without worrying about infrastructure. Examples - Google App
Engine, Microsoft Azure App Service, etc.

* Software as a Service (SaaS): Users can access software applications over the internet
without installation or maintenance. Examples - Salesforce and Microsoft Office 365 etc.

» Database as a Service (DBaaS): Users can manage database services without managing
the infrastructure. Examples - Amazon RDS and Google Cloud SQL etc.

* Function as a Service (FaaS): Developers can deploy and run code without managing
servers. Examples - AWS Lambda and Azure Functions etc.

These are just a few examples of the services offered by cloud computing that provide flexibility
for users, enabling them to focus on their core tasks while relying on the cloud for computing
resources. While cloud computing brings numerous advantages, it also presents challenges for users
because of the complex layers embedded in the foundational framework. The top challenges for
organizations moving their IT applications to the cloud services are - Security concerns, data privacy,
and compliance are among others. As data is stored on remote servers and transmitted over the
internet, ensuring the security and availability of sensitive information becomes critical. This paper
explores four key practices of cloud security, outlined as follows: embracing DevSecOps in software
development practices, complying with relevant ISO standards, then understanding the importance of
cloud auditing and the challenges involved, and finally briefly exploring AWS GovCloud which is
a specialized cloud environment specifically designed for handling data of sensitive nature and is
currently offered only in the United States.

2 DevSecOps

SecOps is an abbreviation in the tradition of the similar term DevOps. While SecOps represents "Secu-
rity and Operations", DevOps means "Development and Operations”. There is also a merged version
of these terminologies, DevSecOps, which can be defined together with the other abbreviations:

* DevOps is a set of practices intended to reduce the time between committing a change to a
system and the change being placed into normal production, while ensuring high quality.
(10]

* SecOps is the automation of processes and systems that identify and facilitate the remedia-
tion of security vulnerabilities in operational infrastructure. [[19]

* DevSecOps refers to the integration of security principles and practices in DevOps through
increased communication, collaboration, and integration between the development and
operations teams with the security team. [27]]

The collaboration of these activities is visualized in[Figure T|and shows, that security is an equal
important topic that must not be neglected in today’s software development and operating. To narrow
the scope of this paper we will not discuss SecDev and focus on DevOps, SecOps, and DevSecOps.
There are different combinations of DevSecOps like SecDevOps or DevOpsSec in the academic
literature. Depending on the order, the respective author(s) prioritises the fields. [24]] In the following
the term DevSecOps is treated without any priority amongst the different fields.

At first the initial DevOps lifecycle is shortly described in[subsection 2.1] Then the concepts and ideas
of SecOps are introduced in[subsection 2.2]to build necessary basics for the combination, DevSecOps,
which is discussed in [subsection 2.3|

DevSecOps

SecDev SecOps

Figure 1: The fields of development, operations and security.

oo o

Figure 2: Different stages of the DevOps lifecycle [33]]

2.1 DevOps

As defined above, the paradigm of DevOps aims to combine the development with actual deployment.
The mentioned practices include multiple tools that allow developers, operators, project leads, and
other involved specialists to conduct several phases as visualised in [Figure 2

* Blue: project planning on the basis of requirements and implementing the plan (e.g. agile
development)
* Green: building and testing the application (e.g. build pipelines, integration tests)
* Yellow: publishing new versions of the application and bring them into production
* Red: operating and monitoring the application in a live environment with real data
Although the blue phase requires the most manual input, the other phases are configurable in a
way that they are executed in an automated manner. The whole DevOps process is designed to run

continuously to ensure a high quality application running in a stable environment. [12]]
The process as described now is not explicitly taking care of security issues up to now.

2.2 SecOps

As illustrated in [Figure 1| SecOps combines the fields of security and operations. To extend the scope
of SecOps as defined above, there are several activities specifically related to security operations
regarding to Jenkins and Steinke [19]:

* Understanding the security status of the IT operational infrastructure.

* Creating the guardrails of what can be deployed within the infrastructure.

» Aggregating security status of the infrastructure in real-time to enable timely issue resolution.

* Automating and managing all aspect of the infrastructure to enable self-healing.

These activities extend the right side of by introducing new security related aspects to it.
What does that mean for the practical implementation of the infrastructure and the operation of the
application, also on cloud environments?

Jenkins and Steinke name some examples for infrastructural configurations that include network,
endpoint, certificate, and credential management, but also how to run the application (e.g. Kubernetes).
On top of that they suggest automation and integration of the monitoring and incident handling which
should trigger the system’s recovery abilities. [[19]

These are just some examples for better understanding of the abstract concept of SecOps, but the
list of tools and activities for security related topics in the field of operations can be extended much
further. But security also must be taken into account during other phases of the left half of
rather than only development. To bring these concepts together, the term of DevSecOps aroused.

2.3 DevSecOps

DevSecOps is adding CAMS principles (culture, automation, measurement, sharing) to DevOps and
extends even further with a special remark for security. Regarding to Myrbakken and Colomo-Palacios
can be shortly summarized [23]:

* Culture: incorporating security aspects in each phase of the DevOps lifecycle (s. [Figure 2))
and aligning the team for a common goal of a secure development and operating application
for the customer.

e Automation: security measurements and controls should be fully automated to keep up
with the fast execution of DevOps. Furthermore, automated security must not impair the
swiftness of DevOps.

* Measurement: extend the monitoring of the system’s functionalities by adding measure-
ments for potential security risks. The real-time operation benefits as well as the application’s
robustness against high load and potential threats.

» Sharing: knowledge and awareness about security issues should be shared across the
involved people to achieve an overall improved DevSecOps lifecycle.

Applying these principles to the initial DevOps lifecycle in leads to a new model that is
visualized in If an application should be developed in a cloud environment this newer
model with additional security features along the phases of the the original DevOps lifecycle, is
applicable. For each of the phases there is at least one security measurement that will improve
specific aspects of the related phase but also the overall security of the application. [11] Following
the continuous DevSecOps model and using the new feedback phase improves not only the process
itself, but also helps with potential compliance and best practice issues due to new regulations or
cloud environmental changes along the road.

3 1ISO Compliance

ISO compliance refers to adhering to standards defined by the International Organization for Stan-
dardisation (ISO). This paper is detailing different ISO standards which are powerful guidelines to
ensure proper information security in modern computer systems. The ISO worked together with the
International Electrotechnical Commission (IEC) to create the following standards.

3.1 Standards

The following list provides an overview of the standards which are further explained in the following
sections.
* ISO/IEC 27001: Information security management systems [14]]

* ISO/IEC 27002: Information security, cybersecurity and privacy protection — Information
security controls [[15]

o
e
m
>
q
m

Figure 3: Applying SecOps to the DevOps lifecycle (reference model) [11]]

* ISO/IEC 27017: Information technology — Security techniques — Code of practice for
information security controls based on ISO/IEC 27002 for cloud services [16]

* ISO/IEC 27018: Information technology — Security techniques — Code of practice for pro-
tection of personally identifiable information (PII) in public clouds acting as PII processors

(171

* ISO/IEC 27701: Security techniques — Extension to ISO/IEC 27001 and ISO/IEC 27002
for privacy information management — Requirements and guidelines [18]]

The ISO/IEC 27K family of standards all incorporate a Plan-Do-Check-Act cycle (PDCA-cycle) to
keep improving the controls they represent. In the planning phase, the first step is to define the various
information assets and their corresponding security requirements. Next, information security risks
are identified and evaluated, enabling organizations to develop appropriate controls and measures to
mitigate these risks. Subsequently, the implementation of these controls and measures takes place.
Finally, it is crucial to regularly and continuously monitor and review the performance of the system.

3.1.1 ISO/IEC 27001 & ISO/IEC 27002 & ISO/IEC 27701

ISO/IEC 27001 and ISO/IEC 27002 are globally recognized standards that focus on information
security management systems (ISMSes) and their respective implementation guidelines respectively.
ISO/IEC 27001 provides a comprehensive framework for organizations to establish, implement,
maintain, and continually improve their ISMS. The standard is applicable to companies of any size
and sector, helping them effectively manage risks associated with the security of their data. By
adhering to both standards, organizations can systematically identify and address security risks,
protect their sensitive data, and enhance their overall information security.

With over 50,000 certified companies across more than 140 countries and various economic sectors,
the ISO survey conducted in 2021 highlights the widespread adoption of ISO/IEC 27001. This
significant number of certifications demonstrates the growing recognition and importance placed on
implementing robust information security practices worldwide.

In a survey conducted by Akinyemi et al. [9] in 2020, auditors, consultants, and researchers partici-
pated in a SWOT (strengths, weaknesses, opportunities, threats) analysis focused on the specification
ISO/IEC 27001. The findings of the study revealed a generally positive perception among the
participants regarding the identified ’Strengths’ and *Opportunities’ associated with the specification.

ISO/IEC 27701 extends upon the standards and guidelines detailed in ISO/IEC 27001 and ISO/IEC
27002 and it specifically focuses on establishing, implementing, maintaining, and continually improv-
ing a Privacy Information Management System (PIMS) for privacy management within the scope of
an existing ISMS of an organization. [[18]]

Identify information asses and their associated |
security requirements

Asses information security risks

Select relevant controls to manage
unaccaptable risks

A

Plan
Establish the
ISMS
Act f Do
Mainting and Implement
improve the and operate
ISMS the ISMS
4 Ry
« Corrective actions o Implement controls
« Preventive actions « Manage operations
Check
Monitor and
review the
ISMS

o Monitor performance
o Assess performance

Figure 4: PDCA cycle ISO/IEC 27001 (Tissir et al. [30])

3.1.2 ISO/IEC 27017

ISO/IEC 27017 is a standard that provides guidelines for information security controls relevant
to cloud services. It extends upon ISO/IEC 27002 by adjusting implementation guidelines for
relevant topics with regard to cloud services and furthermore, it provides additional controls with
implementation guidelines specifically for cloud services. The main aspect of this standard is to
create a safer cloud service environment by reducing the risk of security-related problems.

There are seven additional controls added (compared to ISO/IEC 27002) which address the following
[16]:

* Clarify roles and responsibilities when using cloud services: ISO/IEC 27017 helps to define
clear responsibilities between the customer and the cloud service provider (CSP). This
ensures accountability in the event of a security incident.

* Removal or return of assets at end of service: ISO/IEC 27017 addresses the proper handling
of assets, e.g. data and systems, when terminating a contract with a CSP. It emphasizes the
secure removal or return of assets to prevent unauthorized access.

* Isolated protection of virtual environments: ISO/IEC 27017 focuses on robust security
measures to isolate virtual environments within a multi-tenant cloud environment. It ensures
the separation of resources and prevents unauthorized access to sensitive data.

* Proper configuration of virtual machines: The standard provides guidelines for the secure
configuration of virtual machines in cloud services. It takes considerations of virtualization
technology and shared infrastructure into account in order to mitigate possible vulnerabilities.

* Cloud Service Management Operating Procedures: ISO/IEC 27017 addresses the manage-
ment and control of administrative operations in the cloud environment (e.g. access control,
user provisioning, privileged account management). This helps to prevent unauthorized
actions and protect sensitive resources.

* Monitoring by cloud service users: ISO/IEC 27017 emphasizes enabling cloud customers
to monitor and track activities related to their cloud services. This allows for increased
visibility into the security of their assets.

* Coordinate virtual and physical network environments: ISO/IEC 27017 ensures the secure
configuration of virtual and cloud network environments (e.g. network segmentation,

segregation, protection mechanisms). This helps to maintain data integrity and confidentiality
within the cloud environment.

3.1.3 ISO/IEC 27018

ISO/IEC 27018 is standardized to use together with ISO/IEC 27002 in order to create a common set
of security categories and controls for CSPs working with personally identifiable information (PII).
The following objectives are outlined in the specification [[17]:

* Contracts: Assist with the establishment of contracts between CSP customers and Personal
Identifiable Information (PII) processors. It assists in defining the terms and conditions,
rights, and responsibilities to ensure a clear understanding between the parties.

* Accountability: The standard helps CSPs fulfill their obligations as PII processors, whether
through direct legal requirements or contractual agreements. It supports their compliance
efforts, ensuring they take responsibility for protecting and managing PII appropriately.

* Transparency: It promotes transparency in PII processing. It assists PII processors in
providing clear and comprehensive information to individuals whose data is being processed,
enhancing trust and allowing individuals to make informed decisions about their data.

* Audit & Compliance: The standard enables customers to audit their data within complex
multi-tenant and virtualized cloud environments.

3.2 Adoption

It is essential to distinguish between certification and compliance with an ISO standard. While ob-
taining an ISO certification can be beneficial for large companies in terms of gaining and maintaining
customer trust (as shown in[Table), the process can be resource-intensive in terms of time and cost,
which may discourage some organizations from pursuing it as discovered by Mirtsch et al. [21].

As an alternative, compliance with an ISO standard offers a middle ground. Smaller companies can
choose to comply with the requirements of a standard without necessarily seeking formal certification
from the ISO. This approach allows them to adhere to the best practices outlined in the standard and
demonstrate their commitment to meeting industry standards and customer expectations, without the
administrative burden and financial implications associated with certification.

However, as mentioned in [subsubsection 3.1.1| the ISO Survey 2021 [13] shows a widespread
adaptation of ISO/IEC 27001 in the professional working field. Furthermore, Tariq. and Santarcangelo.
[29] presented an overview of well-known public CSPs and their certification for different ISO
standards. We have updated this table with the information currently available directly from the CSPs.

CSP | ISO/IEC 27001 | ISO/IEC 27017 | ISO/IEC 27018 | ISO/IEC 27701

Amazon v v v v
Salesforce v v v X
Microsoft v v v v

Google v v v v

IBM v v v v

Table 1: ISO certifications of major Cloud Service Providers (CSPs) (extended from Tariq. and
Santarcangelo. [29])

4 Cloud Security Audit

IT audits aim to assess compliance with legal expectations for customer data protection and company
standards for financial success amid security threats. Cloud security auditing involves assessing
and evaluating the security controls and practices within a cloud environment to ensure secure and
compliant operations. There are clear distinctions between cloud security and traditional IT security
auditing. Moreover, Cloud security auditors require a combination of technical knowledge, familiarity
with cloud terminologies, security-related industry expertise, and local regulatory understanding [28]].
By thoroughly examining and identifying potential security risks, vulnerabilities, and compliance
gaps, auditors assist cloud service providers (CSPs) in enhancing their platforms.

4.1 Challenges

In their survey on security mechanisms of prominent cloud service providers, Deepak et al. (2014) [26]
highlight that cloud computing introduces distinct threats and risks that necessitate unique strategies
for mitigating the risks, distinguishing it from traditional computing models. They categorize key
challenges in cloud security, including data security, data loss, account or service traffic hijacking, and
network security. Countermeasures involve implementing security measures at various levels, such as
the kernel, storage, transmission, and access. These findings emphasize the complexity involved in
cloud security auditing.

Here we also present some key challenges faced in Cloud Security Audits, as outlined by Ryoo et al.
[28]]:

Challenge IT security auditing practice | Cloud-specific challenge
Transparency Data and information security | Data and security are managed
management systems are more | by a third party.
accessible.
Encryption The data owner has control. CSPs might be responsible for
encryption.
Colocation This rarely occurs. CSPs heavily depend on this
Scale, scope, and complexity | These are relatively less Auditors must be knowledge-
able and aware of these differ-
ences.

Table 2: Cloud-specific Audit challenges [28]

* Transparency: Cloud customers lack visibility into how their data is processed and stored,
hindering trust and increasing security risks.

* Encyption (Safe-keeping of data at rest and in transit): The physical distance between
users and cloud service providers introduces a risk wherein third parties may gain unautho-
rized access to user data, compromising privacy. Encryption is vital for data security but
in order to decrypt the information before performing calculations, users are required to
provide the secret key to the server. Consequently, traditional cryptographic schemes are
inadequate for processing data in the cloud [22].

* Colocation (Shared Infrastructure): Resource-sharing is a key factor driving the popularity
of cloud services. However, cloud service providers (CSPs) must prioritize the effective
management of administrator access permissions and the protection of user data. Wang et
al. [25]] discuss in their research on government cloud computing, the current situation of
Government Cloud Computing in China which highlights the issues with cloud resource
sharing among different government departments due to the conflict of interest for the data
of sensitive nature.

* Scale, Scope, and Complexity: Auditing in cloud computing are fairly complex due to
the sheer size of IT elements, rapidly changing technologies, and varying legal regulations
across different countries’ data centers.

4.2 Potential Solutions and Emerging Approaches
4.2.1 Standardization Frameworks

Building trust among potential customers is a crucial factor in facilitating the worldwide acceptance
of cloud computing. The ISO 27000 series is a widely adopted IT security auditing standard [?]
which has been discussed in the previous [subsubsection 3.1.1] While considerable efforts are being
made to develop preventive controls for security and privacy in the cloud, Ryan et al. [20] argue there
is a notable gap when it comes to focusing on detective controls that enhance cloud accountability for
potential risks and auditability.

4.2.2 Auditability

Auditability refers to the ease of auditing a system or environment. Poor audibility implies inadequate
or nonexistent records and systems for efficient auditing of cloud processes [20]. In fact, traditional
remote integrity-checking methods are limited to static data and cannot be effectively applied to
auditing services in dynamic cloud environments where data is constantly updated. A dynamic
auditing protocol improves cloud auditing by addressing security issues, and ensuring thorough
auditing while reducing computing costs. The protocol supports confidentiality, dynamic data updates,
and batch auditing across multiple clouds and owners. [32]]

To address the problems of auditing, researchers have also developed a framework called TrustCloud
framework [7]], which focuses on detective controls to enhance accountability and simplify cloud
security through five abstraction layers (workflow, data, system, laws & regulations, policies). It
provides accountable cloud logs, regardless of the virtual or physical environment. As highlighted
by Ryan et al. while the five layers may seem simple at first, the complexity lies in the different
sub-components within each layer for various contexts. This framework enables file-centric logging,
data-centric logging, and auditing in software services, protecting against both external and internal
risks[20] by providing automated controls and policies which are invaluable tools that streamline the
adoption of frameworks such as SOC 2 (Service Organization Control), ISO 27001, General Data
Protection Law (GDPR), Health and Human Services Health Insurance Portability and Accountability
Act (HIPAA) etc. [7].

4.2.3 Homomorphic Encryption

In a survey on Homomorphic Encryption Schemes, Acar et al. [8] discuss that Legacy encryption
systems pose significant privacy concerns as they rely on shared keys (public or private) for encrypted
message exchange. This approach grants exclusive control over the data to users or service providers
with the key, compromising privacy, particularly in popular cloud services. Moreover, even when
keys are not shared, encrypted material remains vulnerable to unnecessary exposure to third parties.
These issues can be addressed with, a specialized encryption scheme Homomorphic Encryption [1]],
which offers a promising solution by enabling third parties to perform operations on encrypted data
without the need for prior decryption. This approach also eliminates the additional computation
cost associated with traditional encryption methods. As another similar solution, in their study,
Cong et al. [31]] discusses a cloud auditing system that leverages HLA-based technology for data
storage and implements a privacy-preserving public audit method. By integrating homomorphic
linear authentication, the system ensures data privacy by enabling authentication for data block
combinations. This safeguard prevents third-party auditors from accessing or viewing customer data,
preserving data privacy.

5 AWS GovCloud

AWS (Amazon Web Services) is a renowned cloud service provider that offers a decentralized IT
infrastructure. It was established in 2006 to extend the benefits of Amazon’s extensive experience
in managing large-scale IT infrastructure to other organizations. It offers various services like EC2
and S3, each serving different purposes and utilizing different databases such as RDS, DynamoDB,
and Elastic Cache. GovCloud is a secure cloud solution designed specifically for state and federal
government customers.

AWS GovCloud is a combination of Amazon Web Services (AWS) and GovCloud [2]] which offers
different data classification levels, from unclassified to top secret, to meet government regulations and
ensure compliance. It provides a comprehensive set of features to address various requirements [2]:

» Safeguard sensitive data: Server-side encryption is implemented within Amazon S3 to
safeguard the data at rest. Furthermore, the security keys associated with the encrypted data
are managed securely through AWS CloudHSM or AWS Key Management Service (AWS
KMS).

» Strengthen identity management: These measures include restricting access to sensitive
data based on individual credentials, as well as considering factors such as time and lo-
cation. Identity federation, easy key rotation, and other access control tools also ensure
comprehensive access control within the system.

* Improve cloud visibility: Users get visibility into access and usage of sensitive data with
AWS CloudTrail. This logging service monitors API activity and is operated by U.S. citizens
for added security.

* Protect accounts and workloads: Wrokloads and accounts are protected with continuous
security monitoring provided by Amazon GuardDuty.

Furthermore, AWS GovCloud is designed to facilitate the management of regulated data by imple-
menting two key components [3]]:

1. Restricting physical and logical administrative access exclusively to AWS personnel who
are U.S. citizens. This stringent measure ensures that only authorized individuals with
appropriate clearances can access and manage the system.

2. Offering FIPS 140-2 endpoints, which adhere to the Federal Information Processing Standard
(FIPS) 140-2 for cryptographic modules [5]. These endpoints provide a secure environment
for handling sensitive data, ensuring compliance with rigorous encryption standards.

It’s important to note that while AWS does provide cloud services to customers in various countries
worldwide through its standard AWS regions which adhere to local regulations and compliance
requirements, AWS GovCloud is currently limited to the United States. CSPs face limitations in
deploying private cloud services on a global scale, especially in government-oriented businesses
because CSPs must comply with local laws which differ geographically for eg. General Data
Protection Regulation (GDPR) [6] and Digital Services Act (DSA) [4] are the set of legal frameworks
that regulate digital services in the EU area.

6 Discussion and Conclusion

In summary, cloud security is a critical aspect of modern computing, we have explored various
aspects of cloud security practices, beginning with some background of cloud computing and the
prevalent security challenges encountered in today’s cloud landscape. It is reasonable to assert that
adopting practices such as SecOps, DevSecOps, cloud auditing, complying with ISO standards, and
deploying specialized cloud environments like AWS GovCloud contribute to building a secure cloud
environment.

The implementation of DevSecOps in the cloud has been explained, highlighting its workflow and
essential characteristics for effective integration. By practicing the DevSecOps-based development
framework, organizations can cultivate a security-centric culture, emphasizing the use of security
measures to safeguard systems and assess security risks. Furthermore, we have presented ISO
standards pertaining to Information Security Management Systems (ISMS) and cloud security. These
standards not only serve as certification references but also stimulate the progress of cloud services
by offering guidance on constructing protected systems. We have discussed the definition of cloud
audits and the challenges they entail. These audits serve as indispensable tools for assessing the safety
of cloud systems. In cloud security, audits assume a critical role by facilitating the assessment of
security controls and practices within cloud environments. While significant progress has been made
in designing effective cloud security audit frameworks and standards, it is important to acknowledge
that there is still a need for comprehensive standards that encompass all aspects of auditing cloud
systems. Therefore, the journey toward attaining robust cloud security remains an ongoing endeavor.
Moreover, we have presented a real-world example of a cloud environment - AWS GovCloud, to
emphasize the importance of addressing security concerns in cloud environments. AWS GovCloud
has been tailored to meet the specific requirements of government agencies and organizations handling
sensitive workloads employing encryption techniques such as FPS 140-2 and FPS 140-4 which are
the standard encryption requirements for data protection by all federal authorities within the US.
This example underscores the growing attention given to cloud security and highlights the ongoing
challenges in this field especially for government agencies.

As we notice that despite notable advancements in bolstering cloud security, challenges persist. The
importance of cloud security continues to grow, demanding further efforts to address the remaining
obstacles and ensure the utmost safety of cloud systems.

10

References
[1] https://en.wikipedia.org/wiki/Homomorphic_encryption. Accessed: 2023-05-26.

[2] https://aws.amazon.com/govcloud-us/?whats-new-ess.sort-by=item.
additionalFields.postDateTime&whats-new-ess.sort-order=desc, . Accessed:
2023-05-26.

[3] https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/whatis.html,
Accessed: 2023-05-26.

[4] Digital services act. https://digital-strategy.ec.europa.eu/en/policies/
digital-services-act-package. Accessed: 2023-05-26.

[5] Federal information processing standard 140-2, security requirements for cryptographic modules.
https://csrc.nist.gov/publications/detail/fips/140/2/final. Accessed: 2023-
05-26.

[6] General data protection regulation. https://gdpr.eu/. Accessed: 2023-05-26.
[7] Trustcloud. https://www.trustcloud.ai/all-frameworks/. Accessed: 2023-05-26.

[8] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and Mauro Conti. A survey on homomorphic
encryption schemes: Theory and implementation. 2018.

[9] Iretioluwa Akinyemi, Daniel Schatz, and Rabih Bashroush. Swot analysis of information
security management system iso 27001. International Journal of Services Operations and
Informatics, 10(4):305-329, 2020. doi: 10.1504/1JSOI1.2020.111297.

[10] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspective. SEI Series
in Software Engineering. Addison-Wesley, New York, May 2015. ISBN 978-0-13-404984-7.
URL http://my.safaribooksonline.com/9780134049847.

[11] Chief Information Officer Department of Defense. Dod enterprise devsecops reference
design. August 2019. URL https://dodcio.defense.gov/Portals/0/Documents/DoDY
20Enterprise’20DevSecOps/20Reference’,20Designy,20v1.0_Public/20Release.
pdf.

[12] Mayank Gokarna. Devops phases across software development lifecycle. January 2021. doi:
10.36227/techrxiv.13207796.v2.

[13] ISO Survey 2021. ISO Survey of certifications — 2021. Survey, International Organization for
Standardization, Geneva, CH, September 2022.

[14] ISO/IEC 27001:2022. Information security management systems. Standard, International
Organization for Standardization, Geneva, CH, October 2022.

[15] ISO/IEC 27002:2022. Information security, cybersecurity and privacy protection — Information
security controls. Standard, International Organization for Standardization, Geneva, CH, March
2022.

[16] ISO/IEC 27017:2015. Information technology — Security techniques — Code of practice for
information security controls based on ISO/IEC 27002 for cloud services. Standard, International
Organization for Standardization, Geneva, CH, December 2015.

[17] ISO/IEC 27018:2019. Information technology — Security techniques — Code of practice for
protection of personally identifiable information (PII) in public clouds acting as PII processors.
Standard, International Organization for Standardization, Geneva, CH, January 2019.

[18] ISO/IEC 27701:2019. Security techniques — Extension to ISO/IEC 27001 and ISO/IEC 27002
for privacy information management — Requirements and guidelines. Standard, International
Organization for Standardization, Geneva, CH, August 2019.

[19] Jim Jenkins and Gerhard Steinke. What should your devsecops program look like?, Oc-
tober 2021. URL https://www.researchgate.net/publication/356262132_What_
Should_Your_DevSecOps_Program_Look_Likel

11

https://en.wikipedia.org/wiki/Homomorphic_encryption
https://aws.amazon.com/govcloud-us/?whats-new-ess.sort-by=item.additionalFields.postDateTime&whats-new-ess.sort-order=desc
https://aws.amazon.com/govcloud-us/?whats-new-ess.sort-by=item.additionalFields.postDateTime&whats-new-ess.sort-order=desc
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/whatis.html
https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package
https://csrc.nist.gov/publications/detail/fips/140/2/final
https://gdpr.eu/
https://www.trustcloud.ai/all-frameworks/
http://my.safaribooksonline.com/9780134049847
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://www.researchgate.net/publication/356262132_What_Should_Your_DevSecOps_Program_Look_Like
https://www.researchgate.net/publication/356262132_What_Should_Your_DevSecOps_Program_Look_Like

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Ryan Ko, Peter Jagadpramana, Miranda Mowbray, Siani Pearson, Markus Kirchberg, Qianhui
Liang, and Bu Lee. Trustcloud: A framework for accountability and trust in cloud computing.
pages 584-588, July 2011. doi: 10.1109/SERVICES.2011.91.

Mona Mirtsch, Knut Blind, Claudia Koch, and Gabriele Dudek. Information security manage-
ment in ict and non-ict sector companies: A preventive innovation perspective. Computers
Security, 109:102383, 2021. ISSN 0167-4048. doi: https://doi.org/10.1016/j.cose.2021.102383.
URL https://www.sciencedirect.com/science/article/pii/S0167404821002078.

Mohammed Mohammed and Fadhil Abed. An improved fully homomorphic encryption model
based on n-primes. Kurdistan Journal of Applied Research, 4:40-49, 10 2019. doi: 10.24017/
science.2019.2.4.

Havard Myrbakken and Ricardo Colomo-Palacios. Devsecops: A multivocal literature review.
pages 17-29, September 2017. ISBN 978-3-319-67382-0. doi: 10.1007/978-3-319-67383-7_2.

Rennie Naidoo and Nicolaas Méller. Building software applications securely with devsecops: A
socio-technical perspective. European Conference on Cyber Warfare and Security, 21:198-205,
June 2022. doi: 10.34190/eccws.21.1.295.

Wang Ning, Xie Xiaoshan, Li Hui, Wang Xuehua, and Qin Xuezhi. Survey of application and
research on government cloud computing in china. In 2015 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), volume 3, pages
140-143, 2015. doi: 10.1109/WI-IAT.2015.194.

Deepak Panth, Dhananjay Mehta, and Rituparna Shelgaonkar. A survey on security mechanisms
of leading cloud service providers. International Journal of Computer Applications, 98(1):
34-37,2014.

Roshan Rajapakse, Mansooreh Zahedi, Muhammad Ali Babar, and Haifeng Shen. Challenges
and solutions when adopting devsecops: A systematic review. Information and Software
Technology, 141:106700, August 2021. doi: 10.1016/j.infsof.2021.106700.

Jungwoo Ryoo, Syed Rizvi, William Aiken, and John Kissell. Cloud security auditing:
Challenges and emerging approaches. IEEE Security Privacy, 12(6):68-74, 2014. doi:
10.1109/MSP.2013.132.

Muhammad Imran Tariq. and Vito Santarcangelo. Analysis of iso 27001:2013 controls effective-
ness for cloud computing. In Proceedings of the 2nd International Conference on Information
Systems Security and Privacy - ICISSP, pages 201-208. INSTICC, SciTePress, 2016. ISBN
978-989-758-167-0. doi: 10.5220/0005648702010208.

Najat Tissir, Said El Kafhali, and Noureddine Aboutabit. Cybersecurity management in cloud
computing: semantic literature review and conceptual framework proposal. Journal of Reliable
Intelligent Environments, 06 2021. doi: 10.1007/s40860-020-00115-0.

Cong Wang, Sherman S.M. Chow, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving
public auditing for secure cloud storage. IEEE Transactions on Computers, 2013. doi: 10.1109/
TC.2011.245.

Kan Yang and Xiaohua Jia. An efficient and secure dynamic auditing protocol for data storage
in cloud computing. IEEE Transactions on Parallel and Distributed Systems, 24(9):1717-1726,
2013. doi: 10.1109/TPDS.2012.278.

Ravi Teja Yarlagadda. Devops and its practices. SSRN Electronic Journal, 9:2320-2882, March
2021.

12

https://www.sciencedirect.com/science/article/pii/S0167404821002078

Exploring iPaaS: An Comprehensive Analysis of
Research Status, Solution Issues, and Future Research

Directions
Yiming Wu Bowen Liang
13646885 14730936
yiming.wu2@student.uva.nl bowen.liang@student.uva.nl
Zhe Liu
14723670

zhe.liu2@student.uva.nl

Abstract

This report presents a literature study on Integration Platform as a Service (iPaaS),
a solution that enables the integration of data, applications, and services. A com-
prehensive collection of related papers is gathered and classified to gain insights
into the current research status of iPaaS. The report also discusses issues associated
with current iPaaS providers, providing a distilled presentation on the limitations
and challenges. Additionally, the study summarizes possible directions for future
research, highlighting areas that require further investigation.

1 Introduction

Integration platform as a service (iPaaS) (13)) is a platform that enables individuals, organizations,
and enterprises to integrate and connect various applications, systems, and data sources through
connectors. The primary purpose of iPaaS is to facilitate the seamless integration of disparate
components using low-code or even no-code principles.

For example, let’s consider an e-commerce platform integrated with a shipping and logistics system.
These two components operate independently and store valuable data in different formats. By
leveraging iPaaS, these components can be connected through connectors provided by the iPaaS
provider. This integration enables the automatic generation of shipping labels, tracking numbers, and
order status updates. When a customer places an order online, the shipping and logistics system is
automatically notified, providing customers with timely shipping updates within the e-commerce
platform.

In this report, we perform a literature study on iPaaS. Specifically, we aim to present the current
status of iPaaS research, discuss the challenges associated with its application, and identify potential
research directions for iPaaS.

The structure of this report is as follows. Section 2 provides background information on iPaaS,
including its development, and presents an overview of selected iPaaS providers. In Section 3, we
compare iPaaS with similar technologies. Section 4 defines our research questions. Section 5 outlines
our methods for literature collection and analysis. Section 6 summarizes our findings and results
pertaining to the proposed research questions. Section 7 discusses the advantages and disadvantages
of our study. Finally, in Section 8, we conclude our report.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

@)

Figure 1: Complexity of implementing connectors when adding new compoments

2 Background

2.1 Enterprise integration

Enterprise integration, a topic that revolves around connecting different components and exchanging
various data across multiple systems, has always been a challenge for the information technology
departments of organizations.

One solution is Point-to-Point Integration, which involves building a custom connector between any
pair of applications. The idea is simple; however, it does have drawbacks, such as the quadratic
increase in complexity. For example, as illustrated in Figure|l} adding one component to a three-
component system requires the implementation of three additional connectors while adding two
components will necessitate the inclusion of seven extra connectors. In general, the total number of
connectors needed in an n-component assembly can be calculated using the formula

n#*(n—1)

total number = 5

An improved approach for system integration is Enterprise Application Integration (EAI) (19), often
involving middleware technologies, including a broker that transforms and routes data, among other
functionalities, to integrate all the components. However, while this design reduces coupling between
separate applications, the broker becomes a single point of failure.

To decrease the workload of the single broker component, Enterprise Service Bus (ESB) (20)
comes into play as an evolution of EAL It uses the concept of a bus that is analogous to computer
hardware. Therefore, unlike broker-based EAI, which hard-coded all the integration logic in the
broker component, the bus in an ESB architecture now only handles message routing. All other
necessary functionalities for system integration, such as security and transaction processing, are
implemented as separate modules. The system remains loosely coupled, and new components can be
easily added. This makes ESB a lightweight and service-oriented architecture for system integration
capable of scaling.

2.2 The development of iPaaS

The emergence of cloud computing brought significant changes to information technology and
enterprise landscapes. Organizations began migrating their systems, applications, and infrastructures
to the cloud to leverage its scalability and flexibility, and to reduce the cost and efforts to maintain the
underlying hardware. iPaaS emerged as a response to the need for cloud-centric integration solutions
and to break silos. It provides a platform for integrating various applications, data sources, and
services.

' Trigger .S‘?U“’e) Qonnector Destination
User's update request Logistic system Logistic - Ecommerce E-commerce app

Figure 2: An integration of the e-commerce example

At present, there are a lot of iPaaS solution providers available, such as Workato [1_-], InformaticaEl,
ElCeligo El, boomi [ﬂ MuleSoftEl, and ROMA Connectﬂ A more complete list can be found in Gartner

2.3 Technical details of iPaaS

Technically speaking, iPaaS is a suite of cloud services that enable customers and enterprises to
define, develop, and manage integration flows between different components at a cloud scale. In
practice, an iPaaS$ solution provider offers a unified and one-stop platform for enterprises to automate
business processes. It has hundreds or even thousands of built-in connectors that bridge different
pairs of applications and services together. Generally, an intuitive graphical user interface, along with
a dashboard and some tools, is presented to the user. There is a developer workspace that is available
to create integration flows. To assist non-technical users in building their pipelines, a low-code or
even no-code drag-and-drop designer is provided within the platform. Some providers also supply
users with pre-defined flows, providing them with an out-of-the-box experience. Furthermore, error
management and processing functionality are also provided.

Different solutions may have unique sets of connectors, distinct data mapping technologies, or diverse
higher-level functionalities. Each platform typically offers documentation and training courses.

Figure [2] shows an integration flow for the e-commerce and logistics system discussed in the previous
section. As illustrated, the flow is activated when a user requests an update on the shipping status. The
source data from the logistics system then flows to the destination e-commerce application through
the corresponding connector. Mapping the tracking number to the order ID can be added. Additional
filtering may also be performed to reduce the amount of data transferred.

3 Related work

In this section, we review the existing literature on EAI, ESB, and iPaaS. We explore the relationships
between these approaches and provide a comparative analysis of their features and capabilities.

3.1 EAIand ESB

Soomro et al. (21) reviewed the development and evolution of EAI, starting from information-oriented
approaches that involve the movement of data between different storage systems and processes as per
requirements. They then explored interface-oriented approaches, which enable access to business
processes and data through APIs. The authors further discussed process-oriented approaches, where
one application can access the methods of another application. Finally, they highlighted service-
oriented approaches, specifically the enterprise service bus (ESB). The authors acknowledged the
usefulness of ESB but also identified challenges faced by EAI as an integration technology.

Goel (22) performed a comprehensive comparison between EAI and ESB, considering factors such
as installation and administration efforts, costs, scalability, standardizations, and support for service-
oriented architecture. The study found that ESB generally outperforms EAI in terms of costs,
scalability, standardizations, and service-oriented architecture support.

"https://www.workato.com/products/ipaas
2https://www.informatica.com/nl/products/cloud-integration.html
3https://www.celigo.com/

*https://boomi.com/
Shttps://www.mulesoft.com/integration-solutions/api/ipaas
Shttps://www.huaweicloud.com/intl/en-us/product/roma.htm]
"https://www.gartner.com/

3.2 ESB and iPaaS

Both iPaaS and ESB, have been proposed and developed to address the enterprise integration
challenge. The selection of an appropriate method and its corresponding solutions has always been
an open research question. Conflicting conclusions exist regarding the choice of a suitable technology
(8). Zhang et al. (8)) conducted an analysis based on economic models and compared integration
scenarios, complexity, scalability, and extension. The authors concluded that ESB is suitable for
on-premises software, while iPaaS is suitable for cloud-based services. ESB also exhibits greater
complexity compared to iPaaS. In terms of scalability, ESB and iPaaS both demonstrate scalability,
but in different scenarios. Additionally, iPaaS provides better support for the Internet of Things (IoT)
and Software as a Service (SaaS) integration.

4 Research questions

In this literature study, a collection of papers on iPaaS is analyzed, reviewed, and summarized, aiming
to address the following research questions:

1. What is the current research status of iPaaS?
2. What are some issues with current iPaaS solutions?

3. What are some possible directions for future iPaaS research?

5 Method

5.1 Literature collection and selection

To collect iPaaS-related papers, we searched the Scopus database using the query string
TITLE-ABS-KEY ("iPaaS" OR "Integration Platform as a Service"),

following a similar approach as described in (13). Subsequently, we manually inspected each paper
in the search results to filter out irrelevant papers. It is worth noting that some of these irrelevant
papers were included in the search results due to the presence of other terminologies that share the
acronym "iPaaS". An example of such terminology is Ileal Pouch-Anal Anastomosis.

5.2 Literature analysis and categorization

After collecting the papers, we categorized them using a similar approach as described in (13). We
identified two distinct groups. The first group focused on discussing iPaaS from a technological
perspective, exploring its technical aspects, functionalities, and implementation considerations. The
second group primarily emphasized the business benefits of adopting iPaaS for enterprise applications,
examining the service designs, and solution providers.

6 Results

6.1 Research question 1: What is the current research status of iPaaS?

Analysis of the timeline and the number of our collected papers indicates that iPaaS is a relatively
new and evolving area. As shown in Figure 3] which represents the distribution of these papers over
the years, there are only 18 papers in total, with the first well-known paper (1) published in 2012.
Furthermore, a growing interest in iPaaS has been observed from 2020 onwards.

Following a similar method as in (13)), we classified the collected papers into two groups: Business-
intensive and Technological. The results are presented in Table[I] Figure] and Figure[5] Contrary to
the conclusion in (13)), which stated that the majority of papers are technology-focused, our findings
indicate that the number of papers in each group is approximately evenly distributed, with 10 papers
in the Business-intensive group and 8 papers in the Technological group. Since (13) was published in
2022, this observation implies an increasing interest in the business benefits of adopting iPaaS since
that time, as also evident from Figure 4]

Number of Papers Published per Year

4 -
3 -
&
G
g7
£
=2
1 -
2012 201520162017 20182019 2020 2021 2022 2023
Year
Figure 3: Number of papers published from 2012
Table 1: List of Authors, Year, and Type
Authors Year Type
Bolloju N. & Murugesan S.(I) 2012 Business-intensive
Manilal, S. & Theertha, V.S.(2) 2015 Technological
Jafarov, N., & Lewis, E.(3) 2015 Technological
Suzic, B.(4) 2016 Technological
Ebert, N. et al.(3) 2017 Business-intensive
Theilig, M. M. et al.(6) 2018 Business-intensive
Srimathi H. & Krishnamoorthy A.(7) 2019 Technological
Zhang, X., & Yue, W. T.(8) 2020 Business-intensive
Cestari, R. H. et al.(9) 2020 Technological
Neifer, T. et al.(10) 2021 Business-intensive
Frantz, R. Z. et al.(11) 2021 Technological
Hyrynsalmi, S. M. et al.(12) 2021 Business-intensive
Hyrynsalmi, S. M.(13) 2022 Technological
Sénger, N., & Abeck, S.(14) 2022 Business-intensive
Hyrynsalmi, S. M.(13) 2022 Technological
Hyrynsalmi, S.(16) 2022 Business-intensive
Hyrynsalmi, S., & Smolander, K.(17) 2023 Business-intensive
Huang, R.(I8) 2023 Business-intensive

Number of Business-intensive Papers Published per Year

=
1
[]
[]

Number of Papers

2012 2017 2018 2020 2021 2022 2023
Year

Figure 4: Number of Business-intensive papers published from 2012

Number of Technological Papers Published per Year

Number of Papers

2015 2016 2019 2020 2021 2022
Year

Figure 5: Number of Technological papers published from 2012

g N[

Input
Human —— — > SPata
Actor Data Machine el
Sources Learning
-
> iPaaS
T
Business .
Piesess Intig rgtlon
ogic .
Sensors Management Agriculture
Eqgiuppment

o N S

Figure 6: An overview of the design

6.2 Research question 2: What are some issues with current iPaaS solutions?

While iPaaS is a relatively new research field, there are over 60 solution providers listed in Gartnerﬂ
Additionally, practical applications of iPaaS technology in real-world scenarios, such as (9) and (18)),
have been observed. However, several papers, including (10), have pointed out issues with existing
iPaaS solutions.

The first issue arises from the variety of business requirements (10). Although popular iPaaS solution
providers offer thousands of connectors, they cannot cover all possible application scenarios. Accord-
ing to an interviewee in [2], there is no connector available that meets their specific requirement.

The second issue is related to the previously mentioned one. Customizing connectors to meet business
demands lacks a cost-benefit ratio and can result in high costs (9). This issue is particularly significant
for small and medium-sized enterprises with specific solutions.

The third issue is the lack of standardization for data models and data exchange (10). While iPaaS
allows the integration of data from various sources, different components may produce data that differ
in nature. For example, different sources may collect data with varying granularities: application A
collects data on a daily basis, while application B collects data on a second-by-second basis.

There are also other practical issues, including data security, protection, and privacy, the possible
failures of connectors, and the documentation and technical support provided by solution providers
(10).

Furthermore, concerns about brand-locking have also been raised (9).

6.3 Research question 3: What are some possible directions for future iPaaS research?

As iPaaS is relatively new, there are many opportunities for future research. For example, addressing
the previously mentioned issues, improving usability, and developing technologies to facilitate digital
transformation. Since the primary goal of iPaaS is to integrate various systems, applications, and data
sources without the need for licensed middleware or hardware, the application area can be extended
beyond enterprises, including IoT and industrial control, among others.

Research cases that explore such possibilities have already emerged. For instance, (9) implemented
a prototype iPaa$ solution for grain storage and processing, as shown in[6] The system integrates
heterogeneous components such as humidity and temperature controllers and environment monitors.
One of the goals was to reduce the need for human interactions, leading to the integration of automated
decision-making modules. The system has an open design, allowing for the integration of additional
systems. Consequently, as the authors pointed out, it is possible to utilize the system in applications
other than agricultural activities.

8https://www.gartner.com/reviews/market/integration-platform-as-a-service-worldwide

7 Discussion

This report aimed to gain insight into the current status of iPaaS research, issues with existing iPaaS
solutions, and possible directions for future study.

To answer these questions, we collected, reviewed, and analyzed a comprehensive set of related
papers. By examining the number of papers published per year and comparing our findings with (13)),
we found significant research progress in 2022. Firstly, it had the highest number of papers published.
Secondly, more research projects started to focus on business-intensive topics.

Although our literature study is comprehensive, there are some limitations worth noting in our report.

First, the total number of publications is small, which means that the research trends may not fully
reflect our predictions.

Second, iPaaS technology continues to evolve. As a result, the findings and conclusions in our report
may quickly become outdated. In fact, the term iPaaS itself has been evolving, leading to a clearer
and distinguishable definition and scope separate from ESB and EAI. Due to the broader definition
of iPaaS, there is now a more enterprise-focused term called EiPaaS E], which stands for Enterprise
Integration Platform as a Service.

8 Conclusion

In this literature study, we collected a comprehensive set of publications about iPaaS from 2012 to
the present to examine the current research status, summarize issues with solution providers, and
identify future research opportunities. We concluded that the field is relatively new and the number
of publications is limited. We listed common issues, including the variety of connectors, potential
high costs, and lack of standardization, among others. Additionally, we highlighted possible research
directions to improve existing iPaaS technology and explore new application areas, such as the
Internet of Things.

References

[1] Bolloju, N., & Murugesan, S. (2012, August). Cloud-based B2B systems integration for small-
and-medium-sized enterprises. In Proceedings of the International Conference on Advances in
Computing, Communications and Informatics (pp. 477-480).

[2] Manilal, S. & Theertha, V.S.. (2015). Preventing cloud integration challenges using iPaaS. 10.
1972-1976.

[3] Jafarov, N., & Lewis, E. (2015, July). Reinterpreting the principles of SOA through the cybernetic
concepts of VSM to design the ESB as iPaaS in the cloud. In 2015 Science and Information
Conference (SAI) (pp. 850-858). IEEE.

[4] Suzic, B. (2016, April). User-centered security management of API-based data integration
workflows. In NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium
(pp- 1233-1238). IEEE.

[5] Ebert, N., Weber, K., & Koruna, S. (2017). Integration platform as a service. Business &
Information Systems Engineering, 59, 375-379.

[6] Theilig, M. M., Prohl, T., & Zarnekow, R. (2018). Requirements Analysis for an Open iPaaS:
Exploring the CSP, ISP, and SME View.

[7] Srimathi, H., & Krishnamoorthy, A. (2019). Integration Of Student System Using iPaaS. Interna-
tional Journal of Scientific & Technology Research, 8, 602-606.

[8] Zhang, X., & Yue, W. T. (2020). Integration of on-premises and cloud-based software: the product
bundling perspective. Forthcoming in Journal of the Association for Information Systems.

“https://www.gartner.com/en/documents/4006317

[9] Cestari, R. H., Ducos, S., & Exposito, E. (2020, September). [PaaS in agriculture 4.0: an industrial
case. In 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE) (pp. 48-53). IEEE.

[10] Neifer, T., Lawo, D., Bossauer, P., & Gadatsch, A. (2021, July). Decoding [PaaS: Investigation
of User Requirements for Integration Platforms as a Service. In ICE-B (pp. 47-55).

[11] Frantz, R. Z., Corchuelo, R., Basto-Fernandes, V., Rosa-Sequeira, F., Roos-Frantz, F., & L.
Arjona, J. (2021). A cloud-based integration platform for enterprise application integration: A
Model-Driven Engineering approach. Software: Practice and Experience, 51(4), 824-847.

[12] Hyrynsalmi, S. M., Koskinen, K. M., Rossi, M., & Smolander, K. (2021, June). Towards the
utilization of Cloud-based Integration Platforms. In 2021 IEEE International Conference on
Engineering, Technology and Innovation (ICE/ITMC) (pp. 1-8). IEEE.

[13] Hyrynsalmi, S. M. (2022, May). The State-of-the-Art of the Integration Platforms as a Service
research. In 2022 IEEE/ACM International Workshop on Software-Intensive Business (IWSiB)
(pp- 17-22). IEEE.

[14] Sidnger, N., & Abeck, S. (2022). Authentication and Authorization in Microservice-Based
Applications. INFORMATIK 2022.

[15] Hyrynsalmi, S. M. (2022, October). Definition of the Enterprise Integration Platforms as a Ser-
vice—Towards a Common Understanding. In Software Business: 13th International Conference,
ICSOB 2022, Bolzano, Italy, November 8-11, 2022, Proceedings (pp. 167-181). Cham: Springer
International Publishing.

[16] Hyrynsalmi, S. (2022). Pathway to the successful integration platform management.

[17] Hyrynsalmi, S., & Smolander, K. (2023). Between the Rock and the Hard Place-Conflicts in
Implementing Integration Platforms.

[18] Huang, R. (2023, April). Research on technical path and practice of digital transformation of
colleges based on iPaas. In Second International Conference on Digital Society and Intelligent
Systems (DSInS 2022) (Vol. 12599, pp. 269-275). SPIE.

[19] Dahl, O. (2002). Enterprise application integration. School of Mathematics and Systems Engi-
neering.

[20] Menge, F. (2007, August). Enterprise service bus. In Free and open source software conference
(Vol. 2, pp. 1-6).

[21] Soomro, T. R., & Awan, A. H. (2012). Challenges and future of enterprise application integration.
International Journal of Computer Applications, 42(7), 42-45.

[22] Goel, A. (2006). Enterprise integration EAI vs. SOA vs. ESB. Infosys Technologies White
Paper, 87.

How do different communication protocols influence
service discovery in microservice architectures

Haochen Huang Kaiwei Chen
Universiteit van Amsterdam Universiteit van Amsterdam
012 WX Amsterdam, Netherlands 012 WX Amsterdam, Netherlands
peter.huang@student.uva.nl kai.chen@student.uva.nl

Zongyao Zhang

Universiteit van Amsterdam
012 WX Amsterdam, Netherlands
zongyao.zhang@student.uva.nl

Abstract

Microservice architecture(MSA) is a software architecture commonly used in
industry nowadays, and service discovery, as an important part of microservice ar-
chitecture, plays a key role in the microservice framework. This paper discusses the
impact of HTTP/REST, gRPC, and MQTT on microservice architecture from the
perspective of communication protocols, and gives suggestions for choosing com-
munication protocols under different development requirements of microservice
architecture.

1 Introduction

1.1 Micro-services

The first thing we need to understand is what microservices architecture(MSA) is. MSA is character-
ized by the development of a single application as a set of small, independent services, each running
in its own process and communicating through lightweight mechanisms. These services are built
around specific business capabilities and can be deployed independently through automated processes.
They have minimal centralized management and can be developed using different programming
languages and data storage technologies/Fowler and Lewis| [[2014] In addition to MSA, the industry
commonly uses monolithic architectures, two different software development approaches. In the
monolithic architecture, the entire application is developed as a single, independent unit. All com-
ponents of the application are tightly coupled and share the same code base, database, and memory
space. A monolithic architecture is easier to develop and deploy, but as an application grows, it can
become complex and difficult to maintain. Extending a monolithic application requires extending the
entire application, which can be inefficient and expensive. In a microservices architecture, however,
applications are broken down into smaller, independent services that can be developed, deployed and
scaled independently. Each service is responsible for a specific task and communicates with other
services through APIs. The difference of those two architecture can be seen in FigurdI| Microservices
architectures are more flexible and scalable than monolithic architectures because each service can
scale independently based on its specific needs. However, the development and deployment of a
microservices architecture can be more complex because it requires the management of multiple
services and their interactions. With such a need for interaction and communication, service discovery
becomes particularly important in it/Al-Debagy and Martinek| [2018]]

—

Monolithic architecture Microservice architecture

| | System operations

3 operationA()
! operationB()

" 5 System operations
< Application 3 | -
— = = ! OF | |operationB)

Figure 1: Two types of architecture

1.2 Service discovery

In MSA, finding services is a difficult task. To communicate with other services in a microservice
architecture, a service must find out where they are located. In terms of development, testing,
deployment, and horizontal scaling, monolithic deployments are straightforward. Application de-
velopment, however, becomes more challenging as they grow larger and more complicated, making
agile development and delivery impossible. However, MSA, a novel paradigm, holds considerable
promise in terms of service complexity, adaptability, modularity, and scalability. The majority of
modern microservices-based applications run in virtualized environments, where virtual service
instances are transportable, decoupled, and can have dynamically changing locations given to them.
Since each service in these contexts must find active instances of other services, service discovery
is now a crucial component of MSA. Finding the location of the proper instance that offers the
necessary service is the duty of the service discovery mechanism. Fixing the address of the service
instance in the application largely resolves the service discovery issue in monolithic architectures.
Fixing addresses is still not possible because services in MSAs are transient. As a result, MSA
now includes agile service discovery mechanisms as a key component. Client-side and server-side
service discovery are the two basic categories of service discovery patterns. The two pipelines can
be seen in Figurg?2] First, the client service is in charge of figuring out where on the network its
service dependencies are located. It accomplishes this by leveraging a service registry, a repository of
accessible service instances. The client service makes a request through a router or load balancer,
which checks the service registry and directs each request to an available service instance, in order to
perform server-side service discovery. Both models make use of a service registry, which has to be
updated often in order to reflect the service instances that are currently accessible appropriately. A
service instance registration mechanism is typically used to carry out this update, and representatives
are registered and deregistered as they go online and offline, respectively.

Service Registry 2. Discover ——————g»| Service Registry
—— service defnition

1. Discover - -
service defnition -_\
S s ES
Application service
Application 2 1ok . /
S .
1. Invoker service Order Processing
rtiet Pittecss viaload balancer Microservice
Microservice

Client-side service discovery Server-side service discovery

Figure 2: Two main types of service discovery patterns

1.3 Understanding Communication Protocols

The first question we need to understand is what communication protocol. A communication protocol
is a system of rules that allows two or more entities of a communication system to transfer information
through any change in physical quantities. The protocol defines the rules, syntax, semantics, and
synchronization of the communication as well as the possible methods of error recovery. Protocols
can be implemented by hardware, software, or a combination Hilpisch et al.|[2009]

1.3.1 HTTP/REST

The World Wide Web’s primary data transfer protocol, Hypertext Transfer Protocol (HTTP), and the
architectural style Representational State Transfer (REST), which specifies a set of limitations for
developing Web services, have made significant inroads in web technologies. In-depth explanations
of HTTP and REST’s key characteristics, functional principles, advantages, and potential applications
are provided in this literature review. The formatting guidelines for the NeurIPS 2020 conference
have been followed in preparing this article.

As a global standard for data transfer over the internet, HTTP was created. It allows users
to communicate and share information through web pages and functions as a request-response
protocol in a client-server computing model. Fundamentally, HTTP uses a collection of standardized
techniques to launch requests and responses, facilitating a smooth interchange of information on
a worldwide scale. It has become the de facto protocol for web-based data exchange due to its
widespread use and easy interaction with other web technologies.

The structure of HTTP as shown in Figure 3] Clients and servers communicate by exchanging
individual messages (as opposed to a stream of data). The messages sent by the client, usually
a Web browser, are called requests and the messages sent by the server as an answer are called
responses. On the other hand, REST introduced an architectural style that lays the groundwork

B ‘/{W\ =
Q . [(The Internet & ,

Web document .e"‘j \\,, S

Ads server Video server

Figure 3: The Structure of HTTP.

for developing logical and simple-to-understand APIs, revolutionizing how developers design
web services. REST’s reliance on statelessness, which requires that each HTTP request from a
client to a server be self-sufficient and convey all the necessary information to grasp and process
the request independently, is one of its guiding principles. This paradigm promotes statelessness
in API architecture, which supports an environment conducive to scalability and modularity principles.

RESTful APIs’ inherent statelessness, which enables high scalability and makes them suit-
able for massive, distributed systems, is one of their most appealing features. Due to its statelessness,
REST can handle numerous requests simultaneously, making it ideally suited for today’s web
applications, which are naturally dispersed and call for scalability. Statelessness also encourages
more manageable sessions, improves server speed, and improves the user experience overall by
offering a quicker and more dependable service.

RESTful is a set of resources that include a MIME type (such as JSON or XML), a pri-
mary URI for accessing the service, and a list of pre-defined operations like HTTP GET, HTTP
POST, HTTP PUT, HTTP PATCH, or HTTP DELETE. Unlike web services, RESTful services are
not subject to any specified standards. REST is an architectural aesthetic rather than a set of rules.
The interaction between a RESTful API and clients or consumers to carry out read, add, and modify
activities against a database is shown in Figure [d]

REST API

i

Database

Figure 4: The Structure of REST.

1.3.2 RPC

The Remote Procedure Call (RPC) Protocol [Birrell and Nelson, [1984]] is a widely known message
exchange mechanism for distributed systems. The low overhead, ease of use, and transparency of
the RPC protocol make it the best choice for inter-device communication in complex distributed
systems containing a large number of devices [1998]]. the RPC allows the local machine to call
the services of different remote servers as if they were owned by the local machine itself. Figure[3]
illustrates the framework of the RPC protocol. Stubs are the most important element in the RPC
framework because they enable communication between the client and the server. During an RPC
call, the client needs to call a stub to pass the function to be called, the type of parameters, the names
of the parameters, etc. into the stub and to serialize the message to be transmitted to the server
over the network. The server-side stub is responsible for deserializing these parameters and calling
the corresponding server-side function to return the result to the client. It can be said that the stub
performs most of the functions of the RPC protocol. The existence of the stub allows the client to
focus on function invocation without having to deal with network communication with the server.
The definition of a service in an RPC server is determined by the request and response messages
and this includes both Unary RPC services and Streaming services [2020]. The mechanism
of a unary RPC service is similar to a function call containing a request-response message pair,
while a streaming service allows multiple messages to be sent and received between the client
and the server. In addition, the message exchange mechanism of the RPC protocol is a typical
synchronous type because when the client sends a new request to the server the response process will
be blocked until a message is received back from the server. For asynchronous message exchange
mechanisms such as the MQTT protocol see Section 1.5. For an RPC framework, the interface
definition language (IDL) file is one of the essential elements for using the framework. The IDL
file is used to define the interface between the client and the server and is written in a language
independent of the programming language [1995]|. The role of the IDL file is to generate
stubs for the client and the server via a stub generator. The IDL file is therefore the author of the
client-server communication specification. Without the IDL file, the client would not be able to call
the desired service correctly or even find the address of the server. It can be argued that the key to the
operation of the entire RPC process is the writing of the IDL file, which in turn connects the IDL to

Caller machine Network Callee machine

User User-stub RPCRuntime RPCRuntime Server-stub Server
] Call packet

local transmit receive unpack all

call jargument \l/ largument :I/
wait work

focal junpack \l/ Resuit packet pack \l/

return esult e receive transmit emull return

importer exporter importer exporter

interface intertace

Figure 5: The components within the RPC.

the programmer.The programmer needs to define in the IDL file what services can be called by the
client and what parameters need to be passed.

Although the RPC protocol was invented a long time ago for the exchange of information
between client and server it does not mean that it is obsolete. In today’s popular MSA, RPC is still
widely used to communicate between different services [Huang et al., |2020]. gRPC is a modern
RPC framework (client/server model) based on the HTTP/2 protocol developed by Google. gRPC’s
interface definitions are written using the Protocol Buffer library and stored in .proto files (a kind
of IDL file). gRPC has several advantages over traditional RPC frameworks. Firstly, thanks to
the multiplexing features of HTTP/2 gRP is able to deliver more information with less network
connection overhead than traditional RPC frameworks using HTTP/1.x. Secondly, gRPC uses a
Protobuffer as the storage format for serialized data, which reduces the size of the data significantly
compared to textual formats such as JSON [Popi¢ et al.l 2016]. In addition, binary data is preferred
to text for network transmission. Finally, gRPC supports cross-language development such as C++,
Java, and Python, which allows developers to write clients and servers in different programming
languages. With all these advantages, the gRPC framework offers outstanding performance and
flexibility.

1.3.3 MQTT

Message Queue Telemetry Transport (MQTT)Soni and Makwana) [2017]]is a lightweight and
bandwidth-efficient protocol used for communication between devices in the Internet of Things
(IoT). It was invented by Andy Stanford-Clark of IBM and Arlen Nipper of Cirrus Link Solution. It
works by using a publish/subscribe model, where devices can publish messages to a broker, which
then distributes those messages to other devices that have subscribed to receive them. This allows for
efficient and scalable communication between devices with limited resources.The three components
can be seen in Figurd6]

S 'S

subscribe I[[E]j
ol

e

‘/| Ish
o Broker sub‘s}*\

V. —
Dublish \ .I

- &
\ R N)
publisher subscribers

Figure 6: The architecture of MQTT.

From the figure we can see that the publish/subscribe pattern is a messaging pattern used in MQTT
and is central to its function. This pattern is divided into three primary components: the publisher,
the subscriber, and the broker.

The first part of it is the publisher. It is the component that produces the message. The publisher does
not send the message directly to a specific subscriber. Instead, it categorizes the message under a
specific topic and sends it to a broker. For the second part of it the architecture, it is the broker that
becomes the intermediary that receives all messages from the publishers. It sorts these messages
based on their topics. The subscriber receives messages based on specific topics it has subscribed to.
The subscriber does not know the identity of the publisher. The broker sends all messages that fall
under the subscriber’s topics of interest.

1.4 Scope

For the scope of our research, we expect to take a deep dive into communication protocols in
microservices to understand how they affect the efficiency of service discovery. Our point study
focuses on four specific communication protocols: HTTP/REST, gRPC and MQTT. hopefully, at the
end of our research, it will provide some useful insights into choosing communication protocols in a
microservices architecture.

2 Influence of Communication Protocols on Service Discovery Efficiency

2.1 HTTP/REST

Service discovery has become a critical aspect in the world of HTTP/REST services due to the
extensive increase in the variety and number of services available. The efficiency of service discovery
plays a significant role in web-based systems’ overall performance and usability. To understand the
influence of HTTP/REST on service discovery efficiency, we draw upon insights gleaned from three
research papers and a book as outlined.

Elshater et al.| [2015] present an innovative technique for discovering web services called
"goDiscovery." This approach exploits the fundamentals of HTTP/REST and facilitates efficient
discovery by enabling clients to find and integrate with the necessary services quickly. The
"goDiscovery" approach takes advantage of REST’s statelessness, providing quick responses
and reducing the overall latency in the service discovery process. The inherent properties of
HTTP/REST protocols are leveraged to enhance the efficiency of service discovery. What is more,
Aziez et al.|[2019]] present a comparative study of service discovery approaches in the Internet of
Things (IoT) context. The authors highlight that HTTP/REST-based service discovery approaches
perform exceptionally well due to their lightweight nature and statelessness, which makes them
apt for IoT applications. The ability of RESTful APIs to handle requests concurrently also allows
for more efficient discovery of services in an IoT context, which often involves thousands of
devices. Moreover, Verborgh et al.|[2011]] introduced a novel "Hyperlinked RESTdesc" approach
for runtime service discovery. It leverages hypermedia controls provided by RESTful HTTP
services to aid in efficient service discovery. The paper underscores that the hypermedia-driven
nature of HTTP/REST protocols allows for improved navigability and discoverability of services
at runtime. And Hutchison| [2015] address the challenges of engineering web applications in
the significant data era and discusses the role of HTTP/REST in enhancing service discovery. It
emphasizes that the scalable nature of HTTP/REST makes it conducive for managing and discov-
ering services in big data applications, as it can easily handle an enormous volume of data and services.

A compelling claim is made by combining the knowledge gained from several studies:
HTTP/REST protocols fundamentally improve the effectiveness of service discovery. The processes
that speed up the identification and integration of web services are part of their fundamental traits,
far outperforming the effectiveness of traditional approaches. Their architecture, which is naturally
lightweight and capable of handling many requests, enables distributed systems to communicate
more quickly. It is instrumental in settings with high data volumes or network traffic.

Because of their love for hypermedia, HTTP/REST protocols encourage increased runtime
navigability. Utilizing hypermedia controls enables dynamic service traversal, facilitating the

quick finding of valuable resources. This characteristic guarantees seamless service interaction,
enables effective integration and promotes a vast and interconnected system. In large-scale systems,
the impact of HTTP/REST increases its power in scalability and performance. These protocols
provide improved scalability since they are stateless, a quality crucial in the Big Data era. Under the
supervision of HTTP/REST protocols, large-scale applications and services can communicate and
handle enormous volumes of data and concurrent services while retaining efficacy.

Moreover, HTTP/REST protocols are well positioned in the Internet of Things (IoT) envi-
ronment due to their ability to handle concurrent queries and lightweight architecture. These
characteristics provide simplified data exchange in a system with an extensive network of devices
that demands effective communication, improving service discovery performance.

To sum up, HTTP/REST protocols have a profound and multifaceted impact on the effec-
tiveness of service discovery, influencing operational capabilities across a wide range of applications
such as web-based systems, [oT, and Big Data solutions. Their contributions improve these domains’
overall agility, resilience, and effectiveness. The importance of HTTP/REST protocols and their
influence on service discovery is expected to grow. They play a crucial role in this environment
because of their innate capacities to promote effective service discovery, support robust web systems,
and power durable IoT applications.

22 RPC

As described in section 1.4, the RPC protocol requires the client to know many details such as
function names, parameters, and even addresses before calling the server. Therefore, the client and
the server need to be pre-bound in order to exchange information. However, the client is most
interested in using the desired service and not in all the details of the service. It can be argued that
the use of RPC reduces the abstraction of the system architecture and thus requires the client and
even the programmer to master too many details.

The research by Jacob and Mudge| [1996] points out the incompetence of RPC protocols in
a nomadic computing environment. Nomadic computing requires mobile devices to be able to
discover and use new services as they move to new environments [Kleinrock, [1995]]. The authors
argue that there are two influential factors in order to achieve nomadic computing. Firstly, the authors
suggest that the client should be able to use something like a directory to find the service-based
properties of a service when entering a new environment. Secondly, the authors consider that the
client must have the ability to dynamically acquire the service interface, i.e. instead of using a stub
generated from an IDL file to predefine the interface between the client and the server, the interface
description must be obtained directly from the server. For a solution, the authors first discuss the
option of modifying the RPC protocol to use a protocol interpreter to interpret the new service
interface in order to eliminate the client’s reliance on the IDL file, however, they conclude that
this would break the structure of the RPC protocol itself. The authors then propose a standard for
supporting nomadic computing called service discovery. Service discovery, as defined by the authors,
requires allowing a client to retrieve a list of services from a service catalog and connect to a server
and then obtain an interface directly from the server and interact with it. From the above mechanism,
it appears that what Jacob and Mudge propose is the prototype of a modern service discovery and
registration mechanism.

A number of alternative solutions have been proposed to address the need to explicitly de-
fine function calls and references to the server in the use of the RPC protocol. The Cygnus model
is a model for abstracting services [Chang et al., [1991]]. The core idea of the Cygnus model is
to decouple the service from the server and even the service interface so that the client gets a
high-level view of the corresponding service. The Cygnus model consists of four elements, the
client, the service types, the service entities, and the server. In the Cygnus model, the client
accesses the desired service through a set of attributes, i.e., the service type. For example, a set of
attributes may contain the name of the service and the version of the service. The service entity
represents the service interface in the Cygnus model and the model binds the service type to the
service entity rather than to the server because the server may expose a number of interfaces
for different services. The key point in the Cygnus distributed system is the use of a distributed
database because the database maintains the relationship between the service types, service entities,

and servers. Querying the database is a necessary step in the Cygnus system to obtain the true
service implementer. Research on the Cygnus model has also shown that the Cygnus system has
a lower overhead than Sun RPC (an RPC framework). The key contribution of this research is
the proposed method of abstracting the service, thus reducing the amount of detail that the client
needs to know about the server. However, the problem is not fully solved as the Cygnus model still
requires the client to learn the service interface in advance (it cannot be implicitly bound to the server).

Similarly, in their research, jord Neuman et al.| [1993] propose the use of the Prospero di-
rectory service to solve the problems in pervasive computing. The concept of pervasive computing is
similar to that of nomadic computing. The two most important characteristics of pervasive computing
are mobility and scale. Mobility means that when a user’s location changes the user may need to
choose another server to get the corresponding service. Scale means that the number of services may
overload the user as the user’s location changes because the user needs to maintain a large amount
of information about the service. Therefore, the two biggest problems of pervasive computing are
the server selection problem and the user location problem. To solve the server selection problem,
Prospero allows users to create virtual systems for mapping names to servers. The biggest advantage
of Prospero is that mappings can be dynamically determined through virtual system aliases, union
links, and filters. The advantages are very similar to the Cygnus model of invoking services by
service type as they do not require the provision of service specifics but only some properties of the
service. The issue of user location is mainly concerned with the storage of user login information in a
distributed system and is not relevant to service discovery and is therefore not discussed here.

One way used to resolve implicit client-server binding is by inserting RPC agents between
the client and the server [Huang and Ravishankar, |1994]]. Using RPC agents will transfer the
responsibility for learning the interface from the client to the agent. In this way, the problem of
different RPC protocols being used between the client and the server can also be solved since they
would not be able to communicate directly. The authors propose two agent models in their research,
the one-agent model and the two-agent model. The one-agent model converts communication
between different RPC protocols by deploying an agent between the client and the server. The
two-agent model deploys one agent on the client and one on the server and uses the proxies to
connect and communicate. In the study, the authors also discuss the advantages and disadvantages of
the two agent models. The authors of the study point out that the two-agent model is better because it
reduces the complexity of agent construction. For the one-agent model, the agent needs to learn the
client and server RPC protocols, whereas for the two-agent model, the agent only needs to learn
the protocols of the local and agent links. The one-agent model makes it necessary for the agent to
exist on either the client or the server, thus making it necessary for the agent to learn non-local RPC
protocols. In terms of performance, research has shown that although the two-agent mode causes
some performance degradation, it is acceptable (2 ms to 6 ms). However, there are some drawbacks
to this approach. Firstly, although the responsibility for learning the interface is transferred to the
agent, the construct becomes more complex resulting in additional overhead. The agent needs
to be updated to learn the new interface and the client needs to invoke the service according to
the interface specified by the agent. The second problem is that the client still needs to know
the details of the information it wants to send to the agent, thus leaving the abstraction problem behind.

Modern RPC frameworks such as gRPC still do not seem to address the issue of dynami-
cally learning interfaces. Figure[7]illustrates the structure of gRPC. From the above picture, we can
see that gRPC allows different programming languages to be used to write the client and server but
the client still needs to use the stubs to communicate with the server. gRPC indeed requires the
relevant information to be written into the IDL file for use. This means that the client and server must
adhere to the same interface for information exchange rather than allowing the client to learn the
interface description from the server as proposed by the service discovery standard. Furthermore,
gRPC does not have an embedded service discovery and registration mechanism. gRPC’s built-in
service discovery only supports DNS resolution, i.e., finding the corresponding IP address by name.
However, gRPC has the ability to implicitly bind clients and servers by using third-party registry
components such as ZooKeeper and etcd. Using the registry clients can dynamically look up the IP
address of the required service without the need to specify service-related properties prior to the call.

gRPC Server Ruby Client

C++ Service

Py,
o,
© Response(s)

Android-Java Client

Figure 7: The structure of gRPC 2023].

23 MQTT

For the service discovery of MQTT. It is mainly discussed under the IoT background. While MQTT
can be used to exchange information about available services, it is not specifically designed for service
discovery and there surely have some drawbacks when coming to the service discovery part.
[2021]] Geonwoo [2019]mentioned that the autoconfiguration feature of it could let
it act bad in multicasting and resource directories for managing IoT resources while using MQTT
can help optimize communication between cloud microservices in the 0T cloud. While MQTT
does offer different QoS (Quality of Service) levels, the guarantees it provides at each level may
not be sufficient for some applications/Sadeq et al.|[2019] For instance, QoS ensures that messages
are delivered exactly once, but it involves a complex four-step handshake which can be overkill for
simple sensor readings. Another drawback of it is the single point of failure. MQTT relies on a
central broker to relay messages. If this broker fails, the entire messaging system can come to a
halt. Hence, it’s critical to ensure the broker is highly available and scalable. There is another threat
that while MQTT does support TLS/SSL for secure message transmission, it lacks built-in support
for more complex security measures like message signing or encryption, access control, and other
common security requirements in a microservice architecture/Iyer et al.| [2018]] On the other hand,
MQTT’s lightweight publish/subscribe communication model could be leveraged to create a system
where services can dynamically publish their presence or subscribe to other services especially when
it comes to [oT scenarios and resource Constrained Environments.

3 Discussion and Conclusions

Model

Micro-service Archi- | Choose of Protocol Reasons Possible Issues

tecture

Performance gRPC Protocol Buffers, | Compatibility (Net-
HTTP 2.0, Multiple | work/Language),
Language Support Service Discovery

Structures an applica- | HTTP/REST Stateless nature, inter- | Add overhead, lack

tion as a collection of operability real-time communica-

loosely coupled, inde- tion capabilities

pendently deployable

services

IoT Scenarios, Need | MQTT Designed with IoT, | Limited QoS Single

for Publish/Subscribe Resource Constrained | Point of Failure Lack

Model Environments,Need of Standard Security
for Publish/Subscribe | Mechanisms

When we examine the various communication protocols and their ramifications, as shown in the table
above, we can see the delicate role of communication protocols in influencing service discovery
within MSA. The research articles "Evaluating the Impact of Inter-Process Communication in
Microservice Architectures” and "Comparing REST, SOAP, Socket and gRPC in computation
offloading of mobile applications: an energy cost analysis" offer insightful information in this regard.

The gRPC protocol is frequently selected for high-performance MSA because of its use of
Protocol Buffers and HTTP 2.0 and its wide range of language compatibility. The research
"Evaluating the Impact of Inter-Process Communication in Microservice Architectures" explains
how gRPC beats its rivals thanks to its effectiveness in offloading computation and lower energy
cost. It also draws attention to potential problems, such as the difficulty of service discovery
and interoperability with various network and linguistic infrastructures. The difficulty of service
discovery increases due to gRPC’s non-human readable data format, highlighting the necessity of
effective service discovery procedures in such situations.

Due to its statelessness and interoperability, HTTP/REST is frequently chosen by microser-
vices that want to be loosely connected and independently deployable. This makes service discovery
and interaction more straightforward. Because each request can be handled separately because of the
protocol’s statelessness, service discovery in distributed systems is made more accessible. However,
using HTTP/REST can be inefficient for some application scenarios because it adds overhead and
does not support real-time communication.

The MQTT protocol is a top pick for IoT applications when the requirement for a Pub-
lish/Subscribe paradigm is critical. [Shafabakhsh et al.| [2020]] explores how MQTT’s design is
specifically adapted to IoT and resource-constrained settings. The article also highlights the
protocol’s shortcomings, such as low Quality of Service (quality of service), single points of failure,
and a lack of standardized security measures, which may impact service discovery effectiveness in
certain circumstances.

Chamas et al.| [2017]] emphasized how crucial it is to pick the proper protocol based on the
application’s particular needs. The protocol choice regarding energy costs, computing efficiency, and
other factors can impact the efficiency of service discovery.

Finally, there are numerous ways in which differing communication protocols affect service
discovery in MSA. Variables, including the type of microservices, the context of the application,
and the unique properties of the protocols themselves, greatly influence the effectiveness of service
discovery. To successfully navigate the world of MSA, it is, therefore, essential to have a thorough
understanding of these protocols and their ramifications.

References

O Al-Debagy and P Martinek. A comparative review of microservices and monolithic architectures.
In 2018 IEEE 18th International Symposium on Computational Intelligence and Informatics
(CINTI), pages 000149-000154, 2018. doi: 10.1109/CINTIL.2018.8928192.

Meriem Aziez, Saber Benharzallah, and Hammadi Bennoui. A full comparison study of service
discovery approaches for internet of things. International Journal of Pervasive Computing and
Communications, 15(1):30-56, 2019.

Andrew D Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM Transactions
on Computer Systems (TOCS), 2(1):39-59, 1984.

Carolina Luiza Chamas, Daniel Cordeiro, and Marcelo Medeiros Eler. Comparing rest, soap, socket
and grpc in computation offloading of mobile applications: An energy cost analysis. In 2017 IEEE
9th Latin-American Conference on Communications (LATINCOM), pages 1-6. IEEE, 2017.

Rong N Chang, Chinya V Ravishankar, and Jacob Slonim. A service acquisition mechanism for the
client/service model in cygnus. In CASCON, pages 323-345, 1991.

10

Yehia Elshater, Khalid Elgazzar, and Patrick Martin. godiscovery: Web service discovery made
efficient. In 2015 IEEE International Conference on Web Services, pages 711-716, 2015. doi:
10.1109/ICWS.2015.99.

Bryan Ford, Mike Hibler, and Jay Lepreau. Using annotated interface definitions to optimize rpc. In
Proceedings of the fifteenth ACM symposium on Operating systems principles, page 232, 1995.

M Fowler and J Lewis. Microservices, March 2014. URL http://martinfowler.com/articles/
microservices.html.

Google. Introduction to grpc, 2023. URL https://grpc.io/docs/what-is-grpc/
introduction/|

R E Hilpisch, R Duchscher, M Seel, et al. Wireless communication protocol, May19 2009. URL
https://patents.google.com/patent/US75629565B2/en. U.S. Patent No. 7,529,565.

Longda Huang, Weijin Zhuang, Mingyang Sun, and Hong Zhang. Research and application of
microservice in power grid dispatching control system. In 2020 IEEE 4th Information Technology,
Networking, Electronic and Automation Control Conference (ITNEC), volume 1, pages 1895-1899.
IEEE, 2020.

Yen-Min Huang and Chinya V Ravishankar. Designing an agent synthesis system for cross-rpc
communication. IEEE transactions on software engineering, 20(3):188-198, 1994.

David Hutchison. Engineering the Web in the Big Data Era, volume 9114. 2015. ISBN 978-3-319-
19889-7.

Shweta Iyer, G. V. Bansod, Praveen Naidu V, and Shefali Garg. Implementation and evaluation
of lightweight ciphers in mqtt environment. In 2018 International Conference on Electrical,
Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), pages 276—
281, 2018. doi: 10.1109/ICEECCOT43722.2018.9001599.

Bruce Jacob and Trevor Mudge. Support for nomadism in a global environment. In Proc. Workshop
on Object Replication and Mobile Computing, 1996.

Geonwoo Kim, Seongju Kang, Jiwoo Park, and Kwangsue Chung. An mqtt-based context-aware
autonomous system in onem2m architecture. /IEEE Internet of Things Journal, 6(5):8519-8528,
2019. doi: 10.1109/JI0T.2019.2919971.

Leonard Kleinrock. Nomadic computing—an opportunity. ACM SIGCOMM Computer Communica-
tion Review, 25(1):36-40, 1995.

Jong-Kun Lee. A group management system analysis of grpc protocol for distributed network
management systems. In SMC’98 Conference Proceedings. 1998 IEEE International Conference
on Systems, Man, and Cybernetics (Cat. No. 98CH36218), volume 3, pages 2507-2512. IEEE,
1998.

Zonghao Lu. A case study about different network architectures in federated machine learning, 2020.

Milica MATIC, Marija ANTIC, Istvan PAPP, and Sandra IVANOVIC. Optimization of mqtt com-
munication between microservices in the iot cloud. In 2021 IEEE International Conference on
Consumer Electronics (ICCE), pages 1-3, 2021. doi: 10.1109/ICCE50685.2021.9427602.

B Cli ord Neuman, Steven Seger Augart, and Shantaprasad Upasani. Using prospero to support
integrated location-independent computing. In Proceedings of the Usenix Symposium on Mobile
and Location-Independent Computing, 1993.

Srdan Popi¢, Drazen Pezer, Bojan Mrazovac, and Nikola Tesli¢. Performance evaluation of using
protocol buffers in the internet of things communication. In 2016 International Conference on
Smart Systems and Technologies (SST), pages 261-265. IEEE, 2016.

Abdulrahman Sameer Sadeq, Rosilah Hassan, Salah Sleibi Al-rawi, Ahmed Mahdi Jubair, and
Azana Hafizah Mohd Aman. A qos approach for internet of things (iot) environment using mqtt
protocol. In 2019 International Conference on Cybersecurity (ICoCSec), pages 59-63, 2019. doi:
10.1109/ICoCSec47621.2019.8971097.

11

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://grpc.io/docs/what-is-grpc/introduction/
https://grpc.io/docs/what-is-grpc/introduction/
https://patents.google.com/patent/US7529565B2/en

Benyamin Shafabakhsh, Robert Lagerstrom, and Simon Hacks. Evaluating the impact of inter process
communication in microservice architectures. In QuASoQ@ APSEC, pages 55-63, 2020.

D Soni and A Makwana. A survey on mqtt: a protocol of internet of things (iot). In International
conference on telecommunication, power analysis and computing techniques (ICTPACT-2017),
volume 20, pages 173-177, April 2017.

Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Rik Van de Walle, and Joaquim Gabarré
Vallés. Efficient runtime service discovery and consumption with hyperlinked restdesc. In 2011
7th International Conference on Next Generation Web Services Practices, pages 373-379. IEEE,

2011.

12

What are the emerging trends and future
directions in multi-cloud management?

Daniele Quartinieri
Department of Computer Science
Universiteit van Amsterdam (UvA)
daniele.quartinieri@student.uva.nl

Farimah Mohebi
Department of Computer Science
Universiteit van Amsterdam (UvA)
farimah.mohebi®@student.uva.nl

Daniel Garcia
Department of Computer Science
Universiteit van Amsterdam (UvA)
daniel.garcia.gaviria@student.uva.nl

June 5, 2023

Abstract

Presently, cloud computing is widely regarded as the preferred approach
for addressing service execution requirements. Nevertheless, there exist
multiple methods for implementing cloud computing, with each approach
being optimal for specific needs and necessitating particular evaluations.
The paper commences with a comprehensive introduction to cloud service
and deployment models, followed by an analysis of the advantages and
disadvantages of cloud computing, ultimately culminating in a discussion
of Multi-cloud. The present study centers on the current status, challenges,
and prospective advancements of Multi-cloud, with a particular emphasis
on the management complexities and developments associated with it.

1 Introduction

Cloud computing is defined as “a way to architect and remotely manage computing
resources” [28]. Through the latest twenty years cloud computing has gained
more and more popularity, this can be noticed by the Figure [1| showing AWS,

one of the most famous CSP’s (cloud service provider) revenues from Q1’14 -

Q3722 [23).

Q3'14
Q1'15
Q3'15
Ql'l6
Q3'16
Q1'17
Q3'17
Q1'18
Q3'18

Q3'19
Q120
Q320
Q121
Q321
Q122
Q3 22
0 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000 22,500 25,

Revenue in million dollars

Figure 1: AWS Revenue from Q1’14 - Q3’22

Cloud computing can be provided through various service and deployment
approaches.

Cloud computing service models can be categorized into three main types:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS) [9]. According to [8] Software as a Service (SaaS)"the
consumer can operate a software on the provider’s cloud system, typically over
the Internet". Based on the cited source, in the context of Platform as a
Service (PaaS), "the provider allows the consumer to use the cloud network as
a platform for their own developed or acquired programs." The Infrastructure
as a Service (IaaS) model involves the provision of virtual storage and machines
to the consumer.

Based on , Cloud deployment models/types can be categorized as follows:
A private cloud is a type of cloud infrastructure that is allocated for the
use of a single organization, which may consist of multiple consumers such
as business units. The term community cloud refers to a cloud computing
infrastructure that is allocated for the sole use of a particular community of
consumers, consisting of organizations that share common concerns. The term
public cloud refers to a cloud computing model where the cloud infrastructure is
made available for unrestricted use by the general public. The concept of hybrid
cloud pertains to a cloud infrastructure that comprises multiple, separate cloud
infrastructures such as private, community, or public clouds. These individual
entities are integrated through standardized or proprietary technology, which
facilitates data transfer and applications across the different clouds. An example

of this is cloud bursting, which allows for load balancing between clouds.

To determine the appropriate cloud deployment model, it is necessary to
assess the cloud based on the specific requirements of the final product. According
to the summary provided by [17], the advantages of cloud computing can be
delineated as follows:

The ability to “Satisfy business requirements on demand, by resiz-
ing the resource occupied by application to fulfill the changing the customer
requirements”, The ability to achieve “Lower cost and energy saving, by
making use of low cost PC, customized low power consuming hardware and
server virtualization, both CAPEX and OPEX are decreased” and The ability to
“Improve efficiency of resource management, through dynamic resource
scheduling”

According to [17], the drawbacks of cloud computing can be summarized
as follows: The issue of privacy and security is a significant concern for
customers who prioritize the safeguarding of their personal information and data
security over conventional hosting services. The term "continuity of service"
pertains to various factors that may potentially impede the seamless operation of
cloud computing, including but not limited to issues with internet connectivity,
power outages, service interruptions, and system glitches. Presented below are
some common instances of such issues: In November of 2007, RackSpace, a
competitor of Amazon, experienced a service disruption lasting three hours due
to a power outage at its data center. Similarly, in June of 2008, Google App
Engine service experienced a six-hour interruption due to storage system bugs.
Finally, in March of 2009, Microsoft Azure encountered a 22-hour service outage
caused by an operating system update. The present public cloud provider, which
operates on virtualization, stipulates a service reliability of 99.9% in its Service
Level Agreement (SLA). In addition, the migration of services represents a
significant challenge within the context of cloud computing. There is a lack of
consensus among regulatory bodies regarding the standardization of the external
interface of cloud computing.

In order to address certain apprehensions associated with cloud computing,
such as those pertaining to privacy, security, and continuity of service, various
hosting infrastructure strategies, such as Hybrid-cloud and Multi-cloud, may
be implemented.

The concepts of multi-cloud and hybrid cloud both involve integrating multiple
cloud services. However, the distinguishing factor between the two lies in the
deployment type of the cloud. Specifically, hybrid-cloud pertains to the utilization
of two or more distinct types of cloud (i.e., public or private), while multi-cloud
pertains to the utilization of various clouds from different vendors, all of the
same type (i.e., public or private) [26][14]. Adopting a multi-cloud strategy
may entail the utilization of either two public cloud infrastructures or two
private cloud infrastructures. The implementation of a hybrid cloud strategy
entails the utilization of both a public cloud infrastructure and a private cloud
infrastructure|26].

2 Literature / background

2.1 Multi-cloud computing challenges

In reference to |7], some of the multi-cloud’s challenging characteristics are the
concept of workload portability, which refers to developing an application
only once and deploying it on multiple cloud computing platforms. And the
concept of workflow portability pertains to sustaining a uniform workflow
across multiple clouds. The concept of data portability that refers to the
ability to transfer data from one cloud platform to another. Finally, traffic
portability that pertains to the capability of directing traffic among clients
that are located in different geographic locations.

Some of these challenges are introduced by the practice of Cloud-Service-
Providers’ (CSP) to vendor lock. With vendor lock, we define “a situation
where the cost of switching to a different vendor is so high that the customer
is essentially stuck with the original vendor.”’|27] “Vendor lock-in problem in
cloud computing is characterized by expensive and time-consuming migration
of application and data to alternative providers. Cloud software vendors lock
in customers in several ways: (1) by designing a system incompatible with
software developed by other vendors; (2) by using proprietary standards or
closed architectures that lack interoperability with other applications; (3) by
licensing the software under exclusive conditions”[15]

Vendor locking can be mitigated on various levels by the adoption of non-
proprietary technologies that are supported by multiple vendors/CSPs. To make
some examples, on the containers and cluster level, an option could be Docker
for containers and Kubernetes for clusters, while on an IaaS level, an option
could be an open-source TaaS platform like OpenStack which can be public or
private [19] and can be hosted by multiple CSP’s.

Access management and authorizations are another Multi-cloud computing
challenge. This is due to the need for operators to manage authorizations
and access multiple cloud instances. A significant challenge in a multi-cloud
environment is the increased responsibility placed on the organization to ensure
the security of data stored across multiple cloud providers and the secure exchange
of information between them. Another challenge is to support, as it is imperative
that the end user is not required to be concerned with the provider responsible for
delivering a service. As such, it becomes necessary to incorporate a client-support
or self-service feature|2].

2.2 Multi-cloud computing benefits

The adoption of multi-cloud computing has gained significant attention among
enterprises because of its diverse advantages, as outlined by [16]; these advantages
include: Managing service peaks, balancing cost efficiency and service excellence,
responding to modifications in provider offerings, implementation of certain
limitations such as new regulations or geographical locations, ensuring the
availability of resources and services, creating backups for unexpected outages

or planned maintenance, serving as an intermediary, and improving one’s own
cloud services and resources through agreements with third-party providers.

2.3 The current state of multi-cloud management

According to [10], due to the increasing complexity of multi-cloud architectures,
it is likely that more organizations will use multi-cloud management tools in the
coming years.

Based on [11], the growth of the multi-cloud management market is antic-
ipated as businesses increasingly investigate and adopt various cloud service
providers. Enterprises are expected to seek comprehensive solutions for manag-
ing their multi-cloud. In addition to the existing methodology, there will be a
heightened need for platforms that facilitate the management of multiple clouds.
In numerous aspects, the year 2023 has the potential to serve as the foundational
year for managing multi-cloud environments, both in terms of strategic planning
and operational implementation.

2.4 Multi-cloud management current solutions and trends

The usage of management tools is critical in multi-cloud environments due to the
additional layer of complexity introduced to the cloud architecture, despite the
numerous advantages that multi-cloud offers. The subject matter pertains to the
interplay between platform heterogeneity, management control, and automated
application deployment|21].

Using multi-cloud management can enable organizations to leverage the
advantages of different cloud services while avoiding the challenges of managing
numerous platforms. Managing multiple clouds also facilitates transparency,
as the associated tools typically allow overseeing workloads and other metrics.
Moreover, Multi-cloud management tools offer advantages such as aiding IT
departments in implementing security policies and providing proactive assistance
in identifying potential security vulnerabilities. These tools can also facilitate
the management of expenses |25|. Furthermore, they allow developers to expedi-
tiously and reliably generate applications. Multi-cloud management solutions
commonly offer automated provisioning functionality and workflow management
[18].

Current solutions and trends of multi-cloud management include utilizing
multi-cloud tools and multi-cloud platforms.

2.4.1 DevOps tools

Greater cloud coverage can increase the potential for misconfigurations, resulting
in security vulnerabilities, unanticipated system behavior, suboptimal resource
allocation, and excessive monthly cloud expenditures [5].
Infrastructure-as-code (IaC) solutions, namely Chef, Puppet, Ansible, and
Terraform, belong to the category of DevOps tools that generate policy-based
templates to ensure uniform configuration and provisioning of cloud-based server

environments. These tools aid in mitigating the likelihood of misconfigurations
and eliminate the need for conjecture when administering servers on various
platforms [5]. For example, Terraform is a cloud-agnostic tool that facilitates
the management of multiple providers through a single configuration. The
system is capable of managing interdependent resources across multiple cloud
platforms. The simplification of infrastructure management and orchestration
helps operators in constructing extensive multi-Cloud infrastructures|18].

Continuous integration and continuous delivery CI/CD tools, includ-
ing Jenkins, GitLab, and Spinnaker, facilitate the automation of the application
building and deployment process across various cloud environments. These mea-
sures decrease the administrative burden. In addition, they facilitate the early
detection and resolution of bugs by developers during the delivery phase, a fea-
ture that proves especially advantageous when implementing code modifications
across multiple environments [5].

2.4.2 Package Management tools

Software supply chain management solutions, such as Cloudsmith, JFrog Arti-
factory, and GitHub Packages, offer a secure and centrally managed repository
for storing and organizing the diverse artifacts of an application|5].

Application dependency management can be simplified by utilizing tools
that facilitate the management of containers, scripts, and libraries. These tools
can seamlessly integrate into the continuous integration/continuous deployment
(CI/CD) pipeline. The aforementioned approach is especially advantageous
in intricate multi-cloud scenarios, as it affords entities a prompt and effective
mechanism for disseminating their software resources to diverse sites within their
cloud infrastructure[|.

2.4.3 Cloud Cost Management tools

Achieving optimal cloud cost is a challenging task, even in the case of basic
deployments. Using cost-optimization tools that possess multi-cloud capabilities
can aid users in maximizing the value of their on-demand infrastructure by
identifying the most economically efficient provider for each of their workloads.
Cloud cost management platforms that offer support for multiple clouds com-
prise Apptio Cloudability, CloudZero, and Flezera One. According to [6], Cost
management tools are among the most commonly utilized types of multi-cloud
tools.

2.4.4 Cybersecurity tools

The security of data is a significant apprehension among end-users in multi-
cloud settings. Safeguarding said environments from potential attacks and
intrusions is a significant area of focus within both academic research and
industrial applications[4]. In multi-cloud environments, deploying firewalls and
other standard rule-based security protection solutions is insufficient to guarantee
the safety of user data.

Clients have the option to utilize the internal security measures offered by in-
dividual cloud providers. However, these security measures are typically tailored
to their respective platforms, rendering them inadequate for ensuring security
across multiple cloud environments. In contrast, non-proprietary tools typically
lack vendor specificity and can facilitate clients in centrally managing security.
For example, The aforementioned solutions encompass general-purpose capabili-
ties that cater to multi-cloud environments, such as Lacework, F5, Cloudflare,
and CrowdStrike. Additionally, composite tools, such as security information
and event management (SIEM) systems, are utilized to consolidate and
scrutinize data obtained from diverse sources. And specialized tools, such as
Cloud Security Posture Management (CSPM) and Cloud Infrastruc-
ture Entitlement Management (CIEM), are utilized to monitor and analyze
configurations and permissions in cloud environments.

The authors of [20] presented a solution to address security concerns in
multi-cloud environments. They established the feasibility of utilizing supervised
machine learning techniques to detect anomalies and categorize attacks. They
utilized a widely used dataset that is accessible to the public to construct and
evaluate machine learning models for the identification and classification of
various types of attacks. The researchers have employed two distinct supervised
machine learning methodologies, including linear regression (LR) and random
forest (RF). The findings indicate that despite achieving flawless detection,
the precision of categorization may still be compromised by the existence of
resemblances among various attacks. The findings indicate a detection accuracy
of over 99% and a categorization accuracy of 93.6%, albeit with certain attacks
being uncategorized. Moreover, the authors contend that this classification can
be extended to multi-cloud environments by utilizing identical machine learning
methodologies.

2.4.5 Containers

Containers have recently gained significant popularity as a virtualization alter-
native to conventional virtual machines. Containers utilize the kernel of the host
operating system (OS) to access the necessary underlying resources instead of
employing a hypervisor. This attribute facilitates the duplication of containers
across disparate servers featuring distinct configurations, subject to the condition
that the operating system of each server employs an identical or compatible
Linux kernel. Consequently, their high level of portability makes them well-suited
for deployment across various cloud environments [5].

Docker is a prominent platform that is based on Linux, and it is used for the
development, transportation, and execution of applications through virtualization
that is container-based. The management of a number of containers within a
Docker cluster can present challenges, and as a result prompting the emergence
of container-centric orchestrators such as Docker Swarm, Google Kubernetes, and
Apache Mesos. The automation of provisioning and management of intricate
containerized deployments across different hosts and locations is achieved by
using container-level orchestration|24].

2.4.6 Artificial Intelligence & Machine Learning

According to [12], globally, individuals utilizing cloud services are exploring
advanced cloud management tools that incorporate artificial intelligence (AI)
technology to facilitate the automation of cloud performance optimization and
identification of anomalies. To achieve efficacy across multiple cloud environ-
ments, artificial intelligence tools necessitate a shared representation of cloud
services and the provision of machine learning optimization that caters to diverse
objectives. Additionally, machine learning (ML) has garnered considerable inter-
est in cloud and multi-cloud computing, primarily due to the cost-effective ML
services offered by public cloud providers. Machine learning techniques facilitate
the analysis of patterns in parameters of cloud entities, thereby enabling the
optimization, classification, and prediction of cloud workloads. The coherent
implementation of machine learning technology across different cloud platforms
necessitates a unified depiction of said entities. Obstacles to achieving optimal
results include challenges such as selecting appropriate reference sets, defining
distance metrics, and considering nonfunctional properties. Resolving these
obstacles is imperative for completely utilizing machine learning in multi-cloud
settings and augmenting cloud administration competencies.

Some examples of using Al and ML in multi-cloud management are |20]
which they proposed machine learning for Anomaly Detection and Categoriza-
tion in Multi-Cloud Environments, and [1] that in multi-cloud environments, an
Al-driven collaborative Intrusion Detection System (IDS) is employed as the
methodology; by using machine learning techniques, historical feedback data is
effectively leveraged to facilitate proactive decision-making. Additionally, Utiliz-
ing a Denoising Autoencoder (DA) is a fundamental component in constructing
a deep neural network, enabling the system to render determinations regarding
dubious intrusions despite receiving only partial feedback. The evaluation of
the model using real-life datasets indicates a high level of detection accuracy,
reaching up to 95%. Artificial intelligence can also be used for resolving IoT
multi-cloud scheduling because of the complexity of multi-cloud scheduling [3].

3 Discussion

3.1 Future trends in multi-cloud managements

Subsequent investigations pertaining to multi-clouds ought to prioritize the
establishment and maintenance of standardized protocols. In addition to the
existing literature on multi-cloud computing, further research endeavors should
prioritize the integration of multi-cloud with other cutting-edge technologies such
as machine learning and big data. This is because these technologies have the
potential to effectively address the current challenges associated with multi-cloud
computing.|22]

Based on our research for this literature study, we decided to categorize
future trends in multi-cloud management into three different categories.

3.1.1 Artificial Intelligence & Machine Learning

Artificial intelligence (AI) and machine learning (ML) are predicted to be used
for the purpose of automating a wider range of tasks in multi-cloud management,
including workload balancing and disaster recovery. Additionally, these technolo-
gies are expected to offer more profound insights into cloud usage, performance
and enhance decision-making processes in multi-cloud environments.

3.1.2 Security

With a complex multi-cloud environment, there is a natural worry about security
because the number of threats is growing. The modern, digital-native world is
becoming more vulnerable to cyberattacks, and a multi-cloud ecosystem needs
specific types of security to protect its data and protect the privacy of its clients,
vendors, and employees. In a multi-cloud environment, companies will look for
ways to break down the walls between their technical and security teams|11].

Using AT and ML in multi-cloud management tools is something new, and
based on what we have found, it is mostly used for security purposes, as it is
mentioned before in the Multi-cloud management current solutions and trends
section. It is predictable that AI and ML will be used again for enhancing
security in multi-cloud management.

3.1.3 Cost management

Companies may optimize multi-cloud costs in 2023. Vendor management and
multi-cloud ecosystem use will be important here. The technical teams won’t
be the only ones responsible for creating a culture of justifying and optimizing
multi-cloud spending. Leaders of functional groups will regularly communicate
the impact of underutilized cloud instances and resources. Organizations will
also invest in multi-cloud management platforms and find ways to reduce their
unused cloud consumption|11].

The influence of artificial intelligence in various fields is undeniable. Therefore,
using artificial intelligence to optimize cost management in multi-cloud is not
out of mind.

4 Conclusion

In conclusion, multi-cloud computing has several challenges and benefits, chal-
lenges such as: workload, data, traffic portability, and vendor lock-in. On the
other hand, multi-cloud computing has advantages such as effective service
management, cost-efficiency, adaptability, and resource availability. The trend
toward using multi-cloud computing and adopting management tools indicates
the recognition of the need for efficient multi-cloud management. Prominent
solutions include multi-cloud management tools and platforms. For example,
DevOps tools, package management, cost optimization tools, cybersecurity mea-
sures, and container technologies. Future trends involve the integration of Al

and ML in multi-cloud management, enhanced security, and optimized cost
management. Overall, multi-cloud computing provides a compelling choice for
enterprises seeking resource management and access to diverse cloud services.

References

(1]

2]

13l

4]

5]
16]
7]

18]

19]

[10]

Adel Abusitta et al. “A deep learning approach for proactive multi-cloud
cooperative intrusion detection system”. In: Future Generation Computer
Systems 98 (Sept. 2019), pp. 308-318. DOI: |10.1016/j.future.2019.03,
043.

Paul Alpar and Ariana Polyviou. “Management of Multi-cloud Computing”.
In: Global Sourcing of Digital Services: Micro and Macro Perspectives. Ed.
by Ilan Oshri, Julia Kotlarsky, and Leslie P. Willcocks. Cham: Springer
International Publishing, 2017, pp. 124-137. 1SBN: 978-3-319-70305-3.

Yi-jie Bian, Lu Xie, and Jing-qi Li. “Research on influencing factors of
artificial intelligence multi-cloud scheduling applied talent training based
on DEMATEL-TAISM”. In: Journal of Cloud Computing 11 (Aug. 2022).
DOI: |10.1186/513677-022-00315-4.

Jens-Matthias Bohli et al. “Security and Privacy-Enhancing Multicloud Ar-
chitectures”. In: IEEE Transactions on Dependable and Secure Computing
10.4 (2013), pp. 212-224. DO1: [10.1109/TDSC.2013.6.

FADDOM. The Top 10 Multi-Cloud Solutions for 2023. https://faddom,
com/multi-cloud-solutions/. Mar. 2023.

Flexera. State of the Cloud 2022. https://path.flexera.com/cm/
report-state-of-the-cloud-2022. 2022.

HashiCorp. What is Multi-Cloud € Why are Companies Adopting it?
Video. YouTube, Aug. 2019. URL: https://www.youtube.com/watch?v=
1Xnfn8p5m4Q.

J. Hong et al. “An Overview of Multi-Cloud Computing”. In: Web, Artificial
Intelligence and Network Applications: Proceedings of the Workshops of the
33rd International Conference on Advanced Information Networking and
Applications (WAINA-2019). Vol. 33. Springer International Publishing,
2019, pp. 1055-1068.

Hamza Ali Imran et al. “Multi-Cloud: A Comprehensive Review”. In: 2020
IEEE 23rd International Multitopic Conference (INMIC). 2020, pp. 1-5.
DOI: [10.1109/INMIC50486.2020.9318176.

Kyriakos Kritikos, Pawel Skrzypek, and Feroz Zahid. “Are Cloud Platforms
Ready for Multi-cloud?” In: Mar. 2020, pp. 56-73. 1SBN: 978-3-030-44768-7.
DOI: 110.1007/978-3-030-44769-4_5.

10

https://doi.org/10.1016/j.future.2019.03.043
https://doi.org/10.1016/j.future.2019.03.043
https://doi.org/10.1186/s13677-022-00315-4
https://doi.org/10.1109/TDSC.2013.6
https://faddom.com/multi-cloud-solutions/
https://faddom.com/multi-cloud-solutions/
https://path.flexera.com/cm/report-state-of-the-cloud-2022
https://path.flexera.com/cm/report-state-of-the-cloud-2022
https://www.youtube.com/watch?v=1Xnfn8p5m4Q
https://www.youtube.com/watch?v=1Xnfn8p5m4Q
https://doi.org/10.1109/INMIC50486.2020.9318176
https://doi.org/10.1007/978-3-030-44769-4_5

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

LTIMindtree. 5 multi-cloud trends to look out for in 2023. Article. LTI-
Mindtree, 2023. URL: %7Bhttps://www.ltimindtree.com/wp-content/
uploads/2023/01/5-multi-cloud-trends-to-look-out-for-in-
2023- Article . pdf ?utm_source=organic&utm_medium=whitepaper&
utm_content=600000511762199&utm_campaign=1ltimindtree+-+cloudH
servicesy7D.

Beniamino Di Martino, Antonio Esposito, and Ernesto Damiani. “Towards
Al-Powered Multiple Cloud Management”. In: IEEE Internet Computing
23.1 (2019)7 pp. 64—71. DOI: |[10.1109/MIC.2018.2883839.

P. Mell and T. Grance. “The NIST Definition of Cloud Computing”. In:
(2011).

Multi-cloud vs. Hybrid Cloud: What’s the Difference? https: //wuw |
cloudflare.com/learning/cloud/multicloud-vs-hybrid-cloud/k

Justice Opara-Martins, R. Sahandi, and Feng Tian. “Critical Review of
Vendor Lock-in and its Impact on Adoption of Cloud Computing”. In: Nov.
2014. DOI: 10.1109/i-Society.2014.7009018.

Dana Petcu. “Multi-Cloud: expectations and current approaches”. In: Mul-
tiCloud ’13. 2013.

L. Qian et al. “Cloud Computing: An Overview”. In: Cloud Computing:
First International Conference, CloudCom 2009, Beijing, China, December
1-4, 2009. Proceedings. Vol. 1. Springer Berlin Heidelberg, 2009, pp. 626—
631.

Pethuru Raj and Anupama Raman. In: Software-Defined Cloud Centers:
Operational and Management Technologies and Tools. Cham: Springer
International Publishing, 2018, pp. 185-218. 1sBN: 978-3-319-78637-7. DOI:
10.1007/978-3-319-78637-7_9. URL: https://doi.org/10.1007/978+
3-319-78637-7_9.

Tiago Rosado and Jorge Bernardino. “An Overview of OpenStack Archi-
tecture”. In: Proceedings of the 18th International Database Engineering €
Applications Symposium. July 2014, pp. 366-367.

Tara Salman et al. “Machine Learning for Anomaly Detection and Catego-
rization in Multi-Cloud Environments”. In: 2017 IEEE jth International
Conference on Cyber Security and Cloud Computing (CSCloud). 2017,
pp. 97-103. DoI: [10.1109/CSCloud.2017. 15|

Faiza Samreen, Gordon Blair, and Matthew Rowe. “Adaptive decision
making in multi-cloud management”. In: Dec. 2014, pp. 1-6. DOI: |10.1145/
2676662.2676676.

Paul Schmidt. “Literature Review on Multi Cloud Management”. In: Semi-
nar IT-Management in the Digital Age (Winter 2022). FH Wedel. Wedel,
Germany, 2022.

Statista. Amazon Web Services: Quarterly Revenue 2014-2022. https :
//www.statista.com/statistics/250520/forecast-of -amazon-web-
services-revenue. Feb. 2023.

11

%7Bhttps://www.ltimindtree.com/wp-content/uploads/2023/01/5-multi-cloud-trends-to-look-out-for-in-2023-Article.pdf?utm_source=organic&utm_medium=whitepaper&utm_content=600000511762199&utm_campaign=ltimindtree+-+cloud+services%7D
%7Bhttps://www.ltimindtree.com/wp-content/uploads/2023/01/5-multi-cloud-trends-to-look-out-for-in-2023-Article.pdf?utm_source=organic&utm_medium=whitepaper&utm_content=600000511762199&utm_campaign=ltimindtree+-+cloud+services%7D
%7Bhttps://www.ltimindtree.com/wp-content/uploads/2023/01/5-multi-cloud-trends-to-look-out-for-in-2023-Article.pdf?utm_source=organic&utm_medium=whitepaper&utm_content=600000511762199&utm_campaign=ltimindtree+-+cloud+services%7D
%7Bhttps://www.ltimindtree.com/wp-content/uploads/2023/01/5-multi-cloud-trends-to-look-out-for-in-2023-Article.pdf?utm_source=organic&utm_medium=whitepaper&utm_content=600000511762199&utm_campaign=ltimindtree+-+cloud+services%7D
%7Bhttps://www.ltimindtree.com/wp-content/uploads/2023/01/5-multi-cloud-trends-to-look-out-for-in-2023-Article.pdf?utm_source=organic&utm_medium=whitepaper&utm_content=600000511762199&utm_campaign=ltimindtree+-+cloud+services%7D
https://doi.org/10.1109/MIC.2018.2883839
https://www.cloudflare.com/learning/cloud/multicloud-vs-hybrid-cloud/
https://www.cloudflare.com/learning/cloud/multicloud-vs-hybrid-cloud/
https://doi.org/10.1109/i-Society.2014.7009018
https://doi.org/10.1007/978-3-319-78637-7_9
https://doi.org/10.1007/978-3-319-78637-7_9
https://doi.org/10.1007/978-3-319-78637-7_9
https://doi.org/10.1109/CSCloud.2017.15
https://doi.org/10.1145/2676662.2676676
https://doi.org/10.1145/2676662.2676676
https://www.statista.com/statistics/250520/forecast-of-amazon-web-services-revenue
https://www.statista.com/statistics/250520/forecast-of-amazon-web-services-revenue
https://www.statista.com/statistics/250520/forecast-of-amazon-web-services-revenue

[24]

[25]

[26]

[27]

28]

Orazio Tomarchio, Domenico Calcaterra, and Giuseppe Di Modica. “Cloud
resource orchestration in the multi-cloud landscape: a systematic review
of existing frameworks”. In: Journal of Cloud Computing 9 (Sept. 2020),
p- 49. DOI: |10.1186/513677-020-00194-7.

VMware. What is Multi-Cloud Management? | VMuware Glossary. Website.
Dec. 2022. URL: %7Bhttps ://www . vmware . com/ topics /glossary/
content/multi-cloud-management.html?,7D.

What is Multicloud? https://www.redhat . com/en/topics/cloud -
computing/what-is-multicloud. Accessed on: [20 May 2023 |.

What is vendor lock-in? | Vendor lock-in and cloud computing. Webpage.
Cloudflare, n.d. URL: https://www.cloudflare.com/learning/cloud/
what-is-vendor-lock-in.
T. B. Winans and J. S. Brown. Cloud Computing: A Collection of Working
Papers. Deloitte LLC, 2009.

12

https://doi.org/10.1186/s13677-020-00194-7
%7Bhttps://www.vmware.com/topics/glossary/content/multi-cloud-management.html%7D
%7Bhttps://www.vmware.com/topics/glossary/content/multi-cloud-management.html%7D
https://www.redhat.com/en/topics/cloud-computing/what-is-multicloud
https://www.redhat.com/en/topics/cloud-computing/what-is-multicloud
https://www.cloudflare.com/learning/cloud/what-is-vendor-lock-in
https://www.cloudflare.com/learning/cloud/what-is-vendor-lock-in

Business Models in the Cloud: A High Level
Framework for Selecting Cloud-Based Data Solutions

Xander AKkiko Snelder Thomas Webbers
11598727 13508741
University of Amsterdam Vrije Universiteit Amsterdam
Amsterdam, The Netherlands Amsterdam, The Netherlands
xander.snelder2@student.uva.nl t.w.b.webbers@student.vu.nl
Yixin Hu
14751135

University of Amsterdam
Amsterdam, The Netherlands
yixin.hu@student.uva.nl

Abstract

This essay provides a comprehensive exploration of cloud computing, focusing
on its emergence, service models, and deployment models. It also investigates
the crucial factors in selecting an optimal cloud service solution, considering
different business needs and data types. A comparative analysis of Cloud Service
Providers (CSPs) is carried out, evaluating aspects like reputation, reliability,
security standards, support services, and compliance. The paper further delves into
the process of optimizing and implementing cloud solutions, outlining steps for
selecting an optimal plan, evaluating benefits, pricing, flexibility, and Total Cost of
Ownership (TCO). Implementation steps such as migration, performance testing,
reliability, and training testing are discussed, and the essay concludes with a section
on monitoring and adjusting for performance and technology trends.

1 Introduction

In recent years, cloud computing has revolutionized the IT industry by providing an alternative to
traditional on-premises computing. By 2021, the amount of data stored in the public cloud has
surpassed both consumer devices and traditional data centers (see Figure 4 and Figure 5). Alongside
this, there has also been an increase in Cloud Service Providers (CSP), which makes it challenging
for businesses to choose an optimal cloud service. This literature study aims to provide a high-level
framework which can help guide businesses in making this crucial decision. The scope of this study is
specifically on cloud-based data solutions from three of the biggest cloud service providers: Amazon
Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). This paper aims to
answers the following reseach question:

"What are the key factors that influence the choice of cloud-based data solutions
among businesses?"

Access of Software
as a Service via web
browser

Access of Software
as a Service via API

Software

o] cious
[+1] e |- Gl

Abstraciion of raw
hardware resources
through virtualization

Access of scalable
and virtualized
infrastructure as a
service via AP|
(utiity computing)

Scalability
Dynamic adjustment
of provisioned IT

resources to variable (e | O \1
load J \s
M

Figure 1: Defining features of Cloud Computing [21]

1.1 Emergence of Cloud Computing

Prior to the rise of cloud computing, a traditional on-premise computing infrastructure was the norm
for the majority of organizations. On-premise computing refers to an internally hosted infrastructure.
This means organizations are solely responsible for the design, implementation, and maintenance
of their computers and servers [16]. Although this on-premise approach allows organizations to
have total control over their hardware, software, and data, the authors of Peng et al. [[16] mentioned
that this approach carries drawbacks. Two of these are: significant upfront costs and the need for
time-consuming upgrades. In contrast, cloud computing technologies offer similar infrastructure but
instead, from a third-party hosted as a service over the internet. This provides a solution of the above
mentioned disadvantages, through a diminishing need for initial hardware investments. Additionally
this also reduces expenses and internal risks associated with system maintenance and upgrades [16].

There are many definitions for the term cloud computing, Stanoevska-Slabev et al. [21] summarize
these definitions as a new computing paradigm that provides on-demand infrastructure, resources
and applications. Cloud computing is characterized by its pay-per-use business model, and its main
features are virtualization and on demand dynamic scalability (see Figure 1). "Cloud Computing
abstracts from the underlying hardware and system software through virtualization. The virtualized
resources are provided through a defined abstracting interface (an Application Programming Interface
(API) or a service). Thus, at the raw hardware level, resources can be added or withdrawn according
to demand posted through the interface, while the interface to the user is not changing. This
architecture enables scalability and flexibility on the physical layer of a Cloud without impact on
the interface to the end user." [21]. In conclusion, businesses do not need to purchase, own, and
maintain physical data centers and servers anymore. They can purchase resources like computing
power, storage, and databases as a service from a CSP.

1.2 Service Models

Zhang et al. [27] describes three main categories of cloud computing services: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). They all aim to provide
the benefits of the cloud but do this in different ways. Each category delivers an increasing level of
abstraction from the underlying infrastructure. All service models allow businesses to focus more on
their strategic and operational tasks, and worry less about the management of the IT infrastructure.
Below are the three categories as defined by Zhang et al.[27]:

1. Infrastructure as a Service (IaaS): This service model allows the provisioning of infrastruc-
ture resources over the internet on an on-demand basis, typically in the form of Virtual
Machines (VMs). This eliminates the need for businesses to invest in setting up and
maintaining physical servers, storage, and network infrastructure.

2. Platform as a Service (PaaS): This service model allows the provisioning of platform layer
resources over the internet that encompass support for operating systems and software

development frameworks. Developers can build, test, deploy, and maintain applications
without the complexities of setting up and managing the underlying infrastructure.

3. Software as a Service (SaaS): This service model provisions on-demand applications over
the internet. A third-party provider hosts applications which users can access over the
internet without the complications of installation and maintenance.

1.3 Deployment Models

A deployment model is a specification of how cloud computing resources are managed and who can
access them. Each model has its own strengths and weaknesses, and is suitable for different needs.
The optimal model typically depends on the specific requirements of a business. Mell and Grance
[12] have described four deployment models:

1. Private cloud: This cloud infrastructure is exclusively provided for the sole utilization of a
single organization containing multiple business units. The ownership, management, and
operations are hosted on a private network and are maintained by the organization itself, an
external third party, or a combination of both. The physical location of the private cloud can
be either on-site (on-premises) or off-site.

2. Community cloud: This cloud infrastructure refers to a collaborative system utilized by a
particular community of users that share a common interest. The ownership, management,
and operations are maintained by one or more of the organizations in the community, an
external third party, or a combination of both. Just like the private cloud, the community
cloud can exist either on or off-premises.

3. Public cloud: This cloud infrastructure is openly available for the use of the general public.
The ownership, management, and operations can be a diverse range of entities including
businesses, academic institutions, government bodies, or a combination of them. The public
cloud is physically located at the cloud provider.

4. Hybrid cloud: This cloud infrastructure is a combination of two or more previously men-
tioned distinct cloud deployment models (private, community, public). Each deployment
model retains their distinct identity, but is interconnected through standardized or proprietary
technology. This interconnection facilitates data and application portability. Hybrid clouds
can offer the security of private clouds, the collaborative potential of community clouds, and
the scalability of public clouds.

2 Defining the Business Needs

The first and possibly the most critical step in choosing the optimal cloud service solution is defining
a business they needs. Businesses should consider several key factors, for example, a business dealing
with mainly ordinal data might use different analytical tools than a business primarily handling
interval data. Different data types may require distinct data storage and management systems, which
in turn can affect costs, efficiency, and performance. [19]

2.1 Storage of Different Data Types

A business should understand the type of data it processes before selecting the optimal cloud service
data solution. "Due to their different characteristics, each data type requires a specialized storing
system, as inappropriate storing reduces performance, robustness, flexibility, and scalability. Hence,
it is important to identify a sophisticated strategy for storing and synchrosizing different types of data
structures in a way they provide the best mix of the previously mentioned properties.” [19]

2.1.1 Qualitative Data

According to Heiss [9], data can generally be categorized as nominal, ordinal, interval, and ratio. Both
nominal and ordinal data are referred to as categorical or qualitative data. Examples of qualitative
data are raw textual data from interviews, online content, or documents. This kind of data needs
minimal structuring to be analyzed. The main difference between nominal and ordinal data is that
ordinal data has an inherent order or ranking, and nominal data does not.

2.1.2 Quantitative Data

Interval and ratio data are both defined as numerical or quantitative data [9]. Quantitative data is
characterized by a high degree of standardization, and can be obtained through close-ended questions.
This type of data needs to be ranked before analyzed. The main difference between ratio and interval
data is that interval data has no natural zero point, thus interval data will have negative values and
ratio will not.

2.2 Big Data Challenges

Although there is still disagreement among data specialists about the precise definition of big data, in
particular about the number of "V’s" (this will be elaborated upon below) that should be considered,
Lake and Crowther [[11]] characterize big data as volume, velocity, variety, and veracity. These big
data characteristics require high-demanding storage, processing, and analysis systems [4]. This need
is further emphasized by the continuing global surge in data generation. By understanding their own
data characteristics, a business can better decide which CSP they need when deploying a cloud-based
data solution. For instance, high data volume requires robust and scalable storage solutions, while
high-velocity data demands capabilities for real-time processing and analysis [4].

2.2.1 Volume

Volume is the most straightforward aspect of big data. The storage of data - a crucial requirement
of any data-driven business - is an important consideration when dealing with large volumes of
data. Businesses need to understand their current storage requirements in terms of volume and
scalability. These two aspects may have a big impact on the ability to efficiently manage and utilize
data [4]]. The International Data Corporation (IDC) predicts that the Global Datasphere will grow
from approximately 33 Zettabytes in 2018, to 175 Zettabytes by 2025 (see Figure 5). Furthermore,
49% of the world’s stored data will reside in public cloud environments, and 75% of the global
population will interact with data on a daily basis [18]]. As stated by Lake and Crowther[11], volume
will bring the most significant challenge for data professionals in the upcoming future.

2.2.2 Velocity

Not only the volume of data will pose significant challenges, but also the velocity will cause substantial
complexities. The velocity of big data refers to the speed at which data is instantly being generated,
processed, and analyzed [[L1]. In 2020, approximately 5% of the global data sphere is represented by
real-time data. By 2025, this number will increase to 30% (see Figure 7). Furthermore, the average
data interaction per day per person connected to the internet will increase from 1,426 in 2022, to
4,900 by 2025 (see Figure 8).

2.2.3 Variety

The variety of big data refers to the different types of data that businesses have to deal with. In
general, three types of data can be considered: structured data (e.g., clean and processed data in
databases), semi-structured data (e.g., JSON and XML files), and unstructured data (e.g., emails and
social media content) [5]. The majority of data is represented by unstructured data, approximately
80% of organizational data is unstructured [[19]]. It requires processing power and skilled employees
to structure and clean data. Each type of data may require different storage, processing, and analytical
capabilities. This data variety influences which CSP is most suitable.

2.2.4 Veracity

The veracity of big data is characterized as the quality and trustworthiness of data [11]]. It is a crucial
factor in ensuring the quality of data analysis and the efficacy of machine learning models. If the
quality of data is compromised, it inevitably undermines the reliability of data analytics and machine
learning models - a classic case of *garbage in, garbage out’. When choosing a cloud-based data
solution, businesses should evaluate the tools and services provided by the CSP for maintaining data
quality assurance and data governance.

2.3 Processing Power and Storage

Businesses should perform a thorough analysis of the current state of data-related operations and
usage within the organization. Some businesses will suffice with simple data processing and analytics,
meanwhile, others needs more advanced data solutions. The use of real-time data analytics often
requires more immediate processing power than batch processing [4]. Furthermore, complex machine
learning models with large datasets require a significant amount of computing power, and demand
optimized algorithms for training and deployment [4]. Understanding how a business utilizes its
data and the amount of processing power required, is an important aspect in finding the optimal
cloud-based data solution.

Additionally, businesses should anticipate their potential to upscale, a critical element that might be
overlooked upon. Expanding or growing a business might influence the demand for resources in the
future, for example, the requirements related to storage power and processing power. Businesses
should choose a CSP that offers the scalability to accommodate future growth or expansion.

2.3.1 Data Processing Techniques

Stream processing is defined as data being processed immediately when it arrives, meanwhile,
batch processing is when data is collected over some period of time and then processed at once [4].
Batch processing is more efficient since it handles large amounts of data at the same time, which is
particularly useful when real-time data is not required. Examples of batch processing use cases are
Extract Transform Load (ETL) jobs and the training of machine learning models with large amounts
of training data. On the other hand, stream processing involves the continuous input and output
of data. Stream processing is particuraly useful for applications that demand timely or immediate
insights or responses [4]. Examples of use cases of stream processing are fraud detection in banking
transactions, live monitoring of system logs in cybersecurity, and monitoring of Internet of Things
(IoT) devices.

2.3.2 Example of Data Processing Techniques

In some applications, both batch processing and stream processing can be utilized. For instance, a
financial organizations that deploys a machine learning model to detect fraud detection in credit card
transactions [4]. Initially, batch processing is performed to train the model on a historical dataset of
transactions. Once the model is trained, it recognizes non-fraudulent and fraudulent patterns. Stream
processing can be used to deploy the model in a live environment that evaluates the transactions in
real-time. The model makes predictions on whether a transaction is fraudulent or not using live data.
This allows the financial organization to take immediate action when a potential fraud is detected,
and leverages both the efficiency of batch processing and the responsiveness of stream processing.

3 Comparison of Cloud Service Providers

Business operations encompass a myriad of practical requirements, thus necessitating a comprehen-
sive, multi-dimensional analysis when determining the optimal cloud service provider. This chapter
serves to methodically compare the leading service providers in the market - Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud Platform (GCP) - based on a variety of critical aspects.

Although additional factors, such as the geographical location of data centers, may warrant considera-
tion, the scope of this analysis is primarily directed towards the most significant and relevant elements
influencing the selection of cloud-based data solutions.

The focus on AWS, Azure, and GCP is motivated by their predominant positions in the market
and their extensive service portfolios. This analytical approach provides a balanced and in-depth
perspective that aids businesses in making an informed decision consistent with their operational
needs and strategic objectives.

3.1 Reputation

Reputation, reflecting public sentiment and a multitude of user experiences, is fundamental as it
serves as a proxy for the commitment to quality by the service provider. Among the three providers,

)
0
i s
aws A\ Azure Google Cloud

Figure 2: Top 3 Market Share of Cloud Service Providers.

Amazon Web Services (AWS) boasts the longest operational history and arguably the most esteemed
reputation in the industry. As the preferred choice of many leading global firms, AWS commands
a substantial share of the cloud industry, at least as of my knowledge cutoff in September 2021.
Although Microsoft’s service, Azure, entered the market later than Amazon Web Services (AWS), it
has quickly increased its market share, particularly among larger companies that already utilize other
Microsoft products. Despite being the newest of the three major providers, Google Cloud Platform is
developing a solid reputation. Because of Google’s long-standing history in data processing, many
firms have confidence in it.

3.2 Reliability

Reliability, signifying a provider’s ability to uphold continuous and unwavering service, is an essential
factor as it ensures operational continuity and decrease potential losses for businesses. AWS, Azure,
and Google Cloud have distinguished themselves as reliable providers in the cloud service landscape.
AWS has a proven track record of providing extremely dependable services, which is supported by its
remarkable resume [2]]. AWS guarantees an uptime of 99.99% through its Service Level Agreement
(SLA). Similar to AWS, Azure offers a comparable SLA that ensures dependability and availability
thanks to its resilient architecture[13]]. The infrastructure of Google Cloud is also strong, and it
offers a SLA that is competitive with both AWS and Azure, highlighting its dedication to providing
trustworthy services[8]].

3.3 Security Standards

The ability of service providers to protect sensitive data from potential threats is fundamental, particu-
larly for businesses dealing with sensitive or confidential data. AWS provides a comprehensive array
of global, cloud-based security services, including threat detection, data encryption both at rest and in
transit, and DDoS mitigation. It adheres to a shared responsibility model, where AWS ensures cloud
security, while the client manages security in the cloud [2]. Microsoft Azure provides a comparable
set of security services and follows a shared responsibility paradigm. Furthermore, Microsoft has a
lengthy history in enterprise security, making it a reliable choice for many businesses[[13]. GCP also
provides a robust set of security measures and adheres to the same shared responsibility paradigm.
GCP is deemed trustworthy and secure due to Google’s vast experience with internet security[[].

3.4 Support Services

The provision of sufficient support by cloud service providers is paramount to swiftly address potential
issues, thereby minimizing downtime and limiting potential impacts on operational efficiency.

AWS offers an array of support plans, extending from complimentary basic support to more premium
plans such as Developer, Business, and Enterprise. These plans present varying levels of service to
cater to diverse business needs.

Azure mirrors this approach, offering four distinct support levels: Basic, Developer, Standard, and
Professional Direct, each characterized by different service levels, response times, and availability of
support engineers.

Similarly, Google Cloud Platform provides a spectrum of support levels, ranging from complimentary
to premium. Higher tiers provide enhanced access to technical support and expedited response times,
ensuring businesses receive the level of support commensurate with their needs.

3.5 Compliance

This perspective is critical for businesses operating in regulated sectors or with sensitive data, ensuring
they meet their legal obligations. Privacy is an important aspect when choosing a cloud-based service.
Different industries have specific data privacy requirements and regulations. This is particularly
significant when business are dealing with highly sensitive data, which requires different levels of
protection and privacy mechanisms. [20]. AWS is a suitable option for companies in highly regulated
industries due to its extensive list of compliance certifications, which includes GDPR, HIPAA,
FedRAMP, SOC 1/2/3, and ISO 27001. Azure also has a long list of compliance certifications and is
well renowned for being a top option for many companies in regulated industries, especially due to
its potent hybrid cloud configuration features. Similar to AWS and Azure, GCP offers a long list of
compliance certifications and has made progress toward being more accommodating to regulated
businesses.

4 Optimizing and Implementing Solutions

Once businesses have defined their requirements and compared potential cloud service providers
(CSPs), the next crucial step is to select the right cloud service plan. This decision should be
guided by the plan’s features, pricing model, flexibility, and total cost of ownership (Marston, Li,
Bandyopadhyay, Zhang, & Ghalsasi, 2011).

4.1 Selecting and Evaluating the Optimal Plan
4.1.1 Benefits of cloud computing

Cloud computing offers a pletora of new features. The book: "Cloud Computing Fundamentals"[6]]
identifies the following:

1. Scalability: Cloud computing allows for resources on demand and due to the new advances
in micro service architecture horizontal scaling also allows for scalability for individual
services.

2. User-centric interface: The distributed and isolated nature of cloud interfaces means that
they can be accessed regardless of location. Furthermore they are ussually reachable via
common tools such a web browsers.

3. Guaranteed Quality of Service: Possibly the most important reason for its inception, due
to its monitoring features coupled with its distributed nature, cloud computing can provide
QoS guarantees in CPU performance, bandwidth and memory.

4. Autonomous sytem: Cloud computing piggybacks on the exiting internet routing protocols
to automaitcally route a service correctly to a user. Additionally data from the services can
be downloaded to a single machine for ease of use.

5. Pricing: Cloud computing does not require intital hardware costs or even maintenance
allowing for lower startup capital

4.1.2 Cloud computing Price

Pricing is an important aspect to consider when choosing a cloud computing service.The book:
"Cloud Computing Fundamentals"[6] has this nice table giving an overview of pricing:

Resource UNIT Amazon Google Microsoft

Stored data GB per month $0.10 $0.15 $0.15
Storage transaction Per 10 K requests $0.10 $0.10
Outgoing bandwidth GB $0.10 - $0.17 $0.12 $0.15
Incoming bandwidth GB $0.10 $0.10 $0.10
Compute time Instance Hours $0.10 - $1.20 $0.10 $0.12

Figure 3: Price comparison for CSP

(6]

4.1.3 Flexibility

Flexibility refers to the ability of the service plan to adapt to changes in the business’s needs and
demands. Zhang et al. [260] seems to suggest that due to the modular nature of cloud services they
are inherently flexible when it comes to a business needs. Therefore flexibility does not need to be
considered throughly when slecting a CSP.

4.1.4 TCO (Total Cost of Ownership)

The cost of ownership of a cloud computing services goes beyond upfront costs. Walterbusch et
al.[23]] found that decisions about cloud computing services are usually adhoc. Furthermore, due
to factors such as vendor lock-in and bandwidth cost it is not straight forward to determine. They
divided this cost into four categories:

1. Initiation: An analysis of current and desired IT infrastructure and services, choice of cloud
type and a definition of service types and programming environment (language and tools

2. Evaluation: The search process of finding all the aspects of initiation as well as a complete
evaluation of the capabilities of the CSP and their reputation. The reported price is also
taken into consideration, but the price that the CSP provides is often found to be severely
underestimated.

3. Transition: Implementation, configuration, integration and migration of the service, this also
includes access authorisation and merging into existing IT infrastructure.

4. Operation: Support, initial training, ongoing training, maintenance and modification, system
failure and recovery and back sourcing.

Walterbusch et al.[23]] also provides equations for all these individual components per cloud and
service type but that goes far outside the scope of this paper.

4.2 Implementation and Testing
4.2.1 Migration

Migration: Migration is the process of transferring data, applications, and processes from the current
system to the cloud environment. Rai et al. [17]] did an extensive study on cloud migration and
found that cloud migration nearly always lacks dedicated support and tools. CM-tools do exist but
often have a specific focus and are infrequently used [[L7]. Additionally they propose a five step
methodology to migration.

. Feasibility study
. Requirement analysis and migration planning
. Migration execution

. Testing and migration validation

D AW N =

. Monitoring and maintenance

Another important aspect to consider when migrating is vendor lock-in[[15]. Opera-Martins et
al. found that one of the biggest barriers to cloud adoption is the risk vendor lock-in presents.

Furthermore the cost of changing providers is often under appraised until the moment of migration,
incurring more hidden costs. There is currently work underway to propose cloud-specific standards,
but because such standards affect the implementation level it is difficult to come to an consensus.[[15]]
Currently the best way to prevent vendor lock-in is a well thought out analysis that is case specific for
every application.

4.2.2 Performance testing

Performance Testing is the process of evaluating the efficiency and speed of the cloud services
under different load conditions. Gilliam et al. [[7] has done extensive research on cloud benchmarks.
First they looked at services that provided cloud comparison services. These were: CloudHarmony,
Cloudsleuth and OpenBenchmarking.org. A business looking to do performance testing and/or
choose a CSP based on performance would do well to consult these resources. Additionally Gilliam
et al. [7] has also created and performed their own benchmarks, and offers these as a web portal when
contacted [7], which is an extra step that a business can perform.

4.2.3 Reliability Testing

“Reliability in the cloud refers to the probability that the cloud delivers the services it is designed
for” [25]. As much as businesses would want this to be a guarantee the reality is that reliability is
difficult to achieve. Furthermore, none of the existing cloud services has achieved complete reliability.
[25] What can be achieved however is a robust stress testing system. Chaos Monkey [14] and its
successors belong to suite of open source tools called “Simian Army” [25]. Simian Army tests for
resiliency of cloud operations, covers reliability, security and recoverability. The basic idea behind
these tools is that they kill random micro services and VM’s and then check if the system still works.
It turns out that for software as well as people that the only way to avoid failure is to fail over and
over. This way of testing has become the de-facto standard for reliability testing and should definitely
be performed by any business deploying full scale software solutions via the cloud.

4.2.4 Training

As should now be obvious cloud computing technologies are quite complex. As is the case with any
complex system employees require extensive training. Global Digital Infrastructure did a survey
of 1212 companies and found that 70% of the respondents use SaaS technologies. Despite its wide
adoption employees have insufficient knowledge about the cloud and its benefits.[3]] Training has
not kept up with the technological advancements. [10] Kahle et al. proposes three ways in which
employees and the industry can be trained:

1. E-learning: online traineeships like the once offered by Kubernetes and AWS
2. Employee training: specialised in-house employee trading given by hired professionals

3. Student workshops: Due to the wide adoption of cloud computing, more and more workshops
and talks are given by students which are open for business employees as well

No significant differences were found in training needs for different CSP’s. However, AWS and larger
CSP’s do offer cloud traineeships and certificates[22]], this would be a good first step for a business
looking to train their employees.

4.3 Monitoring and Adjusting
4.3.1 Performance monitoring

The rapid change in scale composition neccesitates for cloud computing neccesitates sophisticated
performance monitoring. [24] Ward et al. [24] does an extensive study of both cloud and native
systems monitoring. They find that presently there is no universal monitoring strategy to select
such tools. Furthermore “most monitoring strategies are a patchwork of several monitoring tools
each which provide different functionality.” [24]. The most important creterions in such systems
include: health and network monitoring, metric gathering and log/event processing. Lastly it should
be mentioned that both Amazon and Google have made strides in this regard. Amazon has a service
known as Amazon Cloudwatch and Google has defined a new type of engineer namely a SRE (Site
Reliability Engineer). [24]]

4.3.2 Technology and Trend Monitoring

This involves staying abreast of the latest trends and developments in the cloud computing industry to
identify potential opportunities for improving the cloud service plan. Unfortunately this information
does not seem to be available in any literary work. It is also not clear from the CSP’s their own
metrics and data. Monitoring something like this would require expert knowledge of the emerging
technologies and wether they are implemented within the various CSP.

5 Discussion

This research has presented a birds eye view of the factors that influence a business their choice of
cloud solution. As such the first point of discussion is quantity over quality. Rather than focus on a
selection of the most important factors in detail the conscious choice was made to offer a complete
but somewhat shallow overview. As such the complete computations from Walterbusch et all[23] are
not included in this research despite these being very useful for anyone selecting a cloud computing
solution. Another point of contention in this research was the absence of information for three topics,
namely: Usability testing, System configuration and access control and lastly Support monitoring.
It would have been good to know which cloud solution was considered most user friendly, easy to
setup and also which had the best user support, regrettably no research could be found on this topics.
Perhaps this is an avenue of research for another group. Additionally, the information on training
needed to use the different cloud technologies was quite lacking, information that was considered
quite vital to have when making a choice for a cloud solution. Lastly, it should be mentioned that a
significant part of the corpus of this literature study uses information dating back several years which,
considering the speed of development in the cloud eco system, might make some of it dated.

6 Conclusion

The emergence, service models, and deployment models of cloud computing are all thoroughly
examined in this essay. Additionally, it looks into the critical criteria for deciding on the best cloud
service solution while taking into account various business requirements and data types. It compares
different Cloud Service Providers (CSPs) and assesses their reputation, dependability, security
requirements, customer assistance, and compliance. The process of designing and implementing
cloud solutions is further explored in the paper, which also outlines how to choose the best strategy and
assess its pros, cons, price, flexibility, and total cost of ownership (TCO). The essay concludes with
a section on monitoring and making adjustments for performance and technological developments.
Implementation stages such as migration, performance testing, reliability testing, and training testing
are described.

10

References
[1] Accenture - New insights. Tangible outcomes. New Applied Now, 2021. Accessed: 2023-05-25.

[2] Amazon Web Services. AWS Documentation. https://aws.amazon.com/
documentation/, 2023.

[3] Inaki Bildosola, Rosa Rio-Belver, Ernesto Cilleruelo, and Gaizka Garechana. Design and
implementation of a cloud computing adoption decision tool: Generating a cloud road. PloS
one, 10(7):e0134563, 2015.

[4] C.P. Chen and C.-Y. Zhang. Data-intensive applications, challenges, techniques and technolo-
gies: A survey on big data. Information Sciences, 275:314-347, 2014.

[5] A.C. Eberendu. Unstructured data: an overview of the data of big data. International Journal
of Computer Trends and Technology, 38(1):46-50, 2016.

[6] Borko Furht. Cloud computing fundamentals. Handbook of cloud computing, pages 3—19,
2010.

[7] Lee Gillam, Bin Li, John O’Loughlin, and Anuz Pratap Singh Tomar. Fair benchmarking for
cloud computing systems. Journal of Cloud Computing: Advances, Systems and Applications,
2(1):1-45, 2013.

[8] Google Cloud. Google Cloud Documentation. https://cloud.google.com/docs, 2023.

[9] R. Heiss. Data, types of. The International Encyclopedia of Communication Research Methods,
pages 1-6, 2017.

[10] Lisa Kahle-Piasecki, Matthew E Ritzman, and Doug Ellingson. Up in the cloud: Managers,
employees, and security training for cloud computing to avert cyber threats. American Journal
of Management, 17(7):58-63, 2017.

[11] P. Lake and P. A. Crowther. Concise Guide to Databases. 2013.

[12] Peter Mell and Timothy Grance. The nist definition of cloud computing. National Institute of
Standards and Technology (NIST), page 3, 2011.

[13] Microsoft. Azure Documentation. https://docs.microsoft.com/en-us/azure/, 2023.
[14] SAVED YOUR NETFLIX. Chaos engineering saved your netflix. system, 1(4).

[15] Justice Opara-Martins, Reza Sahandi, and Feng Tian. Critical analysis of vendor lock-in and its
impact on cloud computing migration: a business perspective. Journal of Cloud Computing,
5:1-18, 2016.

[16] George Peng and Cipriano Gala. Cloud erp: A new dilemma to modern organisations? Journal
of Computer Information Systems, 54(3):22-30, 2014.

[17] Rashmi Rai, Gadadhar Sahoo, and Shabana Mehfuz. Exploring the factors influencing the cloud
computing adoption: a systematic study on cloud migration. SpringerPlus, 4:1-12, 2015.

[18] D.Reinsel, J. Gantz, and J. Rydning. The digitization of the world: From edge to core. Technical
report, International Data Corporation (IDC), 2018.

[19] R. Sint, S. Schaffert, S. Stroka, and R. Ferstl. Combining unstructured, fully structured and
semi-structured information in semantic wikis. In Fourth Workshop on Semantic Wikis—The
Semantic Wiki Web 6 th European Semantic Web Conference, Hersonissos, Crete, Greece, June
20009.

[20] D.J. Solove and P. M. Schwartz. Information Privacy Law. Wolters Kluwer, New York, 2003.

[21] Katarina Stanoevska-Slabeva, Tim Wozniak, and Srdjan Ristol. Grid and Cloud Computing: A
Business Perspective on Technology and Applications, pages 47-50. 2009.

[22] Sarah Walker. Aws training, 2011.

11

https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/
https://cloud.google.com/docs
https://docs.microsoft.com/en-us/azure/

[23] Marc Walterbusch, Benedikt Martens, and Frank Teuteberg. Evaluating cloud computing
services from a total cost of ownership perspective. Management Research Review, 36(6):613—
638, 2013.

[24] Jonathan Stuart Ward and Adam Barker. Observing the clouds: a survey and taxonomy of cloud
monitoring. Journal of Cloud Computing, 3(1):1-30, 2014.

[25] Mazin Yousif. Cloud computing reliability—failure is an option. IEEE Cloud Computing,
5(3):4-5, 2018.

[26] Lin Zhang, H Guo, Fei Tao, YL Luo, and N Si. Flexible management of resource service
composition in cloud manufacturing. In 2010 IEEE International Conference on Industrial
Engineering and Engineering Management, pages 2278-2282. IEEE, 2010.

[27] Qi Zhang, Liang-Ping Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of Internet Services and Applications, 1(1):7-18, 2010.

12

A Appendix

Where is the data stored?

70%
60%
50%

Consumer %
40%

Enterprise %
30%

Public Cloud %
20%
10%

0%
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

Figure 4: Where is the data stored? [18]]

Data Stored in Public Clouds vs. Traditional Datacenters

100%
90%
80%
70% Enterprise Datacenters
60%
50%
40%
30%

20% Public Cloud

10%

0%
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

Figure 5: Data Stored in Public Clouds vs. Traditional Datacenters

Annual Size of the Global Datasphere
o P 175 ZB

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

Figure 6: Annual Size of the Global Datasphere [18]

Zetabytes

60

50

40

30

20

How Much of Global Datasphere is Real-Time?

35%
30%
25%
20%

e ——— % of Global
Datasphere

- Real-Time Data

10%

5%

— 0%

o
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

6,000

5,000

4,000

3,000

2,000

1,000

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

Figure 7: How Much of Global Datasphere is Real-Time? [18]]

The Number of Interactions/Capita/Day

4,909

1,426

2010 2015 2020 2025

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

Figure 8: Data Interactions per Connected Person Per Day [18]]

14

Performance of Serverless computing (lambda
function),
FaaS (functions as a service)

Ye Yuan Shaojie Hou
University of Amsterdam University of Amsterdam
ye.yuan2@student.uva.nl shaojie.hou@student.uva.nl
Yuhang Zhu

University of Amsterdam
yuhang.zhu@student.uva.nl

Abstract

This paper explores the performance aspects of serverless computing. The back-
ground and benefits of serverless computing are first presented, including improved
agility, scalability, and cost-effectiveness. Then the importance of performance
evaluation is discussed, including understanding latency and efficiency, identifying
opportunities for optimization, and reducing costs. Benchmarking and tools for
performance evaluation are then presented, as well as methods and important con-
cepts for performance modeling, such as function instances and cold starts. In the
performance optimization section, methods for reducing cold start time, such as
retry mechanisms, reducing the depth of the function call stack, circuit breakers,
and warm-up strategies, are explored. In addition, some real-world case studies
are given to show quantitative evaluation and comparison of the performance of
leading serverless platforms. Finally, challenges and future directions of serverless
computing are discussed, including containerization, utilization of legacy code,
stateful serverless, service-level agreements, edge computing, and new application
scenarios.

1 Introduction

Serverless computing represents a cloud computing paradigm that enables developers to create
and execute applications without the burden of managing underlying server infrastructure. By
leveraging this model, developers can solely focus on crafting code for their application’s core
functionality, while the cloud provider assumes responsibility for scaling, provisioning, and server
resource management. The benefits of serverless computing encompass heightened agility, scalability,
and cost-efficiency, as developers only pay for the actual execution time of their functions or services.
Consequently, exploring and understanding the performance aspects of serverless computing becomes
crucial to optimize resource utilization, meeting user expectations, and achieving cost savings.

The significance of studying serverless computing performance lies in various key factors. Firstly,
with the increasing popularity of serverless computing, evaluating its performance characteristics
becomes paramount for ensuring efficient resource utilization and meeting the demands of users.
By understanding the latency and efficiency of serverless infrastructures, developers can adeptly
create and launch applications capable of managing diverse workloads. Furthermore, evaluating
performance helps identify possible obstacles, areas with room for improvement, and optimization
approaches that enable developers to improve the overall performance and user satisfaction of

serverless applications. Furthermore, considering the "pay-as-you-go" structure of the serverless
business model, optimizing performance directly leads to substantial cost reductions.

The objective of this article is to offer a thorough overview of the performance aspects of serverless
computing. The structure encompasses multiple sections, starting with a deep dive into performance
evaluation. Here, we analyze various metrics associated with serverless applications and discuss
diverse approaches and methodologies for measuring and benchmarking the performance of serverless
functions and services. Subsequently, we delve into performance optimization methods specifically
tailored to serverless computing. This section covers a range of techniques aimed at boosting the
efficiency and responsiveness of serverless applications. In addition, practical case studies are
provided to exemplify instances of optimizing performance within serverless architectures. Finally,
the article examines the obstacles and future paths of performance research in serverless computing,
shedding light on emerging trends, areas for enhancement, and potential solutions that can further
elevate the performance of serverless applications.

2 Performance Evaluation

2.1 Benchmarking

In the paper Benchmarking Serverless Computing Platforms, Horacio Martins and Filipe Aradjo
propose a benchmarking test suite and an open-source software tool to evaluate the performance of
cloud serverless platforms.

2.1.1 Performance Evaluation Tests

In this study, the authors propose a suite of seven tests to evaluate the performance of serverless
computing platforms. These tests aim to assess various aspects of performance, including latency,
throughput, scalability, container lifecycle management, programming language impact, memory
allocation, and performance under computationally intensive tasks.

For example, one of the tests, the T1 Overhead test, focuses on evaluating the overhead imposed
by the serverless platform. It measures the latency of a low-computational-effort function to isolate
the execution time from other factors. By sequentially invoking the function over time, the latency
of each invocation is measured. The T1 Overhead test provides insights into the efficiency of the
serverless platform and helps to understand the impact of the platform’s infrastructure on the overall
performance. This test is particularly useful in understanding the baseline performance characteristics
of the platform and can serve as a benchmark for comparison with other tests and platforms.

2.1.2 Benchmarking Tool

To facilitate the performance evaluation of serverless computing platforms, the researchers developed
a benchmarking tool [10]. This tool automates the execution of tests, data collection, and generation
of performance plots. It offers extensibility, allowing the inclusion of additional tests, and it is
platform-agnostic. The tool’s architecture, depicted in Figure 1 following Simon Brown’s C4
model [2]], involves utilizing the open source serverless framework toolkit [5] and JMeter [1]]. It
employs a command-line interface and a test module, with file repositories storing the functions’
code, JMeter configuration files, and test results. Python was used for implementation. By utilizing
this benchmarking tool, the researchers effectively automated the performance evaluation process,
enabling comprehensive assessments of various serverless computing platforms.

2.2 Performance Modelling

In this section, we delve into the work of Nima Mahmoudi and Hamzeh Khazaei, who explored
the field of performance modeling in their paper Performance Modeling of Serverless Computing
Platforms, focusing on the understanding of scheduling algorithms and function instance states.
While official documentation on scheduling algorithms is scarce, previous research has shed light on
these algorithms through experimental investigations [[18]], [9], [[7], [14]. Leveraging these findings
and conducting their experiments, they aim to develop a tractable and accurate performance model
for modern serverless computing platforms. They introduce some concepts which are important to
the performance evaluation of serverless computing platforms.

\ \‘
Performs function deploy [HTTP|————

HTTP Request
U
e=—— I
| Wiite | -
Filesystem Filesystem . JMeter
‘ JMeter te_mplate Test re_sults Head and write Lo [Software]
' repository repository '+ Tool that runs
: ¥ Read and \ 4 i T performance tests
' ead an [
] Write :
' Cc dline || I
- Use [Shell] | interface Test management :
: [Python] Use mocue | ;
' Provides [Python] Use [Shell]
' command line Runs application !
User 3 functionality logic Use [Shell
Performs tests [L I I
i . Serverless

F k

] t » o '
3 “7U5e : L [Software] !
' H = Tool that deploys -
' Filesystem ; | functions on |
3 Functions repository serverless platforms
1

; : ® i] P
H H . e
I : - S D | — >
Benchmarking Tool ~ User Software Container Software Tool Serverl Platf Filesystem Relationshi
(Developed) (Existing) rverless Platform ys elationship

Figure 1: Container diagram of the benchmarking system[/16]

2.2.1 Function Instances

In serverless computing, computation is performed in function instances. These instances are fully
managed by the serverless computing platform provider and act as small servers to handle incoming
requests. The research paper emphasizes the importance of understanding the different states of
function instances, such as initializing, running, and idle, as well as the associated costs and billing
policies.

2.2.2 Cold Start and Warm Start

In the performance evaluation of serverless computing platforms, the concept of cold/warm start is of
significant importance. A cold start refers to the situation where a request triggers the launch of a new
function instance, which involves various setup activities such as provisioning virtual machines or
deploying functions. This results in additional overhead and increased response time for users. On the
other hand, a warm start occurs when a platform already has an idle instance available and can reuse it
for incoming requests without the need for launching a new instance. Warm starts are typically faster
than cold starts as they avoid the setup overhead. However, cold starts can be significantly longer
than warm starts, impacting application responsiveness and user experience. To address this issue,
extensive research has been conducted in the serverless computing field to mitigate cold starts and
improve overall performance [[13], [6]], [1S]. Various techniques and strategies have been proposed to
minimize the occurrence and impact of cold starts, aiming to enhance user satisfaction and application
performance.

2.2.3 Initialization Time

The initialization time refers to the duration from when a request is received by the serverless
platform until a new function instance is fully operational and ready to handle the request. It consists
of two components: platform initialization time and application initialization time. The platform
initialization time is the time taken by the serverless platform to prepare the function instance, while
the application initialization time is the time taken by the application to perform its initialization tasks,
such as establishing database connections or loading libraries. Optimizing the initialization time is
essential for enhancing the performance of serverless applications and improving user experience.

2.2.4 Response Time

In the context of scale-per-request serverless computing platforms, the response time typically
comprises two components: queuing time and service time. However, in these platforms, queuing
time is not applicable as incoming requests do not experience any queuing delay. Serverless computing
platforms exhibit linear scalability, meaning that the distribution of response time remains consistent
across varying workloads. To analyze and model the response time in serverless computing platforms,
delay centers [11] are employed, providing a framework for analytical evaluation. By leveraging delay
centers, the response time can be quantitatively studied and optimized within serverless architectures.

3 Performance Optimization

In this section, we discuss performance optimization methods that can be implemented for serverless
computing. Most of these methods revolve around minimizing the cold start and initializing time of
lambda functions, as they usually play the biggest role in serverless computing performance [10].

Firstly, a retry scheme can be implemented such that callers can simply take the next free resource
instead of waiting for a cold lambda to instantiate. It is important to consider the trade-off in this
approach, as retrying can potentially spin up a number of lambda functions [[17].

Secondly, the depth of the lambda function call stack should be taken into consideration when
designing a serverless computing-backed structure. As lambda functions have cold starts, this waiting
time can also accumulate with the call stack, therefore the lambda call chain should be kept short.

Thirdly, circuit breakers can be used to mitigate resource consumption when lambda functions are
unresponsive or erroneous. It can be identified that certain lambda functions should not be retried
because it’s returning too much error or simply unresponsive, a circuit breaker can be used to route
requests to another handler, presumably one that is less prone to error. This way, we can prevent
starting up new lambda functions that are doomed to fail, saving resources.

Finally, a warm-up strategy can be used so that a number of lambda functions are kept warm at all
times [4)]. If dummy calls are made to the lambda functions periodically, we can make sure that
some lambda functions are always available for use when needed. In AWS, this can be implemented
with Provisioned Concurrency. With Provisioned Concurrency enabled, functions are kept ready to
respond to requests, and start-up would be predictable [3]].

In conclusion, performance optimization in serverless computing involves implementing various
methods to improve resource availability, reduce latency, and mitigate errors. Firstly, a retry scheme
can be employed to minimize waiting time by allowing callers to use the next available resource
instead of waiting for a cold lambda instantiation. However, the trade-off of potential resource
consumption should be carefully considered. Secondly, to reduce cold start delays, the depth of the
lambda function call stack should be kept minimal, ensuring that waiting times do not accumulate
with each function call. Thirdly, circuit breakers can be utilized to prevent resource wastage when
unresponsive or error-prone lambda functions are encountered. By diverting requests to alternative
handlers, the use of resources can be optimized. Lastly, a warm-up strategy, such as using Provisioned
Concurrency in AWS, can ensure that a subset of lambda functions is kept warm at all times. Regular
dummy calls can be made to these functions, maintaining their readiness and predictability. By
implementing these performance optimization methods, serverless computing services can achieve
improved efficiency, reduced latency, and enhanced resource management.

4 Case Studies

Jinfeng Wen, Yi Liu, et al.[19] conducted a comprehensive study on the characteristics of mainstream
commodity serverless computing platforms (i.e., AWS Lambda, Azure Functions, Google Cloud
Functions, and Alibaba Cloud Function Compute), and quantitatively evaluated these several different
platforms as well, AWS Lambda, Azure Functions, Google Cloud Functions, and Alibaba Cloud
Function Compute), the actual performance of other serverless computing platforms were also
quantitatively evaluated by means of designed benchmark platforms, i.e., micro-benchmarks and
macro-benchmarks.

Language-Python

700
== AWS

_,3600 m Google
£ EEEE Azure
e EEE Alibaba
£
i:400
5300
n
T 200
o
o

100

0 128MB 256MB 512MB 1024MB 1536MB 2048MB

Memaory

Figure 2: The distribution of the cold start time with Python on different platforms.

As we can see in Figure 2, increasing memory size has varying effects on reducing cold start time
across serverless computing platforms. For AWS Lamba and Alibaba Cloud Function Compute,
adding more memory only increases the overhead cost.

Dong Xie, Yang Hu, et al.[20] evaluated the performance of open-source serverless computing
platforms (i.e., Knative, OpenFass) on X86 and ARM architectures.

25 Available pod num 24 Available pod num
————— Desired pod num -~~~ Desired pod num

N\

\

T T T T T T T T T
60 120 180 240 300 0 60 120 180 240 300
Time (s) Time (s)

(a) Knative-ARM (b) OpenFaaS-ARM

254 —— Available pod num 25 —— Available pod num
Desired pod num Desired pod num

A\

u T T T T T T T
60 120 180 240 300 0 60 120 180 240 300
Time (s) Time (s)

(c) Knative-X86 (d) OpenFaaS-X86

o @ 3 @
o o 3 &

o4

o « 3 @

o4

Figure 3: Auto scaling with steady workload. [20]

We can see from Figure 3 that serverless computing on the ARM platform fails to provide a robust
and stable auto scaler under a steady workload. and that Knative’s auto-scaling strategy is better than

that of OpenFaas and is more adaptable to the user’s needs. The authors also compare the situation
under other types of workloads, which are not repeated here due to space limitations.

These studies provide valuable information about the characteristics and performance of serverless
computing platforms and reveal the differences, advantages, and disadvantages between different
platforms. This is an important reference for selecting and optimizing serverless computing platforms.

5 Challenges and Future Directions

In this section, we will discuss some of the challenges and future research directions for serverless
computing platforms.

5.1 Challenges

The challenges that serverless computing platforms now face are diverse, such as the cold start time
problem that we mentioned in our case study, and other problems faced by serverless computing
platforms as mentioned by Yongkang Li and Yanying Lin et al[12]:

e Isolation: There are three ways to isolate the workloads in Linux: 1)VM; 2)Containers;
3)Language VM. Figure 4 below shows the different security methods among the three
approaches, with the red symbols indicating the position of defending security. It illustrates
that the container is weakly isolated because it relies on the kernel’s security mechanism.

M

Application

[] Language-specific
Guest kernel application

Sandbox (Container) Sandbox
Sandbox
[VMM | (e.9. JVM)

X
| KVM ‘

Host Kernel

Figure 4: Different security approaches among Container, VM, and Language VM.[12]]

* Scheduling Policy: The existing scheduling mechanisms designed for cloud computing are
not amendable to serverless functions.

* Facility: The speed of data transfer in storage and network can greatly affect the system’s
performance.

* Fault Tolerance: Existing serviceless frameworks are not developed inherent strategies for
fault tolerance, otherwise they would just retry when function execution fails. This can lead
to errors when applications running in parallel could.

In general, challenges facing serverless computing platforms include startup latency issues, isolation
issues, inappropriate scheduling policies, facility-related performance issues, and the need for
improved fault-tolerance policies. These challenges require further research and development to
improve the capability and effectiveness of serverless platforms.

5.2 Future Directions
Paul Castroe and Vatche Ishakian et al.[§] have proposed several future research directions.

» System-level research opportunities: An important feature capability of serverless is the
ability to scale to zero, but this can lead to problems with cold starts. We can consider
whether containers are the right abstractions for running serverless applications.

* Legacy code in serverless: Developers have invested a lot of effort and time into existing
code, and we can consider the extent to which this legacy code can be automatically or
semi-automatically broken down into smaller granularities for utilization.

* Stateful serverless: Nowadays, most serverless platforms are stateless, and we can consider
whether stateful serverless platforms will emerge in the future and achieve different levels
of quality of service without sacrificing scalability and fault-tolerance.

* Service level agreements (SLA): Serverless computing is poised to make it easier to develop
services, but providing quality assurance of services is still difficult.

» Serverless at the edge: There is a natural connection between serverless capabilities and edge
computing, as events are often generated at the edge with the increased adoption of IoT and
other mobile devices. This may lead to specific requirements for redefining costs. Renchao
Xie and Qingin Tang et al.[21] mention that serverless edge computing nodes are not always
physically secure as they are exposed to direct attacks through kernel vulnerabilities. The
security issue here is also a potential research question.

* New serverless applications: The serverless programming model is inherently different, and
we can use serverless to come up with some new solutions and applications.

Here, we discuss separately the direction of stateful serverless development, nowadays most of the
serverless computing platforms are stateless. This design makes it easier to achieve elastic scaling,
fault tolerance, and parallelism. However, this design does not retain any state information between
function executions.

The concept of stateful serverless refers to the preservation and management of state information
in a serverless computing environment. The introduction of stateful can lead to richer application
scenarios: especially those that require consistent state between multiple function executions, and
higher performance: stateful computing platforms can store state information in memory to access
and update state data more quickly, thus improving performance. But stateful computing platforms
also face some challenges, such as managing and maintaining state information that may increase the
complexity of the system. Therefore, the decision of which design to use should be based on specific
application requirements, and the challenges faced by each design should be carefully considered,
weighing the advantages between them.

In summary, the future research directions for serverless computing include system-level inves-
tigations, handling legacy code, exploring stateful serverless platforms, improving service-level
agreements, considering serverless at the edge, and exploring new applications that can benefit from
the serverless programming model. These areas offer opportunities for further advancements and
enhancements in the field of serverless computing. However, since this paper was published in 2019
and serverless computing platforms are rapidly evolving, the future research directions mentioned in
this paper may have some limitations.

6 Conclusion

In this article, we provide an overview of the performance aspects of serverless computing. We
highlight the significance of studying serverless computing performance and its benefits in terms of
agility, scalability, and cost-efficiency.

In the section on performance evaluation, we discuss benchmarking as a method to evaluate the
performance of serverless computing platforms. We examine a benchmarking test suite proposed by
Horécio Martins and Filipe Aratjo and discuss various performance evaluation tests, such as latency,
throughput, scalability, and programming language impact. We also explore a benchmarking tool
developed by the researchers to automate the performance evaluation process.

Next, we delve into performance modeling, focusing on the work of Nima Mahmoudi and Hamzeh
Khazaei. We discuss the importance of understanding function instances and their states, such as
initializing, running, and idle, as well as the concepts of cold start and warm start. We highlight
the significance of performance modeling in developing accurate performance models for serverless
computing platforms.

In the section on performance optimization, we present several methods to optimize performance in
serverless computing. We discuss the implementation of a retry scheme, minimizing the depth of the
lambda function call stack, using circuit breakers, and employing a warm-up strategy. These methods
aim to improve resource availability, reduce latency, and mitigate errors in serverless applications.

In the case studies section, we examine studies conducted by Jinfeng Wen, Yi Liu, et al., and Dong
Xie, Yang Hu et al. These studies provide insights into the characteristics and performance of
mainstream commodity serverless computing platforms as well as open-source serverless computing
platforms.

Finally, we discuss the challenges and future directions in serverless computing. We highlight
challenges such as cold start time, isolation, scheduling policy, facility-related performance issues,
and fault tolerance. We also present future research directions, including system-level research
opportunities, legacy code in serverless, stateful serverless, service-level agreements, serverless at the
edge, and new serverless applications.

Overall, this article offers a comprehensive overview of the performance aspects of serverless com-
puting, including evaluation, modeling, optimization, case studies, challenges, and future directions.
It serves as a valuable resource for understanding and improving the performance of serverless
applications.

References
[1] Apache jmeter. Online. Accessed May 13th, 2020.

[2] The c4 model for software architecture. Online. Accessed May 13th, 2020.

[3] Operating Lambda: Performance optimization — Part 1 | Amazon Web Ser-
vices — aws.amazon.com. https://aws.amazon.com/blogs/compute/
operating-lambda-performance-optimization-part-1/. [Accessed 05-Jun-2023].

[4] Serverless Architectures with AWS Lambda: Overview and Best Practices | Amazon
Web Services — aws.amazon.com. https://aws.amazon.com/blogs/architecture/
serverless-architectures-with-aws-lambda-overview-and-best-practices/.

[Accessed 05-Jun-2023].
[5] Serverless, the way cloud should be. Online. Accessed May 13th, 2020.

[6] David Bermbach, Ahmet Selguk Karakaya, and Stefan Buchholz. Using application knowledge
to reduce cold starts in faas services. In Proceedings of the 35th ACM/SIGAPP Symposium on
Applied Computing, 2020.

[7] D. Bortolini and R.R. Obelheiro. Investigating performance and cost in function-as-a-service
platforms. In International Conference on P2P, Parallel, Grid, Cloud and Internet Computing,
pages 174—185. Springer, 2019.

[8] Paul C. Castro, Vatche Isahagian, Vinod Muthusamy, and Aleksander Slominski. The server is
dead, long live the server: Rise of serverless computing, overview of current state and future
trends in research and industry. ArXiv, abs/1906.02888, 2019.

[9] K. Figiela, A. Gajek, A. Zima, B. Obrok, and M. Malawski. Performance evaluation of
heterogeneous cloud functions. Concurrency and Computation: Practice and Experience,
30(23):e4792, 2018.

[10] Phani Kishore Gadepalli, Gregor Peach, Ludmila Cherkasova, Rob Aitken, and Gabriel Parmer.
Challenges and opportunities for efficient serverless computing at the edge. In 2019 38th
Symposium on Reliable Distributed Systems (SRDS), pages 261-2615, 2019.

[11] Mor Harchol-Balter. Performance Modeling and Design of Computer Systems: Queueing
Theory in Action. Cambridge University Press, 2013.

[12] Yongkang Li, Yanying Lin, Yang Wang, Kejiang Ye, and Chengzhong Xu. Serverless computing:
state-of-the-art, challenges and opportunities. IEEE Transactions on Services Computing,
16(2):1522-1539, 2022.

[13] Po-Ming Lin and Avi Glikson. Mitigating cold starts in serverless platforms: A pool-based
approach. arXiv preprint arXiv:1903.12221, 2019.

[14] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. Serverless computing: An
investigation of factors influencing microservice performance. In 2018 IEEE International
Conference on Cloud Engineering (IC2E), pages 159—-169. IEEE, 2018.

[15] Jorg Manner, Manuel Endre3, Tobias Heckel, and Gregor Wirtz. Cold start influencing factors
in function as a service. In 2018 IEEE/ACM International Conference on Utility and Cloud
Computing Companion (UCC Companion), pages 181-188. IEEE, 2018.

[16] H. Martins, F. Araujo, and P.R. da Cunha. Benchmarking serverless computing platforms.
Journal of Grid Computing, 18:691-709, 2020.

[17] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira, Neeraja J. Yad-
wadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and David A. Patterson. What
serverless computing is and should become: The next phase of cloud computing. Commun.
ACM, 64(5):76-84, apr 2021.

https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/architecture/serverless-architectures-with-aws-lambda-overview-and-best-practices/
https://aws.amazon.com/blogs/architecture/serverless-architectures-with-aws-lambda-overview-and-best-practices/

[18] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. Peeking behind the curtains of serverless
platforms. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 133-146,
2018.

[19] Jinfeng Wen, Yi Liu, Zhenpeng Chen, Junkai Chen, and Yun Ma. Characterizing commodity
serverless computing platforms. Journal of Software: Evolution and Process, page €2394, 2021.

[20] Dong Xie, Yang Hu, and Li Qin. An evaluation of serverless computing on x86 and arm
platforms: Performance and design implications. In 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD), pages 313-321. IEEE, 2021.

[21] Renchao Xie, Qingin Tang, Shi Qiao, Han Zhu, F Richard Yu, and Tao Huang. When serverless
computing meets edge computing: Architecture, challenges, and open issues. IEEE Wireless
Communications, 28(5):126-133, 2021.

10

Distributed Graph Neural Network Training

Yi Rong Hongyu Wu Jiahui Xiong
Vrije Universiteit Vrije Universiteit Vrije Universiteit
y.rong@student.vu.nl wu2@student.vu.nl xiong20@student.vu.nl
Abstract

This paper presents a comprehensive review of strategies and techniques aimed at
enhancing the efficiency of distributed training for Graph Neural Networks (GNNs).
GNNs have emerged as powerful deep learning models with wide-ranging appli-
cations. However, scaling these models to handle large graphs efficiently poses a
significant challenge. In this work, we delve into the intricacies of distributed train-
ing methods, highlighting the specific challenges that arise when training GNNs in
a distributed manner. We provide a detailed overview of common approaches and
techniques that have been proposed to overcome these challenges. Additionally,
we identify potential areas for future research and development in the domain of
distributed training for graph data.

1 Introduction

GNNs have indeed gained widespread adoption across various real-world applications in critical
domains, owing to their superior capabilities. Their versatility in handling graph-structured data
has made them valuable tools in numerous fields. Social Networks: GNNs have been extensively
employed in social network analysis, enabling tasks such as community detection, recommendation
systems, influence modeling, and predicting user behavior. Recommendation Systems [23]]: GNNs
have proven effective in enhancing recommendation systems by incorporating graph-based infor-
mation. They can leverage the relationships between users, items, and their attributes to provide
personalized recommendations. Bioinformatics: GNNs are utilized in analyzing biological networks,
such as protein-protein interaction networks and gene regulatory networks. They assist in tasks
like protein function prediction, drug discovery, and disease classification. Knowledge Graphs [16]:
GNNss are valuable in reasoning and knowledge representation tasks within knowledge graphs. They
enable semantic understanding, entity linking, question-answering systems, and knowledge graph
completion. Natural Language Processing [24]]: GNNs are employed in tasks like sentiment analysis,
text classification, named entity recognition, and document summarization by representing text data
as graphs and capturing dependencies between words or sentences. Recommendation in E-commerce:
GNNss are utilized to enhance product recommendation systems by considering user-item interactions,
item similarities, and user similarities within a graph structure.

However, both industry and academia are eagerly anticipating advancements in accelerating GNN
training due to the following reasons:

The rapid expansion of graph data has led to a significant increase in the time required for training
Graph Neural Networks (GNNs). The proliferation of information on the Internet contributes to
the continuous generation and modification of new graph data, including the establishment and
dissolution of interpersonal relationships in social communication and shifts in people’s preferences
for online shopping. These graph structures now consist of vertices and edges reaching or even
surpassing the order of billions and trillions, as reported in previous studies [20]. The growth rate of
graph sizes is astonishing, exemplified by the annual growth rate of 17% in the number of vertices
(i.e., users) in Facebook’s social network [20]]. Consequently, the training time for GNNs experiences
a significant surge due to the ever-expanding scale of graph data.

2 Graph neural networks

Graph neural networks (GNNs) have emerged as the leading approach for learning over graph data
[28], surpassing other algorithmic models. While deep neural networks (DNNs) have proven effective
for analyzing Euclidean data like images [9], they face challenges when dealing with graph data from
non-Euclidean domains due to the intricate topology and arbitrary size of graphs [4]. Furthermore,
one significant drawback of deep learning paradigms, as recognized by the industry, is their limited
capability for causal reasoning, which hinders the cognitive abilities of intelligent systems [[1]].

In response to these challenges, GNNs have become the premier paradigm for graph learning,
empowering intelligent systems with enhanced cognitive capabilities. Figure [1| (b) provides an
illustration of GNNs. Given graph data as input, GNNs employ forward and backward propagation
to update the model parameters. The trained model can then be applied to various graph-related
tasks, including vertex prediction [[7]] (predicting properties of specific vertices), link prediction [25]
(predicting the existence of edges between vertices), and graph prediction [26] (predicting properties
of the entire graph), as depicted in Figure[T](c).

@ Forward Propagation

\ -
. - y i Layer N /"f p
r[J/I\,/L) — e GaQ, rem Vertex Prediction
Y ’R‘/'\ Input IoA© F AP —
(.

@ Backward Propagation

— Edge (b) Training of Graph Neural Network 12
; 2%
ﬂsmmp o 7 Link Prediction
Abstract \)
o O O

W
—_— * - T
@0 i :
@‘. i @@ : : : GO?’g i Q\é{)—) (T\t % (Graph Prediction
@ | C Nndcl | Computing Nnde‘ E!H!pllllll‘_‘ i\ud—c‘ s " -~
I - I \u v

600 |z

(a) Graph (d) Distribtued Training (c) Graph Tasks

Network Topology ‘

Figure 1: Distributed GNN training: (a) Illustration of graphs; (b) Illustration of training; (c)
lustration of graph tasks.[10]]

2.1 Background

Graphs.A graph is a data structure composed of vertices and edges, providing a flexible framework
for representing relationships among objects of varying sizes and undefined structures. This type of
data, referred to as non-Euclidean data, does not possess the same highly structured form as Euclidean
data, as illustrated in[2](a) and (b). However, by utilizing vertices to represent objects and edges to
denote relationships between objects, graphs offer an effective means of representing non-Euclidean
data, including social networks and knowledge graphs.

Graph Neural Networks.Graph Neural Networks (GNNs) have emerged as a highly promising
algorithmic model for extracting knowledge from graph data [31]. GNNs operate by taking graph
data as input and learning a representation vector for each vertex in the graph. These learned
representations can then be leveraged for various downstream tasks, including vertex prediction [[7],
link prediction [25], and graph prediction [27]. GNNs have demonstrated their efficacy in capturing
complex relationships within graph data and enabling effective knowledge extraction and prediction
tasks.

In the context of a graph G with an adjacency matrix A and a feature matrix X, where each row repre-
sents the initial feature vector x of a vertex v in the graph G, the Ith layer of a Graph Neural Network
(GNN) updates the vertex features by aggregating information from their respective neighborhoods.
This process can be formalized in matrix view as follows:

H' = o(AH'W Y (1

where H L is the hidden embedding matrix and H0 = X, W1 is the model weights, A is normalized
and o is a non-linear function, e.g. Relu, Sigmoid, etc. The local view of GNN computation is the
computation of a single vertex. Given a vertex v, the local computation of Ith layer in the message
passing schema can be formalized as below :

hy = (b @u (e(hy b b)) @

Cu,v

Euclidean Data

(a)

W,

Non-Euclidean Data

6 (1)

(b)

Figure 2: Illustrations of Euclidean and non-Euclidean data: (a) Image from Euclidean space; (b)
Graph data from non-Euclidean space.[10]]

Distributed training.Distributed training distributes the computational tasks across multiple com-
puting devices for parallel processing, speeding up the training process and improving training
effectiveness. In distributed training, there is usually a master node (or parameter server) and multiple
worker nodes (or training nodes). The master node manages the model’s parameters and distributes
them to the worker nodes [5)]. Each worker node has a portion of the training data and performs
computations and optimizations using the current parameters. In each iteration, the worker nodes
send the computed gradient information back to the master node, which updates the global parameters
based on the collected gradients and redistributes the updated parameters to the worker nodes. This
process continues iteratively until a predetermined number of training rounds or convergence criteria
are reached [8]].

3 Distributed GNN training

Since the limited computing resources on a single machine become the bottleneck of GNN training
when handling large-scale graphs, distributed training has become a popular solution to improve the
training efficiency. Proposed 1n 2019, NeuGraph[[12] was the first published work of distributed GNN
training. Since then, different approaches has been made to improve the efficiency of distributed
GNN training in recent years.

3.1 Training Pipeline

The general training pipeline of distributed GNN training is shown in Figure[3] As illustrated in the
figure, the training process can be divided into three parts: data partition, GNN model optimization,
and gradient aggregation.

Data Partition. In this process, the whole graph will be divided and delivered to different workers.
Comparing to traditional distributed machine learning, a major difference in distributed full-graph
training is the data dependency. This is an important phase that determines the workload between
workers.

GNN model optimization. This is the core phase of distributed GNN training where the training
logic of the model is executed. Firstly, a computation graph will be generated by the worker according

Data Partition GNN Model Optimization Gradient Aggregation

Comp. graph Execution Moddel

a v
OfF 1 8% (1o =88
3 ‘s Communication Protocol

H\,‘@},"’r +
N :’: .'f ®¥E
Wy

— AT A Execution Model

= = V]l | AllReduce

l}, A Communication Protocol
A
e =
P ¥
Il LY
J:z’ * |Comp. graph Execution I\rJlmlel‘1 v
=] g% o 1 Qb.’o FE.}-’ E—"E Parameter Server
Communication Protocol AN A

(D Input data movement (2) Remote hidden embedding access

¥

[
Lo

Il
-
%

+

Figure 3: Training pipeline[18]]

to the input pratitioned data and features. Then the GNN model will be executed on the computation
graph and the communication protocol will gurantee the data exchanges with remote workers.

Gradient aggregation. In this process, all the latest gradients from different workers will be collected
so that the global gradients can be obtained and used to update the model parameters. [18] pointed
out that the existing gradient aggregation techniques in classical distributed machine learning can be
directly used in distributed GNN training process.

As shown in Figure[d] generally, traning methods of GNN can be classified into full-graph training
and mini-batch training, depending on whether the whole graph is involved in a traning round.

Full-batch Training —————) Distributed Full-batch Training
Distributed

L) L
L AO Y A~ parition — 58
«“'-‘ gq‘: ——{ Neural _&/}\g‘_!l‘,‘__‘:l"urtltlun : Network
Training of f Y Y\ Input |y ok f‘\ \:;i\ I'ﬂ‘nrkluad ' Topology
Graph Neural Network W_];ule G_I:Ilp]l for O O« ulﬁp:lmg
A0 Each Round Training oce
“--\J._ /;\M Graph
2-\,; ' ﬁ Neural
o U Network Mini-batch Training ————> Distributed Mini-batch Training
Graph ~ Distributed ~
~) o e “omputing
A A ot e

\ Graph ’\; ,{“J) Multipl Network
A TR AL ") ple .
) s '\.f"\ 1Sampit u___'ﬁb F\eural
uvou Network (
Mini-batch for
Each Round Training

:{\J"} Sample _ Mini—ba(c.h&s) Topology

Figure 4: Training methods for GNNs and their distributed implementations.[10]

3.2 Full-graph Tranining

Full-graph training is an approach that utilizes the information of the whole graph to update the model
parameters in every training round. Before the training process, the whole graph is partitioned into
different sub-graphs and delivered to different workers. Due to the cross edges between sub-graphs,
simply training on a sub-graph may cause a loss of accuracy. Therefore, constructing a proper data
partition algorithm and a communication protocol between workers is important.

3.3 Mini-batch Training

Similar to full-graph training, mini-batch training is another distributed implementation of GNN
training. The batch generation process could be further classified into partition-based mini-batch
generation and sampling-based mini-batch generation.

Sampling-based mini-batch training employs sampling techniques to create mini-batches over large
graphs. Most of the existing distributed GNN systems, like DistDGL[29]], BGL[11], AliGraph[30]]
follow this idea. In such a process, a worker will frequently access the data from other workers,
which may lead to massive computational expenses.

Partition-based mini-batch generation is to only train the GNN model on a local partition, which could
avoid massive communication between workers. PSGD-PA[15] is a straightforward implementation
of this idea. However, the efficiency improvement in the partition-based approach can lead to the loss
of accuracy and the uncertainty of convergence[6]]. Therefore, finding a balance between efficiency
and accuracy is crucial in distributed mini-batch training.

4 Challenges

In the context of distributed training, the system will face several challenges that may lead to
inefficacy during the training process. In this section, we categorize these challenges into three
distinct perspectives, each of which offers a different aspect of the distributed training paradigm. By
dissecting the challenges from multiple perspectives, we gain a comprehensive understanding of the
current domain and develop our research question.

4.1 Challenge 1: Computation approach

As shown in Figure 3] in the stage of model optimization, two sub-stages are involved: computation
graph generation and computation graph execution. The execution model, which is the key compu-
tation strategy, arranges the operation within these sub-stages to get optimal efficiency. However,
In the case of distributed mini-batch training, the sampling and feature extraction operations play a
pivotal role in dictating the overall training efficiency, leading the computation graph generation to be
resource-intensive. Conversely, in the context of distributed full-graph training, the execution of the
computation graph becomes intricate due to the presence of data dependencies among the various
workers involved.

4.2 Challenge 2: Batch generation

The generation of batches plays a pivotal role in the training of deep learning models, as highlighted
by Masters et al. in their study on the subject[14]. In the domain of distributed training for deep
learning, the utilization of mini-batch generation has been shown to accelerate the training process,
as demonstrated by Serizawa et al.[17]]. However, when this concept is extended to distributed GNNS
, the generation of batches poses unique challenges owing to the intricate nature of the underlying
data structure. To be more specific, the workload assigned to each node is imbalanced, leading to a
notable impact on both the training efficiency and the ultimate accuracy of the GNN model.

4.3 Challenge 3: Ineffective Data Partitioning

In the distributed setting, prior to inputting data into the model, it is important to store the data across
the hardware infrastructure. However, this storage process often encounters challenges associated with
workload imbalances among the individual nodes, arising from the preparation strategy employed.

When preparing the data for storage in a distributed environment, certain factors can lead to workload
imbalances across the nodes. The choice of strategies, such as random partitioning or graph-based
partitioning, can influence the distribution of data among the nodes. Depending on the nature of the
data and the selected strategy, it is possible that certain nodes may be burdened with a significantly
higher volume of data compared to others. Consequently, this imbalance in the workload distribution
can introduce inefficiencies and hinder the overall performance of the distributed system.

5 Improve training efficiency approaches

In the preceding section, we expounded upon the challenges inherent in the distributed training of
Graph Neural Networks (GNNs).To investigate the possible approach to overcome these challenges.
In this section, we put forth a research question: What are the viable strategies and techniques that
can be harnessed to enhance the efficiency of the distributed training process for GNNs deployed in
distributed environments? We will answer them from three different perspectives that correspond to
the challenges we discussed before with real word application.

5.1 Computation approach

In distributed settings, the execution of computation graphs is carried out by a group of workers.
When performing distributed mini-batch GNN training, parallelizing the execution of computation
graphs for each mini-batch is straightforward, as each graph is fully contained within a single worker.
However, when dealing with distributed full-graph or large-batch GNN training, the execution of a
computation graph needs to be partitioned among multiple workers. This presents a challenge due to
the data dependency within the computation graph, making it difficult to achieve high efficiency in
GNN training.

To tackle this challenge, several computation graph execution models for GNN distributed training
have been proposed, which aim to optimize the execution process and improve the overall training
efficiency. By partitioning the computation graph across workers and managing the data dependencies,
these models minimize communication overhead and maximize parallelization. We categorize them
by means of implementation, namely chunked-based, and one-shot.

5.1.1 Chunked-based execution

Initially, each machine receives the computation graph for layer 1 and performs the forward pass in a
model parallel fashion, computing partial activations based on the partitioned input features. The
partial activations are then aggregated through a reduce operation, and the computation switches
to data parallelism.To obtain the final activations, the forward pass concludes with data-parallel
computation of the embedding. The backward pass involves global gradient synchronizations , after
which the error gradient is pushed to all machines, and the computation switches back to model
parallelism for local backward pass computation.

The process of partial aggregation occurs sequentially, with each partial result being accumulated
towards the final aggregation result in a step-by-step manner. In the NeuGraph framework [13]], a
2D partitioning method is employed to generate multiple edge chunks, resulting in the partitioning
of vertex neighborhoods into sub-neighborhoods accordingly. Each worker is assigned the task of
aggregating specific vertices and sequentially processes the corresponding edge chunks to compute
the final aggregation result.

5.1.2 One-shot execution

The one-shot execution model is widely adopted in GNN training, where each worker pre-fetches the
necessary neighbor features for local graph aggregation and performs the aggregation in a single step.
Remote information may require inter-worker communication. Within the local perspective, specific
workers are assigned to target vertices, responsible for gathering neighbor features and performing
aggregation. This model streamlines the process, reducing communication rounds and enabling faster
computation by consolidating neighbor information in advance. By minimizing the overhead of
accessing remote information, the one-shot execution model enhances the efficiency of GNN training.

Wan et al. [21]] have proposed a notable distributed Graph Neural Network (GNN) framework known
as BNS. In the context of distributed training, BNS employs a partition parallelism strategy, wherein
the original graph is partitioned into smaller subgraphs. This partitioning enables localized training
on individual accelerators/nodes, while simultaneously facilitating the exchange of dependent node
features across subgraphs. Within each subgraph, inner node sets are defined, while boundary node
sets encompass dependent nodes from other subgraphs. Consequently, the communication of features
and gradients between subgraphs becomes essential for each Graph Convolutional Network (GCN)
layer. The model is updated through weight gradient sharing among the partitions, thereby facilitating
the iterative optimization process in the distributed training of GNNs.

5.2 Batch generation

5.2.1 Cashed-based generation

The distributed version of existing sampling-based GNNs involves implementing distributed sampling
to generate mini-batches from large graphs. This approach is commonly adopted in various distributed
GNN systems. However, in a distributed environment, the use of basic samplers on individual
workers often leads to significant communication overhead due to frequent data access across workers.
Furthermore, in multi-GPU settings, where graphs and features may be centralized and stored in CPU
memory, each GPU still requires extensive CPU-GPU data movement to access the mini-batch data.

To address these issues, the cache strategies have been proposed. For example, DistDGL replicates
remote neighbors of boundary vertices locally to eliminate communication during mini-batch gen-
eration. Other approaches, such as using importance metrics or static GPU caches, aim to strike a
balance between communication reduction and storage overhead. Weighted reverse PageRank is used
to identify frequently accessed vertices, and their features are cached in GPU memory, while less
frequently accessed vertices are stored in CPU memory. Additionally, the use of NVLink and PCle
bandwidths is leveraged to optimize caching efficiency by replicating the hottest vertex features and
scattering the next hottest data across multiple GPUs.

5.2.2 Partition-based generation

The distributed GNN training pipeline, as depicted in Figure [3] involves the initial partitioning of
the graph. By adopting a training strategy where each worker exclusively handles the GNN model
training for its local partition, the need for extensive communication can be mitigated. This training
approach treats each partition as a mini-batch, thus referred to as a partition-based mini-batch.Each
mini-batch is processed by a worker during the training phase. By partitioning the graph and assigning
specific partitions to individual workers, the batch generation process becomes more efficient and
scalable.

One main limitation is an unbalanced partition when dealing with a cross-with-edge situation, which
can result in a loss of model accuracy. To address this, researchers have introduced subgraph expansion
techniques. Subgraph expansion preserves the local structural information of boundary vertices by
replicating remote vertices locally. One common approach is to use METIS algorithm[22]], to obtain
a collection of subgraphs. Each subgraph is then expanded by incorporating the one-hop neighbors
of vertices that do not belong to the subgraph. This expansion strategy helps capture important
connections and improves the overall accuracy of the model. By incorporating additional vertices
from neighboring subgraphs, the expanded subgraphs provide a more comprehensive representation
of the underlying graph structure, leading to enhanced accuracy in GNN training.

5.3 Data Partition

For the data partition in the pipeline of distributed training, we divided them into 3 main categories
according to their techniques of implementation (shown in Figure). We will discuss them respectively

5.3.1 Graph based partition

Graph Neural Networks (GNNSs) are a form of graph computation task that can benefit from classical
graph partition methods. In the context of distributed mini-batch GNN training, achieving workload
balance among workers entails the equitable distribution of train vertices, corresponding to the
number of batches per epoch. This introduces new optimization objectives.

Graph partition problem was proposed in the DistDGL framework by formulating it as a multi-
constraint partition problem, which balances training/validation/test vertices and edges within each
partition. They leverage the multi-constraint mechanism employed by METIS to achieve customized
graph partition objectives for both homogeneous and heterogeneous graphs.Furthermore, they extend
this mechanism to a two-level partitioning strategy that accommodates scenarios with multiple GPUs
and machines while ensuring computational balance

In the context of distributed full-graph GNN training, the goal is to balance the workload of each
GNN layer across a set of workers while minimizing communication for embedding. To capture the

‘? Optimization
3 Objective
Graph
Partition 1D 2D s> 0 e
Graph Edge-cut Vertex-cut Matrix-based partition % % ®
538
| obil o & 8
Koim f g8 3
" oW =2 1 | 2 3 3
@ 3 o
I g5
g Feature RO | 232
p{EEn Partition S 8
N Graph property Row-wise Column-wise 2D %’,)
=]
Feature matrix
cost!
Layerk Layer k+1 Affinity Score - score(v,p)
: Conting operators - cost = Sum_k(C_ops) Fest,
Cost
Model Heuristics Learned cost model
GNN model

Figure 5: Data partition approaches in the distributed training of GNNs

intricate costs associated with diverse GNN models, researchers utilize learning-based cost models.
These models provide insights into the computational requirements of each partition. In conjunction
with these model-aware cost models, existing graph partition methods are employed.

Wang et al.[19]] estimate the computation cost of a partition and employ an application-driven graph
partition method to generate a workload balancing plan. This approach adapts dynamically to mitigate
workload imbalances and minimize communication costs. Besides, in terms of vertex-cut, leverage
2D Cartesian vertex-cut techniques to enhance scalability.

5.3.2 Feature based partition

In the context of Graph Neural Networks (GNNs), partitioning the features is crucial as they represent
important data. Many distributed GNN training solutions consider features as vertex properties within
the graph and partition them along with the graph structure. For instance, if the graph is partitioned
using the edge-cut method, each vertex’s feature is stored in the corresponding partition where the
vertex resides, resulting in a row-wise partitioning of the feature matrix.

However, due to the distinct processing patterns of features compared to the graph structure, several
approaches have emerged that partition the feature matrix independently from the graph. Tripathy et
al. [22] adopt the 2D partition method and row-wise method, respectively, to partition the feature
matrix. They align the feature matrix partitioning with the graph partitioning, while Vasimuddin et al.
ensure that each vertex has access to the complete feature locally by using replication.

5.3.3 Cost model based partition

In addition to the topology of the graph, partitioning techniques can also be based on modeling the
communication overhead and workload associated with each node in the graph. These approaches
can be broadly categorized into two main categories: heuristic-based and learning-based methods.

heuristic-based methods

Many Graph processing frameworks apply heuristic-based methods and strategies to achieve workload
balance in the data partition, such as GraphX [2] and Gemini [32]]. These frameworks statically
partition input graphs by optimizing heuristic objective functions, namely affinity scores, The affinity
scores play a crucial role in determining the most suitable partition for each vertex or block, ensuring
an optimized partitioning outcome. It typically considers factors like the number of edges spanning
different partitions While these objective functions yield favorable outcomes for data-intensive graph
processing, they fall short in the case of compute-intensive graph neural networks (GNN5s) due to the
substantial variations in per-vertex computation loads.

learning-based methods Applying machine learning techniques on cost models in GNNs data
partition has gained attention. By incorporating both static graph structural information and runtime
statistics of GNN workloads, the learning-based model offers a more precise estimation of the cost
compared to heuristic models. In the case of ROC[6], an online linear regression-based algorithm
is employed to achieve balanced partitioning for GNN training and inference. This is achieved by
jointly learning a cost model capable of predicting the execution time of the GNN model on diverse
graphs.

6 Feature work

Distributed Graph Neural Networks (GNNs) provide a general solution for training GNNSs at scale.
In addition to the techniques and systems mentioned earlier, there are several other fascinating and
emerging research areas in distributed GNN training. We discuss some interesting directions in the
following

Scalable Graph Sampling.Graph sampling techniques aim to address the scalability challenges
posed by extremely large graphs. By selecting a representative subset of nodes or edges, distributed
GNN training can be performed on a reduced graph, significantly reducing computational and memory
requirements. Research focuses on developing efficient and effective graph sampling methods for
distributed GNN training.

Dynamic and Heterogeneous Graphs.Real-world graphs are often dynamic and heterogeneous,
with evolving structures and diverse node and edge attributes. While dynamic graph neural networks
(GNNs) have garnered considerable interest in research, it is noteworthy that there is currently a
lack of literature dedicated to the specific topic of distributed dynamic GNN training. The inherent
dynamism encompassing both features and structure introduces fresh challenges to conventional
solutions within a distributed environment. Graph partitioning techniques need to swiftly adapt to the
fluctuating vertices and edges, while still adhering to load balancing and communication reduction
requirements [3]]. Furthermore, the modifications made to the graph structure lead to a decrease in
the cache hit ratio, which greatly impacts the overall performance of end-to-end GNN training.

7 conclusion

In conclusion, we provide a comprehensive investigation of the distributed training pipeline for Graph
Neural Networks (GNNs). We have extensively discussed the fundamental concepts of GNNs and
their application in distributed training. Additionally, we have identified and examined the challenges
associated with data partitioning, batch generation, and computation approaches within the distributed
training pipeline. Various approaches and techniques to enhance training efficiency in response to
these challenges have been reviewed. Furthermore, we propose promising areas of further research,
such as Scalable Graph Sampling and Dynamic and Heterogeneous techniques, which warrant further
investigation to address the identified challenges and advance the field of distributed training for
GNNS.

References

[1] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
Going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18-42, 2017.

[2] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica. Graphx: Graph
processing in a distributed dataflow framework. In 711th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14), pages 599-613, 2014.

[3] M. Guan, A. P. Iyer, and T. Kim. Dynagraph: Dynamic graph neural networks at scale. In Pro-
ceedings of the Sth ACM SIGMOD Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA), pages 1-10, 2022.

[4] W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs.
In I. Guyon, U. v. Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems, pages 1024—-1034, 2017.

[5] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the
22nd ACM International Conference on Multimedia (ACM MM), 2014.

[6] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken. Improving the accuracy, scalability, and
performance of graph neural networks with roc. Proceedings of Machine Learning and Systems,
2:187-198, 2020.

[7] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017. OpenReview.net,
2017.

[8] A.Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Proceedings of the 25th International Conference on Neural Information
Processing Systems (NIPS), 2012.

[9] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.

[10] H. Lin, M. Yan, X. Ye, D. Fan, S. Pan, W. Chen, and Y. Xie. A comprehensive survey on
distributed training of graph neural networks, 2022.

[11] T. Liu, Y. Chen, D. Li, C. Wu, Y. Zhu, J. He, Y. Peng, H. Chen, H. Chen, and C. Guo.
{BGL}:{GPU-Efficient} {GNN} training by optimizing graph data {I/O} and preprocessing. In
20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), pages
103-118, 2023.

[12] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai. NeuGraph: Parallel deep neural
network computation on large graphs. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19), pages 443-458, Renton, WA, July 2019. USENIX Association.

[13] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai. Neugraph: Parallel deep neural
network computation on large graphs. In 2019 USENIX Annual Technical Conference, pages
443-458. USENIX Association, 2019.

[14] D. Masters and C. Luschi. Revisiting small batch training for deep neural networks. arXiv
preprint arXiv:1804.07612, 2018.

[15] M. Ramezani, W. Cong, M. Mahdavi, M. T. Kandemir, and A. Sivasubramaniam. Learn locally,
correct globally: A distributed algorithm for training graph neural networks. arXiv preprint
arXiv:2111.08202, 2021.

[16] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, 1. Titov, and M. Welling. Modeling
relational data with graph convolutional networks. In European Semantic Web Conference,
pages 593—-607. Springer, 2018.

[17] K. Serizawa and O. Tatebe. Accelerating machine learning i/o by overlapping data staging and
mini-batch generations. In Proceedings of the 6th IEEE/ACM International Conference on Big
Data Computing, Applications and Technologies, pages 31-34, 2019.

[18] Y. Shao, H. Li, X. Gu, H. Yin, Y. Li, X. Miao, W. Zhang, B. Cui, and L. Chen. Distributed
graph neural network training: A survey, 2022.

[19] Z. Song, Y. Gu, J. Qi, Z. Wang, and G. Yu. Ec-graph: A distributed graph neural network
system with error-compensated compression. In 2022 IEEE 38th International Conference on
Data Engineering (ICDE), pages 648—660. IEEE, 2022.

[20] A. Tripathy, K. A. Yelick, and A. Buluc. Reducing communication in graph neural network
training. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, page 70. IEEE/ACM, 2020.

[21] C. Wan, Y. Li, A. Li, N. S. Kim, and Y. Lin. Bns-gcn: Efficient full-graph training of graph
convolutional networks with partition-parallelism and random boundary node sampling. Pro-
ceedings of Machine Learning and Systems, 4:673—693, 2022.

10

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Z. Xue, Y. Yang, M. Yang, and R. Marculescu. Sugar: Efficient subgraph-level training via
resource-aware graph partitioning. arXiv preprint arXiv:2202.00075, 2022.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph convolu-
tional neural networks for web-scale recommender systems. In Y. Guo and F. Farooq, editors,
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
Data Mining, KDD 2018, pages 974-983. ACM, 2018.

T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning based natural
language processing [review article]. IEEE Computational Intelligence Magazine, 13(3):55-75,
2018.

M. Zhang and Y. Chen. Link prediction based on graph neural networks. In S. Bengio, H. M.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems, pages 5171-5181, 2018.

M. Zhang, Z. Cui, M. Neumann, and Y. Chen. An end-to-end deep learning architecture for
graph classification. In S. A. Mcllraith and K. Q. Weinberger, editors, Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), pages 4438—4445. AAAI Press, 2018.

M. Zhang, Z. Cui, M. Neumann, and Y. Chen. An end-to-end deep learning architecture
for graph classification. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
pages 4438-4445. AAAI Press, 2018.

Z. Zhang, P. Cui, and W. Zhu. Deep learning on graphs: A survey. IEEE Transactions on
Knowledge and Data Engineering, 34(1):249-270, 2022.

D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang, and G. Karypis. Distdgl:
distributed graph neural network training for billion-scale graphs. In 2020 IEEE/ACM 10th
Workshop on Irregular Applications: Architectures and Algorithms (IA3), pages 36—44. IEEE,
2020.

R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and J. Zhou. Aligraph: A comprehen-
sive graph neural network platform. arXiv preprint arXiv:1902.08730, 2019.

S. Zhu, C. Zhou, S. Pan, X. Zhu, and B. Wang. Relation structure-aware heterogeneous graph
neural network. In 2019 IEEFE International Conference on Data Mining, pages 1534—1539.
IEEE, 2019.

X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A computation-centric distributed graph
processing system. In OSDI, volume 16, pages 301-316, 2016.

11

Distributed Cloud-based ML/DL Workflows

Shreyas Patil Shreya Ghose
Universiteit van Amsterdam Universiteit van Amsterdam
Amsterdam, Netherlands Amsterdam, Netherlands
shreyas.patil@student.uva.nl shreya.ghose@student.uva.nl
Madhur Pawar

Universiteit van Amsterdam
Amsterdam, Netherlands
madhur . pawar@student.uva.nl

Abstract

Resource management in machine learning pipelines can be difficult, and frequently
results in under or over-provisioning. The resource needs for the pipeline’s various
phases vary, and the absence of DevOps specialists might make it difficult to deploy
software quickly and share models. This review paper explores various MLOps
frameworks and assesses them based on factors including features, architecture,
performance, and integration potential. The characteristics, benefits, and draw-
backs of the frameworks and respective studies conducted on frameworks like
CIRRUS, DEEP, CloudFlows, Distributed GraphLab, and Kubeflow are thoroughly
discussed.

1 Introduction

The paradigm of serverless computing has been increasingly used in the industry primarily due
to reduced effort of operations and management of resources. The research topic of usage of this
paradigm for developing and deploying machine learning-based software systems is still in the early
stages as there are challenges involved in its adoption. Such systems have huge memory and compute
requirements, while serverless architectures are built to support smaller workloads on each instance
that can be scaled. The challenge of using the serverless with distributed data also exists as each
serverless instance has limited memory and storage, hence the coordination of distributed computing
in each instance and the storage has to be well established (1)).

Despite the challenges involved with the industry moving to cloud systems, it could be advantageous
to data scientists. Since they have limited experience and knowledge about the provisioning and
management of resources, it could benefit them primarily if the management of resources is handled
by the workflow frameworks and they can focus on the data science part. This has led to the rise of
a new area of specialized role MLOPS whose role is to act as an interface between data scientists,
data engineers, and infrastructure management, with a focus on adopting the DevOps approach to the
development of machine learning resource-intensive projects (2).

In the paper, we aim to review the existing frameworks for managing workflows of machine learning
and deep learning systems on the cloud. With the increasing popularity and need for DevOps-oriented
execution of data science projects, it is key to know the different criteria based on which different
available frameworks can be evaluated and chosen for the projects. In the paper, we also highlight
the key differences between them and provide the cost, maintainability, and scalability aspects of
frameworks. We also try to answer the question ‘How do different cloud-based workflow frameworks
solve the challenges in Machine Learning/Deep Learning (ML/DL)?’

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

2 Challenges and Workflow in ML systems

ML pipelines are iterative in nature and have a variety of stages which make the end-to-end workflow
complex in terms of resource provisioning and management. Usage of VMs for developing ML
systems has been done previously but it creates 2 challenges: first, it can lead to over-provisioning,
and second, it adds the responsibility of managing and configuring resources to users for every
project. The existing ML frameworks such as Spark (3) are capable of handling distributed computing
and storage which process all data in memory, but it does not leverage the serverless paradigm
as such managing the resources is not easy and often the problem of under-provisioning or over-
provisioning still persists. As the resource requirements are different in different stages of the ML
pipeline which typically includes data pre-processing, model training, and model tuning the chances
of over-provisioning and under-provisioning exist.

Generally, the training part requires high compute resources along with the training data being
distributed while the validation and prediction phases require less. Furthermore, some algorithms
require all data upfront while others process it in batches. The process of deploying and model
sharing also requires DevOps knowledge which often the data scientists do not have and can reduce
the speed with which the predictions can be made if there is no specialized person in that area to rely

on (4).

A typical pipeline is as seen in figure[I| where there are multiple stages and the complexity of such
workflows is not only due to resource management but also involves managing the different artifacts
in addition to the ML model. The task of data versioning, data quality checks, and model versioning
makes it even more complex to manage the entire pipeline and to keep it updated with the latest
data and predictions which becomes particularly challenging when multiple teams are involved in
different parts of the pipeline.(5)

With a wide range of products and tools available for use for different tasks of the workflow, it
becomes necessary to evaluate the different criteria such as expertise of the team in the programming
language, cost, integration capabilities with the existing codebase or tools/tech (6). The paper (7)
emphasizes the need for continuous integration and continuous delivery to maintain and update
the different artifacts of the pipeline in an iterative manner just as it is done in traditional software
projects. The paper (8) highlights that the ML component is only a small part of the entire project
and the way the other components are managed decides on the viability and success of a ML project.

MLOPS
|

(MODEL MANAGEMENT
]

EXPERIMENT TRACKING

Data > Data > Data

¢ (ata Model > Model > Prediction
Sourcing Labeling Versioning

Versioning Deployment Monitoring

Scaling
Hardware

Figure 1: Typical MLOps Workflow

3 Review of MLOps Tools

3.1 CIRRUS

CIRRUS is a distributed ML training framework that is based on and leverages the serverless
infrastructure offered by AWS Lambda. The paper on CIRRUS (9) mentions that there is a limit
on the resources (CPU, 3GB memory, 512MB storage) that is available with Lambdas. These
constraints prevent the usage of existing ML frameworks such as Tensorflow and Spark on serverless
infrastructure directly. Additionally, lambda functions are not designed to share data among the
executing instances which demand the use of a mechanism to have low latency and high throughput
storage which is optimized for ML workloads. To overcome the limitation of existing lambda
constraints it is designed as a wrapper around the lambdas and makes use of a parameter server
model which combines the benefits of working with a serverless environment and ML processing
frameworks. Thereby providing the convenience of resource management as well as the necessary
resources to handle ML.

Implementation CIRRUS is implemented by the following four components that communicate
through TCP connections:

Front-end: The user can interact with the system and visualize the progress of the workloads with the
Python front-end component.

Data store: A distributed data store is used to share data between different workers executing inside
lambdas. It is deployed in cloud VMs to achieve low latency and maximize system updates/sec for
model updates during training. It leverages AWS S3 for storing data. It initially serializes the data
and partitions it into similar-sized partitions which further speeds up the execution during training
and hyperparameter tuning stages which reduces the computation load required to be executed inside
lambdas.

Client back-end: The client back-end performs a number of tasks such as parsing training data,
launching Cirrus workers, managing the distributed data store, and returning results to the Python
front-end once computations are complete.

Runtime: It provides a lightweight runtime environment that can be executed inside lambdas which
can execute ML algorithms. To overcome the limitation of storage and memory of lambdas the
frameworks stream data to lambdas in mini-batches of data. It uses a server that specifically stores
the gradients computed by different workers and enables the usage of stochastic gradient descent in a
distributed manner as depicted in the figure

A A A Traini
: : : raining
Data

3 3 3
(Worker) (Worker) ".(Worker)
Vmofﬁ& 1T /model

(Parameter model’-=n \/model j

Server

Figure 2: Distributed Stochastic Gradient Descent in CIRRUS

Features CIRRUS provides an API that helps developers construct a pipeline for preprocessing,
feature engineering, and parameter tuning at scale. It assists in the process of hyperparameter search
since this is computationally expensive and provides a visual dashboard that allows the user to monitor
the loss function and terminate the experiment individually if the result is not going to be optimal,
thus saving additional resources from being wasted.

Strengths CIRRUS is highly scalable across the dimensions of storage, computing, and shared
memory. Scalability across storage is achieved by splitting data in S3 into medium-sized objects.
Linear compute scalability can be achieved by streaming input data and computing gradients in
parallel up to 600 workers. (9) The framework’s implementation is also highly abstract: the frontend
abstracts all the details from developers and the backend abstracts the management of lambdas from
the frontend algorithms and keeps a list of active lambdas and connections to the AWS Lambda API.

Weaknesses The framework was tested and compared with others such as PyWren (10) and Spark
(3) but the execution of CIRRUS was done on VMs that have different configurations than that
of PyWren and Spark. This provides an unclear comparison of efficiency. The study (9) does
not provide real-world case studies or practical examples of CIRRUS’ deployment in actual ML
workflows. Including such case, studies would demonstrate the applicability and effectiveness of the
proposed framework in real-world scenarios. Moreover, the study does not thoroughly discuss the
limitations of CIRRUS or the potential trade-offs associated with its design choices.

3.2 DEEP

‘Designing and Enabling E-infrastructures for intensive Processing in Hybrid Data Clouds’ also
referred to as DEEP, has implemented a framework that enables training and sharing of machine
learning models over a distributed infrastructure. The paper also analyses previously existing
frameworks in this area and argues that most of the frameworks do not provide end-to-end workflow
management capabilities including deployment and leveraging the cloud-based services. While
providing the features to manage different phases of the ML pipeline it also provides flexibility to the
users to use a library or tool specific to their requirements. (4))

The user can start by using an existing model or develop their own. The model is then containerized
using a Docker container with all the dependencies and deployed inside the infrastructure. DEEP
provides API which enables it to work with a serverless framework such OpenWhisk. The API
provides an interface that enables the training, monitoring, testing, and evaluation of containerized
applications. The framework supports setup on a wide range of platforms such as HPC systems,
orchestration engines Kubernetes and serverless frameworks such as OpenWhisk. This enables high
portability of the model on a wide range of infrastructures including the cloud.

Architecture DEEP is based on serverless architecture as can be seen in figure 3§ wherein the model
is encapsulated as a function. The components are as follows:

DEEP Open Catalogue: Users and user communities can browse, share, store, and download ready-to-
use machine learning and deep learning modules in this marketplace. It also offers extra components
like complicated application topologies and model and application-related metadata.

DEEP Learning Facility: This module coordinates and orchestrates overall model training, testing,
and assessment, selecting appropriate Cloud resources based on computational and storage resources.

DEEP as a Service: DEEPaaS allows users to deploy and serve an already trained model from the
catalog as a service, allowing third-party users to access the model’s capabilities and knowledge.

Storage and data services: All data assets are stored in this module.

Features The framework puts emphasis on sharing the model since that is an effective method to
disburse knowledge in the scientific community and enable collaboration, which other frameworks
do not seem to pay much attention to. Moreover sharing a model also enables reproducibility of
experiments which is desirable in the scientific community. DEEP’s UI layer, the DEEP-HPC Portal,
offers a user-friendly web-based interface that lets users interact with the infrastructure, submit
processing tasks, track task status, and view outcomes. The interface makes the infrastructure more
accessible to researchers with varied levels of technical skill.

Strengths DEEDP tries to reduce the dependency of machine learning pipelines on users’ resources.
The usage of Docker containers allows for the delivery of customized environments adapted to the
demands of the user, as well as maximum portability of the runtime environments. DEEPaaS API
can also deploy modules on any infrastructure. Continuous Deployment implementation is done
on DEEPaaS to quickly integrate newly launched or updated models. DEEP encourages user and

N E— DEEF Open Catalog
i Usercode |
: SQA Infrastructure
- 2]
[] Cressrupie_| | ., [
A !|:|_ = = ®
. enkins
: Git repository oleD.
S — P \
architectuse Busid Diocker
e
g - R
e DockerHub
DEEP Marketplace
Reques: rainmng Update
deplayment notification
@ New dota nofficason -+
cu soK { * ¥ §€ kafkal
Data repesitory -
C:{) OpenWhisk B Request
. inferece

Paas Orchestrator
L &
data h
Deploy training task DEEPaaS SUpervisor

Complex app deployment

Triager funcsan upsate
Training data
{‘ Action Invoker
Infrastructure Manager T
I o

Register/upgate
action

REST API
Gateway

(&)

aer
Infereee

™ -,
- feg MESOS
openstack 58 B

8 o= = o

DEEP Training Facility DEEP s & Service

Figure 3: DEEP architecture

researcher collaboration and sharing. It enables users to collaborate on common scientific concerns by
providing means for sharing workflows, data, and processing outcomes. This promotes information
exchange and repeatability, as well as collaborative research initiatives. The study also makes use of
an excellent case study on image-based classification to demonstrate the usage of the platform.

Weaknesses DEEP does not yet support distributed training, hence contributing to time and resource
overheads. Distributed training would help improve the efficiency of the hosted models. The study
also does not provide any empirical evidence of DEEP’s performance as compared to other platforms.

3.3 Kubeflow

Kubeflow is a cloud-based machine learning platform built on Kubernetes, an open-source container
orchestration system. It provides a range of tools and components to streamline the development,
deployment, and management of machine-learning models in a scalable and portable manner.

Architecture The Kubeflow Architecture serves as the foundation for the Kubeflow platform,
a toolkit designed for the development and deployment of machine learning (ML) workflows on
Kubernetes. The architecture comprises several key components and elements. (11)

Python SDK: The Kubernetes domain-specific language (DSL) can be used by users to create compo-
nents or define pipelines, which is why the Python SDK is essential to the Kubeflow Architecture.
Users can specify the logic and structure of their ML workflows by utilizing the Python SDK.(12)

DSL Compiler: The Python code used in the pipelines must be translated by the DSL compiler into
a static configuration format, which is represented by a YAML file. The pipeline configuration is
stored in a static, easily readable manner using this conversion procedure.(12))

Kubeflow Configuration Interfaces: Users can specify and install the machine learning (ML) tools nec-
essary for their workflows using Kubeflow’s configuration interfaces. These configuration interfaces
make it easier to integrate different ML frameworks and tools into the Kubeflow platform.(11)

Kubeflow Components: The Kubeflow components are the essential services that offer specific
functionalities for different stages of the ML workflow. These components encompass a range of
capabilities, including data preparation, model training, prediction serving, and monitoring. They
form the building blocks of ML workflows within the Kubeflow ecosystem.(13)

Features Key features of Kubeflow include pipelines for defining and executing end-to-end machine
learning workflows, capabilities for distributed training and serving of models, tools for experimenta-
tion and hyperparameter tuning, data management functionalities for versioning and preprocessing,
and model versioning and deployment capabilities. Kubeflow also offers visualization and monitoring
tools to track metrics and monitor resource utilization. One of the notable advantages of Kubeflow is
its integration with Kubernetes, enabling users to leverage the scalability and portability of Kubernetes
for running machine learning workloads across different environments.(14))

Evaluation (15) explores the deployment of machine learning models using Kubeflow on cloud
platforms. The study compares baseline cloud architectures to Kubeflow’s capabilities and investigates
challenges faced during the deployment process. In the experiment, baseline cloud architectures
are set up, and Kubeflow’s capability to standardize and automate machine learning workflows is
assessed. The deployment procedure is investigated on IBM Cloud and Google Cloud Platform (GCP)
utilizing MiniKF and other configuration techniques. Two strategies—a code-based strategy and an
end-to-end (E2E) strategy—are contrasted. The study includes an examination of hyperparameter
tuning using Katib, model serving through a Flask-based application, and the utilization of Kubeflow
add-ons such as Istio and KServe. Experiments on NYU Greene Cluster, Kubernetes on IBM Cloud,
Kubeflow on IBM Cloud, and Kubeflow on Google Cloud Platform were performed. The results
showed that the approaches using Kubeflow performed better in terms of inference time, indicating
that Kubeflow is a good choice for model serving.

The authors also contrasted how well Kubeflow performed on Google Cloud Platform and IBM Cloud.
Katib and Model Serving were used to analyze the runtimes of both customized models and an entire
pipeline. The results indicated that Kubeflow on Google Cloud performed slightly faster on average.

It was noted that the IBM Cloud’s Kubeflow-powered inference model had the quickest inference
times, potentially as a result of the dedicated VPC and improved network speed. It was also observed
that the total time required to run the pipeline was less on GCP, which might be related to the more
potent cluster and less intense competition for resources.

Using Kubeflow and setting up a cluster were simpler on GCP, mostly because of better documentation
and more capabilities. There are several difficulties with Kubeflow, including the setting of the initial
installation and authentication, the complexity of upgrading components, and obsolete documentation
with broken links that prevent the framework from being widely used.

Strengths The experiment examines a number of Kubeflow-related factors, such as setup, deploy-
ment strategies, performance, and the tool’s capabilities and restrictions. It offers comprehensive
measurements and comparisons to assess Kubeflow’s performance.

Insights are derived from the results and recommendations are provided based on the findings. It
discusses the inference time, performance across different clouds, ease of use, and challenges faced
during the experiment. These insights can guide future researchers and users in making informed
decisions.

Weaknesses While the experiment acknowledges Kubeflow’s limits, it does not go into great detail
on any potential problems or difficulties that may have arisen during the trial itself. Providing a more
comprehensive discussion of limitations would add depth to the analysis.

Although the experiment briefly covers Kubernetes and Kubeflow’s scalability characteristics, it does
not offer a thorough review of the tool’s scalability in real-world situations. Scalability is essential
for properly deploying machine learning models, especially given the growing volume of data and
internet traffic.

3.4 ClowdFlows

ClowdFlows is a cloud-based web application for distributed computing that supports the construction
and execution of data mining workflows, including web services used as workflow components. Big
data analytics is provided through several algorithms and novel ensemble techniques are supported.
ClowdFlows has a service-oriented architecture and can also function as a real-time stream mining
platform with an intuitive user interface. ClowdFlows aims to address the challenges faced in manag-
ing the lifecycle of machine learning models by providing a comprehensive platform. Its architecture
encompasses multiple stages of ML workflows, enabling efficient data pre-processing, model training,
deployment, and monitoring.(16)(17) Figure[d provides an overview of the architecture.

Database

User Gul

System for

Worker analysis of big

data in batch
mode

User Gul

ClowdFlows

| Worker
server Eroker

‘Worker

User Gul

External 1 [External |

User Gul |ClowdFlows| [ClowdFlows|
ackage ackage

U N Wit B |

Stream mining
daemon

Figure 4: ClowdFlows architecture

Architecture The architecture of ClowdFlows(17) comprises the following key components:

Graphical user interface: The GUI is developed with HTML, and jQuery and is supplied from
the central ClowdFlows server. It allows users to add, delete, reposition, and connect multiple
components to form a unified workflow. It is in charge of displaying results in an understandable way
as well as displaying a library of publicly available workflows that users can duplicate. The code is
executed within users’ web browsers, resulting in a responsive and interactive experience.

ClowdFlows Server: ClowdFlows server’s software is built in Python and on the Django web platform.
It is made up of two parts: a web application and a widget repository. Models, views, and templates
are defined by the web application. The data model is an abstract representation of workflows and
widgets. A widget is a workflow processing unit that includes inputs, outputs, and parameters and is
interconnected by ‘Connections’.

Database: The workflows and all user-uploaded data are stored in the database. Django’s object-
relational mapper provides an API for connecting objects to databases, rendering the platform
database agnostic.

Broker: The broker ensures that the tasks are evenly distributed across the worker nodes.

Worker nodes: Worker instances are ClowdFlows server instances that can only be accessed by the
broker. They execute workflows and workflow components. The workers send success or error
messages to the broker and have timeouts to ensure fault tolerance if a worker goes down during
runtime.

Stream mining daemon: The stream mining daemon is a process that runs alongside the ClowdFlows
server, loops through deployed stream mining workflows, and executes them.

Web Services: The PySimpleSoap module is used to facilitate web service consumption and import
as workflow components.

Features Various features of ClowdFlows were discussed at length.(17) (18) Description of its key
features are as follows:
Public workflows: Users are allowed to create public versions of their workflows by generating a

URL and publicizing it. When accessed, a copy is created and added to the user’s private workflow
repository.

Widget Development: A widget can be written as a Python function and included in a ClowdFlows
package or can be manually imported as a WSDL Web service via the graphical user interface, thus
supporting web services.

Scalability: The ClowdFlows platform can be scaled horizontally by scaling the database, broker, and
worker nodes. ClowdFlows server can be scaled by installing it on numerous machines and running it
behind a load-balancing web server like ‘Nginx’. If the data passing from one workflow component
to another is considerable, the broker must be scaled. Increasing the number of workers is the most
common scaling operation, as each worker can execute a certain number of widgets concurrently at
any given time.

Real-time data stream mining: ClowdFlows enables real-time data stream processing by using a
stream mining daemon and a modified workflow execution engine with a halting mechanism. Results
showed that by using a single worker, data can be processed three times slower than the rate of
production on the input and preserve the same throughput. Using two workers, data can be processed
ten times slower, while a configuration with three workers allows for a twenty times slower processing
rate. This allows users to have complex workflows perform analyses on the data and still see results
in real-time while being confident that all data was processed.(19)

Batch Data Processing: Disco MapReduce framework was chosen to perform MapReduce tasks, as
it is written in Python and allows for easier integration with the ClowdFlows platform. However,
there is a lack of a specialized machine learning library or toolkit within the framework, leading
to the development of ClowdFlow’s own library with a limited set of machine learning algorithms,
‘DiscoMLL’.

Support of distributed ensemble methods: ClowdFlows developed and adapted tree-based ensembles
such as ‘Forest of Distributed Decision Trees’, ‘Distributed Random Forest’ and ‘Distributed Weighted
Forest’ for distributed computation with MapReduce.

Strengths The paper provides technical details about the implementation and capabilities of
ClowdFlows and describes how the platform supports web services, integrates the Disco framework
for distributed computing, and includes a machine learning library for batch processing of big data. It
also presents use cases and evaluates the platform’s performance. The use cases are comprehensive
and end-to-end, also acting as specialized tutorials of the platform. ClowdFlows is released under an
open-source license and is publicly available on the web. This availability encourages wider adoption
and allows users to customize and deploy the platform according to their specific needs.

Weaknesses Although the study mentions the comparison of ClowdFlows with related platforms, it
does not provide an in-depth analysis or evaluation of these comparisons. More detailed comparisons
and discussions would have provided a clearer understanding of the unique advantages of ClowdFlows
in the context of existing solutions. The study also highlights the strengths and advanced features
of ClowdFlows, but it does not explicitly address any limitations or potential challenges associated
with the platform. A more balanced discussion that acknowledges potential drawbacks or areas for
improvement would have enhanced the paper’s credibility.

3.5 Distributed GraphLab

Distributed GraphLab or now called GraphLab Create is a cloud-based machine learning platform. It
is designed to simplify the development of intelligent applications by providing a high-level interface
for performing various machine-learning tasks. GraphLab create provides features like built-in
algorithms, tools for data preprocessing and feature engineering, flexible data structures, and model
deployment. It is also designed for horizontal scaling across multiple machines to perform distributed
computing efficiently.

In this paper(20) (21), the author highlights the limitations of the existing large-scale frameworks, the
implementation of GraphLab Abstraction, two methods of implementing a new distributed execution
model, fault tolerance of the model, implementation of three state-of-the-art models with GraphLab
abstraction, evaluation of Graphlab using 512 processor EC2 server.

Architecture The GraphLab abstraction consists of three main parts, the data graph, the update
function, and the sync operation. The data graph stores the users’ modifiable state in a data graph.
For example, the data graph is derived directly from the web graph, wherein each vertex corresponds
to a web page and each edge represents a link. The vertex data D, holds R(v), which is the current
estimation of the PageRank, while the edge data D,—V stores u,v, indicating the directed weight
of the link. The update function is a stateless procedure to modify the data within the scope of the
vertex. The scope of vertex v, represented as Sy, encompasses the data stored within v itself, as well
as the data stored in all neighboring vertices and adjacent edges.

The GraphLab abstraction offers a comprehensive sequential model that is automatically transformed
into parallel execution by enabling multiple processors to execute the same loop on the same graph.
To preserve the sequential execution semantics, various consistency models have been introduced to
optimize parallel execution while ensuring serializability. Additionally, global statistics that describe
the data contained in the data graph must be preserved, so the GraphLab abstraction introduces global
values that can be accessed by update functions, but their modification is performed using sync
operations. Sync operations are associative commutative sums defined overall by the scopes in the
graph.

The authors describe a two-phased partitioning-based distributed data graph model that enables
effective loading on a variety of Cloud deployments. They encode connection structure and file
locations in a meta-graph, allowing each machine to build its own local portion of the graph. Two
engine variants are discussed: the chromatic engine, which achieves parallel execution using vertex
coloring, and the distributed locking engine, which extends the mutual exclusion technique for
increased scheduling flexibility. To reduce latency, a number of strategies are used, including caching,
pipelined locking, and prefetching. On a large-scale graph, the distributed pipelining system’s
performance is assessed, showing a notable decrease in runtime.

Fault tolerance is introduced to the distributed GraphLab framework through a distributed checkpoint
mechanism. Two strategies for constructing distributed snapshots are evaluated: synchronous and
fully asynchronous. The ideal checkpoint interval must strike a compromise between the expense of
building a checkpoint and the computation lost since the last checkpoint. Performance evaluation
of the snapshotting algorithms on a synthetic mesh problem shows that the asynchronous snapshot
has minimal impact on execution speed, while the synchronous snapshot halts execution. In a
multi-tenancy environment, asynchronous snapshots’ benefits are more obvious.

GraphLab uses a Map-Reduce process to create an atom graph representation on a Distributed File
System (DFS). It uses an asynchronous RPC protocol via TCP/IP to communicate between processes
running on several machines. A cache is used to access remote graph data, and a scheduler manages
the assigned vertices in a group of processes named T. To detect when each scheduler has emptied its
sets, a distributed consensus approach is used.

Evaluation GraphLab was evaluated on three MLDM applications: Netflix movie recommenda-
tions, Video Co-segmentation, and Named Entity Recognition (NER). Performance experiments were
conducted on Amazon’s Elastic Computing Cloud (EC2) using up to 64 High-Performance Cluster
instances. On comparable jobs, GraphLab outperformed Hadoop 20-60 times faster and demonstrated
performance similar to specialized MPI implementations, with scaling becoming more efficient at
larger computation—to—communication ratios. In the Netflix movie recommendation assignment,
GraphLab outperformed Hadoop and MPI solutions in terms of accuracy and performance. With
more machines and a longer pipeline, GraphLab’s locking engine was able to significantly speed up
Video Co-segmentation. The performance boost of GraphLab in the NER application, however, was
only moderate and reached saturation after 16 computers, showing the need for more improvements
to improve scalability and match the performance of dedicated MPI implementations.

Strengths The paper highlights the increasing need for efficient parallel execution of MLDM
algorithms on large clusters due to the exponential growth in the scale of MLDM problems. It also
acknowledges the challenges involved in designing, implementing, and debugging distributed MLDM
algorithms, which require expertise in both MLDM and parallel/distributed computing. It emphasizes
the need for a high-level distributed abstraction that targets the asynchronous, dynamic, graph-parallel
computation found in many MLDM applications while hiding the complexities of parallel/distributed
system design.

Weaknesses The paper largely contrasts GraphLab’s implementations with those of Hadoop,
Pregel, and MPI. While these comparisons are useful, a more thorough evaluation would come from
a wider comparison with other distributed MLDM systems or frameworks. Additionally, a special
configuration of a 512-processor (64-node) cluster is used for the Amazon EC2 platform during the
evaluation of Distributed GraphLab. In alternative deployment situations or with different hardware
configurations, the performance and scalability of Distributed GraphLab are not fully investigated.
Furthermore, the paper concentrates on particular MLDM methods, which could not accurately reflect
Distributed GraphLab’s performance and suitability for a variety of MLDM applications. Further
research should be done to determine whether the results are generalizable to other MLDM algorithms
or problem domains. Also, while the paper mentions the incorporation of fault tolerance through
snapshotting schemes, it provides limited discussion or evaluation of the fault tolerance mechanisms.
The effectiveness and efficiency of fault tolerance methods might be further investigated and tested,
which would improve our understanding of their overall impact.

4 Discussion & Conclusion

The management of resources in machine learning (ML) pipelines is a complex task that requires
careful consideration of various stages and their corresponding resource requirements. Under-
provisioning or over-provisioning can lead to inefficiencies and sub-optimal performance. To address
these challenges, several ML frameworks have been developed, each offering unique features and
capabilities.

CIRRUS leverages the serverless infrastructure provided by AWS Lambda and overcomes resource
constraints by acting as a wrapper around Lambdas. DEEP focuses on enabling distributed training
and sharing of ML models, emphasizing model portability and collaboration. Kubeflow, built
on Kubernetes, offers a comprehensive set of tools for ML model development and management,
providing scalability and portability. ClowdFlows is a cloud-based web application that supports
the construction and execution of data mining workflows. However, the versions of the platforms
discussed in this paper were produced after many revisions made by the developers and/or authors.
These platforms are also ever-evolving to handle the problems that arise with the explosion of data.

Numerous opportunities for future work and research exist because of how quickly the fields of ML
and MLOps are developing. Future research can concentrate on further analyzing the functionality
and scalability of MLOps tools. Comparative research might be done to evaluate how well various
tools handle massive ML pipelines and datasets. In order to enable smooth workflow management,
there is also room to improve these tools’ ability to integrate with well-known ML frameworks and
libraries like TensorFlow or PyTorch. It may also be focused on creating MLOps frameworks that
explicitly address edge deployment scenarios, taking into account the growing popularity of edge
computing and the requirement for ML models to be deployed on resource-constrained devices.
These instruments might help with issues like model compression, device optimization for low power
consumption, and effective model updates in edge contexts.

Furthermore, it is evident that while there are a huge number of MLOps tools present in the market,
no tool is yet able to provide end-to-end support for non-thematic machines or deep learning pipelines.
While some only support data processing and model processing, others support model processing and
result visualization. Scientists and developers often have to switch between tools for their desired
tasks.

To sum up, ML/DL frameworks are constantly developing to solve the issues and challenges faced in
ML pipelines. We have learned about the advantages and limitations of different ML/DL technologies
through research and analysis. The effectiveness, scalability, and adaptability of these technologies in
managing ML workflows can still be greatly improved with further work and research.

References

[1] Baldini, L., Castro, P.,, Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., Muthusamy, V.,
Rabbah, R., Slominski, A. and Suter, P., 2017. Serverless computing: Current trends and open
problems. Research advances in cloud computing, pp.1-20.

[2] Kreuzberger, D., Kiihl, N. and Hirschl, S., 2023. Machine learning operations (MLOps):
Overview, definition, and architecture. IEEE Access.

10

[3] Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S. and Stoica, I., 2010. Spark: Cluster
computing with working sets. HotCloud, 10(10-10), p.95.

[4] Garcia, A.L., De Lucas, J.M., Antonacci, M., Zu Castell, W., David, M., Hardt, M., Iglesias, L.L.,
Molté, G., Plociennik, M., Tran, V. and Alic, A.S., 2020. A cloud-based framework for machine
learning workloads and applications. IEEE access, 8, pp.18681-18692.

[5] Zhou, Y., Yu, Y. and Ding, B., 2020, October. Towards MLOps: A case study of ML pipeline
platform. In 2020 International Conference on Artificial Intelligence and Computer Engineering
(ICAICE) (pp. 494-500). IEEE.

[6] Ruf, P., Madan, M., Reich, C. and Ould-Abdeslam, D., 2021. Demystifying MLOps and present-
ing a recipe for the selection of open-source tools. Applied Sciences, 11(19), p.8861.

[7] Continuous delivery for machine learning. https://martinfowler.com/articles/cd4ml.html

[8] Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young,
M., Crespo, J.F. and Dennison, D., 2015. Hidden technical debt in machine learning systems.
Advances in neural information processing systems, 28.

[9] Carreira, J., Fonseca, P., Tumanov, A., Zhang, A. and Katz, R., 2019, November. Cirrus: A
serverless framework for end-to-end ml workflows. In Proceedings of the ACM Symposium on
Cloud Computing (pp. 13-24).

[10] http://pywren.io/
[11] https://www.kubeflow.org/docs/started/architecture/

[12] https://www.run.ai/guides/kubernetes-architecture/kubeflow-pipelines-the-basics-and-a-quick-
tutorial

[13] https://www.kubeflow.org/docs/started/introduction/

[14] https://aws.amazon.com/blogs/machine-learning/build-flexible-and-scalable-distributed-
training-architectures-using-kubeflow-on-aws-and-amazon-sagemaker/

[15] Pandey, A., Sonawane, M., & Mamtani, S. (2022). Deployment of ML Models using Kubeflow
on Different Cloud Providers. ArXiv, abs/2206.13655.

[16] Kranjc, J., Podpecan, V., Lavrag, N. (2012). ClowdFlows: A Cloud Based Scientific Workflow
Platform. In: Flach, P.A., De Bie, T., Cristianini, N. (eds) Machine Learning and Knowledge
Discovery in Databases. ECML PKDD 2012. Lecture Notes in Computer Science(), vol 7524.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33486-3_54

[17] Kranjc, J., Orac, R., Podpecan, V., Lavrag, N., Robnik-gikonja, M., 2017. ClowdFlows: Online
workflows for distributed big data mining, Future Generation Computer Systems, Volume 68,
Pages 38-58, ISSN 0167-739X, https://doi.org/10.1016/j.future.2016.07.018.

[18] Kranjc, J., Smailovié, J., Podpe€an, V., Gréar, M., Znidarsi¢, M., Lavrag, N., 2015. Active
learning for sentiment analysis on data streams: Methodology and workflow implementation in
the ClowdFlows platform, Information Processing & Management, Volume 51, Issue 2, Pages
187-203, ISSN 0306-4573, https://doi.org/10.1016/j.ipm.2014.04.001

[19] J. Kranjc, V. Podpecan, N. Lavra¢, "Real-time data analysis in ClowdFlows," 2013 IEEE Inter-
national Conference on Big Data, Silicon Valley, CA, USA, 2013, pp. 15-22, doi: 10.1109/Big-
Data.2013.6691682.

[20] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J., 2012. Distributed
GraphLab: A Framework for Machine Learning and Data Mining in the Cloud. Proceedings of the
VLDB Endowment. 5. 10.14778/2212351.2212354.

[21] Low, Y., Gonzalez, J.E., Kyrola, A., Bickson, D., Guestrin, C., & Hellerstein, J.M. (2010).
GraphLab: A New Framework For Parallel Machine Learning. ArXiv, abs/1006.4990.

11

1

In today’s digital landscape, where interconnectivity and data exchange are
paramount, organizations rely on robust and efficient methods to integrate their
applications, services, and systems seamlessly. OAuth 2.0, webhooks, and API
management have emerged as critical components in this integration ecosystem,
providing secure, scalable, and standardized mechanisms for data sharing and

OAuth2, Webhooks, API in micro-services

Rohaan Almeida
Najma Christen
Ingrid Marie Wglneberg
Department of Computer Science
University of Amsterdam

June 5, 2023

Abstract

This paper explores three independent directions OAuth 2.0, webhooks,
and API management, and their impact on secure and efficient API integra-
tion. We explore into the core concepts, benefits, and challenges associated
with each of these technologies, we aim to provide a comprehensive un-
derstanding of their role in modern application integration. Furthermore,
we will discuss real-world use cases and best practices. We also compare
these technologies to similar technologies used in the industry as well as
present the latest improvements in these domains.

Introduction

interaction.

2 Research Question

What are the identified research directions concerning communication
and deployment of microservices with respect in areas such as Oauth2,

webhooks and API Integration?

1. RQ1l: What are good API management standards when it comes to mi-

croservice architecture?

2. RQ2: How does OAuth2 compare to other authentication and authorization

protocols, such as SAML and OpenID Connect?

3. RQ3: What are the advantages of webhooks compared to the polling
practice in microservices?

3 API management

3.1 API management practices for microservices

In a microservice architecture the services communicate with each other through
APIs, in addition to this APIs can be used for communication with external
third party systems. This makes management of those APIs important, as it
is key to efficient communication. Using clever API management solutions for
your architecture can enable policy and key validation, service versioning, quota
management, authorizations and access control etc. [IS1§].

In the book “Microservices for the Enterprise” ch.10: “API, Event, and
Streams” they identify six components of an API management solution. These
components are called API publisher, API Developer Portal/Store, API Gateway,
API Analytics/Observability, AP Monetization and API Quality of Service. So
there are several management practices that have emerged to address require-
ments and challenges of microservice architecture. API management handles
the management through the whole API lifecycle from design to maintainment
and retirement. In some cases APl Gateway is used interchangibily with API
Management because the API Gateway is a crucial part of the management
[IS18].

Another paper discusses the importance of API gateways in the microservices
architecture, highlighting their role as the entry point for requests and their
ability to simplify communication between clients and microservices. It explores
key functionalities such as authentication, reverse proxy, and flow control, using
technologies like OpenResty, Nginx, and Lua. The paper emphasizes the signifi-
cance of continuous updates and optimization to ensure high performance and
efficient development in managing microservice interfaces [ZJJ1§].

We found a Systematic Literature Review that highlight the importance of
API Management in general. Their goal is to identify practices and capabilites
that can be found in literature, as well as creating a new definition for API
Management based on the different definitions they encountered in their review.
Even if this review is not specifically related to microservices, the same practices
would apply and I would argue that API Management is even more important
for a microservice architecture as communication internally is also based on APIs
[MOJ20]. The authors identify 8 practices related to APT Management: caching,
OAuth authentication, load balancing, rate/quota limiting, usage throttling,
activity logging/monitoring, access control and billing [MOJ20].

3.2 What are identified challenges within API management
and are there any suggested solutions?

Since the API gateway is now a central part of the microservice architecture,
there are some challenges related to this component. It exists many API gateways
developed by large enterprises over the years. It is possible for companies to
buy some of these API gateways and some are even open source. However
for many it can be too expensive buying an API gateway solution and too
time consuming and difficult to configure open source code to meet their own
systems requirements. Another approach could then be to use Nginx to deploy
their own API Gateway but this solution can also be difficult to develop to
work as well as the commercial API Gateways [ZSWX20]. So it seems that one
important challenge when it comes to API Gateways is how to choose the right
one for your system. This paper suggest a solution to this cost, performance and
maintainability issue of choosing API gateway for your system. The authors
suggests to optimize the API Gateway by optimizing the framework of the API
Gateway, reducing coupling between the API Gateway core business and plug-ins.
After finalizing the optimization they compare it with an open source based
API Gateway and the Nginx solution, and their result do indeed show that their
suggested solution improve response rate and performance of the API Gateway
[ZSWX20].

While it can be difficult to find the best API Gateway solution for your
system there are also some general challenges when it comes to API Management.
We found this in different tech blogs or websites and from that tried to find
scientific papers who might be addressing these problems. Some of the challenges
we found were [Kon23| [NGI22| mrer, [Wen23|:

e Gateway specific challenges:

— The gateway is an extra component that would need to be developed
and maintained /updated.
— An extra network hop for all the requests to your system.

— Potential bottleneck or single point of failure.
e Documentation
e Visibility and governance

e Versioning: Akbulut and Perros propose a solution to the versioning
problem by extending and modifying the API gateway pattern. According
to their paper their new approach runs the system with 27% less hosting
cost compared to a normal auto-scaling method [AP19].

e Security: a solution to this is discussed further in the next section on
OAuth?2.

4

OAuth2

4.0.1 Why is Authorization(Oauth2) preferred over authentication

for API Communication?

When comparing authorization to authentication in terms of performance, au-
thorization generally has some advantages:

1.

Reduced Authentication Overhead: Once a user or client has been
authenticated and a valid session or token is available, further authorization
checks can be performed without the need for re-authentication, thus
significantly reducing the computational and network overhead associated
with authentication, improving overall performance.

. Caching and Access Control Lists (ACLs): Caching allows frequently

accessed authorization decisions to be stored in memory, thus reducing the
need to perform redundant authorization checks repeatedly. This caching
mechanism can improve performance by providing faster responses for
subsequent authorization requests.

. Efficient Resource Access: By defining specific access rules or permis-

sions, authorization mechanisms can optimize the access process and limit
unnecessary requests to resources.

. Easier Scalability: By employing scalable authorization models, we can

ensure that access control processes can handle the increasing number of
concurrent requests without impacting performance.

. Reduced Network Latency: Authorization decisions can often be made

amongst close neighbors to the resource being accessed, thus reducing
the need for network round trips or through using lightweight tokens, the
overall network latency can be minimized, leading to better performance
and response times.

. Role-Based Access Control (RBAC): RBAC maps users or entities

to predefined roles, and authorization decisions are based on the roles
assigned to them. This simplification reduces the complexity of the access
control process and can lead to faster and more efficient authorization
checks.[CP22, [TAST 22, IACCT08, Ngu|, Yan, MRS™23|

4.0.2 How does Oauth2 compare against other protocols such as

SAML and OpenID?

Here are the key differences between SAML, OpenID and OAuth 2.0:

1.

Purpose and Scope:

o SAML: SAML primarily deals with authentication and exchanging
identity-related information between an identity provider (IdP) and a
service provider (SP). It enables SSO and allows users to authenticate
once and access multiple applications without re-authentication.

e OpenlD: OpenlD focuses on user authentication and provides a way
for users to prove their identity to multiple websites or applications
using a single set of credentials. It allows users to authenticate them-
selves through an identity provider (IdP) and obtain an identity token
that can be presented to service providers (SP) for authentication.

e OAuth 2.0: OAuth 2.0 focuses on authorization and access delegation.
It enables secure access to protected resources on behalf of a user.
OAuth 2.0 is commonly used in scenarios where a user wants to grant
limited access to their resources to a third-party application.

2. Protocol:

e SAML: SAML uses XML-based messages for communication between
the IdP and SP. It follows a request-response model where the user
is redirected from the SP to the IdP for authentication, and after
successful authentication, the IdP sends an assertion (SAML token)
back to the SP.

e OpenlID: OpenlD relies on the use of protocols such as OpenlD
Connect (built on top of OAuth 2.0) and the use of identity tokens. It
provides an authentication layer that uses OAuth 2.0 as the underlying
authorization framework.

e OAuth 2.0: OAuth 2.0 primarily relies on HTTP-based protocols for
communication. It utilizes a token-based approach, where the client
(third-party application) obtains an access token from an authorization
server to access protected resources on the resource server through
signature verification.

3. Flow and Parties Involved:

e SAML: The SAML flow typically involves three parties: the user
(resource owner), the IdP, and the SP. The user authenticates with
the IdP, which generates a SAML token containing identity assertions.
The user then presents this token to the SP to access the desired
application or resource.

e OpenlID: OpenlD involves three main parties: the user, the identity
provider (IdP), and the relying party (RP). The user authenticates
with the IdP and receives an identity token. The user can then present
this token to the RP to authenticate themselves and gain access to
the desired application or service.

e OAuth 2.0: The OAuth 2.0 flow involves four parties: the user (re-
source owner), the client (third-party application), the authorization
server, and the resource server. The user grants permission to the
client to access their resources by interacting with the authorization
server. The client then obtains an access token from the authorization
server, which it uses to access protected resources on the resource
server.

4. Use Cases:

e SAML: SAML is commonly used in enterprise environments and
is well-suited for scenarios where a user needs to access multiple
applications with a single set of credentials, such as SSO across
different systems or federated identity management.

e OpenlID: OpenlD is commonly used for scenarios where users want
to have a single sign-on experience across multiple websites or appli-
cations, using a single set of credentials. It provides a convenient and
secure way to authenticate users and manage their identities.

e OAuth 2.0: OAuth 2.0 is widely used in web and mobile applications
that require secure access to user resources, such as accessing APIs
or fetching data from social media platforms.

In summary, SAML, OpenID and OAuth 2.0 serve different purposes. SAML
focuses on identity management and SSO, OpenlD focuses on user authentication
and identity verification, providing a way for users to authenticate across multiple
websites or applications whereas OAuth 2.0 focuses on authorization and access
delegation. All three protocols play important roles in enabling secure and

controlled access to resources, but they have different scopes and use cases.
[Hug, MRS™23l [ACCT08, ISBJ™14]

4.0.3 What are some alternatives to Oauth2 that that offer additional
features or improvements?

1. OAuth2.1: OAuth2.1 is an evolution of OAuth2.0 that aims to address
some of the security and usability concerns that have emerged over time. It
provides clarifications, updates, and best practices to enhance the security
posture of OAuth2.0 implementations such as secure communication, token
storage, token revocation, and token expiration.

2. FIDO2: Fast Identity Online 2 (FIDO2) is an authentication protocol
that goes beyond traditional username/password-based authentication.
FIDO2 uses public key cryptography and hardware-backed security to
enable passwordless and strong two-factor authentication. It provides

a more secure and user-friendly authentication experience compared to
OAuth2.0 alone.

3. SCIM: System for Cross-domain Identity Management (SCIM) is not an
authentication or authorization protocol itself but rather a standard for
user provisioning and management. It defines a schema and RESTful APIs
for managing user identities across different systems. SCIM can be used in
conjunction with OAuth2.0 or other protocols to facilitate user provisioning
and identity synchronization. [NJI7, [LSNT20, [FLS™20, [Nad13]

5 Webhooks

In today’s world effective and smooth communication between applications and
services has become essential. Webhooks is a powerful tool for real-time data
exchange and turns out to be a better in many ways than traditional polling
methods. In the following we will explore crucial differences and in particular
advantages of webhooks compared to polling.

e Real-Time Communication: Webhooks facilitate real-time communica-
tion between applications by instantly notifying receiving systems about
specific events or changes. Unlike polling, which involves continuously
querying for updates, webhooks eliminate the need for constant requests.
With webhooks, relevant data is delivered instantly when an event oc-
curs, enabling immediate reactions and reducing latency in communication.
This real-time aspect ensures that information is up-to-date and allows
systems to respond promptly, enhancing the overall efficiency and respon-
siveness of applications. The comparative study by Kavats [KK19| on a
telegram server shows that Webhooks performs up to three times better
than standard polling on an increasing number of requests per second.

e Resource Efficiency: Polling involves making frequent requests to a
server, consuming resources and increasing server load, even when there
is no new data available. In contrast, webhooks eliminate unnecessary
requests, significantly reducing resource consumption. With webhooks,
data is transmitted only when an event occurs, minimizing bandwidth
usage and freeing up server resources. This efficiency not only optimizes
system performance but also reduces operational costs, making webhooks
an attractive solution for resource-constrained environments. Duner’s study
[DN20] suggests, that webhooks can handle a higher load than polling
before reaching the CPU limits.

e Event-Driven Architecture: Webhooks follow an event-driven architec-
ture, enabling decoupling between systems. Instead of relying on continuous
polling, applications can subscribe to specific events and receive notifi-
cations only when relevant data is available. This decoupling encourges
modular design, allowing independent development and scalability of indi-
vidual components. Moreover, the event-driven approach enables greater
flexibility, as systems can dynamically subscribe or unsubscribe to events
based on their specific requirements. This supports adaptability and ex-
tensibility, as it is easy for systems to adjust to changing requirements. It
also makes the system more robust as the services work independently, the
failure of one service does not interfere with the rest of the services.[Var23|

e Improved Data Integrity: Webhooks ensure data integrity by deliv-
ering information in the most reliable way. Unlike polling, where data
might be subject to synchronization issues due to time delays, webhooks
eliminate such concerns. When an event occurs, webhooks deliver the

data immediately, reducing the risk of data inconsistency. This advantage
is particularly crucial in scenarios where data accuracy and consistency
are extremely important, such as financial transactions or collaborative
applications.

e Simplified Integration: Webhooks simplify the integration process be-
tween different systems. By adhering to standard HTTP protocols and
leveraging familiar request/response mechanisms, webhooks can be easily
integrated into existing infrastructure. Developers can utilize widely sup-
ported web frameworks and libraries to handle incoming webhook requests,
reducing implementation complexity. This simplicity of integration pro-
motes faster development cycles and facilitates seamless communication
across diverse applications.

6 Discussion

6.1 Difficult to compare

When it comes to comparing different architectures, such as API management
architectures, it can be challenging due to their varying scopes and use cases.
Each architecture is designed to address specific requirements and objectives.

6.2 Future improvements and research

The systematic literature review [MOJ20] suggest some future work in the
area of API Management which we can also be a possible solution to the
comparison issue. They suggest that to enable organizations to evaluate and
improve their API management maturity levels, a Future Area Maturity Model
(FAMM) can be built. We also think this model can be used to more easily
compare API Management solutions with each other as it will make parameters
for comparison more clear. However this still requires more research into the
practices, capabilities and the relationships between them. As well as verification
from experts.

However this literature review is not focused only on microservice architecture,
just API Management in general. We therefore wonder if there might be some
differences in the “best practices” for API Management depending on what type
of architecture your system is using.

Future improvements to Oaut2.0 is Oauth 2.1 and it aims to address some
security and usability concerns. Additionally System for Cross-domain Identity
Management (SCIM) be used with OAuth2.0 or other protocols to facilitate user
provisioning and identity synchronization.

7 Conclusion

In this literature study, we inspected three different directions in APTI integration,
which all have a connection to microservices in a different way.

API management practices, including API gateways, versioning, authenti-
cation, and access control, are essential for facilitating smooth communication
both internally and with external systems. Choosing the right API gateway
solution and optimizing its performance are important challenges to address.

OAuth 2.0, applying a token-based approach, stands out as a preferred au-
thorization protocol in microservices due to its reduced authentication overhead,
caching capabilities, efficient resource access, scalability, and reduced network
latency. While SAML and OpenlID also serve their purposes in authentication
and identity management, OAuth2 specifically focuses on authorization and
access delegation.

Webhooks offer significant advantages over polling practices in microservices.
Real-time communication, resource efficiency, event-driven architecture, improved
data integrity, and simplified integration make webhooks a superior choice for
communication in microservices.

These technologies and practices contribute to enhanced performance, scalabil-
ity, and adaptability, supporting the successful implementation and management
of microservices. Hence, it can be of high importance to consider OAuth 2.0,
webhooks and a proper API management to achieve a robust and efficient
microservice.

References

[ACCT08| Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge
Cuellar, and Llanos Tobarra. Formal analysis of saml 2.0 web browser
single sign-on: Breaking the saml-based single sign-on for google
apps. In Proceedings of the 6th ACM Workshop on Formal Methods
in Security Engineering, FMSE ’08, page 1-10, New York, NY, USA,
2008. Association for Computing Machinery.

[AP19] Akhan Akbulut and Harry G Perros. Software versioning with mi-
croservices through the api gateway design pattern. In 2019 9th
International Conference on Advanced Computer Information Tech-
nologies (ACIT), pages 289-292. IEEE, 2019.

[CP22] Ayan Chatterjee and Andreas Prinz. Applying spring security frame-
work with keycloak-based oauth2 to protect microservice architecture
apis: A case study, Feb 2022.

[DN20] Daniel Dunér and Marcus Nilsson. Scalability of push and pull based
event notification: A comparison between webhooks and polling,
2020.

[FLS*20]

[Hug]
[1S18]

[KK19]

[Kon23|

[LSN+20]

[mer]

[MOJ20]

[MRS*+23

[Nad13)]

INGI22]

[Ngu]

[NJ17]

Florian M Farke, Lennart Lorenz, Theodor Schnitzler, Philipp Mark-
ert, and Markus Diirmuth. " you still use the password after
all"—exploring fido2 security keys in a small company. In Pro-
ceedings of the Sizteenth USENIX Conference on Usable Privacy and
Security, pages 19-35, 2020.

J Hughes. Citeseerx.

Kasun Indrasiri and Prabath Siriwardena. APIs, Events, and Streams,
pages 293-312. Apress, Berkeley, CA, 2018.

Elena Aleksandrovna Kavats and Artem Aleksandrovich Kostenko.
Analysis of connection methods of telegram robots with server part.
System technologies, 3(122):19-24, 2019.

Why do microservices need an api gateway, Apr 2023.

Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr,
Michael Backes, and Sven Bugiel. Is fido2 the kingslayer of user
authentication? a comparative usability study of fido2 passwordless
authentication. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 268—-285. IEEE, 2020.

7 api management challenges (and how to solve them).

Max Mathijssen, Michiel Overeem, and Slinger Jansen. Identifica-
tion of practices and capabilities in api management: a systematic
literature review. arXiv preprint arXiv:2006.10481, 2020.

Gunasekaran Manogaran, Bharat S. Rawal, Vijayalakshmi Saravanan,
Priyan M K, Qin Xin, and P. Shakeel. Token-based authorization and
authentication for secure internet of vehicles communication. ACM
Trans. Internet Technol., 22(4), mar 2023.

T Nadalin. Oauth working group p. hunt, ed. internet-draft ora-
cle corporation intended status: Standards track m. ansari expires:
January 06, 2014 cisco. 2013.

Building microservices: Using an api gateway, Dec 2022.

Quy Nguyen. Applying spring security framework and oauth2 to
protect microservice architecture api.

Nitin Naik and Paul Jenkins. Securing digital identities in the cloud
by selecting an apposite federated identity management from saml,
oauth and openid connect. In 2017 11th International Conference on
Research Challenges in Information Science (RCIS), pages 163-174.
IEEE, 2017.

10

[SBJ*14]

[TAS+22|

[Var23]

[Wen23]

[Yan]|

[ZJJ18]

[ZSWX20]

Natsuhiko Sakimura, John Bradley, Mike Jones, Breno De Medeiros,
and Chuck Mortimore. Openid connect core 1.0. The OpenlD
Foundation, page S3, 2014.

Michal Trnka, Amr S. Abdelfattah, Aishwarya Shrestha, Michael
Coffey, and Tomas Cerny. Systematic review of authentication and
authorization advancements for the internet of things. Sensors, 22(4),
2022.

Thomas Cole Varney. Webhooks-as-a-service: A custom api design.
2023.

Mark Wentowski. Api lifecycle management: Phases, challenges amp;
best practices, May 2023.

Ronghai Yang. Signing into one billion mobile app accounts effort-
lessly with oauth?2.

JT Zhao, SY Jing, and LZ Jiang. Management of api gateway based
on micro-service architecture. In Journal of Physics: Conference

Series, volume 1087, page 032032. IOP Publishing, 2018.

Xianyu Zuo, Yuehan Su, Qiangian Wang, and Yi Xie. An api gateway
design strategy optimized for persistence and coupling. Advances in
Engineering Software, 148:102878, 2020.

11

MicroVMs and unikernels for the cloud

Web Services and Cloud-Based Systems - Group 33

Niclas Haderer - UvA Amsterdam
14340208

niclas.haderer@student.uva.nl

Paulo Liedtke - UvA Amsterdam
14209772
paulo.liedtke@student.uva.nl

Paul Grof# - UvA Amsterdam
14723700

paul.gros@student.uva.nl

June 4, 2023

Abstract

This paper examines the trade-offs between microVMs, unikernels, and
containers in terms of resource consumption, performance, security, usabil-
ity, and tooling. The study concludes that while containers maintain a
performance advantage, certain configurations of microVMs in combination
with unikernels can outperform them in specific scenarios. Despite their
higher isolation potential, unikernels suffer from missing several kernel
security features and have challenges because of their complex build process
and lack of robust community support. However, the integration of mi-
croVMs with Kubernetes is starting to address these issues. It is concluded
that microVMs and unikernels serve as promising alternatives to containers
for large-scale, high-performance projects requiring higher isolation where
the extra implementation time is worth a bit more performance and lower
startup times. This e.g. is the case when working under constrained
resource conditions such as edge computing. MicroVMs with a small Linux
kernel are more suitable when higher isolation is necessary, as seen in AWS
Lambda functions, allowing for optimized hardware utilization.

1 Introduction

The prevalence of containers for software deployment in cloud environments is
widely acknowledged [41]. However, especially for security critical environments
they have problems. This is amongst other things due to an overly exposed
host kernel that the containers have to interact with [27, p. 219]. This is a
potential surface for attacks [33] [38], which is hard to secure [I5] and has been
exploited multiple times [I4] [I5]. This raises concerns for public cloud providers
because they have limited control over the kind of applications running on their
cloud. Because of that, cloud service providers like Amazon and Google shifted
to microVMs for some of their cloud products, like lambda functions [I]. This is
because microVMs offer higher isolation compared to containers [1]. In contrast
to classical VMs like VM Ware, containers have extremely fast instantiation times,
small memory footprints, and high density on the host system [27, p. 219].

The goal of the paper is to compare the trade-offs between microVMs, uniker-
nels, and Containers in terms of resource consumption, performance, security,
and manageability to answer the question of if and where new technologies like
microVMs and unikernels are viable alternatives for containers.

1.1 Theoretical background
1.1.1 Containers

Containers are lightweight, isolated runtime environments that contain an ap-
plication and all its dependencies. Normally a container only contains a single
application. Because containers do not run in a hypervisor low-level calls like
system calls are forwarded to the host operating system [40} 27]. The isolation
is based on cgroups (Control Groups) which can be used to limit and isolate a
process’s access to other CPUs, RAM, and networks. Linux namespaces can
then be used to create a protected environment for every running container
[6]. Because docker containers do not include a kernel their resource usage is
relatively low and startup speeds are generally very fast [23] 27].

1.1.2 MicroVMs

A microVM is a highly specialized virtual machine designed to execute specific
types of applications, supporting only basic capabilities [27]. Through simplifi-
cation, the elimination of unnecessary devices, and the removal of unnecessary
functionalities, a microVM achieves quicker startup times and lower resource
utilization when compared to a traditional VM [27] [38]. Because the kernel is
virtualized and microVMs provide hardware-level isolation a microVM offers
more isolation and therefore also security than a container [27]. Furthermore, a
microVM can enforce limitations on CPU utilization, memory allocation, and
network usage. This offers protection from DOS (denial of service) attacks and
prevents a single VM from using all resources [38].

1.1.3 Unikernels

Unikernels are images intended to run only a single application at the same
time [4I]. Once deployed, unikernels cannot be modified [25]. They contain all
the application code, libraries, and OS/Kernel within a unified address space
[25]. Because they are compile-time linked it is possible to eliminate unnecessary
components thereby reducing the attack surface by shipping fewer libraries and
decreasing the size of the resulting image [20]. Due to their highly specialized
nature and customizability to meet specific application requirements, unikernels
provide access to low-level APIs, resulting in superior performance compared to
traditional operating systems [41] in some scenarios. However because of their
minimalist nature some security features, which are normally found in an OS
might be missing. Furthermore, unikernels also introduce certain challenges,
such as making the debugging of deployed applications more complex and being
more difficult to build compared to Docker containers[9]. The resulting unikernel
can be deployed either on a hypervisor or on bare metal [26].

1.2 Methodology

In order to compare microVMs, unikernels, and containers a systematic literature
review according to the definition of Snyder [35] was performed. Therefore,
relevant literature consists of studies comparing papers on microVMs, unikernels,
and containers. To identify relevant literature, the abstract and citation database
Scopus was used [I0]. Scopus, as per Kulkarni et al.’s findings, outperforms its
competitor Web of Science in retrieving citations with comparable performance
to Google Scholar, while also providing a more capable search functionality than
Google Scholar [2I]. The search query aimed to find English literature published
from 2015 onward that includes the keywords 'microVM(s)’ or 'unikernel(s)’ and
‘container(s)’ in the abstract, keywords, or title.

(TITLE-ABS-KEY("MicroVMx") OR

TITLE -ABS-KEY ("Unikernel*")) AND
TITLE-ABS-KEY("Containerx") AND (LIMIT-TO(PUBYEAR,
2023) OR LIMIT-TO(PUBYEAR, 2022) OR LIMIT-TO(PUBYEAR,
2021) OR LIMIT-TO(PUBYEAR, 2020) OR LIMIT-TO(PUBYEAR,
2019) OR LIMIT-TO(PUBYEAR, 2018) OR LIMIT-TO(PUBYEAR,
2017)) AND LIMIT-TO(LANGUAGE, "English")

Listing 1: Search query

This resulted in 59 results that were then sorted by citations. The first ten papers
that fit the scope were chosen as the base literature. Those consist of articles
that compare and benchmark containers and microVMs/unikernels [12], 28] [38],
A7), [30, B9] and articles that propose new microVMs/unikernels technologies
[2, 27, [7]. As the proposal of new container technologies by the latter group
might lead to a potential conflict of interest when these proposed technologies
where benchmarked by the authors against existing container solutions, extra
care has been taken to examine these papers for possible biases.

2 Comparison

When comparing the different systems it is essential to consider various con-
figurations. Please note that in certain sections, some combinations may be
absent, because no studies have been done regarding this specific configuration.
There are three different configurations that have been taken into account. A
fully-fledged operating system has not been included in the comparison, as its
overhead increases the memory footprint and the startup times to a point where
that is not a viable option [27].

1. Docker
2. MicroVM running with a slim OS

3. MicroVM running a unikernel

2.1 Performance
2.1.1 Resource usage

In the following paragraph, the resource usage, as well as the hardware utilization
is discussed for Docker, unikernels, and microVMs.

Memory usage: To analyze the memory usage, Marco et al. ran 1000
Micropython guests on one host system. While unikernels and Docker containers
had a memory footprint of around 5GB, a minimalist operating system created
with TinyX consumed 27GB, while a standard Debian virtual machine required
a hefty 114GB of memory [27]. This is because when running a minimalist OS
within a microVM, multiple instances of the kernel are running. In addition to
that the memory overhead of a microVm also has to be taken into account which
is about 3MB per VM with out a guest operating system in case of Firecracker
[I]. While the authors suggest that the 22GB difference isn’t significant due
to current memory prices, it’s worth highlighting that the five-times increase
in the memory footprint of the tiniyx VM instance compared to containers is
considerable. For example, a Google VM with 8 cores and 8 GB Ram is 145.45$
per month, while the same machine with 32 GB Ram is 196.67$ [13].
According to Plauth et al., when running a simple HTTP Server, a Docker
container has a memory footprint of around 80MB, the unikernel Rumprun
has one of about 190MB, roughly twice the size, while a standard Ubuntu VM
features a memory footprint of 250MB [30]. Similar memory usage results are
also reported by Li et al. [23] and Mavridis et al. who claim that unikernels take
around two times more memory than Containers [28]. Differing from these results,
Kuenzer et al. showed that unikernels can outperform containers, claiming that
the minimal amount of memory needed to run an nginx on an Unikraft unikernel
is 5SMB, while a Docker container needs 7TMB [20] (see [figure T)).

CPU usage: With respect to the CPU utilization, Marco et al. state that
Docker containers and unikernels exhibit the lowest resource utilization, with
TinyX, running in a microVM peaking at approximately 1% for 1,000 guests,

T
4svs| EEE hello B redis

@
8
291.8

I nginx B sqlite

@
8
232.7

250

152.6
160.3
175.6
189.0

200

104.5

71.6

Minimum Memory Requirement
Average Throughput (x1000 req/s

Figure 1: Minimal memory usage [20] Figure 2: Requests per second [20]

while Debian VMs show poorer scalability, reaching around 25% utilization for
the same number of VMs, which stems from the numerous services Debian runs
by default [27]. Anjali et al. performed CPU benchmarks that showed that
the CPU speed for unikernels and containers is roughly the same [2]. This is
congruent with the findings of Plauth et al. [30].

Multiprocessing support is not widely spread around unikernels. For example,
OSV does not support multiprocessing[11] and Unikraft only supports it since
2022 [37]. Therefore most of the benchmarks which have been examined here
are single-core benchmarks.

The system call times are roughly similar when comparing a virtual machine
deployed with KVM to the host. However, docker exhibits slightly slower
performance, and gVisor experiences approximately 1.5 times slower execution
when running on KVM [23].

According to Kuenzer et al., across four applications Unikraft (run with
KVM) used fewer resources than docker and achieved better performance [20]
(see . When modifying the application to use the special low-level APIs
offered by Unikraft the performance improvements are even bigger, and even
outperform the same application running on bare-metal [20]. This is achieved by
removing all overhead and unnecessary components using a dependency graph
that helps determine which components are needed for an application to run.

The current research presents heterogeneous results when examining the
performance of unikernels, microVMs, and containers. The consensus is that
containers are quicker than microVMs running a lightweight OS. When compar-
ing unikernels in microVMs with containers, they’re similar in how well they
perform. Modern unikernels, like Unikraft, can even outperform containers in
some scenarios.

2.1.2 Startup time

When it comes to startup times unikernels in combination with a microVM
seem to be faster than the startup time of a container. While Docker containers
required 150ms to start up when no containers were running, the startup time

Debian Boot

Tinyx Create - - - - Docker Boot

Debian Create - - - - MiniOS Boot Docker Run
Tinyx Boot MiniOS Create ---- Process Create - 1800
10° . p— 1600 | config
1400 | hypervisor mmm
10* xenstore mm—
- Z }sgg [devices mmmm
7 10° [, e o f load m—
E T A,_W_M g 800 - toolstack e
P S v s 2 e F 600 |
= 400 |
10’ M ‘ ‘ '] e ’WM_M MU«“J i " »J, 200 |
e i AR e gk 0
10° ‘l‘.," Y W) J* v MM’ " 1t 0 200 400 600 800 1000
0 200 400 600 800 1000

Number of running guests

Number of running guests

Figure 4: XenStore overhead [27]
Figure 3: Startup time [27]

increased to 1s when running 3000 Docker containers. On the other hand, uniker-
nels booted within the range of 8-15ms (excluding the microVM), irrespective
of the number of instances running. This time could even be reduced to 2.3ms
when optimizing the unikernel for startup time [27]. However, these results were
only achieved after improving upon some bottlenecks in the XenStore (which
is a key-value store that allows the different components of the virtualization
environment to share data [§]) which takes longer to update information the
more VMs there are. However, it is possible to mitigate this problem not only by
removing the XenStore [27] (see , but also by caching certain operations
and thereby improving the performance for workloads with very many VMs
>256 by 46% [8]. The final start to finish startup times can be compared in
figure 3

Goethals et al. found similar results when running Firecracker microVMs
where they discovered that the Firecracker VM booted slightly faster than
container-based alternatives, and OSv unikernels offer "extremely low boot times
and significantly better performance than Docker containers" [12].

2.1.3 IO Performance

The IO performance is an important metric for modern cloud applications,
as most communication happens over TCP/UDP [34]. Therefore a high 10
throughput and low latency are essential for cloud infrastructure components.
In the following, the unikernel OSv, Firecracker, the container runtime gVisor
and runC are evaluated.

OSv significantly outpaces Docker on x86 architectures, exhibiting 50% faster
response rates in completed requests per second. Conversely, Firecracker, using a
lightweight OS, performs 20% worse. Further, containers deployed using gVisor
achieve only 25% of the speed of those deployed with runC, demonstrating that
the gVisor’s emulated software kernel introduces substantial overhead for the
benefit of enhanced security through improved isolation [I2]. This is in line with
Plauth et al. who found that the round-trip time for certain unikernels is smaller

than the round-trip time of docker, and almost matches native performance[30].

For ARM architectures, OSv unikernels offer the fastest processing, being
16% faster than Docker containers, while Firecracker running a lightweight OS
only achieves 72% of the performance of OSv. Containers using gVisor only
achieves 10% of the performance of containers running with runC.

When running using multiple processor cores, OSv and Firecracker scale
worse than Docker and gVisor with more threads [12]. This is most likely because
of missing or bad implementation of multi-core support [I1].

According to Wang et al., Firecracker’s I/O performance is behind Docker
for small disk write sizes, but it catches up with (or exceeds) Docker when
the records become larger [38]. Anjali et al.’s study confirms that Firecracker
outperforms Docker by a factor of two for 4kb file sizes, which increases to a
factor of four for 1MB file sizes [2].

It can be therefore concluded that virtual machines in combination with
unikernels offer faster I/0, especially for larger chunks [38]. However, when it
comes to handling HTTP requests through multiple cores, unikernels fall short
due to their weak multi-core support, showing worse performance than containers
[12].

2.2 Security

VMs, unikernels, and containers are widely used in the cloud to isolate multiple
workloads. This has a lot of opportunities as this allows running multiple
applications on a single host machine, but also has security challenges. In this
section isolation and attack surface are compared to point out the trade-offs
between the different technologies and to understand in which scenario which
virtualization technology is most suitable. Isolation describes to which extent
separation of workloads can be achieved, ensuring independent operation and no
inference between those workloads. Attack surface refers to potential points of
vulnerability that an attacker can exploit according to the definition of Ross et
al. [32], while isolation is defined as the challenge of creating different virtual
instances and keeping them independent [3].

Generally speaking, unikernels provide the highest level of isolation because
each application is compiled with only the specific libraries and drivers it needs
into a standalone kernel. As they do not rely on a host operating system, the
risk of vulnerabilities that could be exploited from outside the unikernel can
be reduced. VMs also offer a high degree of isolation, as each VM operates as
a separate system with its own OS, libraries, binaries, and applications. This
means that VMs are not affected by the operations of the host system or other
VMs running on the same hardware. Containers provide the least amount of
isolation because they share the host system’s kernel [27] [38].

Compared to microVMs or containers, unikernels have technically the smallest
attack surface because they do not have a native shell, unneeded code, and
unnecessary system calls are removed or unsupported [36]. However, unikernels
might overlook essential security features. A study from 2019 challenged the
security advantages of two unikernels (Rumprun and IncludeOS), highlighting

the lack of important security features such as ASLR, W~ X, Stack canaries, or
heap integrity checks [29]. Rapp et al. examined a selection of unikernels based
on selected security features, highlighting that the unikernel nano implemented
the most features [22]. Another problems is that running the applications in
kernel space gives an attacker who gained remote code execution direct access to
kernel-level functionality where they have elevated access to system calls or raw
packet 1/O [36]. These can be pivot points for attacking neighboring hosts [29].

Containers on the other hand offer isolation with statically linked libraries
and the ability to utilize security mechanisms at the host level [4]. They run
within the user space, which means that all containers share the same kernel. In
the event of a kernel compromise, all containers running on the host could also
be compromised [24]. Those risks can be mitigated by following the guidelines of
the official documentation and employing protection methods such as user-space
isolation, host-based intrusion detection, rootless docker [31], or utilizing kernel
security hardening mechanisms (e.g. Tripwire, SELinux) [39].

Virtualization relies on a hypervisor, which acts as an intermediary between
the guest operating system and the underlying hardware. The level of isolation
achieved is primarily attributed to the hypervisor’s ability to leverage hardware
features such as memory segmentation and hardware virtualization extensions.
These extensions enable the hypervisor to operate in the host domain, while
the guest virtual machines (VMs) function within the guest domain, enabling
the guest VM kernels to run at ring level 0 [24]. It should be mentioned that
unikernels usually do not run bare metal, which means that they also benefit
from the security features of a hypervisor.

Williams et al. have explored yet another way to achieve the same level of
isolation for unikernels similar to VMs by running unikernels as processes. By
modifying the ukvm unikernel monitor, the monitor can load the unikernel into
its own memory space. This modified monitor is called tender and switches to a
restricted execution mode before executing the unikernel code. As a result, they
were able to reduce the number of system calls by 50%, which in turn reduced
the attack surface [40)].

In conclusion, considering the security aspects of isolation and attack surface,
the literature shows that microVMs offer strong isolation, while containers have
limitations in that regard. Unikernels have strong isolation as well, but may
lack privilege levels within the unikernel itself and fail to implement some of
the security mitigations. To advance the security state of applications, a hybrid
combination of these technologies holds potential [24]. During the review of
several papers and unikernel projects, the evaluation of the unikernels security
seems biased. The authors of Unikraft write that it should be possible to achieve
good security while retaining high performance. However, important security
features like ASLR and WX are not implemented [20]. Furthermore, through
this analysis, a research gap has been identified, as none of the papers evaluated
the security of unikernels running inside of microVMs, which could be a good
combination as the microVM is addressing some of the before-mentioned missing
security features of unikernels.

2.3 Usability and Tooling

In recent years, containers have emerged as the leading choice for deploying
software applications and services among all container vendors. They have a
robust ecosystem and a large community which has contributed to its popularity
[16]. By building containers it can be made sure that the software runs on every
cloud provider, effectively offering a way to mitigate vendor lock-in risks [I7]. On
the other hand, building unikernels is complicated as it requires a lot of custom
configuration and build tools [27]. Projects like Unicraft aim to ease this process
and reduce the complexity by providing build tools, libraries, and runners [20],
however building docker images is still easier [9]. Unikernel’s lack of a shell,
online debugging, and potentially expensive source code recompilation for any
updates or application changes [7]. This is a trade off they share with docker
containers. This is also highlighted by Manco et al., stating that unikernels
require significant development time due to the need for manual configurations,
in addition to their lack of sophisticated tooling [27]. Because the tooling
around container orchestration and building is superior compared to that of
unikernels and microVMs [27] microVMs and unikernels have not penetrated
the mainstream yet and are currently mostly used in AWS/Google functions
where isolation is especially important, as the operations of one lambda function
should not impact the operations of another lambda function.

The literature suggests that the tooling around microVMs is not that ad-
vanced as no major container orchestration system like Kubernetes supports the
scheduling of microVMs out of the box [28]. However projects like kubevirt [19]
extend Kubernetes using the Kubernetes CustomResourceDefinitions API [I§],
which allows the orchestration of resources that are not covered by the standard
Kubernetes API [28] like virtual machines. This however has the drawback
that according to Mavridis et al. running the VMs consumes two times more
memory than running the containers [28] in some part because of the overhead
of kubevirt.

To sum it up, unikernels are hard to build and maintain. Most unikernels
are not at a place where every application can be run without problems and the
debugging experience within a unikernel is inferior to the debugging experience
inside a container. Furthermore, orchestration systems currently do not naively
support microVMs and one has to rely on third-party solutions to get microVMs
running within a Kubernetes cluster.

3 Results

While microVMs, in combination with a unikernel or a minimalist OS, continue
to gain in performance, as of now, containers are still ahead. However, when
combined with unikernels, microVMs demonstrate superior performance in some
scenarios compared to containers. Furthermore, microVMs offer better isolation
than containers because the microVMs do not share the host kernels, however
unikernels lag in terms of security due to missing security features. It’s however

worth mentioning that there are strategies to enhance the security of Docker
containers.

One of the challenges with unikernels is their complex build process, and
lack of robust development tools, community support, and orchestration tools,
but these conditions are slowly improving, especially with the integration of
microVMs running unikernels with Kubernetes using third-party libraries.

To answer the question of whether and where technologies like microVMs
and unikernels could potentially replace containers the following conclusion can
be drawn: Using microVMs with unikernels is a great fit for large-scale projects
that can afford to take more time in development, especially when they need
high performance and isolation. Another reason to use unikernels in combination
with microVMs is to benefit from the fast boot times that unikernels offer in
comparison to containers and slim Linux Operating systems. However, the high
hurdle of building unikernels and orchestrating them within Kubernetes makes
them only a viable option if there are not enough resources available for docker
containers (for example when running on the edge), or if the very fast startup
times in combination with high isolation needs are necessary. MicroVMs in
combination with a small Linux kernel however are a good fit if only a higher
isolation is needed. This is the case for applications like AWS Lambda where
using microVMs allows AWS to run multiple different lambda functions on the
same machine without endangering the integrity and security of other lambda
functions. By being able to run different lambdas on the same machine the
hardware utilization can be increased.

4 Discussion

The field of unikernel and microVM research is a relatively new one and in active
development. Especially the tooling for unikernel has to improve if unikernels
ever want to become a viable alternative to containers.

One notable research gap in the field of virtualization and containerization
is the performance comparison between a Kubernetes (k8s) cluster running
containers and a k8s cluster utilizing MicroVMs and unikernels. While there has
been done some work by Mavridis and Karatza in [28] it is not as extensive as
one would hope and still leaves some room for new investigations.

Despite numerous claims that unikernels are challenging to operate, which
leads to increased development time [9] [7, 27], no comparative study has been
conducted. It would be valuable to have a study similar to the one by Gleison et
al., which involved a controlled experiment with 22 students who were assigned
to implement eight queries in GraphQL and REST for accessing a web service to
empirically assess the effort necessary to implement queries in these languages

5.

10

References

[1] Proceedings of the 17th USENIX Symposium on Networked Systems Design
and Implementation: February 25-27, 2020, Santa Clara, CA, USA. USENIX
Association, Berkeley, CA (2020)

[2] Anjali, Caraza-Harter, T., Swift, M.M.: Blending containers and vir-
tual machines. In: Nagarakatte, S. (ed.) Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Exe-
cution Environments. pp. 101-113. ACM Digital Library, Associa-
tion for Computing Machinery, New York,NY,United States (2020).
https://doi.org/10.1145/3381052.3381315

[3] van de Belt, J., Ahmadi, H., Doyle, L.E.: Defining and surveying wireless link
virtualization and wireless network virtualization. IEEE Communications

Surveys & Tutorials 19(3), 1603-1627 (2017)

[4] Bias, R.: Unikernels will create more security problems
than they solve (Dec 2021), https://thenewstack.io/
unikernels-will-create-security-problems-solve/

[5] Brito, G., Valente, M.T.: REST vs graphql: A controlled experiment. CoRR
abs/2003.04761 (2020), https://arxiv.org/abs/2003.04761

[6] Bui, T.: Analysis of docker security.
https://doi.org/10.48550/arXiv.1501.02967

[7] Chen, S., Zhou, M.: Evolving container to unikernel for edge comput-
ing and applications in process industry. Processes 9(2), 351 (2021).
https://doi.org/10.3390/pr9020351

[8] Chiba, D.J.: Optimizing Boot Times and Enhancing Binary Compatibility
for Unikernels. Ph.D. thesis, Virginia Tech (2018)

[9] Cross, J.R.: Analysis of unikernels for load balancing and backend service
deployment (2021)

[10] Elsevier: Scopus, https://www.scopus.com

[11] Goethals, T., Sebrechts, M., Al-Naday, M., Volckaert, B.,
de Turck, F.: A functional and performance benchmark of
lightweight virtualization platforms for edge computing (2022).
https://doi.org/10.1109/EDGE55608.2022.00020

[12] Goethals, T., Sebrechts, M., Atrey, A., Volckaert, B., De Turck, F.:
Unikernels vs containers: An in-depth benchmarking study in the con-
text of microservice applications. In: 2018 IEEE 8th International
Symposium on Cloud and Service Computing (SC2). pp. 1-8 (2018).
https://doi.org/10.1109/SC2.2018.00008

11

https://thenewstack.io/unikernels-will-create-security-problems-solve/
https://thenewstack.io/unikernels-will-create-security-problems-solve/
https://arxiv.org/abs/2003.04761
https://www.scopus.com

[13] Google: Google cloud platform (2023), https://console.cloud.google,
com/compute

[14] Grattafiori, A.: Understanding and hardening linux containers. Whitepaper,
NCC Group (2016)

[15] Jian, Z., Chen, L.: A defense method against docker escape attack. In:
Proceedings of the 2017 International Conference on Cryptography, Security
and Privacy. p. 142-146. ICCSP ’17, Association for Computing Machinery,
New York, NY, USA (2017). https://doi.org/10.1145/3058060.3058085,
https://doi.org/10.1145/3058060.3058085

[16] Kithulwatta, W.M.C.J.T., Wickramaarachchi, W.U., Jayasena, K.P.N.,
Kumara, B.T.G.S., Rathnayaka, R.M.K.T.: Adoption of docker containers
as an infrastructure for deploying software applications: A review. In: Saeed,
F., Al-Hadhrami, T., Mohammed, E., Al-Sarem, M. (eds.) Advances on
Smart and Soft Computing. pp. 247-259. Springer Singapore, Singapore
(2022)

[17] Kratzke, N., et al.: Lightweight virtualization cluster how to overcome cloud
vendor lock-in. Journal of Computer and Communications (12), 1 (2014)

[18] Kubernetes: (Mar 2023), https://kubernetes.io/
docs/tasks/extend-kubernetes/custom-resources/
custom-resource-definitions/

[19] Kubevirt, K.: Kubevirt/kubevirt: Kubernetes virtualization api and
runtime in order to define and manage virtual machines. (May 2023),
https://github.com/kubevirt/kubevirt

[20] Kuenzer, S., Badoiu, V.A., Lefeuvre, H., Santhanam, S., Jung, A., Gain, G.,
Soldani, C., Lupu, C., Teodorescu, 3., Raducanu, C., et al.: Unikraft: fast,
specialized unikernels the easy way. In: Barbalace, A. (ed.) Proceedings

of the Sixteenth European Conference on Computer Systems. pp. 376-394
(2021)

[21] Kulkarni, A.V., Aziz, B., Shams, 1., Busse, J.W.: Comparisons of citations
in web of science, scopus, and google scholar for articles published in general
medical journals. Jama (10), 1092-1096 (2009)

[22] Leonard Rapp, E.S.: Missing or weak mitigations in var-
ious unikernels (May 2022), https://x41-dsec.de/news/
missing-or-weak-mitigations-in-various-unikernels/

[23] Li, G., Takahashi, K., Ichikawa, K., Iida, H., Thiengburanathum,
P., Phannachitta, P.: Comparative performance study of
lightweight hypervisors used in container environment pp. 215-223.
https://doi.org/10.5220/0010440502150223

12

https://console.cloud.google.com/compute
https://console.cloud.google.com/compute
https://doi.org/10.1145/3058060.3058085
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://github.com/kubevirt/kubevirt
https://x41-dsec.de/news/missing-or-weak-mitigations-in-various-unikernels/
https://x41-dsec.de/news/missing-or-weak-mitigations-in-various-unikernels/

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

de Lucia, M.J.: A survey on security isolation of virtualization, containers,
and unikernels

Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B., Gazagnaire,
T., Smith, S., Hand, S., Crowcroft, J.: Unikernels: Library operating systems
for the cloud. ACM SIGARCH Computer Architecture News 41(1), 461-472
(2013). https://doi.org/10.1145/2490301.2451167

Madhavapeddy, A., Scott, D.J.: Unikernels: Rise of the vir-
tual library operating system. Queue 11(11), 30-44 (2013).
https://doi.org/10.1145/2557963.2566628

Manco, F., Lupu, C., Schmidt, F., Mendes, J., Kuenzer, S., Sati, S., Ya-
sukata, K., Raiciu, C., Huici, F.: My vm is lighter (and safer) than your
container. In: Association for Computing Machinery-Digital Library, ACM
Special Interest Group on Operating Systems (eds.) Proceedings of the 26th
Symposium on Operating Systems Principles. pp. 218-233 (2017)

Mavridis, I., Karatza, H.: Orchestrated sandboxed containers, unikernels,
and virtual machines for isolation-enhanced multitenant workloads and
serverless computing in cloud. Concurrency and Computation: Practice and
Experience 35(11), 6365 (2023)

Michaels, S., Dileo, J.: Assessing unikernel security. Technical report, NCC
group, Tech. Rep. (2019)

Plauth, M., Feinbube, L., Polze, A.: A performance survey of lightweight
virtualization techniques. In: Service-Oriented and Cloud Computing: 6th
IFIP WG 2.14 European Conference, ESOCC 2017, Oslo, Norway, Septem-
ber 27-29, 2017, Proceedings 6. pp. 34-48 (2017)

Rahmansyah, R., Suryani, V., Yulianto, F.A.; Ab Rahman, N.H.: Reducing
docker daemon attack surface using rootless mode. In: 2021 International
Conference on Software Engineering & Computer Systems and 4th Interna-
tional Conference on Computational Science and Information Management

(ICSECS-ICOCSIM). pp. 499-502. IEEE (2021)

Ross, R., Pillitteri, V., Dempsey, K., Riddle, M., Guissanie, G.: Protecting
controlled unclassified information in nonfederal systems and organizations.
Tech. rep., National Institute of Standards and Technology (2019)

Sarkale, V.V., Rad, P., Lee, W.: Secure cloud container: Runtime be-
havior monitoring using most privileged container (mpc). In: ieee (ed.)
2017 IEEE 4th International Conference on Cyber Security and Cloud
Computing (CSCloud 2017). pp. 351-356. IEEE, Piscataway, NJ (2017).
https://doi.org/10.1109/CSCloud.2017.68

Sharp, H., Kolkman, O.: Discussion paper: An analysis of the ‘new
ip’proposal to the itu-t. Internet Society (2020)

13

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Snyder, H.: Literature review as a research methodology: An overview
and guidelines. Journal of Business Research pp. 333-339 (2019).
https://doi.org/https://doi.org/10.1016/j.jbusres.2019.07.039

Talbot, J., Pikula, P., Sweetmore, C., Rowe, S., Hindy, H., Tachtatzis,
C., Atkinson, R., Bellekens, X.: A security perspective on unikernels. In:
2020 International Conference on Cyber Security and Protection of Digital
Services (Cyber Security). pp. 1-7 (2020)

Unikraft: (Jun 2022), https://unikraft.org/blog/
2022-06-13-unikraft-releases-hyperion/
Wang, Z.: Can “micro vm” become the next generation computing

platform?: Performance comparison between light weight virtual ma-
chine, container, and traditional virtual machine pp. 29-34 (2021).
https://doi.org/10.1109/CSAIEE54046.2021.9543457

Watada, J., Roy, A., Kadikar, R., Pham, H., Xu, B.: Emerging trends,
techniques and open issues of containerization: a review. IEEE Access 7,
152443-152472 (2019)

Williams, D., Koller, R., Lucina, M., Prakash, N.: Unikernels as pro-
cesses. In: Computing, S..A.S.0.C. (ed.) Proceedings of the ACM Sym-
posium on Cloud Computing. pp. 199-211. ACM Conferences, Asso-
ciation for Computing Machinery, New York,NY,United States (2018).
https://doi.org/10.1145/3267809.3267845

Xavier, B., Ferreto, T., Jersak, L. Time provisioning eval-
uation of kvm, docker and wunikernels in a cloud platform.
In: ieee (ed.) 2016 16th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGrid). pp.
277-280. IEEE (2016). https://doi.org/10.1109/CCGrid.2016.86,
https://repositorio.pucrs.br/dspace/bitstream/10923/14178/
2/Time_provisioning_evaluation_of_KVM_Docker_and_Unikernels_
in_a_Cloud_Platform.pdf

14

https://unikraft.org/blog/2022-06-13-unikraft-releases-hyperion/
https://unikraft.org/blog/2022-06-13-unikraft-releases-hyperion/
https://repositorio.pucrs.br/dspace/bitstream/10923/14178/2/Time_provisioning_evaluation_of_KVM_Docker_and_Unikernels_in_a_Cloud_Platform.pdf
https://repositorio.pucrs.br/dspace/bitstream/10923/14178/2/Time_provisioning_evaluation_of_KVM_Docker_and_Unikernels_in_a_Cloud_Platform.pdf
https://repositorio.pucrs.br/dspace/bitstream/10923/14178/2/Time_provisioning_evaluation_of_KVM_Docker_and_Unikernels_in_a_Cloud_Platform.pdf

	list of reports
	Literature study assignment
	Coordinators: Saba Amiri, Adam Belloum,

	reports
	assignmentgroups1_372868_8860162_Securing the Foundation A Comprehensive Overview of Infrastructure as Code Security, Best Practices and Novel Detection Methods
	Introduction
	Background
	Definition
	Benefits
	Tooling
	Examples

	Related Works
	Methodology
	Results
	[RQ1] Security Implications in IaC Development and Deployment
	[RQ2] Best Practices for Secure IaC Scripts
	[RQ3] Advanced techniques for identifying and mitigating security vulnerabilities in IaC scripts

	Discussion
	Security Implications in IaC
	Best Practices for Secure IaC Scripts
	Advanced Techniques for Security and Defect Detection in IaC
	Future Directions

	Conclusion
	Bibliography

	assignmentgroups4_303019_8860311_LR_WSCBS-3
	Introduction
	Background & Concepts
	Serverless Computing and Function as a Service (FaaS)
	Benefits
	Challenges

	Scalability in Serverless Computing
	FaaS Execution at Scale
	Challenges with scaling in serverless computing

	Resiliency in Serverless Computing
	Log-Based Runtimes
	Fault-Tolerance Shims

	Designing Scalable and Resilient Serverless Applications
	Designing Scalable Applications
	Designing Resilient Applications

	Discussion
	Summary of Current Research
	When to use Serverless (Stateful vs Stateless)
	Future Research Possibilities

	Conclusion

	assignmentgroups6_314981_8851984_Addressing_challenges_of_fog_computing_with_blockchain_2023
	Introduction
	Fog Computing
	Cloud Computing

	Blockchain
	Bitcoin

	Challenges with Fog Computing
	Privacy and Security
	Data Integrity
	Scalability and Mobility
	Fault Tolerance and Reliability

	Addressing Challenges of Fog Computing with Blockchain
	Secure Communication
	Data Integrity
	Access Control
	Privacy Protection
	Trust and Reputation Management
	Consensus Algorithms and Distributed Ledger

	Conclusions
	Future Research
	Lack of Standardization
	Scalability Limitations
	Energy Efficiency Concerns

	assignmentgroups7_253066_8859917_WSCBS_literature_study-1
	Introduction
	OLAP Introduction
	Online Analytic Processing
	Data model

	Properties
	Scalability and Elasticity
	Performance
	Fault tolerance
	Simplicity
	Cost-efficiency

	Existing on-premise OLAP databases
	Existing Cloud-native OLAP databases
	Comparison
	Conclusions
	Future

	assignmentgroups8_333609_8855916_web_literature_review_group8
	Introduction
	Big data technologies and challenges in Medical Industry
	Parallel Computing and Distributed Data Storage
	AI-based Information Processing
	Concerns for Cloud

	Big Data and Cloud in Biomedicine
	Big Data applications in Biomedicine
	Challenges in Biomedical Big Data
	Cloud Adoption in Biomedicine
	Cloud-based Services in Biomedicine
	Cloud-based Ecosystems for Biomedical Research

	Big Data and Cloud in Healthcare
	Healthcare Big Data
	Accurate analysis and prediction in healthcare
	Cloud system for healthcare big data

	Discussion
	Conclusion

	assignmentgroups9_381790_8826341_WSCBS_Literature_Study_Grp9
	Introduction
	Edge Computing
	Overview
	Key Components

	Cloud Computing
	Overview
	Key Components

	Internet of Things (IoT)
	Overview
	Key Components

	Relationship between Edge Computing and Cloud Computing
	Convergence
	Real-time Solution
	Big Data Analysis
	Data Privacy
	Cost Efficiency

	Challenges
	Challenges of IoT
	Challenges of Edge Computing
	Challenges of Cloud Computing in the Context of IoT Devices

	Trends
	Conclusion

	assignmentgroups10_352100_8860353_WSCB_Group10_Literature_Review
	Introduction
	Evolution of Payment Systems in Clouds
	Models Used by Cloud Service Providers
	Current models used by cloud service providers
	Fixed Pricing Model
	Subscription-based Model
	Pay-as-you-go Model
	Tiered and Volume-based pricing

	Dynamic Pricing Model
	Segment-based model
	Auction-based model

	Value-based pricing model

	Case Studies
	Amazon Web Services
	Microsoft Azure's payment system
	Google Cloud's payment system

	Challenges and Solutions
	Challenges
	Solutions

	Future Trends
	Conclusion

	assignmentgroups13_286639_8860330_Web_Services_literature_Study
	Introduction
	Background
	Mobile Cloud Computing: Service Models and Infrastructure Requirements
	Platforms and Applications Analysis
	Mobile Cloud Computing and Sustainable Development

	Research
	Research questions
	How does Mobile cloud work and how does it distinguish itself from other cloud solutions?
	Alternative cloud programming models

	Mobile cloud applications
	Mobile Cloud Computing and IoT
	M-commerce

	Healthcare
	Mobile gaming

	What is the environmental impact of traditional cloud and how does mobile cloud compare?
	Environmental Impact of Traditional Cloud Computing
	The potential of mobile cloud computing

	Security Challenges
	What are the challenges and barriers of implementing a mobile cloud?
	Energy efficiency and limited bandwidth
	Service availability and Heterogeneity
	Security and privacy

	Discussion
	Conclusion

	assignmentgroups15_298237_8857730_Group15-Literature_Review_IDaaS
	Introduction
	Research method
	Literature review
	Discussion and conclusion

	assignmentgroups16_380079_8850158_Web_Service_Asg4 (1)
	Introduction
	Performance
	Execution Time
	Turnaround Time

	Latency
	Network latency
	Data Transfer Protocols
	Scheduling Latency

	Data Security
	Data Destruction Security
	Data Integrity Security
	Data Sharing Security
	Challenges and Limits

	Cost
	Cluster-based HPC Ownership Cost
	Cloud HPC Pricing Methodology
	Cost Comparison

	Discussion and Conclusions

	assignmentgroups17_329186_8860258_Group17_Literature Study-2
	Introduction
	Cloud resource scheduling
	Objectives
	Auto-scaling

	Machine Learning, Deep Learning and Reinforcement Learning

	Application of ML algorithm in Cloud Resource Scheduling
	Resource Provisioning Through Machine Learning in Cloud Services
	Efficient resource provisioning for elastic Cloud services based on machine learning
	VM Reservation Plan Adaptation Using Machine Learning in Cloud Computing

	Application of DL algorithm in Cloud Resource Scheduling
	DEARS:Deep Learning based Elastic and Automatic Resource Scheduling framework for cloud applications
	A deep learning model based on a diffusion convolutional recurrent neural network

	Application of RL algorithm in Cloud Resource Scheduling
	QL-HEFT: a novel machine learning scheduling scheme base on cloud computing environment
	Cloud Resource Scheduling With Deep Reinforcement Learning and Imitation Learning

	Discussion and Conclusion

	assignmentgroups18_98340_8850368_Group18_LiteratureStudy
	Introduction
	Data Center
	Types of Data Centers
	Enterprise Data Centers:
	Cloud Data Center
	Colocation Data Centers

	Infrastructure Components
	Servers
	Storage
	Networking

	Challenges
	Scalability
	Performance Bottlenecks
	Cost and Infrastructure Complexity
	Management and Operational Challenges
	Limited Resilience and Disaster Recovery

	Virtualization
	Benefits
	Software Defined Networking
	Infrastructure as a Service

	Software-Defined Data Center
	Benefits
	Challenges

	Hyper-Converged Infrastructure
	Path to Hyper-Converged Infrastructure
	Benefits of Hyper-Converged Infrastructure
	Selecting the right HCI Solution
	Use-case scenarios for HCI solutions

	Conclusion

	assignmentgroups19_347351_8859226_Group_19_Literature_Report
	Introduction
	Peer-to-Peer Deep Learning and Edge Computing
	P2P Deep Learning in IoT Edge Computing
	Resource-Constrained Environments and Low-Latency Requirements
	Data Privacy and Security in P2P Deep Learning
	Privacy Preserving in Federated Learning
	Privacy Preserving in Fog Computing
	Private P2P Network for Distributed Machine Learning

	Discussion
	Conclusion
	References

	assignmentgroups20_380803_8860045_wscs
	Introduction
	Search Query
	Methodology
	Machine Learning and Deep Learning
	Edge Computing
	Internet of Things

	Healthcare and Well-being
	Intelligent Transportation System
	Route Planning Algorithms
	System Architecture

	Urban Planning and Resource Optimization
	Land Use Planning
	Water Resources Management

	Discussion
	Conclusions

	assignmentgroups21_136433_8859995_Assignment4a_GROUP_21
	Introduction
	Three GDPR-specific challenges
	Implementing retention effectively in the cloud
	Data portability for the controller
	Visibility regarding metadata and data minimization

	Discussion and Conclusion

	assignmentgroups22_344700_8852170_Group22_Literature_Study
	Introduction
	DevSecOps
	DevOps
	SecOps
	DevSecOps

	ISO Compliance
	Standards
	ISO/IEC 27001 & ISO/IEC 27002 & ISO/IEC 27701
	ISO/IEC 27017
	ISO/IEC 27018

	Adoption

	Cloud Security Audit
	Challenges
	Potential Solutions and Emerging Approaches
	Standardization Frameworks
	Auditability
	Homomorphic Encryption

	AWS GovCloud
	Discussion and Conclusion

	assignmentgroups23_267128_8857788_web4-3
	Introduction
	Background
	Enterprise integration
	The development of iPaaS
	Technical details of iPaaS

	Related work
	EAI and ESB
	ESB and iPaaS

	Research questions
	Method
	Literature collection and selection
	Literature analysis and categorization

	Results
	Research question 1: What is the current research status of iPaaS?
	Research question 2: What are some issues with current iPaaS solutions?
	Research question 3: What are some possible directions for future iPaaS research?

	Discussion
	Conclusion

	assignmentgroups24_382560_8860029_24_web_service_4
	Introduction
	Micro-services
	Service discovery
	Understanding Communication Protocols
	HTTP/REST
	RPC
	MQTT

	Scope

	Influence of Communication Protocols on Service Discovery Efficiency
	HTTP/REST
	RPC
	MQTT

	Discussion and Conclusions

	assignmentgroups25_380078_8859242_25_Literature_Assignment_4
	Introduction
	Literature / background
	Multi-cloud computing challenges
	Multi-cloud computing benefits
	The current state of multi-cloud management
	Multi-cloud management current solutions and trends
	DevOps tools
	Package Management tools
	Cloud Cost Management tools
	Cybersecurity tools
	Containers
	Artificial Intelligence & Machine Learning

	Discussion
	Future trends in multi-cloud managements
	Artificial Intelligence & Machine Learning
	Security
	Cost management

	Conclusion

	assignmentgroups27_45436_8830473_Business Models in the Cloud A High Level
	Introduction
	Emergence of Cloud Computing
	Service Models
	Deployment Models

	Defining the Business Needs
	Storage of Different Data Types
	Qualitative Data
	Quantitative Data

	Big Data Challenges
	Volume
	Velocity
	Variety
	Veracity

	Processing Power and Storage
	Data Processing Techniques
	Example of Data Processing Techniques

	Comparison of Cloud Service Providers
	Reputation
	Reliability
	Security Standards
	Support Services
	Compliance

	Optimizing and Implementing Solutions
	Selecting and Evaluating the Optimal Plan
	Benefits of cloud computing
	Cloud computing Price
	Flexibility
	TCO (Total Cost of Ownership)

	Implementation and Testing
	Migration
	Performance testing
	Reliability Testing
	Training

	Monitoring and Adjusting
	Performance monitoring
	Technology and Trend Monitoring

	Discussion
	Conclusion
	Appendix

	assignmentgroups28_380076_8860063_WSCS_Assignment_4a_Group 28-1
	Introduction
	Performance Evaluation
	Benchmarking
	Performance Evaluation Tests
	Benchmarking Tool

	Performance Modelling
	Function Instances
	Cold Start and Warm Start
	Initialization Time
	Response Time

	Performance Optimization
	Case Studies
	Challenges and Future Directions
	Challenges
	Future Directions

	Conclusion

	assignmentgroups29_380064_8859768_group29-reort
	Introduction
	Graph neural networks
	Background

	Distributed GNN training
	Training Pipeline
	Full-graph Tranining
	Mini-batch Training

	Challenges
	Challenge 1: Computation approach
	Challenge 2: Batch generation
	Challenge 3: Ineffective Data Partitioning

	Improve training efficiency approaches
	Computation approach
	Chunked-based execution
	One-shot execution

	Batch generation
	Cashed-based generation
	Partition-based generation

	Data Partition
	Graph based partition
	Feature based partition
	Cost model based partition

	Feature work
	conclusion

	assignmentgroups30_382629_8860101_Group 30_WSCB_Literature_Review
	Introduction
	Challenges and Workflow in ML systems
	Review of MLOps Tools
	CIRRUS
	DEEP
	Kubeflow
	ClowdFlows
	Distributed GraphLab

	Discussion & Conclusion

	assignmentgroups31_365768_8858993_Literature_Study_webservice
	Introduction
	Research Question
	API management
	API management practices for microservices
	What are identified challenges within API management and are there any suggested solutions?

	OAuth2
	Why is Authorization(Oauth2) preferred over authentication for API Communication?
	How does Oauth2 compare against other protocols such as SAML and OpenID?
	What are some alternatives to Oauth2 that that offer additional features or improvements?

	Webhooks
	Discussion
	Difficult to compare
	Future improvements and research

	Conclusion

	assignmentgroups33_380496_8853442_WSCBS - MicroVMs and unikernels for the cloud
	Introduction
	Theoretical background
	Containers
	MicroVMs
	Unikernels

	Methodology

	Comparison
	Performance
	Resource usage
	Startup time
	IO Performance

	Security
	Usability and Tooling

	Results
	Discussion

