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ABSTRACT

This study aims to evaluate the performance of federated learning
framework vantage6 and compares it to a generic approach to dis-
tributed machine learning by using PyTorch Distributed which is a
parallel training package. Federated learning poses a novel way to
perform distributed learning in machine learning scenarios which
negates the need to aggregate all data in one location and instead
performs the computation where the data is already stored. Big
data is increasingly used in machine learning, and it often leads
to better model performance and higher accuracy. However, large
amounts of data often contain sensitive information. This thesis fo-
cuses on implementing a deep learning scenario on novel federated
learning infrastructure vantage6 which aims to preserve privacy.
Furthermore, local differential privacy and model encryption aim
to enable further privacy protection. Both torch.distributed and
vantage6 employ the same dataset and PyTorch model in this study.
This research concludes that vantage6 offers better performance
in terms of processing time while achieving equal accuracy scores
across both implementations. Vantage6 is still in development and
caused various incompatibility issues that are outlined throughout
this thesis.
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1 INTRODUCTION

1.1 Privacy Issues of Machine Learning and Big
Data

Conventional centralised Machine Learning (ML) has privacy-related
issues. To ensure accurate model predictions and gain valuable in-
sights, some features of a dataset that a ML algorithm trains on
can contain sensitive information. One prominent type of sensitive
data is health-related data [1] which can contain personal medical
records or individuals. Big data complicates the situation by mak-
ing centralised machine learning require even more computational
resources. The problem of big data is that datasets are becoming
too large and complex to be processed by conventional data pro-
cessing methods. As amounts of data increase, it becomes more
obscure whether data is sensitive or not. Big data is difficult to store
and train. Therefore, centralised approaches to ML are becoming
increasingly outdated and require improved methods.

Machine learning is increasingly used in the medical sector. Its
predictions can help medical professionals prevent diseases and
conditions or diagnose them in early stages [6]. However, while

hospital patients might benefit from historical patient data in di-
agnosing their condition, sensitive information is at risk of being
shared unintentionally or for commercial goals. In 2016, the Euro-
pean Union introduced the "General Data Protection Regulation”
(GDPR) [13] which made the proper use and storage of sensitive
data mandatory. These compliance guidelines are extensive and
strict regulations to ensure that sensitive data are used and stored
correctly. One example of the insufficient protection of sensitive
data is the case of the Dutch hospital OLVG which resulted in a

finel.

1.2 Federated Learning as Potential Solution

Federated learning (FL) is one potential solution to fixing some
of those issues. To explain why privacy-preserving learning is of
high importance in an increasingly data-driven world, a high-level
introduction to privacy issues in ML was given in the previous
section. FL decentralises the training of algorithms and executes an
algorithm at the site where the local data is stored. Privacy loss can
be minimised with comparable performance to centralised learning.
This decentralised learning method was introduced by Google [9]
in 2017, which indicates a shift in privacy management by big tech
companies that often contribute to privacy concerns [4]. The use
of distributed data centres can optimise the training process across
locations and therefore require less computational resources [11].
Organisations that train their data as part of a collaboration in par-
allel with other organisations only communicate an updated model
to a coordinating server. As a side-effect, this decentralised training
adheres to data privacy regulations like the data minimisation prin-
ciple of the GDPR. The reason is that only the updated model that
was retrieved from the organisations is shared with and processed
at the central server. The locally trained models are not stored after
being sent to the central server as a global model which adheres to
the storage and purpose limitation principles of the GDPR [11, 13].

This form of collaborative and decentralised (federated) ML is
crucial in the healthcare sector since health data is categorised
as one of the most sensitive information available according to
[12]. Furthermore, as health information of a patient both benefit
the patients themselves, as well as future patients, anonymisation
would be a detriment to those benefits as that historical data only
benefits a patient if it can be traced back to them. It can benefit
a patient in diagnosing their condition based on former medical
conditions. Therefore, the protection of that locally stored data is
the best way to keep that sensitive data secure. FL does not require
sensitive data to be shared or stored in a central location or database.

!https://edpb.europa.eu/news/national-news/2021/dutch-dpa-fines-olvg-hospital-
inadequate-protection-medical-records_en



Thus, FL is often associated with clinical data [12]. A more detailed
explanation of FL can be found in section 3.

1.3 Vantage6: A Better Alternative?

One particular infrastructure that provides a framework that com-
bines decentralised learning with privacy protection is the FL in-
frastructure vantage6. The developers are creating a FL infrastruc-
ture in collaboration with the "Netherlands Comprehensive Cancer
Organization" (IKNL) which deals with sensitive data of cancer
patients [10]. Vantage6’s privacy-preserving platform enables re-
searchers and developers to implement ML methods while automati-
cally adding privacy-preservation methods. While the environment
needs to be set up by the developer, the FL communication is han-
dled by vantage6 itself.

Vantage6 is designed with modular programming. Various differ-
ent modules contribute to the entire framework. The infrastructure
is open-source and employs Python coding and packages. A van-
tage6 workflow or environment consists of various researchers. One
researcher is required to send one or multiple tasks, as a Docker
image, to a central location from where the tasks are distributed to
participating nodes. Docker is a tool that lets the researcher build
an image and sends it to the nodes. The tasks are wrapped in one
master task within the Docker image. One coordinating researcher
ensures which nodes are allowed to participate in a FL scenario.
Vantage6 provides these methods via RESTful API [10]. The central
location is then responsible for the communication between the
participating nodes by sending the tasks, retrieving results, and
potentially adjusting those results at the central location. During
those interactions, no sensitive data is allowed to be shared between
the server and the nodes. All nodes perform the retrieved algorithm
on their own locally stored data. Figure 1 indicates one database
next to every participating node. The client hosts the central server
and performs the communication.
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Figure 1: Basic vantage6 infrastructure.

The main purpose of this study is to examine how well vantage6
performs in comparison to an existing FL implementation using

PyTorch Distributed (torch.distributed). While vantage6 offers auto-
matic backend coordination and communication, torch.distributed
requires developers to implement more communication code them-
selves. In vantage6, a developer only needs to specify what should
be sent to and returned from a node. Both implementations will be
evaluated according to various performance measures which are
detailed in section 4. Section 4 also outlines the implementation
and experimental setup of this study and how those differ between
the two infrastructures.

Section 3 introduces existing literature in the field of FL. Further-
more, it elaborates on the infrastructures. Section 5 explores the
results of the experiments according to the measurements intro-
duced in the methods. The last three sections 6, 7, and 8 conclude
this paper and offer insights and suggestions for future work while
reflecting on findings. The research objectives that will employ
these methods are introduced in section 2.

2 RESEARCH QUESTION

To compare the two infrastructures vantage6 and torch.distributed,
this thesis requires the implementation of a FL scenario to be used
on the same dataset. The following research question was formu-
lated:

Does federated learning infrastructure vantage6 provide an advantage
over torch.distributed in a PyTorch deep learning scenario?

The following sub-questions aim to support and deepen the under-
standing of the main research question as well as providing more
detailed insights into the difference of the infrastructures:

(1) What are the advantages and drawbacks of vantage6 in terms
of:
o usability
e documentation
e implementation

(2) Does model performance suffer from transforming the dataset
into CSV files?

(3) What are the bottlenecks in the current version of vantage6?

(4) Which infrastructure offers better privacy protection and
encryption?

(5) Does local differential privacy (DP) cause a major detriment
to model performance?

3 RELATED WORK
3.1 Federated Learning

Unlike centralised learning, FL does not use the collected data
at a single data centre. Instead, it trains a model with local data
over a distributed network of mobile devices and learns a shared
model by adding local updates together. As the learning system is
decentralised, Google coined this approach "federated learning" [9].
Although introduced for mobile devices with the intent to train
algorithms on local data on smartphones, the same framework can
be applied to institutions that have data stored locally.

The paper "Deep Learning with Differential Privacy" [1] de-
scribes a similar architecture with differential privacy (DP) and a
decentralised method that communicates between different loosely
federated devices that are coordinated by a central server. The



individual datasets are stored on those various nodes and never
reach the central server, but are locally processed at those nodes
which return results to the central server. What makes this privacy-
preserving is the fact that due to the various updates to the central
server’s global model, the data on the local devices is deleted after
the update to the server. Hence, FL reduces privacy loss by limiting
the possibility of a security breach to only one of the many devices
or nodes [1].

One major concern that the authors raised in [12] is that FL
settings require the communication of model parameters, weights,
and updates between the participating nodes. To evaluate that issue
in FL, the authors compare it to the conventional centralised ap-
proach with clinical predictions. They find that stochastic gradient
descent (SGD) with DP (DP-SGD) is easily applicable in centralised
approaches, while still offering high privacy protection. Contrarily,
they argue that the same implementation is more problematic in
FL techniques.

However, other works reject that statement [1, 2], arguing that
a solution to introduce privacy to ML is the use of DP-SGD. It is
a common method used in ML to guarantee privacy and it can
work in addition to FL [1]. The authors argue that composability,
group privacy, and robustness to additional data make DP useful
in privacy-preserving settings. During the optimising SGD steps,
which is also employed as the optimizer of the PyTorch model in
this study, noise is added for privacy protection. In PyTorch, SGD
can easily have local DP attached to it. Opacus? is a Python library
that helps to train ML models with DP. According to [2], FL alone
does not protect the privacy of patients entirely as collaborating
nodes often need to share intermediate results which can potentially
contain patient data. Despite neither torch.distributed nor vantage6
allow for the sharing of those data, local DP ensures extra privacy-
preservation.

Another paper elaborately states the advantages and unsolved
issues of FL [5] which constitutes the research motivation of this
thesis. As the need for privacy-preserving learning is growing,
frameworks that enhance privacy need evaluation and testing. This
can be achieved by analysing new frameworks that focus on FL. The
authors indicate that focused data collection and data minimisation,
namely only collecting as much data as needed, are a main focus of
FL. Data minimisation can already result in solving a main principle
of the GDPR guideline. One significant drawback that the authors
mention is that the server poses the only major risk of privacy loss
as one server is still required to coordinate the different devices.
If the central server fails, the entire system collapses [5]. On the
other hand, if one node fails, the entire system will not be greatly
impacted by that.

3.1.1 Federated Averaging. Federated averaging (FedAvg) is a
method specifically used in FL environments. In FedAvg, nodes
return the trained parameters which are then averaged at the cen-
tral location before they are again sent to the nodes to be trained
again with averaged parameters. The central server aggregates the
changes, for instance, parameters like weights, received from all
the nodes. Then, the central server averages the parameters with
the weights of the model. The devices train the model using the
gradient descent algorithm, and the trained weights are sent back

Retrieved from: https://opacus.ai

to the server [9]. FedAvg is one of the most used and fundamental
methods in the FL framework [3]. Furthermore, FedAvg has been
proven to be robust, as well as accurate of FedAvg [14].

3.2 PyTorch Distributed

The baseline infrastructure of this study makes use of the PyTorch
packages torch.distributed and torch.multiprocessing.
While vantage6 is still in development and not distributed to many
developers yet, torch.distributed has been examined and used often
which makes it the ideal infrastructure to compare vantage6 to.
Therefore torch.distributed can be used as a benchmark for FL as
it was used to create the baseline FL pipeline. Torch.distributed
uses data-parallel training which is a sub-package of PyTorch itself
and thus expected to work ideally with PyTorch implementations.
The intention of deep learning settings is that large amounts of
data, as well as complex models, are valuable to good model perfor-
mance [7]. Therefore, data-parallel training is useful when those
large amounts of data and complex models are available. Since in
torch.distributed each node trains on their own data, the computa-
tional resources are distributed among many participating nodes
while still running the same algorithm and accumulating varying
results to a global model.

3.3 Vantage6

The core of this paper is the exploration of how the FL infrastructure
vantage6 compares to the implementation with torch.distributed
using local DP package Opacus and the FedAvg algorithm. Vantage6
is an infrastructure that has not been researched and explored as
much as torch.distributed or other decentralised training frame-
works. The developers of vantage6 provide an academic paper
alongside the documentation [10]. The documenting paper pro-
vided on the vantage6 website mainly deals with FL in the field
of cancer informatics. As medical data is of sensitive nature, the
privacy-preserving FL infrastructure is a framework applicable to
this type of data. The FL architecture in vantage6 can be best de-
scribed as flexible, user-friendly, and robust [8, 10]. This is closely
related to the sub-question that aims to evaluate the ease of use
or application of FL infrastructures. Vantage6 is open-source and
is specifically addressed to cancer epidemiologists. One important
aspect of using data that includes sensitive information on patients
is the use of learning algorithms in health care to optimise health
care provided to a patient. This can be done while preserving the
patient’s privacy. The authors draw upon the above-mentioned
GDPR and claim that many issues like centralised data storing
and processing do not comply with the GDPR nor the California
Consumer Privacy Act [10]. How vantage6 works is described in
sub-section 4.6.

4 METHODS

The programming language Python is used for both torch.distributed
and vantage6. Vantage6 also requires the RESTful application pro-
gramming interface (API) for setting rules and permissions to users.
The two implementations will mainly be compared with model per-
formance and computation time. The data that will be used to train
and test the models are the CIFAR-10 and MNIST datasets. Both



MNIST and CIFAR-10 datasets are commonly used in computer vi-
sion projects. The given PyTorch model needs to be implemented as
similar as possible in torch.distributed and vantage6. This ensures
similarity and fairness for the comparison. The PyTorch model is a
simple convolutional neural network (CNN) that employs SGD as
the optimiser and local DP for privacy protection. In summary, the
methodology will look as follows:

(1) Familiarise with and both introduced datasets according to
(1,9]

(2) Evaluate torch.distributed baseline infrastructure with Py-
Torch model

(3) Based on baseline infrastructure, implement PyTorch model
in vantage6 infrastructure with DP-SGD

(4) Adjust baseline infrastructure according to limitations in
vantage6

(5) find the bottleneck(s) of each infrastructure according to
processing time, computational resource (GPU/CPU) usage,
and model performance (test accuracy)

(6) Report on findings and main differences

Four experiments will be conducted to find potential bottlenecks.
The different experiments are as follows:

torch.distributed vs vantage6 using GPU

torch.distributed vs vantage6 vs dockerised vantage6 using
CPU

difference MNIST and CIFAR-10 in torch.distributed vs van-
tage6

e performance issues with local DP in torch.distributed vs
vantage6

Here, dockerised vantage6 refers to using the actual client as opposed
to the mock client. The mock client simulatees the presence of a
server and node. As no virtual machines (VM) are employed for the
experiments, both vantage6 and torch.distributed are mocking situ-
ations in which vantage6 uses a mock client and torch.distributed
uses the torch.multiprocessing method . spawn to simulate multiple
nodes. This allows for an accurate comparison of both infrastruc-
tures without using VMs. The dockerised vantage6 implementation
makes use of the real client and Docker to distribute the Docker
image to the node.

4.1 vantage6, torch.distributed, & dockerised
vantage6

The reason that this study employs experiments with both vantage6
and dockerised vantage6 is because of compatibility and depen-
dency issues with the vantage6 client package. Those issues that are
present in the actual client work differently in the mock client that.
In the mock client, vantage6 simulates the presence of nodes like
torch.distributed does with . spawn. To still compare GPU usage
and processing time as well as local DP, the vantagae6 mock client
implementation will be compared to torch.distributed.

4.2 Metrics

The metrics processing time, computational resource (GPU/CPU) us-
age, and model performance aim to show the differences of the infras-
tructures. Model performance, namely test accuracy, will bring the

smallest insight into the different performances of the infrastruc-
tures as both infrastructures use the same PyTorch model. There-
fore, model accuracy should be nearly identical. The processing
times, namely how much each implementation takes to iterate over
the same amount of epochs, as well as how much of the GPU and
CPU it uses are the important metrics of this study. They indicate
which implementation runs more efficiently. Python package time
was used to measure the computation time of the entire training
including the initialisation. The package psutil was employed to
measure virtual memory as well as CPU usage. Finally, nvidia-smi
measured the GPU as well as VRAM usage.

4.3 MNIST & CIFAR-10

The MNIST? dataset is the primary dataset of the experimentation
as it is the computationally less demanding dataset due to the lack
of the RGB dimension. It contains grey-scale images of handwritten
digits (between 0 and 9) and has a training set of 60,000 images and
a test set of 10,000 images. The digits have been size-normalized
and centred in a 28x28 image.

The CIFAR-10* dataset consists of 60000 32x32x3 colour images
in 10 classes, with 6000 images per class. There are 50000 training
images and 10000 test images. The CIFAR-100 dataset is just like
the CIFAR-10, except it has 100 classes containing 600 images each.
There are 500 training images and 100 testing images per class. The
100 classes in the CIFAR-100 are grouped into 20 superclasses. Each
image comes with a "fine" label (the class to which it belongs) and
a "coarse" label (the superclass to which it belongs). The 10 fine
classes are considered the sensitive attributes. In CIFAR-100 the
coarse classes are used for the target task and the fine classes as
sensitive attributes.

4.4 Data Preprocessing & Distribution

The original intent for the datasets was to provide the model with in-
dependent and identically distributed random variables (fully-i.i.d)
data distribution. While functioning in torch.distributed, PyTorch
files with the ending .pt or .pth are currently incompatible with
vantage6. The only readable file format is the "comma-separated
values" (CSV) format in vantage6 which limits the available data
distribution options. Therefore, the only data preprocessing applied
to the MNIST dataset were the merging of the train and test set
as well as the application of random shuffling. As PyTorch usually
works with .pt files, a different method for the data preprocessing
needed to be used which is not required for .pt files. The shuffled
datasets needed to be loaded as .pt files and then reshaped. Then,
the data needed to be converted to a NumPy array. The targets or
labels of the dataset needed to be transformed to a list and concate-
nated with the dataset that was converted to a Pandas dataframe
before it was saved as a CSV file.

Figure 2 shows the training set as a dataframe. The final em-
ployed MNIST dataset has a size of (70000 x 785) due to the merging
of the training (60000 x 785) and testing (10000 x 785) sets. This
results in 784 pixels for each row with a label attached to it. The
first value is the label (a number from 0 to 9) and the remaining 784

3Retrieved from: http://yann.lecun.com/exdb/mnist/
4Retrieved from: https://www.cs.toronto.edu/ kriz/cifar.html
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Figure 2: MNIST train set .pt to .csv transformation which
results in a dataframe with the size (60000 x 785)

values are the pixel values (a number from 0 to 255). The prepro-
cessing of the CIFAR-10 dataset differed from the MNIST dataset as
it already contains the targets as a list and the data a NumPy array.
Before training the model, both datasets needed to be transformed
back to their original state, namely (70000 x 28 x 28) and (60000 x
32 x 32 x 3) for MNIST and CIFAR-10 respectively.

4.5 Setup

Torch.distributed employs a single-program architecture and van-
tage6 requires multiple programs which results in various differ-
ences. One local machine is used for all experiments. As vantage6
uses multiple sub-tasks, computation becomes demanding. There-
fore a remote server GPU was used in order to ensure sufficient
CUDA memory. However, that remote server was not used during
the vantage6 implementation through Docker. As the vantage6
experimentation with multiple nodes will be executed locally, with
a local Docker image, a remote server cannot be employed.

4.6 Vantage6 Infrastructure

Vantage6 is still in development. Therefore, the infrastructure lacks
many functions that torch.distributed provides. The functionality
of all components, such as the command-line interface (CLI) or the
modules, is not always guaranteed in vantage6. The most essential
one that is lacking is the availability of node-to-node communica-
tion. Node-to-node communication is the updating of parameters
and communication between nodes. It is not necessarily required
in federated learning. However, when employing the federated av-
eraging method it is necessary for the updating of the parameters
between the nodes. In vantage6, multiple sub-tasks needed to be
used to perform federated averaging iteratively as a workaround.
The infrastructure then looks as follows:

Figure 3 displays the implementation of the PyTorch model in the
vantage6 infrastructure. In vantageé, a central server coordinates

the communication between the user(s) and nodes. It does this by
exposing a RESTful API that allows the main researcher to create
tasks. Those tasks, encapsulated in a master task, are computation
requests that are sent to the nodes. Those nodes can be hospitals or
other organisations that have data that they want to put through
the main algorithm without sharing the data with the central server.
These individual sub-tasks are executed one after the other by each
participating organisation (node). Then, the results are returned
to the server. Those functions that are executed at the nodes are
coloured blue in figure 3 and those functions and methods that hap-
pen at the central location are coloured red. The server can support
multiple organizations, collaborations and users. An organisation
can therefore have multiple users and organisations make up one
collaboration. Those nodes need to provide the required processing
capacity as the computation takes place at each node individually.
In the algorithm that the node receives, the user is required to insert
their own dataset as part of the node configuration file. A node
cannot alter the hyper-parameters, which ensures that all nodes
train on the same PyTorch model. Further methods can alter those
returned results and average them in order to improve a model
by averaging the parameters returned by all nodes by using the
FedAvg algorithm.

The nodes receive the algorithms through a Docker image. That
image is built using a Docker file that needs to be located in the
project’s package structure. That image is uploaded to a Docker
hub or registry through which it can then be accessed by the re-
mote nodes. A Docker image can be considered a snapshot of the
algorithm. As soon as a node receives a task from Docker, that node
downloads the docker image which contains the algorithm with its
master task and sub-tasks and then runs the algorithm. Afterwards,
the results are returned through Docker to the server. End-to-end
encryption for all messages is possible for extra data security in
vantageo6.

By adding the prefix "RPC_" to a function, the vantage6 backend
communication automatically regards a function to be a function
that needs to be executed at the nodes. Functions without that pre-
fix will not be executed at the nodes. Each RPC_method requires
the first argument to be "data" and it only accepts one data argu-
ment. Therefore, it also only accepts one dataset from each node
configuration.

Due to the nature of vantage6, an identical copy of PyTorch’s
torch.distributed could not be implemented. This lead to key differ-
ences. In vantage6, each execution is a sub-task of a master task.
While in torch.distributed it is easy to update the parameters with
torch.distributed native functions, node-to-node communication
is not possible in vantage6. Therefore, each communication step
needs to go through the client. The functions that vantage6 does not
offer yet are to be added in version 3.0.0. The following algorithm
shows the adjusted FedAvg method for vantage6. It has the same
functionality as the function in torch.distributed, though requires
another sub-task:

Algorithm 1 also returns the model as well as the test accuracy
as a dictionary. That is due to vantage6’s architecture. As training
and testing is one task and executes either depending on the given
argument, the function needs to return the model for the next
testing execution. During the execution, vantage6 cannot store
files to the disk nor access them. Therefore, it takes that model
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Figure 3: The infrastructure visualised as a diagram.

Algorithm 1 Federated Averaging in vantage6

for parameters in list(model.parameters()):
return ’params’: parameters,
’model’: model,
’test_accuracy’: test_accuracy
result = client.get_results(task)
for output in result:
global_sum += output["parameters"]
global_count += len(global_sum)
averaged_parameters = global_sum / global_count

as a dictionary in the next sub-task. The test accuracy needs to
be returned as a dictionary so it is sent to the server as the result.
The Docker container that shows the testing would still show the
test accuracy, but the client would not return it as the result of the
node’s testing.

5 RESULTS
5.1 Processing times using GPU

The first experiment includes the mock client version of vantage6.
It is the most similar implementation to torch.distributed. Addition-
ally, it is the only environment that allows for the use of CUDA.
CUDA is a parallel computing platform and application program-
ming interface model developed by Nvidia. Docker does not recog-
nise local NVIDIA drivers which was not possible to bypass in
the experiments. Due to its iterative sub-task nature, vantage6 re-
quires far more memory of the graphics card (VRAM) in vantage6
than in torch.distributed. Each sub-task requires less VRAM than
torch.distributed, however, torch.distributed is one task by nature,
whereas vantage6 requires at least two sub-tasks for FedAvg, while
torch.distributed just updates (.gather() and .broadcast()) the
parameters of the nodes.

Processing time in vantage6 vs torch.dist
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Figure 4: Processing time in vantage6 in comparison to
torch.distributed running on GPU without differential pri-
vacy

Figure 4 shows the results of 1, 10, and 100 epochs in vantage6
and torch.distributed (torch.dist). Evidently, both infrastructures
have similar processing times. A reason why vantage6 runs a little
faster than torch.distributed might be due to the fact that it uses no
extra Python file for parsing as the arguments are specified in JSON
format in the sub-tasks themselves. As communication between
the server and the nodes happens in the backend, vantage6 seems
to communicate more efficiently.

Figure 5 shows the same experiment setting, now with the Opa-
cus privacy engine (local DP) attached to the optimiser. It leads to
the same conclusions, namely that the processing time differences



Processing time in vantage6 vs torch.dist with DP
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Figure 5: Processing time in vantage6 in comparison to
torch.distributed running on GPU with Opacus Privacy En-
gine

Table 1: MNIST GPU with local_dp in vantage6.

Accuracy Epsilon Alpha Seconds

1 68 0.551 23 17
10 88 0.639 22 105
100 92 1.4133 18 976

between the two environments are minor. With local DP, the differ-
ences are even smaller. The exact times, as well as accuracy results
of the experiments, are shown in tables 1-4.

Table 2: MNIST GPU with local_dp in torch.distributed.

Accuracy Epsilon Alpha Seconds

1 58 0.551 23 16
10 85 0.639 22 105
100 92 1.4133 18 1020

Table 1 contains the detailed results when using the remote GPU
in vantage6 as opposed to table 2 that shows the same results for
torch.distributed. Evidently, while fluctuations occurred, the com-
putation times are nearly identical as evaluated above. However,
while using the same amount of privacy budget epsilon and getting
the same best alpha, the vantage6 implementation shows improved
accuracy over the torch.distributed implementation. Epsilon quanti-
fies the privacy properties of the algorithm. Epsilon, delta and alpha
values return a quantification of the privacy guarantee of DP and
the privacy budget the algorithm has spent. The parameter alpha
tells the Opacus privacy engine which DP order to use to track
the privacy spending. The local DP seems to have a higher impact
on the torch.distributed implementation. However, that difference
becomes less prevalent the more epochs are used. For 100 epochs,
both implementations perform equally well.

Table 3: MNIST GPU without local_dp in vantageé6 (left) &
torch.distributed (right).

Accuracy Seconds Accuracy Seconds

1 93 10 1 91 10
10 98 31 10 97 38
100 99 240 100 99 254

The tables in table 3 indicate that accuracy and computation time are
similar with vantage6 having a slight advantage over
torch.distributed. This indicates that vantage6 is more efficient.
This part answers the sub-question 5, which asked whether local
DP causes a major detriment to the model performance. Execution
times are considerably higher in the experiment with local DP, and
the test accuracy is considerably lower due to the added noise. With
a high amount of epochs, both vantage6 and torch.distributed reach
test accuracy of more than 90%.

5.2 Federated Averaging GPU usage

As the federated averaging implementation was different for van-
tage6, some issues occurred with the use of CUDA. The GPU usage
was approximately 60% for both implementations. While vantage6
used 2.2 GB of VRAM for the first sub-task, torch.distributed used
3.7 GB in total. However, when iterating over the second sub-task
which trains with the averaged parameters in vantages, the pro-
gram used 7.2 GB of VRAM before throwing an error that CUDA
ran out of memory. This is an issue as CUDA does not clean up
its allocated memory which is necessary for vantage6’s iterative
updating of parameters. Federated averaging did not affect the ac-
curacy of the training in either implementation. This part offered
an insight into the bottleneck of vantage6 as asked in sub-question
3. As processing times showed, vantage6’s architecture does not ap-
pear to have any processing time bottlenecks. Various compatibility
issues outlined in sub-section 5.4 cause limitations of the infras-
tructure, however, the workarounds do not cause any performance
issues except for exhausting hardware resources.

5.3 Processing times using CPU

This section includes the addition of the dockerised vantage6 imple-
mentation. All implementations used on average 50% of the CPU
with nearly identical virtual memory usage between vantage6 and
torch.distributed, while the dockerised vantage6 implementation
uses the entire virtual memory available. Unlike CUDA, the CPU
freed its cache and allocated virtual memory automatically after
each process in vantage6. Therefore, the bottleneck that appeared
with the GPU experiment is not applicable to CPU processing.
Nonetheless, GPUs are preferred over CPUs in image classification
settings.

The dockerised installation using the components is the preferred
build of vantage6 and is also the final version of the vantage6 im-
plementation in this study. The training performance measured in
accuracy between all infrastructure settings was similar. However,
as seen in figure 6, the dockerised vantage6 is considerably more
efficient than its mock client version as well as the torch.distributed
implementation. Evidently, dockerised vantage6 takes the longest
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Figure 6: Processing time in dockerised vantage6 in compar-
ison to vantage6 and torch.distributed running on CPU

to initialise, as seen in the slightly higher runtime with epoch =
1 in comparison to the vantage6 with the mock client as well as
torch.distributed. Afterwards, the dockerised implementation runs
more efficiently and faster. This shows that vantage6 offers a signif-
icant performance improvement. Lower runtimes enhance usability.
With further development of vantage6 and improved documen-
tation, vantage6 could be a better alternative to PyTorch’s native
torch.distributed package.

Table 4: Computation speed across all three implementa-
tions.

1 10 100
vantage6 51 461 4484
torch.dist 54 507 4578

dockerised v6 59 349 3414

As the dockerised version hosts both the master container as
well as the node container, the virtual memory is exhausted more
than in mock client vantage6 and torch.distributed. Virtual memory
is the virtual process that the system synthesises to represent the
memory and CPU resources consumed by the programme. While
the advantage of the mock client implementation performed slightly
better with the GPU than torch.distributed, this part showed a
major improvement over the torch.distributed implementation. This
answers the main question which asked whether vantage6 offers
an advantage in this PyTorch implementation.

5.4 Usability, Documentation, &
Implementation

Vantage6 has many issues that need to be worked around. One main
issue that was encountered during the implementation was due to
the privacy engine of Opacus. As vantage6 works iteratively with
sub-tasks, Opacus tries to attach the privacy engine to the model
twice. That is not possible. The function privacy_engine.detach()
does not provide a solution and seems to be malfunctioning in re-
lease 0.13.0. With the remote server, which has the same package

versions installed, this error does not occur. In the actual implemen-
tation, local DP could not be used. When using the actual client,
there is a dependency issue with vantage6.client and Opacus,
namely that vantage6 requires the package requests to be exactly
to be 2.23.0 and Opacus requires at least 2.25.1. Using previous
releases of Opacus did not solve that issue. In the mock setting
(with the remote server), local DP can be attached to both the first
training iteration as well as the averaged training iteration.

Another issue occurred with the transformation of the CIFAR-10
dataset. While MNIST has one fewer dimension than CIFAR-10, as
CIFAR-10 has an additional RGB layer, converting CIFAR-10 into
a single CSV file is a considerable downside to the functionality
of the PyTorch model. Therefore, the test accuracy was always
9.73% and did not train properly which indicates an error in the
transformation or the requirement of an additional file which is
not possible in the current version of vantages.

In its current stage, vantage6 does not allow for direct data
distribution in deep learning settings as it expects local data at each
node which is how a real-case scenario would look like. Therefore,
the fully-IID data distribution would need to be done beforehand
manually to the CSV file and set to each VM. That was beyond the
scope of this study. This part answers sub-question 2 which asked
whether transforming the datasets into CSV files would affect the
model performance negatively. While there were no differences
between the .pt and CSV file in terms of model performance, CIFAR-
10 could not be trained on due to the transformation of the dataset.

One incompatibility issue had to do with PyTorch’s
model.parameters() function. That method is a generator which
needs to be used for the SGD optimisation of the model. Genera-
tors cannot be pickled by the Python pickle module employed in
vantage6. However, converting those generators to a list solved the
issue. Although an easy solution existed, it is a flaw in the vantage6
infrastructure that should be considered.

Lastly, an error that developed early on in the development phase
had to do with averaging as part of sub-tasks in vantage6. As soon
as the parameters of the model are adjusted, they are no longer leaf
tensors. This means that they are no longer at the beginning of the
graph. This is an issue in this context as the returned parameters
from the training round at the nodes returns leaf tensors. Yet, as
soon as those parameters are added up from all nodes and divided
by the number of nodes that trained the model, the tensors are
no longer leaf tensors. This causes an error in vantage6, as Opa-
cus needs to be set up anew in the next training sub-task due to
vantage6’s architecture. The privacy engine of Opacus can only be
attached to leaf nodes. To bypass an error that the optimizer would
raise, the methods .detach() and .clone() need to be applied in
order to make the optimizer accept the parameters as leaf tensors.
This is an issue only present in the vantage6 implementation as it
is caused by the FedAvg workaround.

Sub-question 1 aimed to identify which infrastructure is more
usable. The issue with Opacus, as well as the issues addressed with
the PyTorch sub-packages and data formats, hinder a developer to
implement various third-party Python packages. Most issues were
avoided with simple workarounds, however, some packages were
impossible to use due to vantage6’s architecture.



6 DISCUSSION

Although stated in [12] that applying DP to federated settings is
more difficult than to centralised settings, modern tools like the
Python package Opacus allow for easy integration of local DP in
PyTorch, no matter the setting. Although the model performance is
lower, and processing power suffers from added noise, an increased
amount of epochs still results in high model accuracy as seen in
section 5. Furthermore, this study displayed that high accuracy can
still be obtained in FL settings while not sharing sensitive data with
the central server. The more organisations participate, the more
data is available which tends to result in more accurate predictions.

Both vantage6 and torch.distributed offer various advantages in
the FL pipeline. Torch.distributed gives the developer more free-
dom and flexibility in setting up their own communication as well
as not restricting the developer to a specific data type, whereas
vantage6 simplifies the communication backend and automates
the deployment of FL in real-case scenarios. Vantage6 without Fe-
dAvg appears to be faster than torch.distributed. However, when it
comes to FedAvg, torch.distributed has the upper hand in the non-
dockerised experiment. The reason for that is that due to vantage6’s
current architecture, no node-to-node communication is possible
the same way as in torch.distributed. That is one of vantage6’s
major disadvantages. A similarly working node-to-node commu-
nication implementation is planned for release 3.0.0 of vantage6.
Right now, vantage6 cannot update the parameters automatically
between the nodes during a task (as each round is one sub-task),
which makes it an intermediate process between two sub-tasks.

The possibility of easily adding extra encryption in vantage6
offers further privacy-protecting measurements. Therefore, it an-
swers sub-question 4 that asked which infrastructure offers the
better protection. Despite the data never leaving the local nodes,
supplementary encryption of the image and node enables privacy
protection. Thus, by default, vantage6 offers better privacy protec-
tion.

Throughout this study, vantage6 has shown various issues that
were not apparent in the torch.distributed infrastructure. However,
despite torch.distributed being designed to work well with PyTorch,
vantage6 has great potential for FL in ML settings. One benefit
is the argument parsing. In vantage6, the arguments and hyper-
paramereters are easy to change. However, whenever researchers
want to change the parameters, they must build a new Docker image
which can be time-consuming. Therefore, it is also a disadvantage
and results in long waiting times between testing the algorithm
as building a Docker image requires time. One advantage is the
"RPC_" prefix method which tells the vantage6 backend that it is
to be executed at the nodes only which simplifies server-to-node
communication. For the further implementation of ML, especially
deep learning models, it is advisable for researchers to wait for the
3.0.0 release of vantage6.

As a data science student, I am familiar with the concept of data
privacy and deep learning library PyTorch. Throughout this study,
I became more familiar with various file formats, API, and various
computer science concepts. Since I have only learned privacy law
and ethical issues about ML and privacy before this study, this thesis
has been a great way to learn about actual implementations that
tackle those issues. FL will be a major advantage in the field of ML

because of the increasing awareness of data privacy and the surge of
big data which will require FL for processing those large amounts of
data. New infrastructures like vantage6 offer user-friendly options
of establishing FL settings.

6.1 General Limitations

A major limitation of vantage6 is the restriction to one CSV file
which makes the implementation of, especially deep learning set-
tings challenging. Another issue of FL that was mentioned in the
literature review section was that FL is highly reliant on the cen-
tral server. A server failure of the central server would cause the
entire system to fail. Since node-to-node communication is not
available in vantage6, this might cause problems. Therefore, this
is an open issue that vantage6 does not tackle yet since vantage6
relies on Docker and server-to-node communication. Since the use
of iterative sub-tasks, rather than offering methods for updating
parameters, high memory usage can cause the central server to
delay result output. Lastly, as vantage6 is still in its development
phase, few ML settings have been implemented and tested.

6.2 Project-specific Limitations

As PyTorch employs a specific format to store models and datasets,
vantage6 did not support that native data format. Furthermore,
during an iteration in vantage6, nothing can be written to the disk,
therefore, a trained model cannot be stored and loaded for the
testing during a process. These two obstacles made it impossible
to make the train and test functions separate which resulted in
RPC_train_test with an argument "if_test" for whether a sub-task
is supposed to execute training of testing.

A limitation of this study is the absence of actual nodes simulated
by VMs. This would lead to more accurate results by comparing a
FL simulation with actual nodes that process their own data or parts
of a data distribution with their own computational resources. Due
to the absence of results of a secondary dataset, this study cannot
fully confirm that vantage6 performs better than torch.distributed
in image recognition solely based on the MNIST dataset. Further re-
serach is needed to affirm that hypothesis with additional computer
vision datasets.

7 CONCLUSION

This study incorporated the implementation of PyTorch in vantage6.
PyTorch has not yet been implemented in vantage6 by any other
developer. This signifies the importance of this study for future
research and contribution to the field of study.

Comparing the two infrastructures vantage6 and torch.distributed
lead to many insights on the advantages and disadvantages of them
in FL settings. While vantage6 performed better on a GPU and was
faster than torch.distributed, the VRAM was heavily burdened by
vantage6 framework. However, the CPU was not impacted by this.
To conclude, the dockerised version of vantage6 is the fastest and
arguably most secure infrastructure as the experiments showed
and offers various benefits like encryption.

To answer the main research question asking whether van-
tage6 offers advantages over torch.distributed, the results show
that the dockerised installation of vantage6 has a high advantage



over torch.distributed in terms of computation times. Despite host-
ing the central part of the algorithm, the node that receives the
algorithm, and requiring Docker, the computation time of vantage6
was the lowest. The third-party Docker integration added to that
efficiency. Furthermore, while torch.distributed is mainly intended
for the data-parallel training of PyTorch models, vantage6 offers
FL for a variety of statistical methods as well as ML methods. A
main bottleneck of torch.distributed in this experimental setup was
the single-program implementation as opposed to the modular ar-
chitecture of vantage6 that allowed the training process to utilise
all computational resources which resulted in more efficient run-
times. FedAvg does not undermine the model performance in either
infrastructure, though due to its iterative nature in the vantage6
implementation, causes CUDA to run out of memory.

8 FUTURE WORK

Future work with vantage6 is highly encouraged. However, if a
future researcher aims to work with vantage6 on deep learning
systems that include PyTorch, they are advised to wait for the 3.0.0
release version of vantage6 and discuss beforehand whether the
above-mentioned limitations are fixed or whether the workaround
employed in this study will still need to be used.

In future projects, VMs should be employed to simulate partici-
pating nodes, with one VM representing one node. At those nodes,
different partitions of a .pt PyTorch dataset could be attached to sim-
ulate the participating nodes contain different data. Future work can
built on this research project, while alterations should be made as
soon as node-to-node communication will be available in vantage6.

The different FedAvg employed in the vantage6 experiments did
not affect the resulting accuracy of the training. However, since no
data distribution beyond merging and shuffling the datasets was
applied in the experiment, an experiment will need to be run as
soon as vantage6 allows for additional data formats, especially in
.pt format when PyTorch models will be implemented.

While this study focused on the comparison of the FL infrastruc-
ture and PyTorch data-parallel training package, further studies
will investigate vantage6. That study will investigate additional ML
methods within the vantage6 environment and aims to integrate
that into Brane. Brane is a module that utilises containerisation to
encapsulate functionalities as portable building blocks to improve
accessibility to computer science novices by bypassing the backend
computing.
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