
Computer Science

Empirical Survey On Text
Representations In Sentiment

Analysis

Supervisors:
Dhr. Dr. Adam Belloum
Johannes (Jan) C. Scholtes

Candidate:

Aimilios Voma
Std.No. 2594330

Amsterdam - 16/09/2019

Abstract

Sentiment mining has been a popular and active NLP research topic for almost

two decades since commercialized enterprise and data-driven marketing �our-

ished along with the technological development of today. �e main scope of

this research is to argue about di�erent text representations techniques regard-

ing their performance in sentiment domains. Speci�cally, it comprises of two

parts, (i) investigating TFIDF sparse model information capacity across senti-

ment domains , (ii) Investigating the performance of self-trained word embed-

ding models with domain speci�city(sentiment corpus) and pretrained word

and contextual embedding models that were trained on generic data. Di�erent

preprocessing parameters were applied such as text normalization heuristics

and n-grams combinations. Additional insights were provided regarding the

intrinsic characteristics of the algorithms(sparse and dense) and how they re-

�ect on sentiment domains.

Contents

1 Introduction 3
1.1 Objectives of the Study . 4

1.1.1 Sparse Text Representations Experiments 4
1.1.2 Dense Text Representations Experiments 4

2 Background 5
2.1 Sentiment Classi�cation Overview . 5

2.1.1 Sentiment Classi�cation Models Categories 5
2.1.2 Sentiment Classi�cation Analysis Levels 6
2.1.3 Major Problems Of Sentiment Classi�cation 7

2.2 Sparse Vector Space Models . 8
2.2.1 Sparse Models . 8
2.2.2 Sparse Models Implementations . 9
2.2.3 Sparse Models Major Challenges 9

2.3 Dense Continuous Vector Space Models . 10
2.3.1 Statistical Language Modeling . 10
2.3.2 Neural Language Modeling . 10

2.3.2.1 Curse Of Dimensionality 11
2.3.3 Dense Reduced Continuous Vector Space 12

2.3.3.1 Linquistic Regularities 13

3 Related Work 16

4 Technical Overview 18
4.1 Datasets . 18

4.1.1 Twi�er: Semeval2016 . 18
4.1.2 IMDB: Movie Reviews . 19
4.1.3 Twi�er: Sarcasm . 21
4.1.4 Twi�er: Sentiment140 . 22

4.2 Text Preprocessing . 23
4.2.1 Domain speci�c preprocessing . 24

i

4.2.2 Word Form Expansion and Normalization 24
4.2.3 In�ectional Form Reduction . 25

4.3 Feature Extraction Techniques . 25
4.3.1 Sparse Vector Space Models . 25

4.3.1.1 N-Grams . 26
4.3.1.2 Term Frequency Model (TFIDF) 26

4.3.2 Continuous Dense Vector Space Models 27
4.3.2.1 Word2Vec . 27

4.3.2.1.1 Continuous Bag-of-Words Model 27
4.3.2.1.2 Continuous Skip-gram Model 28

4.3.2.2 Glove . 28
4.3.2.3 FastText . 29
4.3.2.4 Doc2vec . 29

4.3.2.4.1 Distributed Memory Model(DMM) 29
4.3.2.4.2 Distributed Bag Of Words(DBOW) 30

4.3.2.5 Universal Sentence Embeddings 30
4.3.2.5.1 Transformer . 30
4.3.2.5.2 Deep Averaging Network 31

4.3.2.6 Deep Contextualized embeddings - Elmo 31
4.4 Machine Learning Models . 32

4.4.1 Multinomial Naive Bayes . 32
4.4.2 Logistic Regression . 32
4.4.3 Support Vector Machine . 33
4.4.4 Random Forests . 33
4.4.5 Adaboost . 34

4.5 Machine Learning Data Preparation . 35
4.5.1 Datasets Split . 35
4.5.2 Hyperparameter Tuning . 35
4.5.3 Cross-Validation . 36

4.6 Evaluation . 36

5 Empyrical Findings 38
5.1 Sparse Vector Space Models Experiments 38

5.1.1 TFIDF Cross-Domain Experiments 38
5.1.1.1 Data Preparation . 38
5.1.1.2 Sparsity . 39
5.1.1.3 Results . 39

5.1.2 Sparse Linear Model Analysis . 41
5.2 Continuous Dense Vector Space Models Experiments 43

ii

5.2.1 Self-Trained Word Embeddings . 43
5.2.1.1 Text Preprocessing Options 44
5.2.1.2 Training Parameters . 45

5.2.1.2.1 Minimum Number Of Occurrences 45
5.2.1.2.2 Negative Sampling 45
5.2.1.2.3 Context Window 45
5.2.1.2.4 Learning Rate - alpha 46
5.2.1.2.5 Learning Epochs 46

5.2.1.3 Results . 46
5.2.2 T-SNE Analysis . 47

5.2.2.1 Sentiment Orientation Analysis 47
5.2.3 Pre-Trained Word Embeddings . 49

5.2.3.1 Text Preprocessing Options 50
5.2.3.2 Results . 50

6 Conclusions and Future Work 53
6.1 Conclusions . 53
6.2 Future Work . 54

Bibliography 56

iii

List of Figures

2.1 Documents are represented as points in three dimensional space 8
2.2 Bayes graphical model(le�) and architecture of NN(right) 11
2.3 Neural Network Language Model(NNLM) pipeline 13
2.4 (a) Gender regularities between pair of words. (b) Verb tenses regulari-

ties. (c) Projection of plural/single with extra relation of gender, in high-
dimensional space multiple relations can be embedded in a single word. . . 14

4.1 Twi�er: Semeval2016 Dataset, Wordcloud Frequency Overview 18
4.2 Word density histogram in Semeval2016 dataset 19
4.3 IMDB: Movie Dataset, Wordcloud frequency overview 20
4.4 Word density histogram in IMDB dataset 20
4.5 Twi�er: Sarcasm dataset, Wordcloud frequency overview 21
4.6 Word density histogram in Sarcasm dataset 22
4.7 Twi�er: Sentiment140 dataset, Wordcloud frequency overview 23
4.8 Word density histogram in Sentiment140 dataset 23
4.9 Text preprocessing pipeline steps for sparse and dense VSMs 24
4.10 Word2Vec architectures overview . 27
4.11 Doc2Vec, DMM Architecture Layout . 30
4.12 Doc2Vec, DBOW Architecture Layout . 30
4.13 Bidirectional Language Model Overview 31
4.14 Dual-Class Problem, SVM model . 33
4.15 Random Forests Classi�er[Tree No: 2, Depth: 2] 34

5.1 TFIDF Cross-Domain pipeline . 38
5.2 TF-IDF cross-domain performance . 40
5.3 Eli5 prediction explainer . 41
5.4 Training Hyper-Parameters se�ings . 45
5.5 Mean F1 Performance evaluation of pre-trained word vectors on sentiment

corpora Sentiment140 . 46

iv

5.6 T-SNE 2D analysis of sentiment words, “awful” and “great”. Sentimentally
opposed words are depicted in red circles. Something that could add sig-
ni�cant noise in sentiment analysis tasks. Since anti-diametrical emotions
will be close to each other in the embedding space, thus treated as related. 49

5.7 Mean F1(SVM, Adaboost(RF), LR) performance evaluation of pre-trained
word vectors on sentiment datasets(IMDB, Semeval2016, Sentiment140) . . 51

v

List of abbreviations and acronyms

biLM bi-directional Language Model

BN Bayesian Network

BOW Bag Of Words

CLM Contextual Language Model

CVS Continuous Vector Space

CBOW Continuous Bag-of-Words

COD Curse of Dimensionality

DRT Dimensionality Reduction Technique

FFNN Feed Forward Neural Network

FP False Positive

FN False Negative

JPD Joint Probability Distribution

IR Information Retrieval

LM Language Model

LR Logistic Regression

MNB Multinomial Naive Bayes

NLM Natural Language Model(ing)

NLP Natural Language Processing

NNLM Neural Network Language Model

Opinionated Sentimentally Annotation(positive, negative)

PMI Pointwise Mutual Information

POS Part of Speech

RNN Recurrent Neural Network

RF Random Forest

SLM Statistical Language Modeling

1

SVM Support Vector Machine

TDM Term-Document Matrix

USE Universal Sentence Embeddings

TDM Term-Document Matrix

TFIDF Term Frequency Indiscreet Document Frequency

VSM(s) Vector Space Model(s)

WE(s) Word Embedding(s)

2

Chapter 1

Introduction

Data Science is a delegate and highly operational �eld of science since the 21st century.
Where the technological advancement of today set the necessary cornerstone in the deep
foundations of the �eld, the data. While, digital media and platforms made the data acces-
sible towards data preservation, extraction, and manipulation techniques. Sentiment anal-
ysis is one of the major data science �elds, which is a broad meaning is oriented around
peer’s opinion, sentiment and emotional re�ection of their viewpoints upon a subject. It
is well known that the procedure of the opinion-making or formation, of a single indi-
vidual inside a group, is a bidirectional relationship with the group itself. A Collective
Behaviour is a phenomenon where the group’s individual needs to choose whether to ac-
cept to participate or not in an aggregated group’s behavior. With this in mind, it is very
feasible to reproduce the subjective samples of each of the individuals. To statistically form
a general pa�ern that will de�ne the group's dynamics. �us if we broaden this concept in
our social, economic and political spectrum, we realize that many applications involve the
opinion mining process. [3]

One of the �rst sentiment analysis applications was to capture and extract favorability
information out of the product reviews [38]. By meaning favorable opinion we refer to a
positive or negative sentiment statement that was captured inside a text fragment. Since
performing sentiment analysis on the whole review was quite a costly operation that in-
volved complex Natural Language Processing(NLP) mechanics. Especially if the sentences
are quite long, or have a complex linguistic structure. �us the early baseline approaches
mostly relied on common syntactic patents which could signify a presence of opinion in-
ference and its targets. A priory knowledge of natural language forms which could be used
to detect emotion pa�erns inside text.

Nowadays sentiment analysis applications are rapidly spread around numerous scien-
ti�c �elds. From consumer-based opinion ranking and product reviews to political polls
and social media analytics. Practically sentiment mining became a tool of predicting the
polarity outcome out of di�erent domain sources. Recent mentions of popular sentiment

3

mining applications are directly linked to social media platforms and micro-blogging. Twit-
ter data, for instance, was used to predict election results [55], stock market analysis [5]
and many more applications that incorporate sentiment analysis to the core of modern
analytics. In academia sentiment analysis is one of the challenging, active NLP research
�elds. Which �ourished along with data mining and other techniques of extracting and
scraping data from multiple sources such as web mining and Information Retrieval(IR).

1.1 Objectives of the Study

In our work, we empirically observe both high dimensional sparse and dense VSMsm,
regarding their performance in sentiment domains. While applying at the same time rule-
based preprocessing heuristics. Our work is comprised of two parts.

1.1.1 Sparse Text Representations Experiments

Speci�cally for sparse text representations, we examined the quality of the produced fea-
tures in terms of transferable knowledge across di�erent sentiment domains, given the
proper amount of training data. Certain preprocessing steps were taken into consideration
such as word form expansion, in�ectional form reduction, and n-grams combinations.

RQ1 What is the capacity of TFIDF algorithm in terms of cross-domain information
transfer
RQ1.1 Does utilizing richer n-grams combinations always improve the TFIDF
performance on sentiment domains?

1.1.2 Dense Text Representations Experiments

Regarding self-trained models, we observed the word vectors quality of NNLMs(Doc2Vec,
Word2Vec) and count-based statistical model(Glove) which were trained on domain-speci�c
sentiment corpus(Sentiment140). �e resulted in WE models contained domain-speci�c
embeddings which were evaluated(ML models) against the same sentiment domain.

RQ2 Does domain speci�city re�ects on be�er word embeddings representations,
regarding sentiment classi�cation tasks?

Regarding pretrained models, we observed the performance of word(Word2Vec,Glove) and
contextual(FastText, USE, Elmo) LMs on sentiment domains

RQ3What is the performance di�erence between TFIDF, pretrained contextual and word
LMs on sentiment domains

4

Chapter 2

Background

2.1 Sentiment Classi�cation Overview

2.1.1 Sentiment Classi�cation Models Categories

1. Supervised Learning
Since it is about text classi�cation with a certain number of classes(categories), for
instance, two classes positive and negative. We practically can apply any of the avail-
able supervised learning models (logistic regression, SVM, Naive Bayes) to make a
classi�cation. By ��ing a classi�cation model with opinionated (sentiment labeled)
training data.

2. Semi Supervised Learning
With this approach, we use only li�le training data or a speci�c set of rules to weakly
supervise our classi�cation model. For instance, in this work [25], a manual seeding
technique was used to sentiment lexicon(SentiWordNet) to extract synsets(synonyms)
of the seeded words(positive and negative terms). A�erwards, the synsets were pro-
cessed, feature information was extracted on multiple levels(POS, sentiment orien-
tation, sentiment strength) with di�erent NLP techniques and stored in a custom
lexicon. Which later on was used to enhance the sentiment classi�cation process of
the SVM. �us seeding could be interpreted here as weak supervision to create the
sentiment dictionary which will be used in the �nal phase of the classi�cation.

3. Unsupervised Learning
In unsupervised learning, the data has not been opinionated or categorized. �e
purpose of the unlabelled data is to make the model to learn for itself any possi-
ble principles or connection between the data features. As we mentioned above the
work of [38], where heuristic syntactic pa�erns with POS tags were used to extract

5

sentiment information from text fragments. Since there was a match in the heuristic
pa�erns, the matched phrase(term1, term2) was extracted. PMI was used to deter-
mine the degree of the statistical freedom between the extracted terms, or else the
co-occurrence probability of the terms. Sentiment orientation was calculated based
on the PMI(term1, term2) score and was aggregated for all the extracted pairs inside
a document. �e aggregated result was the �nal sentiment outcome of the document.

2.1.2 Sentiment Classi�cation Analysis Levels

1. Document Level Analysis
In which the entire document opinion is being inferred as a positive or negative sen-
timent. A close example of this kind of analysis is analyzing the movie reviews. Since
the morphology of the data usually resembles long sentences grouped in the form of
a paragraph or else document. We can see relative work [39]. It is quite convenient to
represent the whole document as a negative or positive review. Although in practice,
to have satisfying results close to human assessment ones should synergistically use
complex NLP mechanics, rule-based approaches or multiple feature extraction tech-
niques. Considering that multiple sentences are present in a single document. �ese
sentences could have a contradicted sentiment statement, thus an aggregation rule
should be present to determine the overall emotional outcome of the document.

2. Sentence Level Analysis
At this level of analysis, we examine each of the sentences and their sentiment out-
come. It is also called sentence subjectivity since subjectivity is related to sentences
that express a fragment of truth, personal beliefs or opinions. �us the sentences are
treated as data points and each operation of feature extraction is evolved around the
sentences. In this work [20] the model combines both document level and sentence
level analysis. Where a document is decomposed to sentences, feature extraction is
performed individually for each of the sentences. Utilizing both syntactic and se-
mantic extraction pa�erns(positive-negative terms frequency, special characters(�)
frequency, negation words). Sentiment orientation of the words of each of the sen-
tences was determined used a custom sentiment lexicon. Lastly aggregated rule was
applied to determine the overall sentiment outcome of the sentences.

3. Entity and Aspect Level Analysis
�is approach goes way beyond the structural dependencies of documents, sentences
or phrases. �e core idea is to directly focus on opinions and their targets. Since each
opinion has its target, an opinion without a target o�ers zero to none information.
For instance, we have a sentence “New Motorola X series has decent call quality but
is a bit fragile”. Here we have to evaluate two aspects, the call quality and the quality

6

of the device. Our target is Motorola X series which is an entity. �e call quality
aspect has positive sentiment while the call quality aspect has a negative sentiment
towards the target entity. �is level of analysis is also called a �ne-grained analysis
since the model is trying to evaluate every possible aspect and its targets. Something
that is highly challenging even for state of the art sentiment analysis techniques.

2.1.3 Major Problems Of Sentiment Classi�cation

Sentiment Classi�cation tasks, besides the di�erent techniques and implementation meth-
ods, highly rely on sentiment polarity words. Sentiment polarity words, or else opinion
words are the words that could be directly related to negative or positive sentiment. For
instance, words like “great”, “incredible” are related to positive emotions while words like
“bad”, “horrible” are referred to as negative sentiment. Nevertheless, there are many lin-
guistic structures and word formations that complicate the proper sentiment expression of
the opinion words. [30]

1. Sentence types which express no sentiment
For instance, if we have an interrogative sentence(question mark present), or an-
other form of text structure which don’t involve directly any sentiment. For in-
stance, “Is that camera any good?”, is an interrogative sentence with opinion word
present(“good”), but expresses no sentiment. Another example is conditional sen-
tences, for instance, “If I �nd something descent I will buy it”. Opinion word is
present(“descent”) but the sentence itself expresses no opinion of the present.

2. Polysemy in word formations
For instance, a sentence “I like that car, quite speedy” contains a positive opinion
word(“like”). Another sentence with the same opinion word, “Can I also order an
MC�urry, just like that one”, expresses zero to none sentiment information about the
subject. Since the speci�c word is being used in di�erent speech contexts re�ecting
di�erent meaning upon occasions.

3. Sarcastic Sentences
Probably the hardest type of classi�cation is to obtain a sarcastic behavior in text
data. For the obvious reason that the whole point of sarcasm is to project the other
side of the stated opinion. For instance, a sentence “What a good product, got rid of
it a�er a week” could be detected as a highly positive statement. When it is the quite
opposite, due to sarcastic elements which are present to satirize the same contradic-
tion of the statement.

4. Sentences without opinion words
Opinion words are not present in many of the sentences. Meaning that the sentence

7

itself could imply positive or negative sentiment opinion, without directly involving
any of the opinion words. For instance, “this car consumes too much fuel” has no
direct relation to opinion words but is implying a negative opinion about the fuel
consumption of a car.

2.2 Sparse Vector Space Models

2.2.1 Sparse Models

One of the early contributions to the �eld of NLP and IR was indexing data with Vector
Space Models(VSMs) [49]. Salton argued whether there was a way to approximate a distri-
butional structure of the human language. More speci�cally he underlined a hypothesis,
in which di�erent parts of the �ow of speech if identi�ed properly could yield a certain
distribution of their co-occurrences. �us co-occurrences of di�erent linguistic elements
could provide insights about their semantic relatedness.

Figure 2.1: Documents are represented as points in three dimensional space

VSM was developed and introduced for the SMART information retrieval project [48].
�e main concept behind the VSM was to represent a collection of documents in document
space. A multidimensional vector space where each of the dimensions would represent the
respected index terms of the documents. For instance in a three-dimensional vector space
where we would only have three distinct terms. We could mathematically represent a
collection of the documents in relation to these terms, Figure 2.1.

VSM’s have good performance of NLP downstream tasks which involve measuring
similarities between words, phrases, and documents. One of the reasons behind VSM’s
e�ciency is the distributional hypothesis, which states that words that occur in similar
contexts tend to have similar meanings [18]. Ignoring the structure of the word and cap-
turing only their event of co-occurrence, this technique was called Bag Of Words(BOW). Of
course, there are many exceptions to this assumption. Case scenarios which include poly-
semous words or di�erences in documents domain, tend to add statistical noise to vector
space representation.

8

2.2.2 Sparse Models Implementations

One of the �rst VSMs implementations was a Term-Document Matrix(TDM). TDM is one
way of representing a collection of documents as a matrix of unique terms frequencies.
TF-IDF is one of the algorithms which utilize the TDM concept. Suppose that the total
number of documents is n and our overall number of unique tokens is m. �e TDM(m×n)
then will be a matrix of m rows(one per each unique term) and n columns(one per each
document). �us an element xij of a TDM matrix will represent a frequency of the i-th
term in the j-th document. Since usually most of the documents will use a small fraction
of the overall dictionary(unique token collection). �us the produced TDMs are sparse
matrices with most of its elements set to zero. Nevertheless having a raw term frequency
matrix is not enough to add the proper representation to the term frequencies. Since the
whole idea of weighting is to give more meaning to surprising events. To learn more about
new linguistic terms rather than the usual ones which could stop words. Repeating word
terms with high frequency but zero to none semantic relation [56]. Later �ndings and
experiments with di�erent weighting functions concluded that using di�erent weighting
techniques over raw frequencies signi�cantly improves the quality of the VSM models such
as TF-IDF [47].

2.2.3 Sparse Models Major Challenges

While the common VSM implementations are quite e�cient in most of the NLP down-
stream tasks, they also bear weaknesses. Two major problems of VSMs are the high di-
mensionality and sparsity of the vector space representation [46].

Since sparce VSMs are singly relying on statistical evidence of the event that is hap-
pening inside a context (such as co-occurrences). �e co-occurrence matrix will become
signi�cantly large in dimensions for any reasonable content of data. High dimensionality
issues a�ect the model’s scalability factors and computational e�ciency. �us if a resulted
dictionary of unique tokens is quite large(several millions of tokens), the VSM model will
su�er from high dimensionality of several millions of dimensions. Which makes the model
itself more susceptible to noise, something that consequently leads to worst model perfor-
mance in NLP tasks.

Numerous researches have been done to tackle this problem, speci�cally, a Dimension-
ality Reduction Technique(DRT) was quite popular when dealing with sparse VSMs. From
early approaches where linear DRT models were used to map a high dimensional to low
dimensional space. By clustering possible semantically correlated components and per-
forming local dimensionality reduction. Utilizing mathematical linear analogies between
the two dimensional spaces(high and low). Principal Components Analysis(PCA) and La-
tent Semantic Indexing are some of the popular techniques [52].

9

Although linear models of dimensionality reduction usually don’t perform well on real-
life problems with huge feature spaces. Non-linear models were introduced with di�erent
techniques rather than clustering methods. For instance, in [44] global coordinate system
was used to map high dimensional input to low dimensional space. �e mapping technique
is a linear reconstructing process(optimization function) which maps each neighboured
high dimensional feature to low dimensional space. �ere is also a cost function present
which regulates the reconstruction error and calibrates the linear weights. A�er minimiz-
ing the reconstruction error cost function, adjusted linear weights are used for the �nal
phase of mapping to low dimensional embedded space.

2.3 Dense Continuous Vector Space Models

2.3.1 Statistical Language Modeling

One of the �rst scienti�c approaches to tackle the ma�er of distributional representations
of content was introduced by [23]. Where the idea of a hierarchical ecosystem of entities
and their relations was introduced in distributional fashion. Instead of treating entities
separately, join them in role groups and determine the group relations based on speci�c
criteria. �ese criteria could serve as domain’s regularities, or else pa�erns which could
determine the relations between the role groups. In text-domain these regularities are
expressed statistically and can determine the probability relations between di�erent lexical
terms. Precisely, the probability distribution over sequences of lexical terms(words) is the
core aspect of every Statistical Language Model(SLM) implementation.

2.3.2 Neural Language Modeling

Neural language models(NLMs) became quite popular since the early 20's. �e base prin-
ciple of these models is to apply the SLM paradigm inside an NN architecture. Where
the domain’s regularities and lexical terms relations are internally expressed as ‘weights’
of the NN. When it comes to text-domain, it seems quite an appealing solution to utilize
Baesyan models and conditional independence of terms to infer statistically linguistic re-
lations. First NLM models were evolved around the Bayesian principle. Mapping local
conditional dependencies of consecutive words and modeling its joint probability distribu-
tion(JPD).

In [7] we can see a relevant implementation where the JPD is expressed as dependency
probabilities between consecutive lexical terms. Characterized as parents, or merely pro-
ceeding terms in grammatical order of text input. �e input terms are transformed and
modeled as discrete points in high dimensional vector space.

10

p(Z1 ... Zn) =
N∏
i=1

P (Zi | Parentsi) =
N∏
i=1

P (Zi | Z1 ... Zi−1) (2.1)

Where Parentsi are the proceeding random variables(terms) in the set which are called
the parents of variable i.

Figure 2.2: Bayes graphical model(le�) and architecture of NN(right)

In Figure 2.2, the arrow relation expose the parental variables for the lexical term Zi.
For instance, the parents of the Z3 are Z1 and Z2. �e observed values Zi are encoded
into an appropriate input group. �e h1 is the group of hidden units that perform linear
transformations of the input in the network and g1 is the group of the output units. �e
result of the output units is strongly depended on the input groupZ1...Zi−1 and models the
parameters outcome(probabilities) of a distribution overZi. �ese conditional probabilities
are multiplied to represent the JPD, P (Z1...ZN). Of course, the structure and the order of
the input group in�uence the probability distribution.

When it comes to text context the grammatical order of words represents unique prob-
ability distribution each time. �us a di�erent combination of input groups represents the
di�erent context of words. Although this baseline approach introduced some new chal-
lenges, such as the curse of dimensionality(COD). Where high dimensional discrete data
modeling was not scaling well with the quantity of the training data. With the immediate
results of peaked computational complexity and model’s ine�ciency for a large number of
training data vocabulary.

2.3.2.1 Curse Of Dimensionality

In the above, early implementations of Bayesian logic, Figure 2.2. �e lexical terms were
mapped as multivariate discrete data in high dimensional space. �e overall space dimen-
sionality was based on the size of the vocabulary. Let suppose that one wants to model the
joint distribution of n consecutive words with the size of the vocabulary of m. �e overall
free parameters in the NN will be as many asmn. If the size of the vocabulary is big enough

11

as millions of unique tokens. �e joint distribution modeling process would be incredibly
slow and ine�cient. Due to computation overhead induced by a gigantic number of free
parameters inside the NN.

For discrete spaces, the generalization of the estimation function is not that obvious.
Even small changes in the discrete values may bear a huge impact on the estimation func-
tion. On the contrary, in continuous spaces, the generalization of the estimation function
is easily observed since usually continuous spaces imply local smoothness [8]. Since the
generalization is impacted in high dimensional discrete spaces, the training capacity of the
model is also compromised. �e model tends to “over�t”, while its space dimensionality
and the complexity grows. Since usually there are not enough training samples to cover
up for the dimensionality growth, statistical noise is induced. Which in terms of resulted
WE could provide less meaningful word representations.

2.3.3 Dense Reduced Continuous Vector Space

It is obvious that with discrete data modeling the resulted language models will be in-
e�cient in terms of representations and computationally slow. In this work [8] a more
grounded state of the art Neural Network Language Model(NNLM) implementation was
introduced.

Based on the Bayes concept of conditional independence, one could statistically express
a language model as a conditional probability of the next word given the previous content.
Since the previous content is represented as a combination of n-grams, it is mathematically
expressed as

P
(
wt | wt−1

ngram

)
≡ P

(
wt | wt−1

t−n+1

)
(2.2)

Where wt is the t-th word and wt−1
ngram is the n-gram combination of previous words. How-

ever there are quite a few problems in that implementation. Since the model is not taking
into account content further than 1 or 2 words given in the n-gram window. Secondly the
model don’t capture the similarity between words. For instance if the model observed the
sentence “�e cat was purring in the bedroom” in the training phase. It should generalize
to make the sentence “�e dog was barking in the hall” as much alike. Because words like
“dog” and “cat” have similar semantic and grammatical roles.

To overcome the COD, di�erent approach rather than modeling discrete data was pro-
posed. To associate each word in the vocabulary with a distributed word feature vector.
A feature vector of each word will represent di�erent aspects of that word. �e overall
number of features (e.g. m = 30,50,100 e.t.c.) will be much smaller than the overall vo-
cabulary size(tens of thousands, maybe more). Recall that in discrete data modeling each
word dimension was of the size of the overall dictionary, something that consequently led
to high dimensionality problem.

12

�e revised NN approach was based on traditional Bayes concept and NLM architecture
where joint probability of random variablesZ1...Zn is expressed as a product of conditional
probabilities

P (Z1 ... Zn) =
∏
i

P (Zi | gi(Zi−1, Zi−2 ... Z1)) (2.3)

Where g() is a calculation function represented in the NN with a le�-to-right architecture,
Figure 2.2. �e gi output block computes the parameters of conditional distribution of Zi

given the previous content of n-grams.

Figure 2.3: Neural Network Language Model(NNLM) pipeline

From Figure 2.3 you can observe the projection matrix which maps the discrete word
indices of di�erent n-grams to continuous vector space. �e projection layer is shared
across di�erent n-grams and has intrinsic topology. �e topology of the projection matrix
e�ciently increases the amount of available training data, since each word from each of
the contexts contributes individually to the weight matrix update.

�e way that projection into reduced continuous vector space works, is simply by as-
signing zero-to-one input representation of the context, to the according position in the
projection matrix. In such a way a similar weight set is applied to contexts that contain
the same word multiple times. As a result, the models capture syntactic and semantic in-
formation between di�erent contexts. �e so�max function normalizes the computations
done in the non-linear hidden layer into a probability distribution. �e �nal output is the
probability distribution of i-th word over the previous context. A�er a certain number of
training epochs, the hidden layer(“weights”) of the network is extracted, forming the actual
dense word vectors(embeddings).

2.3.3.1 Linquistic Regularities

Dense Continuous Vector Space(CVS) models have demonstrated quite satisfying results in
numerous NLP downstream tasks. Mainly because the distributed representations achieve
a level of generalization that typical discrete n-gram VSM can not. Since the discrete data

13

modeling with n-grams works only in a way that the same n-grams have no inherent rela-
tion to one another. Contrary to CVS modeling, where similar words or words that occur
in the same context tend to have similar representation in vector space, due to their distri-
butional property.

Furthermore, besides the fact that CVS models e�ectively capture syntactic and se-
mantic similarities, each of these relations can be interpreted as vector o�set calcula-
tions. Something that allows a vector oriented interpretation of di�erent relations between
words, based on their vector o�sets. For instance the gender(male/female) relation is au-
tomatically extracted from model’s training content. By utilizing vector representations
“King” - “Man” + “Woman” results in a vector quite close to “�een”. Another example of
regularities between pairs of words in CVS, is the plural/single relation. Where, if denote xi
as vector(x) of word(i), you can observe that xapple−xapples ≡ xcar−xcars, xfamily−xfamilies

[35].
Di�erent relations between words is something that is called a multiple degrees of simi-

larities. Since each of the word vectors, encapsulate di�erent relations in high dimensional
vector space, Figure 2.4.

Figure 2.4: (a) Gender regularities between pair of words. (b) Verb tenses regularities. (c)

Projection of plural/single with extra relation of gender, in high-dimensional space multiple

relations can be embedded in a single word.

We have seen that syntactic and semantic similarities between words, have been for-
mulated in high dimensional CVS in a form of analogies. In order to provide answer to
these analogies, one should compute the cosine distance between the word vectors o�-
sets. �us in order to answer the analogy question a : b

analogy−−−−→ c : d, where d is the
unknown. We �rst compute the respected word vectors xa, xb, xc and a�er we �nd the
relation y = xb−xa+xc. Where y is the resulted CVS representation, which is considered
to be the “best” answer to our question.

w∗ = argmaxw
xwy

||xw|| ||y||
(2.4)

14

Of course no speci�c word might exist at that exact position within the CVS. �us what
should be done is to �nd a closest word(w∗) whose embedding in CVS has the biggest
cosine similarity to y [35].

15

Chapter 3

Related Work

�ere has been signi�cant research regarding NLP downstream tasks such as sentiment
and semantic relation extraction based on sparse and dense text representations.

In [9] linear models such as Support Vector Machine(SVM) and Multinomial Naive
Bayes(MNB) were introduced, to classify the sentiment polarity in short text data(microblog).
Di�erent feature extraction techniques were used, from the regular sparse BOW approach
to POS extraction and n-grams.

In [2] di�erent customization features of cross-domain classi�cation models were ex-
amined. To provide be�er adaptation to new target domains, in the absence of su�cient
training data. Sparse frequency models were used in cross-domain classi�cations combined
with n-grams combination, indicating that n-grams usually contribute to be�er general-
ization across models.

In [36] feature extraction methodology was presented based on hand-made syntac-
tic(Turney) and rule-based features(Semantic Orientation(SO), WordNet)). �ese features
were used, to obtain favorability in movie reviews. SO was used to express a real value
representation of positive or negative sentiment expressed in word or phrase, based on
PMI metrics. While WordNet was used to extract relationship metrics between sentiment
properties(potency, activity, evaluative) of words and adjectives.

In [14] an empirical survey was provided regarding di�erent word embedding mod-
els(SENA, Turian, Huang, HLBL) and the quality of the semantics that they captured. Fur-
thermore intrinsic characteristics of the models were tested such as dimensionality prop-
erty, re�ecting the quality of the information encapsulated in multi-dimensional VSMs.
Di�erent evaluation tasks were compiled, which involved sentiment and semantic quality
assessment of the produced word embeddings. Based on linear(LR) and non-linear(SVM
with RBF kernel) ML models.

In [58] a re�ning technique was used on pre-trained WE models, to capture be�er
sentiment representation in multi-dimensional vector space. �e re�nement process was
built around pre-trained models(Word2Vec, Glove). By augmenting the produced word

16

vectors with an extra feature of sentiment ranking score, which derived from sentiment
lexicon. �e augmented embeddings were rearranged in terms of their inter-domain re-
lations, based on their valence(positive, negative) score. �e proposed method slightly
reduced the number of sentimental dissimilar relations in the embedding space, compared
to the pre-trained models.

In [53] the proposed method was focused on encoding sentiment information in CVS
using harvested twi�er data as a form of weak supervision in the training process. �e so-
called Sentiment Speci�c Word Embeddings(SSWE) were trained on a shared neural net-
work that incorporated the sentiment polarity of n-grams in its loss function. Speci�cally,
the shared neural network was a composition of three di�erent neural network architec-
tures. Each serving as a weaker model that combined learn both syntactic and sentiment
information of n-grams. �e resulted model yielded be�er results compared to raw pre-
trained embedding models(C&W, Word2Vec, e.t.c).

In [12] the empirical study provided insights about cross-domain relations of WE mod-
els combined with factors such as domain characteristics(thematic elements, corpus size).
�e source domains comprised of �ve di�erent corporas(songs, reviews, twi�er, news,
common text). Di�erent metrics took places such as domain richness, the dimensional-
ity of the embedding models and the learning algorithm(Glove, Word2Vec). �e evalua-
tion process proceeded with the semantic and sentiment assessment of the quality of the
produced embeddings.

In [10] aspect-based sentiment analysis approach was introduced, by encoding the as-
pect terms of a sentence into a feature vector. �e feature vector was zero-one padded
accordingly, to produce normalized vectors of �xed size across all the sentences. Another
feature extraction technique was used such as location encoding of terms and their re-
spected context, along with sparse VSM TFIDF. A�er the preprocessing and feature extrac-
tion, certain machine learning models and deep learning models were evaluated. Where
deep learning models, especially DNN served the best F1 scores on sentiment classi�cation
tasks.

In [45] WordNet embedding model was introduced, which is based on a lexical on-
tology graph that comprised of di�erent types of word semantic relations. �ese rela-
tions were captured and transitioned through various information extraction techniques
(normalization, PMI) to high-dimensional VSM. Furthermore, the dimensionality reduction
technique(PCA) was used to reduce the overall dimensionality of the embeddings. �e pro-
duced WordNet embeddings showed be�er e�ciency against the Word2Vec model in word
similarity tasks.

17

Chapter 4

Technical Overview

4.1 Datasets

4.1.1 Twitter: Semeval2016

�is dataset [37] comprises of opinionated short-sentenced twi�er sentences with negative
and positive sentiment polarity. �e original size of the dataset was about 42k sentences.
�e overall size of the sampled dataset is roughly 15k sentences divided equally(class bal-
ance) in the positive and negative class. Since we are performing cross-domain correlations
with the TFIDF algorithm. It is quite obvious that we need more data than usual(twi�er
domain), to provide sustainable internal representations of the content inside the TFIDF
model. Hence each time we obtain the model’s internal dictionary representations out of
source domain training data to transform the test data of the targeted domain.

(a) Negative Frequent Words (b) Positive Frequent Words

Figure 4.1: Twi�er: Semeval2016 Dataset, Wordcloud Frequency Overview

In Figure 4.1, we can observe the Wordcloud representation of the twi�er dataset.
Words with larger fonts are more frequent compared to words with smaller fonts. On the
le�, we have all the sampled words from negative class distribution and on the right side
the positive one. We can observe that the negative word “not” is quite frequent in both

18

positive and negative word domains. Positive sentiment words such as “love” and “good”
are more related to the positive domain than the negative ones. �is is quite natural for
the reason that these speci�c sentiment words are hardly expressed in combination with
the usual negations. �e overall data morphology was quite noisy due to the short text
sentences, domain-speci�c slang, and verbal expressions.

Figure 4.2: Word density histogram in Semeval2016 dataset

In Figure 4.2 we can observe the word frequency distribution over the twi�er dataset
sentences. Roughly 80% of the data is gathered around sentences with more than 5, up to
25 words. We also can observe that as word frequency rise above 20 words per sentence
the negative sentences tend to be more frequent than the positive ones. One assumption
that can be made is that positive opinions are generally more straightforward regarding
the context size of the information than the negative ones.

4.1.2 IMDB: Movie Reviews

�is dataset [31], comprises of opinionated long-sentenced movie reviews with negative
and positive sentiment polarity. Original size of the dataset is about 50k sentences. Since
the length of the sentences is quite big compared with other twi�er datasets. We sampled
4k sentences, equally divided(class balance) in two classes(positive, negative). �e size was
empirically set, to satisfy enough training and testing data in both sparse and dense VSM
experiments.

19

(a) Negative Frequent Words (b) Positive Frequent Words

Figure 4.3: IMDB: Movie Dataset, Wordcloud frequency overview

In Figure 4.3, we can observe the Wordcloud representation of the IMDB dataset. On
the le�, we have all the sampled words from negative class distribution and on the right
the positive ones. We can observe that the negative term “not” and positive term “good”
are both roughly equally present in both positive and negative sentences. �is can be
explained since negative term “not” and positive term “good” are frequently combined
in word formations to express negation. As we described in the previous sections such
linguistic phenomena tend to create ambiguity in sentiment classi�cation models. Since
the model itself cannot rely on sentiment words alone, to determine the overall sentiment
outcome. On the other hand sentiment words such as “great” and “love” contextually are
more related to positive sentiment statements than the negative ones.

Figure 4.4: Word density histogram in IMDB dataset

In Figure 4.4 we can observe the word frequency distribution over the IMDB movie
dataset. Here we treat each collection of sentences as a single document, with positive or
negative polarity annotation. Generally, the information spread across the sentences tends
to be low at 20 to 80 words per document. As the word frequency rises above 80 words per
sentence the word density is also ge�ing bigger. A signi�cant amount of sentences have

20

high word density. Another interesting fact is that positive documents have more word
density than the negative one, in contrast to twi�er domain word density distribution.

4.1.3 Twitter: Sarcasm

�is corpora [26] comprises of self-annotated sarcastic and neutral statements of more
than a million sentences. �e dataset size that we chose is roughly 15k sentences divided
equally(class balance) in both positive and negative classes. �e major di�erence with
this dataset is the level of ambiguity and bias that introduces the sarcastic statements.
Usually one should provide large volumes of training data to smooth out the bias factor in
the training phase of the classi�er. Although for our research we included roughly equal
content with the other two datasets.

(a) Non-Sarcasm Words (b) Sarcasm Words

Figure 4.5: Twi�er: Sarcasm dataset, Wordcloud frequency overview

In Figure 4.5, we can observe the Wordcloud representation of the sarcasm dataset.
On the le�, we have all the sampled words from neutral class sentence distribution and
on the right the sarcastic ones. One of the observations of the word frequency is that
the noun “yeah” is far more frequent in the sarcastic collection. �e same goes for the
adverb “sure” and adjective “well” which are probably used in a sarcastic manner of a false
positive statement. Something that adds a quite signi�cant level of ambiguity in terms of
classi�cation.

21

Figure 4.6: Word density histogram in Sarcasm dataset

In Figure 4.6 we can observe the word density distribution over the annotated sarcasm
dataset. Roughly 80% of the data is gathered around sentences with 3 to 20 words. With
the majority of the sentences to fall below 15 words per sentence. In general sarcastic
statements are not that long in terms of words. Of course, the source domain is also a
reason behind the word density, there is a huge word di�erence between a statement and
a review. �e above corpus is drawn from di�erent domains, thus it’s di�cult to make
precise observations over the nature of sarcasm in text. In general, both classes(neutral,
sarcasm) have a roughly equal context in terms of word density per sentence.

4.1.4 Twitter: Sentiment140

�is Twi�er corpora [21], comprises of self-annotated sentiment polarity(negative-positive)
sentences. �e size of the corpora is around 1.5 millions of sentences. �e self-annotation
procedure was totally automated by extracting emojis and assigning sentiment polarity
based on those emojis. �us the sentiment data is noisy, �rst due to the annotation and
secondly due to the twi�er content. We sampled a dataset of 15k sentences, equally di-
vided(class balance) in two classes(positive, negative).

22

(a) Negative Frequent Words (b) Positive Frequent Words

Figure 4.7: Twi�er: Sentiment140 dataset, Wordcloud frequency overview

In Figure 4.7, we can observe the Wordcloud representation of the Sentiment140 dataset.
On the le�, we have all the sampled words from negative class sentence distribution and
on the right the positive ones. We can observe some sentiment words such as “good” and
“love” expressed straightforwardly and positively. Also a word “work” is more expressed
in negative sentiment class rather than the positive one.

In Figure 4.8, we can observe the word density distribution over the annotated Senti-
ment140 dataset.�e majority of the data is gathered around 3 to 20 words per sentence.
Pre�y much natural since it is twi�er domain, the data has a declining trend in volume from
8 words per sentence onward. With only a few sentences contain more than 20 words.

Figure 4.8: Word density histogram in Sentiment140 dataset

4.2 Text Preprocessing

In our experiments we perform sentence-level sentiment analysis, thus we treat each sen-
tence of the dataset as a single data point in multidimensional space. Each input sen-
tence is tokenized, preprocessed with certain NLP methods and reassembled as a post-

23

processed sentence. �erea�er, the cleaned sentences are mapped into multidimensional
VSM through transformation algorithms(TFIDF) or �xed word-to-word mapping in the
case of pre-trained and self-trained word embedding models.

Figure 4.9: Text preprocessing pipeline steps for sparse and dense VSMs

As you can observe from Figure 4.9, where the preprocessing pipeline is depicted for
both sparse and dense VSMs. �e pipeline steps one and two are common for both of
the experiments(dense and sparse representations) except the lemmatization in phase 3,
which is used solely for TFIDF. We used spaCy, an advanced NLP library to perform the
lemmatization procedure along with some other parts of the preprocessing.

4.2.1 Domain speci�c preprocessing

As the �rst phase of the preprocessing, we tokenize the input sentence, extracting single
word tokens per sentence. Tokens that are related to domain-speci�c elements such as
hashtags(#), references(@), links(HTTP) or user mentions are removed along with any nu-
merical data present. We strictly focus on raw text data, since the purpose of this research
work is to expose di�erent aspects of VSM models towards sentiment analysis tasks. �us
we do not count domain-speci�c elements or any other numerical type of data as features.
Although quite a lot of research work has been focused on domain-speci�c feature extrac-
tion, providing additional feature information from di�erent domains [17] [6].

4.2.2 Word Form Expansion and Normalization

Non-standard words and word formations are present in many text domains. From the ad-
vertisement, reviews to short sentenced Twi�er data. �ey are o�en related to speci�c do-
main terminology and expressions which users mostly use for their convenience of speech
and communication. Although these lexical expressions o�en degrade the precision and
the resulted quality of language models. Since they contain terms that are only present in
these domains and considered as an out of vocabulary(OOV) for the general vocabulary
[22]. �us at the second phase of the preprocessing, we performed contraction expanding
and domain-speci�c term preprocessing.

By meaning contractions, we refer to shortened versions of words and word groups,
formed by omissions of internal le�ers. For instance, given the contraction formation “they

24

aren’t like us” becomes “they are not like us”. So basically the shortened version is ex-
panded to the full context of the word group. Moreover expanding contractions contributes
to emphasizing the negation phrases in the sentence. Adverbs as “not” are restored to their
canonical lexical forms. Regarding the text normalization, we compiled a list of highly
frequent twi�er abbreviated terms. We use this rule-based approach to replace frequent
domain slang with its respective canonical form. For instance, in our mapping dictionary,
“fyi” is expanded in its canonical form as ‘for your information’. Text preprocessing and
normalization heuristics tend to improve the performance of sentiment analysis models
[1].

4.2.3 In�ectional Form Reduction

A high level of entropy in classi�ers’ decisions indicates a high level of uncertainty upon
a decision-making process. �us high entropic data tend to be less prototypical [15], by
adding more diversity and o�en noise to the dataset. When it comes to words, di�erent
word forms such as adjectives endings “ing” and “ed” tend to raise the overall entropy of the
dataset. Adding diversity to the lexical terms and expressions, something that o�en leads
to increased noise inside the dataset. Of course, the whole procedure of entropy reduction
is hugely dependant upon the task at hand.

In our work, we use lemmatization as a method of reducing in�ectional word forms but
only in the �rst part of the experiments with sparse VSMs. Since entropy reduction is a
quite common technique for sparse frequency models, such as TFIDF [4]. Using lemmati-
zation with dense VSMs is not such a good practice since most of the word embedding
models are pretrained on huge corpora with a priory high level of the word diversity.
Lemmatization is a technique reduces words to their basic forms. For example, verb forms
“play-ing,ed,s” become “play” which is the common root of these forms.

4.3 Feature Extraction Techniques

4.3.1 Sparse Vector Space Models

Count based models are information retrieval techniques that utilize the word occurrence
factor inside a collection of documents, or simply text. As we described before, the overall
vocabulary of resulted occurrence matrix per document is quite huge and a big majority
of words do not occur in every document. Something that leads to a sparse representation
of a document(for instance, sentence) in multidimensional vector space.

Since the majority of the vector features regarding a single document will have numer-
ous zero elements resulting in sparse document representation. �e opposite side of sparse

25

representations is the dense ones. Where information is distributed inside the multidimen-
sional vector space with a certain degree of density, hence the lack of zero elements or else
blank information.

4.3.1.1 N-Grams

N-grams are groups of contiguous words. �ese groups range from a single word to any
number of word combinations of preferred window size. �e sampling window size im-
pacts the retrieved descriptive information. For instance, the sentence “global warming is
real” can be decomposed to Unigrams (“global,warming,is,real”), to Bigrams(“global warm-
ing, warming is, is real”) or to any number n-grams combinations.

�e occurrence count of those n-grams combinations can be provided as input to any
machine learning algorithm. It is worth mentioning that having a small number of n-grams
will result in poor context capturing(for instance, negations). Contrary to having a large
number of n-grams will result in rare representations of words, which will only add noise
to the overall weighting scheme. �us the number of n-grams should be empirically picked,
according to the task at hand.

4.3.1.2 Term Frequency Model (TFIDF)

Term frequency times inverse document frequency or else TFIDF is a statistical represen-
tation algorithm that consists of weighted frequency terms drawn from a collection of
documents [51]. �e terms frequency is weighted by its inverse document frequency(IDF)
by sampling the percentage of documents that the speci�c terms appear. �is weighting
option allows some terms to have a stronger in�uence over other terms. Speci�cally, terms
that are more related to few classes tend to have a stronger in�uence, rather than terms
that appear more o�en in a di�erent context.

�is logic favors terms that carry knowledge over the text, rather than frequent words
that appear statistically nearly everywhere in a text. �us frequent terms such as stop-
words, will have less impact on the weighting scheme of the algorithm, and generally
will ma�er less. �e Equation 4.1 shows how the weighting term(t) is calculated. Where
df(d, t) is the document frequency of the speci�ed term and nd is the number of documents
where that term appears.

idf(t) = log

(
1 + nd

1 + df(d, t)

)
+ 1 (4.1)

26

4.3.2 Continuous Dense Vector Space Models

4.3.2.1 Word2Vec

In Figure 2.3 the �rst complete implementation of feed-forward NNLM is depicted, where
the projection layer is shared among di�erent n-gram context and the hidden layer is a non-
linear function. �us, much of the model’s computational complexity was caused exactly
because of the non-linear hidden layer computations. Furthermore, there were certain re-
strictions in training data, since feeding too much data resulted in the model’s ine�cient
performance. In [34] simpler architecture was proposed to train e�ciently NNLM on much
bigger training data, called Word2Vec. Word2Vec mainly has two training objectives tech-
niques.

Figure 4.10: Word2Vec architectures overview

4.3.2.1.1 Continuous Bag-of-Words Model
�is architecture is closely related to the feed-forward NNLM, where the nonlinear hidden
layer which was responsible for the computational overhead is removed. �e projection
layer, instead of being shared only by the contextual n-grams(just the projection matrix)
is shared among all the words. �us all the words are projected into the same position and
their vectors are averaged. Hence the bag-of-words name, since the word order in history
does not impact the projection. �e best performance of the CBOW architecture was ob-
tained when both future(before) and history(after) words were present in the sampled
input. With the training criterion of predicting the middle word.

p(wj | wI) =
exp

(
v
′
wj

T vwI

)
∑V

j′=1 exp
(
v′wj′

T vwI

) (4.2)

�is architecture in its simplest form can be expressed mathematically as in the Equa-
tion 4.2. In this case we assume that the model will predict one target word(wj), given one
context word(wI). Where vw and v′w are di�erent vector representations for the word w.
Speci�cally the vw is the “input-vector” which is in fact is the input-hidden weight matrix

27

of CBOW model, Figure 4.10. While v′w is the so called “output-vector”, which is actually
the hidden-output weight matrix of the model [43].

4.3.2.1.2 Continuous Skip-gram Model
It is similar architecture with the CBOW, but instead predicting a word based on con-
texts(future and history), Skip-gram tries to maximize the classi�cation of a word based
on another word in the same sentence. Speci�cally, each word is served as an input to a
log-linear classi�er with a continuous projection layer. To predict words within a certain
window range before and a�er the input word. Empirically increasing the range of the pre-
diction window(before words, a�er words) results in a be�er quality of the vectors, though
adds more computational complexity.

p(wc,j = wO,c|wI) = yc,j =
exp(uc,j)∑V
j′=1 exp(uj′)

(4.3)

In the output layer of Skip-Gram model, in Figure 4.10. Instead of outpu�ing one
multinomial distribution the Skip-Gram model outputs in total C distributions. Where
wc,j is the j − th word on the c − th panel of the output layer; wO,c is the actual c − th
word in the output context words; wI is the only input word; yc,j is the output of the j− th
unit on the c− th panel of the output layer [43].

4.3.2.2 Glove

Instead of utilizing shallow neural networks in a probabilistic fashion based on word con-
texts. Glove utilizes statistical information of word occurrences inside a given corpus.
Speci�cally, Glove is an unsupervised learning algorithm in which the learning process is
based on a global word to word co-occurrence statistical matrix created from the corpus.

�e basic concept of this algorithm is to examine the relationship between words, by
comparing their co-occurrence probabilities ratio, with various probe words k. Where
Pik/Pjk is the probabilistic ratio of co-occurrence between words i and j. �e algorithm
learns only the non-zero elements in the global co-occurrence matrix, rather than the whole
sparse matrix. Since the number of non-zero elements is signi�cantly smaller than the
overall corpus word size, the training iterations of the algorithm progress signi�cantly
fast. A weighted least-squares regression of the Glove algorithm goes as follows.

J =
V∑

i,j=1

f(Xij)
(
wi

T w∼j + bi + b∼j − log Xij

)2 (4.4)

WhereX is the co-occurrence matrix,Xij is the frequency of word i co-occurring with
the word j, w is the word embedding and w∼ is the separate context word embedding.
f(Xij) is a weight function which regulates and constrains the co-occurrence overweight-
ing [41].

28

4.3.2.3 FastText

Unlike with previous embedding models(Glove, Word2Vec) which entirely ignored the in-
ternal word structure. Since the n-gram input was based on word-level combinations. In
cases of morphologically rich languages where di�erent parts of speech have numerous
in�ected forms, the word representations may result in lower quality. FastText embed-
dings capture the internal structure of words by adding additional character level features.
Where each word is represented as a bag of characters n-gram. For instance, the word
“where” with character n-gram window of three, would be decomposed to its respective
n-gram combinations as (“wh, whe, her, ere, re”).

�e word itself is also used with its n-grams so the model can learn words and char-
acters representations. �us having a dictionary of n-grams size of G and a word w,
Gw ∈ (1, ...G) as the set of n-grams appearing in w. Let Zg be the vector representa-
tion of each of the n-gram g. �e scoring function of the model will be a representation of
a word as a sum of vector representations of its n-grams.

s(w, c) =
∑
g∈Gw

Zg
T Vc (4.5)

4.3.2.4 Doc2vec

Doc2vec or else Paragraph Vector is an unsupervised learning algorithm that learns �xed-
length feature representations. From text pieces of variable length such as sentences, para-
graphs or even completed documents. Doc2vec implies the basic concept of Word2Vec im-
plementation, where prior context knowledge is used to predict the next word. Doc2Vec
consists of two di�erent training models.

4.3.2.4.1 Distributed Memory Model(DMM)
Each sentence, paragraph or document is mapped to unique paragraph ID which is rep-
resented by a column in matrix D [29]. Every word is also uniquely mapped to a column
in word matrix W . �e resulted paragraph vector and the word vectors are averaged into
a single vector and used to predict the next word in the context. �e paragraph ID token
could be seen as a memory module since it remembers what is missing from the current
context, Figure 4.11.

29

Figure 4.11: Doc2Vec, DMM Architecture Layout

4.3.2.4.2 Distributed Bag Of Words(DBOW)
In this approach, while the concept of predicting the new word based on previous contexts
exists. �e context words are ignored and there is only Paragraph ID present in the input
[29]. �us in each optimization cycle(gradient descent) small text window is sampled,
together with a random word within that text window. Lastly given the Paragraph Vector
classi�cation task is performed on the sampled data,Figure 4.12.

Figure 4.12: Doc2Vec, DBOW Architecture Layout

4.3.2.5 Universal Sentence Embeddings

Two main models are used to produce general-purpose sentence embeddings Universal
Sentence Embeddings(USE) [13]. Both of these models are trained in a way to be as general-
purpose as possible. �is was achieved by using the same encoder to feed multiple NLP
downstream tasks.

4.3.2.5.1 Transformer
�is sentence encoder model produces sentence embedding by using the encoding sub-
graph of the transformer architecture [57]. �is sub-graph utilizes the a�ention to produce
context-aware representations in which both words position and orders are taken into
account. �ese representations are transformed into �xed-size sentence embeddings by
summing the representations at each of the word positions in the sentence. �e encoder

30

takes as input a lowercase PTB forma�ed token sequence and outputs a 512-dimensional
sentence embedding.

4.3.2.5.2 Deep Averaging Network
�e second model utilizes Deep Averaging Network(DAN) [24]. In which input word em-
beddings and their bigrams are �rstly averaged and later on passed through a deep neural
network(DNN), to produce sentence embeddings. �e number of feed-forward non-linear
layers in DNN varies from task to task and the last non-linear layer is used to perform
linear classi�cation on its representations. Similarly to the Transformer model, the input
PTB format and the output format dimensions are the same.

4.3.2.6 Deep Contextualized embeddings - Elmo

Elmo contextual embeddings consist of word vectors that are extracted from internal layers
of stacked bidirectional language models(biLMs), that were pretrained on large corporas.
For the bidirectional model, bidirectional LSTMs were used in synergy with di�erent Lan-
guage Model objectives to produce word representations.

Figure 4.13: Bidirectional Language Model Overview

Elmo embeddings are computed on top of two-layer biLMs, with character convolu-
tions. Since the higher-level states of LSTM can capture context-dependent aspects of
words. �e lower-level states can capture syntactic aspects of words. �e top layer of
single biLM is a function of a linear combination of its intermediate layer states, Figure
4.13. In the case of Elmo embeddings, the two LSTMs are stacked on top of each other,
while the �nal representations calculated as the average of all three layers weights(two top
layers of LSTMs, plus the character convolutions input layer) [42].

Given a sequence ofN tokens, (t1, t2..tN) a forward language models models the prob-
ability of token tk given the history tokens (t1...tk−1). While the backward language

31

model models the probability of token tk, given the future tokens(tk+1...tN). �e com-
bined model(biLM) jointly maximizes the log probability of backward and forward models
as it is expressed in Eqution 4.6.

N∑
k=1

(log p (tk | t1 ...tk−1; θx, θ→LSTM , θs) + log p (tk | tk+1 ... tN ; θx, θ
←
LSTM , θs)) (4.6)

�e token representations θx and So�max layer θs parameters are bound in both for-
ward and backward directions. While LSTM parameters are kept separately.

4.4 Machine Learning Models

4.4.1 Multinomial Naive Bayes

Naı̈ve Bayes(NB) is a probabilistic classi�er based on the Bayes �eorem. �e basic Bayes
hypothesis states that the probabilities between interchanging events are totally uncon-
nected/independent. Something that hardly happens when it comes to statistically mod-
eling real-life events. But despite that fact, NB is quite e�cient due to this simplicity of
independent probabilities. �e major concept of the NB is oriented around the observation
of an event backed by prior knowledge.

Speci�cally Multinomial Naive Bayes(MNB), computes class probabilities for a given
document as fallows.Let C be the set of classes and N the overall size of the vocabulary.
�en MNB assigns a test document ti to the class that has the highest probability outcome
Pr(c|ti) which utilizing the Bayes principle is formulated as:

Pr(c | ti) =
Pr(c) Pr(ti | c)

Pr(ti)
, c ∈ C (4.7)

�e class prior knowledge or else Pr(c) is estimated by dividing the number of docu-
ments belonging to class c by the total number of documents. While Pr(ti|c) is the prob-
ability of obtaining a document like ti in class c [27].

4.4.2 Logistic Regression

Logistic Regression(LR) or else Maximum Entropy classi�er is a statistical way of de-
scribing and modeling relationships between categorical outcome variables and one or
more continuous or categorical predictors. Since LR introduces non-linearity by applying
logit(ln) transformation of the dependent variables in the prediction.

In practice the LR algorithm models the logit(natural logarithm ln() of odds, or else
ratios of probabilities) of event Y happening. General formula of LR can be seen at Figure

32

4.8, where the probability of the occurrence of event of interest is modeled. Or else π =

Probability(Y = outcome of interest | X = x, a specific value of x) is equal to logit
transformation:

π =
ea+bx

1 + ea+bx
(4.8)

Where π is the outcome probability of the event, α is the Y intercept and β is the regres-
sion coe�cient. As you can observe, �e relationship between the probability categorical
variable Y and the predictor X is non-linear [40].

4.4.3 Support Vector Machine

Support Vector Machine(SVM) belongs to a family of classi�ers that deterministically �nd
the best dividing point between two or more classes. Speci�cally, the SVM algorithm is reg-
ulating the boundaries(support vectors) between classes that are separated by a maximum
equal distance. �e SVM algorithm is described thoroughly in [11].

Figure 4.14: Dual-Class Problem, SVM model

�e so-called boundaries or else support vectors are the class instances that are used to
draw the optimal hyperplane between classes. You can see them in Figure 4.14, where the
marked class instances are used to calculate the optimal hyperplane. �e rest of the �gures
are class instances that lie behind the support vector planes. �rough the training process,
the optimal hyperplane is established, if the maximal-margin property between classes is
satis�ed.

4.4.4 Random Forests

Random Forests(RF) are the family of ensemble classi�ers that form di�erent groups of
predictors. �at are made of decision trees, trained in isolation. Unlike the boosting base
models, which combine di�erent group regularizers and weighting schemes.

RF algorithm generates(top-bo�om) random trees that are trained separately. Where
each tree branch represents the outcome of the test, while the leaf nodes represent the

33

class labels. Finally, each of the predictions of the trees is averaged into a single prediction.
Hyper-parameters of the RF model is the overall depth, feature randomness, and type of
the predictors in leaves. RF is quite robust to over��ing since it normalizes the variance
observed in the sampled data. Due to chunking data to di�erent test samples [19].

Figure 4.15: Random Forests Classi�er[Tree No: 2, Depth: 2]

4.4.5 Adaboost

Adaboost is a boosting algorithm proposed by [50]. �e purpose of this algorithm is to
combine t weak classi�ers into strong one. By updating and adjusting their weights ac-
cordingly at each iteration. �e general principle of Adaboost could be summarized as
:

F (x) = sign

(
T∑
t=1

atht(x)

)
(4.9)

Where ht is the weak hypothesis t and at is the appropriate weight that has been as-
signed to this hypothesis. Practically the weak hypothesis represents the base/weak esti-
mators that Adaboost uses in boosting capacity. In this work, we used as a base estimator
for Adaboost, RF algorithm. Speci�cally, a�er the grid-search procedure with RF algorithm,
we obtained the best hyperparameters for the weak estimator(RF) and used the same model
in boosting capacity(Adaboost).

34

4.5 Machine Learning Data Preparation

4.5.1 Datasets Split

Since we mostly used Twi�er corporas in our experiments, which are characterized as
noisy datasets due to the high level of informality of speech. For that reason, we made
certain post-processing steps, which involved sanitizing corpus(keep sentences from three
words onward). To provide more expressive sentences as training data to our supervised
classi�cation tasks.

Table 4.1: Training-Testing split size per dataset

Datasets Size Train-Set Test-Set

Semeval2016 15k 12250 3750

Sentiment140 15k 12250 3750

Sarcasm 15k 12250 3750

IMDB 4k 3000 1000

Furthermore, the sample size of the datasets(chunk size of k sentences as training and
testing data) was preserved throughout all of the experiments. �e train/test split ratio
between the training and testing data was 70%/30%, Table 4.1.

4.5.2 Hyperparameter Tuning

Table 4.2: Hyper-Parameter Tuning, Grid-search

ML Models HyperParameter[1] HyperParameter[2]

LinearSVC C: [0.01, 0.1, 1.0, 10] Iterations: 10k

LR C: logspace(-3,3,7) Iterations: 10k

RF Depth: [12, 24] Estimators: [400, 800]

MNB ———————- ———————-

A�er preprocessing the textual data of the datasets, feature extraction techniques were
performed to map text data to Vector Space. We performed Hyperparameter tuning on our
ML models in order to obtain be�er results, Table 4.2. Precisely we tuned the C regularizer
parameter for both linear models. We also raised the maximum number of iterations to

35

10k. Dense high-dimensional representations such as WEs make linear models such as LR,
LinearSVC hard to converge. Lastly, we tuned the overall number of leaves in RF model,
and the maximum number of trees(estimators).

4.5.3 Cross-Validation

To train less-biased models with be�er generalization. We performed cross-validation in
K-Folds fashion, with overall 10 folds. Cross-Validation splits the training data into K
folds, and K di�erent models are trained using one fold for testing and the remaining
K − 1 for training. Partitioning training data results in less variance across produced
models, thus less overall bias.

4.6 Evaluation

One of the most common evaluation metrics in ML is Accuracy, which is de�ned by the
number of correct instance classi�cations over the overall number of classi�ed instances.
While accuracy is one of the indications of the model’s performance, it is not as reliable as
it seems. For instance, in the case of class unbalance(more samples from class A rather than
class B in training phase), the Accuracy metric could by high. Since the classi�er could be
assigning the majority of the instances to the dominant class. Something that is not what
was intended in the �rst place. Clearly, the model is biased towards a certain class, due to
the class imbalance in the training phase.

Precision = tp
tp +fp

Recall = tp
tp + fn

(4.10)

• True positive(tp): correctly a�ributed instances to the relevant class

• True negative(tn): correctly a�ributed instances to the other class

• False positive(fp): : mistakenly a�ributed instances from the other class to the
relevant class class;

• False negative(fn): instances from the relevant class mistakenly a�ributed to the
other class.

F1 = 2 ∗ precision ∗ recall
precision + recall

(4.11)

36

�e metric that we are using in this work is a balanced combination of Accuracy but also
the Recoil of a model. �e F1-score is a useful metric of testing models performance when
it comes to binary classi�cation problems. F1 represents harmonic-mean of the Precision
and Recall of the model, Equation 4.11. Since our dual sentiment classi�cation problems
involve two classes, the F1-score is computed individually for each of them and then is
averaged.

37

Chapter 5

Empyrical Findings

5.1 Sparse Vector Space Models Experiments

5.1.1 TFIDF Cross-Domain Experiments

5.1.1.1 Data Preparation

For this part of the experiment, we evaluated the cross-domain relations of the TFIDF
sparse model. For that purpose, we chose three di�erent datasets(IMDB, Semeval2016,
Sarcasm), with di�erent word density, context, and domain(sentiment polarity - sarcasm).
While Semeval and ImDb datasets are both domain-related(sentiment polarized datasets)
their main di�erences are the word density and a �gure of speech. In contrary Sarcasm
dataset consists of polarized sarcastic and non-sarcastic sentences, instead of sentiment
annotated ones. �us we treat the sarcasm dataset as the outer domain with respect to the
other two sentiment domains.

Figure 5.1: TFIDF Cross-Domain pipeline

�erefore each of the domains acts as a Source. �e training data is ��ed to create
the internal dictionary representation of TFIDF algorithm of the Source domain, which

38

contains mapped relations of terms and their respective weights. A�er we use the same
representations to transform the training and the testing set of Target domains. In this
way, we cross-utilize the TFIDF representations between di�erent domains. In Figure 5.1
the cross-domain pipeline is depicted.

Table 5.1: TF-IDF Hyperparameters

analyzer min frequency n-grams tokken pa�ern norm

word count of [3] [1, 3] r
′\w{2, } l1

In Table 5.1, Hyperparameters that we used in TFIDF cross-experiments can be ob-
served. �e analyzer of TFIDF is focused on words(more than 2 characters), with a min-
imum frequency of 3 words per corpus. �is threshold discards the very rare domain-
speci�c words, that usually add noise to internal TFIDF representations. We also combined
the usage of n-grams, ranging from a monogram to trigram as word formations.

5.1.1.2 Sparsity

Since sparsity is of the main weaknesses of the TFIDF algorithm, due to large internal
dictionary representation and consequently plenty of zero elements in document feature
vectors. Besides, there is no information sharing in sparse VSMs since data points are
represented in the sparse non-distributed context. Scaling up the training data of the al-
gorithm scales up the internal dictionary representation dimensions, which consequently
leads to under��ing and the lack of generalization [28].

Another reason which can harm the sparsity factor is the domain-speci�c context. Spe-
cial terminology or slang elements that are bound to the speci�c way of speech inside
di�erent domains(for instance, Twi�er). Will most likely add nothing but noise in the
general weighting scheme of the TFIDF algorithm. To deal with this problem, we use cer-
tain NLP techniques to unfold non-canonical word forms. In Figure 4.9, you can observe
the preprocessing steps we apply to raw data of each of the domains(IMDB, Semeval2016,
Sarcasm). Since we are dealing with sparse VSM we also apply in�ectional forms reduc-
tion(lemmatization) to our data, to improve the recall factor of TFIDF.

5.1.1.3 Results

A�er data is preprocessed we apply n-grams as input to TFIDF algorithm. �e reason be-
hind utilizing n-grams is to capture as much content as possible and create TFIDF internal
representations including these word combinations. Since in the sentiment domain it is
also crucial to deal with di�erent forms of negations, that are accompanied by speci�c

39

negation tokens inside the text context. In general, the usage of n-grams with TFIDF in-
stead of simple unigrams tends to have a positive impact on sentiment analysis tasks with
linear classi�ers [54].

Finally, we use three di�erent linear classi�ers(SVM, MNB, LR) to perform cross-domain
sentiment analysis tasks. �e overall performance of the linear models was quite close since
all of them are handling sparse data pre�y well. �us we aggregated the results per model
to present the average F1 as a trusted evaluation factor of the experiments.

Figure 5.2: TF-IDF cross-domain performance

Table 5.2: TF-IDF Cross-Domain evaluation of mean F1[SVM, MNB, LR]

Source Domain IMDB[F1] Sarcasm[F1] Semeval2016[F1]

IMDB 0.91 0.61 0.84

Sarcasm 0.87 0.63 0.85

Semeval2016 0.88 0.62 0.87

As it is seen from the Table 5.2, the general rule of thumb states that when TFIDF
dictionary is drawn from the same source, the F1 performance metric is always higher.
Something that makes sense, since the test set will have a quite similar distribution with
the train set, which is used to create the internal dictionary of TFIDF. Although it is quite
evident that, because of the count-based nature of the TFIDF algorithm which disregards
the syntactic information. TFIDF adapts quite well to di�erent domains and lexical struc-
tures.

It is also worth mentioning that the preprocessing steps of unfolding domain-speci�c
content and minimizing the word entropy bear positive results over cross-domain repre-
sentations. �e divergence of the F1 metric was quite small in the correlation results, with
values ranging from [1% to 3%] of a total performance di�erence.

40

In the case of sarcasm, the F1 score(62%) was quite low in contrast with the other two
sentiment datasets. Sarcasm is still one of the challenging �elds in NLP and classi�cation
since there are many factors that one should account for to perform an e�cient sarcasm
classi�cation task. By adding more feature options, interpreting speci�c domain elements,
linguistic elements related to sarcasm, or even categorizing sarcasm into one of several
types [16].

5.1.2 Sparse Linear Model Analysis

In this part of the experiment, we will use one of the best linear models of the previous
experiment.

SVM(c = 0.01), TFIDF (ngrams = [1, 3]), Dataset(Semeval2016)

Furthermore we used eli5[source: eli5] framework to analyze each individual lexical fea-
ture contribution to the �nal outcome of the classi�ers prediction. In Figure 5.3 we can
see the internal organization of eli5 prediction analysis. To make the prediction analysis,
one should supply the eli5 framework with a pre-��ed classi�er and vectorizer that has
already internally mapped the feature names.

Figure 5.3: Eli5 prediction explainer

Next, we performed prediction analysis on misclassi�ed(FP) testing data drawn from
Semeval2016 dataset. In Table 5.3 we can observe the top three positive and negative text
features and their contribution to the overall weights of our classi�er. Features with slight
positive or negative weights are also depicted in between. Since we included both(unigrams,bigrams,trigrams)
in our TFIDF vectorizer, as extra features. Positive/Negative weights signify the relation-
ship between the given n-gram with Positive/Negative sentiment class.

Di�erent combinations of word n-grams can be observed, re�ecting their respective
weight contribution to the classi�er’s prediction. Di�erent n-gram combinations of the
word “dysneyland” results in positive sentiment class weights. While, unigram features
such as sentiment word “sad” and negation “not”, have huge contribution towards negative
sentiment class. Since as unigrams, there are more frequently related to negative sentiment
context. Although a bigram “sad to” has slightly positive weight(+0.028) simply because
this bigram is quite common in both positive and negative sentences.

41

https://eli5.readthedocs.io/en/latest/

Table 5.3: Eli5 framework false-positive(fp) prediction analysis

Sentence : “sad to not be go to disneyland tomorrow”, the word

“go” is a stemmed version of its gerund form “going”.

n-gram combination [1, 3] SVM weights

disneyland tomorrow +0.357

to disneyland +0.328

disneyland +0.316

go to disneyland +0.257

to disneyland tomorrow +0.182

to not +0.124

tomorrow +0.093

<BIAS > +0.049

be go +0.044

go to +0.039

go +0.029

sad to +0.028

to +0.022

be go to +0.008

not be -0.022

be -0.117

not be go -0.230

not -0.417

sad -0.866

Weight Contribution y=1 (score +0.224)

�e BIAS term is there because of the intercept of the linear model(SVM), which can be
seen directly through the eli5 model. �e overall weight contribution sums up to the class
prediction, with negative weight sum resulting in negative prediction and visa-Versa. �e
weighted sum(+0.224) of this prediction resulted in a positive score, hence the false posi-
tive(fp) class prediction. Even without the presence of BIAS(+0.049) the resulted prediction
score would be positive(sentiment), even though it is not.

�is observation provides signi�cant evidence about n-gram domain dependencies. �e

42

proper combination of n-grams should be empirically set, based on domain observations.
Including all combinations of unigrams, bigrams and trigrams as features might re�ect
poorly in terms of performance.

5.2 ContinuousDenseVector SpaceModels Experiments

In this section, we perform sentiment analysis based on continuous dense text representa-
tions such as word embedding models.

�e �rst part of the experiment is oriented around the performance of self-trained word
embedding models, that are trained on sentiment corpora Sentiment140.

In the second part of the experiment, we utilize already pretrained word embedding
and contextual embedding models to perform sentiment analysis.

�e ML models that we used in dense VSMs experiments are:

• SVM

• Adaboost(RF)

• LR

Linear models indeed have some di�culties when it comes to converging, because of
the dense multi-dimensional input of word embeddings. Although one can counter this
problem by raising the number of convergence iterations of the model, Section 4.5.2. �e
only challenge that we faced was using MNB with dense text representations, which had
negative values. MNB genuinely is quite sensitive to positive arithmetic data. Countering
this issue(min-max scale) introduced other performance issues thus, we picked another
model.

Instead of MNB that we used for sentiment analysis with Sparse VSMs. To evaluate
dense text representations, we used a generative approach of RF. But instead of using di-
rectly RF algorithm, we used a boosting variance Adaboost(RF). �e performance of Ad-
aboost(RF) was quite close, even some times outperforming the other two linear mod-
els(SVM, LR). �e purpose of the 3rd model was to enforce a more robust performance
estimation.

5.2.1 Self-Trained Word Embeddings

For this part of the experiment, we evaluated self-trained embedding models such as Doc2Vec(PV-
DM, PV-DBOW), Word2Vec(DBOW, DM) and Glove on sentiment annotated corpus Sen-
timent140. �e overall training corpus consisted of 1.6 millions of annotated sentiment
sentences. �e preprocessing pipeline consisted of the usual steps that we described in
Text Preprocessing, [Section 4.2].

43

We performed the same preprocessing set up for both training and evaluating the word
representations. We used Gensim library implementations of Doc2Vec and Word2Vec al-
gorithms and python Tensor�ow implementation of Glove model. Speci�cally, the models
that were used:

• Doc2Vec

– Doc2Vec Gensim Model [source: d2v]

• Word2Vec

– Word2Vec Gensim Model [source: w2v]

• Glove

– Glove Tensor�ow Implementation [source: glove]

5.2.1.1 Text Preprocessing Options

We performed di�erent forms of preprocessing such a stop words removal, we also used
compiled stop words list speci�cally tailored for sentiment datasets. Where any stop word
related to sentiment inference(negations, sentiment stop words) were excluded from the
compiled source. Both of the approaches resulted in less signi�cant performance on the
metric score F1, as they introduced more bias.

Unlike TFIDF approach, word embeddings training process is highly related to syn-
tactic and structural principles(Word2Vec, Doc2Vec). Since each time a word is predicted
based on the speci�c context, or vice versa. By removing the stop words, these structural
dependencies are no longer e�ective and the prediction capacity of the model is handi-
capped.

We also excluded word entropy reduction techniques and in�ated form reduction(Lemmatizing,
Stemming). Since word embeddings value structural and syntactic dependencies, while
the training process is conducted on a large variety of word forms(for instance adjective
endings). By reducing in�ated word forms, much of the embedding information is lost,
resulting in lower performance.

44

https://radimrehurek.com/gensim/models/doc2vec.html#gensim.models.doc2vec.Doc2Vec
https://radimrehurek.com/gensim/models/word2vec.html
https://github.com/GradySimon/tensorflow-glove

5.2.1.2 Training Parameters

Figure 5.4: Training Hyper-Parameters se�ings

5.2.1.2.1 Minimum Number Of Occurrences
Is the actual frequency number of a token, that is required to include the speci�c token in
the overall internal dictionary of the embeddings. If the number is low, more tokens will
be added in the overall distribution of words, something that might add statistical noise
to the embeddings representations. If the number is too high, fewer words will be added
to the overall distribution of embeddings with a consequence of less generalization on
unseen content. For our experiments, since we are using Twi�er data we set the number
of occurrences to �ve. Twi�er data is usually noisy and contain terms that adds nothing
but noise to the distribution of the overall representation, despite all the preprocessing
e�orts.

5.2.1.2.2 Negative Sampling
In the case of word embedding models such as Word2Vec, Doc2Vec that are based on a shal-
low neural network approach. In the training phase, when a training sample is present. �e
whole purpose of the training procedure is to adjust the neuron weights slightly so that the
training sample could be predicted more accurately. Meaning that a single training sam-
ple impacts all the weights in the neural network in distributional fashion. To tackle this
problem, NS was introduced. Which instead of modifying all the weights at once, updates
a small percentage of them. Speci�cally, it updates weights for only a random selection
of words that are related to negative or positive class outcomes. In our experiments we
considered the default value of Negative Sampling(NS)=5 in Gensim implementation of
Word2Vec and Doc2Vec models.

5.2.1.2.3 Context Window
Context Window(CW), is a sampling window of the previous or future context, depending
on the training algorithm implementation. Maximizing CW, usually results in be�er ac-
curacy of the model as more content is available for word prediction. Although it is more
computationally expensive and must be used wisely with an analogy of the training size
of the corpus. In our experiments since the average word count in a Twi�er sentence is

45

below ten words, the context window was set to overall �ve words. Increasing the context
window to more than �ve words did not produce any meaningful results.

5.2.1.2.4 Learning Rate - alpha
Regarding the learning rate, we experimented with di�erent custom techniques of man-
ually decaying the learning rate at each of the learning iterations. While providing a
low-threshold cap to learning rate each time. �e resulted trained representations of both
Word2Vec and Doc2Vec models were underperforming. �us we set the learning rate for
those models to its default values alpha=0.025. For Glove model training, the referred learn-
ing rate was quite slow to capture meaningful representations. �us the learning rate for
Glove was set to alpha=0.050, since it yielded be�er inference results.

5.2.1.2.5 Learning Epochs
Usually, to su�ciently capture word representations with self-trained models, one should
provide an excessive amount of training data(billions of words). �e way that pre-trained
embeddings were trained, for instance, Google team used large text corpora with billions of
word tokens. In this case just a few epochs are enough to capture text representations. Be-
cause the training corpus size(1.6 million sentences) that we used contained a small amount
of text data. We increased the number of epochs to 50, to minimize the bias gap, introduced
as a result of ine�cient training data. Lowering the learning epochs to something less than
40, resulted in performance drops.

5.2.1.3 Results

Figure 5.5: Mean F1 Performance evaluation of pre-trained word vectors on sentiment

corpora Sentiment140

46

We performed evaluation(F1 metric) of pretrained embedding models that were trained on
sentiment corpora Sentiment140. �e models that we used to determine the performance
of the embeddings were SVM, Adaboost(RF) and LR. �e mean F1 metric was calculated
by aggregating the individual model results into a mean score.

As it can be seen from Figure 5.5, the worst-performing learning algorithm was DBOW
from Doc2Vec implementation. It is pre�y much clear that the speci�c training option re-
quired more training data to obtain meaningful representations. While DM training mode
performance was quite close to Glove’s F1(69%).

Word2Vec implementation outperformed both Doc2Vec and Glove in terms of perfor-
mance, with CBOW and SG training techniques, both scoring F1(72%).

Since CBOW implementation is ignoring the word order but predicting the centered
word based on future and past content. It seems that in sentiment analysis tasks it is quite
e�cient a�er all, considering elements such as negations that might be present in di�erent
areas of proximity with sentiment words. �e same goes for SG, which is the quite opposite
of CBOW. Where the prediction of future content is based on the input word.

If we compare the results of self-trained word embedding models with the pre-trained
ones Table 5.5, on sentiment dataset Sentiment140 . We can see that both word2vec mod-
els, performed almost the same(≈ %1).

Although our pretrained model was trained only on 1.6 million of annotated sentiment
sentences, less than 50 million tokens. �e pretrained Word2Vec model was trained on 100
billions of tokens from random corporas, Table 5.4.

5.2.2 T-SNE Analysis

In this section, we performed a 2-D overview of the internal relations(topology) of senti-
ment speci�c word embeddings based on T-SNE algorithm [32]. Which is unsupervised
non-linear dimensionality reduction technique primarily used for data exploration and vi-
sualization in low dimensional spaces(usually in 2D or 3D).

�e purpose of this algorithm is to provide insights into the relations between the data
in high-dimensional Euclidean spaces. �e main logic behind the T-SNE is to reduce dimen-
sionality while at the same time preserving pairwise relations between data points. �us
data points that are far away from each other in multidimensional space, will be propor-
tionally distance separated in the resulting 2D or 3D dimensional output. Generally, T-SNE
algorithm maps data from multidimensional domains to 2D or 3D object representations.

5.2.2.1 Sentiment Orientation Analysis

We picked one of our best model(word2vec[50] CBOW) of the previous experiment, Fig-
ure 5.5. To analyze some of the relations and analogies that it captured among sentiment

47

words. A�er training the model on sentiment corpora, Sentiment140. Speci�cally, we
sampled the closest n(10) words in a word cluster of sentiment words such as “awful” and
“great”. When it comes to multidimensional word representations, in practice the neigh-
boring(syntactical, meaning) words are forming word clusters. If the word embeddings
distances are close(same cluster), the words will be semantically related.

Since n = 10 neighboring word vectors is a signi�cant sample of closest words in
terms of linguistic relation and meaning. If we add more samples to T-SNE observations,
of course, you will see more noisy word embedding presence. Words that are barely mean-
ingfully related or where more syntactically frequent with targeted sentiment word.

As can be seen from Figure 5.6. Closest 10-word embeddings were captured, that
were related with sentiment words “great” and “awful”. It is worth mentioning that both
10 words are sentimentally related to the targeted sentiment word. �is is because the
sentiment corpus that we used for training, contained sentiment sentences with sentiment
phrases and words. �us sentiment word relations were captured more “focused”, than in
generic embedding model which was trained on random corporas.

In the case of sentiment word “awful”, we can see that 90% of clustered words express
the same negative sentiment. While the word “incredible” de�nitely re�ects opposed emo-
tion of joy, thus positive sentiment class. �e same behavior can be seen with targeted
positive sentiment word “great”, where the presence of negative sentiment word “rough”
is in the same word cluster.

�e main observation on both of these sentiment word samples is that shallow NN
model architectures such as Word2Vec. Cluster anti-diametrical sentiment words, proba-
bly because these same words were obtained through a similar context. �us words with
similar vector representations tend to have an opposite sentiment polarity(positive, nega-
tive). Something that is a degrading factor when it comes to sentiment analysis [58].

48

(a) Top 10 closest word embeddings of sentiment word, “awful”

(b) Top 10 closest word embeddings of sentiment word, “great”

Figure 5.6: T-SNE 2D analysis of sentiment words, “awful” and “great”. Sentimentally op-

posed words are depicted in red circles. Something that could add signi�cant noise in

sentiment analysis tasks. Since anti-diametrical emotions will be close to each other in the

embedding space, thus treated as related.

5.2.3 Pre-Trained Word Embeddings

For this part of the experiment, we evaluated pretrained word embedding and contextual
models. In 5.4, inner parameters and training capacity of the models can be seen.

49

Table 5.4: Pre-Trained Word Embedding Models Overview

Pretrained Models Vocabulary Dimensions Training Source

Word2Vec 3m words 300 100b tokens w2v

Glove 1.9m words 300 42b tokens glove

FastText 2m words 300 600b tokens �ext

U.S. Encoder(DAN) N.K. 512 N.K. u.s.e.

Elmo N.K. 1024 1b tokens elmo

�e training capacity of shallow NN models such as Word2Vec and FastText, but also
statistical-based models such as Glove. It can be extended up to several hundreds of billions
of tokens. Due to the limited training complexity of the model. In contrast with more
complex language models such as Elmo, which used only 1 billion of tokens for the training
process.

What also can be seen is that shallow NN models usually cap their dimensionality
up to 300 dimensions per embedding. It is still debatable whether the full amount of di-
mensions(300) encapsulates signi�cantly more information than lesser dimensional mod-
els[50,100,200]. A recent study suggests that the dimensionality of the word embedding
model should be tuned according to the task at hand. Empirical studies [33], show that
300 dimensions per word embedding is enough to encapsulate most of the information for
downstream NLP tasks. Including sentiment analysis.

Although usually when the model complexity is high(u.s.e. , elmo), the number of
dimensions tend to increase. Since more information is being extracted on a multiple levels
(char level analysis, sub-word n-grams, a�ention, e.t.c.) from the training data.

5.2.3.1 Text Preprocessing Options

We followed exactly the same text preprocessing procedure as with the self-trained word
embedding models, Section 5.2.1.1

5.2.3.2 Results

From Table 5.5, you can observe that typical NN and count-based models as W2V and
Glove, have almost the same performance(≈ 1%) across all of the three datasets. While
more advanced LMs performed slightly be�er results, around [2 - 3]% percent performance
gap, except the Sentiment140 dataset where the performance gap was [2 - 5]% in the overall
performance.

50

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html
https://tfhub.dev/google/universal-sentence-encoder/2
https://tfhub.dev/google/elmo/2

Table 5.5: Pretrained Language Models evaluation of mean F1[SVM, Adaboost(RF), LR]

WE Models IMDB[F1] Semeval2016[F1] Sentiment140[F1]

w2v[300] 0.84 0.83 0.73

glove[300] 0.85 0.84 0.73

�ext[300] 0.86 0.85 0.76

use[512] 0.86 0.85 0.78

elmo[1024] 0.84 0.86 0.75

TFIDF 0.91 0.88 0.79

It is also worth mentioning that Elmo LM had the best performance on Semeval2016
dataset with F1(86%) score evaluation. While at the same model, was trained only on 1
billion tokens as input data, Table 5.4.

Figure 5.7: Mean F1(SVM, Adaboost(RF), LR) performance evaluation of pre-trained word

vectors on sentiment datasets(IMDB, Semeval2016, Sentiment140)

�e USE model achieved high-performance F1 score on IMDB(86%) and Sentiment140(78%).
�e USE embeddings were trained on deep NN setup, known as DAN. Where the training
data, words and n-grams were �rst averaged together and a�er passed to deep FFNN ar-
chitecture.

Comparing with the results of sentiment analysis on sparse VSMs in datasets(ImDb,
Semeval2016 and Sentiment140), Table 5.5. It is obvious that TFIDF has be�er perfor-

51

mance on both datasets. Where F1 scores of IMDB(91%) and Semeval2016(87%) datasets
with TFIDF transformation algorithm were higher than the best performing pretrained
LMs, F1 score IMDB(86%) and Semeval2016(86%).

It is quite interesting, that simple sparse count-based models such as TFIDF outper-
form complex neural LMs, when it comes to sentiment analysis. Although, dense VSMs
such as word embeddings or contextual embeddings usually have been trained on general
data(corporas, crawls). Without any speci�c domain orientation or NLP task focus, regard-
ing its training data. �us the fact that pretrained general word embedding models don’t
have a signi�cant impact on sentiment analysis tasks, is not surprising.

On the other hand, word embeddings also introduce the sentiment bias in word rep-
resentations. As it was discussed in Section 5.2.2.1, shallow NN word embeddings that
have been trained on sentiment corporas. Capture semantically related words, with anti-
diametric sentiment polarity. Which is also a problem regarding sentiment analysis tasks.
Since the sentiment information would be biased in vector representations, of sentiment
words that appear in the same context.

52

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work we provided detailed observations on sparse and dense text representations,
regarding their performance on sentiment domains. In both of the experiments we used
custom rule-based text preprocessing techniques in order to enrich the information repre-
sentation and to counter OOV instances.

Regarding sparse VSMs, we performed cross-domain experiments in order to measure
the information transfer from one sentiment domain to another, through TFIDF transfor-
mations. TFIDF is quite good at adapting and wrapping around di�erent domains, since it is
term-frequency model. Despite of being one of the oldest information retrieval techniques.
We also showed how weights are interpreted inside linear SVM model in conjunction with
TFIDF transformation algorithm. Technically exposing weaknesses of the TFIDF model,
regarding proper weight assignment and text(n-gram) transformation.

In response to the research questions on sparse VSMs:
RQ1 What is the capacity of TFIDF algorithm in terms of cross-domain

information transfer?
A1 TFIDF retains the information quite well across di�erent domains,
when provided with enough data to formulate a balanced internal
dictionary of representations

RQ1.1 Does utilizing richer n-grams combinations always improve the TFIDF
performance on sentiment domains?
A1.1 FP analysis prediction with eli5 model showed that an arbitrary number
of n-grams combination does not always re�ect be�er on the performance. N-Grams
representations are quite domain-dependent and should be used according to
the domain’s preferences

53

Regarding dense continuous representations we performed two individual experiments
with self-trained and pretrained word embeddings.

�e purpose behind the self-trained embedding models, was to capture relations through
shallow NN(Word2Vec, Doc2Vec) and statistical(GloVe) LMs, in sentiment domain Senti-
ment140. While at the same time, exploring di�erent training algorithm concepts, whether
they impact sentiment performance.

As for the pretrained versions of WE models, we performed classi�cation tasks on sen-
timent domains, using word(Word2Vec, Glove) and contextual(FastText, U.S.E, Elmo) LMs.

In response to the research questions on continuous-dense VSMs:
RQ2 Does domain speci�city re�ects on be�er word embeddings representations,

regarding sentiment classi�cation tasks?
A2While sentiment-domain speci�cality plays important role in capturing more
expressive sentiment representations. In contrast with generically trained WE
models that were trained on random corporas. �ey also introduce anti-diametrical
SO in word embedding representations, something that degrades performance in
sentiment analysis tasks.

RQ3What is the performance di�erence between TFIDF, pretrained contextual and word
LMs on sentiment domains?
A3 As the results showed, there are slight performance di�erences of the models,
but not as signi�cant as one would expect. Especially for deep NN
architectures, like USE and stacked biLMs(Elmo). Low-performance gap didn’t
justify the models’ perplexity, although they performed be�er than their
predecessors (Glove, Word2Vec) in most of the cases. In terms of performance
with sparse representations such as TFIDF. Surprisingly TFIDF outperformed
any pretrained WE model. Regardless perplexity level or training principles.
Although TFIDF limitations are quite noticeable, with di�cult lexical
expressions such as negations and sarcastic content).

Strong factor that degrades the performance of pretrained models on sentiment data, is
the general training perspective of the pretrained models. Since models where trained on
gigantic corporas and crawls, without any speci�c training or domain preferences. In order
to be as general as possible for di�erent downstream NLP tasks. �us the resulted repre-
sentations between words are quite general and not suited directly for sentiment analysis
tasks.

6.2 Future Work

In the course of this work, we have presented the major aspects, but also weaknesses of
sparse and continuous dense text representation. When it comes to sentiment analysis

54

tasks.
While sparse models can capture term-frequency patents and wrap around any text

domain. In more complex sentiment analysis tasks, such as sarcasm. Sparse frequency
models quickly loose their higher ground, since they encapsulate far less information than
needed in order to properly classify sarcasm. Beside sarcasm, same poor performance
can be obtained with sentiment sentences that include complex linguistic expressions and
negations.

While in dense representations, problems such as opposed sentiment polarity are fre-
quent, at least with shallow NN models. Count-based statistical model such as Glove, en-
counter the same performance threshold when it comes to sentiment analysis.

More complex models, such as a�ention models or customized biLMs are really promis-
ing in the �eld of deep learning. Since these models have the capacity of extracting more
sophisticated features on multiple level. Such as, di�erent levels of a�ention(character
/word/sentence) when it comes to a�ention models or more complex learning of di�erent
lexical features(biLms). Something that is quite bene�cial for sentiment analysis.

�is study showed that pre-trained deep learning models do not have that much impact
on performance of sentiment analysis. �us they should not be treated directly, but instead
used in the capacity of transfer learning. Meaning that the pretrained models, have been
trained on billions of tokens of data with a generic training routine. Hence, what should
be done is to use the already generic pretrained models and �ne-tune them based on task
at hand. In this way, the pretrained “knowledge” of the models could be expanded with
domain speci�c knowledge(for instance, sentiment) through a �ne-tuning procedure.

�ere are many ways in order to perform �ne-tune on certain deep learning mod-
els. One could freeze the pretrained model’s early layers weights, or replace the last
layer(so�max) according to speci�c downstream task. In both of the deep learning mod-
els(elmo, use), �ne-tune is presented as only alternative of further improving the perfor-
mance on selected tasks [42][13].

55

Bibliography

[1] Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis, Copenhagen, Denmark, Sept. 2017. Association for
Computational Linguistics.

[2] A. Aue and M. Gamon. Customizing sentiment classi�ers to new domains: A case
study. In Proceedings of recent advances in natural language processing (RANLP), vol-
ume 1, pages 2–1. Citeseer, 2005.

[3] D. BAHR and E. PASSERINI. Statistical mechanics of opinion formation and collective
behavior: Micro-sociology. �e Journal of mathematical sociology, 23(1):1–27, 1998.

[4] V. Balakrishnan and E. Lloyd-Yemoh. Stemming and lemmatization: a comparison of
retrieval performances. 2014.

[5] R. Bar-Haim, E. Dinur, R. Feldman, M. Fresko, and G. Goldstein. Identifying and
following expert investors in stock microblogs. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pages 1310–1319. Association for
Computational Linguistics, 2011.

[6] L. Becker, G. Erhart, D. Skiba, and V. Matula. Avaya: Sentiment analysis on twit-
ter with self-training and polarity lexicon expansion. In Second Joint Conference on
Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh
International Workshop on Semantic Evaluation (SemEval 2013), volume 2, pages 333–
340, 2013.

[7] Y. Bengio and S. Bengio. Modeling high-dimensional discrete data with multi-layer
neural networks. In Advances in Neural Information Processing Systems, pages 400–
406, 2000.

[8] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language
model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

[9] A. Bermingham and A. F. Smeaton. Classifying sentiment in microblogs: is brevity
an advantage? In Proceedings of the 19th ACM international conference on Information
and knowledge management, pages 1833–1836. ACM, 2010.

56

[10] A. Bhoi and S. Joshi. Various approaches to aspect-based sentiment analysis. arXiv
preprint arXiv:1805.01984, 2018.

[11] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal mar-
gin classi�ers. In Proceedings of the ��h annual workshop on Computational learning
theory, pages 144–152. ACM, 1992.

[12] E. Çano and M. Morisio. Word embeddings for sentiment analysis: A comprehensive
empirical survey. arXiv preprint arXiv:1902.00753, 2019.

[13] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant, M. Guajardo-
Cespedes, S. Yuan, C. Tar, et al. Universal sentence encoder. arXiv preprint
arXiv:1803.11175, 2018.

[14] Y. Chen, B. Perozzi, R. Al-Rfou, and S. Skiena. �e expressive power of word embed-
dings. arXiv preprint arXiv:1301.3226, 2013.

[15] W. Daelemans, H. Groenewald, and G. Van Huyssteen. Prototype-based active learn-
ing for lemmatization. International Conference Recent Advances in Natural Language
Processing, RANLP, 01 2009.

[16] A. D. Dave and N. P. Desai. A comprehensive study of classi�cation techniques for
sarcasm detection on textual data. In 2016 International Conference on Electrical, Elec-
tronics, and Optimization Techniques (ICEEOT), pages 1985–1991. IEEE, 2016.

[17] D. Davidov, O. Tsur, and A. Rappoport. Enhanced sentiment learning using twi�er
hashtags and smileys. In Proceedings of the 23rd international conference on computa-
tional linguistics: posters, pages 241–249. Association for Computational Linguistics,
2010.

[18] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing
by latent semantic analysis. Journal of the American society for information science,
41(6):391–407, 1990.

[19] M. Denil, D. Matheson, and N. De Freitas. Narrowing the gap: Random forests in
theory and in practice. In International conference on machine learning, pages 665–
673, 2014.

[20] N. Farra, E. Challita, R. A. Assi, and H. Hajj. Sentence-level and document-level sen-
timent mining for arabic texts. In 2010 IEEE international conference on data mining
workshops, pages 1114–1119. IEEE, 2010.

[21] A. Go, R. Bhayani, and L. Huang. Sentiment140. Site Functionality, 2013c. URL
h�p://help. sentiment140. com/site-functionality. Abruf am, 20, 2016.

57

[22] B. Han and T. Baldwin. Lexical normalisation of short text messages: Makn sens a
#twi�er. In Proceedings of the 49th AnnualMeeting of the Association for Computational
Linguistics: Human Language Technologies, pages 368–378, Portland, Oregon, USA,
June 2011. Association for Computational Linguistics.

[23] G. E. Hinton et al. Learning distributed representations of concepts. In Proceed-
ings of the eighth annual conference of the cognitive science society, volume 1, page 12.
Amherst, MA, 1986.

[24] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III. Deep unordered composi-
tion rivals syntactic methods for text classi�cation. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), volume 1, pages
1681–1691, 2015.

[25] F. H. Khan, U. Qamar, and S. Bashir. A semi-supervised approach to sentiment analysis
using revised sentiment strength based on sentiwordnet. Knowledge and information
Systems, 51(3):851–872, 2017.

[26] M. Khodak, N. Saunshi, and K. Vodrahalli. A large self-annotated corpus for sarcasm.
arXiv preprint arXiv:1704.05579, 2017.

[27] A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes. Multinomial naive bayes for
text categorization revisited. In Australasian Joint Conference on Arti�cial Intelligence,
pages 488–499. Springer, 2004.

[28] R. G. Krishnan, D. Liang, and M. Ho�man. On the challenges of learning with in-
ference networks on sparse, high-dimensional data. arXiv preprint arXiv:1710.06085,
2017.

[29] Q. Le and T. Mikolov. Distributed representations of sentences and documents. In
International conference on machine learning, pages 1188–1196, 2014.

[30] B. Liu. Sentiment analysis and opinion mining. Synthesis lectures on human language
technologies, 5(1):1–167, 2012.

[31] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Po�s. Learning word
vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human language technologies-volume 1, pages
142–150. Association for Computational Linguistics, 2011.

[32] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal ofmachine learning
research, 9(Nov):2579–2605, 2008.

58

[33] O. Melamud, D. McClosky, S. Patwardhan, and M. Bansal. �e role of context types
and dimensionality in learning word embeddings. arXiv preprint arXiv:1601.00893,
2016.

[34] T. Mikolov, K. Chen, G. Corrado, and J. Dean. E�cient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[35] T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space word
representations. In Proceedings of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages
746–751, 2013.

[36] T. Mullen and N. Collier. Sentiment analysis using support vector machines with
diverse information sources. In Proceedings of the 2004 conference on empirical methods
in natural language processing, 2004.

[37] P. Nakov, A. Ri�er, S. Rosenthal, F. Sebastiani, and V. Stoyanov. Semeval-2016 task
4: Sentiment analysis in twi�er. In Proceedings of the 10th international workshop on
semantic evaluation (semeval-2016), pages 1–18, 2016.

[38] T. Nasukawa and J. Yi. Sentiment analysis: Capturing favorability using natural lan-
guage processing. In Proceedings of the 2nd international conference on Knowledge
capture, pages 70–77. ACM, 2003.

[39] B. Pang, L. Lee, and S. Vaithyanathan. �umbs up?: sentiment classi�cation using
machine learning techniques. In Proceedings of the ACL-02 conference on Empirical
methods in natural language processing-Volume 10, pages 79–86. Association for Com-
putational Linguistics, 2002.

[40] C.-Y. J. Peng, K. L. Lee, and G. M. Ingersoll. An introduction to logistic regression
analysis and reporting. �e journal of educational research, 96(1):3–14, 2002.

[41] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

[42] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Ze�lemoyer.
Deep contextualized word representations. In Proc. of NAACL, 2018.

[43] X. Rong. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738,
2014.

[44] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. science, 290(5500):2323–2326, 2000.

59

[45] C. Saedi, A. Branco, J. A. Rodrigues, and J. Silva. Wordnet embeddings. In Proceedings
of �e �ird Workshop on Representation Learning for NLP, pages 122–131, 2018.

[46] M. Sahlgren. �e Word-Space Model: Using distributional analysis to represent syn-
tagmatic and paradigmatic relations between words in high-dimensional vector spaces.
PhD thesis, 2006.

[47] G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.
Technical report, Cornell University, 1987.

[48] G. Salton et al. �e smart retrieval system, 1971.

[49] G. Salton, A. Wong, and C.-S. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

[50] R. E. Schapire, Y. Freund, et al. A short introduction to boosting. Journal of Japanese
Society for Arti�cial Intelligence, 14(5):771–780, 1999.

[51] K. Sparck Jones. A statistical interpretation of term speci�city and its application in
retrieval. Journal of documentation, 28(1):11–21, 1972.

[52] B. Tang, M. Shepherd, E. Milios, and M. I. Heywood. Comparing and combining
dimension reduction techniques for e�cient text clustering. In Proceeding of SIAM
International Workshop on Feature Selection for Data Mining, pages 17–26. Citeseer,
2005.

[53] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin. Learning sentiment-speci�c
word embedding for twi�er sentiment classi�cation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 1555–1565, 2014.

[54] A. Tripathy, A. Agrawal, and S. K. Rath. Classi�cation of sentiment reviews using
n-gram machine learning approach. Expert Systems with Applications, 57:117–126,
2016.

[55] A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe. Predicting elections with
twi�er: What 140 characters reveal about political sentiment. In Fourth international
AAAI conference on weblogs and social media, 2010.

[56] P. D. Turney and P. Pantel. From frequency to meaning: Vector space models of
semantics. Journal of arti�cial intelligence research, 37:141–188, 2010.

[57] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. A�ention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

60

[58] L.-C. Yu, J. Wang, K. R. Lai, and X. Zhang. Re�ning word embeddings for sentiment
analysis. In Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 534–539, 2017.

61

	Introduction
	Objectives of the Study
	Sparse Text Representations Experiments
	Dense Text Representations Experiments

	Background
	Sentiment Classification Overview
	Sentiment Classification Models Categories
	Sentiment Classification Analysis Levels
	Major Problems Of Sentiment Classification

	Sparse Vector Space Models
	Sparse Models
	Sparse Models Implementations
	Sparse Models Major Challenges

	Dense Continuous Vector Space Models
	Statistical Language Modeling
	Neural Language Modeling
	Curse Of Dimensionality

	Dense Reduced Continuous Vector Space
	Linquistic Regularities

	Related Work
	Technical Overview
	Datasets
	Twitter: Semeval2016
	IMDB: Movie Reviews
	Twitter: Sarcasm
	Twitter: Sentiment140

	Text Preprocessing
	Domain specific preprocessing
	Word Form Expansion and Normalization
	Inflectional Form Reduction

	Feature Extraction Techniques
	Sparse Vector Space Models
	N-Grams
	Term Frequency Model (TFIDF)

	Continuous Dense Vector Space Models
	Word2Vec
	Continuous Bag-of-Words Model
	Continuous Skip-gram Model

	Glove
	FastText
	Doc2vec
	Distributed Memory Model(DMM)
	Distributed Bag Of Words(DBOW)

	Universal Sentence Embeddings
	Transformer
	Deep Averaging Network

	Deep Contextualized embeddings - Elmo

	Machine Learning Models
	Multinomial Naive Bayes
	Logistic Regression
	Support Vector Machine
	Random Forests
	Adaboost

	Machine Learning Data Preparation
	Datasets Split
	Hyperparameter Tuning
	Cross-Validation

	Evaluation

	Empyrical Findings
	Sparse Vector Space Models Experiments
	TFIDF Cross-Domain Experiments
	Data Preparation
	Sparsity
	Results

	Sparse Linear Model Analysis

	Continuous Dense Vector Space Models Experiments
	Self-Trained Word Embeddings
	Text Preprocessing Options
	Training Parameters
	Minimum Number Of Occurrences
	Negative Sampling
	Context Window
	Learning Rate - alpha
	Learning Epochs

	Results

	T-SNE Analysis
	Sentiment Orientation Analysis

	Pre-Trained Word Embeddings
	Text Preprocessing Options
	Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

