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“I am the master of my fate, I am the captain of my soul”
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1

Introduction

This section includes some motivations behind the work, explicitly or implicitly highlights

the research question, provides a high-level explanation of the solution, and describes the

contributions.
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2

Background

2.1 Literature Study

This section provides the necessary context of basic level categories theory, Random Forest

with SMOTE algorithm, Word2Vec, and BART to help readers understand.

2.1.1 Basic Level Categories Theory

Basic level as a level of abstraction in taxonomy is observed in 1958 by psychologist Roger

Brown. He stated a phenomenon that there is a preferred level of names that is the

most useful in most contexts(5). However, he did not give the level nor names at this

level a definitive term or description. A formal name for basic level categories and a

systematic theory of basic level categories are developed by psychologist Eleanor Rosch in

1976(6). Research on the basic level categories has been across diverse disciplines. Studies

in psychology, anthropology, linguistics, and library and information science have more or

less covered the theory of basic level categories to measure perception, communication,

and behavior(7).

Besides Brown and Rosch, linguist George Lakoff raised a research question what do

categories of language and thought to reveal about the human mind. He demonstrates

that basic level categories are ’human-sized’ and depend upon human interactions with

objects in a category(8). Observed in the field of library and information science, concepts

in basic level categories have been demonstrated to have more possibilities to be shared

across classificatory systems than others by Rebecca Green(9).

Although there are many publications on basic level categories, they hardly give a specific

mathematical definition to the basic level categories. Most of the related work describes

the basic level categories theory with an intuitive idea, such as categories containing the
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2. BACKGROUND

most information or people would react fast to these categories. To clarify what the

basic level categories mean to humans, a definition of basic level categories in this project

is stated from aspects of both semantics and quantified method. The semantic one is

cognitive economy which explains that people tend to make less effort to understand and

react to the basic level categories. The quantified one is cue validity(6) which describes

how much information is gained by people from the basic level categories. In this way,

basic level categories, a terminology of psychology, can not only be described by a level of

abstraction, but measured by a mathematical formula as well. The cognitive economy and

the cue validity are essentially the same and used to define the basic level categories.

Some terminologies about basic level categories are similar. The basic level is a level

at which concepts belong to basic level categories. Therefore, basic level and basic level

categories have the same meaning in this paper.

2.1.1.1 Cognitive Economy

Humans perceive the real world with correlational structures. The perception is from

cognitive processes which tend to minimize exertion and resources cost during processing.

Further, cognitive economy concerns the relevance and simplicity of a categorization scheme

and knowledge representation(10). From the aspect of cognitive economy, the basic level,

as a criterion of binary classification, can result from a combination of the following two

principles(6).

1. Predictable property. Concepts in the basic level would have many predictable

properties which can be known from each other or any one of them. The attribute

of predictable properties leads to forming a large number of categories. There are

discriminations in each category and one of them holds the fine enough differences

to distinguish each concept belonging to it. This category is possibly to be the basic

level.

2. Relevant differentiation. The categorization scheme aims to reduce infinite differ-

ences to an appropriate degree of proportions among concepts within one category.

The appropriate degree of proportions behaviorally and cognitively depends on the

purposes. Otherwise, it would not differentiate a concept from others unless the

differentiation is relevant enough for the purposes.

The two principles look contradictory in how humans perceive the world with catego-

rization. They emphasize an appropriate degree of differentiation according to human’

4



2.1 Literature Study

Animal
Consume organic material 
Breathe oxygen 
Use metabolic exchange
Reproduce sexually

Mammal
A neocortex 
Fur or hair 
Three middle ear bones

Carnivore Eat meat 
Hunting

Cat

Flexible body 
Sharp teeth 
Retractable claw 
Good night vision 
Meow, purr, trill, hiss 
Catches mice 
Movable whiskers 
Good balance 
Hunts alone

Dog
Attuned to human 
Herding 
Brown eyes 
A tail used to communicate 
Barks 
Pet
Good sense of smell

Persian Long hair 
Flat nose 
Round face

Bengal Spotty coat 
Energetic 
Golden
shimmer

Poodle Curly fur 
Slim legs

Bulldog Winkled face 
Pushed-in nose 
Resolute

...

...

...

... ...

Figure 2.1: Concept hierarchy with properties example (1)

interaction with the world under miscellaneous situations. For example, assuming a con-

cept hierarchy(1) in Figure 2.1, the concept of cat and the concept of dog can be in the

basic level according to the principles of cognitive economy. In the hierarchy, concepts of

upper cat and dog are more abstract whose properties can not be the same predictable

as cat and dog. Conversely, concepts lower than them are too specific whose properties

indicate only slight differentiation. The concept of cat and the concept of dog both hold as

many predictable properties as possible to distinguish them from the others (Predictable

property). Meanwhile, a category of the concept of cat and the concept of dog can be

the most appropriate proportions of differentiation for a general perception by humans

(Relevant differentiation).

By basic level categories, concepts more abstract or general than those in basic level

are superordinate concepts, i.e. hypernyms in a hierarchy. Concepts more specific than or

below the basic level are subordinate, i.e. hyponyms in a hierarchy. With the basic level

theory, humans can sketch the real-world correlational structures.

5



2. BACKGROUND

2.1.1.2 Cue Validity

Cue validity, val(cue), is based on conditional probabilities which typically include P (BL|cue)
and P (BL|cue) terms. P (BL|cue) is the probability of a concept is IN basic level given the

cue, while P (BL|cue) is the probability of a concept is NOT IN basic level given the cue.

Qualitatively, val(cue) goes up when P (BL|cue) increases and(or) P (BL|cue) decreases.

However, the strict mathematical form to calculate the cue validity is various. BEACH

proposed probabilistic cues (Equation 2.1) to make inferences about objects’ category (11).

Here, the object can be seen the same as the concept in this paper.

E(k) =

∑n
d=1 P (k|d)

n
(2.1)

Where k is a specific category that one object probably belongs to. E(k) can be regarded

as a possibility of one object correctly expected to be in a given category. d is a dimension

on which one object’s cue is known. n is the number of the dimensions. P (k|d) is the

relative frequency with which one object’s cue on each cue dimension (11). He improved

the inference method in another paper. Another formula (Equation 2.2) was put forwards

to recognize, assimilate, and identify a category for an object (12).

E(c) =
n∑

d=1

P (c|k, d)
n

(2.2)

Where c is a cue value under consideration as one object’s unknown cue. E(c) is the total

evidence from the unknown cue dimension. P (c|k, d) is a probability that a cue value c on

an unknown cue dimension d is the best bet for the inference give one object’s category k

(12). Based on Beach’s study, Reed updated the algorithm to calculate the cue validity and

proposed a similar formula, Equation 2.3, which measures the cue validity by considering

the frequency and the proportion of cues in categories (13).

CV (Category_k,X) =

d∑
m=1

P (Category_k|xm)

d
(2.3)

Where k is an ordinal number of categories while m is an ordinal number of cues of X.

CV (Category_k,X) is the cue validity value of concept X. P (Category_k|xm) is the

prior probability by P = 1/(1 + F ), where F is the frequency with which the cue appears

in the category (13).

According to the definitions of basic level, a concept with a larger cue validity can be

more differentiated than others with a lower one. It is reasonable that the superordinate

concepts have fewer attributes in common to have lower cue validities. Meanwhile, the

6



2.1 Literature Study

subordinate concepts share so many attributes among siblings that lead to lower cue va-

lidities. Concepts in the basic level maximize cue validity, in other words, these concepts

reflect the correlational structure of the real-world environment best and are identified fast

for humans.

When computing cue validity of a concept, the practical implementation does not directly

conduct the Equation 4.2 because it contains a posterior probability that is impossible to

count and calculate for training and testing. The detail of implementing cue validity of

concepts will be discussed in Section 4.4.2.

2.1.2 Random Forest with SMOTE

Basic level detection is to categorize a concept into basic level or non-basic level which

is a binary classification task in Machine Learning. Random Forest(14) with Synthetic

Minority Over-sampling Technique(SMOTE)(15) will be used as a classifier to learn from

synthetic features and to predict concepts whether are in the basic level or not.

Random Forest is an extensive version of Bagging, which is the abbreviation of Bootstrap

Aggregating. It uses Decision Tree as a base learner and builds a Bagging aggregation.

Furthermore, Random Forest introduces the random choice of attributes in the process of

training. The core concept of the fundamental method, Bagging, is sampling and training

for every subset of the attributes. They can be sampled for training a Decision Tree with a

certain number of items. The training leads to a base learner. Hence, several base learners

can be integrated or aggregated into a final Random Forest learning model.

Specifically, training a Random Forest classifier includes sampling attributes and choos-

ing an attribute. Firstly, a subset of the total d attributes is sampled for each current

node in the base Decision Tree in a bootstrap way. The size of every subset is k. Secondly,

the most optimal attributes from the subsets are chosen to generate their child nodes re-

spectively. In this way, the parameter k controls the degree of randomness introduced. In

general, according to (14), the recommended value would be:

k = log2 d (2.4)

Random Forest is relatively simple to implement while needs low computational cost.

Moreover, it has performed powerful abilities and performance in many Machine Learning

tasks. Besides only an initial bootstrapping on a training set, Random Forest exploits

bootstrap to attributes. Both the self-sample perturbation and the self-attribute pertur-

bation enable better performance of generalization via increasing the bias of individual

7



2. BACKGROUND

base learners. Therefore, Random Forest usually converges to lower generalization errors

with the increment of the number of base learners.

When training a Random Forest with imbalanced datasets, SMOTE algorithm for sam-

pling can achieve better classification performance. In general, SMOTE is a method that

oversampling minority classes and undersampling majority classes(15).

For undersampling the majority classes, the samples are removed at random until the

percentage of samples in the majority classes and the minority classes reaches a specified

value. For oversampling the minority classes, besides taking minority samples, it creates

synthetic examples of each minority instead of directly replicating with replacement. The

synthetic examples are calculated with the K-Nearest Neighbor algorithm. Discovering

the nearest neighbors of a minority sample, each difference between the minority and its

nearest neighbors is multiplied by a random number ranging from 0 to 1. Then, the new

examples can be added to the dataset for training which leads a classifier to have greater

decision regions but less specific than without such oversampling.

2.1.3 Word Embedding: Word2vec

Word embedding is an important technique in Natural Language Processing that words are

mapped to vectors of real numbers. It is a necessary procedure in modeling a language and

learning features from textual data to numerical representations. Word embedding aims

to capture the meaning of a word in semantic similarity, syntactic similarity, and relations

with other words which makes natural language read and processed by computers. A

well-trained set of word embeddings will place similar words close to each other in the

vector space. Based on the real-number representation of words, further computation and

algorithms can be implemented.

Word2vec(16) is one of the most popular techniques to learn word embeddings us-

ing multi-layer recurrent neural networks. There are two main training algorithms for

Word2vec, the continuous bag-of-words(CBOW) model and the skip-gram model. The

major difference between the two models is that CBOW uses context to predict a target

word while skip-gram uses a word to predict the target context. According to Mikolov(17),

the skip-gram model is more suitable for representing not frequent words. To hit lemmas

of the concepts in the dataset Section 3.2 as many as possible, a Word2vec-based reposi-

tory named ConceptNet Numberbatch1 can provide finely pre-computed word embeddings

trained with data from ConceptNet(18) using the skip-gram model. Compared to other

1https://github.com/commonsense/conceptnet-numberbatch

8
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Bidirectional
Encoder

Auto-regressive
Decoder

<s> A B C D

A B C D E

Initialized
Encoder

α β γ δ ε

Pre-trained BART

Fine-tuned BART

Figure 2.2: Architecture of BART(2)

pre-computed word embeddings, ConceptNet Numberbatch is able to cover most of the

lemmas in our dataset which guarantees to eliminate missing vectors as few as possible.

The vector representation with the semantics of a lemma of concepts in a hierarchy can be

looked up in the dictionary of ConceptNet Numberbatch.

2.1.4 BART

BART, Bidirectional and Auto-Regressive Transformers, is a sequence-to-sequence denois-

ing autoencoder model(2). It is one of the effective language models for text generation and

comprehension tasks, such as machine translation. By fine-tuning BART, an end-to-end

model can be trained which can learn a mapping from source English words to their se-

mantic features. In this paper, BART will be used as a pre-trained model for tokenization

and a fine-tuned autoencoder for semantic feature generation.

The architecture of BART follows the standard Transformer(19). It is implemented with

a bidirectional encoder and an auto-regressive decoder,shown in the yellow area of Figure

2.2. The pre-trained BART is denoising because the input training data is corrupted text

with masks(attention) and the goal is to reconstruct the text which is noticed by the masks.

Both the encoder stacks and decoder stacks contain 12 identical layers(19). The encoder of

the pre-trained BART then can be used as a tokenizer for English words. It gives a vector

of identity with an attention mask to each word or phrase which implicitly represents the

meaning.

After fine-tuning the BART with an additional encoder, named Initialized Encoder, the

9



2. BACKGROUND

new model is designed for machine translation tasks, shown in the green area of Figure

2.2. The pre-trained BART without the embedding layer is used as a decoder. The new

encoder is trained to map the input source text into an intermediate representation which

can be denoised by the pre-trained BART (2). The BART will be fine-tuned with English

semantic feature data, to be introduced in Section 3.5. Using the fine-tuned BART, the

end-to-end model of translation can help to generate semantic features from a word. In

other words, the translation is a mapping from one concept to its semantic features. The

pipeline and detailed process of fine-tuning will be discussed in Section 4.4.2.

2.2 Related Work

Describe here scientific papers similar to your experiment, both in terms of goal and

methodology. Two paragraphs for each paper (we expect about 5-8 papers to be dis-

cussed). Each paragraph contains: (i) a brief description of the related paper and (ii) a

black-on-white description about how your work differs from the related paper. You may

place this section immediately after the Background section, if necessary.

2.2.1 Rule-based Heuristics

Mills et al.(20) built a rule-based system with heuristics to identify basic level categories

automatically. Their approach is to evaluate a cumulative set of rules defined by them-

selves. The system constrains concepts being the basic level with some boundaries of the

rules. Initially, there are 52 rules in two types: filtering rules and voting rules. They

used several resources of corpora, dictionaries, and toolkit to formulate the rules. After

experiments of training and developing, there are 8 chosen filtering rules with parameters

and 4 selected voting rules left for relaxation using a greedy search scheme.

Although the system can identify the basic level with a relatively high accuracy of 77.0%

and classify automatically, the data gathered was limited, 194 categories in total. For the

reason that some categories do not have corresponding synsets in WordNet, the categories

used in the experiment are even fewer, 152. Moreover, there could be many important

features ignored because of the removal of weak rules. It might not work well with concepts

outside the 152 categories because the rule-based system is trained and developed with only

100 categories. In this thesis, experiments are conducted with more annotated concepts, up

to 839. and have different models designed to guarantee the generalization of the method

for predicting the basic level.

10



2.2 Related Work

2.2.2 Machine Learning-based Classification

Recently, more related research of predicting the basic level focuses on Machine Learning.

Concepts can be categorized into the basic level or others using several kinds of classifiers.

With Machine Learning algorithms, predicting the basic level is regarded as a classification

task. Moreover, appropriate feature engineering can improve the accuracy and efficiency

of the predicting.

Hollink et al.(21) aim to predict whether concepts are the basic level in a concept hier-

archy. They trained five kinds of classifiers from three types of features: lexical features,

structural features, and frequency features. The classifiers are trained by Latent Dirichlet

Allocation(LDA), Decision Tree, K-Nearest Neighbors, Support Vector Machine(SVM),

and Random Forest. The lexical and structural features are extracted from WordNet(3),

while the frequency is from Google Books Ngram(22). They present a method to classify

concepts from a conceptual hierarchy into a basic level and non-basic level using Random

Forest. The models are trained in the setting of within one domain and across domains.

The local model, whose training data is within a domain, results in the best performance

under three domains. They argue that concepts that are difficult to label for humans are

also harder to classify automatically.

The method Hollink et al. considered and the features they chosen only concern the

structure of concepts in a hierarchy and their lemmas morphology. The lexical features and

structural features do implicitly contain some semantic relations among synsets from their

hypernyms and hyponyms. The implicit semantic relations could indicate the subordinate

relationship, however, might not be able to summarize meanings of one concept(synset).

In this thesis, semantics of concepts is explicitly represented by their cues generated by

the fine-tuned BART. The cues of a concept could explain the synset directly rather than

inferred from the subordinate relationship. The method proposed in the thesis adopts both

of the implicit semantics from the hierarchy and the explicit semantic features by cues.

Henry(23) focuses on the features from corpora. She raises a research question that

what corpora properties are useful in predicting the basic level. It is through learning the

basic level with varying corpora of different discourse types, audience ages, and sizes in

words. She concludes that larger corpus sizes have more reliable results. And comparing

smaller samples of the same size, those containing spoken discourse and discourse directed

at children provided more reliable results than written text aimed at a general audience.

The features from child spoken corpus can be important indicators to learn and detect the

basic level.

11
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It reveals the significance of the type and the size of frequency resources. However, the

aggregations of frequency features from different corpora are not the same. The perfor-

mance of accuracy for predicting the basic level is not improved significantly from them.

Henry did not consider semantic features of concepts either.

Chen and Teufel(1) present the first method for the detection of the basic level at scale us-

ing Roach-style semantic features which contain cue validity, according to their statement.

They adopt three methods of generating semantic features for synsets in WordNet: textual

features from Wikipedia pages, Distributional Memory(24), and BART. The languages are

English and Mandarin. The synthetic textual features include structural features, lexical

features, Word2Vec, frequency features, cue validity, basic level page rank, and semantic

features. Support Vector Machine is used to train the classifier.

Although Chen and Teufel find that BART is capable of generating indicators to improve

the detection of the basic level, they did not clarify the mechanism of BART nor the

functionality of the generation. The best model in their experiments performs 75.0%

accuracy of English basic level detection and 80.7% in Mandarin on their test set. However,

the dataset only contains 433 concepts which is carefully selected and not directly from a

developed hierarchy.

2.2.3 Context-aware in Folksonomies

Chen et al.(25) put forward an algorithm to detect the basic level among various contexts

from folksonomies(26). The folksonomies contain implicit semantics from creating and

managing tags in web resources annotated by users. They model instances, concepts, and

context in the folksonomies for mining semantics. Contextual category utility, inspired

from category utility(27), is proposed to predict the basic level. The modeled concepts are

detected as the basic level when they have the greatest value of the contextual category

utility.

Chen et al. though considered semantics when predicting the basic level and under

large-scale web resources. The concepts are discovered from the web which are not in a

hierarchy. The results depend on the contents and quality of the resources. Their method

is not appropriate for predicting in a hierarchy because the folksonomies would miss many

concepts from synsets. They neither use indicators of lexical, frequency nor structural

characteristics.

12
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Data

In this section, the data used and methods to acquire are explained.

3.1 WordNet

Princeton WordNet1 is a lexical database for English which organizes sets of synonyms

representing lexicalized concepts (3). The synonymy is from a semantic relation of syn-

onymy which is the basic principle to arrange concepts. The sets of synonyms, known as

synsets, are used to stand for word senses that is regarded as concepts in this paper. The

canonical form or morphological form of a word from the synonyms is one of the lemmas

of the synset. The meaning of each synset is named sense. By these definitions, the lexical

semantics can be described in terms of the relations between their senses. There are over

166, 000 relations, which are represented in pairs of a lemma and a sense, and more than

117, 000 synsets in WordNet (3).

Another important semantic relations are hyponymy and hypernymy which are the tran-

sitive relations between synsets. Hyponyms and hypernym can shape definitive paths from

the superordinate to several Subordinate. The paths hold semantics and each synset for

nouns usually has one hypernym. Therefore, concepts in WordNet are organized in a hier-

archical structure of the lexicon. Further, every synset with its hyponyms and the relations

can be seen as a hierarchy of lexical knowledge. One hierarchy of the concepts in the an-

notation dataset is shown in Figure 3.1. The synsets in light red are the domains in the

dataset Section 3.2. Synsets in yellow are the hyponyms of the domains and synsets in

blue are their hypernyms. The root of the hierarchy is the synset of entity.n.01.

1https://wordnet.princeton.edu/

13
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clothing.n.01

implement.n.01 plant_organ.n.01device.n.01furnishing.n.02consumer_goods.n.01

hand_tool.n.01

awl.n.01 wrench.n.03

bradawl.n.01 scriber.n.01

edible_fruit.n.01

windfall.n.01ackee.n.01

musical_instrument.n.01

bass.n.07 music_box.n.01

furniture.n.01

baby_bed.n.01 washstand.n.01

bassinet.n.01 carrycot.n.01 cradle.n.01 crib.n.01

garment.n.01

burqa.n.01 weeds.n.01

instrumentality.n.03

artifact.n.01

whole.n.02

object.n.01

physical_entity.n.01

entity.n.01

reproductive_structure.n.01

plant_part.n.01

natural_object.n.01

...

covering.n.02commodity.n.01

...

... ...

... ...

...

...

...

...
...

...

...

...

...

tool.n.01

fruit.n.01

...

produce.n.01

food.n.01

substance.n.07

matter.n.03

allen_wrench.n.01 tap_wrench.n.01

...

...

... ...

...

...

...

...

...

...

.........

Figure 3.1: Hierarchy of concepts in WordNet (3)
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3.2 Basic Level Annotations

As mentioned in Section 3.2, concepts to be predict can be the synsets in WordNet.

Moreover, the methodology proposed can be executed to detect the basic level with all

the concepts in entity.n.01. WordNet database and its API can be accessed by NLTK1

WordNet Interface2.

3.2 Basic Level Annotations

The dataset where concepts are labeled with basic level or non-basic level is inherited from

Hollink et al. (21) and Henry’s research. There are three domains from Hollink’s dataset

and two domains from Henry’s. The domains are hand_tool.n.01, edible_fruit.n.01, musi-

cal_instrument.n.01, furniture.n.01, and garment.n.01 in WordNet. The labeled dataset

is called gold standard. Originally, the gold standard labels concepts in the basic level, or

the superordinate or the subordinate of the basic level. In this paper, superordinates and

subordinates are merged into a class of non-basic level.

Concepts in the gold standard are labeled manually by three annotators who are pro-

vided with an annotation protocol. The protocol includes instructions of this labeling task,

descriptions of the basic level, characteristics of the basic level, and how to find the basic

level in the hierarchy of WordNet. The most important part is a checklist helping label

the basic level. In addition to the checklist, the annotators may access necessary informa-

tion from Wikipedia and Google Search Engine. Using the annotation protocol, concepts

labeled as the basic level can be as close as possible to the Roach’s definition of the basic

level, discussed in Section 2.1.1.

After processing of the gold standard, the dataset to be used in experiments is summa-

rized in Table 3.1. It shows distributions of the number of concepts in each domain. The

data is imbalanced that concepts at the non-basic level are 2 ∼ 8 times more than those at

the basic level. Considering the definition of the basic level, it is reasonable that the basic

level is less but contain more information in one domain. The settings of the training set,

validation set, and testing set will be discussed in Section 4.1.

3.3 Textual Corpora

To answer the first research question about frequency features, different resources for cal-

culating frequencies of concepts should be considered. The aim is to gather the frequency

1NLTK: Natural Language Toolkit
2https://www.nltk.org/howto/wordnet.html
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Domain Basic level Non-basic level Total

hand tool 25 108 133
edible fruit 57 99 156
musical instrument 47 79 126
furniture 20 163 183
garment 26 215 241

Total 175 664 839

Table 3.1: Summary of Basic Level Annotation Dataset

of lemmas in each concept from different discourse types, different target audiences, and

in various sizes of resources. Therefore, four corpora with different characteristics are ex-

tracted to be used as the frequency resources. Summarized in Table 3.2, they are the

KBNC, the CABank English corpus(CABNC) (28), the CHILDES (29), and the British

National Corpus(BNC) (30),

Text BNC is a British English corpus which contains around 100 million words from

a wide range of written and spoken resources. It records abundant British English from

the late 20th century and is released in 2007 as BNC XML Edition1. Approximate 88

million words of written records are extracted and marked as BNC Written corpus for the

frequency feature under a general written corpus. Meanwhile, there are around 1 million

records of them specific for children. They are wrapped as KBNC which is a children

written corpus.

CABNC is built by re-transcribing naturalistic conversations from Audio BNC, a sub-

corpus of BNC which originally contains about 7.5 million words in a type of audio. Albert

et al. converted the transcripts into CHAT files (31) and made them public open-licensed2.

CABNC initially has around 4.2 million words. However, from the latest version released

only 2.4 million words can be parsed from CHAT files by PyLangAcq3. The parsed words

compose CABNC for calculating frequencies of concepts under a general spoken corpus.

CHILDES is one of the components in the TalkBank system specific for child languages4.

16 corpora from British English consist of a new corpus, simply named CHILDES. The

new CHILDES contains around 5.7 million words that are transcribed from conversations,

1http://www.natcorp.ox.ac.uk/
2https://ca.talkbank.org/access/CABNC.html
3https://pylangacq.org/
4https://childes.talkbank.org/
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3.4 Google Books Ngram Corpus

Corpus Discourse Type Target Audience Size Approx. Description

KBNC Written Children 1 million Subset of the
BNC specific for
children target
audience

CABNC Spoken General 2.4 million Re-transcribed
from a subcorpus
of the BNC

CHILDES Spoken Children 5.7 million Composed of 16

subcorpora
BNC Written Written General 88 million British English in

the late 20th cen-
tury

Table 3.2: Summary of Corpora for frequency features

audios, or videos. It will be used to extract frequency features within a children spoken

corpus.

3.4 Google Books Ngram Corpus

To have a larger corpus for extracting the frequency features, Google Books Ngram Cor-

pus(Google Ngram) (32) can be another resource which is a written corpus for general

audiences. It is an enormous analytical repository of printed publications. Similar to

Hollink et al. and Henry’s study, frequency features from Google Ngram could be a set

of important indicators for the classification. The corpus has three versions. This paper

adopts the third version released in 2020. It contains millions of books published since

1500s. Although the accuracy number of tokens in the Google Ngram version 3 is not

documented, it can be sure that the amount is larger than the second version, which is

over 468 billion tokens (22). And it was updated by billions of records annually during

2012 to 2019. The ngram data used is all the entries in Google Ngram Version 3 from 1500

to 2019.

Google provides a web-based service to search the frequencies of words by years on

Google Books Ngram Viewer1. For every concept in the dataset, lemmas of the synset are

listed by the NLTK WordNet library correspondingly. It can include all the words within
1https://books.google.com/ngrams
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the concept so that the frequency of a concept is more complete to represent its feature.

Unfortunately, there is no official API for querying frequencies in a large-scale productive

mode. The frequency data has to be obtained by a web crawl that posts requests for the

frequency of a lemma and gets its response. The response can be parsed and analyzed to

have valid frequency data. The returned data contains frequencies of a word(lemma) in

the given period of years.

However, it is found that continuous requests to the Google Ngram Viewer would trigger

an exception of 503 Service Unavailable and respond the null data. The reason is that

Google set a limitation of request times to protect its server and services. The policy of

the Google server request limit is discovered to be likely 75 requests every 560 seconds.

To solve this challenge, some implementations set sleep time between every request, but it

could cost over 4 hours for querying all the dataset. According to the policy, an optimal

crawler is implemented to speed up the procedure of the querying. It reschedules the sleep

strategy to 72 requests then wait 580 seconds every round instead of sleeping 10 seconds

between each request. With the new strategy, the time of the querying reduces to 3 hours

for all the concepts. Besides, the optimal crawler is encapsulated as a Python class which

can automatically query the frequencies given a concept and a period of years. Moreover,

it provides an option that can aggregate the frequencies of a concept in a range for years

into the maximum, minimal, mean, and standard deviation. The aggregations may help

feature engineering to be discussed in Section 4.3.2.

3.5 English Semantic Feature Database

Mentioned in Section 2.1.4, BART will be fine-tuned with semantic features of words. A

project of producing English semantic features1 provides a database of 4436 concepts with

their semantic features by Buchanan et al. (4). The database is organized with word pairs

(concept, feature) which represent the close relation of their meanings and other statistics

on semantics. They built the database by examining the answers of concepts obtained

from crowdsourcing and processing their feature frequencies respectively.

The entire database has 69284 records of the word pairs with the part of speech (POS)

as well as the statistics on features and frequencies. The features have been ’translated’

to lemmas (lemmatization) using Snowball stemmer (33). Only the pairs of lemmas are

adopted in fine-tuning the BART. The detail of the English semantic feature database is

summarized in Table 3.3.

1https://wordnorms.com/
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3.5 English Semantic Feature Database

POS #Concepts #Records #Lemma Pairs

Noun 3125 51923 32051
Adjective 663 7511 3929
Verb 548 8772 6045
Other 100 1078 591

Total 4436 69284 42616

Table 3.3: Summary of the English Semantic Feature Database
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Method

This section presents the method to deal with features and predict basic level.

4.1 Classifier

Concepts are categorized into the basic level or the non-basic level. The classification task

in this thesis is finished by a machine learning classifier, Random Forest with SMOTE

algorithm. It will be used to measure the performance of the synthetic features.

There are several reasons to adopt Random Forest with SMOTE algorithm. The classifier

developed in both Hollink et al. (21) and Henry (23) is Random Forest with SMOTE. It

has been turned out to be the best classifiers for the basic level in Hollink et al. (21)

and reused by Henry. Performance improved by the features in this thesis is easier to

be compared with others’ using the same classifier. Another reason is from advantages

of Random Forest itself. It introduces randomization that helps avoid over-fitting, in the

meanwhile, it can be trained fast and efficiently even with large-scaled data. The input

features can be both discrete and continuous variables without normalization. Moreover,

after training and validation, it can return the importance of each feature which helps to

analyze the effeteness of the features. Therefore, Random Forest with SMOTE algorithm

will be used as a benchmark classifier.

The Random Forest has 1400 Decision Trees as base learners which are trained with sub-

dataset sampled with replacement from the dataset. Because of the method of bootstrap to

build up the Random Forest, out-of-bag samples are feasible to estimate the generalization

score of the classifier. For each Decision Tree in the Random Forest, Gini impurity is used

to measure the quality of a split with a node. The maximum depth of each tree is set to

50 which can control over-fitting and make the training fast. It is required that each split
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4. METHOD

leads to at least two child nodes and each node has at least one instance from the training

data.

We also try Support Vector Machine(SVM) a classifier for the reason that some semantic

features are made up of vector-based embeddings. The SVM is trained with Radial Basis

Function kernel, exp(−γ||x − x′||2), where x and x′ are both embedding vectors. After

tuning by grid search, the best setting of hyper-parameter γ is scaled by γ = 1/(n ∗ var),
where n is the number of the vector dimension and var is the variance of the input matrix.

The SVM is only used for classifying with the semantic feature of word embeddings in

Section 4.4.1. The Random Forest as the benchmark of the method is the main classifier

used to learn and predict the basic level.

4.2 Structural Feature Extraction

Structural features include lexical features of concepts and relational features of them

extracted from WordNet. The synonymy, hypernymy, and hyponymy of a concept in

WordNet convey semantic relations which reflect senses of the concept with its superor-

dinates and subordinates. According to the cognitive economy in Rosch et al. (6), the

relational features would be important indicators to classify whether a concept is in the

basic level that carries the most information and costs minimal efforts. Moreover, discussed

in Section 2.1.1.1, the relational features in the hierarchy, WordNet, naturally represent a

correlational structure of the real-world knowledge which is significant in the basic level

theory.

The basic level can be learned also from the lexical features. As pointed out, one of the

characteristics of the basic level concepts is that they are generally denoted by shorter and

more polysemous words (34). Therefore, the character length of lemmas in a concept and

the number of the lemma polysemies would be important features for predicting the basic

level concepts.

Hollink et al. (21) and Henry (23) both considered these structural features. Their data

of lexical features and relational features is referred in this thesis. Only some of WordNet

features in Henry’s work will be selected and reused in our method. The following structural

features are extracted and to be trained by the classifier.

• The number of the direct hypernyms of a concept

• The number of the total(direct and indirect) hyponyms of a concept

• The normalized number of part-whole relations related to a concept
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4.3 Concept Frequency

• The normalized depth of a concept from the root synset

• The normalized character length in the gloss of a concept

• The shortest character length of lemmas in a concept

• The number of lemmas in a concept

• The maximal number of polysemies of lemmas in a concept

4.3 Concept Frequency

For the concept frequency feature, the sources of calculating the frequency of concepts

are focused. To answer the first research question, corpora with different characteristics

are firstly compared to extract the frequency features which contributes the most to the

performance. Then, according to the most reliable corpus characteristics of predicting the

basic level, frequencies of the concepts will be acquired (in Section 3.4) and processed by

feature engineering.

4.3.1 Corpus Characteristics Comparison

Frequencies of concepts can be extracted from various corpora. Roach et al. found that the

basic level concepts are prominently used in daily communications, specially in communi-

cation with children. She also argued that the basic level could be the earliest categories

sorted and named by children (6). Therefore, concept frequencies extracted from spoken

discourses and child target audience corpora might improve the performance of basic level

prediction. The corpus characteristics compared in the method are the size of a corpus, the

discourse type of a corpus, and the target audience of a corpus. The comparisons should

take the size of the original corpus into account, discussed in Section 3.3.

Unlike Henry (23) adopted a range of statistics to calculate frequencies, the frequency

of a concept in this method is purely defined by occurrences of its lemmas. The sum of

occurrences of the lemmas in a corpus represents the frequency of the concept in the corpus

under its size. The number of the sum will be the frequency feature directly fed to the

classifier.

The first comparison concentrates on the size of a corpus. The hypothesis is that per-

formance would become better with an increment of the size of the corpus. Based on the

structural features, the frequency features will be verified respectively by the benchmark

Random Forest. With the different types and sizes of corpora sampled, multiple classifiers
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4. METHOD

will be trained and validated under the models and experiment settings designed in Section

5.1.

The second comparison focuses on the discourse type of a corpus. The hypothesis is

that performance of the classifier trained by the frequency feature from a spoken corpus is

better than that from a written corpus. This reflects to the previous research that the basic

level concepts are likely to be mentioned in daily communications and be the most used

in language (6). Intuitively, frequencies of the basic level in a spoken corpus would stand

out and be greater than those in a written corpus. Under this assumption, the frequency

feature from a spoken corpus is a more important and effective feature for the classifier.

The comparison will be conducted with a series of Wilcoxon rank-sum tests.

The third comparison gives attention to the target audience of a corpus. The experiments

in Rosch et al. (6) showed the basic level concepts are the first used by children developing

language. According to this statement, the hypothesis is that performance by the frequency

feature from a corpus specific to children is better than that from a general audience corpus.

Similar to the second comparison, the performance of the benchmark classifier trained with

the frequency feature from a child specific corpus and from a general audience corpus will

be compared by Wilcoxon rank-sum tests.

It is worth noting that both the second and the third comparisons consider the size of

the frequency source, which is regarded as a primary corpus characteristic in this method.

The design of the experiments will be clarified in Section 5.2.

4.3.2 Frequency from Google Ngram

According to the results of the Wilcoxon rank-sum tests in Section ??, it would be better

to use a large, written, and to general audience corpus as the source of concept frequency.

Google Book Ngram Corpus, as far as I known, is the largest corpus of printed publications

available for public research. Therefore, the frequency features for predicting the basic level

will be extracted from Google Ngram in this method. Same as the decision on the frequency

source by Hollink et al. (21) and Henry (23), they both selected Google Ngram to extract

frequencies because frequency feature from it was the strongest individual feature among

their experiments.

The frequency of a concept is the sum of frequencies of its lemmas in Google Ngram.

By the data acquisition in Section 3.4, the frequency of a concept by year can be returned

with an array whose elements represent the frequencies of the concept each year in Google

Ngram. To discover whether the time period affects the performance, frequencies from

Google Ngram corpus in the recent (based on 2019) 1 year, 5, 10, 20, 50, 100, 200, 400,
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4.3 Concept Frequency

Base: Structural Features
# direct hypernyms
# total hyponyms
normalized # part-whole relations
normalized depth
normalized gloss length
shortest lemma length
# lemmas
maximal # polysemies

Candidates: Google Ngram Frequency Features
Mean frequency: 1, 5, 10, 20, 50, 100, 200, 400, and 500 years
Maximal frequency: 1, 5, 10, 20, 50, 100, 200, 400, and 500 years

Target: Basic Level Annotations
All agreed: basic or non-basic

Figure 4.1: Frequency Feature Schema

and 500 years are gathered and stored for feature engineering. The frequencies in each

array can be aggregated into the mean and maximal values as the features. The mean

frequency would represent the average occurrences of a concept during a certain range of

years while the maximal one would show how much was the most significant used in those

years. After the processing, two groups of the frequency features of a concept each with

9 values are respectively the mean frequencies and the maximal frequencies among the 9

time periods.

The classifier keeps the same as corpus characteristics comparison in Section 4.3.1 except

for the frequency feature selected. That is to say, the structural features remain as the base

and pop each aggregated frequency feature into the training, shown in Figure 4.1. Hence,

the performance of each Google Ngram frequency feature can be compare to discover

whether there would be some patents related to the time periods.

To find out the best setting of the frequency features, a wrapper method of the feature

selection is performed. Bottom-up and top-down approaches are deployed to check which

combination would perform best with the metric of Cohen’s kappa score (35). The impor-

tance of the features in the best setting from the benchmark Random Forest classifier are

ranked and analysed in Section 6. The best combination of the frequency features will be

added to the synthetic features together with the structural features and used to train the

final classifier.
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4.4 Generative Semantic Features

In the first place, "semantics" here does not describe nor deal with the general meaning of

a concept. It neither needs to do so because some of the structural features in Section 4.2

surely have conveyed the general semantics from the lexical features or the relational fea-

tures. "Semantic feature" in this method especially stands for the semantic representation

of a concept which is key to models of semantic memory for facts (4) (36). To be concrete,

semantic features in this thesis indicate the overlapping attributes of a concept defined by

semantic similarity which can be regarded as cues in Section 2.1.1.2. For example, semantic

features of a concept of cat might be animal, pet, tail, and fur. These features convey the

most common and regular descriptions of a cat. Moreover, the semantic features might

cover shapes, appearance, uses, gender, locations, characteristics, and etc. The aims of

generating the semantic features are to measure the similarity of concepts and to create

cues of concepts for predicting the basic level.

To learn the basic level from the semantic features, two methods are proposed to extract

such semantics. They are word embeddings, and cues generated from BART. There is a

hypothesis for each method. The first hypothesis is that word embeddings, Word2Vec,

would provide effective semantic features for predicting the basic level because it is able to

measure a latent semantic distance between concepts in a hierarchy. The other hypothesis

is that generating the semantic features from BART as cues would improve the accuracy

of the prediction by using cue validity.

4.4.1 Word Embeddings

Word embeddings in this method are from ConceptNet Numberbatch 19.08 trained by

Word2vec, which is a task to represent words in the form of real-number vectors. The

semantics of concepts is contained implicitly in the vectors. Intuitively, we use this model to

compute the vector of a concepts as looking up in a dictionary. Each lemma of concepts are

converted in to a 300-dimension vector. Unfortunately, there are 63 concepts in multi-word

grams which are not directly in the vocabulary of the pre-trained ConceptNet Numberbatch

19.08 vectors. Originally, it is required to continue to train the model with sentences

including these missing multi-word grams. However, 7.5% of the annotated concepts can

not find entries, only one of which is the basic level. The missing concepts can be eliminated

from the dataset for convenience and the rest 776 concepts (174 of them are the basic level)

will be the training data.
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4.4 Generative Semantic Features

Because the benchmark classifier used is Random Forest with SMOTE algorithm, it is

not a good idea to feed the 300-dimension vectors into it directly. The reason is that

the vectors contain semantics implicitly, unlike the structural features and the frequency

features explicitly show the attributes. There would be two ways to represent such seman-

tics. One is to adopt the vectors directly which means they could be learnt by training a

Support Vector Machine as a classifier.

However, SVM is turned out from our experiments that performance of classifying the

basic level is not as good as Random Forest. Using SVM as the classifier, results from

vector-based features did not increase as expected, which is the same situation as Chen’s

(1). The embedding features trained by the SVM even decrease the performance compared

to trained by Random Forest. One possible reason is that it tends to classify the concepts

with the similarity of lemmas. In other words, the concepts at the subordinate categories

would be more likely to share a higher similarity and form support vectors in the SVM.

This could be harm to the binary classification task of the basic level.

Alternatively, with feature engineering, semantic features could be represented by dis-

tance. An aggregation method is put forward to extract the semantic features. A lemma

distance is firstly defined by the cosine similarity of vectors of two lemmas. The concept

distance is then defined by the lemma distance of lemmas in the concept and its hyper-

nyms. And they are aggregated by mean, minimum, maximum, and standard deviation.

For example, here is a hierarchy of three concepts in Figure 4.2 to calculate semantic

features from their word embeddings. If semantic features of Concept adjustable wrench

is required, cosine similarities as lemma distances between Lemma wrench and adjustable

wrench, wrench and adjustable spanner as well as lemma distances between spanner and

the other two lemmas are calculated. Then the mean, minimum, maximum, and stan-

dard deviation of the four lemma distances can become concept distances to represent the

semantics.

The semantic features from word embeddings by Word2vec are the four concept distance

aggregations of a concept. To find out whether distance-based semantic features improve

the performance, we train the benchmark classifier Random Forest with SMOTE algorithm

to predict the basic level.

4.4.2 Generate From BART

Besides extracting semantic features from word embeddings, we suppose that concepts

could be characterized by some words called cues. The cues of a concept would give

properties, categories, attributes, and some characteristics to the concept. Inspired by
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4. METHOD

Synset('wrench.n.03') 
 

['wrench', 'spanner']

Synset('allen_wrench.n.01') 

['Allen_wrench']

Synset('adjustable_wrench.n.03') 

['adjustable_wrench',
'adjustable_spanner']

...

Figure 4.2: Example of calculating semantic features

Machine Translation, these textual semantic features can be generated by a sequence to

sequence Machine Learning task. One famous per-trained model BART provides a good

tokenization tool as well as a base model to fine-tune for the semantic feature generation.

The training data for fine-tuning is from English semantic feature database (4). The

original features of concepts are in different grammar forms. We first do lemmatization

to convert them back to dictionary forms. And we only take out concepts and their

corresponding lemmatized features to build up the fine-tuning dataset. To make the fine-

tuning easier, we define a class of dataset inherited from Torch Dataset 1 to wrap the

processed data into a set of dictionary. Each dictionary would be a mapping from a word

to its semantic features. The dataset class is also implemented with getLength and getItem

functions.

After the processing and wrapping of the fine-tuning dataset. The generation contains

three phases. They are tokenization, fine-tuning, and generating illustrated in Figure 4.3.

For the tokenization, as discussed in Section 2.1.4, we use Initialized Encoder to tokenize

concepts. BART is here used as a tokenizer to obtain a token identification of each concept

and its semantic features. The token identification is in form of a real-number tensor. It

encodes text-based information into tensor-based numerical information which contains

semantics pre-learned in BART.

For the phase of fine-tuning, following the architecture of BART, we build a sequence-

to-sequence trainer to learn the mapping in the English semantic feature database. The

hyper-parameters can be seen in Table 4.1. The metric is SacreBLEU which provides

BLEU scores used to evaluate Machine Translation models (37). We aim to save the best

1https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
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4.4 Generative Semantic Features

Bidirectional
Encoder

Auto-regressive
Decoder

<s> A B C D

A B C D E

Tokenizer
Concept

Cues

BART

Semantic Feature Generator

English Semantic
Feature Database

ConceptBasic Level
Annotation

Dataset

Semantic Feature

Fine-tuning Generating

Tokenization

Figure 4.3: Semantic Feature Generation Pipeline

two fine-tuned models during training. The two will be used to translate lemmas into their

semantic features.

For the phase of generating, using one of the best fine-tuned model, we can generate

semantic features of the concepts in the annotation dataset. The concepts in the dataset

can be fully fitted in this pipeline for the semantic feature generation.

Although we are able to generate semantic features, they are text-based which are not

easy to learn directly. It is more reasonable to transform the textual feature into a numerical

one which is could utilize the semantics. I come up with an indicator which reflects to the

original basic level theory, namely cue validity. According to Rosch statement, cue validity

Hyper-parameter Value

evaluation strategy after epoch
learning rate 2e− 5

train batch size 8

evaluate batch size 8

weight decay 0.01

checkpoint number 2

train epochs number 3

predict with generate true

Table 4.1: Hyper-parameter Setting for Fine-tuning BART
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4. METHOD

Animal
creature cute wild live human 
eat fur pet zoo cat 
mammal dog 

Mammal
animal air live 
blood fur breath 
hair warm reptile

Carnivore animal eat live large

Cat animal allergy meow 
mouse predator fur...

Dog animal bark cute chase 
bone fur domestic pet...

Persian animal 
beak black
cat eat
feather fur
four hair
long leg

Bengal animal black
cat eat fur
four hair
long

Poodle animal  
beak dog
four fur 

Bulldog animal eat
beak dog
cute four fur 

...

...

...

... ...

CV=0.59

CV=0.92

CV=3.12

CV=5.0 CV=3.6

CV=0.8 CV=2.3 CV=2.0 CV=2.0

Figure 4.4: Concept hierarchy with cue validities example(4)

can be a probabilistic indicator which the validity of a given cue as a predictor of a given

category, in this project is the basic level category. To make it easy to understand, cue

validity is from conditional probability to indicate how likely it would be at the basic level.

Discussed in Section 2.1.1, there are various formulas to calculate cue validities. To

have a measurement for the cue validity in the project, based on the formal probabilistic

conception, here is a formula for compute cue validity given the cue and knowing whether

a concept is in basic level:

val(cue) = P (BL|cue) = P (BL ∧ cue)

P (cue)
(4.1)

Since a concept does not have the only cue in most cases, the cue validity of one concept,

CV (concept), is defined by a sum of the cue validities of a group of cues, which are the

attributes of lemmas of the concept, with Equation 4.1:

CV (concept) =
∑

l∈lemmas(concept)

∑
cue∈attribute(l)

P (BL ∧ cue)

P (cue)
(4.2)

The cue validity of a concept is no longer a probability but an accumulation of proba-

bilities instead. The same hierarchy can be taken as an example of defining basic level by
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4.4 Generative Semantic Features

cue validity of concepts, in Figure 4.4. Here are the lemma attributes and a cue validity

of each concept in the hierarchy. The cues are mostly from a database by (4) or generated

by Section 4.4.2 if concepts are not in the database. It reveals that the concept of cat and

the concept of dog show the greatest two cue validities which indicate they are in the basic

level. The result keeps the same as that in the approach of cognitive economy.

The number of the cues and the cue validity can be the semantic features of a concept

according to the method. These two features are input to train the benchmark Random

Forest classifier for predicting the basic level.
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5

Experiment Setting

This section states the setting of three models and design of experiments for the research

questions.

5.1 Dataset and Model Setup

The basic level annotations and the synthetics features of the concepts constitute the final

dataset to be used to train the Random Forest classifier. Three types of models will be

performed to test improvement of predicting basic level from the synthetic features. In

this section, metrics measuring performance of models, splitting of the dataset, and the

three models will be discussed.

Cohen’s kappa score(35) and balanced accuracy score(38) are used as metrics for eval-

uating performance of the models with imbalanced data. Cohen’s kappa measures the

inter-rater reliability for basic level or not. Specifically, it indicates how well the model

predict the basic level correctly compared to predicting randomly by chance. Balanced

accuracy is useful to evaluate how good a binary classifier is when trained with imbalanced

data. It considers sensitivity, which is the true positive rate, and specificity, which is the

true negative rate.

For each experiment, 10-fold cross validation is used to train and evaluate the model.

Due to the imbalance of the annotation data, Stratified K-fold1, a variation of K-fold cross

validation which samples each set to contain the same percentage of the basic level as the

whole dataset, is implemented to split the dataset into training data and validation data

with 10 groups. Under this setting, every experiment will return 10 groups of Cohen’s kappa

1https://scikit-learn.org/stable/modules/cross_validation.html#stratified-k-fold
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5. EXPERIMENT SETTING

Feature type

EX_F_1 Structural features
EX_F_2 Structural features + Frequency features from Google Ngram
EX_F_3 Structural features + Semantic features by Word embeddings
EX_F_4 Structural features + Semantic features by BART

Table 5.1: Experiment Settings for Feature Effectiveness

Training Data Testing Data

GlobalModel All 5 domains All 5 domains

LocalModel

hand tool hand tool
edible fruit edible fruit

musical instrument musical instrument
furniture furniture
garment garment

TransferModel

edible fruit, musical instrument, furniture, garment hand tool
hand tool, musical instrument, furniture, garment edible fruit

hand tool, edible fruit, furniture, garment musical instrument
hand tool, edible fruit, musical instrument, garment furniture
hand tool, edible fruit, musical instrument, furniture garment

Table 5.2: Model Settings

scores and balanced accuracy scores. The two averaged values of the scores respectively

are used to evaluate performance of the model.

The experiments include the effectiveness of each type of features based on the structural

features, Table 5.1. To verify the method and the synthetic features within and across

domains, three models are set up for evaluating and comparing the performance. They are

named GlobalModel, LocalModel, and TransferModel, described in Table 5.2.

5.1.1 GlobalModel

GlobalModel is trained and tested with the data from all the five domains in Table 3.1. This

model can fully use the annotated concept we have. In other words, it can have as much
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5.2 Wilcoxon Rank-Sum Test

data as possible to participate in the training. By GlobalModel, the overall performance

of predicting the basic level in a hierarchy will be revealed. The results would indicate

whether it is effective to add the synthetic features in training and how much it improves

or hurts the accuracy for all the domains.

5.1.2 LocalModel

LocalModel is trained and tested the classifier with the concepts in the same domain.

Therefore, there will be five LocalModels trained during one experiment. The result of

each LocalModel will indicate whether it is effective to train with the synthetic features

within a certain domain. The results of the five domains can then be averaged only to show

the influence introduced by the different kinds of features on the five domains. Feature

importance in every Random Forest classifier is also returned for comparing contributions

of the synthetic features among different domains.

5.1.3 TransferModel

TransferModel is trained with concepts within four of the five domains and tested on

the rest one. Similar to LocalModel, there will be five TransferModel trained during an

experiment. However, it does not need to set up the 10-fold cross validation because

training data and validation data have been splitted by the definition. Result of each

experiment is the averaged metrics from TransferModels of the five domains. The aim of

TransferModel is to verify generalization of the method. The accuracy on unseen domains

means whether the trained model is appropriate to predict the basic level on other domains

of knowledge. It can help to detect the basic level in a large-scaled hierarchy, all concepts

in WordNet.

5.2 Wilcoxon Rank-Sum Test

To answer the first research question about the relation between prediction performance

and the size of corpora, it requires finding whether there is a dependency between the

corpus size and the metrics, Cohen’s kappa or balanced accuracy. Wilcoxon rank-sum test,

also known as Mann-Whitney U test(39), is performed to test the null hypothesis that the

prediction performance Cohen’s kappa values and balanced accuracy by different sizes of

the same corpus are from the same distribution.

The experiment focus on the source of frequency features. Before conducting Wilcoxon

rank-sum test, the corpora are sampled into different sizes in Table 5.3 and used to calculate
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5. EXPERIMENT SETTING

Corpus 1M 2.4M 5.7M 100M

BNC
√ √ √ √

CHILDES
√ √ √

CABNC
√ √

KBNC
√

Table 5.3: Corpora Sampling in Different Sizes

frequencies. Each corpus in the scheme is sampled 50 times. For example, BNC is sampled

into the word counts of 1 million, marked BNC 1M, 50 times. Therefore, there are 500

sampled corpora in total including 50 BNC 1M, 50 CHIDES 1M, 50 CABNC 1M, 50 KBNC

1M, 50 BNC 2.4M, etc. The sampled corpora will be the sources of the frequency features

which are used to train the Random Forest classifier.

After sampling, the classifier is trained and tested by the structural features and the

frequency feature. With the model setting in Section 5.1, frequency features from different

sampled corpora can be used to train and test with the three models. Each corpus in

a specific size leads to 50 results with each model. Totally, there will be 1500 groups of

Cohen’s kappa and balanced accuracy results from the corresponding models and frequency

sources.

Wilcoxon rank-sum test is carried out to test two aspects of hypotheses about the size

and the type of corpora. The experiment settings are described in Table 5.4 and Table

5.5. The initial setting EX_W_0 is to have the Cohen’s kappa and the balanced accuracy

of each model from the samplings in Table 5.3. The first setting EX_W_1 is to compare

the results from the same corpus but different sizes. The second setting EX_W_2 is to

compare the results from the same discourse type of a corpus but different sizes. The third

setting EX_W_3 is to compare the results from the same target audience of a corpus but

different sizes. The last setting EX_W_4 is to compare the results from the same size but

different discourse types and target audiences of corpora.
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5.2 Wilcoxon Rank-Sum Test

Corpus Size

EX_W_0

KBNC 1M
CABNC 1M, 2.4M

CHILDES 1M, 2.4M, 5.7M
BNC 1M, 2.4M, 5.7M, 100M

EX_W_1

CABNC 1M - 2.4M

CHILDES
1M - 2.4M
1M - 5.7M
2.4M - 5.7M

BNC

1M - 2.4M
1M - 5.7M
1M - 100M
2.4M - 5.7M
2.4M - 100M
5.7M - 100M

EX_W_2

Written

1M - 2.4M
1M - 5.7M
1M - 100M
2.4M - 5.7M
2.4M - 100M
5.7M - 100M

Spoken
1M - 2.4M
1M - 5.7M
2.4M - 5.7M

EX_W_3

General

1M - 2.4M
1M - 5.7M
1M - 100M
2.4M - 5.7M
2.4M - 100M
5.7M - 100M

Children
1M - 2.4M
1M - 5.7M
2.4M - 5.7M

Table 5.4: Experiment Settings for Wilcoxon Rank-Sum Test
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5. EXPERIMENT SETTING

Size Discourse Type / Target Audience

EX_W_4

1M
Written - Spoken
General - Children

2.4M
Written - Spoken
General - Children

5.7M
Written - Spoken
General - Children

Table 5.5: Experiment Settings for Wilcoxon Rank-Sum Test
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6

Results & Evaluation

Discuss the design of your experiments, the results you obtained, and how they help in

evaluating the claims you made in the introduction. You may also use the evaluation

results in this section to justify your design choices or assess the contributions of different

aspects of your design towards the overall goals.
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7

Discussion

Here you put your results in context (possibly grouped by research question). Usually, this

section focuses on analyzing the implications of the proposed work for current and future

research and for practitioners.
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8

Conclusion

Briefly summarize your contributions, and share a glimpse of the implications of this work

for future research.
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