
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Implementing A Federated Machine
Learning Scenario Using Vantage6 and

Brane

Author: Leyu Liu (2630429)

1st supervisor: Adam Belloum
daily supervisor: Onno Valkering
2nd reader: Reginald Cushing

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

September 27, 2021

“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley

ii

Abstract

Federated Learning (FL) is a distributed machine learning that enables model

training on multiple devices with the coordination of a server. Recently, many

FL frameworks have been developed to support FL systems. For instance,

Vantage6 is one of the open-source FL frameworks that aims to apply FL for

preserving medical data privacy. Brane is a framework with a user-friendly

programming model that is developed at MNS group at the UvA to support

the implementation of distributed applications. To investigate the possibility

of using Vantage6 services in Brane for FL, we introduce the light integration

of Brane and Vantage6. In this thesis project, we (1) Propose the integration1

of Brane and Vantage6 via API function calls. The integration is performed

under two scenarios based on user preference; (2) Implement a federate machine

learning (ML) algorithm using two use cases for testing the applicability of the

integration. Both use cases are implemented as a Federated Averaging (FedAvg)

algorithm, while one is for image classification and the other is for sentiment

analysis. (3) Evaluate the performance of integration on both the local machine

and virtual machines. The evaluation metrics we use include running time and

CPU and RAM usage.

The experimental results show that the integration successfully enables a fed-

erated machine learning workflow by implementing Vantage6 as functions in

Brane. Though accessing Vantage6 services in the integration introduces some

overhead, the overall performance of running a FL task in the integration is

similar to standalone Vantage6.

1Code available on GitHub: https://github.com/621Alice/Fed-Brane-V6

iv

Contents

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Problem Description . 1

1.2 Goals . 2

1.3 Research Questions . 2

2 Background 5

2.1 Federated Learning . 5

2.2 Related Tools and Concepts . 7

3 Design of the Integration 13

3.1 Vantage6 Architecture and the FL Pipeline 14

3.2 Integration Design and the FL Pipeline . 16

4 Implementation 19

4.1 Building a FL Pipeline in Vantage6 . 19

4.1.1 Vantage6 server and node setup and configuration 20

4.1.2 API functions through Vantage6 iPython shell 20

4.1.3 Python Script through Vantage6 Python Client 22

4.2 Implementing the proposed Integration . 23

4.2.1 Scenario 1 . 23

4.2.2 Scenario 2 . 25

4.3 Implementing FL Algorithms in Vantage6 28

4.3.1 FedAvg MNIST . 29

4.3.2 FedAvg Sentiment . 30

i

CONTENTS

5 Experiment Design and Results 33

5.1 Evaluation Results of the FL Algorithm . 36

5.2 Evaluation Results of the Integration and Vantage6 37

5.2.1 Local Testing . 38

5.2.2 Remote Testing . 38

6 Discussion 43

6.1 Discussion of the Proposed Integration . 43

6.2 Further Integration . 44

6.3 Other FL Algorithms . 45

7 Conclusion 47

8 Appendix 49

8.1 Implementation issues . 49

8.2 Experiment issues . 51

References 57

ii

List of Figures

2.1 The workflow of FL (1) . 6

2.2 The architecture of Vantage6 (2) . 8

2.3 The architecture of Brane . 9

2.4 The architecture of Docker (3) . 11

3.1 The main Vantage6 components (The blue boxes are the three main com-

ponents in Vantage6: server, node and researcher. The gray boxes inside

blue boxes show the main sub-modules in each component. Server compo-

nent has two main sub-modules, including database and server API. Node

component has one sub-module, which is the database. The yellow boxes

are the actions required for a server/node to run, which is the configuration

process. The gray boxes inside the yellow boxes show the modules needed

for the actions, which is the YAML file required for configuration.) 14

3.2 The FL pipeline in Vantage6 (The yellow boxes show the flow of a FL

pipeline in Vantage6, starting from installation and configuration of the

Vantage6 infrastructure to user login, submitting a FL task and collecting

results. The purple-bordered boxes indicate the process of using/creating a

FL algorithm in Vantage6, which is required for submitting a FL task.) . . 14

3.3 The architecture design and FL pipeline in integration Scenario 1 (The top

layer of this figure shows the components of Brane and Vantage6 that are

needed in the proposed integration. The bottom layer shows the flow of

a FL pipeline for integration Scenario 1. The orange boxes represent the

actions specific to integration Scenario 1. The light yellow boxes and light

purple-bordered boxes indicate the same actions as Vantage6 FL workflow

as shown in Figure 3.2.) . 15

iii

LIST OF FIGURES

3.4 The workflow design of integration Scenario 2 in a FL pipeline (This figure

shows the flow of a FL pipeline in integration Scenario 2. The green boxes

represent the actions specific to integration Scenario 2. The light orange

boxes, light yellow boxes and light purple-bordered boxes indicate the same

actions as the integration Scenario 1 as shown in Figure 3.3.) 17

4.1 The detailed steps for constructing a FL pipeline using Vantage6 iPython

shell (The yellow boxes represent the steps required for constructing a FL

pipeline in Vantage6 using iPython shell. The gray boxes inside the yellow

boxes show the components needed for serer/node configuration, which is

the configuration YAML files. The purple-bordered box shows the FL task

parameters needed for submitting a task.) 21

4.2 The detailed FL pipeline in integration Scenario 1 (The Orange boxes rep-

resent the actions to construct a FL pipeline that are specific to Scenario 1.

The gray box inside the orange box shows a component that is needed for

building API functions as a package in Brane, which a YAML file specify-

ing each Vantage6 API function. The light yellow boxes and light purple-

bordered boxes are the actions that are the same as the workflow in Vantage6

as shown in Figure 4.1.) . 25

4.3 The detailed FL pipeline in integration scenario 2 (The green boxes are the

actions for constructing a FL pipeline that are specific to Scenario 2. The

light orange boxes, light yellow boxes and light purple-bordered box indicate

the actions that are the same as Scenario 1 as shown in Figure 4.2.) 27

4.4 The workflow of FedAvg MNIST (Following the arrows, the purple-bordered

boxes represent each step needed for implementing a FedAvg algorithm for

MNIST image classification.) . 29

4.5 The workflow of FedAvg Sentiment (Starting from processing the Senti-

ment140 dataset, the implementation process of a FedAvg algorithm for

sentiment classification is shown in the purple-bordered boxes.) 30

8.1 The server configuration.yml in integration scenario 2 51

8.2 The node configuration.yml in integration scenario 2 52

8.3 The server entrypoint.sh in integration scenario 2 52

8.4 The node entrypoint.sh in integration scenario 2 53

8.5 The server container.yml in integration scenario 2 54

8.6 The node container.yml in integration scenario 2 55

iv

List of Tables

5.1 List of Experiments . 34

5.2 Model Accuracy for FedAvg MNIST . 37

5.3 Model Accuracy for FedAvg Sentiment . 37

5.4 Vantage6 Experiment Results of FedAvg MNIST on Mock Client 39

5.5 Vantage6 Experiment Results of FedAvg Sentiment on Mock Client 39

5.6 Local Testing(one node): FedAvg MNIST Experiment Results 39

5.7 Local Testing(two nodes): FedAvg MNIST Experiment Results 40

5.8 Local Testing(one node): FedAvg Sentiment Experiment Results 40

5.9 Local Testing(two nodes): FedAvg Sentiment Experiment Results 40

5.10 Remote Testing(one node): FedAvg MNIST Experiment Results 41

5.11 Remote Testing(two nodes): FedAvg MNIST Experiment Results 41

5.12 Remote Testing(one node): FedAvg Sentiment Experiment Results 41

5.13 Remote Testing(two nodes): FedAvg Sentiment Experiment Results 42

v

LIST OF TABLES

vi

1

Introduction

1.1 Problem Description

With the rising popularity of the big data field, more concerns are raised in the society

regarding the problem of data privacy. Various companies and organizations like hospitals

cannot legally reveal or expose their customers private information due to ever tightening

data protection regulations (4). For artificial intelligence to function and develop, how-

ever, such private data is crucial to the researchers and engineers as to allow training ML

models that satisfy the performance requirements. One solution proven effective in solving

this issue has been implementation of federated learning systems(FL), which enables local

training using decentralized data, minimizing risk of leakage. Typically, an FL system re-

quires a central server and multiple worker nodes. Those worker nodes contain and process

local information which is never sent to the central unit. The server distributes a global

model to the nodes and then receives updates once the local computation has taken place

on each of them. Through aggregation of local updates the global model then improves

itself until it converges, resulting in the final solution (5).

In order to ensure development of federated learning, various open source FL frameworks

have been developed. Vantage6 (2) is one of the platforms that managed to successfully

implement an infrastructure supporting FL systems that allows the use of any programming

language as well as operating system. Brane (6) is another framework which allows for

the development of large-scale projects for domain experts. Due to its programmable and

re-configurable features, Brane can be developed to support generic distributed projects,

such as FL systems.

1

1. INTRODUCTION

1.2 Goals

Considering the capabilities of Brane and Vantage6 frameworks and their implementation

in developing federated learning and other distributed research projects, this thesis aims

to examine the possibility of integration of the two. The proposed integration can be

assessed by implementing a federated machine learning workflow that uses both Vantage6

and Brane services.

1.3 Research Questions

The integration of the Brane and Vantage6 raises several issues which we try to answer

through the following research questions:

• RQ1: How to combine the programming models of the two systems to improve user

experiences during the process of developing a ML pipeline, namely implementation,

orchestration and deployment?

– What choices do we have for the integration of the two frameworks?

– Can we integrate Vantage6 and Brane successfully through API calls (light

integration)?

– Can we perform low-level integration between Vantage6 and Brane (deep inte-

gration)?

• RQ2: How can a particular integration between Vantage6 and Brane be made generic,

and reusable for ML use cases(e.g. a particular problem that can be solved by ML)?

– What ML use cases can we use to test the performance of a specific type of

integration?

– Can we apply different types of federated learning workflows to test a specific

type of integration?

This thesis is structured as follows. After Chapter 1, some general concepts, such as

FL, Docker, Vantage6, Brane, REST API and OpenAPI Specification, are introduced

in Chapter 2. Chapter 3 first introduces the workflow of a FL pipeline in Vantage6.

Then, we describe the design of the integration with their workflow in a FL pipeline.

Two different scenarios are considered for the integration based on whether the Vantage6

infrastructure is pre-installed. In Chapter 4, we describe the implementation details of both

integration scenarios. We also describe the steps to build a FL workflow in Vantage6 and

how to create new FL algorithms using Vantage6 client functions. In addition, we evaluate

the integration and illustrate the results of the experiments with brief discussion and

2

1.3 Research Questions

comparison in Chapter 5. Chapter 6 includes further discussion regarding the integration

and possible future research directions, such as the possibility to implement other FL

workflows in Vantage6 and possible further integration of Brane and Vantage6. Lastly, we

summarize this thesis and provide answers to the research questions in Chapter 7.

3

1. INTRODUCTION

4

2

Background

Before integrating Brane and Vantage6 and evaluating the integration in a FL pipeline,

it is essential to first gain some understandings of the workflow of FL, the architecture of

Vantage6 and Brane and some related concepts that are needed for implementation. Thus,

in this Chapter, we introduce the background information that is related to my thesis,

including:

• Federated Learning

• Related tools and concepts, including

– Vantage6
– Brane
– Rest API
– OpenAPI Specification
– Docker

2.1 Federated Learning

In this section, we introduce the workflow of FL as well as its open problems.

To protect data privacy, federated learning is developed in recent years to enable de-

centralized model training in machine learning using multiple client devices and a central

server (1). Figure 2.1 illustrates the workflow of FL. Each client device (e.g. a mobile

phone) has their own local data which is not shared with other client devices or the server.

During FL, each client performs local training and send model updates to server for updat-

ing the global model. The communication between the server and client device is encrypted

such that the sensitive information is not leaked in the FL process (4). To ensure data pri-

vacy more effectively, previous researchers tried various federated optimization techniques

to solve the existing challenges in FL. In the following paragraphs we introduce these

5

2. BACKGROUND

challenges separately, including data heterogeneity, data partitioning, privacy concerns,

communication overhead and slow model convergence (1, 4, 7, 8).

Figure 2.1: The workflow of FL (1)

Data heterogeneity Heterogeneous data refers to not independent and identically dis-

tributed (non-IID) data. With statistical difference in data, the model training process

could be problematic and might cause issues in FL. For instance, because of non-IID data,

the local optimum in each client is distant from the true global optimum. During gradient

descent, local gradient will move to the direction of the local optimum and can lead to

slow convergence of the global model. Karimireddy et al. (9) referred to such problem as

client drift. They tackled non-IID data using optimization techniques in the FL process

by adding a correction term to move the local gradient to the direction of true optimum.

Data partitioning FL algorithms can be classified into horizontal FL (HFL), vertical

FL (VFL) and Federated transfer learning (FTL) based on data partitioning (4). Different

workflows of FL have been proposed to fit different data partitioning. HFL refers to FL

algorithms using horizontally partitioned dataset with overlapped features but different

users. VFL uses vertical data partitioning where users can be overlapped in different local

datasets but the features in each dataset is different. FTL is commonly used in situation

where there is insufficient training samples (4, 10).

Privacy concerns As for privacy issues in FL, there exits many adversary attacks

against ML models and their training data. To enhance data security, current FL al-

6

2.2 Related Tools and Concepts

gorithms often use differential privacy mechanisms (DP) or cryptographic methods. In

DP, Laplace mechanism and exponential mechanism are often used to add noise to the

model gradient such that the information of any individual user will not be revealed (4).

Cryptographic methods are often encryption methods that are used to encrypt the ex-

changed messages (e.g. model parameters) between the server and clients. It is often

combined with public-private key pair and authentication to ensure privacy (11).

Communication overhead and slow model convergence Many FL optimization

techniques have been proposed to reduce the communication overhead and speed up the

model convergence rate. Most of the techniques are developed by improving the Federated

Averaging learning (FedAvg), which is a typical example of FL algorithm that was pro-

posed by Mcmahan et al. (5). We also implement FedAvg in this project to evaluate the

performance of our proposed integration. In FedAvg, the clients receive the model from

the central server and perform local training. Then, the updated model parameters will

be sent back to server for averaging. The averaged parameters will be sent to clients again

for another round of local training. The process of server-node communication and param-

eter averaging repeats until the global model is converged. Mcmahan et al. pointed out

that the communication overhead between server and clients was the biggest bottleneck

for FL. Therefore, they added additional computation (e.g. increase the number of train-

ing epochs) in each communication round to reduce the total number of communication

rounds. However, it caused large communication cost in each round and the convergence

rate in FedAvg appeared to be slow. Thus, many other researchers proposed various ap-

proaches to optimize FedAvg in terms of communication overhead and convergence rate.

For instance, the use of Adam optimization and efficient compression techniques proposed

by Mills et al. (12) to reduce the communication cost in each round while speeding up

model convergence.

FL is getting more popular in the IT industry and the existing problems in FL are

drawing attention to more researchers. As a result, the development of FL optimization

techniques is getting promoted. The FL performance will be further improved and future

FL systems will be more practical to be applied in real-life scenarios.

2.2 Related Tools and Concepts

In this section, we introduce the related tools and concepts we encountered during the

implementation of the proposed integration, including

7

2. BACKGROUND

• Architecture of Vantage6

• Architecture of Brane

• Definition and principles of REST API

• Definition and application of OpenAPI Specification

• Architecture and application of Docker

Vantage6 Vantage6 (2) provides users a federated learning framework. Figure 2.2 illus-

trates the system architecture of Vantage6. As we can see, Vantage6 is composed of three

components including a researcher, a central server and a set of worker nodes (clients).

Each worker node has their own local data stored in the local database. A user can install

either a server or a node on the local machine and configure it with a configuration file. A

researcher can submit a task to the server with an algorithm image and input parameters.

The algorithm image can be first implemented using Vantage6 tools and built into a docker

image using a Dockerfile. After a task is successfully submitted to the server, the server

will send the task information to a computing node. After a node is started, it will auto-

matically detect the server, get the task information and execute the algorithm using local

data. The intermediate results will be sent back to server for aggregation and the iterative

process of FL repeats to update the global model. The final result will be sent back to

the researcher when the computation is complete. Vantage6 is by design flexible and can

support multiple languages and configurations. It also suits different data partitioning

flexibly, including vertically partitioned dataset and horizontally partitioned dataset.

Figure 2.2: The architecture of Vantage6 (2)

8

2.2 Related Tools and Concepts

Brane Brane (6) is an open-source framework for distributed learning projects. To make

programming easier for domain experts, Brane is developed with a user-friendly program-

ming model and an efficient runtime system that orchestrates the data processing pipelines.

Figure 2.3 illustrates the programming model and runtime system in Brane. In the pro-

gramming model, a component named Packages is used to build new functions using various

builders and the data processing pipeline is created using Bakery which is a simple DSL

(Domain Specific Language) while the Bakery programs can be compiled in Bytecode. Do-

main experts can use the Jupyter notebook in Brane to write applications and monitor

their progress in real time. BraneScript is a C-like programming language that has ad-

vanced constructs. Brane repl is an interactive shell environment that takes user input

from BraneScript, executes the commands and returns results. Users can simply start the

repl in the terminal and use the compiled Brane functions following the Brane syntax.

As for the runtime system, it consists of four major parts: Registry, API, Relay and

Vault. Registry is used to store the packages built by different package builders. After

a data processing pipeline is built, a session needs to be created with runtime system

through API for the execution of Bakery programs. Apart from it, Relay is used to store

functions outputs while Vault is used to store secret system information, such as credentials

and certificates. With different components cooperating with each other, Brane is able to

provide an easy-to-use programmatic infrastructure for developing research projects.

Figure 2.3: The architecture of Brane

9

2. BACKGROUND

REST API REST API (13) is used in Vantage6 server for interacting with user and

nodes. It represents representational state transfer application programming interface,

following 6 principles. The first principle is having a client-server system architecture. The

second principle is being stateless with session state kept completely on the client side. The

third principle is being cacheable and having client cache to be able to reuse response data.

The fourth principle is having a uniform interface that provides identification of resources,

manipulation of resources, self-descriptive messages and hypermedia. The fifth principle

is have hierarchical layered system and the last principle is to allow clients to code on

demand. REST is associated with HTTP resource methods, including GET, PUT, POST

and DELETE methods. The resources in the REST API can be accessed through uniform

resource identifiers (URIs) in combination with the resource methods. Many applications

use REST API for internal communication, such as Docker.

OpenAPI Specification OpenAPI Specification (OAS) (14) defines an interface for

HTTP API and we use it to build API functions in Brane. An OpenAPI document can

be represented in either JSON1 or YAML format2. OAS usually includes the version of

the specification, metadata of the API, server objects, API path, security requirement

object and component object. Component object consists of a list of reusable objects and

the commonly used fields are requestBody, responses and schemas. Under each field, the

properties for each object should be defined with names and data types. OAS is often used

for the development of web APIs for applications such as Vantage6.

Docker Docker (3) is used in both Vantage6 and Brane infrastructure. Figure 2.4 shows

the architecture of Docker. Docker is a open platform that provides users an isolated

environment to run their applications, which is referred to the docker container. A user

can install any packages inside a new docker container without relying on the system

environment of the host machine. A docker image contains a user-defined algorithm with

instructions to run a container. A user can create a docker image using Dockerfile following

the specific syntax. When building an image, each instruction in the Dockerfile creates a

layer to be installed in Docker for the image. When changes are made by the user and

the image needs to be rebuilt, the only part that will be rebuilt is the layers that are

changed. Such feature makes a docker image lightweight and easy to manage. Each docker

image is built by the docker client and stored in the docker registry. Docker compose is a
1https://www.json.org/
2https://yaml.org/

10

2.2 Related Tools and Concepts

special docker client that is used to deal with a set of containers for the user application to

run. Docker uses the client-server architecture to manage docker containers and images.

An image can be built locally or pulled from the internet. Docker daemon is a component

inside docker host (server) that is used to communicate with docker client using REST API

and handle the container to run an image. To run an application using Docker commands,

users can have easy control over containers or images.

Figure 2.4: The architecture of Docker (3)

11

2. BACKGROUND

12

3

Design of the Integration

In this chapter, we introduce the workflow of a FL pipeline in Vantage6 and the architecture

design of the proposed integration, including Scenario 1 and Scenario 2. We first describe

how a FL pipeline is constructed in Vantage6 and then propose the integration. The

detailed explanation of the design is shown in the following sections. The implementation

details of the FL pipeline and integration are explained in Chapter 4.

As mentioned before, Vantage6 is an open-source framework for FL. To access the FL

services in Vantage6, we need to build a FL pipeline. Figure 3.1 shows the main components

(including server, node and researcher (user)) and their interactions in Vantage6. Figure 3.2

illustrates the workflow of a FL pipeline constructed based on the architecture of Vantage6.

Starting from installation of Vantage6 packages, a server and one or more nodes are needed

as the basic infrastructure to establish the FL process. A server can coordinate the FL

process, distribute tasks to the nodes and collect results. A node contains non-shareable

local data and can be used to execute the distributed tasks. Both server and nodes need

to be configured using YAML files1 and started using Vantage6 commands (15) before

any other services can be used. Once both server and nodes are started, the connection

between nodes and server can be automatically established with the right server IP address

and node api key.

1An example of a configuration YAML file can be found on GitHub: https://github.com/621Alice/Fed-
Brane-V6/tree/main/V6

13

3. DESIGN OF THE INTEGRATION

3.1 Vantage6 Architecture and the FL Pipeline

Figure 3.1: The main Vantage6 components (The blue boxes are the three main components
in Vantage6: server, node and researcher. The gray boxes inside blue boxes show the main
sub-modules in each component. Server component has two main sub-modules, including
database and server API. Node component has one sub-module, which is the database. The
yellow boxes are the actions required for a server/node to run, which is the configuration
process. The gray boxes inside the yellow boxes show the modules needed for the actions,
which is the YAML file required for configuration.)

Figure 3.2: The FL pipeline in Vantage6 (The yellow boxes show the flow of a FL pipeline in
Vantage6, starting from installation and configuration of the Vantage6 infrastructure to user
login, submitting a FL task and collecting results. The purple-bordered boxes indicate the
process of using/creating a FL algorithm in Vantage6, which is required for submitting a FL
task.)

The next step in a FL pipeline is to access server as a user and submit a FL task for

the actual computation. Server has a database that stores many kinds of information,

14

3.1 Vantage6 Architecture and the FL Pipeline

such as node information, task and result information and user information along with

the organization and collaboration every user belongs to. To access a server, a user needs

to connect to server using server IP address and get through the authentication process.

To submit a task in Vantage6, a FL algorithm image is required as well as some user-

defined task input parameters. If the user wants to use a new FL algorithm that is not

currently supported by Vantage6, the FL algorithm needs to be implemented first following

the documentation (details explained in Chapter 4.3) and composed into a docker image

using Docker. The built image is needed by the server to distribute to each worker node

for computation. The communication between node and server happens automatically in

Vantage6 through server API, as well as the communication between server and the user.

The final result is returned by the node and saved in the server database and can be

accessed by the user that has the permissions.

Figure 3.3: The architecture design and FL pipeline in integration Scenario 1 (The top layer
of this figure shows the components of Brane and Vantage6 that are needed in the proposed
integration. The bottom layer shows the flow of a FL pipeline for integration Scenario 1. The
orange boxes represent the actions specific to integration Scenario 1. The light yellow boxes
and light purple-bordered boxes indicate the same actions as Vantage6 FL workflow as shown
in Figure 3.2.)

15

3. DESIGN OF THE INTEGRATION

3.2 Integration Design and the FL Pipeline

To integrate Brane and Vantage6, we propose the light integration that makes use of API

functions calls for accessing Vantage6 functions in Brane. Two scenarios are considered for

the integration, including

• Scenario 1: users have pre-installed Vantage6 infrastructure, such as Vantage6 server,

node and relevant dependencies.

• Scenario 2: users do not need to install Vantage6 separately but build the necessary

functions inside Brane to use existing and already deployed Vantage6 services.

The details of the integration under different scenarios are described in the following.

Scenario 1 In Scenario 1, Vantage6 server and nodes are pre-installed and configured

separately from Brane. To allow access of Vantage6 functions in Brane, a light integration

is implemented based on the API functions calls. The details of the designed workflow

in this scenario along with a FL pipeline are shown in Figure 3.3. The FL algorithm

is created outside of the integration using Vantage6 functions. The integrated functions

are the API functions that are used to interact with server. Originally, vantage6 server

API has functions that enable user authentication, task posting, result collection and etc.

In the integration, we build these API function as a package using docker YAML file in

Brane so that a user can access Vantage6 functions in Brane for using FL services. The

workflow of the FL pipeline in Scenario 1 is the same as the original one in Vantage6 except

that the user interacts with Brane using the repl instead of Vantage6 when accessing the

aforementioned functions.

Scenario 2 Similar to Scenario 1, Scenario 2 is also designed based on Vantage6 func-

tions. However, in Scenario 2, we assume the user only have Brane installed but not

Vantage6 infrastructure. Therefore, to construct a FL pipeline in this scenario, the user

needs to build Vantage6 services inside Brane, including the server, the node and API

functions. Figure 3.4 shows the workflow designed for Scenario 2 in a FL pipeline. As

mentioned above, Vantage6 server and nodes are configured in YAML files. The same

configuration files are needed by the package builder to build the corresponding function

packages in Brane. The general process of building API functions in Brane is the same as

Scenario 1. Then, a user can import the built packages in Brane repl and make function

calls including starting server and nodes, user login, submitting a task and collecting re-

sults. In Scenario 2, server and nodes are started in Brane as containers with the same

16

3.2 Integration Design and the FL Pipeline

functionalities as the original server and nodes in Vantage6. Thus, user can still access

server through API function calls and use the same FL services.

Figure 3.4: The workflow design of integration Scenario 2 in a FL pipeline (This figure
shows the flow of a FL pipeline in integration Scenario 2. The green boxes represent the
actions specific to integration Scenario 2. The light orange boxes, light yellow boxes and light
purple-bordered boxes indicate the same actions as the integration Scenario 1 as shown in
Figure 3.3.)

17

3. DESIGN OF THE INTEGRATION

18

4

Implementation

In this chapter, based on the designed architecture in Chapter 3, we introduce implemen-

tation details of

• Building a FL pipeline in Vantage6

• The proposed integration, including

– Integration scenario 1

– Integration scenario 2

• Creating FedAvg algorithm in Vantage6 under two use cases, including

– FedAvg MNIST

– FedAvg Sentiment

To evaluate the integration of the two frameworks in a FL setting, we implement a FL

pipeline for each scenario. Meanwhile, we implement the FedAvg algorithm with two use

cases to test the performance of the integration for different ML use cases. The implemen-

tation is detailed in the following sections. Some technical issues encountered during the

implementation is included in Appendix (8).

4.1 Building a FL Pipeline in Vantage6

As mentioned in Chapter 3, to build a FL pipeline in Vantage6, we need to setup Vantage6

server and nodes properly, have a FL algorithm and run it using Vantage6 services (see

Figure 3.2). As the FL algorithm is created separately from Vantage6 node and server, we

introduce the implementation details of the algorithm later in Section 4.3. In this section,

we introduce

• Installation and configuration of Vantage6 infrastructure

• How to run a FL algorithm using

19

4. IMPLEMENTATION

– API functions through Vantage6 iPython shell

– A Python script through Vantage6 Python client

4.1.1 Vantage6 server and node setup and configuration

Before using any Vantage6 services, generally, a user needs to first install and configure the

required packages (e.g. Vantage6 node, server or client) on their local machine following

the documentation (15). In the real-case FL scenarios, the user can either use their local

machine as a server or a node.

Server configuration: a server can be configured using a server configuration file (e.g.

server.yaml1) that includes information such as api path, IP address, port number, database

URL, logging information and JWT2 (JSON Web Tokens) secret key. Node configuration:

a node can be configured through a node configuration file (e.g. node.yaml3) that is com-

posed of: (1) server URL, (2) database path, (3) api key, (4) api path, (5) task directory,

(6) logging and encryption information. A Vantage6 server or node can be started using

the provided commands on Vantage6 documentation (15).

4.1.2 API functions through Vantage6 iPython shell

To run a FL algorithm using API functions, the user needs to access server through iPython

shell, setup server database and perform a list of function calls for the execution of a FL

algorithm.

Server database setup in iPython shell To access the server from iPython shell, we

need to specify the server URL and port number and login to server as a user. In the

server database, the default user is set to be root while there is no existing collaboration or

organization in the server. A collaboration contains a list of organizations. An organization

contains a list of users. Each organization inside a collaboration is assigned a node. A user

is associated rules that specify what functions the user has access to. The root user has

limitations to access some of functions by default, including submitting a task. A user can

only submit a task to the collaboration where the user belongs to. Therefore, we need to

create new users with the desired rules and add new collaborations and organizations. For

convenience, a number of entities (e.g. information of a user/organization/collaboration
1An example of server.yaml can be found on GitHub: https://github.com/621Alice/Fed-Brane-

V6/blob/main/V6/server.yaml
2https://jwt.io/introduction
3An example of node.yaml can be found on GitHub: https://github.com/621Alice/Fed-Brane-

V6/blob/main/V6/node.yaml

20

4.1 Building a FL Pipeline in Vantage6

Figure 4.1: The detailed steps for constructing a FL pipeline using Vantage6 iPython shell
(The yellow boxes represent the steps required for constructing a FL pipeline in Vantage6
using iPython shell. The gray boxes inside the yellow boxes show the components needed for
serer/node configuration, which is the configuration YAML files. The purple-bordered box
shows the FL task parameters needed for submitting a task.)

that can be stored in the server database) can be imported to the server through iPython

shell using a YAML file (e.g. fixtures.yml1). The YAML file contains a list of user-defined

collaborations with the organizations and users included. Then, after starting the shell, the

user can log in with the predefined user name and password and assign the rules (permission

to view/edit certain functions) to himself/herself, depending on which functions are needed.

Every API function is accessible using GET, POST or DELETE requests and it is secured

with the token generated after login.

FL task in iPython shell As shown in Figure 4.1, for running a FL task successfully

in the iPython shell, we need to do the following steps:

• First, both the server and the node(s) need to be installed and configured with

1An example of a fixtures.yml file can be found on GitHub: https://github.com/621Alice/Fed-Brane-
V6/blob/main/V6/fixtures.yml

21

4. IMPLEMENTATION

configuration files (as described in Section 4.1.1).

• The server database needs to be setup as described in the previous paragraph.

• A node configuration file should include the full path of the local data file so that

it can be detected by the node automatically for later computation. A node (or-

ganization) is also configured with either no encryption or a private key path. In

the node configuration file, a user should set the private key path or disable the

encryption of the collaboration of which the organization belongs to for the node

to run successfully. An api key is assigned by the server and unique to a node for

identification. A user needs to check the api key in the shell and configure a node

with the corresponding api key.

• Both the node (s) and the server can be started with the Vantage6 command (15).

After a node is started, it connects to server and authenticate itself with the api key

automatically.

• To run a FL algorithm in iPython shell after user login, the user would need to submit

a FL task with the required parameters, including task name, task description, image

name, input parameters for initiating the algorithm, collaboration id and organization

id.

• Due to the limitation of Vantage6 API, task input parameters needs to be converted

to a serializable format before submitting the task (as explained in Appendix (8)).

• A running node frequently checks if a task related to the corresponding organization

has been submitted to the server.

• Once a running node receives a task, it pull the docker image based on task informa-

tion, start the computation using the local data automatically and send results back

to server.

• All the exchanged messages between the server and the node are encrypted in Van-

tage6.

• Lastly, to obtain results in the end of the FL pipeline, a user needs to collect results

from server and decrypt the results with Base64 decoding1 in the shell.

4.1.3 Python Script through Vantage6 Python Client

To use the Python client functions instead of the API functions, the user needs to import

the vantage6 client package and write a Python script.

1https://www.base64decode.org/

22

4.2 Implementing the proposed Integration

In the Python script1, the user can access the server by stating the server URL and

the authorization details. Similar to the process in the shell, the user will need to set up

encryption for the collaboration and assign user rules before calling any other functions. For

submitting a task, the user needs to list the required task properties in the "task.create"

function. To collect the results, the user needs to constantly check the status of the

task in a loop using the "task.get" function. The results will only be available after the

execution of task is complete. The task input conversion and results decoding are performed

automatically by Vantage6 client. To construct a FL pipeline using the client functions,

the user can simply run the script in the terminal and the process of login, task submission

and result collection can be performed accordingly.

4.2 Implementing the proposed Integration

As mentioned in Chapter 3, the proposed integration is based on Vantage6 API functions

calls. In this section, we introduce how to implement the integration by calling API

functions under two scenarios.

4.2.1 Scenario 1

In Scenario 1 with pre-installed Vantage6 server and nodes, we build Vantage6 API func-

tions as a package (vantage6 package) in Brane using a Docker YAML file (e.g. api_spec.yml)2

to perform function calls in Brane repl.

API function calls using YAML file in Scenario 1 As mentioned above, the API

functions are composed in a YAML file in Brane. To make the YAML file, we use OpenAPI

specifications (14). The YAML file serve to define a FL pipeline. It should at least

contain functions such as user login, submitting a task and retrieving results based on task

id. For the ease of testing and debugging, We also include other functions such as GET

collaborations, GET tasks, GET and POST users. In the YAML file, the servers property

should be first specified with server URL and the specific port that is used by the vantage6

server. For each function, the path needs to be listed before specifying the parameters

for GET or POST requests. For each GET or POST request, it requires operationId,

security, requestBody and responses. operationId is the function name that the user uses
1An example of a Python script can be found on GitHub: https://github.com/621Alice/Fed-Brane-

V6/blob/main/v6-fedavg-mnist-master/v6-fedavg-mnist/client.py
2An example of the api_spec.yml file can be found on GitHub: https://github.com/621Alice/Fed-

Brane-V6/blob/main/Brane/api_spec.yml

23

4. IMPLEMENTATION

when calling the function in Brane repl and security scheme object is for specifying the

authorization token (obtained after login) needed by the function to be accessed. In both

requestBody and responses, the user can define the content in JSON format and decide

whether a property is required by the function or optional. Besides, a HTTP response

code (e.g. 200) needs to be specified in responses that indicates the operation is successful.

The commonly used data type are usually integer and string for properties such as id,

name, token, URL and description. However, for more complex properties, such as the

task organization, it is essentially an array object. An array object contains array items,

such as the organization id (integer) and the task input (string). The data types are usually

declared directly under the property. However, for nested objects (e.g. array), sub-items

(e.g. array items) can also be specified using a reference to a separately defined component

scheme at the end of the YAML file.

FL pipeline for Scenario 1 Figure 4.2 shows a detailed FL pipeline in scenario 1.

Similar to the process of using Vantage6 services in Section 4.1, building a FL pipeline in

integration Scenario 1 also requires pre-installed and pre-configured server and nodes. The

Vantage6 iPython shell is only used for disabling encryption and assigning rules to users

after importing entities. To make Vantage6 API functions available in Brane, the package

builder targeting Web APIs can be used to build the Vantage6 YAML file (as described

above) for users to access. Due to limitations in API functions, Python functions of input

conversion and decoding are both built as brane packages1 for constructing the FL pipeline

(details explained in Appendix (8)). After building all the necessary packages, the user

can start brane repl and import the installed packages. The functions are callable by the

pre-defined function names using Brane programming syntax. The brane functions are

generally easier to use with shorter commands compared with the ones in the iPython

shell. To construct the FL pipeline in this scenario, the pre-installed Vantage6 server

should be started before any Vantage6 API functions are called. The Vantage6 nodes that

are supposed to run the tasks need to be started as well to wait for the assigned task. Then,

in the repl, the user can follow the procedure and perform the corresponding function calls,

such as login, specifying the input and converting it to JSON serialized format, posting a

task to the organizations in a collaboration and collecting results.

1Examples of input conversion and decoding package can be found on GitHub:
https://github.com/621Alice/Fed-Brane-V6/tree/main/Brane

24

4.2 Implementing the proposed Integration

Figure 4.2: The detailed FL pipeline in integration Scenario 1 (The Orange boxes represent
the actions to construct a FL pipeline that are specific to Scenario 1. The gray box inside
the orange box shows a component that is needed for building API functions as a package in
Brane, which a YAML file specifying each Vantage6 API function. The light yellow boxes and
light purple-bordered boxes are the actions that are the same as the workflow in Vantage6 as
shown in Figure 4.1.)

4.2.2 Scenario 2

As mentioned in Chapter 3, Scenario 2 has no pre-installed Vantage6 infrastructure. Thus,

besides using API functions as described in Scenario 1, we need to build Vantage6 node

and server as packages in Brane.

Building Vantage6 server and nodes in Brane To build a server service or node

service using the Brane package builder, a package configuration YAML file (e.g. con-

tainer.yml (see the example in Appendix (8)) is needed to specify the necessary informa-

tion such as service name, entrypoint, dependencies, files needed to build the package,

required installations, function input and output with the corresponding names and data

types and etc. The function input refers to the real values passed from the brane repl when

the function is called and output is the returned values of the function. An executable shell

script (e.g. entrypoint.sh (see the example in Appendix (8)) is also needed for building a

server or node. Such shell script is linked with the package configuration file and defines

25

4. IMPLEMENTATION

variables that should be passed to the server or node configuration file (e.g. configura-

tion.yml(see the example in Appendix (8)). The corresponding properties in the server or

node configuration file should be replaced by the user-defined variable names based on the

shell script.

Vantage6 server package building For building the server package (v6_server pack-

age), the server configuration file remains the same as the original one used in normal

Vantage6 infrastructure, except that the server port is replaced by a variable. It means

that when the server is started in the repl, the user can define the port number flexibly.

The container.yml for the server specifies the function input as an integer which is the

server port number. It also defines the function output which is a string that contains

the remotely detected server IP address in the server container created by Brane. In the

entrypoint.sh, the user needs to specify the variable name for the server port and specify

the command to start the server with the server configuration.yml and the fixtures.yml for

importing entities. The variable name in the entrypoint.sh should be the same as the one

in configuration.yml. Besides, for the ease of experiment, all the Vantage6 nodes are config-

ured without encryption. To match with this setting, the encryption for the corresponding

nodes needs to be disabled in the server database. In Scenario 1, this can be done by using

commands in the iPython shell. In Scenario 2, disabling encryption can also be specified

in the server entrypoint.sh. However, the iPython shell is also accessible in this scenario

through the server container once the server is started in the repl. Users can use the shell

to change user rules and use other functions conveniently according to their preference.

Vantage6 node package building To build a Vantage6 node package (v6_node pack-

age) in Brane, similar to the process of building a server, the original node configuration.yml

is used and the node container.yml is specified in a similar format. However, the api key,

server URL, port number and database path in the configuration.yml are replaced by vari-

ables. The values of these variables are passed as function arguments by users in the

repl when the node is started. Same variables are used in the node entrypoint.sh and

container.yml to make sure the function arguments are passed correctly. Due to some

technical issues (details explained in Appendix (8)), the task directory, proxy server ad-

dress and proxy server port are explicitly specified in node configuration.yml as well as

entrypoint.sh for successfully running a node in Brane. Lastly, it should be specified in

the node entrypoint.sh that the node needs to be started with the node configuration.yml.

26

4.2 Implementing the proposed Integration

Then, the Brane package builder can build the node package for the user to call in the

repl.

API function calls using YAML file in scenario 2 Similar to the vantage6 package

in Scenario 1, a YAML file is used to build Vantage6 API functions (v6_client package1)

in Brane following the OpenAPI specifications (14). However, because the server IP is

automatically detected in Brane when creating the server container, the server URL cannot

be specified when building client functions. Thus, unlike vantage6 package, the server URL

is not specified in v6_client package. Meanwhile, the path to each function in v6_client

should be added with an additional api path. When a function from v6_client package is

called, the server URL should be passed as a function argument in addition to the originally

specified input for each function.

Figure 4.3: The detailed FL pipeline in integration scenario 2 (The green boxes are the
actions for constructing a FL pipeline that are specific to Scenario 2. The light orange boxes,
light yellow boxes and light purple-bordered box indicate the actions that are the same as
Scenario 1 as shown in Figure 4.2.)

FL pipeline for Scenario 2 Figure 4.3 illustrates a detailed FL pipeline in Scenario 2.

In contrast to Scenario 1, Scenario 2 does not have pre-installed server or nodes. To con-

1An example of V6_client package can be found on GitHub: https://github.com/621Alice/Fed-Brane-
V6/tree/main/Brane/V6_server_node_deployment/v6_client

27

4. IMPLEMENTATION

struct a FL pipeline, the user needs to first import the v6_server, v6_node and v6_client

package (the details of the packages are described above) and start a server with the user-

defined port number. The input conversion and decoding packages are also needed in this

scenario. Then, the iPython shell needs to be started using the server container ID. As

mentioned above, the user needs to change permission rules to a certain user in the shell

for acquiring access to the desired functions in repl. After that, the user needs to log in

the server in the repl and start the corresponding nodes based on the api key information

specified in the server database (this can be accessed in the repl by calling get_node func-

tion). While the server and nodes are running successfully, similar to Scenario 1, the user

can perform a series of function calls (e.g. task submission and results collection) to finish

constructing the FL pipeline.

4.3 Implementing FL Algorithms in Vantage6

As mentioned in chapter 3, a FL pipeline in Vantage6 requires the execution of an FL

algorithm. In this section, we introduce

• The general process of creating a new FL algorithm in Vantage6

• Details of implementing FedAvg algorithm in two use cases

– FedAvg MNIST

– FedAvg Sentiment

To create a new FL algorithm in Vantage6, a specific package structure needs to be

followed1. Under the project folder, at least a Dockerfile, a setup.py, an algorithm package

(folder) containing a _init_.py are needed for the Docker image to be built. The Dockerfile

includes the information of some commonly used dependencies, name of the algorithm

package, the installation commands for building the image and which Docker wrapper is

being used for the algorithm. The setup.py specifies the required dependencies for the

algorithm as well as some basic descriptions (e.g. name and version). In _init_.py, a

master method is needed to orchestrate the workflow and one or more RPC methods are

needed for the nodes to perform the computation. Every RPC method gives the node

instructions on the computation steps of the algorithm, starting from data processing to

model training and testing. An RPC method will be triggered by the master method to

start executing the algorithm and return the output to the master method after execution.

The master method sends out tasks to each node (calls the specific RPC methods) with

1An example of a FL algorithm in Vantage6 can be found on GitHub:
https://github.com/621Alice/Fed-Brane-V6

28

4.3 Implementing FL Algorithms in Vantage6

user-defined input parameters. Then, it will wait for the returned output from the RPC

methods, average the collected results and send them back to the RPC methods for another

round of execution until the algorithm converges. During the execution of the algorithm,

the master method will create a master Docker container where the final result will be

returned. Each task that the master method sends to the node will create a Docker

container for itself to return intermediate results.

Both of the use cases are implemented using PyTorch1 based on the structure of the

simplified FedAvg example on Vantage6 documentation (15) and further developed to suit

the specific dataset. Due to the limitation of current version of Vantage6 (details explained

in Appendix (8)), we combine training dataset and test dataset in one CSV (comma-

separated values) file specifically for each node to execute the algorithm. More details for

each use case are described in the following.

Figure 4.4: The workflow of FedAvg MNIST (Following the arrows, the purple-bordered
boxes represent each step needed for implementing a FedAvg algorithm for MNIST image
classification.)

4.3.1 FedAvg MNIST

FedAvg MNIST uses MNIST dataset2 for 10-class image classification. MNIST dataset

consists of grayscale images of hand-written digits from 1 to 10. We use the MNIST CSV

data files that represent images using pixel values. Each line in the data file is composed

of the image label (in number) and 784 pixel values (ranging from 0 to 255) of an 28 X

28 image. There are in total 70,000 data samples included in the dataset. I split the

1https://pytorch.org/
2https://www.python-course.eu/neural_network_mnist.php

29

4. IMPLEMENTATION

dataset equally for two nodes where each node has 35,000 data samples. The image data

is partitioned horizontally with same features (label and pixel values) but different images.

The workflow of FedAvg MNIST is shown in Figure 4.4. For image classification, we use

a simple convolutional neural network(CNN) model that consists of two 2D convolution

layers, two dropout layers and two linear layers. To train the model using PyTorch, we

first separate the image labels and pixel values, normalize the pixel values and transform

the data into tensors. The PyTorch Dataloader1 is used to prepare the datasets for model

training and testing. During model training, the stochastic gradient descent (SGD) opti-

mizer is used with a learning rate of 0.01. The loss function used in the training process

is the PyTorch negative log likelihood loss which is useful for classification problems. The

master method calls the RPC method for model training. The model is trained on each

node for a certain (user-defined) number of epochs. The updated model parameters will

be returned to the master method for averaging. The master method will call the RPC

method again with the averaged parameters. Then, the node will train the model for a

second round with the updated parameters and use the resulting model for local testing.

Figure 4.5: The workflow of FedAvg Sentiment (Starting from processing the Sentiment140
dataset, the implementation process of a FedAvg algorithm for sentiment classification is shown
in the purple-bordered boxes.)

4.3.2 FedAvg Sentiment

FedAvg Sentiment uses Sentiment140 dataset2 for binary sentiment classification. Senti-

ment140 is a dataset of tweets that are collected from Twitter API3 and automatically

annotated based on emoticons (16). It includes information such as sentiment label, user
1https://pytorch.org/docs/stable/data.html
2http://help.sentiment140.com/for-students
3https://developer.twitter.com/en/docs/twitter-api

30

4.3 Implementing FL Algorithms in Vantage6

name, tweet text, tweet ID, date and etc. Only the sentiment label and tweet text are

preserved for model training and testing while the rest of the unnecessary information is

removed. Each tweet is either labelled as positive (with number "4") or negative (with

number "0") in the processed dataset. We use the same number (70,000 for two nodes and

35,000 for each node) of data samples as the FedAvg MNIST for the ease of testing.

The workflow of FedAvg sentiment is shown in Figure 4.5. In the RPC method for

model training and testing, the tweet data is first processed by making text lowercase,

removing irrelevant tags (e.g. "html" and "@"), English stop words and punctuation. The

processed text is split by space to create a vocabulary list for the whole dataset before

splitting the data for training and testing. The vocabulary list is used to create a word

dictionary that matches each word with an integer index. Each text is transformed into

input word vectors using the word dictionary before being processed in the Dataloader.

Inside the Dataloader, an additional collate function is used to pad all the inputs based on

the longest tensor and combine the padded sequences into each batch. The neural network

model used to classify sentiment is composed of an embedding layer, three bidirectional

long short-term memory (Bi-LSTM) layers, three recurrent neural network (RNN) layers

and one linear layer. During the model training, Adam optimizer is used combined with

the cross-entropy loss function. The learning rate is relevant to the batch size. Similar

to the FedAvg MNIST classification, the master method calls the RPC methods twice for

model training, resulting in two communication rounds. In the last round, model testing

is performed using the updated model on the local test set.

31

4. IMPLEMENTATION

32

5

Experiment Design and Results

In this chapter, we introduce the experiment design and results for

• Evaluation of the FL algorithm

• Evaluation of the integration and Vantage6, including

– Local testing

– Remote testing

During the experiments, the implemented FL algorithm, FedAvg, is evaluated under two

use cases to test the effectiveness of the applied ML model. The proposed integration is

evaluated in a FL pipeline for each scenario using two use cases of FedAvg. The implemen-

tation details of the integration and the FL algorithm are included in Chapter 4. To test

the efficiency of the integration, the performance of the standalone Vantage6 is used as the

baseline for comparison. A list of experiments is summarized in Table 5.1. The details of

different experiment setup are described in the following.

Experiment design and evaluation metrics for the FL algorithm The FL algo-

rithm FedAvg is evaluated using the two proposed use cases, including FedAvg MNIST and

FedAvg Sentiment. The experiments are performed on Vantage6 mock client. We chose

model accuracy as the evaluation metric for the FedAvg algorithm in both use cases. Mock

client is a pseudo Vantage6 client that simulates the FL process for the purpose of testing

FL algorithms locally. The evaluation of the algorithm is designed to test the effect of

number of epochs and the number of nodes on the model performance. Thus, we designed

6 experiments for each FL use case, where each use case is evaluated using 2, 10 or 20

epochs on 1 or 2 nodes respectively (Table 5.2 and Table 5.3).

33

5. EXPERIMENT DESIGN AND RESULTS

Experiment Client Testing
Method

FedAvg
MNIST

FedAvg
Sentiment

Number
of
Node(s)

Model accuracy evalua-
tion

Mock
client

local
testing

X X 1 & 2

Vantage6 performance
evaluation

Mock
client

local
testing

X X 1 & 2

Vantage6 performance
evaluation

Real
client

local
testing

X X 1 & 2

Integration scenario 1
performance evaluation

Real
client

local
testing

X X 1 & 2

Integration scenario 2
performance evaluation

Real
client

local
testing

X X 1 & 2

Integration scenario 1
performance evaluation

Real
client

Remote
testing

X X 1 & 2

Vantage6 performance
evaluation

Real
client

Remote
testing

X X 1 & 2

Table 5.1: List of Experiments

Experiment design and evaluation metrics for the integration As shown in Table

5.1, both scenarios of the integration are evaluated and compared with the performance of

standalone vantage6. The evaluation for standalone Vantage6 and each integration scenario

is performed using the corresponding FL pipeline described in Chapter 4. Before starting

an experiment, the Vantage6 server and corresponding Vantage6 node(s) for computation

need to be started. In each experiment, a FL task is submitted using either FedAvg MNIST

algorithm image or FedAvg Sentiment algorithm image. The execution of a FL task can

be performed on either one or two Vantage6 nodes. Each node holds the equal amount of

data that is needed to train the corresponding FL task. For instance, when using FedAvg

MNIST algorithm image, each node participating the task execution is configured with a

local dataset of 35000 MNIST data samples. Similarly, when running FedAvg Sentiment,

each node needs to be re-configured with the data path to the Sentiment140 data samples.

The evaluation metrics for the integration include the running time, CPU and Memory

that are used for running a FL task.

• The CPU usage is shown in percentage in the experiment results, indicating how

much of the processor’s capacity is used by the running process/container.

• The memory usage is measured by either MiB(Mebibyte) or GiB(Gibibyte) to rep-

resent the amount of memory used during the task execution.

For the ease of testing, the number of epochs to train each FL algorithm is set to be 2 for

34

each experiment. To verify the effectiveness of integration for FL process, the experiments

are conducted not only locally on a local machine but also remotely using virtual machines

(VMs). The details of the two types of testing are illustrated in the following.

Local testing setup and evaluation Local experiments are conducted on a local ma-

chine with a 8-core CPU and 20GB of RAM. As shown in Table 5.1, 8 experiments are

conducted for local testing to compare the performance of standalone Vantage6, integration

Scenario 1 and Scenario 2.

The experiments are performed on either mock client or real client with one or two nodes.

During the task execution on each node, the main node container (where the task is posted

to) will automatically generate a master container. The master container will control the

flow of the algorithm execution. Based on the task input parameters (e.g. organization ids

for executing the algorithm), an algorithm container will be generated for each participating

organization/node to execute the algorithm. Both the server and nodes are hosted on the

same local machine and they are running regardless of the existence of a FL task. A

node does not compute the algorithm on the node container but its sub-containers, so the

execution is mainly relying on the master container and algorithm container(s). Besides,

the amount of CPU used by each vantage6 node (less than 4%) and the master container

(less than 1%) is negligible. Thus, the performance of each experiment is evaluated based

on the CPU and memory usage of the algorithm container and the memory usage of the

master container. Each one-node experiment has one master container and one algorithm

container. The performance is evaluated based on the maximum amount of CPU and

memory that can be used by the corresponding containers during the task execution. For

experiments with two nodes as shown in Table 5.7 and Table 5.9, each experiment has one

master container and two algorithm containers (for each node). The resulting maximum

CPU or memory usage for the algorithm container is measured based on the algorithm

container that has the largest usage.

Remote testing setup and evaluation Three machines are used for the remote test-

ing. Each machine has a 8-core CPU. The Vantage6 server and node 1 are installed in two

virtual machines (located in the research lab) where each has 16GB of RAM. Node 2 is

installed on the machine with 20GB of RAM, which is the same machine used in local test-

ing. Mock client is only designed for local environment, thus, the experiments for testing

Vantage6 on mock client is not included in remote testing. Besides, due to limited time and

possible limitations of Vantage6 and Brane (e.g. possible undetectable task directory for

35

5. EXPERIMENT DESIGN AND RESULTS

node container), integration scenario 2 is only implemented to fit local testing and further

implementation on VMs is not included in the current work. Thus, the experiments on the

VMs are only designed for standalone Vantage6 and integration Scenario 1.

Similar to local testing, node 1 and node 2 are configured with the corresponding dataset

based on the FL use case. Both the server and nodes should be configured and started on

the corresponding machines before the experiments. Node 1 and node 2 will automatically

connect to server based on the server IP address. After a task is posted to the server,

node 1 and node 2 will receive the task and start computation. The one-node experiments

are conducted on node 1 where a master container and an algorithm container will be

generated for running every task. The two-node experiments are performed on both node

1 and node 2, where the node 1 is the main node that has the master container. Each node

will start a algorithm container for executing the FL task. The performance evaluation in

remote testing is the same as local testing.

In the following sections, we introduce the experiment results along with some discus-

sions.

5.1 Evaluation Results of the FL Algorithm

In this section, we discuss the experiment results for the evaluation of the FL algorithm

FedAvg on two use cases: FedAvg MNIST and FedAvg Sentiment. Each experiment is

performed on mock client and evaluated on one or two nodes. Each node has 35,000 data

samples. The results are described in the following.

FedAvg MNIST As shown in Table 5.2, the model accuracy is increasing steadily as

the number of epochs increase. Meanwhile, the two-node experiments show clear increase

of around 2-3% on model accuracy compared to the one-node experiments. It indicates

that averaging model parameters from multiple nodes that hold different datasets is an

effective way in FL to improve model performance.

FedAvg Sentiment Table 5.3 shows similar growth pattern to FedAvg MNIST in model

accuracy when the number of epochs/nodes increases. However, the general model accuracy

for FedAvg is substantially lower (e.g around 20% lower with the same number of nodes

and epochs). With the same number of epochs but different NN model and dataset,

the relatively low accuracy on FedAvg Sentiment could mean that the Bi-LSTM model

converges more slowly on the sentiment140 dataset compared with FedAvg MNIST with

36

5.2 Evaluation Results of the Integration and Vantage6

2D-CNN. The accuracy score also decreases slightly when training using two nodes with

20 epochs. The reason for the decreased accuracy score could be related to not well-tuned

training parameters or unsuitable optimizer for the dataset.

Based on the experiment results, the FedAvg algorithm is effective on both use cases

and the model accuracy can be improved by increasing the number of nodes and epochs

in general.

NO. of Epochs No. of Nodes Model Accuracy
2 1 89.38%
2 2 91.51%
10 1 94.28%
10 2 97.89%
20 1 95.84%
20 2 98.70%

Table 5.2: Model Accuracy for FedAvg MNIST

NO. of Epochs No. of Nodes Model Accuracy
2 1 64.79%
2 2 67.92%
10 1 68.17%
10 2 70.83%
20 1 70.63%
20 2 69.67%

Table 5.3: Model Accuracy for FedAvg Sentiment

5.2 Evaluation Results of the Integration and Vantage6

In this section, we describe the experiment results of the proposed integration. We include

the following experiments

• Local testing

– Standalone Vantage6 on mock client

– Standalone Vantage6 on real client

– Integration scenario 1 on real client

– Integration scenario 2 on real client

• Remote testing

– Standalone Vantage6 on real client

– Integration scenario 1 on real client

37

5. EXPERIMENT DESIGN AND RESULTS

As mentioned before, the evaluation for the performance of stand-alone Vantage6 is in-

cluded as the baseline for comparison. Each experiment is performed by constructing a FL

pipeline with the two FL use cases separately. The details are shown in the following.

5.2.1 Local Testing

For the local experiment results of both integration scenarios and standalone Vantage6,

there is no major difference in performance for executing the same FL use case except

the running time. As we can see in Table 5.4, Table 5.6 and Table 5.7, the time used for

running FedAvg MNIST on two nodes is around 1.5 times larger than what takes to run

the same use case on one node. When using FedAvg Sentiment for evaluation (Table 5.5,

Table 5.8 and Table 5.9), the time difference between on-node and two-node experiments

is even larger. Besides, the CPU usage for each node is slightly lower in general for two-

node experiments compared with one-node experiments. As for the difference of using

the two FL use cases, FedAvg MNIST usually takes more memory (e.g. around 900MiB)

but less running time (e.g. 1m for one node and 2m for two nodes). However, FedAvg

sentiment requires less memory (e.g. around 300MiB) but significantly more running time

(e.g. around 9m for one node and 18m for two nodes). Moreover, since mock client do not

use real node containers for calculation, the time required for starting containers are saved

for mock-client experiments. Thus, the experiments on mock client are usually faster than

the ones on real client.

Overall, the evaluation results between Vantage6 and integration (including Scenario 1

and Scenario 2) for local testing are similar when running the same FL use case and the

results can vary based on the use case.

5.2.2 Remote Testing

For remote testing experiments with FedAvg MNIST (Table 5.10 and Table 5.11), the

evaluation results is similar to the results in local testing in terms of running time and

memory usage. However, the CPU usage is considerably different (e.g. around 400% for

local testing and 800% for remote testing) because of different CPU specifications between

the VM and local machine. In addition, as shown in Table 5.12 and Table 5.13, the FedAvg

Sentiment experiments in remote testing is significantly slower than the local testing when

using the same FL use case. Moreover, when running FedAvg Sentiment on node 1 alone

(Table 5.12), the running time is similar to the performance of running with two nodes.

However, when running the same task on node 2 alone (same as local testing as shown

38

5.2 Evaluation Results of the Integration and Vantage6

in Table 5.8), the time it takes for the execution is a lot shorter than running on Node 1

alone. The results indicate that the the machine used by node 1 is slower than the one

used by node 2 when executing heavy tasks. Meanwhile, the running time for two-node

experiments is largely affected by the slower machine. Moreover, in terms of evaluation

comparison between integration scenario 1 and Vantage6, there exits no major performance

difference in remote testing when executing the same task under the same experimental

setup.

To summarize, the evaluation results of different integration scenarios and Vantage6

demonstrate comparable performance in terms of running time, CPU and memory usage

under the same experimental setup (e.g. equal number of nodes and same FL task).

Nevertheless, the performance for a certain integration or Vantage6 can still be affected by

the choice of FL algorithms/use cases and the system configurations of the host machines.

Number of Node(s) Running Time Max CPU Usage/ Limit Max Memory Usage/
Limit

One node 59s 396%/800% 1.09GiB/ 19.42GiB
Two nodes 1m41s 400%/800% 1.13GiB/ 19.42GiB

Table 5.4: Vantage6 Experiment Results of FedAvg MNIST on Mock Client

Number of Node(s) Running Time Max CPU Usage/Limit Max Memory Usage/ Limit
One node 7m41s 400%/800% 0.33GiB/ 19.42GiB
Two nodes 17m19s 400%/800% 0.37GiB/ 19.42GiB

Table 5.5: Vantage6 Experiment Results of FedAvg Sentiment on Mock Client

Experiment Running Time Max CPU usage
(Algorithm Con-
tainer)/Limit

Max Memory Us-
age (Algorithm
Container)/Limit

Max Memory Us-
age (Master Con-
tainer)/Limit

Vantage6 perfor-
mance evaluation
(real client)

1m29s 401%/800% 863MiB/19.42GiB 517MiB/
19.42GiB

Integration
scenario 1 perfor-
mance evaluation

1m16s 402%/800% 859MiB/19.42GiB 506MiB/
19.42GiB

Integration
scenario 2 perfor-
mance evaluation

1m11s 407%/800% 828MiB/19.42GiB 506MiB/
19.42GiB

Table 5.6: Local Testing(one node): FedAvg MNIST Experiment Results

39

5. EXPERIMENT DESIGN AND RESULTS

Experiment Running Time Max CPU usage
(Algorithm Con-
tainer)/Limit

Max Memory Us-
age (Algorithm
Container)/Limit

Max Memory Us-
age (Master Con-
tainer)/Limit

Vantage6 perfor-
mance evaluation
(real client)

2m24s 374%/800% 890MiB/19.42GiB 508MiB/
19.42GiB

Integration
scenario 1 perfor-
mance evaluation

1m56s 382%/800% 865MiB/19.42GiB 506MiB/
19.42GiB

Integration
scenario 2 perfor-
mance evaluation

2m04s 387%/800% 922MiB/19.42GiB 505MiB/
19.42GiB

Table 5.7: Local Testing(two nodes): FedAvg MNIST Experiment Results

Experiment Running Time Max CPU usage
(Algorithm Con-
tainer)/Limit

Max Memory Us-
age (Algorithm
Container)/Limit

Max Memory Us-
age (Master Con-
tainer)/Limit

Vantage6 perfor-
mance evaluation
(real client)

9m35s 406%/800% 285MiB/19.42GiB 185MiB/
19.42GiB

Integration
scenario 1 perfor-
mance evaluation

9m18s 403%/800% 284MiB/19.42GiB 185MiB/
19.42GiB

Integration
scenario 2 perfor-
mance evaluation

8m44s 406%/800% 281MiB/19.42GiB 215MiB/
19.42GiB

Table 5.8: Local Testing(one node): FedAvg Sentiment Experiment Results

Experiment Running Time Max CPU usage
(Algorithm Con-
tainer)/Limit

Max Memory Us-
age (Algorithm
Container)/Limit

Max Memory Us-
age (Master Con-
tainer)/Limit

Vantage6 perfor-
mance evaluation
(real client)

19m3s 386%/800% 287MiB/19.42GiB 232MiB/
19.42GiB

Integration
scenario 1 perfor-
mance evaluation

17m13s 391%/800% 279MiB/19.42GiB 231MiB/
19.42GiB

Integration
scenario 2 perfor-
mance evaluation

17m23s 403%/800% 282MiB/19.42GiB 231MiB/
19.42GiB

Table 5.9: Local Testing(two nodes): FedAvg Sentiment Experiment Results

40

5.2 Evaluation Results of the Integration and Vantage6

Experiment Running Time Max CPU usage
(Algorithm Con-
tainer)/Limit

Max Memory Us-
age (Algorithm
Container)/Limit

Max Memory Us-
age (Master Con-
tainer)/Limit

Vantage6 perfor-
mance evaluation
(real client)

1m6s 787%/800% 965MiB/15.67GiB 522MiB/
15.67GiB

Integration
scenario 1 perfor-
mance evaluation

1m1s 777%/800% 933MiB/15.67GiB 520MiB/
15.67GiB

Table 5.10: Remote Testing(one node): FedAvg MNIST Experiment Results

Experiment Running
Time

Max CPU usage (Algo-
rithm Container)/Limit

Max Memory Usage (Algorithm
Container)/Limit

Max Mem-
ory Usage
(Master Con-
tainer)/Limit

Vantage6
performance
evaluation (real
client)

1m54s 784%/800%(node 1) &
404%/800%(node 2)

904MiB/15.67GiB(node 1) &
906MiB/19.42GiB(node 2)

517MiB/
15.67GiB

Integration sce-
nario 1 perfor-
mance evalua-
tion

2m5s 786%/800%(node 1) &
403%/800%(node 2)

936MiB/15.67GiB(node 1) &
860MiB/19.42GiB(node 2)

524MiB/
15.67GiB

Table 5.11: Remote Testing(two nodes): FedAvg MNIST Experiment Results

Experiment Running Time Max CPU usage
(Algorithm Con-
tainer)/Limit

Max Memory Us-
age (Algorithm
Container)/Limit

Max Memory Us-
age (Master Con-
tainer)/Limit

Vantage6 perfor-
mance evaluation
(real client)

19m44s 689%/800% 387MiB/15.67GiB 195MiB/
15.67GiB

Integration
scenario 1 perfor-
mance evaluation

19m32s 698%/800% 374MiB/15.67GiB 200MiB/
15.67GiB

Table 5.12: Remote Testing(one node): FedAvg Sentiment Experiment Results

41

5. EXPERIMENT DESIGN AND RESULTS

Experiment Running
Time

Max CPU usage (Algo-
rithm Container)/Limit

Max Memory Usage (Algorithm
Container)/Limit

Max Mem-
ory Usage
(Master Con-
tainer)/Limit

Vantage6
performance
evaluation (real
client)

21m 703%/800%(node 1) &
405%/800%(node 2)

380MiB/15.67GiB(node 1) &
274MiB/19.42GiB(node 2)

246MiB/
15.67GiB

Integration sce-
nario 1 perfor-
mance evalua-
tion

20m58s 709%/800%(node 1) &
404%/800%(node 2)

342MiB/15.67GiB(node 1) &
277MiB/19.42GiB(node 2)

252MiB/
15.67GiB

Table 5.13: Remote Testing(two nodes): FedAvg Sentiment Experiment Results

42

6

Discussion

In this chapter, we show:

• Benefits and shortcomings of the proposed integration

• Possible future research directions for further integration

• Other FL algorithms that can be combined with Vantage6

6.1 Discussion of the Proposed Integration

In this section, we make comparisons between standalone Vantage6 and the integration in

terms of the performance of running a FL task and the ease of use. The shortcomings and

benefits of the integration are summarized as follows.

Benefits According to the experiment results in Chapter 5, the integration of Brane and

Vantage6 can be used for implementing a FL workflow efficiently. The performance differ-

ence between the integration and stand-alone Vantage6 is minimal, proving no additional

overhead is needed for running FL tasks in the integration. Besides, integration Scenario

2 includes all the necessary Vantage6 functions inside Brane. It allows Brane users to use

FL services without setting up Vantage6 separately. Additionally, the pre-built functions

are easily callable in the repl due to the user-friendly programming model in Brane. A

user only needs to provide function input parameters in the repl instead of implementing

a Python script with relatively more complicated Vantage6 client functions. Lastly, Brane

repl also provide users an interactive platform that allows real-time monitoring for each

step in the FL pipeline.

43

6. DISCUSSION

Shortcomings Though Brane functions are user-friendly, additional steps are required

for the initial setup and task posting in the integration. To post a task using Vantage6

Python client, the user can simply run a Python script that has the user authentication

and task information. However, the integration Scenario 1 is implemented based on the

Vantage6 API functions as described in Chapter 4. Thus, the user needs to install the

function packages in Brane first and input commands manually in the repl for each API

function. For integration Scenario 2, Vantage6 commands are not needed, instead, server

and nodes are started in the repl by using the pre-built Brane packages. The process of

posting a task in Scenario 2 is similar to Scenario 1. Therefore, additional time for entering

commands to call API functions are needed in both integration scenarios compared to using

Vantage6 Python client.

Overall, the integration is user-friendly and effective for implementing a FL pipeline

using Vantage6 functions in Brane with negligible overhead.

6.2 Further Integration

Based on the current integration, we discuss the possibilities to further deploy Vantage6

functions in Brane.

For instance, the integration Scenario 2 is currently only supporting local testing and

it is possible to apply it for multi-node testing on multiple machines. However, during

local testing, there are many issues regarding running tasks on node containers (details

explained in Appendix (8)). They are caused by certain limitations of Vantage6 and

Brane. These problems in Scenario 2 are solved only based on a local environment with a

specific local directory and a static localhost IP address, which might not be suitable in a

multi-node environment. To make it work, we could try using similar approach in a multi-

node environment and modify the installed Vantage6 node package and Brane package to

solve related issues if necessary.

Though the light integration has similar performance to standalone Vantage6, it still

requires users to create the FL algorithm using Vantage6 client functions outside of Brane.

Meanwhile, the Vantage6 API is not fully implemented in the current version which requires

more steps to construct a FL pipeline than the Vantage6 Python Client (as described in

Chapter 4), thus , it introduces overhead. To make it possible for users to create a FL

algorithms and control its flow easier in Brane, we can implement the deep integration

which does not make use of the Vantage6 API functions like the proposed light integration

but builds Vantage6 client functions inside Brane. To implement deep integration, similar

44

6.3 Other FL Algorithms

to the Vantage6 node and server package in Scenario 2, it is possible to build Vantage6

client functions as packages in Brane as well. Inside the original Vantage6-client package,

there are multiple small functions that control the implementation and workflow of the

FL algorithm. To make this package available in Brane, we can divide the whole package

into individual functions and build each function using the Brane Python function builder.

Due to the limitation of the current version of Vantage6 (e.g. no user control on the

communication when creating a FL algorithm which might be needed for building related

functions in Brane) and limited time, the deep integration is not included in the current

work. However, there is going to be better communication control in the future release of

Vantage6, thus, the deep integration would be possible in the future work.

6.3 Other FL Algorithms

In this thesis, we implement FedAvg algorithm with two ML use cases to test the integra-

tion. There also exist many other FL workflows that can be implemented in Vantage6.

For instance, VERTIGO (17) is a FL algorithm that uses logistic regression on vertically

partitioned data, which can be implemented using Vantage6. The key idea of how to realize

VERTIGO locally is briefly demonstrated on Vantage6 GitHub1 but not fully implemented,

thus, it would be possible to implement the full algorithm locally following the demonstra-

tion and even extend it for remote testing. Another FL algorithm that can be implemented

in Vantage6 is Krum (18). Krum is a federated fusion algorithm that optimizes the orig-

inal federated averaging with a proposed aggregation rule. It allows computation of good

unbiased gradient estimates and is resilient to Byzantine (arbitrary behaviours) attacks.

To implement it in Vantage6, we can modify the implemented FedAvg algorithm and add

the gradient aggregation rule to the parameter averaging process. Besides, with the future

release of Vantage6 (version 3) that will allow using external libraries and node-to-node

communication control, it will be easier to implement various FL workflows in combination

with other FL libraries (e.g. PySyft2) in the future.

1https://github.com/IKNL/vertigo
2https://github.com/OpenMined/PySyft

45

6. DISCUSSION

46

7

Conclusion

To conclude, in this thesis, we proposed an integration of Brane and Vantage6 under

two scenarios and evaluate the integration by implementing a FL pipeline with FedAvg

algorithm and two ML use cases. The experiment results demonstrate the effectiveness of

the integration with insignificant additional overhead compared to standalone Vantage6.

The answers to our research questions are summarized in the following paragraphs.

Regarding how to implement a ML pipeline using Brane and Vantage6 in RQ1, we pro-

posed the light integration of the two systems and implemented a FL pipeline for the

integration. The light integration was based on Vantage6 API function calls. We con-

sidered two scenarios for the integration, including scenario 1 with pre-installed Vantage6

infrastructure and scenario 2 that allowed users to build Vantage6 server and node as

packages in Brane. Both scenarios were evaluated using a FL pipeline with the standalone

Vantage6 as the baseline. We performed the experiments on local machine and also VMs,

where the evaluation metrics for the performance included running time, CPU usage and

RAM usage. As for more low-level integration, we do no include it in the current work

but we introduce the possibility of implementing deep integration with the support of the

future version of Vantage6 in Chapter 6.

RQ2 concerns the applicability and reusability of the proposed integration. To answer it,

we implemented a FedAvg algorithm with two ML use cases and evaluated the integration

in both use cases. The experiment results show that the integration can be applied to both

use cases successfully with slight performance difference based on the dataset and NN

model. It indicates that our proposed light integration is applicable to federated machine

learning and can be reusable in different ML us cases.

47

7. CONCLUSION

48

8

Appendix

Vantage6 and Brane are still new research projects that are under active deployment.

Thus, many issues/errors could exist on the current version of Vantage6 or Brane. In the

Appendix, we introduce the issues we encountered during implementation and experiment.

8.1 Implementation issues

General issues Though Vantage6 documentation was nicely structured, there are some-

times missing/outdated details leading to technical errors. For instance, when importing

entities to server, the "vserver import" command on the documentation did not work and

an extra "–drop-all" flag was needed for the database tables being successfully built in the

server. Besides, for posting a FL task in iPython shell, the documented format for task

specification was outdated. Additional parameters, such as "id" and "input", should be be

specified under "organizations" for a task to be posted on server successfully. Due to the

limitation of the current version, Vantage6 docker wrapper that handles communication

between nodes and the algorithm only supports CSV files and database files (with .db ex-

tension) as local data files on the nodes. In order to use the aforementioned datasets (e.g.

MNIST and Sentiment140), I chose to work with CSV data files in both use cases and both

datasets are partitioned horizontally in the nodes. Besides, current version of Vantage6

only supports one file as database for each node. Thus, each node contained only one CSV

file with both training data and testing data during experiments. An extra step was added

during the execution of the algorithm to use only 70% of the data for training while the

rest was for testing. Moreover, there are certain functions that are built in the Python

client but not available in the Vantage6 API, including input data type conversion. The

data type conversion of task input parameters is required for the success of posting a task.

49

8. APPENDIX

Thus, an input conversion function was implemented to convert the input parameters into

JSON serializable format before adding it to the task information. Besides, the results for

a task should be decoded into human-readable format, which is another function that is

not available in iPython shell. The input-conversion and results-decoding functions should

be made accessible in Brane for the integration. Thus, both of them was first implemented

using Python script. Then, the functions were customized with descriptions of all the meta

data, files and dependencies explicitly in a configuration YAML file. The brane package

builder was used to install each function using a configuration YAML file in Brane as a

self-contained Docker image. After successful installation, these python functions became

accessible in brane repl. The required JSON string in input-conversion function does not

allow single quotes, but double quoted string is not supported in Brane repl. Thus, the

string was specified using single quotes in the repl first and an extra step was added to

the function to convert it to double-quoted string. Lastly, for building the API functions

in Brane, additional support for function input parameters as well data types (e.g. array

and nested object) was added to Brane binary package.

Issues specific to Scenario 2 As for the integration Scenario 2, the server package

was built using an older Python version to make it run successfully. Besides, when a

Vantage6 node is started, it needs to find the specified task directory based on the config-

uration.yml to create a Docker data volume to execute a task. The node container creates

sub-containers when executing a task and the task directory path to the sub-container is

an auto-detected and fixed path in Vantage6. Since the node container is created by Brane,

its sub-containers do not detect the task directory inside Brane and thus, require the task

directory to be specified before starting starting the node in Brane. So we specified the

path to the task directory in the node configuration.yml and entrypoint.sh files specifically

to be the same as brane data directory for its existence to be detected. We also made the

required local dataset available in the Brane data directory for the node container to use.

In addition, a proxy server is automatically started once a task is received by a running

node. However, when building the node container in Brane, the proxy server cannot detect

the host IP address. Thus, the proxy server IP was manually specified in the entrypoint.sh

based on the host IP of the local machine. Since Vantage6 only setup containers automat-

ically when the server and nodes are configured using the regular Vantage6 commands,

the proxy port that a node needs (by default 8080) in Scenario 2 was occupied, leading to

the failure of starting the node. Thus, the proxy port number was reset to be randomly

generated in a range where there was no occupied port. To import entities using a YAML

50

8.2 Experiment issues

file in Scenario 2, an older version of Vantage6 server docker image was needed while the

actual server should be running on the new version. Thus, both server images were in-

stalled in Brane while the older version was kept in a virtual environment for importing

entities only. The socket.io error was another error appeared, leading to the failure of a

node. It was solved by adding the correct dependency versions of SocketIO to the node

container.yml. The details of configuration.yml, entrypoint.sh and container.yml for both

server and node are shown in Figure 8.1, Figure 8.2, Figure 8.3, Figure 8.4, Figure 8.5 and

Figure 8.6 correspondingly.

Figure 8.1: The server configuration.yml in integration scenario 2

8.2 Experiment issues

When testing the real Vantage6 client locally, the internal local IP address was unable

to be detected on the local machine (Linux) by the node container because the "local-

host" was bind to the server. This problem was resolved on the Vantage6 side by resolv-

ing the localhost to the actual IP address (we re-installed Vantage6 using this branch:

git+https://github.com/iknl/vantage6.git@DEV). During the remote testing, an server

attribute error was encountered when after node 2 finished task execution and tried to

connect to server to register the results. It only happened when the newest server image

was used. To make the experiments run successfully, I chose to specify an older server

docker image (2.1.1) when starting the server and the error no longer exists. Another error

that was related to Vantage6 was duplicate node networks with the same name. Such error

existed because the same node was started before with the same node network name and

51

8. APPENDIX

the network was not removed properly when the node was stopped. It was solved by using

a docker command "docker prune" to clear the duplicated networks.

Figure 8.2: The node configuration.yml in integration scenario 2

Figure 8.3: The server entrypoint.sh in integration scenario 2

52

8.2 Experiment issues

Figure 8.4: The node entrypoint.sh in integration scenario 2

53

8. APPENDIX

Figure 8.5: The server container.yml in integration scenario 2

54

8.2 Experiment issues

Figure 8.6: The node container.yml in integration scenario 2

55

8. APPENDIX

56

References

[1] Peter Kairouz et al. Advances and Open Problems in Federated Learn-

ing. Foundations and Trends in Machine Learning, 14(1–2):1–210, 2021. [Online].

Available: http://dx.doi.org/10.1561/2200000083. iii, 5, 6

[2] Arturo Moncada-Torres, Frank Martin, Melle Sieswerda, Johan van

Soest, and Gijs Geleijnse. VANTAGE6: an open source priVAcy preserv-

iNg federaTed leArninG infrastructurE for Secure Insight eXchange. In

AMIA Annual Symposium Proceedings, pages 870–877, 2020. iii, 1, 8

[3] Docker: Empowering App Development for Developers. https://www.

docker.com/. iii, 10, 11

[4] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao.

A survey on federated learning. Knowledge-Based Systems, 216:106775, 2021.

[Online]. Available: https://doi.org/10.1016/j.knosys.2021.106775. 1, 5, 6, 7

[5] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Agüera y Arcas. Communication-Efficient Learning of Deep Net-

works from Decentralized Data. In Proceedings of the 20th International Confer-

ence on Artificial Intelligence and Statistics (AISTATS), 2017. arXiv:1602.05629. 1,

7

[6] The Brane Framework. https://docs.brane-framework.org/. 1, 9

[7] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu,

and Bingsheng He. A Survey on Federated Learning Systems: Vision, Hype

and Reality for Data Privacy and Protection. 2019. arXiv:1907.09693. 6

[8] Deng Ting, H. Hamdan, K. A. Kasmiran, and R. Yaakob. Federated Learn-

ing Optimization Techniques for Non-IID Data: A Review. International

57

https://www.docker.com/
https://www.docker.com/
https://docs.brane-framework.org/

REFERENCES

Journal of Advanced Research in Engineering and Technology (IJARET), 11:1315–

1329, 2020. [Online]. Available: http://dx.doi.org/10.34218/IJARET.11.12.2020.125.

6

[9] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank

Reddi, Sebastian Stich, and Ananda Theertha Suresh. SCAF-

FOLD: Stochastic Controlled Averaging for Federated Learning. In

Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th Interna-

tional Conference on Machine Learning, 119 of Proceedings of Machine Learn-

ing Research, pages 5132–5143. PMLR, 13–18 Jul 2020. [Online]. Available:

https://proceedings.mlr.press/v119/karimireddy20a.html. 6

[10] Dinh C. Nguyen, Ming Ding, Pubudu N. Pathirana, Aruna Seneviratne,

Jun Li, and H. Vincent Poor. Federated Learning for Internet of Things:

A Comprehensive Survey. IEEE Communications Surveys & Tutorials, page 1–1,

2021. [Online]. Available: http://dx.doi.org/10.1109/COMST.2021.3075439. 6

[11] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,

H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal,

and Karn Seth. Practical Secure Aggregation for Privacy-Preserving

Machine Learning. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’17, page 1175–1191, New York,

NY, USA, 2017. Association for Computing Machinery. [Online]. Available:

https://doi.org/10.1145/3133956.3133982. 7

[12] Jed Mills, Jia Hu, and Geyong Min. Communication-Efficient

Federated Learning for Wireless Edge Intelligence in IoT. IEEE

Internet of Things Journal, 7(7):5986–5994, 2020. [Online]. Available:

https://doi.org/10.1109/JIOT.2019.2956615. 7

[13] REST API Tutorial. https://restfulapi.net/. 10

[14] OpenAPI Specification v3.1.0. https://spec.openapis.org/oas/v3.1.0. 10,

23, 27

[15] Vantage6. https://docs.vantage6.ai/. 13, 20, 22, 29

58

https://restfulapi.net/
https://spec.openapis.org/oas/v3.1.0
https://docs.vantage6.ai/

REFERENCES

[16] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classifica-

tion using distant supervision. Processing, 150:1–6, 01 2009. [Online]. Available:

http://www.stanford.edu/ alecmgo/papers/TwitterDistantSupervision09.pdf. 30

[17] Yong Li, Xiaoqian Jiang, Shuang Wang, Hongkai Xiong, and Lucila

Ohno-Machado. VERTIcal Grid lOgistic regression (VERTIGO). Journal

of the American Medical Informatics Association, 23, 11 2015. [Online]. Available:

http://dx.doi.org/10.1093/jamia/ocv146. 45

[18] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and

Julien Stainer. Machine Learning with Adversaries: Byzantine

Tolerant Gradient Descent. In Proceedings of the 31st International Con-

ference on Neural Information Processing Systems, NIPS’17, page 118–128,

Red Hook, NY, USA, 2017. Curran Associates Inc. [Online]. Available:

https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-

Paper.pdf. 45

59

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Description
	1.2 Goals
	1.3 Research Questions

	2 Background
	2.1 Federated Learning
	2.2 Related Tools and Concepts

	3 Design of the Integration
	3.1 Vantage6 Architecture and the FL Pipeline
	3.2 Integration Design and the FL Pipeline

	4 Implementation
	4.1 Building a FL Pipeline in Vantage6
	4.1.1 Vantage6 server and node setup and configuration
	4.1.2 API functions through Vantage6 iPython shell
	4.1.3 Python Script through Vantage6 Python Client

	4.2 Implementing the proposed Integration
	4.2.1 Scenario 1
	4.2.2 Scenario 2

	4.3 Implementing FL Algorithms in Vantage6
	4.3.1 FedAvg MNIST
	4.3.2 FedAvg Sentiment

	5 Experiment Design and Results
	5.1 Evaluation Results of the FL Algorithm
	5.2 Evaluation Results of the Integration and Vantage6
	5.2.1 Local Testing
	5.2.2 Remote Testing

	6 Discussion
	6.1 Discussion of the Proposed Integration
	6.2 Further Integration
	6.3 Other FL Algorithms

	7 Conclusion
	8 Appendix
	8.1 Implementation issues
	8.2 Experiment issues

	References

