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“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley
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Abstract

Apache Spark has been broadly adopted as the standard data processing frame-

work to derive values from big data. However, this brings new challenges for

the cluster administrators, especially in terms of selecting the right cloud con-

figuration, since there are many available instance types with different sizes. A

bad selection leads to unnecessary excessive costs. The situation will get more

challenging if the administrators have no knowledge of the Spark application

which will be executed. There exist automatic solutions to identify the best

configuration for a broad range of options, with high search costs. However,

there are many large-scale non-recurring data analytic applications, which have

practical cost constraints. The goal of this paper is to develop a performance

model for Spark for simulation, which can estimate the optimal or near-optimal

number of parallelisms for the application by running the application only once.

The system also leverages sampled data to further lower the cost. Our experi-

ments show that the system has a high chance of finding the optimal number of

parallelisms, without the high overhead of developing the model and collecting

the data.

Keywords: Performance Model, Performance Estimation, Configuration Se-

lection, Apache Spark, Big Data, Data Sampling
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is used to manage relational databases
and perform various operations on the
data in them
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Introduction

In the past decade, we all have witnessed a huge adoption of large-scale big data tech-

nologies across all kinds of sectors like banking(2), retail(3), healthcare(4) and IoT(5).

Organizations are all starting to make use of the massive amount of data generated and

collected to solve complex real-world data science questions, in order to further optimize

their decisions and services. The ICSR Lab1 is a platform that enables bibliometricians,

scientometricians, informetricians and other researchers to run bibliometric data analyses

using Elsevier metadata such as Scopus(6) and PlumX(7). Through free access to the Lab

for non-commercial research studies, we want to help researchers to test their innovative

ideas and methods, as well as contribute to the community in terms of collaboration and

reproducibility.

In order to derive value from big data efficiently, numerous big data frameworks have

been introduced to handle 5 V’s of big data (velocity, volume, value, variety and veracity

(8)). Among all these frameworks, Apache Spark(9) has become the de-facto standard for

big data processing for its ease of use and high performance. At the time of being awarded

the 2022 SIGMOD Systems Award, it has been downloaded 45 million times in PyPI and

Maven Central alone and has been used in at least 204 countries and regions2. The ICSR

Lab, which runs on the Databricks platform, runs on Spark.

As public/private cloud adoption grows in the enterprise sector, more and more users

realize the benefits of deploying Spark on the cloud and start to run Spark on cloud in-

frastructure. In a cloud environment like AWS EC2, administrators have a wide range of

choices in terms of the instance types and number of instances. Different instance types

bring about different computing and I/O capability, while the number of cores set the

1https://www.elsevier.com/icsr/icsrlab
2https://databricks.com/blog/2022/06/15/apache-spark-and-photon-receive-sigmod-awards.html
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1. INTRODUCTION

maximum parallelism of a Spark cluster. For the time being, AWS currently offers nearly

400 different instances with choices across storage options, networking, and operating sys-

tems1. Given so many options to choose from, it is often quite hard for administrators to

answer questions like What is the cheapest instance configuration to finish this job given

this configuration or Bigger clusters with fewer nodes or smaller clusters with more nodes,

especially without the a priori knowledge of the Spark application which is going to be

executed on the cluster. Administrators need to read the source code of the application to

get a sense of the scale of the workload, which is time-consuming and may not be practical

because of other considerations like privacy. Administrators can consult the developers

of the application, but the native support of SQL in Spark has attracted users like data

analysts and data scientists, who typically don’t have a deep knowledge of the underlying

big data system. A more practical way to get around this problem is to run the application

several times using different cluster configurations to observe the performance differences.

It is, however, costly to develop such an empirical performance model, especially for ap-

plications that don’t need to be run repeatedly and frequently. Also, it is often the case

that data analysts and data scientists develop their applications on the sampled data since

the ad-hoc queries on smaller data are more efficient, which helps their proof of concept

and debugging of the application. The dry runs on the sampled data should provide great

insights to the administrators on how to allocate the resources. Therefore, a lightweight

approach to estimating the performance of the Spark applications and selecting the optimal

instance using sampled data should be of great value to the cluster administrators.

This thesis aims at developing an approach to estimate the performance of nonrecurring

Spark applications under different available resources. The approach includes a perfor-

mance model, which should both have good accuracy in the estimated running time, and

be lightweight, which means it won’t incur excessive costs in building the model. How

to use the model on sampled data for selecting the optimal instances is also investigated

in this thesis, which covers a domain-driven stratified data sampling method to produce

the sampled data properly. The rest of the thesis is organized as follows. In chapter 2,

the background information about Spark and related works regarding the performance

modeling on Spark are described, followed by a detailed problem statement with research

questions. In chapter 3, the design of the solution to solve the research problems is de-

scribed. In chapter 4, the implementation of the purposed solutions is introduced in detail.

Experiments, comparisons, and results are presented in chapter 5. Finally, the discussion

and future work of this project are presented in chapter 6.
1https://aws.amazon.com/ec2/instance-types/
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2

Background

In this chapter, the background of this thesis work is introduced. Firstly, some technical

background information on Spark is introduced. Then, current related works of perfor-

mance modeling of Spark are described. Based on the actual requirements in the ICSR

Lab and the related works in this field, problem statements and research questions are

proposed.

2.1 Spark

2.1.1 Architecture

Spark has a well-defined layered architecture where all the Spark components and layers

are loosely coupled. The architecture can be separated into user layer, data processing

layer, resource management and task scheduling layer and physical execution layer. In the

user layer, users need to prepare data, develop the application and configure parameters.

The data processing layer converts the application code into a logical and physical plan

according to the code and configuration. The resource management and task scheduling

layer allocate resources needed and schedule the tasks to the suitable container. Finally,

the physical layer executes the processing task.

From the system perspective, Spark adopts Master-Worker architecture. Take the stan-

dalone version as an example: if a Spark cluster consists of three nodes, the deployed

architecture is shown in Figure 2.1. The master node is responsible for managing applica-

tions and tasks. Specifically, the Master daemon on the master node manages all worker

nodes, i.e. allocating tasks to Worker nodes, collecting task run-time information on the

worker nodes, detecting the heartbeats of the worker nodes, etc. The Worker daemons

need to communicate with the master node and be responsible for the actual task execution

3



2. BACKGROUND

Master Node

Master Process

Driver

application.main()

Worker Node 1

Worker Process

ExecutorRunner ExecutorRunner

CoarseGrainedExecutorBackend
Process

Executor

CoarseGrainedExecutorBackend 
Process

Executor

Worker Node 2

Worker Process

CoarseGrainedExecutorBackend
Process

CoarseGrainedExecutorBackend
Process

Figure 2.1: Spark system architecture

like starting up the executors for specific Spark tasks, monitoring the states of the tasks,

etc. Some core concepts are described below:

• Application. One runnable Spark application, like WordCount.scala, which includes

main() function. The typical process is reading the data from the data source, pro-

cessing the data, and finally outputting the results. The application includes some

configurations, like the number of CPUs needed, the size of the executor memory,

etc. In order to implement the application, users can use either the data operations

provided by Spark or some other frameworks like Spark SQL (which can translate

4



2.1 Spark

the SQL languages into Spark applications).

• Driver. The process runs the main() function of the application and creates the

SparkContext. In Figure 2.1, the Spark application process (which is usually created

by the SparkSubmit script) running on the Master node is the Spark Driver, which

is independent of the Master process. SparkContext includes DAG scheduler, task

scheduler, and SparkEnv which is a set of Spark environment managers.

• Executor. One unit of Spark computing resources. Spark uses cluster resources in

the unit of executor and then allocates the detailed computing tasks to the executors.

Physically, the executor in fact is a JVM process (called CoarseGrainedExecutor-

Backend in Standalone deployment mode), upon which can be run multiple threads

(computing tasks). SparkEnv is also included in the JVM process on each executor.

• Task. When the driver is running the main() function in the Spark application,

it divides the application into multiple computing tasks and allocate them to the

executors. The task is the smallest computing unit in Spark and cannot be divided

further. Tasks are run as threads in the process of the executor and execute comput-

ing tasks like the map operation, reduce operation, etc. Because the executor can

be configured with multiple CPU cores, and usually one task only uses one CPU,

multiple tasks can run in parallel in the executor. For example, in Figure 2.1, worker

node 1 has 8 CPU cores. 2 executors are launched on this worker node, so 4 tasks

can run in parallel in each executor. Notice that in the Databricks architecture, only

1 executor is launched on the worker node 1.

2.1.2 Logical Plan

There are four main sections to the logical plan:

• Data source. Spark needs to read the data from a certain source. The data can

be placed on distributed file systems like HDFS, object stores like Amazon S3, and

distributed key-value databases like HBase, etc.

• Data model. Hadoop MapReduce abstracts input, intermediate and output data as

<Key, Value> record. The fine-granularity of the data representation means that the

only way to work with data is using the map or reduce function, which lacks flexibil-

ity. Spark abstracts all the data on a higher level as RDD. Different from elementary
1https://docs.databricks.com/clusters/cluster-config-best-practices.html
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2. BACKGROUND

data structures like ArrayList, RDD is only a logical concept, which means it will

not be allocated storage space in memory (unless being cached explicitly). Three

characteristics are associated with an RDD: dependencies, partitions and compute

function. Firstly, dependencies can provide Spark with the ability to construct the

RDD with its required input. Secondly, different partitions enable RDD to be pro-

cessed by different tasks in parallel on different nodes. Finally, compute function

produces the iterator for the data in the RDD.

• Data operation. Spark divides the operations into two kinds: transformation and

action. The main difference is that action operations generally post-process data to

generate the results, and will trigger Spark to submit an actual job. Transformation

actions, on the other hand, are used to generate new RDDs.

• Results processing. There are two ways for Spark to generate results. One way is

to aggregate the data to the driver side for the final computation, like counting the

number of elements. The other way is to save the computation results directly to the

distributed file system.

To generate the logical plan, Spark firstly generates the RDDs according to the trans-

formation operations in the application code. The number of RDDs generated by Spark is

more than the number of transformation operations because some complex transformation

operations like join need to transform the source RDD multiple times. Then, Spark will

develop data dependency between the partitions of the RDDs. Spark splits the data depen-

dency into two groups: narrow dependency and shuffle dependency. Narrow dependency is

the base class for dependencies where each partition of the child RDD depends on a small

number of partitions of the parent RDD. More specifically, this kind of dependency can be

divided further into 4 kinds:

• One-to-one dependency. The number of partitions of the child RDD and the

parent RDD is equal, and the partitions in two RDDS have a one-to-one mapping

relationship.

• Range dependency. A one-to-one dependency between ranges of partitions in the

parent and child RDDs.

• Many-to-one dependency. One partition in the child RDD relies on multiple

partitions in the parent RDDs.

6



2.1 Spark

• Many-to-many dependency. One partition in the child RDD relies on multiple

partitions in the parent RDD, while one partition in the parent RDD relies upon

multiple partitions in the child RDD.

Narrow dependencies facilitate data pipelining, which means transformations can be

done in memory in a pipelined way to achieve better performance. In contrast, shuffle

dependency means that one partition in the child RDD relied on multiple parts of the

partitions in the parent RDDs, which require data from all parent partitions to be available

and to be shuffled across the nodes. Executors need to fetch the data required for further

transformations, either locally or remotely.

2.1.3 Physical Plan

When there are a large number of tasks, they put pressure on scheduling and data storage

for intermediate data. In order to overcome this problem without sacrificing parallelism,

Spark divides the jobs, stages and tasks in an appropriate way. There are four main

procedures for Spark to generate the physical plan:

• Divide the application into jobs according to the action operation. The

job corresponds to the whole process starting from the initial data input to the final

action operation. If there are multiple action operations in the application, Spark

will generate jobs in turn.

• Divide the job into stages according to the shuffle dependency. For each

job, Spark backtraces the whole logical processing process from the last RDD. If it

is a narrow dependency, then the parent RDD is brought into the stage and the

backtracing continues. If it is a shuffle dependency, Spark stops back-tracing and

make a new stage including all the stages that have been brought into.

• Divide stage into tasks according to partitions. Since the computation logic

on each partition is the same and independent, Spark will decide the number of tasks

according to the number of partitions in the last RDD in each stage.

The dependency between stages is shuffle dependency, which means each task in the

child RDD needs to obtain part of the data from every partition in the parent RDD. The

parent stage needs to partition the output data in advance, the number of which equals the

number of tasks in the child stage. This process is referred to as Shuffle Write. Then, the

tasks in the child stage read the data for its own partition through the network and then

7



2. BACKGROUND

aggregate the data from different partitions in the parent stage together. This process is

referred to as Shuffle Read.

2.1.4 Memory Management

As shown in Figure 2.1, tasks are threads in the executor, which means multiple tasks

share the same memory space of the executor. So memory management in Spark needs to

balance the memory consumption from different sources and solve the memory sharing and

competition between the tasks. In version 1.6, Spark implemented a unified model called

UnifiedMemoryManager. The memory space is divided into 4 parts: reserved memory,

storage memory, execution memory and user memory. Reserved memory is for storing in-

ternal objects in Spark. Storage memory is used for storing RDD caching data, broadcast

data, part of the computation results from tasks, etc. Execution memory is for storing

intermediate data during the shuffle phase. User memory is for storing intermediate com-

putation results from user code and user-defined data structures in map functions, etc.

Instead of using a static ratio to divide the memory space, the memory model adopts a

dynamic approach.

The size of reserved memory is fixed at 300MB. Storage memory and execution memory

are together called framework memory, of which the size is about 60% of the memory

space (spark.memory.fraction×(heap−reserved_memory), spark.memory.fraction is

0.6 by default), and an initial ratio is given. The ratio can be adjusted dynamically, for

example, if there is not enough space for shuffling then part of the storage memory can be

borrowed by the execution memory. But the size of the storage memory should at least be

around 50% of the memory (spark.memory.storageFraction×(spark.memory.fraction×

(heap− reserved_memory)), spark.memory.storageFraction is 0.5 by default).

2.1.5 Spark SQL

Spark SQL(10) is a package built upon Spark that allows developers to issue SQL queries.

The underlying engine can translate the queries automatically to RDD transformations

and actions. At the core of the Spark SQL engine are the Catalyst optimizer and Project

Tungsten. Together, these support the high-level DataFrame and Dataset APIs and SQL

queries. Spark SQL is now de facto the primary and feature-rich interface to Spark’s

underlying in-memory distributed platform.

8



2.1 Spark

Figure 2.2: Major steps in Spark SQL (1)

2.1.6 Spark Listener

Spark provides several useful internal listeners that track metrics about tasks and jobs.

During the development cycle, for instance, these metrics can help users to understand

when and why a task takes a long time to finish. Examples of metrics are the number

of active tasks, jobs/stages completed and failed, executor CPU used, executor run time,

garbage collection time, shuffle metrics, I/O metrics, metrics with memory usage details,

etc. Developers can attach to Spark monitoring data using the developer API, which is

called a Spark Listener. So developers can write a custom class, extend the Spark Listener,

write methods that react to events and collect data and process data. The executor metrics

instrumentation can measure data of memory usage per memory component, and also

provide values of the peak measurements.

9



2. BACKGROUND

2.2 Performance Modeling of Spark

Several works exist that look into various aspects of Spark performance modelling us-

ing different approaches. These approaches can be roughly divided into three categories:

black-box, white-box and grey-box modelling. White-box models need to symbolize the

interactions between various system-internal components which needs a strong understand-

ing of the underlying system, while the black-box model or machine learning model needs

historical performance data of the workloads to establish a model which automatically

learns the relationship of performance with the interactions of the system components.

A grey-box model is a combination of the white-box model and black-box model and is

intended for taking the best of both approaches.

2.2.1 Black-Box Modelling

The black-box modelling approach is the most popular approach to address this problem

due to its simplicity and high accuracy. Black-box models can be based on regression

models (11, 12, 13, 14, 15, 16, 17), classification models (18) and parameter optimization

(19, 20).

Regression is the most suitable model for performance modelling since the most ex-

pected modelling performance metric is the running time, which is a continuous value.

Ernest (11) is one of the first black-box models to predict the execution time based on a

specified instance configuration, given the job and input data size. To be more specific,

they summarised high-level computation and communication patterns in Spark and tried

to predict the overall execution time using a linear regression model. Only input data

size and number of nodes are used as features in the model. For computation patterns,

time is positively correlated to input and negatively correlated to a number of nodes. For

communication patterns, tree DAG communication has a logarithmic relation with time,

all-to-one communication has a linear relationship with time, and one-to-one communica-

tion is a constant factor in time. Instead of collecting the training of all the combinations

of input data size and number of machines, they made use of optimal experiment design

from Statistics which is supposed to minimize the trace of the matrix that represents all

the options, while the matrix is subjected to a bounded total budget. We also use Ernest

as the the baseline to compare with our work, since it is the widely used and open-sourced.

Based on Ernest, other works try to make improvements in two aspects. Firstly, add more

features to a more sophisticated model including LASSO(12), neural network(12, 13, 17),

decision tree(12, 13), support vector machine(12), ensemble learning models(12, 14, 17).

10



2.2 Performance Modeling of Spark

Secondly, control the cost of training by using techniques like Latin hypercube sampling

(13), projective sampling (14), and simulated Bayesian optimization (16).

Wang et al. (18) also proposed a classification-based black-box model to predict the

execution time with Spark configurations and the size of input data. Random search is

performed over the parameters for collecting training data, of which values are selected

uniformly at random. A binary classification model is built to predict whether the exe-

cution time of a job based on a set of configuration parameter values is improved. The

ones classified as improved will be further used in a finer-grained multi-classification model

based on the improvement.

Cherrypick is a pure parameter optimization-based model proposed by Alipourfard et al.

(19), which generates the optimal or near-optimal instance configuration that minimizes

cloud usage cost, guarantees application performance and limits the search overhead. To be

more specific, the model is based on Bayesian optimization, which estimates a confidence

interval of the cost and running time of each candidate cloud configuration. It has two

functions. A prior function is used for black box modelling, while an acquisition function

is used for choosing the next configuration based on the calculated expected improvement

in comparison to the current best configuration. When the expected improvement is less

than a threshold and at least N cloud configurations have been observed, the model stops

the search.

Instead of predicting the execution time, Marco et al. (15) proposed a black-box model

predicting the memory footprint. For an incoming application, the framework first ex-

tracts the features of the program using system-wide profiling tools including vmstat, perf

and PAPI. Based on the feature values, it predicts which of the off-line learned mem-

ory functions best describes the memory behaviour of the application based on K-nearest

neighbours. It then instantiates the function parameters by profiling the application on

some small sets of input data items.

Black-box-based models typically produce good results, however, it incurs a substantial

cost for building the model, because black-box models are empowered by enough training

data. While several alternative solutions have been proposed to control the cost, black-

box-based models are still best to be used for recurring jobs.

2.2.2 White-Box Modelling

Fewer works build the performance model based on the white-box modelling approach.

Researchers have tried different methods, including simulation (21), queuing network (22,

23), Petri net (24) and computational geometry (25).
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Wang and Khan (21) proposed a fine-grained white-box model to predict execution time

and I/O cost, under the same instance configuration. The model built is of a hierarchical

top-down fashion, firstly considering job time, secondly stage time and lastly task time. In

order to predict the performance, various performance metrics like run time, I/O cost and

memory cost need to be collected. The number of tasks executed in the actual job is the

main factor for predicting the performance of the actual job.

Ardagna et al. (22, 23) evaluated two different white-box parallel computation perfor-

mance modelling approaches to predict the execution time of the Spark application. The

first model is based on a simple upper bound on the average execution time for Fork-Join

queuing networks(26) and is referred as Fork-Join. In this model, tasks are forked into

identical subtasks which are joined once they are completed by corresponding servers. It

depends only on the number of parallel tasks and the average execution time of a single

task which can be estimated based on historical data. The key factor that affects the

estimation is the harmonic number. The second model modifies the Mean Value Analy-

sis technique for queuing networks to account for delays caused by synchronization and

resource constraints in DAG(27) and is referred to as the Task Precedence model. The

model uses DAG and the average execution time of each individual stage as input. The

model estimates the overlap probability between each pair of tasks based on DAG which

is used as an inflation factor.

Karimian-Aliabadi et al. (24) proposed an analytical white-box model to predict the

execution time of Spark applications using the YARN scheduler. The YARN scheduler is

widely adopted for enabling Spark to run alongside other Hadoop workloads. The model is

based on Stochastic Activity Networks, which is a probabilistic generalization of Activity

Networks from Petri Nets. A monolithic model was firstly proposed for the simple double-

queues scenario, which is proved not scalable because of the proportional growth of the

state space size with the multiplicity.

Chen st al. (25) developed a white-box model to predict the execution time of Spark

applications. By taking inspiration from the field of Computational Geometry, they con-

structed a d-dimensional mesh using Delaunay Triangulation over a selected set of fea-

tures. Delaunay Triangulation partitions the d feature space into a set of interconnected

d-simplexes, which helps to avoid overfitting. The prediction of the execution time is

done by calculating a hyperplane in d+1 dimensional space by bringing in the runtime

dimension. Also, adaptive sampling was integrated to minimize the samples needed.

While the white-box model doesn’t need lots of training data to make the model effective,

typically the performance is worse than black-box models, since white-box models need to
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make some assumptions when building the model, which is sometimes at the cost of the

prediction accuracy. Also, some models (24) are complex to solve, which might also incur

extra costs for running the model.

2.3 Problem Statements

Performance modelling on Spark has been under active research recently. Several works

have achieved great accuracy regarding the prediction of the running time of Spark jobs

using different black-box modelling techniques. It can be seen that these works majorly aim

at recurring jobs, which means that the Spark application is probably executed frequently,

e.g. daily or hourly. It is reasonable to develop a sophisticated performance model for this

type of job, which potentially trims an enormous amount of costs that cover the costs to

develop the model. However, it is not practical for non-recurring jobs. To illustrate this

case, we give a simple example - it takes $200 to run a Spark application on the worst

cluster configuration A, while $50 on the optimal cluster configuration B. For a black-box

model like Cherrypick (19), it typically needs 10 iterations on the sampled configuration

to converge. Suppose the application is executed 5 times, and since Cherrypick continues

to find a better configuration, we suppose the average cost for the system to run the

application is $125. So, the total cost will be $1500, which is enough for the application

to be executed on the worst cluster configuration 7 times.

Based on these practical problems that were encountered with cluster administration,

the most important problems are summarised in the following points:

• Cluster administrators need an approach to choose a suitable cluster configuration

given an application. Ideally, without performance modelling, optimal cluster con-

figuration can be chosen based on the knowledge of both the application and the

system. However, it is usually not possible for administrators due to some objective

and practical reasons. Allocating the cluster in an arbitrary way will simply lead to

unnecessary costs or even the failure of the execution.

• Proposed black-box-based solutions require training data or guided optimization-

based searching on the cluster configuration candidates, which incurs the excessive

cost of building the model. It is unreasonable to introduce extra costs for nonrecur-

ring jobs.

13
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• Developers typically develop their applications on the sampled data, which should

provide insights into the cluster configuration. Running the application on the sam-

pled data will also finish in a shorter time, which leads to lower costs. However, only

running the application on the representative sampled data can contribute to the

selection of the optimal instance for the application to run on the full data.

2.4 Research Questions

According to the problems encountered with performance modelling on Spark, the research

questions defined are described as follows:

• RQ1: How to estimate the performance of the Spark applications so that we can

choose the optimal number of instances while minimizing the cost?

– I wish to estimate the performance with inconsiderable cost, while still achiev-

ing decent accuracy. As discussed above, most of the current works focus on

improving the accuracy for recurring Spark applications, which are not suitable

for the nonrecurring workloads like the ones in the ICSR Lab.

• RQ2: How to make use of sampled data to estimate the optimal parallelism given a

Spark application?

– I wish to further reduce the cost of the estimation of optimal parallelism for

running the application on the sampled data, with acceptable accuracy loss.

Several works mention using sampled data for the model, however the sampling

methods are not described or just done randomly.

14



3

Design

This chapter demonstrates the performance model we propose. Firstly, the components

that need to be incorporated into the performance model of Spark are described. Then,

the proposed analytical hierarchical performance model is introduced in details.

3.1 Performance Model of Spark

As described previously, Spark generates a physical plan by dividing the application in a

layered fashion, which includes jobs, stages, and tasks. Intuitively, a hierarchical model

can be built to predict the execution time. However, there are some intricacies to the plan

generated by the modern Spark.

Firstly, there are multiple levels of parallelism in Spark, which is demonstrated in Fig-

ure 3.1. As described previously, the tasks are the smallest unit in the execution in the

Spark applications, which are executed in parallel on the executors. However, it doesn’t

necessarily means that the tasks that can be executed in parallel all come from one single

stage. In fact, Spark introduces stage-level parallelism and job-level parallelism, which

means the tasks can come from different stages, even different jobs. Stage-level parallelism

often occurs when two stages have no direct dependencies on each other, so they can be

scheduled to run safely in parallel. In Figure 3.1, in each job, stage 1 and stage 2 don’t

have serial dependencies, so they can be grouped together so that they can run safely in

parallel. In terms of job-level parallelism, firstly, within each Spark application, multiple

jobs can be running concurrently if they were submitted by different threads. Spark’s

scheduler is fully thread-safe and supports this use case to enable applications that serve

multiple requests from multiple users. Secondly, in Spark SQL, an execution id is defined

for every generated Spark job, so that the ones can be stitched together and can be seen a
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App Spark application
Jobd job sets executed solely on the driver
Jobe job sets executed on the executors
JobG groups of jobs
JobSG subgroups of jobs which can be executed in parallel
StageG groups of stages whichcan be executed in parallel
Stage stages
Task tasks

Table 3.1: Notations in the model

single structured query execution sharing the same ID. However, these stitched jobs don’t

necessarily mean that they can run in safely parallel. According to our observations, jobs

in these groups can also have some sort of dependencies.

Secondly, the compute time on the driver should also be included in the model. First

of all, given a Spark SQL query, Spark generates an abstract syntax tree, applies local

optimizations using pre-defined rules and a cost-based optimizer, generates efficient Java

bytecode, and finally constructs the DAG graph between stages. All these steps will be

performed on the driver side. If the query is extremely complex, then it takes Spark a

significant amount of time for these steps before executing the application. Moreover, it

is often the case the driver is running some serial tasks while the executors are idling.

For example, the collect operation is often used by users to collect some intermediate

results from the executors and do some sequential computation for the following jobs in the

application. Similarly, data scientists and analysts tend to convert the Spark DataFrames

to pandas DataFrames for further analysis and visualizations, whereas internally Spark

needs to collect the RDDs to the driver. I/O operations also contribute to the running time

of the driver. Take Hive tables as an example: Spark writes the Hive table in a temporary

location. Once the computation is over, Spark copies the table to the final location. It is

a minor issue if the underlying file system is HDFS since it is just a constant-time virtual

rename operation. But if it is object storage like S3, files are copied to the new location

physically and then files under the temporary location are deleted, which significantly

increases the time on the driver side.

With these two points in mind, the hierarchical analytical model is developed as follows.

We use the following notations to represent a Spark application:
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App = {Jobd, Jobe} (3.1a)

Jobe = {JobeGi | 1 ≤ i ≤ #JobeG} (3.1b)

JobeGi = {JobeGSi,j | 1 ≤ j ≤ #JobeGSi} (3.1c)

JobeGSi,j = {StageGi,j,k | 1 ≤ k ≤ #StageGi,j} (3.1d)

StageGi,j,k = {Stagei,j,k,m | 1 ≤ m ≤ #Stagei,j,m} (3.1e)

Stagei,j,k,m = {Taski,j,k,m,n | 1 ≤ n ≤ #Taski,j,k,m,n} (3.1f)

And it should meet the following condition:

∀i ∈ [1,#JobeG], j ∈ [1,#JobeGSi], k ∈ [1,#StageGi,j ],

m=#Stagei,j,k,m∑
m=1

n=#Taski,j,k,m,n∑
n=1

Taski,j,k,m,n ≤
e=#executors∑

e=1

#corese
(3.2)

The meanings of the notations in the equations are listed in Table 3.1. Eq. 3.2 means

that at any time, the total number of tasks running in parallel on the cluster should be

less or equal to the maximum parallelism, which is the total number of cores in the system.

Then, the execution time of a spark application can be represented as follows:

T (App) = T (Jobd) +

#JobeG∑
i=1

T (JobeGi) (3.3a)

T (JobeGi) =

#JobeSGi∑
j=1

T (JobeSGi,j) (3.3b)

T (JobeSGi,j) =

#StageGi,j∑
k=1

T (StageGi,j,k) (3.3c)

T (StageGi,j,k) =
#Stagei,j,k

max
m=1

T (Stagei,j,k,m) (3.3d)

T (Stagei,j,k,m) =
#Taski,j,k,m

max
n=1

T (Taski,j,k,m,n) (3.3e)

T (Taski,j,k,m,n) = T (SF_RD) + T (Ser) + T (Run) + T (DSer) + T (SF_WT ) (3.3f)

Here T (Jobd) is the running time for the sequential executions on the driver which

precedes the following dependent executor jobs. T (SF_RD) is the time for the executor

to read remote shuffle blocks. T(Ser) is the result serialization time. T(Run) is the actual

running time for the transformations. T(DSer) is the time spent to deserialize the task.
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T(SF_WT) is the time spent blocking on writes to disk or buffer cache. So, the overall

model (with the constraint condition Eq. 3.2) can be developed as follows:

T (App) = T (Jobd) +

#JobeG∑
i=1

(

#JobeSGi∑
j=1

(

#StageGi,j∑
k=1

(
#Stagei,j,k

max
m=1

(
#Taski,j,k,m

max
n=1

(T (SF_RD) + T (Ser) + T (Run) + T (DSer) + T (SF_WT ))))))

(3.4)

Based on the above equations, the running time of the Spark application can be mod-

elled. The developed application needs to be executed on the cluster once in order to

collect the application context information, which includes the metrics of the tasks and

the dependencies between stages. However, in order to estimate the performance under

the different numbers of available parallelisms, a simulation method based on this model

is needed, which is described in the following chapter.
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Figure 3.1: Multiple levels of parallelism in Spark
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4

Implementation

In this chapter, we illustrate how to use the performance model built in Chapter 3 to

estimate the performance of the Spark application under different available parallelisms.

We first describe how to collect application context information in Spark. Then, the

simulation method is introduced. Lastly, how to make use of the proposed method to

select the best cloud configurations using limited amounts of sampled data is introduced

with the corresponding data sampling approach.

4.1 Application Context Collection

In the dry run of the application, the application context information is collected by a

set of customized job listeners extended from SparkListener. A corresponding listener is

triggered once a certain event is sent from the DAG scheduler to collect the data. For

example, when a task is completed, the DAG scheduler posts a SparkListenerTaskEnd

event. Then, the internal SparkListenerBus relays the event to its listeners. Among all the

listeners, the onTaskEnd listener is matched to the event which leads to the triggering of

the customized data collection logic implemented in the listener. The overall structure of

the Spark listeners is shown in Figure 4.1.

Listeners collect the metrics needed as shown in Equation 3.4.

4.2 Simulation Method

Based on the collected application context, we make some transformations so that the the

collected information can be applied to the analytical model. Since the time spent on the

driver is not captured by the metrics and events, it needs to be extracted based on the
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Figure 4.1: The overall structure of the Spark listeners

measured running time on the executors. Firstly, the job groups JobeG are constructed

by being grouped by the spark.sql.execution.id. If some jobs don’t have this property, they

themselves form individual job groups containing themselves. Thus, in each job group, all

the jobs have the same spark.sql.execution.id. However, in some cases, there still exists

some dependencies inside such formed job groups, which are not captured by any events

in Spark. So, the start time and end time information of a job is utilized to recognize such

dependencies. It is assumed that if the start time of group A is bigger than the end time of

group B, then group A is dependent on group B. Once such dependencies are recognized,

the groups are divided into subgroups such that the final job groups are composed of a

series of subgroups which are executed in parallel.

After finishing constructing the job groups JobeG, based on the assumption that the

driver time remains a constant number regardless of the available parallelism of the cluster,

the driver time can be computed as:

22



4.2 Simulation Method

T (Jobd) = T ∗(App)−
#JobeG∑

i=1

T ∗(JobeGi) (4.1)

where T ∗ stands for the measured time in the first dry run. The construction of stage

groups and stages is similar to the job group and jobs, which is based on the time span.

Then, the simulator takes the constructed stages and their dependencies between each

other as inputs. There are four states for the stages in the same job group: waiting,

runnable, running, and completed. Each stage can only be associated with one of the

four states. Firstly, the simulator initializes the states of the stages and finds the list of

runnable stages by traversing the dependency graph for each job in the job groups, which

is described in Alg. 1. The traversal starts from the largest stage ID inside each job group,

and during the traversal, the stages are categorized and apprehended to one of the ordered

state sets.

Algorithm 1 Stage States Initialization in the Job Group

1: waitingStages← ∅
2: runnableStages← ∅
3: runningStages← ∅
4: function scheduleStage(stage)
5: if stage has no parents then
6: runnableStages← {stageID} ∪ runnableStages

7: else
8: if stage has no parents in stageGroup then
9: runnableStages← {stageID} ∪ runnableStages

10: else
11: waitingStages← {stageID} ∪ waitingStages

12: scheduleStage(parentStage)
13: end if
14: end if
15: end function

After initializing the correct states for the stages, the actual simulation begins. The

simulator consists of stage simulator and task simulator. The stage simulator is mainly

responsible for the state transition of the stages. It loads stages from the runnable stages,

performs the state transitions and tries to push the stages to the task scheduler. The task

scheduler performs the simulation based on the priority queue, using the collected metrics

23



4. IMPLEMENTATION

in the dry run and the given number of available parallelism that can be utilized. If there

are no more runnable stages for the stage simulator to process, the task scheduler will be

called to dequeue all the tasks in the queue which leads to the completion of the stage.

Once one stage is completed, runnable stages are updated and then the stage simulator

moves to the next iteration. Alg. 2 shows the detailed procedures.

After all the simulations of the job groups finish, the final estimated time of the Spark

application can be computed by adding the driver time and the sum of all the simulated

running times of the job groups.

Figure 4.2 shows the major steps. The proposed solution is implemented as a plugin,

which can be attached to Spark without modifying the source code of Spark.

Selects the instance
and number of nodes

for the dry run

Submits the Spark
application with

spark.extraListeners

Customized listener
collects all the data

until
onApplicationEnd is

triggered

Constructs jobGroups
based on time spans 

Computes driver time

Construct
stageGroups and
stages and their
dependencies

Perform stage and
task simulation inside
each jobGroup given
different number of

available parallelism 

Compute the total
time by summing up
all the estimated time

of job groups and
driver time

Figure 4.2: Major steps of the performance estimation

4.3 Sampling Method

The previous section describes how to estimate the performance of the Spark application

under different parallelisms. However, we would like to further estimate the performance

using only a subset of data. Sample data indicates smaller data, which leads to a shorter

running time for the simulation which incurs less cost. It also makes the model more useful

since according to the use case, the Spark application will only be executed a couple of

times, even once or twice, which is the most frequent case encountered in the ICSR Lab.

Under such cases, our current two-pass approach can hardly suffice the cost-saving goal,

except that the instance is chosen really badly, for example, to run a tiny-scale application

across tens of nodes. However, it is not feasible to predict the performance of the applica-

tion on the full data by running on the sample data a limited number of times. Take the
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Algorithm 2 Stage and Task Simulation in the Job Group

1: function DequeOneTask(stage)
2: finishedTask ← dequeue(taskQueue)

3: wallClock ← finishingTime(finishedTask)

4: #pendingTasks(currentStageID)← #pendingTasks(currentStageID)− 1

5: if pendingNumTasksInStage = 0 then
6: runningStages← runnableStages \ {currentStageID}
7: nowRunnableStages← ∅
8: for all stage ∈ waitingStages do
9: if parents(stage) are completed then

10: nowRunnableStages← nowRunnableStages ∪ {stage}
11: end if
12: end for
13: waitingStages← waitingStages \ nowRunnableStages

14: runnableStages← runnableStages ∪ nowRunnableStages

15: end if
16: end function
17: while #completedStage ̸= #stages do
18: if runnableStages ̸= ∅ then
19: eligibleStages← runnableStages \ runningStages
20: if eligibleStages ̸= ∅ then
21: currentStageID ← head(eligibleStages)

22: runningStages← runningStages ∪ {currentStageID}
23: runnableStages← runnableStages \ {currentStageID}
24: tasks← {task | getStageID(task) = currentStageID}
25: for all task ∈ tasks do
26: if |taskQueue| = numOfCores then
27: DequeOneTask()
28: end if
29: Enqueue(taskQueue, wallClock + taskT ime, stageID)

30: end for
31: end if
32: else
33: while |taskQueue| ≠ 0 do
34: DequeOneTask()
35: end while
36: end if
37: end while
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sorting process in the shuffle read in Spark as an example (we assumed that there is a need

for aggregation and sorting), the records in the buffer will be aggregated using ExternalAp-

pendOnlyMap, which is a HashMap-like customized data structure. Instead of the native

implementation using Array and LinkedList in Java HashMap, ExternalAppendOnlyMap

in Spark only uses Array for storing the elements and the hash value of the element is used

for locating the position. Spark uses Timsort algorithm to sort such data structure (28),

of which the time complexity is O(n log n) in the worst case (29), but it is not possible to

estimate the time since the constants and low-order terms are unknown. The parameters

can be estimated using curve fitting techniques or machine learning. However, these solu-

tions are inappropriate in our case since they need to collect a lot of data generated from

the actual application executions for modeling the relationship.

In order to still achieve the goal of estimating the performance, we make use of the

established simulation method to select the optimal instance directly instead of firstly

estimating the running time. This is done by choosing sampled data that is representative

of the full data so that the performance characteristics can be captured. The generated

running time estimation curve should look alike the curve on the full data.

As discussed above, a good data sampling approach that results in representative sample

data is selecting the optimal instance. By the word representative, we mean the sample

should keep the probability distribution of the population of the full data under a reasonable

significance level. If we take a look at the histogram of the sample data, ideally it should

be the same as the histogram of the population. This also indicates the sample can reflect

the data skew or biased information in the full data. However, it is challenging to get

representative sample data. In most cases, a dataset is made of several variables, and it

is very difficult to perform the sampling on a multivariate distribution, especially if the

dataset is mixed with both numerical and categorical variables. Also, the more variables

in the data, the less chance the sample data follows the distribution of the full data.

In order to address these challenges, a domain knowledge-driven stratified sampling-

based approach is proposed. To simplify the problem, each variable is assumed to be

independent of the others. If each one of the single, uni-variate histograms of the sample

columns is comparable with the correspondent histogram of the population columns, we

can assume that the sample is not biased. The general process has the following steps:

• Identify N variables which need stratification. The subset of the columns selected

should be based on the domain knowledge of how end users use the data. For example,

the columns frequently used as keys in the Spark transformation operations should
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be selected since the data skew problem caused by imbalanced data distribution has

a strong negative effect on the performance of Spark. In contrast, columns that

contain text or binary data should not be included.

• Perform equal-frequency bucketing on the selected N variables into M buckets. For

the columns with numeric variables, the data bucketing technique is used so that

they are grouped into a smaller number of buckets. In order to output the columns

with binned categorical data, the quantiles of the columns are needed. Greenwald-

Khanna algorithm (30) is utilized for the computation. The number of buckets should

be chosen appropriately since a smaller number leads to worse sampling performance

while a bigger number leads to small groups (especially if there are many columns

that need to be sampled). For the columns with categorical data, if the number of

groups is large, similar groups should be merged.

• Use a hash list to generate the final column for the sampling. All the selected groups

need to be hashed in order to unify the length and be concatenated and hashed

together. The reason behind using a hash list is that plain concatenation of the

input values without hashing them can be unsafe, e.g. "12" || "3" = "1" || "23".

• Perform stratified sampling is performed based on the final generated column. The

sampling ratio R is a key factor that decides the similarity and distance between the

cost curve using the full data and the cost curve using the sampled data.

Since the new variable is categorical, Pearson’s chi-square test (31) can be used to com-

pare the sample with the full data to see if they come from the same distribution. If the

test is not significant, either perform another stratified sampling or adjust the parameters

N and M . These two parameters affect the data sampling process in different ways. N

enables us to choose the number of variables to merge. A large N leads to an excessive

number of buckets in the new variable, thus negatively impacting the sampling result. This

number is derived based on the domain knowledge of the usage pattern of the end-users,

so the identified variable contains the most used variables. M helps to fix the resulting

number of buckets for the numerical variables. A large M retains more information, but

it will also results more buckets in the new variable, so that there are more distinct values

in the final generated column which affects the result of the sampling negatively.

To store data in the file system, the sampled data will be partitioned into P partitions,

where P is the number of partitions the full data has. The same partition function is used

on the sample data as the one used on the full data. These two steps ensure the physical
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similarity of the data layouts between these two data and leads to the same number of

tasks launched in every single stage.
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Evaluation

In this chapter, we describe and discuss the results of the experiments performed. Various

experiments have been performed in order to evaluate how well the proposed solution

works. Relative error as defined in Eq. 5.1 and running cost are the main metrics. The

simulations are performed using the different numbers of cores to evaluate their effect on

the accuracy. We also compare the system with Ernest (11) to show how well the system

performs.

RelErr =
|measuredT ime− realT ime|

realT ime
(5.1)

5.1 Experiment setup

5.1.1 Applications

Two different big data analytics benchmark applications are chosen for evaluation:

• Standardized citation metrics computation (32) is chosen as the main application for

evaluation since it is one of the most representative Spark applications in the ICSR

Lab. The application uses the data from the large-scale Scopus database which

provides full publication metadata, as well as involves complicated query logics with

a vast range of built-in or user-defined functions. All the data are stored as Parquet

files instead of plain vanilla text files in order to utilize partitioning used in data

sampling.

• TPC-H, which is a SQL benchmark that contains a suite of business-oriented ad-hoc

queries (33). We run TPC-H with a scale factor of 10. All 22 queries are combined

as a single Spark application for evaluation.
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5.1.2 Cloud configurations

Three families in Amazon EC2 are chosen: m5a (general purpose) 1, r5a (memory opti-

mized) 2 and i3en (compute optimized) 3. For m5a and r5a family, large instance size are

chosen. For the i3en family, large, xlarge and 2xlarge instance sizes are chosen. We limit

the maximum number of cores available in the cluster to 24. Table 5.1 shows the number

of cores and executors for the chosen instances. There are more available instances for

evaluation like compute-optimized instances or larger ones, but they are not chosen due to

practical constraints on time and budget. The i3en family is used quite frequently since it

offers a low price per GB of SSD instance storage on EC2. The m5a and r5a family are in

accord with our cost-saving motivation since they offer large instance sizes4.

Instance #executors
i3en.large (2 CPU, 16 GB) 1 2 3 4 5 6 7 8 9 10 11 12
i3en.xlarge (4 CPU, 32 GB) 1 2 3 4 5 6
i3en.2xlarge (8 CPU, 64 GB) 1 2 3
r5a.large (2 CPU, 16 GB) 1 2 3 4 5 6 7 8 9 10 11 12
m5a.large (2 CPU, 8 GB) 1 2 3 4 5 6 7 8 9 10 11 12
#cores 2 4 6 8 10 12 14 16 18 20 22 24

Table 5.1: Instance configurations

5.1.3 Runtime

Databricks Runtime 7.3 LTS is used for experiments, which includes Apache Spark 3.0.1,

Ubuntu 18.04.5 LTS, Java Zulu 8.48.0.53-CA-linux64 (build 1.8.0_265-b11), Scala 2.12.10

and Python 3.7.5.

5.2 Relative Error

Firstly, the relative errors using different types of instances on the full data are measured.

In the experiment, we configure the dry run of the simulator with different numbers of

cores, collect the performance metrics in the system, and then predict the performance of

cases where the application runs on other numbers of cores as shown in Table 5.1. All
1https://aws.amazon.com/ec2/instance-types/m5/
2https://aws.amazon.com/ec2/instance-types/r5/
3https://aws.amazon.com/ec2/instance-types/i3en/
4https://aws.amazon.com/ec2/pricing/on-demand/
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Figure 5.1: Simulation results using different numbers of cores on i3en.large

the simulation results are presented in Figure 5.1, 5.2, 5.3, and Figure 7.1, 7.2 and 7.4 in

the Appendix. Simulations are launched using different numbers of instances which are

indicated by different colors, where blue lines (which are the bottom ones in each group

with a different number of executors in the figures) represent the actual running time

of the execution. The system produces similar results on the two different applications.

For standardized citation metrics computation, the average relative error of simulation

running using i3en.large, i3en.xlarge, i3en.2xlarge, r5a.large and m5a.large is 2.3%, 2.7%,
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Figure 5.2: Simulation results using different numbers of cores on m5a.large

5.3%, 51.6% and 82.1%, as shown in Table 5.2. In comparison, we run Ernest under the

same settings with 10 iterations, which results in average relative errors of 16.2%, 14.2%,

17.2%, 62.6%, and 87.1% on each instance. Predictions on i3en families showed much

better performance, which has two possible reasons - memory size and EBS. m5a.large

only has 8 GB memory on each node, which leads to frequent disk spilling of Spark.

However, the effect of disk spilling during Spark transformations is not captured in the

model. If the simulation is only launched using two executors, the metrics captured in
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Figure 5.3: Simulation results using standardized citation metrics computation on r5a.large

the model are affected by disk spilling, which leads to the magnified estimated running

time on more executors. Moreover, both r5a.large and m5a.large are EBS-only, which

is network-attached storage and the slightly worse performance further deteriorates the

estimation accuracies of the simulation. In contrast, the chosen i3en families have big

NVMe SSD instance storage, which means the low-latency disks are physically attached to

the servers so there is no network latency as well. However, we can see that the prediction

errors of simulation on r5a.large and m5.large become smaller and stay consistent with an
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#executors i3en.large i3en.xlarge i3en.2xlarge r5a.large m5a.large
1 / 9.72% 6.95% / /
2 10.07% 1.26% 5.54% 230.16% 352.39%
3 4.67% 0.45% 3.31% 150.50% 193.73%
4 2.85% 0.90% / 41.01% 110.59%
5 1.59% 2.30% / 21.49% 59.64%
6 1.42% 1.44% / 19.67% 32.80%
7 0.91% / / 18.44% 27.17%
8 0.76% / / 17.02% 25.65%
9 0.91% / / 16.55% 24.71%
10 0.56% / / 16.79% 25.97%
11 0.56% / / 18.54% 25.71%
12 0.98% / / 17.18% 25.03%

Average 2.30% 2.68% 5.27% 51.58% 82.13%

Table 5.2: Relative errors of simulation (results of simulations using only one executor on
i3en.large, r5a.large and m5a.large are missing since they timed out)

acceptable error rate as the number of executors used for simulation becomes bigger. We

can also find that for the i3en families, the simulation can achieve a satisfactory result

using either a small number or a large number of executors.

Figure 5.4: Estimated cost curve line on i3en.large using standardized citation metrics com-
putation application
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5.3 Choose Optimal Number of Instances

Figure 5.5: Estimated cost curve line on i3en.xlarge using standardized citation metrics
computation application

Figure 5.6: Estimated curve line on r5a.large using standardized citation metrics computa-
tion application

5.3 Choose Optimal Number of Instances

We try to identify the optimal number of instances using the estimated time. For the

i3en family, the results of the simulation with 4 available cores are shown here as the
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Figure 5.7: Estimated cost curves on i3en.large using standardized citation metrics compu-
tation application on full data

representative one in Figure 5.4. For r5a, the results of the simulation with 8 available

cores is used, which is shown in Figure 5.6. Figure 5.7 shows the full result. As shown in the

figures, the simulation produces an accurate estimation of running time, which generates

a similar cost curve line. The optimal number of instances can be chosen by finding the

minimum of the curve. Due to the distortion of the estimated running time curve on

r5a.large and m5a.large, the simulation generates cost curves with a different shape and

minimum point, but the suggested numbers of executors are still close to the real optimal

number.

We also run the system on the sampled data to determine the optimal number of in-

stances. Different numbers of cores are used for the simulation to observe the estimation

differences. As shown in Figure 5.8, most of the recommended parallelisms for the appli-

cation (which are shown as the white points in the plot) are around 4 to 5, which are very

close to the ideal one (which is 4 as shown in Figure 5.4 and Figure 5.7). We also compared

the results with one using random sampling, as shown in Figure 5.9. The simulations are

performed 10 times on different randomly sampled data with different random number

seeds. As can be seen in the figure, the recommended parallelisms are more scattered and

fail to produce robust results that are close to the optimal number.
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Figure 5.8: Estimated cost curve on i3en.large using standardized citation metrics compu-
tation application on stratified sampled data

Figure 5.9: Estimated cost curve on i3en.large using standardized citation metrics compu-
tation application on randomly sampled data
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5.4 Cost

The cost of the system consists of two types of the cost: the cost of running the application

for obtaining the performance metrics and the cost of running simulations. The latter

cost of running simulations is almost negligible. Although some CPUs have less powerful

computing capabilities than others, generally the simulation can be finished in less than

5 minutes using any type of cluster chosen in the experiment. The former type of cost of

running the application for obtaining the performance metrics depends on the application

itself and the chosen instance for running the system. The actual cost can be found in

Figure 5.4, 5.5, 5.6 and 5.7 with different cost curves. If the system runs on the sampled

data, the running time of the application can be decreased 5-10x less than running on the

full data, which further decreases the cost. In comparison, Ernest typically needs to run

the application at least 10 times on different-sized sampled data generated by the optimal

experiment designs.
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Discussion

In this chapter, we discuss the benefits and limitations of the proposed solution of choosing

instances.

6.1 Benefits

According to the experiment results in Chapter 5, we can see in the case of non-recurring

lightweight Spark applications, the proposed Spark performance model can have a good

and robust estimation of the running time of the application given a different number of

resources, and thus accurate recommendations for the optimal number of instances. If the

end goal is only about choosing the optimal number of instances, then the user can only

run the system on the sampled data to further reduce the cost. Because of the low cost

of the system, users can launch the application with the system with different types of

instances and find out the most suitable cluster for the application. Although the resulting

estimated time and cost cannot be used to estimate the final cost of the application on

the full data, it can be used to compare across different types of instances. The proposed

way of stratified data sampling also helps to produce robust results which are close to the

optimal number, in comparison the random sampling results in unstable curve lines, and

the estimated optimal numbers of executors are scattered around.

6.2 Limitations and Future Work

The system is designed for estimating the running time for a smaller scale workload, which

does not capture the negative effect brought by disk spilling of Spark. If the application

needs to process a huge amount of data with frequent disk spilling, the system overestimates
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the running time of the application given more resources, which is also reflected in the

results of the experiments performed on r5a.large and m5a.large instances. In the future,

we plan to have further research on how to incorporate disk spilling behaviour into the

model.

In the experiments, we only selected five different instance types for the evaluation. How-

ever, there are more different EC2 instances with various different hardware configurations.

Also, there are bigger instances in the r5a family and m5a family. To further verify the

negative impact on disk spilling, we can limit the available cores that can be used for Spark

so that Spark can run using the same available resources with large instances except for

bigger memory to prevent disk spilling.

More and more cloud service providers started to provide the auto-scaling/managed-

scaling feature for Spark. Auto-scaling is typically achieved by periodically reporting var-

ious statistics on idle executors and the location of intermediate files within the cluster.

It would be interesting to evaluate the effect of the integration of the system into the

auto-scaling-enabled clusters.

Due to the practical constraints on time and resources, experiments are not performed

on larger workloads with more powerful instances. The effect of the new factorized query

engine Photon (34) on the system is also not evaluated, mainly because the current engine

does not support user-defined functions which are frequently used in the typical workloads

in the ICSR Lab. The engine exploits data-level and instruction-level parallelism in CPUs

which is not yet captured in the proposed model, and also introduces lots of different

Photon specific actions. It would be insightful to see how adaptive the model is when

performing on the new engine.
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Conclusion

To conclude, in this thesis, we purpose a lightweight approach to estimate the optimal

parallelism given an Apache Spark application and evaluate its accuracy on two different

applications and types of instances. The experiment results demonstrate the high accuracy

of the system with low cost compared to other solutions. The answers to our proposed

research questions are summarized in the following paragraphs.

Regarding how to estimate the performance of the Spark applications while minimizing

the cost in the first research question, we proposed a hierarchical analytical performance

model of Spark and implemented a simulator based on the model, instead of black-box-

based models which need a lot of training data in order to develop a performance model

with decent accuracy. The system, which uses the performance metrics collected in the

listeners during the execution of the application, is implemented as a plugin so that users

just need to attach it to the Spark application without the need to modify the source code.

We performed the experiments on our proposed solution using different applications and

types of instances and compared it with Ernest.

Regarding how to make use of sampled data to estimate the optimal parallelism given a

Spark application in the second research question, we proposed a domain knowledge-driven

stratified sampling-based approach, which can result in representative sampled data for

Spark so that the system can still generate performance curves with similar shapes based on

the performance metrics collected. The experiments show that our data sampling approach

can successfully find out the optimal or sub-optimal parallelism, and can achieve better

results compared to the random data sampling approach. It indicates further reduced cost

which leave room for users to run the system across several instances in order to pick the

most suitable one for the application.
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Appendix

7.1 Example Policy Definition and Inital Script for Extra Lis-
teners on Databricks Platform

{
" spark_vers ion " : {

" type " : " f i x ed " ,
" va lue " : " 7 . 3 . x−sca l a2 . 12" ,
"hidden " : t rue

} ,
" spark_conf . spark . e x t r aL i s t e n e r s " : {

" type " : " f i x ed " ,
" va lue " : "com . e l s e v i e r . magpie . NotebookListener " ,
"hidden " : t rue

} ,
" aws_attr ibutes . in s tance_pro f i l e_arn " : {

" type " : " f i x ed " ,
" va lue " : "arn : aws : iam : : 1 2 3 : xxx " ,
"hidden " : t rue

} ,
" enab l e_e la s t i c_d i sk " : {

" type " : " f i x ed " ,
" va lue " : true ,
"hidden " : t rue

} ,
" i n i t_ s c r i p t s . 0 . dbfs . d e s t i n a t i on " : {

" type " : " f i x ed " ,
" va lue " : " dbfs : / da tabr i ck s / s c r i p t s /magpie−i n s t a l l . sh " ,
"hidden " : t rue

} ,
" c lus te r_type " : {

" type " : " f i x ed " ,
" va lue " : " job " ,
"hidden " : t rue

} ,
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"node_type_id " : {
" type " : " regex " ,
" pattern " : " [ rmci ] [ 3 −5 ] [ rnade ] ∗ . [ 0 −2 ] { 0 , 1 } [ x ] {0 ,1} l a r g e " ,
" de fau l tVa lue " : " i3en . l a r g e "

}
}

Listing 7.1: Example policy file

#!/bin /bash
cp $pathToJar / databr i ck s / j a r s

Listing 7.2: Example init script

7.2 More Evaluation Results
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Figure 7.1: Simulation results using standardized citation metrics computation on i3en.xlarge
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Figure 7.2: Simulation results using standardized citation metrics computation on
i3en.2xlarge

Figure 7.3: Estimated cost curve using TPC-H application on i3en.large
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Figure 7.4: Simulation results using TPC-H application on i3en.large
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