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“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley

ii



Abstract

When processing big data, data lineage enables engineers to efficiently check the

data source and debug issues. The goal of this paper is to build a data lineage

subsystem for fast-changing ETL jobs in an industry setting. We use AWS

Glue Studio to create ETL jobs and then integrate with Spline to automatically

track lineage information. Data lineage enables data engineers to debug more

efficiently, provides a clear data processing structure, and maintains consistency

in how data is transformed.
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Introduction

In the big data era, raw data is gathered from numerous sources and processed with

multiple data transformations. When processing big data, data engineers are faced with

multiple questions with respect to the data: Where is the data source? Whether new data

has been updated? When running data pipelines, how can they debug the problem when

there are errors occur? How can they target the problem?

Data lineage, also known as “data provenance” or “data pedigree”, is the description of

the origins of a piece of data and data transformation (2). Because both data lineage and

data provenance aim to describe data sources and the processed data, they are often used

interchangeably (3)(4)(5). Eugene Wu et al. (6) distinguish between the two concepts by

defining data lineage as a critical component of data provenance, and it is used to identify

relationships between input and output data elements as well as to debug workflows. Data

provenance is more advanced and is typically used to give business users an overview on the

origin of the data. In contrast, data lineage focuses on data transformation and life-cycle

management (3).

Data lineage brings many benefits to industrial production. It gives the company a

bird’s-eye view of the entire data processing lifecycle, covering data sources and all the data

transformations which led to a given output data. It also helps developers find problems

efficiently when errors occur. While there are many benefits to engineers in developing big

data provenance in production, but there are also some challenges. For example, how to

save significant amounts of data, maintain computational efficiency, etc.

The work described in this thesis has been developed as an internship at Dashmote1,

which provides big data analytics services to food and beverage companies, such as Red

Bull, Coca-Cola, etc. As a data-driven company, there are multiple data pipelines used
1https://dashmote.com/
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1. INTRODUCTION

for processing big data, including data sourcing, pre-processing, machine learning, and

post-processing. When designing and executing data processing pipelines, it is frequent

to face errors. It could be caused by the source data, which then affects the entire data

transformation. Data lineage can help engineers conduct in-depth data analysis to find

problems, which benefit the efficiency of the industrial production.

This thesis aims to design and implement data lineage systems at Dashmote. Data

lineage is introduced at Dashmote to improve the quality of the existing data production

processing pipelines.

This thesis describes the process of designing and implementing data lineage using AWS

Glue Studio and Spline. The rest of the thesis is structured as follows: Chapter 2 introduces

the application scenarios, benefits, and challenges in data lineage, then states the problems

encountered and research questions. In Chapter 3 introduces techniques and tools of data

lineage. Chapter 4 elaborates the project implementation process, including the project

requirements, data architecture, how AWS Glue integrates with Spline, etc. Chapter 5

discusses this graduation project’s evaluation, reflection and future work. The conclusion

and answers to research questions are presented in Chapter 6.
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2

Background

In this chapter, we introduce application scenarios of data lineage in scientific and business

domains. Then, we elaborate on the benefits and challenges of data lineage. They serve to

illustrate the problem statement, which requires data lineage systems. At the end of the

chapter, we list and discuss the research questions which will be driving our work.

2.1 Application Scenarios in Data Lineage

Simmhan et al. (7) introduced the application of data provenance in several scientific and

business fields. In the following section, we summarize a few examples in both scientific

and industrial domains.

2.1.1 Scientific Domains

Digital Object Identifier (DOI) The Digital Object Identifier is a string of numbers

used in scientific publications/research to identify a specific paper or experiment record,

including experimental procedures and results, providing readers with an understanding of

how these papers relate to one another and forming a data lineage.

Geographic Information System (GIS) The Geographic Information System is a

computer system used to collect, store, manage, analyze, and track geographic information.

In GIS, data lineage is often used to describe the history of the source data, the method of

obtaining the data, and how data is transformed. Users of GIS can generate new spatial

data by manipulating and combining existing data, providing new perspectives on the data.

In addition, Data lineage information assists developers in determining data quality.

3



2. BACKGROUND

Materials Science Data lineage is also critical for materials science, such as in the

aerospace industry. Low-quality materials or inaccurate data can have highly negative

consequences and impact operational performance. Sometimes it can be difficult for en-

gineers to detect data quality because the data may look similar. However, by leveraging

data sources, materials engineers can track whether the data is trustworthy, which can

help detect faulty components and avoid production failures.

Life Science Research Data lineage can also be used in life science research, it has

three significant advantages. First, the traditional method of sharing biological knowledge

is through the publication of a paper. However, data sources can provide an analog of

citations, allowing researchers to more effectively share biological and biomedical informa-

tion (8). Second, data lineage can improve data reliability by tracking data sources and

transformations. Third, data can be automatically validated and updated, ensuring that

less relevant data becomes obsolete.

Astronomical Science Astronomers are working to build an international virtual ob-

servatory and provide the computing resources needed for data science. As astronomy has

advanced, astronomers’ work has grown from an individual to an increasingly collaborative

one. Therefore, they rely not only on data from them but also on data from other sources,

making the source and lineage of the data more important to them (9). Data lineage can

help astronomers assess the trustworthiness and quality of data from third-party sources,

provide semantic meaning and assist scientists in integrating it into their data processing

system.

2.1.2 Business Domain

Business users often work with well-organized data schemas and trusted data sources.

However, dirty sources will impact the entire data process. Correcting the procedure

becomes expensive and time-consuming. The information on data lineage can assist data

analysts in tracing the incorrect data back to the source and checking the data type. It

can be modified and updated based on data source changes and transformations.

2.2 Benefits of Data Lineage

There are some benefits of data lineage for business, engineering, and science domains.

Webjørnsen et al.(10) states some data lineage benefits in the data warehouse, which are

summarized below:
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2.3 Challenges of Data Lineage

In-depth Data Analysis If the data is traceable, data scientists and engineers will

better understand the dataset. The ability to view and track data flow from source to

destination helps data scientists understand the quality and lineage of a particular field

or dataset. Data engineers gain greater insight into the entire data pipeline, and the

dependencies between each dataset (11). Xavier (12) claims another case in business

scenarios: sometimes, strange graphs may appear on the dashboard, such as extremely

low values on a line chart. The cause can be a data pipeline failure or accidental deletion

of a column. Using data lineage techniques, the data can be traced back to its source to

determine where the data came from and what went wrong.

Impact Analysis Suppose data in a table needs to be changed. In that case, data

lineage technologies allow us to examine the impact of the change before implementing the

change or breaking the entire data pipeline. Impact analysis can also be used to determine

which tables, columns, and processes will be affected by changes.

Debugging When unusual data occurs, or data pipelines fail unexpectedly, data lineage

can help engineers determine if the upstream data pipeline is corrupt or if the code has

a problem. At the same time, we can understand who is using current data and who is

affected by pipeline failures.

Assisting with Data Mining If the input data is accurate and trustworthy, the

output data will be reliable. Thus, knowing where the data comes from can improve data

mining and discovery by increasing the credibility of the data.

2.3 Challenges of Data Lineage

Implementing data lineage can provide many benefits, but also some challenges. In this

section, some main challenges and possible solutions will be elaborated on.

Large Data Volume Wang et al. (13) claim that the data lineage contains an excessive

amount of data. The amount of data is much more significant than the data which needs

to be processed because data lineage includes data flow paths from source to destination.

A possible solution might be to save the data more efficiently or to reduce the amount of

data that does not contain that target feature. Since big data processing is crucial for data

lineage technology, traditional methods cannot handle massive data (14). Another solution

is an approximate lineage, which compresses data by only keeping track of the essential

5



2. BACKGROUND

derivations (15). This method not only improves query performance but also minimizes

data storage.

Computational Efficiency Data lineage techniques can be resource-consuming, and

data-intensive (14). Lineage approaches must be designed and implemented with minimal

computational overhead to avoid affecting the target system’s performance. There are two

methods for computational efficiency. One approach is to compute the lineage only when

needed, known as the lazy lineage model. In contrast, the eager lineage model computes

the lineage each time the data is transformed. Both models have their own set of benefits

and drawbacks.

Sheikh et al. (16) propose another technique to improve computational efficiency called

provenance inference. It has very little storage overhead when compared to explicit prove-

nance. Rather than obtaining all the data from a data lake, which would incur additional

storage costs, provenance inference can save execution time and money by utilizing fewer

computing resources (17).

Quality: Accuracy and Consistency Accuracy and consistency comprise the lin-

eage quality factor. Because data lineage is mined from log files, accuracy is one of the

most important factors when designing a data lineage approach. Sometimes the lineage

tool receives an event that it does not know how to process or intentionally ignores because

it “thinks” there is no helpful information associated with it from the perspective of lineage

tracking. The lineage may not be captured as expected in such cases. If there are some

inaccurate captures, there may be some errors in lineage tracking. Capturing inaccurate,

duplicate, or conflicting lineage records can also result in inaccurate lineage.

Consistency is another quality challenge for data lineage. It may occur if two lineage

traces are supposed to form one (18). Timestamps are a good example because they vary

in different regions. If two lineage traces have both MM/DD/YYYY and DD/MM/YYYY

formats, the lineage may be confused because it does not know which format it should be.

According to their findings, the quality dimension is used to increase data lineage quality

details.

Resource Utilization Resource utilization refers to CPU utilization, memory usage,

etc. Based on the summary of data lineage challenges by Sheikh et al. (16), resource

utilization should not be ignored because CPU utilization increases when data lineage is

captured. However, few researchers think this is important.
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2.4 Problem Statement

2.4 Problem Statement

Data pipelines play an essential role for companies in dealing with big data. However, we

might encounter problems when using data pipelines. Following are some problems which

can be solved by introducing the data lineage subsystem.

All data transformations lack clarity without visualization or a method to examine how

the data is processed. At Dashmote, ETL pipelines consist of PySpark1 components run-

ning on AWS EMR2 orchestrated by Apache Airflow3. There is no data lineage system

implemented. Engineers sometimes use Spark UI (19) to investigate issues encountered in

the data processing (Figure 2.1). Spark UI is the web interface that allows users to view

and examine Spark job executions while a Spark application is running. It can provide

execution job details. However, it is difficult to extract data lineage with Spark UI. In

addition, the Spark UI might be too complex for technical users and sales departments.

Figure 2.1: Spark UI example of a Spark job

At Dashmote we have noticed that new engineers struggle to understand how data is

being used. In other words, when engineers want to check how data is produced, they

have to read the code repositories to understand the process, which is time-consuming,

complicated, and unnecessary because they need to understand the logic behind the code

to understand the details of data transformations. Reading the code of each repository is

sometimes not enough to understand all the inputs and outputs and the processing steps

in between.

Sometimes, companies use diagrams to describe their assets, which are difficult to main-

tain. Post-processing is the final step before delivering data to clients, and it creates a

custom output DataFrame after the standard output. Figure 2.2 describes the structure
1https://spark.apache.org/docs/latest/api/python/
2https://aws.amazon.com/emr/
3https://airflow.apache.org/
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2. BACKGROUND

of post-processing steps, including how input data is processed in different post-processing

components. Because if we need to make some changes or improvements, we have to un-

derstand the order of the whole graph and program before making changes, it is more

efficient to automatically generate data lineage based on changes in data transformations.

Figure 2.2: The structure of post-processing, including input and output data, and data
transformations in between.

Dashmote is currently using Apache Airflow to orchestrate its ETL pipeline. Airflow UI

provides visualization of ETL DAGs (Directed Acyclic Graph). However, the visualization

of DAGs highly depends on the implementation of airflow operators. It provides limited

information on data lineage.

As a data-driven company, Dashmote needs to run many components or ETL pipelines

to process the data daily. Data pipelines and machine learning models are widely used in

industries to process big data and complete business analysis. Suppose issues are detected

in one of the company’s data pipelines, or data engineers want to know how to change some

data from the previous step. In that case, it is difficult for them to identify the source of

the problem efficiently.

2.5 Research Questions

After reviewing the most critical problems encountered at Dashmote, and we have decided

to focus our work on solving the following research questions and build our work on the

state-of-the-art research and technology in data lineage.

Research Question 1: How to build a versatile data lineage subsystem for a highly

complex, fast-changing data pipeline in an industrial setting?

- This is the main research question of this paper. Since there is no data lineage system

implemented and no visualization of how data is processed, we want to provide the

8
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most suitable data lineage solution for Dashmote and analyze its advantages and

disadvantages.

Research Question 2: What techniques, tools, frameworks can we use to implement

the data lineage?

- A survey of the state-of-the-art of existing data lineage techniques, tools, and frame-

works will help us to buildup on recent achievements in Science and technology on the

topic of data lineage and will help us to focus our contribution to the most important

and unsolved problems.

Research Question 3: What are the challenges when developing data lineage?

- Since the topic of data lineage is new Dashmote, our work will serve also to explore

and discover the challenges for developing a data lineage system. Some of these

challenges will be addressed in our work, others will be the focus of future projects

within the company.

9



3

Related Work

In this chapter, some related work on data lineage is discussed. Then, the standard tech-

niques used to implement data lineage are elaborated, including pattern-based lineage,

parsing, data tagging, and self-contained lineage. Furthermore, some implementation chal-

lenges and possible solutions are explained. Finally, some data lineage tools are summarized

with their benefits and drawbacks.

3.1 Techniques

Some common techniques which are used to implement data lineage are mentioned below:

Pattern-Based Lineage The pattern-based lineage does not need to deal with code that

transforms the data. Metadata for tables, columns, and business reports are evaluated,

and it employs patterns in the metadata to perform lineage (20). The main advantage

of pattern-based lineage is that it only processes data, but not any algorithms. It can

be applied to any database technology, such as Oracle, MySQL, or Apache Spark. The

downside, however, is that it is not always accurate. In some cases, it might miss the

connection between datasets or transformations if the data processing logic is not in human-

readable metadata or hidden in code. It can lose the connection between datasets or

transformations.

Lineage by Parsing In contrast to the pattern-based strategy, parsing techniques rely

on the logic behind the processed data. It automatically reverses the data transformation

logic and then generates detailed lineage tracing (20). It is more accurate since all logic

from the code can be parsed. However, the implementation is complex because it requires

knowledge of programming languages as well as the tools needed to transform the data,

10



3.2 Tools

which could include ETL (extract, transform, load) logic, SQL solutions, Spark solutions,

etc.

Lineage by Data Tagging The data tag can be tracked to create a data lineage repre-

sentation if a transformation engine tags the data that is processed. This technique only

works if the transformation engine is reliable to tag all the data (21). The disadvantage is

that data lineage cannot be created if data tags are missing.

Self-Contained Lineage Some organizations have their data environment, providing

storage, data processing logic, and master data management (MDM) to handle data sources

and metadata. These environments contain a data lake where all data from all stages of

their lifecycle can be stored (20). Self-contained systems can provide data lineage on their

own without the need for additional data lineage tools. However, lineage relies on a self-

contained system, in which case lineage cannot be executed without metadata provided in

the self-contained system.

3.2 Tools

In this section, some data lineage tools will be summarized as follows, and more details

can be found in (22).

SAP PowerDesigner SAP PowerDesigner is an enterprise modeling tool that can pro-

vide different models to model relational databases, such as conceptual, logical, and phys-

ical models. SQL DDL (Data Define Language) can be generated and applied based on a

physical data model. Conversely, data models can be generated based on databases, and

models can be converted to each other. Furthermore, it can also provide an enterprise ar-

chitecture model, a requirements model, and a business process model. Those models are

useful to be used to generate data lineage, create visualization graphs, check data quality,

etc.

ETL Tools Some data modeling tools, such as SAP PowerDesigner, can provide data

lineage information during the modeling step. SAS Data Integration Studio (SAS DI) is

an ETL tool which provides visual design for the building, implementing, and managing

of data integration processes1. It can also display the data lineage for tables and external

1https://support.sas.com/en/software/data-integration-studio-support.html
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files1. Ab Initio is another ETL tool that provides a scalable and robust metadata system

for governance and data management applications2.

Data Lineage Extraction Tools Some tools can extract data lineage information from

different types of systems. Such as, Octopai3, D-QUANTUM4, and Manta5, etc. These

tools can acquire data lineage information from various databases and ETL tools. It can

bring many benefits from lineage information, such as in-depth analysis, debugging, data

mining, etc. However, those extraction tools have some limitations.

One of these limitations is that they are unlikely to be used on all platforms. Some

companies, particularly large ones, usually use multiple databases and ETL tools. A single

data lineage tool cannot extract lineage information from all platform lineage. One way

to solve this problem is using different platforms’ tools. Additionally, some closed systems

do not allow third-party tools to access and extract their metadata, making it challenging

to extract metadata. There is also a question about parsing the programming code. The

data lineage extraction tool obtains lineage information by parsing the code. However, if a

code is used to modify the input parameters rather than the data, this will bring challenges

and ambiguity for the data lineage tools.

Also, these kinds of tools’ snapshot characteristics must be considered. If the data lineage

information is extracted for both data warehouses and reporting tools, these paths must be

extracted simultaneously. That is because the data lineage information will be inconsistent

if the extraction time for the data warehouse and reporting tools is different. Therefore,

the frequency of updating the data lineage is a critical issue for extraction tools.

Graph Databases Graph databases store data in nodes and edges, which are non-

relational databases. It can be used for modeling and data analysis because each node

represents a data element, and edges represent connections to each other. Neo4j6 is one of

the most common graph databases.

Apache Atlas Apache Atlas is a metadata management tool in Hadoop or non-Hadoop

ecosystems. It can provide metadata services for Hive, Ranger, Spark, Sqoop, etc.

It has an intuition UI that can provide the data lineage for every data processing. Fur-

thermore, the REST APIs can access and update the lineage in real-time.
1https://documentation.sas.com/doc/en/etlug/4.904/p13kmxhmyi0o0hn1urr3q07nu0t1.htm
2https://www.abinitio.com/en/data-catalog-quality-governance/metadata-management-governance/
3https://www.octopai.com/
4https://synabi.com/en/
5https://getmanta.com/
6https://neo4j.com/
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Apache Atlas has some benefits for data lineage. However, it lacks the support for

Apache Spark (23).

Spline Spline1 is an open-source tool for automatically tracking data lineage. It was

initially designed for financial institutions because data lineage tracking is one of the most

critical problems. Many organizations also use big data technologies, such as Apache

Spark2. Hence, Spline, as a data lineage tool, is used for capturing and storing lineage

information from the internal Spark execution plan of Apache Spark. As the project

expands, it becomes possible to use it with other data technologies, not only for Spark.

There are three main manners of Spline (23):

• Lightweight: No heavy computation is performed during the execution of the Spark

application. This character solves the computation challenge which is mentioned in

Section 2.3.

• Unobtrusive: If the lineage capture or extraction fails in Spline, the Spark job is

unaffected.

• Easy to use: Spline is easy to be implemented by initializing the library with a

single line of code.

Spline consists of three main parts, and Figure 3.1 shows the Spline architecture:

Figure 3.1: The Architecture of Spline (1)

• Spline Server is the core of Spline. It receives the lineage data from the Producer

API and stores it in ArangoDB. In addition, it provides reading and querying lineage

data features for Consumer API.
1https://absaoss.github.io/spline/
2https://spark.apache.org/
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• Spline Agents capture the lineage and metadata from data transformation pipelines

and send it to the Spline Server in a standard format using a Producer API. The final

lineage data is processed and stored in the form of a graph and can be accessed via

another REST API, also known as Consumer API.

• Spline UI is a lightweight HTTP server and is only used for data lineage visualization

required by Spline UI. It can display table lineage, field lineage, and input and output

schemas at various stages based on different applications.
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4

Project Implementation

In this chapter, we describe the implementation process and details of data lineage. We

begin by stating the project requirements based on the problem statement in Section

2.4. After that, we describe the proposed data lineage architecture design according to

the project requirements. To validate our implementation, we describe the current ETL

pipeline use case at Dashmote using Apache Airflow and the motivations to switch to

AWS Glue Studio. Afterward, we describe the new ETL pipeline including the data lineage

implementation details by integrating AWS Glue Studio with Spline to create data lineage.

Finally, we demonstrate the visualization and utilization of the data lineage system.

4.1 Project Requirements

In Section 2.4, we list the problems and challenges facing data engineers at Dashmote. In

this section, we provide concrete requirements we use to drive our design.

Debugging Supports It is normal to get errors when running some data pipelines

during work. The reason could be data loss, incorrect data type, wrong code, etc. Engineers

who cannot check information from data lineage spend much time checking where the data

came from and the source data. Data lineage helps engineers keep track of data.

Consistency and Efficiency If we use graphs to describe how the data is processed,

engineers need to update the graphs manually when some changes are applied, and the

information cannot be updated in time. By using data lineage, information can be updated

automatically and promptly, keeping lineage information consistent. Engineers can inspect

components by clicking on the data, which improves efficiency.

15



4. PROJECT IMPLEMENTATION

Clear Structure of Data Processing Customers or new engineers need time to under-

stand the entire data transformation process. If the structure is unclear, it can sometimes

lead to confusion. Data lineage provides users with a clear and organized structure to

understand the construction of data pipelines and even more detailed information about

the data. It saves even more time when introducing the entire data processing step, and

it is easy to understand by technical and non-technical users with minimal support.

Scalability and Maintainability Data lineage should be highly scalable to handle

growing demands as we add more transformations or processes to the data pipeline. It

should also not involve much manual maintenance and minimize the cost and effort of

maintaining a data lineage system.

4.2 Data Architecture Design

Figure 4.1 illustrates the company’s current ETL pipeline architecture. After sourcing the

data, data engineers at Dashmote save it as a parquet file in an AWS S31 bucket. They

use Apache Airflow to manipulate the data pipeline, including pre-processing, machine

learning modeling, and post-processing. The pipeline collects components together using

a DAG consisting of operators. However, engineers have to create GitHub repositories for

each component and code the operators in Airflow, which takes time.

Figure 4.1: The current ETL pipeline architecture at Dashmote

1https://aws.amazon.com/s3/
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4.3 Apache Airflow vs. AWS Glue Studio

Figure 4.2: The new technical architecture design at Dashmote

To effectively deploy the ETL pipeline and solve the problems stated in Section 2.4,

we decided to use AWS Glue Studio to create the pipeline and utilize Spline to generate

lineage information. We apply Glue Studio to some essential functions based on the existing

solution. The new technical architecture design is shown in Figure 4.2, and changes are in

the dotted box in the lower right corner.

4.3 Apache Airflow vs. AWS Glue Studio

We decided to use AWS Glue Studio for the post-processing step instead of Apache Airflow

because there is no complex transformation in post-processing, and Glue Studio can help us

create an ETL pipeline relatively quickly. Apache Airflow is not a drag-and-drop platform,

so we have to code our own DAGs. The DAG only describes the external dependencies

of each task. Every task can only be run when the upstream task succeeds. Setting up

an Apache Airflow architecture for production is complex process: There are three main

components in post-processing, and the CC_ASEAN (a project name at Dashmote) post-

processing pipeline is shown in figure 4.3, involving the following steps:

• Subset-extraction: extracting relevant data from the country data pool for every

client, including platform scoping, brand scoping, and geolocation scoping.

• Flags-generator: generating calculated fields on the outlet, portfolio, or matching

tables based on other fields of tables.

17
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Figure 4.3: The CC_ASEAN post-processing pipeline at Dashmote

• Data-transformer: transforming the data from the company’s data model to the

client data model by renaming columns, changing data types, modifying the format,

etc.

If we take the example of the data-transformer, it is only used for processing some data

transformations, and it is not very necessary to run it in Airflow. Since we need to create

a repository from the beginning and then define operators in Airflow. When running the

pipeline, Airflow also needs to launch an EMR cluster to allow tasks to run inside, which

takes time and resources. Once we encounter errors in this step, or we need to update the

code for new requirements, there are many processes that we need to do:

– Push and merge the code to the repository

– Git Action build a new Docker image for the repository

– The new Docker image is uploaded to AWS ECR1 (Amazon Elastic Container Reg-

istry), which is used for storing and managing the Docker image.

– Update the new Docker image version in Airflow repository

– Run the data pipeline in Airflow with the latest version

The process looks complicated and takes longer than creating an ETL job using AWS

Glue Studio, which provides “drag and drop” features for users to create, run, and monitor

ETL jobs easily.

1https://aws.amazon.com/ecr/
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Port Range Protocol Security Groups
22 TCP SSH for Admin

8080 TCP Spline Rest API
9090 TCP Spline UI

Table 4.1: AWS EC2 Security Settings

4.4 Spline: Data Lineage Tool

In this section, we describe how to set up Spline and integrate Spline with AWS Glue

Studio.

4.4.1 Set up Spline Server on AWS EC2

We use docker-compose to containerize and deploy the Spline on EC21 (Elastic Compute

Cloud), which is a web service that provides resizable computing capability. Docker2 and

Docker Compose3 need to be installed in advance.

We first need to create and launch an EC2 instance with 2 CPUs, and the security

settings are in Table 4.1. The rest of Spline settings are in this GitHub repository4,

including opening the SSH client, logging into the EC2 instance, installing and starting

the Docker service, installing Docker-compose. The Spline version that we are using is

0.7.7.

4.4.2 Create and Run ETL jobs in AWS Glue Studio

After setting up the Spline Server, we need to create and run an ETL job in AWS Glue

before implementing the data lineage. We can easily use the “drag and drop” feature to

execute the job. The Glue studio has three main parts: Source, Transform, and Target.

For sourcing and saving data, users can select AWS Glue Data Catalog, Amazon S3,

MySQL, PostgreSQL, etc. In our case, we store and fetch the data in AWS S3. We

save data in parquet format because parquet is a column-oriented data store. It saves

storage space and speeds up aggregation, and analytical queries (24), compared with some

row-based data stores, such as CSV, JSON, etc.

In the transformation step, some essential functions such as Apply Mapping, Select

Fields, Drop Fields, etc. We can also customize our SQL code in Glue Studio. The
1https://aws.amazon.com/ec2/
2https://www.docker.com/
3https://docs.docker.com/compose/
4https://github.com/AbsaOSS/spline-getting-started/tree/main/spline-on-AWS-demo-setup
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Transform part is easy to use, such as the Select Field function, which will display the

fields contained in the database, and we need to click the box to select the fields we need.

Figure 4.4 shows a Glue ETL job, which is used for filtering information and saving data

into the client’s S3 bucket.

Figure 4.4: A Glue ETL job to filter information and save to an S3 bucket based on client’s
requirements

4.4.3 Integrate AWS Glue with Spline

The “Job details” need to be edited if we want to integrate AWS Glue with Spline. We first

download the Spline Agent Spark jar from the Jar Download1 website, which is designed

to be embedded in the Spark driver. Then we save it in the AWS S3 bucket and edit the

JARs path in Glue Studio.

Then the “Job parameters” in advanced properties need to be specified as the spline-

related parameters. The parameters are shown in Table 4.2

We can create ETL jobs using AWS Glue Studio, and Glue can automatically generate

scripts. However, some issues need to be addressed when capturing data lineage. If we

capture lineage from the script provided by Glue, it will fail because Spline cannot capture

RDD lineage, while Glue uses RDD under the hood and converts DataFrame to RDD

internally before processing.

1https://jar-download.com/artifacts/za.co.absa.spline.agent.spark

20

https://jar-download.com/artifacts/za.co.absa.spline.agent.spark


4.5 Visualization and Utilization of Data Lineage

Key Value
--class GlueApp

--conf

spark.spline.lineageDispatcher.http.producer.url=
http://<Spline_Server_IP>:8080/producer
--conf spark.spline.mode=REQUIRED
--conf spark.sql.queryExecutionListeners=
za.co.absa.spline.harvester.listener.SplineQueryExecutionListener

Table 4.2: Spline Server Parameters

Function GlueContext SparkContext

Source Data

IN_DT_outlet_node1659887173884 = glueContext.create_dynamic_frame.from_catalog(
database="dash-alpha-dev-postprocessing",
table_name="cc_india_data_transformer_outlet",
transformation_ctx="IN_DT_outlet_node1659887173884")

IN_DT_outlet_node1659887173884 = spark.sql(
"SELECT * FROM ‘dash-alpha-dev-postprocessing‘.cc_india_data_transformer_outlet")

Save Data

AmazonS3_node1660851337315 = glueContext.write_dynamic_frame.from_options(

frame=SelectFieldsSEMatching_node1660851333882,
connection_type="s3",
format="glueparquet",
connection_options={
"path": "s3://dash-postprocessing-dev/cc_india/in_push_to_asean_matching/",
"partitionKeys": ["refresh", "country"],
},
format_options={"compression": "gzip"},
transformation_ctx="AmazonS3_node1660851337315",
)

SelectFieldsSEMatching_node1660851333882.write\
.format(’parquet’)\
.mode(’overwrite’)\
.partitionBy(’country’, ’refresh’)\
.option(’compression’, ’snappy’)\
.parquet(’s3://dash-postprocessing-dev/data_lineage/cc_india/in_push_to_asean_matching/’)

Table 4.3: Syntax differences between GlueContext and SparkContext for the same function

The scripts generated by Glue are based on GlueContext, and Spline can capture lin-

eage if we use Spark API directly within Glue rather than GlueContext. In that case,

we first need to convert the script from GlueContext to SparkContext. Table 4.3 shows

the comparison between GlueContext and SparkContext. All the logs are recorded in

CloudWatch1

4.5 Visualization and Utilization of Data Lineage

After the Glue job has been run, a data lineage can be captured by Spline, and the lineage

is shown in Figure 4.5. The input and output data information is displayed in the UI. We

can also extend the lineage to check more detailed information.

Figure 4.6 provides the complete execution details of the ETL job. The transformation of

the whole process is shown in the graph. By clicking on each component, we can intuitively

see which transformations have been applied.

When selecting a specific data column, we can also track the data in a particular field,

shown in Figure 4.7. It can help us with data source checking. If BI analysts find that

the data is incorrect while doing quality assurance, engineers can use data lineage to

track the source of the data and how data was transformed, which helps with debugging.

1https://aws.amazon.com/cloudwatch/
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Figure 4.5: Data lineage in the spline UI. From this interface, we can clearly see where the
input and output data are, and the execution time

Furthermore, if engineers want to make some changes to middleware components, they can

see which components or data will be affected by viewing the data lineage information.

22



4.5 Visualization and Utilization of Data Lineage

Figure 4.6: ETL execution details in Spline UI, from which we can see what transformations
were processed during this job

Figure 4.7: By clicking on the box, we can check where the data came from and what
columns of data are included in this step
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Discussion

In this chapter, we discuss the impact of the proposed data lineage on the ETL pipeline

at Dashmote. in Section 5.2, we compare certain feature of the ETL pipeline before and

after adding the data lineage to the processing pipeline. Finally, we analyze the project

limitation and discuss future work.

5.1 Evaluation

This section evaluates the project in terms of development cost, debugging time, and

business value.

Development cost Based on the creation date of the components in GitHub, it takes

about 4 to 5 months to develop the three post-processing components. However, we only

need two hours to complete post-processing ETL jobs using AWS Glue, which saves devel-

opment time. Additionally, Glue allows us to modify transformations in ETL jobs quickly.

However, if we run post-processing pipelines in Airflow, we need to update the code in the

GitHub repository first and create the DAG in Airflow, which takes longer.

Debugging time Considering the time-saving perspective, the plan with Glue and Spline

can save engineers time for debugging. Previously, we used Airflow to run pipelines. If

some errors occur, we have to check the specific component and debug the code locally.

Since the data we processed is massive (e.g., 8 GB), based on experience, usually takes

us more than 1 hour to detect the error data and sometimes 30 minutes to read and load

data. However, Glue and Spline can help us check the potential bug within a few minutes.

Business value Before the data lineage solution, product managers could only view the

results of all transformations without a clear view of the entire data processing. With the
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help of Glue and Spline, people who do not have technical backgrounds can quickly check

how data is transformed between different steps.

5.2 Reflection

Before we started to work on this project, Dashmote used Apache Airflow to run data

pipelines. Our project main contribution was to introduce a data lineage subsystem to

improve the data processing pipeline. By implementing data lineage, there are several

benefits to engineers, new employees, and customers. Some summaries are provided below

to compare the changes between previous and current solutions.

5.2.1 Comparison

The comparison between the ETL pipeline processing at Dashmote before and after we

introduced the data lineage subsystem is shown in Table 5.1.

ELT pipeline without data lineage ETL pipeline with data lineage
- Not clear about how data is processed
Engineers can use Spark UI to investigate
issues, but it is difficult to understand the
data lineage information.
- Difficult to understand how data is used
New engineers want to check the input
and output of a specific component, and
they have to read code repositories to
understand the logic behind the code,
which is time-consuming and low efficient.
- Limited lineage information:
Apache Airflow can display what the
pipeline looks like, but engineers cannot
check more detailed lineage information from it.

- Clear structure of data processing
Data lineage can provide detailed information
on how data is processed in the data pipeline.
It can help customers or new engineers to
have a clear understanding of data processing.

- Debugging in time-consuming
If an error occurs in the data pipelines,
engineers have to spend time tracking
where the incorrect data is coming from,
which takes a long time.

- Debugging supports:
Instead of spending hours debugging code,
engineers can use data lineage to check
where the data source is quickly.
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- No automatic updated structure graph
If there are any changes in the component,
a flow chart cannot be updated promptly
based on the changes, and we have to
modify it manually, which is inefficient.

- Consistency and Efficiency:
For some fundamental data transformations,
using Glue Studio can create an ETL job
more efficient comparing Airflow. When
some changes are applied in the data pipeline,
data lineage can be automatically updated,
which can keep the consistency of the lineage
information updated efficiently.

Table 5.1: The comparison between the ETL pipeline processing at Dashmote before and
after we introduced the data lineage subsystem.

5.2.2 Limitations

The maintainability of this project needs to be improved. After running the job in Glue

Studio, we cannot get lineage information directly in Spline because Glue Studio uses

RDDs internally when processing ETL jobs. However, Spline cannot capture RDD lineage.

Whenever we want to create lineage information, we first need to modify the GlueContext

code using Spark syntax, and then Spline can successfully capture the lineage. Nevertheless,

this process is not as efficient as we expected.

5.3 Future Work

Although the data lineage has been implemented using AWS Glue Studio and Spline to

apply it to the Dashmote production line, and other lineage tools can also be considered. In

this section, we will review some potential extension of the proposed data lineage solution.

One possible extension to this work is to:

Data Lineage of Airflow In Airflow 2.2.5, Airflow Lineage1 supports features to track

data sources and data processing steps. Airflow Lineage integrate well with OpenLineage2

and supports databases like BigQuery, SnowFlakes, etc (25). The company uses the 2.1.0

version, so we did not choose Airflow Lineage as the current solution. Since we are already

using Airflow for data processing, it will be straightforward for us to implement data lineage

based on Airflow.

Data Lineage of AWS EMR To get lineage information from Glue Studio using Spline,

we have to convert GlueContext to Spark, which is time-consuming and cannot be applied
1https://airflow.apache.org/docs/apache-airflow/stable/lineage.html
2https://openlineage.io/
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in an industrial environment. At the same time, we are also running some PySpark appli-

cations on AWS EMR and can consider capturing lineage through Spline.
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6

Conclusion

In this paper, we describe the design and implement a data lineage system that helps to

debug and clearly describe the various steps of the data processing lifecycle. Before our

work, Dashmote used to apply Apache Airflow to all the company data pipelines. The

data processing pipeline was complex and took a lot of time to design, because it required

that data engineers code all the pipelines in Airflow. When we introduce Glue Studio, the

design process has been significantly simplified as it offers “drag and drop” functionality

that allows us to build ETL jobs quickly. Additionally, Airflow can only provide limited

data lineage information, which is not enough for engineers to track data sources or have a

clear overview of data processing. To solve this limitation, we introduced Spline to capture

data lineage information from Glue Studio. After running the job in Glue Studio, Spline

can automatically generate a lineage graph, which allows us to check what transformations

were made, where the data came from, etc.

This project aims to add a data lineage subsystem to the current Dashmote data process-

ing pipelines using state-of-the-art data processing technologies. We answer the following

research questions:

• Research Question 1: How to build a versatile data lineage subsystem for a highly

complex, fast-changing data pipeline in an industrial setting?

In this project, we use AWS Glue Studio to deploy ETL pipelines efficiently. More-

over, we use Spline as a data lineage tool because it has three characteristics: lightweight,

unobtrusive, and easy to use. Spline can capture and store lineage information from

Apache Spark and display lineage visualizations in the Spline UI. Providing data

lineage reduces our development cost and debugging time and brings more business
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value. However, Spline cannot capture RDD lineage, and Glue Studio uses RDDs in-

ternally when processing ETL pipelines. Therefore, we need to convert the code from

GlueContext to SparkConcent, which is one of the limitations of capturing lineage

from Glue jobs using Spline.

• Research Question 2: What techniques and tools can we use to implement the data

lineage?

There are four main lineage techniques: pattern-based lineage, parsing-based lineage,

data tagging, and self-contained. In this project, we implemented a parsing-based

lineage technique to parse the logic behind the code, as it is more accurate comparing

other techniques. There are several data lineage tools on the market. In our project,

we use Spline to capture lineage because it is lightweight, unobtrusive, and easy to

use. However, Spline cannot efficiently capture the lineage information from Glue

Studio because we have to modify the code to Spark syntax. Therefore, we consider

using Spline to capture lineage from AWS EMR or using Airflow Lineage with our

current Airflow pipelines, which are mentioned in Section 5.3.

• Research Question 3: What are the challenges when developing data lineage?

We summarize the challenges from two perspectives: development and management.

According to the development part, there is no detailed documentation on deploy-

ing Spline in AWS Glue Studio. During the implementation, we spent much time

browsing the internet as we could not find complete and detailed documentation. We

found some tutorials on implementing lineage with Spline, but some details are miss-

ing. We kept getting the error after running a Glue job, and we did not know how to

fix it until we found some discussion in a GitHub issue1 where participants answered

questions about RDD lineage support and gave us the Glue script on how to fix it

some thoughts. Second, in the management part, we have to modify the script Glue

automatically generates each time to create data lineage in Spline. The integration

between Glue Studio and Spline is not efficient and brings us more workload.

To conclude, our project creates a data lineage subsystem to optimize existing data

pipelines. We use Glue Studio instead of Apache Airflow to improve the efficiency of the

ETL creation process. At the same time, we solved the several problems, including the

unclear structure of data processing, the long and complex debugging process, and untimely

updating of lineage information. It also summarizes our challenges and the techniques and
1https://github.com/AbsaOSS/spline-spark-agent/issues/33
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6. CONCLUSION

tools we used in this project. More research is still needed to improve the efficiency of

generating data lineage: using Airflow Lineage to build data lineage directly or using

Spline to get lineage information from AWS EMR.
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Appendix

A Glue Studio jobs

Figure 6.1: Glue Studio jobs interface with ETL pipelines

B CloudWatch logs
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B CloudWatch logs

Figure 6.2: Glue Studio jobs interface with transformation details

Figure 6.3: CloudWatch’s error interface
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