
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Application and Assessment of Prediction
Models using Deep Learning on Dutch

Unstructured Clinical Text

Author: Gyan de Haan (ghn231)

1st supervisor: Peter R. Rijnbeek
Academic supervisor: Adam S.Z. Belloum
daily supervisor: Tom M. Seinen
2nd reader: Iacer C. A. C. Calixto



A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

July 11, 2022

ii



Abstract

Prediction models trained on electronic health records are gaining popularity,

they enable the development of personalized treatments and risk factors for clin-

ical decision making. The objective of this study is to assess the performance

of deep neural network models for multiple patient level prediction problems

on Dutch electronic health records, using both structured data and unstruc-

tured text data. A convolutional neural network, recurrent neural network, and

transformer model are trained on these prediction problems. Multiple text pre-

processing methods are evaluated and used. Evaluation of the deep learning

models is performed over three prediction problems. The deep neural networks

are compared with traditional machine learning models, and with deep neural

networks that are trained on structured data. The results show that a convolu-

tional neural network, trained on unstructured text has the best performance

over all prediction problems.

Keywords: clinical prediction model, deep neural networks, natural language

processing, machine learning, electronic health records
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Introduction

Usage of observational data from EHRs to build patient-level prediction
models

Observational healthcare data in electronic health records (EHRs) are gaining popularity as

data sources for studying disease progression, quality improvement and creating prediction

models (1, 2). Prediction models on a patient level enable the development of personalizing

treatments and risk factors for clinical decision making (1). A prediction task can be defined

as using a labelled dataset, consisting of a set of predictive variables, to learn the mapping

of these variables to the correct labels. This can be done by defining an at-risk target

group of patients, that will get a positive label if they experience a specific outcome during

a specified time window, also called the outcome population (1). Figure 1.1 shows this

process. The benefits of using EHR data for patient-level prediction are the availability

to use data from a substantial number of patients, at multiple time points, which have a

distribution being reflective of the real-world (as opposed to traditional research cohorts)

and the ability to study a wide range of clinical outcomes (2).

Structured data and unstructured data

EHRs consist of both structured data: such as coded clinical conditions, demographic infor-

mation, and measurements, as well as unstructured text data: general practitioners notes,

discharge letters and specialist communications(3). This unstructured text data is abun-

dant in most EHR systems, due to its more narrative, engaging nature (3). Text contains

detailed patient narratives and allows for expression of the physician, while the clinical

codes can be too limited and unable to convey the necessary nuances (3). For example,

additional information is needed to convey indecisive diagnoses, which need qualification

or that rely upon uncommon symptoms (3).
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1. INTRODUCTION

Figure 1.1: Patient level prediction problem where text input is given to a model. The
trained model predicts the class labels. The true labels are derived from the occurrence of the
event at interest at the time of risk window for every subject.
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Use of NLP to incorporate the unstructured data in a Patient-level Pre-
diction model

Enabling the use of unstructured text by computers is the focus of the field Natural Lan-

guage Processing (NLP). This field was founded over 50 years ago (4), but many challenges

still exist. The usage of NLP algorithms on clinical text is arduous due to the data being

privacy sensitive. The confidentiality issues create difficulty in creating suitable data to de-

velop and evaluate algorithms. The nuances of medical text are supplementary challenges.

Unfortunately, even though federated learning solved many confidentiality issues for this

research (5), the privacy issues are evident in the whole medical field, which still results

in a lack of publicly available data for the NLP algorithms to be evaluated on. For NLP

tools and algorithms English is the most common language used, especially in the medical

field (6). Even though there has been some NLP research on Dutch clinical text (6, 7), the

usage of machine-based NLP and deep learning methods for prediction on Dutch clinical

text is not well substantiated, with some studies translating Dutch to English to bypass

this problem (8).

Deep learning and traditional machine learning methods

Artificial Intelligence (AI) is a field that focuses on enabling computers, intelligent agents,

to achieve intelligence (9). One of the major subsets in AI is Machine Learning (ML). ML

uses a learning process to train a model. A subset of ML is Deep Learning (DL). DL is

deep, due to using multiple layered neural networks to extract (high level) features from

an input. DL has many applications including, image processing, reinforcement learning

and natural language processing. Deep learning techniques have been used for NLP in

the clinical domain, due to the efficient processing and ability to gain state-of-the-art

results (10). Deep learning architectures that are most used in this paradigm are recurrent

neural networks (RNNs), convolutional neural networks (CNNs), attention models and

adversarial learning models. Attention models gained popularity, most notably due to

BERT (10). Commonly used embeddings as input for deep neural networks (DNN) are

word2vec (11), Glove (12) and Fasttext (13), some models such as BERT (14) train their

own word embeddings.

Thesis Objective

Observational Health Data Science (OHDSI) is a multi-stakeholder, interdisciplinary col-

laborative to bring out the value of health data through large-scale data-analytics. They
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1. INTRODUCTION

provide open-source software packages to perform research on data in the OMOP-CDM

format 1. Peter Rijnbeek is co-leading the Patient-Level Prediction working group within

OHDSI together with Jenna Reps that built a framework on top of the OMOP-CDM for

large-scale development and validation of prediction models across the world. Tom Seinen

has been developing an extension to extract text features from clinical notes in the OMOP-

CDM to be used in the Patient-Level Prediction framework. The objective of this thesis

is to assess if deep learning methods for text analysis are beneficial to add to the OHDSI

analytical framework.

Research Questions

There are three challenges that were addressed in the research. First, there has been

little research performed on using deep learning on Dutch clinical data. Second, the EHR

text data has a relative high occurrence of spelling errors, abbreviations, and incomplete

sentences. Third, it is unclear if the unstructured data contains equal or more information

than the structured data. In order to reach this goal, the following research questions will

be addressed.

1. How do different DNN architectures, such as RNNs, CNNs and attention models,

compare in performance to traditional Machine Learning models, using unstructured

clinical text data?

This is the main research question of this thesis. In answering this research question

the most suitable DNN architectures for unstructured Dutch clinical data will be

presented, while analysing if they have a competitive performance.

2. What is the effect of different pre-processing methods, such as embeddings, spelling

corrections, abbreviations, on the performance of the artificial intelligence models?

Answering this sub-question will help determine the effect of different pre-processing

methods on the model performance. The pre-processing methods influence the

amount and quality of features that are used to train the models.

3. How does the use of text data compare to the use of structured data ?

This can be considered a sub-question of the main research question, where the

performance of using unstructured to structured data is investigated.
1https://ohdsi.org/

4



Background

This chapter summarizes and describes the relevant concepts in deep learning and NLP

methods that have been researched. First, the NLP pre-processing methods are introduced,

followed by the explanation of spelling correction, abbreviation correction algorithms and

several text representation methods. Then the relevant deep learning methods that are

introduced, including recurrent neural networks, convolutional neural networks, and trans-

former models.

EHR

Risk prediction algorithms in traditional clinical studies have been developed from large

cohort studies (2). These research cohort data are well standardized. In contrast, EHR data

often contains much noise: missing data, unstructured data, non-normalized data. EHR

text data includes spelling mistakes, abbreviations and offers a challenge to be represented

in a numerical way.

Spelling faults

Spelling errors can be classified in six types. Words are spelled with missing characters

such as liason instead of liaison, additional characters such as publically instead of pub-

licly, incorrect characters such as supercede instead of supersede, swapped characters such

as recieve instead of receive, replacement with similar words such as forward instead of

foreword or spacing mistakes such as deter gent instead of detergent. There are several

methods to correct spelling mistakes. Cammel, et al. (8) uses a combination of the Norvig

algorithm (15), with a Dutch dictionary such as (16) and domain specific vocabulary and

knowledge (SNOMEDCT) (17). The Norvig’s algorithm does not only identify misspelled

words, but it also corrects them to the correct word, the word with the highest probability

as determined in the Norvig’s algorithm for being correct. Although Norvig’s algorithm is

frequently mentioned and used, it has several drawbacks: It assumes that any word within

a true Damerau-Levenshtein distance of 1, where a single transposition of two adjacent

characters, insertion, deletion, substitution are accepted edits on substrings, is infinitely

more likely to be the correct spelling than a word with a true Damerau-Levenshtein dis-

tance of 2. This can result in a false correction for example when juse is corrected to

just but should have been corrected to juice. The algorithm has an expensive compute

step when it calculates all possible candidate terms within the maximum allowed true

5



1. INTRODUCTION

Damerau-Levenshtein distance, which makes the algorithm slow. Due to the above men-

tioned computationally expensive step Norvig’s algorithm has a maximum edit distance

of 2 in order to be practically used. Symspell (18) addresses the time scaling problem

of Norvig’s algorithm. Using a delete only method to calculate the restricted Damerau-

Levenshtein distance, e.g., substrings cannot be modified twice, Symspell can achieve a

one million times speed up compared to Norvigs algorithm. Another method, as explained

in Karthikeyan, et al. (19) is, filtering out domain specific entities using a knowledge

base, then using spellcheckers such as pyspellchecker 1 and hunspell 2 to identify mis-

spelled words. These incorrect words are corrected based on a transformer model, such

as RoBERTa (20). The transformer models can use suggestions to pick from or be open

in predicting the correct spelled word. Since Dutch clinical text data is not available in

large well structured, noise-free corpora, training a transformer model might prove diffi-

cult, this if further explored in the Deep learning Architectures section. Other ideas using

word embeddings such as word2vec trained on the data, including the incorrect words, and

making use of the arithmetic nature of embeddings to resolve misspelled words as described

in multiple AI blogs 3 are proposed. This approach works on the underlying assumption

that the embedding space of the spelling mistakes is a "constant" displacement from the

embedding space of the correct spelling.

Abbreviations

Spelling correction methods have difficulties in correcting abbreviations, therefore abbre-

viations are regarded as a separate problem from misspelled words. Abbreviations are also

domain dependent, used frequently and consistently in clinical texts, and are occasionally

be part of knowledge bases such as SNOMEDCT (17), . Since abbreviations are not part

of a language dictionary, similar to misspellings, a method of identifying and correcting

abbreviations is needed. Linguistic and domain heuristics can be used to identify the ab-

breviations. An abbreviations is most of the time a permuted sub string of the abbreviated

word, therefore short and using letters from the original word. One way of dealing with

abbreviations is by adding them to the vocabulary as is done in Cammel, et al. (8), one

can also use heuristics, such as exact consonant matching, to find the corresponding words,

1https://pypi.org/project/pyspellchecker/
2http://hunspell.github.io/
3https://forums.fast.ai/t/nlp-any-libraries-dictionaries-out-there-for-fixing-common-spelling-

errors/16411/38 and https://edrushton.medium.com/a-simple-spell-checker-built-from-word-vectors-
9f28452b6f26
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such as dgn, for dagen (days in Dutch). Heuristics can also be used to assess which ab-

breviations need corrections, as certain abbreviations are used so frequently it can also be

beneficial to keep the abbreviation as is. A trade-off must be made between reducing data

noise or keeping detailed data.

Text representation

NLP is known to not have one solution for all problems. Therefore, multiple features and

combinations of covariates (features) need to be explored. Common text features are bag-

of-words, topic models, word embeddings, contextual embeddings, N-gram analysis and

POS tags (2, 3, 21). Additional data sources could be necessary to create features, for

example SNOMEDCT can be used for the extraction of mentioned concepts or used in

training word embeddings. Challenges in the NLP domain for non-English languages also

show that the use of NLP algorithms will impact the downstream tasks (22). One example

is the language specific tokenizer instead of a general tokenizer. Tokenizing the text is a

major step in the pipeline, but there are a variety of choices: Domain specific heuristic made

tokenizer, sub-word tokenizers or general language tokenizers. The tokenizing technique

influences the features dimensionality and content representation. For example, stemming

reduces words to their word stem, reducing the number of features but also the amount of

detail. The choice between complex or simple text representations is not straightforward,

it has been shown that simpler text representations such as bag-of-words and tf-idf can

have better results than more complex representations, such as embeddings, on binary

classification tasks in the clinical domain (21).

RNN and CNN in the clinical NLP domain

Convolutional Neural Networks (CNNs) train on data through convolutions and pooling

functions. CNNs have been commonly used to model signals, such as image, and have

proven to be quite successful in this regard. The convolutions can also be applied on word

or document embeddings. These operations made convolutional neural networks popular

among researchers using deep learning for text classification (10, 23). One model type

that has been more popular among clinical researchers is the recurrent neural network

(RNN)(10, 23). This model does not use convolutions and pooling layers, instead it uses

LSTM cells or GRU cells to model time series and sequences. The RNN can be configured

in a bi-directional setup, traversing the input sequence in both directions, which has shown

to improve the performance of the RNN model.

7



1. INTRODUCTION

Transformer models

Since the introduction of transformer models by Viswani, et al.(24) there has been an

increase in NLP language models . BERT (14) has been one of the most influential language

models in the NLP domain, that has inspired many other models, such as RoBERTa,

which uses alternative parameters and training methods compared to BERT (25). BERT

and RoBERTa are both models that learned general language patterns while pre-training.

Transformer models can be fine-tuned on domain- or problem-specific data for specific

NLP tasks. In the Dutch medical domain, there are several pre-trained models that are

of interest for this study. These models are either Dutch language models or medical

domain language models or a combination thereof. BERTje (26), a Dutch monolingual

version of BERT, and RoBERT (27), a Dutch monolingual version of RoBERTa, are both

trained on only Dutch corpora. BioBERT (28) and SciBERT (29) are examples of BERT

models trained on biomedical and scientific data, respectively. Where clinical data is

significantly different from average Dutch documents, due to shorter sentences, spelling

mistakes, abbreviations, keywords without verbs and a high percentage of multilingual

terms, BERT models trained on biomedical data can be relevant. These models have been

shown to increase performance on downstream NLP tasks in the biomedical domain (28).

Recently, a model based on the RoBERTa architecture, trained on Dutch clinical data, has

been published, called MedRoBERTa.nl (30). The model was evaluated on a Named Entity

Recognition problem, therefore at this moment there is no indication for the performance

of MedRoBERTa.nl on text classification tasks. MedroBERTa.nl is nevertheless promising

due to being the only transformer model to date that has been trained on Dutch clinical

data.

Deep learning Architectures challenges

RNNs, CNNS and attention models are all used in the clinical prediction field (10). Al-

though these models differ in architecture, in the input features they need, in their popu-

larity, and effectiveness over the past years (10), they share challenges. Similar to the NLP

problem, there is not one solution, pipeline, architecture or one set of hyper parameters

that performs well on all tasks. The optimization of hyper parameters and finding hyper

parameters will be adding to the success or failure of these algorithms. As an objective

of this research is to enable researchers, through OHDSI, to use deep learning techniques

for their own studies and data, generalisation will be key. Finding the correct parameters

and fine tuning these will therefore be of major importance. Deep learning models are

8



known to require large scale data sets. The question is whether the text data is of high

enough quality and quantity for these models to perform well, e.g., better than Machine

Learning models and models for structured data. One way to tackle this problem of quality

and quantity is by using a form of transfer learning. Transfer learning enables fine-tuning

an existing model on the data or problem of interest. In the case of transformers this is

possible by training only the last layers of a complex architecture. This reduces the needed

quantity and quality of training data. This might also be a solution when using attention

models, such as transformer models, on Dutch text data. Research has not shown yet if

transfer learning will help performance in the clinical domain, especially the pre-training

on Biomedical text is contested, but this idea is still promising (31, 32, 33, 34). There is

a high variety in how transfer learning or pre-training is adopted and used, but further re-

search is needed. Specific BERT and RoBERTa models for clinical data have been trained

(35), also using Dutch clinical text(27).

Previous Results

Deep learning models for clinical prediction problems, presented in research, have been

primarily trained on English (36). Mohamaddi, et al. (37) report an area under the

receiver operating curve (AUROC) of 0.894 for a feed forward model and a AUROC of

0.735 for a BERT transformer model, on predicting hospital readmission in 30 days. A

BERT model has also been trained to predict in-patient admission by Tahayori, et al.

(38), which had an AUROC of 0.88. A CNN trained by Si, et al. (39) had a AUROC

of 0.93 on predicting mortality within 30 days of hospital admission. In Krishnan, et al.

(40) the best model was a feed forward model with an AUROC of 0.98 on predicting ICU

mortality prediction from unstructured ECG text reports. In Grnarova, et al. (41) a

CNN had the best AUROC performance of 0.858 on predicting ICU mortality prediction

within 30 days. In Obeid, et al. (42), a CNN model, with a reported AUROC of 0.882,

outperformed a RNN model on predicting intentional self-harm event, within 3 months.

This literature shows that there has not been one deep learning architecture, trained on

text, which performs best over all clinical prediction problems and the performance of one

model can vary depending on the prediction problem and setting.

Menger, et al. (43) compares a RNN and a CNN with traditional Machine Learning

models on predicting inpatient violence, based on Dutch clinical text. An improvement in

performance for the deep learning models over the traditional Machine Learning models

was observed. The RNN outperformed the CNN on this prediction problem.

9



1. INTRODUCTION

10



2

Methods

In this chapter the design of the experiments is discussed. Starting with the data that was

used in this thesis, followed by the definitions of population cohorts that were used in the

experiments. Furthermore, the text pre-processing methods that were evaluated and the

resulting text representations are described. Lastly, the models that were trained and the

evaluation metrics that are used for the training and testing are presented.

Dataset and setting

In this research the Integrated Primary Care Information (IPCI) database was used. The

IPCI database is an observational database containing data from computer-based patient

records of selected general practitioners throughout the Netherlands, since 1992 1. The

IPCI database consists of 350 GP practices, which are mainly located in the central part

of the country, the Randstad. The number of active patients is 1.4 million, which comprises

8.1% of the Dutch population. The characteristics of the IPCI database can be found in

Table 2.1 The database is mapped to the OMOP Common Data Model (CDM) format,

enabling research within the Observational Health Data Science (OHDSI) community.

Population cohorts and prediction problems

The prediction problems are defined using patient cohorts. These cohorts are selected using

the ATLAS application 2. The cohorts are then processed to get label data and transformed

to the right data format, e.g., dates to a date-time format, text to a string format. The

experiments are run on three prediction problems: hospital readmission within 32 days,

dementia within 5 years for subjects above 50 years old, end of life conversations within a
1https://www.ipci.nl/index.php/about
2https://atlas-demo.ohdsi.org/

11



2. METHODS

Table 2.1: IPCI data characteristics

IPCI Database Categories Value
Demographics Number of persons 2529355

Sex 48.8% male, 51.2% female

year for subjects above 50 years old. Following literature (23, 35), subjects that passed away

during the time at risk are excluded from the data cohorts. The population characteristics

for these cohorts can be found in Tables 2.2, 2.3 and 2.4. The unstructured text data for

the patient cohorts is selected using the ATLAS application. In this tool the cohorts can

be defined by inclusion and exclusion criteria. These criteria are then used to filter the

data on the OMOP CDM codes. The data is made available to the deep learning models

in python by the package pyscopg2 1. The corresponding structured data for the patient

cohorts is also selected using the ATLAS application, with the covariates being extracted

through the use of the FeatureExtractionPackage 2 and made available to the models

in python by the pyscopg2 package. These processes are visualised in Figure 2.1. The

hospital readmission within 32 days prediction problem is chosen, due to being a regular

occurrence in literature. The second prediction problem, on predicting dementia within 5

years, was selected due to being a more specific condition. The general practitioners at

the ErasmusMC asked the medical informatics department to make a model for the end

of life conversations within one year prediction problem. The three prediction problems

are chosen on basis of occurrence in literature and variation in models to get generalize

results.

Pre-processing methods

Spelling

To reduce the number of features, e.g., the number of unique tokens, a spelling correction

was applied. To select the appropriate spelling correction algorithm, one would normally

use a golden standard to evaluate or even train an algorithm. Due to the lack of such a

dataset for this project, one common method was chosen, Symspell.

1https://www.psycopg.org/
2https://raw.githubusercontent.com/OHDSI/FeatureExtraction/main/extras/FeatureExtraction.pdf

12



Figure 2.1: On the left the data cohort process for the unstructured data is shown. On the
right the corresponding process for the structured data is shown.

Figure 2.2: Population Pyramid for the IPCI database

13



2. METHODS

Table 2.2: Hospital readmission characteristics
Hospital readmission Categories Value
Cohort definition Problem statement Predicting hospital readmission within 32 days

Index event In patient visit
Time at risk 32 days
Observation window 31 days

Demographics Number of persons 113072
Sex 46.1% male , 53.9% female

Text Cases without notes 13273 from 188608, 387 outcome cohort, 12886 target cohort

Table 2.3: Dementia characteristics
Dementia Categories Value
Cohort definition Problem statement Predicting dementia in 5 years for subjects that are over 50 years old

Index event last GP visit in 2012-2014 for subject between 50 - 84 years old
Time at risk 5 years
Observation window 1 year

Demographics Number of persons 160468
Sex 46.5% male, 53.5% female

Text Cases without notes 212 from 160468, 0 outcome cohort, 212 target cohort

Table 2.4: End of Life conversations characteristics
End of Life Conversations Categories Value
Cohort definition Problem statement Predicting the need of an end of life conversation within one year for subjects that are at least 50 years old

Index event last GP visit in 2019 for subject between 50 - 94 years old
Time at risk 1 year
Observation window 1 year

Demographics Number of persons 413215
Sex 46.2% male, 53.8% female

Text Cases without notes 14811 from 413215, 25 outcome cohort, 14786 outcome cohort

14



Abbreviations

Adding the SNOMEDCT abbreviations to the vocabulary of correct spelled tokens was

used to manage the abbreviations in the text. A spelling correction algorithm was applied,

as adding abbreviations to the vocabulary only will not reduce the number of features.

This will reduce the number of features seeing as some abbreviations were corrected to

known abbreviations. For example, let us take unknown abbreviations for paracetamol,

pcm and pct. After pcm is added to the vocabulary the spellings algorithms will correct

pct to pcm, thereby reducing the number of features.

Token deletion

To reduce features, some tokens were deleted, after applying the spellings and abbreviation

correction algorithms. The anonymized tokens in the text were deleted in all experiments.

These tokens are names, places or other privacy sensitive information, which have been re-

placed with #NAME# or another appropriate token within #’s. Dates and other numbers

are also deleted, for privacy reasons and to reduce feature dimensions.

Single character words in Dutch are extremely rare with u (you) and o, a, e (as an expres-

sions of surprise) being the only words. Since these have no semantic meaning the single

character words were deleted, these are either spelling mistakes, accidental keystrokes, or

abbreviations (that have been expanded in the previous step). Tokens that appear less

than one hundred times in the text data set are also deleted. These tokens can be consid-

ered as either spelling mistakes, or unknown and uncommon abbreviations, or uncommon

words. In all cases the deletion of these tokens will reduce the number of features, without

losing to much semantic value in the text. In a similar fashion tokens that occur in more

than 60% of all the data cases, with an exception to age and sex, are also deleted. These

tokens are so common in the text data that they can be considered either stop words or

words with little semantic value to the prediction problem.

Text representations

The text representations that are used in this research are a bag-of-words representation on

unigrams for the Machine Learning models and the pretrained MedRoberta.nl tokenizer,

a byte-level Byte Pair Encoding (BPE) tokenizer, for the deep learning models.
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2. METHODS

Missing entries

There are data instances that do not have any associated text. Age and sex of the subject

are added as text to the text field in all instances.

Structured data features

The structured data for the prediction models were extracted using the OHDSI Feature-

Extraction R package 1. The covariates that are extracted are a combination of all drugs

or medicine that were prescribed, drug classes, condition, condition classes, procedures,

observations, as well as demographic data such as age, sex. Covariates that occur in less

than 0.1% and in 100% of the subject instances are removed. The observation window was

chosen to be the same as reported in tables 2.2, 2.3, 2.3.

Models

Unstructured text data

The deep learning models that were trained and evaluated on the unstructured data were a

2-layer CNN model, a 2-layer BiLSTM model and MedRoberta.nl, all with 2 fully connected

layers on top. These were trained and evaluated on the three prediction problems with

several pre-processing and text representation settings. The hyper parameters for these

models were picked and chosen by the author and can be found in the Appendix 6.

The traditional Machine Learning models that were evaluated on the unstructured data

are a linear model trained with L1 prior as regularizer and a gradient boosting classifier.

The hyper parameters for these models were picked and chosen by the author and can be

found in the Appendix 6. The same evaluation metrics are used for these models as for the

deep learning models. Therefore, the results of these experiments were part of the same

table.

Structured data

The deep learning model that is trained on the structured data is a three layer fully

connected network. The hyper parameters were picked and chosen by the author and can

be found in the Appendix 6. The evaluation metrics that are used for the unstructured

text data models were used to evaluate the performance of the structured data model as

1https://github.com/OHDSI/FeatureExtraction
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well. The results are presented in a separated table with the best performing models on

the unstructured data as repeated entries to ease comparisons.

The deep learning models were coded by making use of the pytorch and pytorch-lightning

library 1. The traditional Machine Learning models were coded by making use of the scikit-

learn library 2.

A Titan X GPU, a Titan Xp GPU, both with 12 Gb of Ram and 56 CPUs were available

for training the models. Due to sharing resources, all of this hardware was not available

at all times, therefore the number of GPUs and CPUs were added as a parameter when

running the experiments.

Evaluation

In all the experiments where models were trained the following approach is taken to get

the most general representative evaluations: The experiments are run with at least 3-fold

cross validation, and with at least three different seeds. This ensures that the chance of

getting a "good" random seed is reduced and that the results are more generalisable.

Each model is evaluated using the following metrics: area under the receiver operating

curve (AUROC), area under the precision recall curve (AUPR) and F1 score and Brier

score. The F1 score is calculated at the risk threshold that gives the maximum F1 score

for the model. For all metrics, with an exception the Brier score, a higher score indicates

a greater performance. In addition, the calibration curves will be plotted. These metrics

are acquired and calculated with a 95% confidence interval, from the cross validated test

over all three seeds. To compare the best performing models and metrics over the different

configurations the results were put in the same table as the for the pre-processing methods.

Due to a large class imbalance in all the prediction problem data cohorts, two methods

were chosen to help train the models. Either weights were added to the loss function, or

a weighted random sampler is used in the data loader. Both methods aim to help reduce

the effect of the class imbalance when training the models. The weighted random sampler

undersamples the majority class, while oversampling the minority class. The weighted loss

function does not change the occurrence of the classes, it enacts a higher penalty loss for

the minority class. For the deep learning models the cross-entropy loss function was used

when training the models. Which for these prediction problems was the same as the binary

cross-entropy loss function.

1https://pytorch.org/ https://www.pytorchlightning.ai/
2https://scikit-learn.org/stable/
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2. METHODS

In one table the results will be presented that aim to answer the first and second research

question: How do different DNN architectures, such as RNNs, CNNs and attention mod-

els, compare in performance to traditional Machine Learning models, using unstructured

clinical text data? What is the effect of pre-processing methods, such as embeddings,

spelling corrections, abbreviations, on the performance of the DNN models? The results

used to answer the third research question, how does the use of text data compare to the

use of structured data, was presented in a separate table, while using the same evaluation

metrics.
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3

Results

In this chapter the results of the experiments are presented. The results are clustered

per prediction problem. The tables show the evaluation metric scores for every model

and pre-processing method configuration. A M indicates that a spellings correction and

abbreviation algorithm has been performed, a D indicates that the token deletion pre-

processing has been performed, a M + D indicates that both have been performed. A S

indicates that the model has been trained on structured data. The italic scores highlight

the best performing metrics for that model over all pre-processing methods. The bold

scores highlight the best performing metrics over all models.

Hospital readmission

In table 3.1 the results of the experiments for the hospital readmission within 32 days

prediction problem can be found. The corresponding curves for AUROC, AUPRC and the

calibration curves can be found in Figures 3.1, 3.2, 3.3 respectively.

The CNN architectures, with the combination of the pre-processing methods, performs

on all evaluation metrics, except for the Brier score, the best of all models. The traditional

machine learning methods have the best Brier score of all the models. The CNN and

BiLSTM models outperform the traditional machine learning methods on the AUROC,

AUPRC and F1 score. The MedRoBERTa.nl transformer model performs worse on all

metrics compared to the traditional machine learning models.

For the deep neural networks, the pre-processing methods caused a performance gain

on the AUROC and F1 metric, with the token deletion pre-processing method outper-

forming the spellings correction algorithm. The combination of the two pre-processing

methods performs the best. The MedRoBERTa.nl transformer model does not experience

the same gain in performance over the pre-processing methods regarding the AUPRC as
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3. RESULTS

Table 3.1: Hospital readmission results
Hospital Readmission Models pre-processing methods AUROC AUPRC F1score Brier score
Deep Neural Networks CNN 0.74 +- 0.04 0.23 +- 0.01 0.30 +- 0.02 0.17

M 0.78 +- 0.03 0.26 +- 0.01 0.33 +- 0.03 0.17
D 0.80 +- 0.03 0.32 +- 0.01 0.38 +- 0.02 0.16
M + D 0.87 +- 0.03 0.43 +- 0.01 0.47 +- 0.02 0.16

BiLSTM 0.70 +- 0.03 0.17 +- 0.01 0.26 +- 0.03 0.19
M 0.72 +- 0.03 0.19 +- 0.01 0.28 +- 0.02 0.18
D 0.72 +- 0.02 0.20 +- 0.01 0.28 +- 0.02 0.21
M + D 0.75 +- 0.02 0.21 +- 0.01 0.30 +- 0.02 0.19

MedRoBERTa.nl 0.62 +- 0.04 0.13 +- 0.01 0.20 +- 0.04 0.24
M 0.63 +- 0.03 0.13 +- 0.01 0.20 +- 0.03 0.24
D 0.63 +- 0.04 0.13 +- 0.01 0.21 +- 0.03 0.23
M + D 0.64 +- 0.02 0.13 +- 0.01 0.21 +- 0.02 0.23

Machine Learning Models LASSO 0.68 +- 0.02 0.18 +- 0.01 0.24 +- 0.02 0.08
M 0.68 +- 0.01 0.18 +- 0.01 0.24 +- 0.02 0.08
D 0.68 +- 0.03 0.18+- 0.01 0.24 +- 0.02 0.08
M + D 0.68 +- 0.01 0.18 +- 0.01 0.24 +- 0.02 0.08

Gradient Boosting Classifier 0.69 +- 0.03 0.19 +- 0.01 0.25 +- 0.03 0.08
M 0.69 +- 0.02 0.20 +- 0.01 0.25 +- 0.03 0.08
D 0.69 +- 0.02 0.19 +- 0.01 0.25 +- 0.03 0.08
M + D 0.69 +- 0.02 0.20 +- 0.01 0.25 +- 0.03 0.08

Table 3.2: Comparison of using structured and unstructured data on the hospital readmission
prediction problem

Hospital readmissions Models pre-processing methods AUROC AUPRC F1 Brier score
Unstructured text data models CNN M + D 0.87 0.43 0.47 0.16

BiLSTM M + D 0.75 0.21 0.30 0.19
MedRoBERTa.nl M + D 0.64 0.13 0.21 0.23

Structured data Fully Connected Deep Network S 0.74 0.21 0.30 0.20

the BiLSTM and CNN. The traditional machine learning models do not experience any

clear difference over the pre-processing methods. The traditional machine learning meth-

ods have performances that are comparable to each other. The deep learning models have

performances that are dissimilar. The MedRoBERTa.nl transformer model performs worse

over all metrics regarding the BiLSTM and CNN model. The CNN model outperforms the

BiLSTM model on all metrics except for the Brier score.

In table 3.2 the results of the fully connected network trained on structured data can be

found. The CNN outperforms the fully connected deep model. The performance of the

BiLSTM is comparable to the fully connected model. The transformer model performs

worse on all metrics.

Dementia

In table 3.3 the results of the experiments for the dementia within 5 years prediction

problem can be found. The corresponding curves for AUROC, AUPRC and the calibration

curves can be found in Figures 3.4, 3.5, 3.6 respectively.
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Figure 3.1: AUROC performance and curves for the hospital readmission prediction problem.

Figure 3.2: AUPRC performance and curves for the hospital readmission prediction problem.
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3. RESULTS

Figure 3.3: Brier score and calibration curves for the hospital readmission prediction prob-
lem.

The CNN architectures, with the combination of the pre-processing methods, performs

on all evaluation metrics, except for the Brier score, the best of all models. The traditional

machine learning methods have the best Brier score of all the models. The CNN and

BiLSTM models outperform the traditional machine learning methods on the AUROC,

AUPRC and F1 score. The MedRoBERTa.nl transformer model performs worse on all

metrics compared to the traditional machine learning models.

For the deep neural networks, the pre-processing methods cause a performance gain on

the AUROC and F1 metric, with the token deletion pre-processing method outperforming

the spellings correction algorithm. The combination of the two pre-processing methods

performs the best. The MedRoBERTa.nl transformer model does not experience the same

gain in performance over the pre-processing methods regarding the AUROC and AUPRC

as the BiLSTM and CNN. The traditional machine learning models do not experience any

clear difference over the pre-processing methods. The traditional machine learning methods

have performances that are comparable to each other. The deep learning models have

performances that are dissimilar. The MedRoBERTa.nl transformer model performs worse

over all metrics regarding the BiLSTM and CNN model. The CNN model outperforms the

BiLSTM model on all metrics.

In table 3.4 the results of the fully connected network trained on structured data can
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Table 3.3: Dementia results
Dementia Models pre-processing methods AUROC AUPRC F1score Brier score
Deep Neural Networks CNN 0.93 +- 0.04 0.30 +- 0.01 0.38 +- 0.02 0.02

M 0.96 +- 0.03 0.55 +- 0.57 0.57 +- 0.02 0.13
D 0.96 +- 0.03 0.69 +- 0.01 0.70 +- 0.02 0.13
M + D 0.96 +- 0.03 0.83 +- 0.01 0.87 +- 0.01 0.14

BiLSTM 0.87 +- 0.03 0.11 +- 0.01 0.20 +- 0.07 0.22
M 0.91 +- 0.03 0.19 +- 0.01 0.32 +- 0.07 0.15
D 0.90 +- 0.02 0.17 +- 0.01 0.26 +- 0.02 0.07
M + D 0.93 +- 0.02 0.27 +- 0.01 0.44 +- 0.02 0.06

MedRoBERTa.nl 0.51 +- 0.04 0.02 +- 0.01 0.04 +- 0.04 0.24
M 0.54 +- 0.03 0.02 +- 0.01 0.04 +- 0.04 0.24
D 0.53 +- 0.04 0.02 +- 0.01 0.04 +- 0.03 0.25
M + D 0.54 +- 0.02 0.02 +- 0.01 0.04 +- 0.02 0.25

Machine Learning Models LASSO 0.81 +- 0.02 0.06 +- 0.01 0.13 +- 0.02 0.02
M 0.81 +- 0.01 0.06 +- 0.01 0.13 +- 0.01 0.02
D 0.81 +- 0.03 0.06 +- 0.01 0.13 +- 0.03 0.02
M + D 0.81 +- 0.01 0.06 +- 0.01 0.13 +- 0.01 0.02

Gradient Boosting Classifier 0.81 +- 0.03 0.07 +- 0.01 0.13 +- 0.02 0.02
M 0.81 +- 0.02 0.07 +- 0.01 0.13 +- 0.03 0.02
D 0.81 +- 0.02 0.07 +- 0.01 0.13 +- 0.02 0.02
M + D 0.81 +- 0.02 0.07 +- 0.01 0.13 +- 0.01 0.02

Table 3.4: Comparison of using structured and unstructured data on the dementia within 5
years prediction problem

Dementia Models pre-processing methods AUROC AUPRC F1 Brier score
Unstructured text data models CNN M + D 0.96 0.83 0.87 0.14

BiLSTM M + D 0.93 0.27 0.44 0.06
MedRoBERTa.nl M + D 0.54 0.02 0.04 0.25

Structured data Fully Connected Deep Network S 0.87 0.09 0.18 0.13

be found. The CNN and BiLSTM outperform the fully connected deep model. The

performance of the MedRoBERTa.nl is worse than the fully connected model on all metrics.

End of Life Conversations

In table 3.5 the results of the experiments for the end of life conversations within 1 year

prediction problem can be found. The corresponding curves for AUROC, AUPRC and the

calibration curves can be found in Figures 3.7, 3.8, 3.9 respectively.

The CNN architectures, with the combination of the pre-processing methods, performs

on all evaluation metrics the best of all models. The traditional machine learning methods

share the best Brier score of all the models. The CNN and BiLSTM models outperform

the traditional machine learning methods on the AUROC, AUPRC and F1 score. The

MedRoBERTa.nl transformer model performs worse on all metrics compared to the tradi-

tional machine learning models.

For the deep neural networks, the pre-processing methods cause a performance gain on

the AUROC, AUPRC and F1 metric, with the token deletion pre-processing method out-
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3. RESULTS

Figure 3.4: AUROC performance and curves for the dementia prediction problem.

Figure 3.5: AUPRC performance and curves for the dementia prediction problem.
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Figure 3.6: Brier score and calibration curves for the dementia problem.

performing the spellings correction algorithm. The combination of the two pre-processing

methods performs the best. The traditional machine learning models do not experience any

clear difference over the pre-processing methods. The traditional machine learning meth-

ods have performances that are comparable to each other. The deep learning models have

performances that are dissimilar. The MedRoBERTa.nl transformer model performs worse

over all metrics regarding the BiLSTM and CNN model. The CNN model outperforms the

BiLSTM model on all metrics.

In table 3.6 the results of the fully connected network trained on structured data can be

found. The CNN and BiLSTM outperform the fully connected deep model. The perfor-

mance of the fully connected model is higher on all metrics compared to the transformer

model.
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Table 3.5: End of Life Conversations results
End of Life Conversations Models pre-processing methods AUROC AUPRC F1score Brier score
Deep Neural Networks CNN 0.91 +- 0.02 0.15 +- 0.01 0.25 +- 0.01 0.01

M 0.93 +- 0.01 0.24 +- 0.01 0.37 +- 0.02 0.01
D 0.95 +- 0.01 0.60 +- 0.01 0.61 +- 0.01 0.01
M + D 0.95 +- 0.01 0.83 +- 0.01 0.88 +- 0.01 0.01

BiLSTM 0.81 +- 0.01 0.08 +- 0.01 0.17 +- 0.02 0.03
M 0.85 +- 0.02 0.12 +- 0.01 0.24 +- 0.02 0.03
D 0.88 +- 0.01 0.13 +- 0.01 0.24 +- 0.01 0.04
M + D 0.93 +- 0.01 0.25 +- 0.01 0.43 +- 0.02 0.04

MedRoBERTa.nl 0.65 +- 0.02 0.02 +- 0.01 0.04 +- 0.02 0.21
M 0.65 +- 0.01 0.02 +- 0.01 0.04 +- 0.02 0.22
D 0.66 +- 0.02 0.02 +- 0.01 0.05 +- 0.01 0.22
M + D 0.66 +- 0.01 0.02 +- 0.01 0.05 +- 0.01 0.22

Machine Learning Models LASSO 0.80 +- 0.02 0.04 +- 0.01 0.08 +- 0.02 0.01
M 0.80 +- 0.01 0.04 +- 0.01 0.08 +- 0.01 0.01
D 0.80 +- 0.02 0.04 +- 0.01 0.08 +- 0.01 0.01
M + D 0.80 +- 0.01 0.04 +- 0.01 0.08 +- 0.01 0.01

Gradient Boosting Classifier 0.80 +- 0.02 0.04 +- 0.01 0.08 +- 0.01 0.01
M 0.80 +- 0.01 0.04 +- 0.01 0.08 +- 0.01 0.01
D 0.80 +- 0.02 0.04 +- 0.01 0.08 +- 0.01 0.01
M + D 0.80 +- 0.01 0.04 +- 0.01 0.08 +- 0.01 0.01

Table 3.6: Comparison of using structured and unstructured data on the end of life conver-
sations prediction problem

End of Life Conversations Models pre-processing methods AUROC AUPRC F1 Brier score
Unstructured text data models CNN M + D 0.95 0.83 0.88 0.01

BiLSTM M + D 0.93 0.25 0.43 0.04
MedRoBERTa.nl M + D 0.66 0.02 0.05 0.22

Structured data Fully Connected Deep Network S 0.87 0.05 0.13 0.13

Figure 3.7: AUROC performance and curves for the end of life converstations prediction
problem.
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Figure 3.8: AUPRC performance and curves for the end of life converstations prediction
problem.

Figure 3.9: Brier score and calibration curves for the end of life conversations problem.
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Discussion

In this chapter the results and setup of this research is put into context. Implications of

the results for current and further research are analysed. The discussion starts with the

data that was used in this thesis, followed by the definitions and selection of the population

cohorts. Furthermore, the text pre-processing methods that were tested and the resulting

text representations are analysed. Lastly, the models that were trained and the evaluation

metrics that were used for the training and testing are discussed.

IPCI Data

The IPCI dataset consists of a large part of the Dutch population. The size of this database

reduces the chances of having non representative data for the whole Dutch population.

Quality control steps (5) are conducted before new releases of the database. However,

mapping errors can still persist when the data is mapped from the IPCI vocabulary (ICPC-

1) to the OMOP-CDM vocabulary. The OMOP-CDM does enable other observational

health care dataset to be used for external validation. Further research could replicate the

experiments on EHR data sets from other sources to evaluate the findings of this research.

Population Cohorts

Excluding subjects that died during the time at risk, influences the observed risk in the

dataset. As an example: the readmission prediction problem aims to predict if a subject will

be readmitted within 32 days. Subjects that pass away during the 32 days can be subjects

that died with a low readmitted chance or with a high readmitted chance. However,

excluding the subjects that passed away was necessary to be compliant with previous

research. The inclusion and exclusion criteria for the prediction problems presented in

this research were not made by a practicing physician and no manual inspection of the
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recall and precision of these criteria was performed. In addition, the text data was selected

after defining the population cohorts in ATLAS. When a data entry, such as a condition

or diagnosis, was miscoded by a GP, incorrect labels could have been introduced in the

training data. This is a risk that occurs when working with any type of observational

database. The recommendation for current and future research is to include a practicing

physician for evaluation on the inclusion and exclusion criteria, with an extra focus on the

effect of subjects that passed away in the time at risk period.

Text pre-processing methods

As noted before the IPCI data contains many spelling mistakes, abbreviations, and unfin-

ished sentences. There does not exist a cleaned golden standard (sub-)set of this dataset.

This made assessment of the spelling correction algorithms and abbreviation handling

methods not possible. Instead, a common approach was taken that has been done before

(8). Research into other correction methods could be beneficial to the training speed and

accuracy of the deep learning models. In addition, cleaning up the text data of the IPCI

dataset could influence assessing if the GP coded correctly.

The embedding method for the traditional machine learning models was a unigram bag-

of-words. This method has been used in previous literature and in the research department.

For the deep learning models, the MedRoBERTa.nl tokenizer was used to tokenize the text.

The benefit of this tokenizer is the ability to tokenize unseen or unknown words and the

tokenizer has been trained on Dutch clinical text. Future research can assess if other

embedding and tokenizing methods will improve the performance of the models.

In earlier stages of this research tokens that occurred in more than 80% or less than

1% of the data instances was deleted, instead of the current 60% and less than 100 occur-

rences in general. The results with the previous token deletion configuration were different

than with the current configuration. The major increase in performance when using text

pre-processing methods was not observed and the CNN and BiLSTM only slightly outper-

formed the machine learning methods. Therefore, more research into the pre-processing

methods is suggested, with a focus on the deletion of tokens.

Models

Hyper parameters

In this research the models were manually evaluated and adjusted before the final exper-

iments were run. An improvement that can be made is enabling more resources to do a
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more sophisticated hyper parameter configuration and architecture configuration.

Specially created models

Finding the best performing architecture for one prediction problem and discovering a

new one for the next prediction problem was not the objective of this thesis. The chosen

architectures are not necessarily the best performing architectures for one of the prediction

problems. By choosing the same deep learning architecture for all three prediction problems

there can be a discrepancy regarding performance with a highly specialised and trained

deep learning model on a single prediction problem. It would be interesting to see the

extent of this discrepancy between the "common" deep learning models in this research

and the "specialised" models for one prediction problem.

Disparity in DNN performance

The performance between the deep learning models was not comparable to the unified

performance between the traditional machine learning models. The chosen transformer

model performed remarkably worse than the other two deep learning models.

The MedRoBERTa.nl model was pre-trained and is significantly larger and deeper than

the other two models. Due to limited resources the choice was made to only train the

classification layers on top of the transformer model, in contrast to the other two models

where all layers were trained. Due to the large epoch training times, in comparison to

the other models, the transformer model was also trained for less epochs than the other

models. Transformer models are also known to be sensitive to hyper parameter settings,

but due to limited resources a full hyper parameter search and optimization could not be

performed. All these choices could have made a significant impact on the performance of

the transformer model. It is therefore suggested that future research will dedicate more

resources on training transformer models.

The high performance of the CNN architecture in comparison with the other two deep

learning architectures could indicate that there was not enough data to train a BiLSTM

and transformer model. Due to the high class imbalance, there were only a couple of

thousand positive data instances available. The complexity of the chosen models could

have been too high to properly train on these data cohorts.
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Literature

The DNN performance presented in previous reported literature were trained and evalu-

ated on different prediction problems, and primarily on non-Dutch text. The text pre-

processing methods that boosted the DNN performance in this research were also not

found in literature on clinical prediction models. Therefore, a direct comparison with

the absolute performance of previous literature is difficult. However, several remarks and

comparisons can be made. The transformer model did not reach the best performance of

all models, which is different from previous reported results in literature. In Huang, et

al. (35) the AUROC performance of ClincicalBERT transformer model outperformed the

tested BiLSTM model and the tested BERT transformer model matched the performance

of the BiLSTM. In this research the transformer model did not match the performance

of the BiLSTM model in any of of the prediction problems. In Mohamaddi, et al. (37)

the BERT transformer model did perform 0.10 AUROC points worse than the best deep

learning model, which is comparable to performance of the MedRoBERTa.nl model in this

research compared to the traditional machine learning models. In Zhang, et al. (23) the

RNN matched the performance of a CNN on predicting hospital readmission with 30 days.

Both architectures performed 0.1 AUROC point worse than the corresponding architec-

tures in this research on the hospital readmission prediction problem. This difference can

be caused by a difference in observation window, text representation or architecture and

hyper parameter choice.

In this research a DNN outperformed the traditional machine learning models on all

prediction problems. Menger, et al. (43) and Zhang, et al. (23) report a similar conclu-

sion, albeit that the performance gap is smaller. More research on a variety of prediction

problems is recommended to assess if DNN outperforming traditional machine learning is

structural.

Overconfidence

In the Appendix 6 three graphs can be found of the AUROC for a CNN model trained

on an earlier version of the dementia cohort. From left to right the epochs increase and

interestingly the training and validation loss decreased. In the experiment an observation

window from 1 month was chosen, instead of the eventually used 1 year. This resulted in

some data instances not have any associated text notes, due to subjects not having any

entries in that month. The training and validation loss indicated that the CNN model was

training well, but when evaluating the model on several epochs the AUROC was decreasing.
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The model was checked for overfitting, which did not occur. This experiment indicates a

difference in loss function and evaluation metrics. The model was starting to mis-classify

a lot of positive labels, hence the reduced AUROC over time, but it was getting more

accurate regarding predicting a 0 risk for the negative label. Hence the model was getting

overconfident that the predicted risk should be 0 at all times. This is likely a result of

a high class imbalance and having no text to predict on. Future research could look at

mitigating the problems that arise when only a small observation window, with a lot of

missing entries, is chosen for prediction problems.

Evaluation metrics

The area under the receiver operating characteristic and the area under the precision recall

curve are the most common evaluation metrics for prediction models in the clinical domain.

Using these evaluation metrics in this research provided two challenges. Firstly, when using

more than one evaluation metric, making statements such as this model is better than that

model, is problematic. Secondly these evaluation metrics are not sufficient to make strong

claims about the model performance from a practical perspective. The whole receiver

operating characteristic curve is not relevant for a practical usage, a high false positive

rate configuration will not be used. Adding calibration metrics, as done in this research,

evaluates the resemblance of the predicted scores to the observed risk, adds another layer

of complexity when evaluating the models.

An exploratory step to use only one evaluation metric has been made in this research,

using the area under a F1-risk threshold curve. These curves can be found in the Appendix

6. This evaluation metric could not be fully tested in this research, but some interesting

notes can be made. The highest point of the curve provides a method to configure the class

labels on the prediction score. The location of the highest point gives information regarding

the calibration of the model. Whereas the width of the curve around the highest point

gives an indication about the discriminatory effect of the model. Research into evaluation

metrics for clinical prediction models, with a strong link to a practical implementation of

the model would be beneficial for the whole field.

Ensemble models

In this research, structured data and unstructured text data were compared, to assess the

importance of the unstructured text data. The conclusion of the experiment shows that

unstructured text data has useful information for prediction models. Next to comparing
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unstructured and structured data, Zhang, et al. (23) combined structured and unstructured

data for deep learning models. Future research could build on this by experimenting with

ensemble methods for deep learning networks.

Explainability

Explainable AI is a field that had an increased amount of interest in the past years (44,

45, 46, 47, 48, 49, 50). Exploring the usage of explainable AI for clinical prediction

models is an interesting direction for the medical informatics field to consider. Research

into explainability could help identify the cause for the high performance of the CNN

regarding the other models in this research. It can also be used as a measure to evaluate

the validity of training the model. For example, explainable AI can help identify if the

models have a unwanted bias for certain ethnic groups. In addition, explainable AI should

be considered in the context of using deep learning in practice. The ability to give insight

into the prediction could help a patient and GP with using a deep learning model. It is

therefore suggested that the role and possibilities for explainable AI in medical informatics

is investigated.

34



5

Conclusion

In this section the results and other contributions of this research thesis are summarized.

This section will start with answering the three research questions.

1. How do different DNN architectures, such as RNNs, CNNs and attention models,

compare in performance to traditional Machine Learning models, using unstructured

clinical text data?

2. What is the effect of different pre-processing methods, such as embeddings, spelling

corrections, abbreviations, on the performance of the Artificial Intelligencemodels?

3. How does the use of text data compare to the use of structured data?

Subsequently the possible implications of this research for future research, especially for

the OHDSI community are explored.

Research Question 1

In all three prediction problems there is a dissimilarity regarding the performance between

the deep learning models. The transformer model performs worse on all metrics compared

to the BiLSTM, CNN and traditional Machine Learning models. The BiLSTM and CNN

both outperform the traditional models, but there is a disparity between the performance

of these two deep learning models. The CNN performs the best of all models for each

prediction problem, except when looking at calibration. Due to the high variance between

the deep learning models performance, it is clear that the performance of the DNN is highly

dependent on the architecture and other settings. In this research they did outperform the

traditional Machine Learning models when trained on unstructured clinical data. The

CNN model and BiLSTM do outperform the Machine Learning models on most evaluation
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metrics, but never on the Brier score. When comparing the calibration curves however

it is clear that both deep learning models are better calibrated over the whole predicted

probability spectrum than the traditional models. As a result this research has shown that

deep neural networks, CNNs and RNNs, can outperform traditional Machine Learning

models.

Research Question 2

The pre-processing methods have a mixed effect on the Artificial Intelligencemodels. The

traditional Machine Learning models do not clearly benefit on any of the prediction prob-

lems from the pre-processing methods. The three deep neural networks do have an in-

creased or matching performance on all evaluation metrics when the pre-processing meth-

ods were performed. The CNN model, trained on the combination of both pre-processing

methods, experienced major performance gains regarding AUROC, AUPRC and F1 score

for all prediction problems. The best performance was experienced when pre-processing

methods were combined, the second best performance when the token deletion was per-

formed and the third best when the spellings correction algorithm with the addition of

abbreviations was used.

Text pre-processing methods have a positive effect on the performance of deep learning

models, but do not influence the performance of traditional Machine Learning models, for

patient level prediction methods.

Research Question 3

The fully connected model, trained on structured data, did not perform better than all

the deep learning models that were trained on unstructured text. Instead, the CNN out-

performed the fully connected model on all prediction problems and the BiLSTM had a

comparable or better performance. This indicates that the unstructured text data has

valuable information, which makes the data useful for prediction models.

Objective

The objective of the research thesis was to assess the potential benefit of using Deep Neural

Networks for patient level prediction problems using text. The implementation of the data

processing and experiments was made with the idea of reproducibility for the OHDSI

community. The OMOP-CDM and already existing OHDSI analytics tools were used to

define and generate the patient cohorts. Even though the models were made and trained
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in Python and not using the OHDSI R package, the code was written with the possibility

to add a Python to R interface. The results of this thesis show there is a benefit of using

DNN on text in the patient prediction models. More research is needed to determine which

performance is needed for these models to be used in practise and what methods should

be implemented to obtain these results. This can be evaluated and further researched by

the OHDSI community, by expanding the current deep learning models in the patient level

prediction package 1, to use the text data from EHRs.

1https://github.com/OHDSI/DeepPatientLevelPrediction
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6

Appendix

F1-risk threshold curves

Figure 6.1: Maximum F1 performance and F1-riskthreshold curves for the hospital readmis-
sion prediction problem.
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6. APPENDIX

Figure 6.2: Maximum F1 performance and F1-riskthreshold curves for the dementia predic-
tion problem.

Figure 6.3: Maximum F1 performance and F1-riskthreshold curves for the end of life con-
versations prediction problem.
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HyperParameters

BiLSTM

Hospital Readmission

adam_beta1: 0.9

adam_beta2: 0.999

dropout: 0.3

hidden_size: 128

input_size: 512

learning_rate: 1.0e-06

model_params:

batch_size: 512

dataloader_num_workers: 4

max_seq_len: 512

preprocessing_num_workers: 16

use_sampler: true

num_layers: 2

optimizer_params:

beta1: 0.9

beta2: 0.999

gpus: -1

learning_rate: 1.0e-06

lr_decay_factor: 0.999975

lr_decay_step: 1

lr_minimum: 0.0

momentum: 0.0

warmup: 2000

weight_decay: 0.0

trainable: true

vocab_size: 52000

weights:

- 1

- 1

Dementia

adam_beta1: 0.9

adam_beta2: 0.999

dropout: 0.3

hidden_size: 128

input_size: 512

learning_rate: 1.0e-06

model_params:

batch_size: 512

dataloader_num_workers: 4

max_seq_len: 512

preprocessing_num_workers: 16

use_sampler: true

num_layers: 2

optimizer_params:

beta1: 0.9

beta2: 0.999

gpus: -1

learning_rate: 1.0e-05

lr_decay_factor: 0.999975

lr_decay_step: 1

lr_minimum: 0.0

momentum: 0.0

warmup: 2000

weight_decay: 0.0

trainable: true

vocab_size: 52000

weights:

- 1

- 1

End Of Life Conversations

adam_beta1: 0.9

adam_beta2: 0.999

dropout: 0.3

hidden_size: 128

input_size: 512
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learning_rate: 1.0e-05

model_params:

batch_size: 512

dataloader_num_workers: 4

max_seq_len: 512

preprocessing_num_workers: 16

use_sampler: true

num_layers: 2

optimizer_params:

beta1: 0.9

beta2: 0.999

gpus: -1

learning_rate: 1.0e-06

lr_decay_factor: 0.999975

lr_decay_step: 1

lr_minimum: 0.0

momentum: 0.0

warmup: 2000

weight_decay: 0.0

trainable: true

vocab_size: 52000

weights:

- 1

- 1
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CNN

Hospital Readmission

adam_beta1: 0.9

adam_beta2: 0.999

dropout: 0.3

hidden_size: 128

input_size: 512

learning_rate: 1.0e-06

model_params:

batch_size: 512

dataloader_num_workers: 4

max_seq_len: 512

preprocessing_num_workers: 16

use_sampler: true

num_layers: 2

optimizer_params:

beta1: 0.9

beta2: 0.999

gpus: -1

learning_rate: 1.0e-06

lr_decay_factor: 0.999975

lr_decay_step: 1

lr_minimum: 0.0

momentum: 0.0

warmup: 2000

weight_decay: 0.0

trainable: true

vocab_size: 52000

weights:

- 1

- 1

Dementia

adam_beta1: 0.9

adam_beta2: 0.999

dropout: 0.3

hidden_size: 128

input_size: 512

learning_rate: 1.0e-06

model_params:

batch_size: 512

dataloader_num_workers: 4

max_seq_len: 512

preprocessing_num_workers: 16

use_sampler: true

num_layers: 2

optimizer_params:

beta1: 0.9

beta2: 0.999

gpus: -1

learning_rate: 1.0e-05

lr_decay_factor: 0.999975

lr_decay_step: 1

lr_minimum: 0.0

momentum: 0.0

warmup: 2000

weight_decay: 0.0

trainable: true

vocab_size: 52000

weights:

- 1

- 1

End Of Life Conversations

adam_beta1: 0.9

adam_beta2: 0.999

dropout: 0.3

hidden_size: 128

input_size: 512

learning_rate: 1.0e-05

model_params:

batch_size: 512

dataloader_num_workers: 4
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max_seq_len: 512

preprocessing_num_workers: 16

use_sampler: true

num_layers: 2

optimizer_params:

beta1: 0.9

beta2: 0.999

gpus: -1

learning_rate: 1.0e-06

lr_decay_factor: 0.999975

lr_decay_step: 1

lr_minimum: 0.0

momentum: 0.0

warmup: 2000

weight_decay: 0.0

trainable: true

vocab_size: 52000

weights:

- 1

- 1
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MedRoberta.nl

Hospital Readmission

adam_beta1: 0.9

adam_beta2: 0.999

dropout: 0.3

hidden_size: 128

input_size: 512

learning_rate: 1.0e-06

model_params:

batch_size: 32

dataloader_num_workers: 4

max_seq_len: 512

preprocessing_num_workers: 16

use_sampler: true

num_layers: 2

optimizer_params:

beta1: 0.9

beta2: 0.999

gpus: -1

learning_rate: 1.0e-06

lr_decay_factor: 0.999975

lr_decay_step: 1

lr_minimum: 0.0

momentum: 0.0

warmup: 2000

weight_decay: 0.0

trainable: true

vocab_size: 52000

weights:

- 1

- 1

Dementia

adam_beta1: 0.9

adam_beta2: 0.999

dropout: 0.3

hidden_size: 128

input_size: 512

learning_rate: 1.0e-06

model_params:

batch_size: 32

dataloader_num_workers: 4

max_seq_len: 512

preprocessing_num_workers: 16

use_sampler: true

num_layers: 2

optimizer_params:

beta1: 0.9

beta2: 0.999

gpus: -1

learning_rate: 1.0e-05

lr_decay_factor: 0.999975

lr_decay_step: 1

lr_minimum: 0.0

momentum: 0.0

warmup: 2000

weight_decay: 0.0

trainable: true

vocab_size: 52000

weights:

- 1

- 1

End Of Life Conversations

adam_beta1: 0.9

adam_beta2: 0.999

dropout: 0.3

hidden_size: 128

input_size: 512

learning_rate: 1.0e-05

model_params:

batch_size: 32

dataloader_num_workers: 4
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max_seq_len: 512

preprocessing_num_workers: 16

use_sampler: true

num_layers: 2

optimizer_params:

beta1: 0.9

beta2: 0.999

gpus: -1

learning_rate: 1.0e-06

lr_decay_factor: 0.999975

lr_decay_step: 1

lr_minimum: 0.0

momentum: 0.0

warmup: 2000

weight_decay: 0.0

trainable: true

vocab_size: 52000

weights:

- 1

- 1
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Fully Connected Structured data model

Hospital Readmission

adam_beta1: 0.9

adam_beta2: 0.999

dropout: 0.2

hidden_size: 128

learning_rate:

1.9054607179632475e-07↪→

model_params:

batch_size: 64

dataloader_num_workers: 4

preprocessing_num_workers: 16

use_sampler: true

num_layers: 1

optimizer_params:

beta1: 0.9

beta2: 0.999

gpus: 1

lr_decay_factor: 0.999975

lr_decay_step: 1

lr_minimum: 0.0

momentum: 0.0

warmup: 2000

weight_decay: 0.0

weights:

- 1

- 1

Dementia

adam_beta1: 0.9

adam_beta2: 0.999

dropout: 0.3

hidden_size: 128

input_size: 512

learning_rate: 1.0e-06

model_params:

batch_size: 32

dataloader_num_workers: 4

max_seq_len: 512

preprocessing_num_workers: 16

use_sampler: true

num_layers: 2

optimizer_params:

beta1: 0.9

beta2: 0.999

gpus: -1

learning_rate: 1.0e-05

lr_decay_factor: 0.999975

lr_decay_step: 1

lr_minimum: 0.0

momentum: 0.0

warmup: 2000

weight_decay: 0.0

trainable: true

vocab_size: 52000

weights:

- 1

- 1

End Of Life Conversations

adam_beta1: 0.9

adam_beta2: 0.999

dropout: 0.3

hidden_size: 128

input_size: 512

learning_rate: 1.0e-05

model_params:

batch_size: 32

dataloader_num_workers: 4

max_seq_len: 512

preprocessing_num_workers: 16

use_sampler: true

num_layers: 2
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optimizer_params:

beta1: 0.9

beta2: 0.999

gpus: -1

learning_rate: 1.0e-06

lr_decay_factor: 0.999975

lr_decay_step: 1

lr_minimum: 0.0

momentum: 0.0

warmup: 2000

weight_decay: 0.0

trainable: true

vocab_size: 52000

weights:

- 1

- 1
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Lasso model

Hospital Readmission

alpha=0.01

max_iter=10000

Dementia

alpha=0.01

max_iter=10000

End Of Life Conversations

alpha=0.01

max_iter=10000
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GradientBoostingClassifier model

Hospital Readmission

'n_estimators' : 2000

'learning_rate': 0.001

'max_depth' : 4

Dementia

'n_estimators' : 2000

'learning_rate': 0.001

'max_depth' : 4

End Of Life Conversations

'n_estimators' : 2000

'learning_rate': 0.001

'max_depth' : 4
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Overconfidence

Figure 6.4: AUROC curves at increasing epochs for an CNN model
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Code

The code made and used in this thesis is given to the ErasmusMC supervisors.
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