
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Continuous Scraping and its Management
in an Industry Setting

Author: Chih-Chieh Lin (2700266)

1st supervisor: Dr. Adam S.Z. Belloum University of Amsterdam
daily supervisor: Wuyou Liu Dashmote B.V.
2nd reader: Zhiming Zhao University of Amsterdam

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

July 12, 2022

“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley

ii

Abstract

Web data scraping is applied in various fields and in different purposes. Reduc-

ing the human intervention through scraping workflow is critical to improve the

scraping efficiency. The goal of this paper is to build an continuous (automatic)

scraping pipeline that includes schedulers triggering the scraping pipeline au-

tomatically and also relevant features for achieving less human monitoring and

actions. This application or pipeline is deployed on the cloud using Ama-

zon Web Services. Moreover, for the maintenance, developing and operations,

we design and implement a CI/CD pipeline by Github Actions to make the

whole scraping pipeline more automatic. Our work automates the scraping

pipeline with scheduler, and automates the deployment procedure through CI/

CD pipeline which not only set a foundation for integration work afterward but

also promote the collaboration among team members.

Keywords: Web Scraping, Continuous Integration, Continuous Deployment,

Workflow Orchestration

Acknowledgements

This project was finished during my internship at Dashmote among Data Plat-

form team and Sourcing team. This internship not only horn my technical skills

but also gave the chance to investigate and explore in the academic areas. I

would like to express my appreciation to Dashmote to give me the opportunity

to join them to do this project. I am much obliged to my daily supervisor,

Wuyou Liu for her guidance, feedback and all the support she gave. Also, I do

appreciate the supports from my colleagues, Fucheng Zhen at Sourcing team

and Adrián Villanueva Martínez at Data Platform team. I also want to express

the depth of my gratitude to Dr.Adam S.Z. Belloum for all the guidance he

gave me and the advice on finishing this project. Moreover, I am grateful to

Dr. Zhiming Zhao for his valuable feedback and insights for this thesis.

Last but not least, thanks to my family and my friends for their trust and

support.

Contents

List of Figures viii

List of Tables ix

Glossary x

1 Introduction 1

2 Background 3

2.1 Problem Statement . 3

2.1.1 Technical Perspective . 3

2.1.2 Business Perspective . 4

2.2 Research Questions . 5

3 Related Work 6

3.1 Web Data Scraping . 6

3.1.1 Definition . 7

3.1.2 Web Scraping Structure . 7

3.1.3 Web Scraping Technique . 8

3.1.4 Challenge of Web Scraping . 9

3.1.5 Ethics Consideration . 10

3.2 Schedulable Recurring Automation Workflows Tools 11

3.2.1 Automation Workflow Structure using Cloud Computing Services . . 11

3.2.2 Workflow Orchestration . 13

4 Project Implementation 15

4.1 Project Requirements . 15

4.2 Continuous Scraping Pipeline Design . 16

4.2.1 Pipeline structure . 16

v

CONTENTS

4.2.2 Schedule rules . 19

4.2.3 Mechanism of AWS Service utilized 20

4.3 Scraper and Improved Features . 22

4.3.1 Git Repository Structure . 22

4.3.2 Rational of the Technology Choices 24

4.3.3 Validation procedure for scraping result data 24

4.3.4 Notification Report . 25

4.3.5 Extracting Metadata . 25

4.4 CI/CD Pipeline using Github Actions . 26

4.4.1 Github Actions Workflow . 27

4.4.2 Setting up Github Actions in Repository 29

4.4.3 Auto Releasing with Identical Version & Tag by Commit Standard . 31

4.4.4 CI/ CD Pipeline Architecture . 31

5 Discussion 35

5.1 Reflection . 35

5.1.1 Comparison . 35

5.1.2 Discussion . 37

5.2 Future work . 39

5.2.1 Integrating with Advanced Workflow Orchestration: Airflow 39

5.2.2 Scraping with Kafka and Redis . 40

5.2.3 Improving Features . 40

5.2.4 Enhancing CI/ CD pipeline . 41

6 Conclusion 42

7 Appendix 44

A EventBridge rule setting . 44

A.1 Example of creating rules . 44

A.2 Result of set rules . 45

B Lambda Function setting . 45

B.1 Steps of setting Lambda Function . 45

C CloudWatch Monitoring Log . 46

C.1 CloudWatch Alarm . 46

C.2 CloudWatch Insight . 46

C.3 CloudWatch Log . 47

vi

CONTENTS

D Notification . 47

D.1 Notification Report . 47

E CI/CD with Github Actions . 48

E.1 develop branch workflow . 48

E.2 main branch workflow . 48

E.3 release branch workflow . 49

E.4 Coverage Report Comment . 49

E.5 Release YAML . 50

References 51

vii

List of Figures

3.1 Amazon Web Services Automation Workflow 13

3.2 Microsoft Azure Automation Workflow . 13

3.3 Google Cloud Platform Automation Workflow 13

4.1 Continuous Scraping Pipeline Diagram . 17

4.2 ECR to ECS mechanism (1, 2) . 21

4.3 Basic CI/CD pipeline Structure (3) . 27

4.4 Overview of CI/CD pipeline structure . 32

4.5 Gitflow Workflow Illustration (4) . 32

4.6 Workflow for Develop Branch . 34

4.7 Workflow for Main Branch . 34

4.8 Workflow for Release Branch . 34

5.1 DAG Illustration of Integration for Scraping and other Components 39

7.1 EventBridge rules setting procedure 1 . 44

7.2 EventBridge rules setting procedure 2 . 44

7.3 EventBridge rules setting result . 45

7.4 CloudWatch Alarm . 46

7.5 CloudWatch Insight . 46

7.6 CloudWatch Log . 47

7.7 Notification Report Example . 47

7.8 Develop Branch workflow in Github User Interface 48

7.9 Main Branch workflow in Github User Interface 48

7.10 Release Branch workflow in Github User Interface 49

7.11 Coverage Report Comment . 49

7.12 Release Branch YAML (partial) . 50

viii

List of Tables

3.1 Categories of Web Scraping Technique . 8

3.2 Relevant Tools for Schedulable Automated Workflow 12

4.1 Schedule rules set in EventBridge . 19

4.2 Notification Message Format . 26

4.3 Characteristics of Github Actions . 28

4.4 Commit Convention for releasing . 31

ix

Glossary

AWS Amazon Web Services

CI/CD The core of a DevOps methodology
which refers to continuous integration,
continuous delivery and continuous de-
ployment

DevOps A set of practices that combines soft-
ware development (Dev) and IT oper-
ations (Ops)

Docker A set of platform as a service (PaaS)
products that use OS-level virtualiza-
tion to deliver software in packages
called containers

ECR Elastic Container Registry: a fully
managed Docker container registry ser-
vice provided by AWS, which makes it
easy to store, share, and deploy con-
tainer images.

ECS Elastic Container Service: a fully man-
aged container orchestration service

provided by AWS, which helps users
easily deploy, manage, and scale con-
tainerized applications.

EventBridge A serverless event bus service that
you can use to connect your appli-
cations with data from a variety of
sources.

Github Actions GitHub Actions is a continu-
ous integration and continuous deliv-
ery (CI/CD) platform that allows user
to automate your build, test, and de-
ployment pipeline.

Lambda Function A compute service that lets
users run code without provisioning or
managing servers.

Pull Request an event that takes place in soft-
ware development when a contribu-
tor/developer is ready to begin the pro-
cess of merging new code changes with
the main project repository.

S3 Simple Storage Service (S3) is a ser-
vice offered by Amazon Web Services
(AWS) that provides object storage
through a web service interface.

YAML A data serialization language that is of-
ten used for writing configuration files

x

1

Introduction

Living in a data driven world nowadays, we have no choice but to consume and generate

great amount of data every day. Zhu et al.(5) defined Data Explosion in their work as

“large scale of data is generated rapidly, and stored in computer systems.” In order to use

this large scale of data efficiently, developers need to develop new or advanced method to

explore, extract, and process the data.

The data created across the web is abundant and useful for various purposes, e.g., aca-

demic, marketing, scientific purposes. People might intend to collect and analyze data from

multiple websites, so that Web Data Scraping have become the crucial technologies for

the purpose of extracting data from the web. However, web scraping can be time-consuming

and resource-consuming, especially when it is performed manually (6). Therefore, a web

scraper which simulates human browsing the web to automatically extract data are being

activity research and engineered.

As a company providing data product and market strategy for global beverage brand

clients like Red-Bull and Coca-Cola, Dashmote1 must apply the efficient methods to extract

data in order to carry out the data processing and analytic afterward so that they are able

to deliver products on time. The way Dashmote obtain the associated data is to scrape it

from the online food ordering and delivery platform such as Ubereat, Deliveroo, Just eat.

It should be an efficient method with automated manner to some extent.

This thesis aims to take a continuous (which means we get rid of on-demand model, and

pursue a continued, automated, scheduled, stable process) scraping project at Dashmote,

which upgrade the automatic level of web scraping, and design the CI/ CD pipeline for

such scraping program deployment. We identified the problem and the challenges in the

web scraping field and also during the developing of the automatic workflow. Moreover, it
1https://dashmote.com/

1

1. INTRODUCTION

help us scale the scraping procedure by deploying services on AWS automatically, which

also increases the potential of integration and extendability of our work.

This thesis is structured as follows. I begin by delineating the background information

with technical and business perspective, followed by the research questions in Chapter

2. Next, I describe relevant technologies and associated academic papers in the fields of

web scraping and automatic workflow orchestration in Chapter 3. Next, the proposed

continuous scraping pipeline (a scheduled automation workflow) and the CI/ CD pipeline

architecture for scraper program are introduced in Chapter 4. Afterward, the reflection

including the comparison and discussion, and the future work of this project are presented

om Chapter 5. The summary concluding this work is provided in Chapter 6. The termi-

nologies in this paper are explained in the Glossary and the implementation details are

listed in Appendix.

2

2

Background

2.1 Problem Statement

Web data scraping is applied in various fields and for different purposes, such as stock

price monitoring, flight ticket price comparing, daily news summarizing, and academic

purpose. However, there are plenty of problems we may confront during developing and

maintaining tools for scraping. Glez-Peña et al. (7) discussed several potential challenges

and problems for web scraping tools development. The comprehensive relevant detail for

the challenges are introduced in the next section. In this section, several problems from

technical perspective along with the ones from the business perspective are emphasized

here in order to understand our motivation of this work.

2.1.1 Technical Perspective

• Manual screening is time-consuming.

• Manual running scraper program increases the human cost.

• Scraper program run in the deployed cluster may not be scalable when dealing with

large scale data.

These problems highlights the difficulty the engineers were previously confronted with

at the company where I was doing the internship.

The need for a “manual” intervention requires the availability of engineers to monitor and

run the scraper program in order to make sure that the data will be available on time. That

is to say, the engineers should check the scraper process periodically. Once the process has

finished, the scraping data (result) should be inspected by the engineers to confirm if the

data is valid for the following processing. Although, the scraper program is run by a click

3

2. BACKGROUND

action or a command entered by the engineer (partly automatically), the whole procedure

consumes human concentration and valuable engineer resource. Moreover, these human

intervention should be avoidable by other automatic strategies.

As for the scalability issue, scraping source and condition may be different which de-

pends on the client requirements. For instance, the platforms and countries which are

asked to scrap may be differed according to different clients. As a result, the scraping per-

formance vary in different requirements. To be more specific, the scale of data is affected

by the clients’ requirements and will influence scraping performance. From the scalability

perspective, the scraping process can be able to smoothly run most cases with small or

medium amount of data, however, it may fail when the cluster encounter large scale data.

2.1.2 Business Perspective

• Wasting time on screening reduces the throughput of data processing and delivery.

• Intensive human manual care and action for the scraping procedure may decrease the

potential profits for the company, since releasing engineer resources from manual care

can make them doing other tasks to increase the productivity of the whole company.

• Deploying and Maintaining an exclusive cluster for scraping purpose is expensive,

especially in the condition of other data processing and modeling purposes are de-

ploying on the AWS1.

Each problem or situation in business consideration listed above can be relevant to the

one engineers met in the technical part. Moreover, these difficulties affected the frequencies

of delivering the data products to the clients. Therefore, the solution to solve these dilemma

is to have stable deliveries of products or even to have more frequent deliveries. For

instance, the company used to deliver the products to one of clients once a month; we

expected to deliver the product twice a month to satisfy the growing demand of customers.

That is to say, we must scrap the data from the resources twice in a month which need

more efforts (manual care) by engineer team. However, it is hard to achieve the goal of

having more frequent deliveries with an inefficient scraping process.

To summarize, the inefficiency of delivering data products caused by the problems listed

above makes more frequent refresh for deliveries unachievable. Therefore, to satisfy the

request from customer and also to have a stable throughput, a more generic, automatic

and continuous scraping method is mandatory.
1Amazon Web Services: https://aws.amazon.com/about-aws/

4

2.2 Research Questions

2.2 Research Questions

According to the challenges and problem we encountered in developing the continuous

scraping pipelines, three research questions are stated here to clarify the direction of this

work. The research questions and rational motivations of each question are claimed as

follows.

• RQ1: What are the challenges in developing and maintaining continuous pipeline for

web dat a scraping?

– I desire to figure out the challenges we might encounter in developing our so-

lution and also in maintaining pipeline. I try to summarize the potential and

actual problems during our developing and maintaining procedure.

• RQ2: What are the challenges for web data scraping, and what are the potential

solutions for them?

– In addition to continuous pipeline for scraping procedure, I try to focus on

scraping part itself and further explore to determine the corresponded problems

and challenges.

– The possible challenges caused by the increase of data volumes, heterogeneous

resources, legal and policy issues.

5

3

Related Work

In this chapter, the state-of-the-art tools, relevant technology and associated academic

paper are discussed. First, the related work for web data scraping are provided. Then, the

potential tools and combination of cloud services for fulfilling our automation workflow are

considered.

3.1 Web Data Scraping

Since the main task of this project is to develop an automatic workflow which scrapes the

data through the website, the usage, the knowledge and the background in the relevant field

must be discussed. In general, the main purpose of all web scraping is obviously - extracting

the data we are interested in from the web, and transform them into understandable

structure like database, spreadsheets, json etc (8). Undoubtedly, the extracted data in

certain field that experts or researchers are interested in is usable and valuable. As a

result, web data scraping can be applied in various field, e.g., online price comparison,

website change detecting, government data gathering, research, brand monitoring.

In this section, we begin by providing the definition of web scraping to clarify the scope

of field. Next, we describe several frameworks and tools that are state-of-the-art and

used by current companies or developers. Then, the challenge and the difficulties of web

scraping are delineated. Finally, the ethics and the social consideration for web scraping

are described in the last part of this section.

6

3.1 Web Data Scraping

3.1.1 Definition

The outsider or even the developer outside of this field may be confused by the terms “Web

Crawling” and “Web Scraping”. The answer can be shortly illustrated1 - web crawling is

to find or explore URLs or links on the web, while web scraping is to extract the data from

one or several website (9).

Broucke and Baesens (10) describe that the difference between these two terms are

relatively vague since lots of programmers use both terms interchangeably. They define

“crawler” as a program which navigate web pages with or even without purpose to explore

the contents offered by a site. Also, “web scraping” for them is referred to create agents to

download, parse and arrange data in an automated way.

Massimino considered web crawling and information scraping as two distinct methodolo-

gies: the former is the automated navigation of a series of internet-based references, while

the latter is the automated procedure of processing and transforming semi-structured data

into a structured format data (11).

To summarize, we can differentiate these two terms by their different purposes and

outputs: web crawling navigates web page with or without specific end goal but aims

to find URLs as the main output elements, while we scraping aims to extract data from

specific, known, and target websites to store or transform it into structured format.

3.1.2 Web Scraping Structure

Before broadly discussing the nowadays technique for web data scraping, we first provide

how web scraping works by simplifying into 3 steps as follows (7, 12).

1. Site access: This first step refers to the communication between web scraper (re-

quest) and the host (i.e. response from web server) through the HTTP protocol.

2. HTML parsing & content extracting: The web scraper will extract the certain

content after retrieving the HTML document. There are plenty of tools and methods

can be applied to complete the extraction, e.g., selector-based languages, regular

expression matching, DOM2 structure based parsing libraries, programming logic or

machine learning approaches.

3. Output building: The aim of this final stage is to transform the extracted web

content into structured format so that is valid for subsequent processing and storage.
1https://www.zyte.com/learn/difference-between-web-scraping-and-web-crawling/
2Document Object Model

7

3. RELATED WORK

3.1.3 Web Scraping Technique

Here we describe the tools and frameworks for web data scraping. The researchers classify

them in different ways. Massimino classified it into three types: Fully custom applica-

tions, Semicustom programs and Commercial sotware services (11). Similarly, Glez-Peña

et al. structured them into three categories: libraries for genereal-purpose programming

language, frameworks, desktop based environments (7). Diouf et al. proposed two cate-

gories: Ready-made Tools (which include Browser extensions and Software and Platforms)

and The libraries of programming languages (6). We can easily claim that the standards of

categorizing mainly depend on whom the target customers of the tools are, the customiz-

ability, and programming skill level required. Also, we provide three classified types with

examples as follows in the Table .

Description Examples

Libraries

This category is the most primitive and with
highest customizability of the three. Plenty of
languages provides libraries for web scraping,
e.g., NodeJS, Java, PHP, Python.

Python: Beautiful-
Soup1 Java: jsoup2

NodeJS: Apify3

PHP: Goutte4

Framework

The framework is more integrative solution
comparing to libraries. That is to say, we
must integrate several different libraries for
various tasks, e.g., access web sites, parse
HTML, extract contents. As a result, this
type of tools integrates these tasks and pack-
ages them into a framework.

Python: scrapy5

Java: jaunt6

NodeJS: Cheerio7

Ruby: Kimurai8

Ready-used Tools

We divided this type into two sub-categories:
Browser extension and Software. These
ready-used tools are well-developed, yet with
limited extendability and customizability.

Browser extension:
Web Scraper9, Data
Scraper10, Dexi.io11

Software: Import.io,
Mozenda web, We-
bExtractor360

Table 3.1: Categories of Web Scraping Technique

8

3.1 Web Data Scraping

3.1.4 Challenge of Web Scraping

In the stage of constructing web data scraper or executing scraping, plenty of technical

challenges and potential issues are encountered and solved. The purpose for this section

is not to go in the details of each difficulty but it is just limited to enumerate possible

challenges and have an overview of them.

• Changeable Web Site Structure & Dynamic Content:

Once the web site owner changes the structure of web page due to improving user

experience or publishing new features, the web structure may be changed. In this

situation, the old scraper may not work for the updated web pages. Also, some web

pages generate the content dynamically using JavaScript (or AJAX1) may also cause

problems (12, 13).

• Anti Scraping:

Web sites’ owners apply several methods to detect and block the robots for scraping,

e.g., CAPTCHA2, reversed Turing test, IP blocking(due to large amount of request,

or intend to restrict the requests for each single one IP), so that they are able to

protect their valuable resource or data at their sites.

• Login Requirement:

Some specific data or protected information is only visible by the certain roles which

login to the accounts with the credential of accessibility.

• Honeypot Traps:

This Honeypot is also an useful tool for web scraper detection and prevention which

the same as the anti scraper. However, we list it here to emphasize its influence.

A honeypot is able to trap crawler or scraper in an “spider trap” which may be a

infinite deep directory tree or an inescapable loop collecting useless data (14, 15).
1https://www.crummy.com/software/BeautifulSoup/bs4/doc/
2https://jsoup.org/
3https://www.npmjs.com/package/apify
4https://github.com/FriendsOfPHP/Goutte
5https://scrapy.org/
6https://jaunt-api.com/
7https://cheerio.js.org/
8https://github.com/vifreefly/kimuraframework
9https://webscraper.io/

10https://dataminer.io/
11https://www.dexi.io/
1Asynchronous JavaScript And XML: https://www.w3schools.com/js/js_ajax_intro.asp
2Completely Automated Public Turing test to tell Computers and Humans Apart

9

3. RELATED WORK

• Trade-off between Accurate Performance and Automation:

Although scraping web data in an high level automated manner is efficient, human’s

feedback is crucial for increasing the accuracy of extracted data. As a result, the

balance between automation and human intervention must be considered when de-

veloping the scraper so that the quality and accuracy of extracted data can be ensured

(16).

• Scalability:

A scalable and reliable scraper is difficult to develop since the extracting procedure

may fall by several patterns in the web site (17). Glez-Peña et al also mentioned

that dealing with large volumes of information through scraping is challenging (7).

Moreover, it is sensible to develop scraper for different target data or information.

For instance, for an e-commerce platform, the tasks can be simply separated by:

discovering product, and extracting product pages (18). As a result, numerous and

various types of scrapers are developed. The strategy to manage this numerous

scrapers to make the extracting procedure more scalable can be challenging.

As the complexity increasing in the procedure of web data scraping, cloud computing

services are suggested to use. Distributing the load among computational units makes

a more efficient resource management procedure, and even more scalable and reliable

(16).

• Heterogeneity: For the heterogeneity of data format or data type, with large num-

ber of pages using JavaScript and CSS1, the increasing of heterogeneity of web pages

can cause the challenges for scraping (12).

For any of resource that developers and researchers are looking for in the web, they

may encounter lots of heterogeneous and independent resources (7).

3.1.5 Ethics Consideration

The extracted data from web scraping may be influential or even harmful for related

individuals or even society. For instance, the data which is related people’s or companies’

privacy, especially in medical domain and financial domain. As a result, the ethics, social,

and legal consideration should be satisfied when using web scraping.

The Web Ethics concept had been proposed when Web technique evolved. Eichmann

organized the web ethic for different roles e.g. service agent, user agent. Also, web spider
1Cascading Style Sheets: https://developer.mozilla.org/en-US/docs/Web/CSS

10

3.2 Schedulable Recurring Automation Workflows Tools

was included in his works; several guidelines and exclusion for each role were provided,

even in the nineties of the last century (19).

Massimino provided the social considerations from several perspectives for the researchers

who intend to utilize the web scraping to extract data - A systematic third-party review

for use of second-hand data is missing in practice, while self-discipline is common nowa-

days scientific research. Also, when the websites expose certain signs (e.g., Spider traps,

authorization, CAPTCHAs) that they are not welcome for the scraper, the researchers

should consider any of these explicit disapproval of web scraping and obtain the consent

from the host of the site. Moreover, the web site performance or other functionality may be

affected by the scraper which requests at high frequency. Therefore, Massimino suggested

the researchers to restrict their request frequency to no more than two requests per second

(11).

Upadhyay et al also considered legal consideration and scraping ethics in web data

extraction field. They regard web scraping as privilege but not a right. The operator of

web scraping tools must conform to the term of use provided by the web site host. Also,

they suggested not to scrap encrypted data but only scrap for the public available data so

that avoid the risk of violating the law. In other words, it is safe to assume that scraping

the data from the site requiring login and password for accessibility is illegal (12).

To summarize, we should always take ethics, law, society into consideration, and think

twice before scraping any of website. As Mitchell described, the script or the program of

scraping technique should not be runs against every site you can find (17).

3.2 Schedulable Recurring Automation Workflows Tools

In this section, we discuss several potential tools that are able to solve our problem by cre-

ating automatic triggered workflow running our scraping programs with cloud computing

services. Moreover, the schedule feature for periodically executing the scraper is required.

We first consider the tools provided by three different cloud computing service providers,

i.e. Amazon Web Services (AWS), Microsoft Azure 1, Google Cloud Platform (GCP) 2.

3.2.1 Automation Workflow Structure using Cloud Computing Services

Cloud computing services platforms provide various types of services and functions that

can be utilized in our developing of automation workflow structure. We aim to construct
1https://docs.microsoft.com/en-us/azure
2https://cloud.google.com/gcp

11

3. RELATED WORK

a schedulable automated workflow that can run different scrapers repeatedly in a fixed

period. In Table 3.2, we list the requirements should be fulfilled; and associated them with

the tools that support them in different cloud computing platform respectively.

Requirement Relevant Tools
– AWS: EventBridge1

A scheduler to trigger the workflow periodi-
cally

– Azure: Timer Trigger2

– GCP: Cloud Scheduler3

– AWS: Lambda Function4

A serverless service that connects and extends
cloud services, deploys the containers

– Azure: Azure Functions5

– GCP: Cloud Functions6

– AWS: ECS7

A orchestration service to manage and run
the scraper containers

– Azure: Azure Container Instances8

– GCP: Google Kubernetes Engine9 (GKE)
– AWS: CloudWatch10

A tool that can used for monitoring the scrap-
ing procedure by presenting the logs

– Azure: Azure Container Instances11

– GCP: Cloud Logging12

Table 3.2: Relevant Tools for Schedulable Automated Workflow

Based on the tools and services listed above, we are able to construct the automated

workflow using different platforms. We provide the workflow structure of each platform in

Figure 3.1 for AWS, Figure 3.2 for Azure, Figure 3.3 for GCP. Each service provided by

the platforms may match to another equivalent or similar service in another platform (20).

The structures for AWS and Azure are similar or even identical while GCP’s shows slight

1https://docs.aws.amazon.com/eventbridge/
2https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-scheduled-function
3https://cloud.google.com/scheduler
4https://aws.amazon.com/lambda/
5https://docs.microsoft.com/en-us/azure/azure-functions/
6https://cloud.google.com/functions
7https://aws.amazon.com/ecs
8https://azure.microsoft.com/en-us/services/container-instances
9https://cloud.google.com/kubernetes-engine

10https://aws.amazon.com/cloudwatch/
11https://azure.microsoft.com/en-us/services/container-instances
12https://cloud.google.com/logging

12

3.2 Schedulable Recurring Automation Workflows Tools

different. The Cloud Functions triggered by scheduler in GCP should be invoked by Pub/

Sub1 service.

 EventBridge Lambda Function AWS ECS CloudWatch

Scheduler trigger
the workflow Deploy and run the container Send logs

Figure 3.1: Amazon Web Services Automation Workflow

Timer Trigger Azure Functions
Azure

Container Instances Azure Monitors

Scheduler trigger
the workflow Deploy and run the container Send logs

Figure 3.2: Microsoft Azure Automation Workflow

Pub / Sub

Cloud LoggingCloud Scheduler Cloud Fucntions

Scheduler trigger

the workflow

Deploy and run the cotianer
Send logs

Google

Kubernetes Engine

Figure 3.3: Google Cloud Platform Automation Workflow

3.2.2 Workflow Orchestration

In the Section 3.2.1, we considered the structures of the workflow to be a lighter and

simpler design. Since the core program, the scraper, run in container, the most important

point here is to develop the workflow in a fast and efficient way so that it can be put into

production as soon as possible.

However, if we consider integrating other procedures (e.g. the quality assurance, data

completeness test, subsequent data processing) into our workflow structure, there are also

other advanced workflow application provided by cloud service providers.
1https://cloud.google.com/scheduler/docs/tut-pub-sub

13

3. RELATED WORK

For instance, AWS Step Functions1, Azure Logic Apps2, Workflows3 provide users with

such platform which is able to connect, integrate different cloud services in a automated

workflow by writing less code and focusing on the business logic and functionality (21).

Moreover, these workflow orchestration service free developers from taking care of main-

taining, managing, scaling and monitoring solutions created with these services (22).

Moreover, there are other workflow orchestration tools and platforms that providing ser-

vices in the marketplace nowadays, such as Luigi4, Airflow5, Kubeflow6, MLflow7, Argo8.

These orchestration tools allow us to orchestrate individual steps, schedule tasks and man-

age dependency resolution. The workflows defined by these tools describe the dependencies

among a set of tasks which encodes in a Directed Acyclic Graph (DAG) (23, 24).

In addition to the workflow tools for business purposes which are widely utilized for

business data processing, several tools have been developed for scientific workflow which

are mainly used for modeling and running scientific experiments, e.g. Montage9, Pegasus10,

Makeflow11, Kepler12 (25, 26, 27).

Finally, there are also plenty challenges for workflow orchestration, e.g., architectural

challenges which ask workflow management system support flexibility, extensibility and

portability architecturally, integration challenges which focus on the issue when executing

workflow over cloud resources, computing challenges which emphasize the decision of cloud

instance type (28).

1https://aws.amazon.com/step-functions/
2https://docs.microsoft.com/en-us/azure/logic-apps
3https://cloud.google.com/workflows
4https://luigi.readthedocs.io/en/stable/
5https://airflow.apache.org/
6https://www.kubeflow.org/
7https://mlflow.org/
8https://argoproj.github.io/argo-workflows/
9http://montage.ipac.caltech.edu/docs/grid.html

10https://pegasus.isi.edu/
11https://cctools.readthedocs.io/en/latest/makeflow/
12https://kepler-project.org/

14

4

Project Implementation

In this chapter, the comprehensive implementation procedure and details for this project

are described. We first illustrate the concrete requirements according to the problem

statements in the Section 2.2, so that we can have an overview and expected results of this

project. After clarifying the requirements base on the problem, the continuous pipeline

structure will be illustrated. The service and the components using in the pipeline pro-

vided by AWS are also involved in the subsection. Followed by the continuous pipeline

architecture, the scraper program and the relevant features for it will be introduced. The

CI/CD pipeline developed by Github Actions will be illustrated at the last part of this

chapter. The idea of creating and maintaining an organized CI/CD pipeline is to make

whole solution become more complete and automatic.

4.1 Project Requirements

According to problem statement described before in Section 2.1, we have an overview of

challenges the engineers and the company are confronted with. Moreover, we summarized

the problems and provided the main goal of this project. That is, to have a more generic,

automatic and continuous scraping pipeline. Here, we come up with more concrete ideas

and requirements based on the main purpose of this work and the problem stated in Section

2.1. We list the requirements which satisfy the potential solution for problems proposed

in both technical and business perspective.

• A stable and extendable scraping pipeline using automatic procedure which has fol-

lowing characteristics:

– A reliable scheduler to trigger the specific scraper

15

4. PROJECT IMPLEMENTATION

– A extendable scraper program to scrape the web data

– A function of notification to inform engineer so that it can reduce the time of

manual screening

– A function to validate the result of scraping data so that it can reduce the effort

of inspection by engineers

– A scalable cluster or service to run the scraper so that it can avoid unexpectable

crash

– A well-organized storage strategy for storing the scraping result data

– A CI/CD pipeline may be included in the workflow in order to reduce human

intervention

4.2 Continuous Scraping Pipeline Design

As the requirements for this continuous scraping pipeline were clearly clarified in last

section, we are now coming up with concrete architecture of the pipeline. In this section,

the pipeline structure with its development procedure and mechanism will be first displayed

and illustrated, followed by the rules and mechanism of schedulers for triggering pipeline.

Afterwards, since we utilize lots of various web services provided by AWS1 in order to

complete our work, the developing details, operating mechanism and the knowledge for

the services we choose in AWS will be well-described in the last part of this section.

4.2.1 Pipeline structure

Figure 4.1 displays the continuous scraping pipeline structure. The right part of the Figure

4.1 can be seen as the main continuous scraping pipeline while the left part can be con-

sidered as the main development procedure. We first describe the development procedure

except for the main scraper and its features (which are illustrated in the section 4.3). Then

the continuous scraping pipeline mechanism is described.

• Development procedure (Steps)

1. Developing scraper: First of all, the main scraper program and its feature

will be included and developed in the Github repo called conso-scraper.

2. Linting & unit tests: To guarantee the code format and quality, linting checks

and unit tests are essential before any further development.
1https://aws.amazon.com/about-aws/

16

4.2 Continuous Scraping Pipeline Design

 conso-scraper

 EventBridge

 AWS Lambda

 AWS S3

 CloudWatch
 Docker Image AWS ECR

Build

Publish to Create task

Trigger with parameters by scheduling rules

Launch scraper program

AWS ECS

Spider

Validator

Extract metadata

Save raw parquet file data with metatdata

Engineer
Send error

Send report

Send logs

Check logs

Figure 4.1: Continuous Scraping Pipeline Diagram

3. Building Docker image: After developing the functions and features in the

repo, the Docker image will be built through Dockerfile. The image should

contain the same environment within functions and feature as the program in

the repo.

4. Local test for Docker: Before pushing our Docker image to AWS service,

we must test the Docker image and container to make sure the container run

successfully and obtain the proper result with expected log.

5. Uploading image to ECR: After local test for Docker container, built image

will be uploaded to ECR (container registry) by running script.

6. Creating ECS task definition: To run the container in ECS, the ECS task

definition is required. The specific mechanism and the usage details will be

described in section 4.2.3.

7. Doing cloud test (ECS): Similar to step 4, we also want to make sure the

scraper will be able to run successfully in ECS container with corresponded log

in AWS CloudWatch. Therefore, testing the container in ECS before putting it

into production is mandatory.

17

4. PROJECT IMPLEMENTATION

8. Setting up schedulers: The schedulers can be separated into two parts:

EventBridge(rules to trigger the pipeline periodically) and Lambda Function(receive

parameters from EventBridge and launch scraper container in ECS). The details

of mechanism of schedulers will be described in Section 4.2.2.

• Pipeline workflow (Automatic triggered workflow)

1. Triggering the pipeline: EventBridge which consist of event schedule with

rules will trigger the pipeline by passing the parameters to Lambda Function.

2. Launching container in ECS: Once receiving the parameters sent from

EventBridge, Lambda Function will launch the corresponded scraper programs

deployed in ECS.

3. Running the scraper in container: The scraper program is run in the

container in ECS. We called the main scraper program as Spider.

4. Sending the logs: During the running process of scraper container in ECS,

the ECS is sending the logs to CloudWatch in the mean time.

5. Validating results: Once the spider finish the scraping procedure, a validating

process will be run in order to recognize whether the result of scraping is valid

and can be used for further following processing.

6. Sending report or error: The validator determined if the results are valid,

and then a report or error message will be sent to Slack channel to notice the

engineers.

7. Checking Logs: If the validating report or error raise issue of the results, the

engineers must take actions on checking the logs during the scraping procedure

which could be investigated through ÇloudWatch.

8. Extracting metadata: The raw scarping result data must be stored with a

set of metadata in order to describe it. Therefore, before storing the raw result

data, we must extract or generate the corresponding metadata.

9. Storing result in S3: The final step is to upload the scraping result data to

S3 buckets with metadata describing it. Also, the storing path must be specified

by organizing rules so that the data will be able to extract easily.

18

4.2 Continuous Scraping Pipeline Design

4.2.2 Schedule rules

The scheduler is implemented by the service in AWS, EventBridge, which is a serverless

event bus that can be used to connect applications with data from various sources. That is

to say, EventBridge receives events, and then applies rules to route to the targets. In our

case, we set up rules in EventBridge according to different resources. That is, countries,

food deliver platforms, restaurants or details, are the categories for rules for different

scrapers. Table 4.1 displays 2 examples of rules set up in EventBridge.

Object Example 1 Example 2

Name of rules dash-sourcing-DLR-BE-detail dash-sourcing-UBE-DE-finder

Country Belgium Germany

Platform Deliveroo Ubereats

Cron expression 0 8,18 ? * THU * 0 17 * * ? *

Arranged date 1
Thu, 09 Jun 2022 08:00:00
GMT

Mon, 06 Jun 2022 17:00:00
GMT

Arranged date 2
Thu, 09 Jun 2022 18:00:00
GMT

Tue, 07 Jun 2022 17:00:00 GMT

Target Lambda function Lambda function

Table 4.1: Schedule rules set in EventBridge

The name of rules were specified clearly with specific country, platform, type of scraping

process, in order to recognize which target to trigger, and also to let the engineers better

manage the rules. The cron expression 1 plays essential role in this setting; it requires six

field: minutes, hours, day of month, month, day of week, and year. As a result, having

these six field provides sufficient information for a regular scheduler. For instance, the one

in the example 1 in Table 4.1: “ 0 8,18 ? * THU * ” represents that the events will be

triggered on every 8:00 and 18:00 in each Thursday every month and every year. Also,

the one in example 2 in Table 4.1 represents the triggered events will be on 17:00 every

day. The target of EventBridge is Lambda Function used to launch container in ECS. A

certain set of parameters is passed to Lambda Function in order to run the function with

correct parameters so that the launched containers also run the relevant scrapers (specific

country, platform, and type). The mechanism details for Lambda Function and the rest of

AWS services we utilized in this work are illustrated in the next subsection.
1https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/ScheduledEvents.htmlCronExpressions

19

4. PROJECT IMPLEMENTATION

4.2.3 Mechanism of AWS Service utilized

For the services in AWS we have utilized in this project except for EventBridge (described

in last subsection), we describe the mechanism and how they work in our project in this

subsection. The order of the content will be: Lambda Function, ECR, ECS, CloudWatch,

S3.

• Lambda Function (triggered to launch ECS container)

As a service that lets developers run code without provisioning or managing servers,

Lambda function has several characteristics: First, it does not require server. All the

developers need to do is to write the code and upload it. This is so-called FaaS (Function

as a Service) model of cloud computing. Second, it does the automatic scaling according

to the size of workload. Third, Charging depends on the amount of time that code is

computed, rather than on the server running time.

Based on the characteristics of Lambda Function summarized above, we come to several

upsides by choosing Lambda Function in our work. First, it makes developing faster than

the other requires servers. The developers can focus on the pure logic of the applications.

Second, it reduces the computational cost by the charging policy and the functionality of

automatic scaling. Third, it also decreases the operation management overheads by the

functionality of automatic scaling(29).

After having the overview of features and benefits of developing by Lambda Function,

we now illustrates mechanism and how it works in our project.

Whenever the workflow is triggered, the EventBridge will send corresponded set of pa-

rameters within a JSON file to Lambda Function. The parameters include:

– container_name: To specify which container to launch

– cmd : The command will be run in the container

– task_name: Given task name for recognizing and using for logic in Lambda

Function

– env : To specify the source (the platform and the country) that will be scraped.

Once receiving the parameters above, a python program uploaded in the Lambda Function

will be run with parameters, and then launch a ECS container by fargate1 type.

• Deploy application through ECR & ECS
1Amazon ECS launch types (30)

20

4.2 Continuous Scraping Pipeline Design

Figure 4.2 displays the mechanism how ECR and ECS work with each other. ECR (1) can

be refer to a “AWS Docker Hub” which let users store, manage and deploy Docker images.

It compresses, encrypts the Docker images, and also provides versioning, tags, control of

image lifecycle. ECS is a scalable service that deploys the Docker containers, pulls the

Docker images from ECR When deploying. It allows users to manage and deploy the

applications through API or task definition (31). Although Figure 4.2 shows the overview

ECR

Vesioning, Tags, management

Compress & control Images

Code

Build Image

ECS

Define Application by selecting
needed containers

Push to

Manage, launch, run the containers

Figure 4.2: ECR to ECS mechanism (1, 2)

of workflow for ECR and ECS, we provide more details of how we deploy the application

in our work as follows.

1. Create repository: The repository is a place to let users store Docker images in

ECR. Whenever, we push or pull an image in ECR, we must specify the registry and

the repository location.

2. Build and tag Docker image: The prerequisite of this step is to install AWS CLI,

Docker, and do Docker Login to authenticate Docker to the registry. Afterwards,

we are able to build and tag images through commands. Also, it is always good to

run and test the image and container locally before pushing to ECR repository.

3. Push the image to ECR: After building and tagging the image, the image should

be pushed to the specified repository.

4. Create a task definition(31): A task definition which is written in JSON file,

describes the task as how it runs the container. To be more specific, it should

include which Docker images to use in containers, how much CPU and memory to

use, the launch type, logging configuration etc.

After registering the task definition, we are now able to make use of the containers for the

application (i.e. scraper in our case). Since the containers in ECS will be launch and run

by Lambda Function, we do not need further actions or manual operation in AWS after

21

4. PROJECT IMPLEMENTATION

the 4 steps mentioned above. However, we still are able to manually run the application

manually by creating cluster and service through user interface in AWS manually.

• Monitoring through CloudWatch

The logs generated during the scraping procedure can be inspected through CloudWatch,

which offered us a way to do monitoring. In addition to scraping log sent from ECS con-

tainers, the rules in EventBridge can also be monitored, and Lambda Function can be

monitored as type of log streams so that we can track the scrapers in order. Moreover,

CloudWatch also provides other functionality to further analyze or monitor the appli-

cations. For instance, Container Insights 1 which collects the metrics and logs of the

containerized applications for troubleshooting. Alarms 2 are also provided for various pur-

poses, such as setting threshold for errors; noticing administrator if the amount of errors

exceed the threshold.

• S3 & storage management

With Amazon S3, we are able to retrieve, store and manage any amounts of data. The

critical issue for storing data in our work is to well-organize the path of each scraping data

to categorize them. As a result, we specify the storage path using: information to scrape,

platform, country, date, and run id to not only make developer better categorize the result

data but also let the engineers do the subsequent work easier.

4.3 Scraper and Improved Features

In this section, the tools, framework and improved features of scraper are described. We

first provide a structure of the repository for developing which lets us have an overview of

the whole scraper and its features. The rationale of keeping old tools (scrapy) will then be

provided. Several features improved are also described namely: validator, notification and

metadata extraction. Also, the rationale of developing certain features will be illustrated.

4.3.1 Git Repository Structure

We depict the Git repo structure as follow, list essential component and briefly explain

their functionality in this section.

1https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
2https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

22

4.3 Scraper and Improved Features

• properties: The config files and the JSON files for describing ECS task definition are

included in the properties folder.

• pipeline: A sequential scraping pipeline is included here.

• process: It includes all the spiders which are categorized by scraping contents and

platform. Also, it contains all the relevant features and extensions (e.g. metadata,

notification, validator, pipeline for uploading parquets to s3 bucket).

• test: The unit tests and some sample texts for the specific platforms are placed here.

• script: It includes the scripts for setting certain platforms, countries and refresh

month. Also, it consists of the entry point for running the scraper pipeline either lo-

cally or in the container. (e.g. poetry run python src/conso_scraper/scripts/run_scraper.py)

– env.sh: The script for setting the environment parameters (e.g. platform, coun-

try, refresh month)

– run_scraper.py: The entry point of running the scraping pipeline.

• .github/workflow: The YAML files describing the Github Actions workflow for CI/

CD pipelines are placed here. The specific details will be illustrated in next section.

• Dockerfile: The docker image setup for creating the scraper environment for either

running locally or in cloud container.

conso_scraper

properties

ecs_task_definitions.json

src

conso_scraper

pipeline

sequential.py

process

extensions

metadata_extension.py

notification

notification.py

pipelines

s3_pipeline.py

23

4. PROJECT IMPLEMENTATION

spiders

deliveroo

doordash

justeats

ubereats

validators

content_validator.py

script

env.sh

run_scrper.py

utils

executor.py

test

Dockerfile

pyproject.toml

poetry.lock

.github

workflows

4.3.2 Rational of the Technology Choices

The scraper program is implemented based on the scrapy1 framework, which is one open

source and collaborative framework utilized for extracting data from web pages with high

flexibility and extendability. The rationale of choosing this framework is that the old

scraping procedure was implemented by scrapy. Also, since the logic, the main body

of scraping code, and the result data of old scraper had high adaptability to the data

processing at the down streams, switching the main framework for scraper may increase the

risk of occurring issue in any down stream processing. Moreover, due to its extendability,

the improved features we about to describe can be developed by using the extension of it.

4.3.3 Validation procedure for scraping result data

The main purpose of validator for our scraper is to notify the engineers when there is

any problem with the result of scraping data as soon as possible. Although the result

of scrapped data must be checked by the quality assurance procedure which ensures the

quality of the result data and also the process of scraping, there are still several checks

1https://scrapy.org/

24

4.3 Scraper and Improved Features

that can be done earlier included in the scraper program. Another factor or reason of

developing validator is that quality assurance procedure is a work with more human actions

and manual care in the company. Therefore, a validator can make engineers detect the

error or abnormal condition within the scraping data at the early stage. We come up with

several strategies to validate the result of scraping data as follows:

Strategy 1: Evaluating the amount of HTTP status codes: The scraping is

a long requests procedure with possibility to success (i.e. status code 200, success)

and fail (i.e. status code 400, bad request error). The strategy here is to check the

ratio of status code 200 among all requests. If the ratio of success is low, the result

data of scraping may not be usable.

Strategy 2: Threshold of the item size: The size of each item will be recorded

during the scraping procedure. Once the spider closed, we will be able to investigate

the amount of item which size is extremely small so that can not be used afterwards.

We set a threshold for item size, and evaluate the ratio between passing threshold

and those do not pass.

4.3.4 Notification Report

The notification feature can be influential for engineers since they do not need to keep

screening or periodically checking the scraping procedure and logs. The notification mes-

sage will be sent to certain Slack 1 channel with several scraping result details. The message

can be considered as a short report to the engineer team and also a notification for them

to start to do the tasks (e.g. quality assurance, processing, etc) after scraping.

This feature was developed by using the extension of scrapy, and the framework called

Spidermon2 which is a framework to build monitor for scrapy spiders, i.e., our scrapers.

We provide the message format and the examples in the following Table 4.2. The screen-

shot of this notification message will be placed in appendix.

4.3.5 Extracting Metadata

The aim of extracting metadata feature within scraper program is to pass essential infor-

mation of raw scraping data to the engineers who should take over the tasks afterwards.

Even though our storage strategy already specify several information of the scraping, we

still need to have a short metadata to clarify the stage of scraping progress.
1https://slack.com/
2https://spidermon.readthedocs.io/en/latest/

25

4. PROJECT IMPLEMENTATION

Object Example 1

source UBE

spider outlet detail

country AU

item scraped count 26421316

request account 310060

response account 310048

response 200 account 310048

log error count 11347

start time 2022-06-18 06:02:04.492408

finish time 2022-06-18 13:54:06.107996

Table 4.2: Notification Message Format

Since the metadata here is relevant to the procedure of scraping, we developed it using

the extension of scrapy. The metadata table should provide the information of whether

the scraping result data is valid or not, the exact time stamp of closing time of the scraper,

the id number of running scraper, the table name which represents the result type of

scraping, and the stage of processing procedure. With this information, the engineers can

easily recognize the status of the scraping result data. Moreover, the stages of processing

procedure is specified inn the path of storage directory in s3, so that the engineers doing

subsequent tasks can also place their metadata their to have better collaborating procedure

and flow.

4.4 CI/CD Pipeline using Github Actions

In this section, a completed CI/ CD pipeline design and its implementation procedure

details are described. CI/ CD pipeline stands for continuous integration and continuous

delivery which falls under DevOps. Several CI/ CD tools are used and developed for engi-

neers nowadays, e.g., Jenkins1, circleci2, TeamCity3, Bamboo4, GitLab5, Github Actions6.

1https://www.jenkins.io/
2https://circleci.com/
3https://www.jetbrains.com/teamcity/
4https://www.atlassian.com/software/bamboo
5https://about.gitlab.com/
6https://github.com/features/actions

26

4.4 CI/CD Pipeline using Github Actions

The CI means that changes of new code are built, tested and merged to a certain reposi-

tory. Moreover, the CD can be referred to continuous delivery and continuous deployments.

Once CI process finish building, testing for developed code, continuous delivery ensure that

it packages the environment for production which can be used by operation team. Contin-

uous deployment refers to the final stage of pipeline that deploy the application into the

production environment (32). The Figure 4.3 shows the basic structure of CI/CD pipeline

we described above.

Build MergeTest Automatically release to
repository

Automatically deploy to
production

Continuous Integration Continuous Delivery Continuous Deployment

Figure 4.3: Basic CI/CD pipeline Structure (3)

The tool of CI/ CD pipeline we utilized is Github Actions. In this section, first introduce

the Github Actions workflow, its characteristics and the rationale for choosing it. The

components and the set-up of the Github Actions workflow are followed by the rationale of

choosing. Afterwards, the commit standard for release workflow will be explained. Finally,

the overview of CI/ CD pipeline structure for this project is displayed and illustrated.

Also, the details for each workflow mechanism in pipeline is introduced after the pipeline

structure.

4.4.1 Github Actions Workflow

Github Actions is a CI/ CD platform that allows users or to automate build, test and

deployment pipeline. The developers can create workflows for the pipeline directly in the

Github repository. Also, comparing to other platforms (e.g. Jenkins) using custom server,

Github Actions provides serverless service which means that we do not have to maintain

a server continuously to do the CI/ CD tasks. As a result, not only is the initial setup

convenient but also requires less following maintenance than other platforms do.

Another advantages is the ease of use of Github Actions: since the workflows are written,

developed in YAML file which is beginner friendly, it is suitable for small and startup

company which engineers already have experience or fundamental knowledge in YAML

file.

27

4. PROJECT IMPLEMENTATION

Moreover, it provides several different environments for building, testing, e.g., Linux,

MacOS, Windows. Other than ease of use and maintenance, the extendability is also

important for CI/ CD pipeline. Github Actions has its own community and provides open

source platform which let users reuse the actions developed by other developers. For the

cost of running CI/ CD pipeline, the billing strategy for Github Actions must be taken

into consideration. Github provides certain amounts of free minutes and storage 1 which

depends on the product utilized by users. To have clear overview of Github Actions we

described here, we listed all the characteristics and advantages in Table 4.3.

Characteristics Description

Convenience Develop directly in Github repository

Ease of use Written in YAML file

Server Serverless

Environments Linux, MacOS, Windows

Extendability Open source actions in community

Billing strategy Certain amount of free storage and time

Table 4.3: Characteristics of Github Actions

• Components of Github Actions

Here we list several essential components required to set up Github Actions workflow:

– Workflows 2:

A workflow refers to a configurable automated process which consists of several

jobs. Workflows must be defined by YAML file, and be triggered by events.

– Events:

An event is a specific activity in a Github repository that triggers a workflow

run. For example, activity can originate from GitHub when someone creates a

pull request, merges to certain branch, opens an issue, or pushes a commit to a

repository.

– Jobs:

A job is a set of steps in a workflow that execute on the same runner. Each

1https://docs.github.com/en/billing/managing-billing-for-github-actions
2https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions

28

4.4 CI/CD Pipeline using Github Actions

step in a job is either a shell script that will be executed, or an action that will

be executed.

– Actions:

An action is a custom application for the GitHub Actions platform that performs

a complex but frequently repeated task. We can also find available actions to

use in workflows in Github Marketplace1.

– Runners:

A runner is a machine that runs your workflows when they are triggered. Each

runner can execute one or more jobs at a time. GitHub provides Ubuntu Linux,

Microsoft Windows, and MacOS runners to run workflows. The runners here

refer to the environments described in the Table 4.3.

• Creating a Workflow

There are two options for creating a workflow in Github repository:

Option 1: Create the .github/workflows directory in the repository, and then

place the developed workflow YAML files in it.

Option 2: In the repository, go to the Action page and select any suggested

available workflow there. Afterwards, it will create YAML file with edit page

in the browser. Once the user finishes editing, committing and pushing to the

repository, the workflow and the directory will be generated.

To have a customized workflow for CI/ CD pipeline for our projects, option 1 is more

suitable for us.

4.4.2 Setting up Github Actions in Repository

• Encrypted Secrets for Github Actions2

To start setting up the Github Actions workflow, encrypted secrets must be added

in the environment so that the actions are able to be executed since they operate

and run the program in the Github repository or use the service from AWS, Slack,

Azure. In our case, Github token for accessing repository, AWS access key ID and

AWS secret access key for accessing AWS services are needed.

1https://github.com/marketplace
2https://docs.github.com/en/actions/security-guides/encrypted-secrets

29

4. PROJECT IMPLEMENTATION

• Workflows and Actions in the Repository

We first list all the workflows and action components in the directory as follows, and

provide further explanation afterwards.

.github

workflows

_develop.yml

_main.yml

_release.yml

_pull_request_develop.yml

_pull_request_main.yml

_pull_request_release.yml

python_pytype.yml

python_pytest.yml

python_pylama.yml

python_publish_test.yml

python_black.yml

pytest_coverage.yml

git_tag.yml

git_release.yml

git_delete_tag.yml

docker_build_push.yml

aws_ecs_task_definition.yml

The YAML files with prefix of “_” describing specific CI/CD pipeline workflows (e.g.

_develop.yml, _main.yml, _release.yml describe the one for pushing events at those

branches, while the other three files describe the one for pull request events on those

branches.) are “caller workflow”, while the ones without prefix (e.g. python_pytype.yml,

python_pytest.yml etc.) are “called workflows”. Although caller workflows are able to

includes every job or actions in one single YAML file for an event, the reason why we sepa-

rate the jobs to several different YAML is to consider the extendability, flexibility and the

maintenance afterwards. To be more specific, the called workflows are reusable 1 and can

be developed separately so that it is convenient for developer to debug, maintain, extend

the whole workflow.
1https://docs.github.com/en/actions/using-workflows/reusing-workflows

30

4.4 CI/CD Pipeline using Github Actions

4.4.3 Auto Releasing with Identical Version & Tag by Commit Standard

To make CD process automatically and smoothly, we managed to propose a strategy that

does github release by specific commit format. Also, the Github release version must

coincide with the one in Docker image and the container in the AWS service, i.e., ECR,

ECS.

The first step of implementing this strategy is to specify the format of commits. As a

result, we make the engineers conform to the conventional commits specification 1 which

refers to a lightweight convention for every commit message. Afterwards, we create a

release workflow which will be triggered by the pushing to release branch. This release

workflow will create corresponded tag and version according to the commit message which

follows the commit convention; and then do the release with them. Table 4.4 illustrates

the commit message convention and the corresponded release type.

Commit Format Description Release type

fix: Bug fixes Patch release

feat: Feature developed Minor release

perf: Performance changes Major release

Table 4.4: Commit Convention for releasing

Although there are still other conventions and rules that can be used to trigger these

three specific release types (e.g. style, refactor, test, chore etc.), we simplify them into

three types to make the workflow procedure more convenient and be easily recognized by

other engineers in the organization.

4.4.4 CI/ CD Pipeline Architecture

Figure 4.4 displays the overview of CI/CD pipeline structure for this project. In the

industry of developing software application or products, the engineers develop the feature

and performs all the maintenance tasks by working among branches, e.g., feature, develop,

release, and main branch. This collaboration among engineers and branches is so-called

Gitflow Workflow (4) which displays in Figure 4.5.

With Gitflow, the developers are able to make better DevOps practice and continu-

ous delivery. Moreover, combining Gitflow strategy and the CI/ CD pipeline makes our

developing and maintaining procedure more smooth and automatic.
1https://www.conventionalcommits.org/en/v1.0.0/

31

4. PROJECT IMPLEMENTATION

 conso-scraper

Engineer

Push to feature branch:

Bug fIx,

New feature,
Improve performance

feature
Pull request / Merge

develop

1. Linting: black, pylama, pytype
2. Unit test: pytest,
3. Publish test result: test & coverage report

Pull request / Merge

release

1. Linting: black, pylama, pytype
2. Unit test: pytest,
3. Generate new tag in Github
4. Push docker image to AWS ECR with tag
5. Create AWS ECS task definition
6. Create Github release with new tag & version

main

1. Linting: black, pylama, pytype
2. Unit test: pytest
3. Publish test result: test & coverage report
4. Push docker image to AWS ECR with tag

Pull request / Merge

 Docker Image
Build

 AWS ECR
Push

 AWS ECS

create task definition

New tag & new version

New Gihub Release

Build
 Docker Image AWS ECR

Push

Generate tag based on

commit message

Github Actions

Figure 4.4: Overview of CI/CD pipeline structure

Main FeatureDevelopRelease

Figure 4.5: Gitflow Workflow Illustration (4)

Whenever the engineers finish developing the features and then do the push or pull

request to develop branch, the workflow displayed in Figure 4.6 is triggered. It first check

the code quality and the format in the Ubuntu Linux environment using the linting tools

provided by python since the codes in our work are mainly developed by python. After

linting tasks, it launch another runner for doing unit testing. Once all the tests passed,

the Github Action bot will publish the test result in the repository and also comment with

the coverage report within the certain commit or pull request. After commenting, the

workflow finishes which also means all the checks pass.

Moreover, we emphasize that all the modules in the CI/ CD pipeline workflow (Figure

4.6) are dependent on the up-stream components. That is, if one of the component fail at

32

4.4 CI/CD Pipeline using Github Actions

the up stream, the workflow terminate and skip all the components at the downstream.

For instance, if the pylama fail, the test module is skipped and it also means the workflow

fail.

For the main branch, the triggered workflow executes all the tasks that the same as the

develop branch does. After finishing the test module, it build the Docker image and push

the image with “latest” tag to AWS ECR. Figure 4.7 illustrates the workflow for main

branch.

For the release branch, the release workflow runs all the missions which the same as the

main branch does. However, the difference is that once the push commits are included

with the specific format, the action will generate a new tag using the bump-up version. As

a result, the tag for Docker image is generated by Github Action automatically so that it

is different from the one in main branch workflow. Moreover, the triggered workflow will

create ECS task definition for the Docker container deploy in ECS and release a Github

release which both use the new bump-up tag and version. Finally, the version recorded in

“pyproject.toml” file in the repository which describes the using packages and environment

will be update by Github Action bot.

33

4. PROJECT IMPLEMENTATION

Figure 4.6: Workflow for
Develop Branch

Figure 4.7: Workflow for
Main Branch

Figure 4.8: Workflow for
Release Branch

34

5

Discussion

The automation workflow, CI/ CD pipeline and the related work combine the knowledge

from technical field, academic areas, guidance and introduction in the marketplace and

team’s experience. To evaluate our work, the following reflection including the comparison

between previous and current setup, as well as the discussion of the limitation of the current

setup is provided. Also, because of the time limit and the company’s plan, there is some

future work can be implemented to improve and make the whole project more complete,

which is illustrated in this chapter.

5.1 Reflection

5.1.1 Comparison

• Previous Setup

Before developing this automation workflow and CI/ CD pipeline, the engineers take

over certain takes of the scrapers which have been automated in our proposal. The

different scrapers were developed and tested locally by one or more engineers. Once

the scrapers had been finished, they were uploaded to the server which hosted and

maintained by our company. The drawbacks of this developing model are obvious

and listed as follows.

– Collaboration among Engineers is Limited:

Since the scrapers are developed locally, the engineers may focus on developing

their own work and even do not upload their code to Github repository.

– Different Scrapers Management:

As the engineers developed their scraper separately and locally, it is difficult to

35

5. DISCUSSION

manage the version and the update of scrapers.

– Hard to maintain the code format and quality:

Without CI/ CD pipeline, the linting tasks and tests are run locally, and may

ignore by engineers. As a result, the maintenance of code format and quality

are difficult.

– Maintenance of Server

Some team members must take over hosting and maintaining the server, and it

is the resource cost for the team.

– Scalability & Stability:

It is the main reason why we develop a new strategy for scraping data. Since all

the scrapers were run in one server, the crash of server caused by one scraper

would affect all the other running scrapers deployed in the server. Therefore, it

is the the reason for not being able to scale up and extract the data stably.

– Extendability & Integrability:

Since most of other processing procedures in the company are deployed in the

AWS, it is hard to integrate scraping procedure with the other if it is deployed

in a separated and independent server.

• Current Continuous Scraping

The current continuous scraping pipeline includes scheduled automation pipeline

(Section 4.2.1) and CI/ CD pipeline (Section 4.4.4), which may solve and improve the

downsides of the old setup to a certain extent. These improvement are the advantages

of this new scraping procedure and also some of them are the main reason to migrate

the old setup to the current one. We list the upsides of the current setup as follows.

– Promote the Collaboration among Engineers:

A well-organized Github repository, no need for uploading different scraper pro-

gram separately, and automatic checks executed by Github Actions are all pro-

viding the conditions that make engineers collaborate more smooth and efficient.

– Smooth Scrapers Management:

With the automatic release and CI/ CD pipeline in our repository, the scraper

management procedure becomes smoother and easier. The tags, versions, and

the changelog automatically generated by Github Actions also improve the man-

agement of version control.

36

5.1 Reflection

– Ensure the Code Format and Quality:

Since there is no need for install package for linting test locally, all the linting

checks are took over by Github Actions, so that the code format and quality

can be ensured.

– No need for Maintaining Server:

The scrapers are run in separated ECS container without hosting and maintain-

ing the server for them. This frees the engineers from taking care of the server,

and lets them focus on the development and maintenance of applications.

– Scalability & Stability:

The scheduled automation workflow scale up our scraping procedure. Moreover,

the notification and validating process make the engineers find the issue earlier,

which also influence and increase the scale of our scraping data.

– Extendability & Integrability:

As the scraper program deployed in the AWS, it can be integrated with other

processing steps. The potential integrated work will be elaborated in future

work (Section 5.2)

5.1.2 Discussion

We describe the upsides and the improvement of our solution comparing to the previous

setup in the last section. However, there are still some limitation and unsolved challenges

in our solution. Also, some doubts for choosing the tools are raised and answered in this

section. Moreover, the comparison between adding CI/ CD pipeline and without it is

discussed.

• Limitations

The migration work is the first challenge for the team. Since most engineers who focus

on developing scrapers are not familiar with the cloud computing services. The migration

must take times for them to get used to the new tools and new way to deploy their scrapers.

Although CI/ CD pipeline automatically deploy the scraper on the cloud, it also takes

more time for the whole pipeline procedure: pushing to Github repository, pushing image

to ECR, creating new release and creating new task for ECS, comparing to the previous

way: uploading to the server.

Moreover, though the notification reports sent to the slack channel inform the situation of

the scraper process, the channel was messy and unstructured when lots of scraper program

finish in the closed time period.

37

adambelloum
Cross-Out

5. DISCUSSION

Despite scaling up comparing to previous setup, it is another challenge to improve the

scalability for current continuous scraping workflow. Since our scrapers extract the data

from several food delivery platform, they must restrict the frequency of requests accord-

ing to the ethics and legal consideration mentioned in Section 3.1.5. In addition to the

restriction of request frequency, there are some websites applying IP blocking which forces

us to switch the IP in a IP pool. The switching procedure and the limited IPs also are the

bottleneck of scalability.

• Raised Doubts

As we introduced several powerful automated workflow orchestration tools in Section 3.2.2,

we do have advanced tools to choose in the marketplace. However, we choose to set up

current workflow structure since there are still lots of steps after scraping which require

engineers’ manual operation. Also, some of them are not deployed to the AWS. Therefore,

we come up with this automation workflow structure that is a transition state before all

the other components are finished the automatic procedure and deploying to AWS.

Figure 3.1 illustrates a simplified automation workflow for our work which starts from

scheduler: EventBridge, launching ECS by Lambda, to the running scraper. However,

EventBridge can also trigger the event for launching ECS container. The reason for adding

Lambda is for the convenience of management. With Lambda as the agent between ECS

and schduler, if we have any update for launching ECS, we just need to update one Lambda

function. However, without Lambda, each scheduler is matched to a independent ECS

event. If any update is required, we may go through all the rules in the EventBridge to

update every event.

• Comparison between with & without CI/ CD pipeline

Undoubtedly, with automatic checks, delivery, and deployment, CI/ CD pipeline enhances

the automatic level of whole workflow. How and What exact advantages it provides are

discussed here.

Without CI/ CD pipeline, the developer must go through the Development procedure

(Steps) mentioned in Section 4.2.1. The deploying procedure is the manual operation and

takes time to finish it. CI/ CD pipeline allows us to ignore several steps in the deploying

procedure. Moreover, building Docker image and pulling the image from ECR for testing

not only cost the computing resource locally, but also require the performance and storage

of local computers owned by the engineers. As a result, CI/ CD resolve the concerns for the

requirement of local computing performance and also free the computing resource locally

for engineers.

38

5.2 Future work

5.2 Future work

Although the solution we provided can be improved in different points. We first provided

potential pipeline (DAG) prototype integrating other steps using advanced workflow or-

chestration, i.e., Apache Airflow. Then, another potential strategy to enhance the scalabil-

ity through Kafka is provided. Afterward, the improvement of the features for the scrapers

is delineated. Finally, several points of enhancing the CI/ CD pipeline are described.

5.2.1 Integrating with Advanced Workflow Orchestration: Airflow

As we introduced in the Section 3.2.2, there are plenty of tools in the marketplace offering

workflow orchestration service for either business or scientific purpose. We take Apache

Airflow as example for potential integration work since other teams are already using it

for the data pipeline tools.

Airflow was developed by Airbnb, a open source platform for developers to author, sched-

ule, and monitor workflow. It is capable of integrating the tools or components deployed

in the cloud computing service, e.g., AWS, Azure, GCP. As a result, it is suitable for us

to integrate and extend the data pipeline since we are now pursuing the high automation

level using AWS service. Airflow allow us to construct the DAGs which describe the queue

of tasks and the dependencies together with inputs and outputs (23). The DAG structure

may be more complex than the one-way simple pipeline. Figure 5.1 illustrate the potential

integrating work for merging the scraper with other operators.

Figure 5.1: DAG Illustration of Integration for Scraping and other Components

39

5. DISCUSSION

5.2.2 Scraping with Kafka and Redis

As the scrapy is the highly extendable framework for scraping, some developers creates

a scrapy project using Kafka1 and Redis2 for a distributed on demand scraping cluster:

Scrapy Cluster3. This work utilize Kafka as data bus for other application to interact

with the scrapy cluster. For instance, the scraper can be started, published, stopped, log

processing, result outputting, job submitting through kafka monitor. Redis here is a high-

performance in-memory database which processes and stores the incoming request queue,

and records the status of scraping procedure.

Although this work scale the scraper instances across one or multiple machine, the bot-

tleneck of scalability in our current solution is the request frequency restriction of the food

delivery platform website, so that this work may not improve the scalability issue if we

still scrape the data from specific delivery platform website. However, it is still a possible

solution as long as we collect all the e-commerce websites and scrape the data from them in

the future, so that the scaling up will be possible. Moreover, AWS also provide Managed

Streaming for Apache Kafka (MSK)4 to manage Kafka in the cloud service, which will be

useful for this future work.

5.2.3 Improving Features

As the limitation of notification report described in Section 5.1.2, it is better to come up

with a way to avoid report squeeze into one channel in a closed time period. We can

either divide the notification channel by different platforms and countries, or design and

develop a user interface for visualizing the scraping statue which also should be divided by

platforms and countries.

Currently, the metadata for each run of scraping is store in s3, which can also be improved

in a efficient and organized way. Since the storage used by this metadata is low, it does

not need to store it in s3 bucket. The AWS RDS5 which supports PostgreSQL, MySQL

may be the good option for it.

Although the notification report record the number of the error for the scraping proce-

dure, we did not handle the error when the error number is small. However, as the request

number increase, the error number may increase as well. It is always good to find a way to

1https://kafka.apache.org/
2https://redis.io/
3https://scrapy-cluster.readthedocs.io/en/latest/
4https://aws.amazon.com/msk/
5https://aws.amazon.com/rds

40

5.2 Future work

solve the errors before scraper finished, even the ratio between error and request number

is low. One possible way to solve it is to record the error and store such request in a list.

Once the scraper finish all the other request, it re-run the error request in the list.

5.2.4 Enhancing CI/ CD pipeline

Although CI/ CD pipeline in our work almost covers all deployment procedure, the test

run in the cloud (ECS) is still absent. We can add another components in the CI/ CD

pipeline for release branch. Once the ECS task definition is created, Github Actions should

run a small case to test the scraper.

Another point can be improve here is the versioning of the Github release and the docker

image. Our design for auto releasing must bump up the version for any update conform

the commit standard. However, in some situation, we would like to update but keep the

version without bumping. For instance, some bug small fix does not make sense for a new

version release. Therefore, a way to keep the same version but also deploy updated image

to the EMR and ECS must be considered.

41

6

Conclusion

In this thesis, we present an scheduled automation workflow for web scraping deployed in

the cloud using AWS and also the CI/ CD pipeline using Github Actions.

For the automation workflow development and operation, the rules in scheduler of AWS

(EventBridge) are created by cron expression, the Lambda Function is set to connect the

scheduler to ECS and also launch container in ECS, the ECS includes the containers which

run the scraper program, the s3 bucket is used to store the scraping result data along with

the metadata, the CloudWatch is used to Monitor the scraping procedure, the ECR is the

registry we manage docker images of scrapers. Also, several features are developed in order

to make engineers conveniently manage the scraper: validator, extracting metadata, and

notification report.

For the CI/ CD pipeline development, we implement such pipeline using Github Actions

by considering its characteristics. The complete CI/ CD pipeline workflow structures for

three specific branches: develop, main, release are illustrated in Figure 4.6, Figure 4.7,

Figure 4.8. The CI/ CD pipeline includes auto-checking for the code quality and format,

automatic building docker image to ECR, automatic creating the ECS task definition,

automatic doing Github release. Moreover, we design a strategy that bump up the version

for release and image according to the commit message which conforms to the specific

commit format.

The goal of this graduation project and thesis is to provide a solution to scale up the

scraping by applied scheduled automation workflow, and also investigate the challenges,

limitations for the web scraping and continuous automation workflow. We tried to answer

and briefly conclude the research questions as follows.

• RQ1: What are the challenges in developing and maintaining contiuous pipeline for

web data scraping?

42

We can summarize the answers in two perspectives, automation workflow relevant

and web scraping relevant. For the automation workflow relevant challenges, we

are first forced to confront the migration challenge when adopting the changes of

developing and deploying scraper. Also, choosing appropriate cloud service tools

and frameworks for such automation pipeline are critical and difficult. Moreover, the

integrability and extensibility for this automation pipeline are important and must be

considered. For the web scraping relevant challenges, since the automation pipeline

is design for the scraper, its performance is closely related to the web scraper. Thus,

the challenges for web scraper (we discuss in next paragraph) are also related to the

one here.

• RQ2: What are the challenges for web data scraping, and what are the potential so-

lutions for them?

We collect literature from academic area and list 7 points in the Chapter 3: dynamic

content, anti scraping, login requirement, honeypot traps, trade-off between perfor-

mance and automation, scalability, and heterogeneity. For these challenges, some of

them can be address at certain extent by scraper program, e.g., IP address list for IP

blocking, training Tesseract 1 for CAPTCHA, HTTP basic access authentication for

login requirement (17). Moreover, the ethics consideration discussed in Section 3.1.5

can also be seen as a challenge. However, we considered the scalability as the most

critical issue in this field. Although we scale up our scraping process by constructing

an automated workflow, another bottleneck emerge. Therefore, we proposed possible

solution for future work to improve it in Section 5.2.2. As a professional web scrap-

ing service provider, zyte(?), mentioned in their white paper: there is no simple

solution to these challenges (design scalable architecture, pursue high-performance

and efficient scraping) (18).

To conclude, our work scales up the scraping procedure, and also automate the execution

of scraping by the schedule. Also, the CI/ CD pipeline increases the automation level of

our work. Moreover, deploying the scraper into cloud set the foundation for integrating

the components in the data scraping team and the ones from other data processing teams.

Therefore, it fulfil the requirement described before which scraping data in a more reliable

and scalable way, and is flexible and extendable to be integrated with other components

in the future.

1https://github.com/tesseract-ocr/tesseract

43

adambelloum
Cross-Out
from

adambelloum
Cross-Out
on Cloud infrastructure

7

Appendix

A EventBridge rule setting

The setting of rules in EventBridge can be done through the user interface provided by

AWS, the prerequisites are that the target (Lambda Function), the cron rules format, and

the input parameters for target (in our case, a JSON file) should be prepared.

A.1 Example of creating rules

Figure 7.1: EventBridge rules setting pro-
cedure 1

Figure 7.2: EventBridge rules setting pro-
cedure 2

44

B Lambda Function setting

Figure 7.3: EventBridge rules setting result

A.2 Result of set rules

B Lambda Function setting

Lambda function could be set up through the guide in the documentation which AWS

provided, the only thing engineers should do is to develop the code put in it (in our case,

a python script to launch ECS containers.

B.1 Steps of setting Lambda Function

We provide the steps of creating Lambda Functions as follows:

Step1: Open the page at Lambda console in the AWS user interface.

Step2: Create Function at the console page

Step3: Determine the Function name and set the runtime

Step4: Create and Invoke the Function to test

Step5: Once the Function create, go to the code source pane, and upload out lambda

function code

Step6: Save the changes

45

7. APPENDIX

C CloudWatch Monitoring Log

C.1 CloudWatch Alarm

Figure 7.4: CloudWatch Alarm

C.2 CloudWatch Insight

Figure 7.5: CloudWatch Insight

46

D Notification

C.3 CloudWatch Log

Figure 7.6: CloudWatch Log

D Notification

D.1 Notification Report

Figure 7.7: Notification Report Example

47

7. APPENDIX

E CI/CD with Github Actions

E.1 develop branch workflow

Figure 7.8: Develop Branch workflow in Github User Interface

E.2 main branch workflow

Figure 7.9: Main Branch workflow in Github User Interface

48

E CI/CD with Github Actions

E.3 release branch workflow

Figure 7.10: Release Branch workflow in Github User Interface

E.4 Coverage Report Comment

Figure 7.11: Coverage Report Comment

49

7. APPENDIX

E.5 Release YAML

Figure 7.12: Release Branch YAML (partial)

50

References

[1] Amazon Elastic Container Registry (Amazon ECR). https://aws.amazon.

com/ecr/. viii, 21

[2] Amazon Elastic Container Service (Amazon ECS). https://aws.amazon.com/

ecs/. viii, 21

[3] What is a CI/CD pipeline? https://www.redhat.com/en/topics/devops/

what-cicd-pipeline. viii, 27

[4] Gitflow Workflow. https://www.atlassian.com/git/tutorials/

comparing-workflows/gitflow-workflow. viii, 31, 32

[5] Yangyong Zhu, Ning Zhong, and Yun Xiong. Data explosion, data nature

and dataology. In International Conference on Brain Informatics, pages 147–158.

Springer, 2009. 1

[6] Rabiyatou Diouf, Edouard Ngor Sarr, Ousmane Sall, Babiga Birregah,

Mamadou Bousso, and Sény Ndiaye Mbaye. Web scraping: state-of-the-art

and areas of application. In 2019 IEEE International Conference on Big Data (Big

Data), pages 6040–6042. IEEE, 2019. 1, 8

[7] Daniel Glez-Peña, Anália Lourenço, Hugo López-Fernández, Miguel

Reboiro-Jato, and Florentino Fdez-Riverola. Web scraping technolo-

gies in an API world. Briefings in bioinformatics, 15(5):788–797, 2014. 3, 7, 8,

10

[8] De S Sirisuriya et al. A comparative study on web scraping. 2015. 6

[9] SR Sreeja and Sangita Chaudhari. Review of web crawlers. International

Journal of Knowledge and Web Intelligence, 5(1):49–61, 2014. 7

51

https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://www.redhat.com/en/topics/devops/what-cicd-pipeline
https://www.redhat.com/en/topics/devops/what-cicd-pipeline
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

REFERENCES

[10] Seppe vanden Broucke and Bart Baesens. Practical Web scraping for data

science. Springer, 2018. 7

[11] Brett Massimino. Accessing online data: Web-crawling and information-

scraping techniques to automate the assembly of research data. Journal of

Business Logistics, 37(1):34–42, 2016. 7, 8, 11

[12] Shreya Upadhyay, Vishal Pant, Shivansh Bhasin, and Mahantesh K Pat-

tanshetti. Articulating the construction of a web scraper for massive data

extraction. In 2017 Second International Conference on Electrical, Computer and

Communication Technologies (ICECCT), pages 1–4. IEEE, 2017. 7, 9, 10, 11

[13] 9 Web Scraping Challenges You Should Know. https://www.octoparse.com/

blog/9-web-scraping-challenges. 9

[14] Richard N Landers, Robert C Brusso, Katelyn J Cavanaugh, and An-

drew B Collmus. A primer on theory-driven web scraping: Automatic

extraction of big data from the Internet for use in psychological research.

Psychological methods, 21(4):475, 2016. 9

[15] Sean F McKenna. Detection and classification of Web robots with hon-

eypots. Technical report, Naval Postgraduate School Monterey United States, 2016.

9

[16] Emilio Ferrara, Pasquale De Meo, Giacomo Fiumara, and Robert Baum-

gartner. Web data extraction, applications and techniques: A survey.

Knowledge-based systems, 70:301–323, 2014. 10

[17] Ryan Mitchell. Web scraping with Python: Collecting more data from the modern

web. " O’Reilly Media, Inc.", 2018. 10, 11, 43

[18] Whitepaper: A guide to web scraping at scale. https://www.zyte.com/

whitepaper-ebook/scale-your-web-scraping/. 10, 43

[19] David Eichmann. Ethical web agents. Computer Networks and ISDN Systems,

28(1-2):127–136, 1995. 11

[20] Compare AWS and Azure services to Google Cloud. https://cloud.google.

com/free/docs/aws-azure-gcp-service-comparison. 12

52

https://www.octoparse.com/blog/9-web-scraping-challenges
https://www.octoparse.com/blog/9-web-scraping-challenges
https://www.zyte.com/whitepaper-ebook/scale-your-web-scraping/
https://www.zyte.com/whitepaper-ebook/scale-your-web-scraping/
https://cloud.google.com/free/docs/aws-azure-gcp-service-comparison
https://cloud.google.com/free/docs/aws-azure-gcp-service-comparison

REFERENCES

[21] AWS Step Functions Overview. https://www.datadoghq.com/

knowledge-center/aws-step-functions/. 14

[22] Top four benefits of Microsoft Azure Logic

Apps. https://www.influentialsoftware.com/

top-four-benefits-of-microsoft-azure-logic-apps/. 14

[23] Devon Peticolas, Russell Kirmayer, and Deepak Turaga. Mímir: Build-

ing and Deploying an ML Framework for Industrial IoT. In 2019 International

Conference on Data Mining Workshops (ICDMW), pages 399–406. IEEE, 2019. 14,

39

[24] Alexandar P Mechev, JBR Oonk, Timothy Shimwell, Aske Plaat, HT In-

tema, and HJA Rottgering. Fast and reproducible lofar workflows with

aglow. In 2018 IEEE 14th International Conference on e-Science (e-Science), pages

136–144. IEEE, 2018. 14

[25] Laurens Versluis, Erwin Van Eyk, and Alexandru Iosup. An analysis of

workflow formalisms for workflows with complex non-functional require-

ments. In Companion of the 2018 ACM/SPEC International Conference on Perfor-

mance Engineering, pages 107–112, 2018. 14

[26] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan,

Philip J Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira

Da Silva, Miron Livny, et al. Pegasus, a workflow management system

for science automation. Future Generation Computer Systems, 46:17–35, 2015. 14

[27] Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. A survey

of data-intensive scientific workflow management. Journal of Grid Computing,

13(4):457–493, 2015. 14

[28] G Kousalya, P Balakrishnan, and C Pethuru Raj. Automated workflow

scheduling in self-adaptive clouds: Concepts, algorithms and methods. Springer, 2017.

14

[29] Serverless Architecture AWS Lambda: 2 Comprehensive Criteria. https:

//hevodata.com/blog/serverless-architecture-aws-lambda/. 20

[30] Amazon ECS launch types. https://docs.aws.amazon.com/AmazonECS/latest/

developerguide/launch_types.html. 20

53

https://www.datadoghq.com/knowledge-center/aws-step-functions/
https://www.datadoghq.com/knowledge-center/aws-step-functions/
https://www.influentialsoftware.com/top-four-benefits-of-microsoft-azure-logic-apps/
https://www.influentialsoftware.com/top-four-benefits-of-microsoft-azure-logic-apps/
https://hevodata.com/blog/serverless-architecture-aws-lambda/
https://hevodata.com/blog/serverless-architecture-aws-lambda/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/launch_types.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/launch_types.html

REFERENCES

[31] Amazon ECS task definitions. https://docs.aws.amazon.com/AmazonECS/

latest/developerguide/task_definitions.html. 21

[32] What is CI/CD? https://about.gitlab.com/topics/ci-cd/. 27

54

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://about.gitlab.com/topics/ci-cd/

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	2 Background
	2.1 Problem Statement
	2.1.1 Technical Perspective
	2.1.2 Business Perspective

	2.2 Research Questions

	3 Related Work
	3.1 Web Data Scraping
	3.1.1 Definition
	3.1.2 Web Scraping Structure
	3.1.3 Web Scraping Technique
	3.1.4 Challenge of Web Scraping
	3.1.5 Ethics Consideration

	3.2 Schedulable Recurring Automation Workflows Tools
	3.2.1 Automation Workflow Structure using Cloud Computing Services
	3.2.2 Workflow Orchestration

	4 Project Implementation
	4.1 Project Requirements
	4.2 Continuous Scraping Pipeline Design
	4.2.1 Pipeline structure
	4.2.2 Schedule rules
	4.2.3 Mechanism of AWS Service utilized

	4.3 Scraper and Improved Features
	4.3.1 Git Repository Structure
	4.3.2 Rational of the Technology Choices
	4.3.3 Validation procedure for scraping result data
	4.3.4 Notification Report
	4.3.5 Extracting Metadata

	4.4 CI/CD Pipeline using Github Actions
	4.4.1 Github Actions Workflow
	4.4.2 Setting up Github Actions in Repository
	4.4.3 Auto Releasing with Identical Version & Tag by Commit Standard
	4.4.4 CI/ CD Pipeline Architecture

	5 Discussion
	5.1 Reflection
	5.1.1 Comparison
	5.1.2 Discussion

	5.2 Future work
	5.2.1 Integrating with Advanced Workflow Orchestration: Airflow
	5.2.2 Scraping with Kafka and Redis
	5.2.3 Improving Features
	5.2.4 Enhancing CI/ CD pipeline

	6 Conclusion
	7 Appendix
	A EventBridge rule setting
	A.1 Example of creating rules
	A.2 Result of set rules

	B Lambda Function setting
	B.1 Steps of setting Lambda Function

	C CloudWatch Monitoring Log
	C.1 CloudWatch Alarm
	C.2 CloudWatch Insight
	C.3 CloudWatch Log

	D Notification
	D.1 Notification Report

	E CI/CD with Github Actions
	E.1 develop branch workflow
	E.2 main branch workflow
	E.3 release branch workflow
	E.4 Coverage Report Comment
	E.5 Release YAML

	References

