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Abstract 
 

Parallel and distributed systems are now days moving towards to the concept of 

Grid computing. The globalization of dynamic and heterogeneous resources connected 

via Internet and shared by different users is now days a reality. The new power that rises 

gave the ability to scientists to turn into type of studies that was before for them a utopia. 

Parameter sweep studies are such a type of study. This thesis will try to investigate the 

impact that will have the consideration of communication cost within a parameter sweep 

task workflow. For that reason a scheduling algorithm will be analyzed and modified.   
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Chapter 1 
 

 

 

 

Introduction 
 

 

 

1.1     Workflow Paradigm  

 
A simple scientific experiment can be easily described by a 3 step procedure. The 

first step is the data collection (e.g. from remote sensors). Second step is the data filtering 

(e.g. via data process centers) and the last step is the result visualization (e.g. via a 

visualization cluster). Someone may think that this operation is a repeated 3 task 

procedure with the one task need to follow the other in the given order. We can illustrate 

this simple procedure using a pipeline:  

 

           Data Collection(1) ���� Data Filtering(2) ���� Result Visualization(3)     

 

The steps (tasks) 1, 2 and 3 are now considered as a single application. Each of 

these 3 tasks consists of various numbers of subtasks. The next figure presents the 

paradigm of this simple workflow. 

                       

                                   (1)                             
                                    

 

                     

 

                                        (2) 
 

 

 

                                         (3)  

                                                

                                     Figure 1.1: Scientific Workflow Example 

 

The visualization of the result part (3) can start before all the subtasks that compose task 

(1) and (2) finish their execution. If a particular subtask in (1) finish executing then it is 

able to send its result to its successor subtask in (2) without having to wait the other 
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subtasks in (1) to finish their execution. The same can occur in (2) if a subtask obtains the 

results from its predecessor subtask(s) in (1). Considering this, it is easy to realize that 

there can be a more efficient way than the pipeline to define this workflow. The result 

will be a possible reduction of the total application execution length. This is the work for 

a scheduling algorithm. A scheduling algorithm assigns tasks to resources with a scope to 

minimize the total application execution length (makespan).     

 

 

1.2     Parameter Studies – Parameter Sweep Tasks  

 
Imagine a simulation that produces results for solving a scientific problem. By 

varying the initial conditions we can produce different results that correspond to 

dissimilar cases of the same problem. That is called “parameter space”. In the past 

decades in order to solve partial differential equations as for example the study of fluid 

flow, scientists were able to use just one processor of a high speed computer that was 

probably in a super computer center placed locally. In terms of cost all the tasks were so 

expensive in computer cycles that these kinds of studies were ignored [1].  

 

Nowadays the situation has changed and the parameter studies are performed by 

many scientists in various scientific fields. Parametric studies are now used in searching 

for extra-terrestrial intelligence [3] (SETI@HOME project), crash simulation, molecular 

modeling for drug design, human-genome sequence analysis, hoc network simulation 

brain activity analysis, high-energy physics events analysis, tomography, financial 

modeling, MCell simulations [4] and a lot of other scientific areas. For that reason, high-

throughput parametric computing studies are nowadays considered as the killer 

application for the Grid, meaning that they are able to take a maximum advantage of the 

Grid capabilities. This was possible because of the fast development of Grid technology 

the last years.  A scientist is now able to access supercomputers not just locally in his 

laboratory but is capable to do distributed computations using other supercomputers or 

clusters spread at different geographically areas of the planet and accessed via network 

links. The advantage of the global Grid technology makes it easier to integrate resources 

from distributed scientific computer centers with those of one’s particular scientist 

environment, creating a technical basis and opening a field for complex parametric 

investigations [1][2]. 

 

Parameter sweep applications consist of a number of independent experiments 

“tasks” named parameter sweep tasks. Such an application is composed by a fixed 

number of layers (levels). From now on we will refer as Ti this type of task where (i) 

indicates the number of the level that the task belongs.  Every task Ti consists from many 

smaller subtasks. There is no inner-task communication or any type of data dependencies 

between the same level subtasks but dependencies are likely to exist between different 

level subtasks. The only restriction is that the dependencies are allowed only between the 

subtasks that belong to i+1(children) or i-1(parent) layer, with subtasks that belong to i 

layer. Every subtask can take various files as an input and produces one or more files as 

an output which will be the input for the next level (Ti +1) successor subtask. Figures1.1 
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represents such a parameter sweep task Ti where the yellow circles symbolize the 

subtasks that this particular task includes. These subtasks by definition are independent 

each other.      

 

 

 
Figure 1.1: A paradigm of parameter 

      sweep task. 

 

 

1.3     Static – Dynamic Scheduling  

 
A hierarchical taxonomy that represents algorithms for scheduling working units or 

else tasks in parallel and distributed computational systems is presented in [5]. Grid 

technology belongs to these kinds of systems and so we are able to say that Grid 

scheduling algorithms are part of this taxonomy. Local and Global algorithms is the 

distinction on the highest level of hierarchy. Local refers to algorithms that are 

responsible for scheduling tasks on one processor. Reversely Global refers to scheduling 

policies for task allocation on multi-processors in order to optimize the final system 

performance. The Grid is on the Global part of the hierarchy.  

 

On the next level of the Global abstraction we find 2 categories of scheduling 

algorithms, Static and Dynamic respectively. The difference between these 2 categories 

is the time which the scheduling decisions are made. Static scheduling assumes that there 

is available priory information about the Grid resources, which is being used to take 

decisions about the final scheduling. On the other hand dynamic scheduling is using 

information that gathers during the running time to make the correct processor task 

allocation. Both methods are used regularly in Grid Computing. This thesis examines and 

modifies the xDCP [8] algorithm which belongs to the static category of the Grid 

scheduling algorithms. The xDCP algorithm has been designed to schedule parameter-

sweep application workflow. There will be an effort to insert communication cost 

between the application’s different level subtasks, something that the xDCP do not 

consider assuming that is zero.   
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 1.4     Simulation Framework  

 
Great emphasis is nowadays giving to the creation and evaluation of scheduling 

algorithms and a lot of researchers are working on this specialized field of Grid 

computing. Due to the dynamic Grid characteristic the evaluation of such algorithms 

need to cover a wide range of different scenarios. One could say that the best way to 

perform such an evaluation is to do experiments with different scheduling strategies using 

real resources and try to schedule real applications on the Grid. This is not so easy to 

achieve for the reason that, first it would be difficult to obtain a considerable number of 

experiments that need to have a final statistical meaning and second using real resources 

will limit the change of using a big range of dissimilar resource configurations. For that 

reason Simulation is the most effective way to obtain results with statistical meaning that 

could help the efficient evaluation of this category of algorithms.      

 

The Simgrid [6] simulation framework is a toolkit designed specially for the study 

of scheduling algorithms. It is implemented in C and consists of about 10.000 lines of 

source code and uses simple optimization techniques to improve memory usage and 

speed. The Simgrid library offers functions that support the arrangement of the 

computing environment, the implementation of the algorithm itself and finally the 

simulation of the application and execution over a set of defined resources. Simgrid is an 

open-source software. The newer version is v3.0 but for the purposes of this thesis 

v2.18.5 will be used as it is the last one that considers Direct Acyclic Graphs (DAG’s) 

abstractions. The reader can refer to chapter (4) for a more detail description. 

 

 

1.5    Structure of thesis 

 
This thesis is organized as follows. The following chapter(2), will discuss 

algorithms from the static category. The next chapter(3) will present the xDCP algorithm. 

This chapter also proposes a modification in the xDCP algorithm in order to be able to 

accept communication time cost within its structure. The purpose of this modification is 

to investigate the impact of adding communication time between the layers of a 

Parameter Sweep Task application workflow. Chapter(4) presents the toolkit (Simgrid) 

that is used for the simulation and implementation of the modified algorithm. The last 

chapter (5) examines if the new modified algorithm is still suitable or not for scheduling 

when this communication cost is considered. By applying simulation we measure the 

algorithm performance under a lot of configuration scenarios. 
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Chapter 2 
 

 

 

 

Static Scheduling 
 

 

 

2.1     Scheduling Open Problems 

 
The most important problem in scheduling task graphs (DAG’s see section 2.1.1) 

for distributed computing is to efficiently find a good enough schedule with respect to the 

application total execution time (makespan). The Directed Acyclic Graph can state 

information about file and task dependencies of an application. The work of a   

scheduling algorithm is to gather this information and combining it with information that 

gathers about the system (e.g. from Grid Information Service) to take decisions about 

how to sent working units to resources that are ready to accommodate them in such an 

order to minimize the application’s makespan. It has been proved that such a problem is 

NP-complete [7]. It is possible for someone to create a Linear Programming model with 

the aim of solving this task allocation to resources problem, but the existing current 

methods do not allow this to happen within a rational time space and thus researchers 

proposed a plethora of different heuristics.  

 

All these heuristics use simplifying assumptions in order to achieve a respectable 

performance that will lead to a better makespan. The optimal performance  is not easy to 

achieve and if we consider the dynamic Grid characteristic, the design of scheduling 

algorithms for the Grid is rather a great challenge. In order to map efficiently tasks to 

resources we have to keep in mind beforehand how task relations are able to influence 

scheduling decisions. Besides that we have to examine how the heterogeneous nature of 

the resources can react to the performance of the schedule. Another very important aspect 

is how we will be able to measure the performance of the proposed algorithm under a 

realistic performance model. All these open scheduling problems have been the study 

field between many researchers world wide and a lot of algorithms have been proposed 

with an effort to overcome this problem.  

 

Designing a scheduling algorithm in order to achieve an efficient processing of a 

parallel application includes four fundamental aspects [11]: 

 

• Scalability 
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• Performance 

• Time-Complexity 

• Applicability 
 

  

Scalability       
 

A parallel scheduling algorithm is scalable when it is able to create proper solutions 

for several problem sizes. As the number of processors that is capable to use becomes 

higher the algorithm should be able to produce solutions with the same value in a lower 

time period. 
 

 

Performance  
 

The performance of a scheduling algorithm states the quality of solutions that 

produces. The algorithm should have the ability to accommodate a wide range of input 

graphs that may describe different applications.     
 

 

T-Complexity  
 

The time-complexity of an algorithm is a very important factor that can influence its 

design. Although the quality of the solution that might be able to produce is good, a high 

time complexity can easy lead to a low scalability and thus the efficiency of the algorithm 

may drop dramatically. There is a need to find an acceptable trade-off between the 

quality of solutions that the algorithm produces and time complexity. The time-

complexity of a DAG is usually expressed as a factor of number of edges, number of 

nodes and the number of processors that uses.  In most of cases an algorithm includes a 

traversal of the DAG and a deep search for the appropriate place to put a task within the 

processors slots. Backtracking is also possible but it results in a higher time complexity. 

Static priority in general terms has as consequence lower T-complexity than a dynamic 

priority assignment. 

                           
                          

Applicability   
 

When we speak about applicability of a scheduling algorithm we speak in terms of 

its practical usage. To achieve this, realistic assumptions have to be considered and real 

benchmarks have to be used for evaluation purposes. If an algorithm does not include 

realistic assumption, it may advance the theoretical field of science but it will never have 

any practical usage.    

 

Most of the proposed scheduling algorithms belong to the static part. This chapter 

will focus on this part presenting a collection of this kind of algorithms. First the DAG 

model is discussed as it fits the needs of our work and is appropriate to describe a 
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parameter sweep application workflow. Afterwards some of the most well performed 

known algorithms that belong to this category are briefly discussed. Moreover the main 

task is the analysis and modification of the xDCP [8] algorithm that is designed specially 

for scheduling Parameter Sweep Tasks on Global Grids and thus match with the case of 

our study.   

 

 

2.1.1     The DAG Model  

 
A graph is the basic part of study in the field of graph theory. It is a set of points or 

vertices connecting by links that are called lines or edges. Furthermore a directed graph 

or a digraph G = (V, E) is a graph that is made from a set of vertices or nodes v that are 

connected with directed edges e. A directed acyclic graph or else DAG is a directed 

graph with no directed cycles [9]. Saying no directed cycles we mean that there is no 

directed path in the task graph that can start and ends to a particular node n. It is called 

acyclic because there is no cycle in any path of the graph structure. Every node has a 

weight that symbolizes the computation cost and is denoted by W(ni). The edges of a 

DAG represent the communication messages that have to be passed from a node to its 

children nodes to start their execution. The weight of an edge is called communication 

cost and is denoted by C(ni, nj). In the case of the task graph shown in Figure 2.1 

between the A and B nodes there is an edge with communication cost C(A, B).  

 

Every edge has a source and a sink node that is connect to. The source is called the 

parent node and the sink the child node respectively. A parent node can have a number of 

children  nodes and in the same way a children node may have more than one parent 

nodes. Both cases are easy to observe in Figure 2.1 were the set of tasks {B, C, D} are 

children of task A and the set of tasks {B, C} are father of task E in that order. In the 

same figure we can observe as well that task A has no father and task G has no children. 

These tasks are called entry and exit nodes of the graph respectively. The structure of a 

DAG do not allow a node to start executing before it collects all the communication 

messages that its parent nodes send. The Path of the graph is all the way from an entry 

node to an exit one. In the same figure we are able to detect a various number of paths. 

For example (A�B�E�G) is one of these paths. As the reader can easily observe there 

is one path with red arrows and that is the (A�C�E�G) path.      

 

We represent on purpose this particular path with red arrows because it represents 

the so called Critical path of the graph. The Critical path of a DAG is the path with the 

longest computation and communication cost among all the task graph paths. It is 

characterized as Critical because it follows a restriction that is if the nodes composing it 

are not scheduled on time, the total application execution length will be higher. The 

nodes (A, C, E, and G) are additionally called Critical Path nodes CPN’s and together 

create a linear cluster within the graph structure. A DAG can have more than one CP’s. It 

can happen when we schedule a CP node, after this a new CP may appear in the graph 

arrangement. 
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According to [10] a DAG can be described by different models, some of which are 

following. The first is the ‘accurate model’. This model considers that the weight of a 

node consists of the computation time and the time to receive and send the messages 

before and after the computation. Being a function of source and destination nodes, it 

depends both on node distribution and on the network arrangement. The same model 

assumes that communication messages between nodes within the same processor are 

zero. The second model is the ‘first approximation model'. It assumes that the edge 

weight is independent of the message passing and is approximated by a constant number. 

The third one is the ‘second approximation’ model which fully ignores message passing. 

These approximation models are useful when the granularity ranges from medium to 

large and thus the communication is low and the network is not heavily loaded. The 

granularity is the ratio of the task execution time versus the communication overhead 

resulting from the messages passing among the computational tasks. 

  

                                                                                  Linear Cluster          

                                         
 

         Figure 2.1: Representation of a DAG graph  

                                 structure. 

 

There are 2 ways to schedule a DAG to a processor network. In the “direct 

mapping” way, using the accurate model we described above, a DAG is mapped into a 

given network processor topology. The other way around is the indirect mapping. In this 

model, a DAG is scheduled without considering the processor network topology using 

one of the two approximate models. The most common Grid workflow can be easily 

modeled as simple DAG where the tasks represented by nodes have to keep a predefined 

order of execution. This is determined by the dependencies being modeled as directed 

arcs between the nodes. These data dependencies are files of various sizes sending from 

one application component to another application component to start its execution.  
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2.2     Compile Time Scheduling   
 

Problem Statement: Given a set of n resources Ri {i = 1…n} and a set of m tasks Ti 

with {i = 1…m} try to map all m tasks to all n resources with the target to minimize the 

finish time of the last executing task. 

 

In static scheduling the scheduler calculates the total execution schedule S 

(makespan) of an application before the run time at the compile time - this kind of 

scheduling is also called “compile time scheduling”. In this type of scheduling, resource 

information like CPU’s, link’s speed and performance parameters are assumed to be 

known in advance. This model is very popular because it is easier to program from the 

point of view of a scheduler. A plethora of heuristics are proposed mainly based on the 

before known information about the application and its resource requirements with a 

scope of solving this NP-complete problem. Decisions can take place about if it is worth 

to keep tasks on the same cluster or if it is better to send them to a different one to 

achieve a lower computation cost. Doing this we need to consider the communication 

overhead that this action will have as a consequence. The solutions all these heuristics 

give are sub-optimal and mostly suitable just for a specific platform configuration (e.g. 

homogenous clusters) or a particular application (e.g. independent task graphs.). All these 

algorithms can not be adapted to situations where a resource fails to complete the task 

assigned to it because of a hardware or network problem. Some efforts have been done to 

address this problem by introducing rescheduling mechanisms [12] that help to bridge the 

gap between static and dynamic scheduling. The results published in [13] show that any 

approximate algorithm which can guarantee a standard performance still does not exist 

for the static part of the Grid scheduling algorithms. Figure 2.2 represents, using a tree 

structure the hierarchy of the static scheduling algorithms.  

 

                     
                                  Figure 2.2: Static scheduling algorithm hierarchy 

 

 A very important factor that may influence the design of an algorithm is the task 

dependency of the application. Speaking about task dependency we refer to the 

precedence relations between tasks in a workflow graph. Restrictions exist about the right 

order in which the tasks have to be executed and might appear within a workflow. From 
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now on we will use A B→  to indicate that task Bmust succeed task A . If there are no 

such a type of relations between tasks then we can say that the tasks are independent each 

other. At this level of abstraction we can distinguish two new categories.  Independent 

and Dependent task graph scheduling algorithms. In the next sections we present some of 

the most well performed known algorithms of both categories.      

 

 
                                              Figure 2.3: Heuristics hierarchy 

 

2.3      Scheduling Independent Tasks 

 
Using the terminology defined in  [14], a set of independent tasks can be 

characterized as a Metatask. For example a Metatask is a collection of individual tasks 

that are submitted by different users to a supercomputer center. With the purpose of 

scheduling a Metatask a number of heuristics have been proposed in the literature. The 

common characteristic of all these heuristics is the execution time of each task. Every 

computing machine is assumed to execute one task each time. Multitasking operations 

are not allowed meaning is not possible for tasks to execute in parallel on the same 

resource. We will refer to the most used independent task scheduling algorithms based on 

related surveys and comparisons starting from the most naïve and finishing by the most 

efficient [13] [14] [15] [16] [17] [18].       

  

 

• Opportunistic Load Balancing (OLB)  
 

Among all mapping strategies the simplest  is to map each task to the next available 

host (the first idle processor) without considering the execution time of the task in this 

particular host. This strategy tries to minimize the idle time of the processors by assign 

jobs as soon as a processor is free of tasks and ready. The time complexity is low O(v) 

but the method is not efficient at all, as it is very easy to assign heavy tasks to slow 

nodes. It is a resource centric method because it does not make effort to minimize the 

makespan of the application but tries to keep the processors busy.     

 

 

• Minimum Execution Time (MET) 
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Every task is assigned to the first available processor that gives the lower execution 

time. MET does not consider CPU’s ready times but assigns tasks to processors 

according the impact that it has in reducing the execution time. This may create 

imbalance situations in the load across the processors if we rely on the assumption that 

multitasking operations are not allowed.  

 

 

• Minimum Completion Time (MCT) 
 

What this method does is straightforward. The main idea is to assign every task to 

the processor that is able to give the earliest competition time. In this approach, tasks may 

be assigned to processors that are not able to give the minimum execution time (MET). 

Thus the efficiency of the algorithm is low but it is easy to implement and with low T-

complexity. 

 

 

• Switching Algorithm 
 

The motivation behind this heuristic is the efficient combination of MCT and MET. 

Using both in a cyclic way there is an effort to defeat the load imbalance that MET 

creates, when assign a bigger number of tasks to some processors, by the ability of MCT 

to balance the load. Dividing the min-ready time over all the machines by the max-ready 

time they introduce a new parameter (π) that is being valued within a uniform 

distribution. Afterwards they set a low and a high tolerance π value and starting from 0 

they assign tasks using the MCT heuristic until π reaches its high tolerance value. When 

this occurs they switch to MET until the load balance reaches the low tolerated value. 

This procedure continues in a cyclic way until all tasks are scheduled.     

 

 

• Min-min 
 

The Min-min heuristic was first introduced in [19]. It uses the minimum MCT as 

its basic metric to assign priorities to tasks. The inspiration behind this heuristic is the 

possibility to reduce the application makespan if we assign tasks to processors that are 

able to give the minimum completion time. The procedure starts by mapping tasks that 

could change the processors ready times as least as possible. For example, given two 

tasks ti and tj, which destination is to allocate to a processor mk, the algorithm assigns 

first the task that will allow the processor to have a faster ready time. This strategy can 

raise the probability for the other task to still have the earliest completion time into this 

processor. They expect that assigning more tasks to processors that finish them earlier but 

also complete them faster can lower the application makespan. The Min-Min algorithm 

follows:  
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Let Rm,j symbolize the m processor inside the j cluster. C(Ti, Rm,j) denote the 

estimated completion time of a task Ti within an  Rm,j processor. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Max-min 
 

Working the same way like the Min-min heuristic, the Max-min uses the maximum 

MCT as it basic metric. The difference between Min-min and Max-min is that when a 

processor which gives the earliest execution time is idle, the task that has the maximum 

MCT is then assigned to that processor. Max-min performs better from Min-min in some 

cases. Imagine that we have to schedule a metatask that consists of a high number of 

small tasks and one large task. Max-min tries to synchronize the execution of the short 

tasks with the long task. On the other hand Min-min will map the short tasks first and will 

leave the long task for the end. This influences negatively the application’s makespan 

compared with Max-min. Both algorithms have the same time complexity something 

very rational as the only different in the implementation of the two algorithms is the 

metric that is used, the minimum and maximum MCT respectively.        

 

• Sufferage – XSufferage 
 

Another well known heuristic that also uses the MCT metric is the Sufferage. The 

logic behind this heuristic is that a task must be assigned to the processor that will make 

it to suffer less. They define the Sufferage [18] value as the difference between the best 

while ( )T ≠∅     

      foreach ( )iT T∈   

 foreach  Cluster J  

               foreach  Processor m  

    Compute MCT of a task iT   

      endfor   

           endfor  

   endfor  

   ( )mini MCTs =   

   Map sT  to ,m jR  that gives ( ),min sC T R   

   { }sT T T= −  

endwhile  

Min-min 
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and second best MCT. When scheduling, the algorithm gives higher priority to the tasks 

with the higher Sufferage value. These kinds of algorithms are likely to have problems 

when resources are clustered. Within a cluster composed of processors with identical 

performance the best and second best MCT value is almost the same and so the Sufferage 

will stay near zero having as consequence to give low priority to tasks that were supposed 

to take high priority. To tackle this problem they propose a modification to the Sufferage 

heuristic, which they name XSufferage because it is an extension to the Sufferage 

heuristic. What they actually do is that instead of calculating the two MCT’s for all the 

processors they compute MCT only for processors within the same cluster (cluster-level 

MCT). In this way tasks with higher cluster-level value obtain higher priority solving a 

big percentage of the problem that might be created when initially applying Sufferage.  

 
Sufferage 

 

while ( )T ≠∅     

         foreach ( )iT T∈   

    foreach  Cluster J  

                  foreach  Processor m  

      Compute first and second best MCT of a task iT   

              [ ] [ ]2 1
Sufferage MCT MCT= −          

       endfor   

            endfor  

      endfor  

  ( )max iSufferages =   

   Map sT  to ,m jR  that gives the best MCT  

  { }sT T T= −  

endwhile  
 

 

 

The above heuristics that uses MCT as their critical metric (Min-min, Max-min and 

“X”Sufferage) are based on a particular model. For every task a pair of best processor-

task (R,T) is selected and then T is mapped to R as soon as possible. The difference 

between them is the definition of the best pair and the way it is selected. For example the 

Min-min heuristic accepts as best task the one that makes the (R,T) relation minimum. A 

benchmarking performed in [20] between the previous mentioned heuristics shows that 

Sufferage and additionally XSufferage perform better in the most cases. The XSufferage 

heuristic is used by the AppLeS [21] workflow engine. This engine is a Grid Middleware 

designed specially for scheduling parameter sweep tasks.          



18 

2.4      Scheduling Dependent Tasks 

 
There are cases where tasks composing a task graph must keep a precedence order 

within a workflow. One appropriate model that suits and can describe that case is the 

DAG model (see Section 2.1.1). The edges between the nodes represent the 

communication that occurs between the connected tasks. Taking into consideration this 

message passing it is easy to realize the reaction in the application makespan. It will 

create a delay. This is natural as this action needs time depending on the size of the file 

that passes between the two adjacent processors (nodes). This extra action introduces a 

new challenge when scheduling decisions are made. The parallelism that an algorithm 

will try to achieve must not increase the communication cost in such a way that will 

influence negatively the final application execution length.  

 

For example if we consider a task that when executed produces a large file that 

must be input to the task that depends on it in order to start its execution. If the two tasks 

are not scheduled to the same resource array (e.g. Cluster) the file transfer that will take 

place on the link connecting the two adjacent nodes will create a significant delay. This 

will have a dramatic effect on the application’s makespan. In this section we will discuss 

scheduling algorithms that consider the task dependency and try to tackle the DAG 

scheduling problem. These algorithms use different techniques to achieve the same goal. 

Depending on the method they use, they are categorized as clustering, replication and list 

scheduling algorithms respectively (Figure 2.4).     

 

 
 Figure 2.4: Scheduling Methods 

 

2.4.1   Clustering methods 

 
The main idea behind clustering methods is to group tasks with heavy 

communication to the same cluster and assign each task of this group to the same 

processor within this cluster. This process of grouping different tasks is called clustering. 

If we consider the communication between tasks within the same processor is zero they 

the task grouping and afterwards mapping on the same processor can lead to a lower 

makespan. Usually clustering algorithms are working by following a two step procedure. 

The first step is to modify the given task graph creating different clusters of tasks. The 
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second step is called post-clustering and is responsible for mapping the clustered tasks to 

the appropriate resources.  

 

There are two different types of clusters that can be created from a given task graph, 

linear and nonlinear clusters respectively. Linear clustering creates groups of tasks that 

are sequential in order. A cluster of these tasks can for example be a simple directed path 

in a graph structure. Nonlinear clustering groups sequential parallel tasks. This action can 

improve the application makespan if the amount of communication needed is low. There 

is a tradeoff between the linear clustering parallelization and the nonlinear clustering 

sequentialization. The following figures illustrate the two different types of clustering 

methods for a simple DAG with computation and communication costs. In Figure 2.5 we 

can observe a linear clustering with three clusters and the tasks that follow a directed path 

within each cluster. In Figure 2.6 a nonlinear clustering is represented where dependent 

tasks are grouped together.      

 

 

                    
Figure 2.5: Linear Clustering            Figure 2.6: Nonlinear Clustering 

 

 

• Dominant Sequence Clustering (DSC) 
 

The Dominant Sequence Clustering (DSC) heuristic was proposed in [22]. As we 

described in section 2.1.1 the critical path (CP) is the longest path within a DAG and 

provides an upper bound that influences the schedule length. In order to track the CP 

during the scheduling procedure a new metric the Dominant Sequence (DS) is proposed. 

The DS is simple the CP of the scheduled DAG. The motivation behind the DSC 

algorithm is to perform a series of edge zeroing with goal to reduce the DS. 

 

Initially every task is scheduled to its suitable cluster. Then the algorithm tries to 

merge these clusters. This action can take place by zeroing the edges of the DAG that 

connect them. The bottom-level is computed for each node and the top-level for each free 

node (node with no predecessors or with already mapped ones). The top and bottom level 
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are the sum of the computation and communication cost along the longest path of a DAG 

from a node to an entry and an exit node respectively. The first is computed during the 

scheduling process and the second at the beginning of the scheduling. The algorithm 

starts assign tasks according to their priority. This priority is defined as follows:  

           

 

For a given node n  ( )priority n  = ( )t level n− + ( )b level n−   

 

 

The algorithm at each step keeps tracks of the partially scheduled DAG’s CP using 

this priority attribute. Nodes with highest priority are not selected unless they are ready. 

The algorithm considers two cases. In the first case the highest priority CP node is a 

ready node. The second case occurs when the highest priority is not a ready node.  

 

A ready task is a task that can start its execution because there are no pending data 

dependencies that prevent it. On the other hand a task is considered as not ready if is still 

waiting for data to start executing. In the first case (1) the algorithm searches for the 

cluster that allows the minimum start time and then schedules there the node. This is 

possible by scheduling predecessor nodes to the same processor in order to minimize the 

communication edge.  

 

 
                                                      Figure 2.7: DSC applied 

 

When the highest priority CP node is not a ready node (2) the algorithm finds the 

node that lies on the CP path and has the highest priority. Then the node is scheduled to a 

processor that minimizes its starting time without delaying the starting time of a CP node 

that is not scheduled yet. In Figure 2.7 the reader can observe a schedule that is created 

when the DSC algorithm is applied to a simple DAG. The clustering method creates three 

different sets of nodes. These are {n1, n2}, {n3, n4, n5, n6} and {n7}. Every set will 

schedule to one separate processor. The bold arrows show the DS of the scheduled graph.      
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2.4.2   Replication methods 

 
This method is based on the idea of creating replicas of a task in different resources. 

For that reason the idle time of a processor is used to create replicas of predecessor tasks 

when a task is executed. During this replication mechanism the first that finishes being 

either the task itself or the replica is considered valid and all the others are cancelled. 

Changes that were made in the global state by other replicas are not considered as well. 

Only the finished replica can influence the global state. Replication does not need 

information about the execution time of a task in a resource because many replicas of the 

same task are distributed over multiple resources. It only considers which replica finishes 

first its execution. Using replication we can prevent task failures by executing, a task that 

fails in a resource, in a different resource using one of its replicas. This will have a 

negative influence to the makespan of the application but it can prevent a total failure 

situation.     

 

 

• Task Duplication Scheduling Algorithm (TDS) 

 
The TDS heuristic that is presented in [23] schedules tasks based on certain 

metrics. These are:   

       
• Earliest Start Time (est) 

• Earliest Completion Time (ect) 

• Latest Allowable Start Time (last) 

• Latest Allowable Completion Time (lact) 

• Favorite Predecessor (frpred) 

• Level (level) 

 
They assume that every DAG has an entry and an exit node. If this is not the case 

they reckon a rational solution, the use of a dummy node with zero computation and 

communication cost that can be adjusted to the graph one at the top and the other at the 

bottom. The (est) and (ect) of a node are computed traversing the graph top-down starting 

from the entry node and finishing at an exit node of the graph. The (last) and (lact) are 

computed in an opposite way, traversing the graph bottom-up starting from the exit node 

and finishing at the entry node. The (level) of a node is the longest path from the node to 

the exit node. Moreover the (level) of the entry node is an upper bound to the final 

schedule length, something similar to the CP. The (fpred) of a node n  is assigned using 

the following equation: 

 

 

( ) ( ) ( )( ) ( )( ) ( )

( )
,,

,
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+= +
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The equation assigns as favorite predecessor the one that finishes earlier than all the 

others. Having some of the metrics (est, ect, fpred, level) computed, the algorithm creates 

a priority queue based on the level value. Then starting from the lower level value node 

makes clusters from this node to the entry node following its favorite predecessors. Each 

separate cluster is assigned to one particular processor. In this procedure the (last) and 

(lact) metrics are used to decide where there is a need for a node replication. If the 

communication cost between a node and its favorite unsigned predecessor is higher than 

the difference between (lact) and (last), then the predecessor will be assigned to the same 

cluster with the current node. If it is in a different cluster a replica will be created. Figure 

2.8 illustrates a DAG with valued computation and communication weights and a matrix 

with the calculation of the above mentioned metrics.  

      
                       Figure 2.8: Calculation of scheduling metrics for TDS 

 

 

2.4.3      List Scheduling Methods 

 
A heuristic is able to produce a solution in less time but there is no guarantee that 

the solution that produces is optimal. Among all the related literature approaches the most 

popular and most efficient is the list scheduling technique. Using list scheduling 

priorities are assigned to tasks and after scheduling decisions are taking according to the 

priority list. In the same way that DAG identifies the precedent relations between tasks, a 

priority list states the order in which tasks have to assign to resources. In the static list 

scheduling the priority list of nodes is statically created before the task allocation. The 

sequence of priorities in the list can not change during the scheduling operation. The 

priority list technique is mainly based on a three step procedure: 

 

 

 

 

 

 

     

        

     1. When all processors are busy wait. 

     2.  If there is a free processor then assign the  

          first ready task of the priority list to this processor. 

     3.  Repeat until all tasks are scheduled. 
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Scheduling algorithms that employ this three-step approach can potentially generate 

better schedules [24]. Only ready tasks can be assigned to resources. A ready task is the 

one which execution respects the graph precedence relations. Precedence relations can 

override the priority list. If for example A B→  and the given priority list is constructed 

in such an order that B has higher priority than A, task B cannot be assigned to a 

processor until task A is completed. This can easily lead to a deadlock situation of the 

application during the schedule and needs to be considered when creating a priority list.  

 

For an application composed from N  tasks there is fixed number of possible 

priority lists allowed. This number is !N . For an application that consists from 10 tasks 

it will be 10! = 36288800 different cases. It is easy for the reader to realize that for more 

tasks the number of possible lists grows exponentially. Since it is not practical to analyze 

all the list possibilities and some times it is impossible within a reasonable time, (e.g. an 

application with 1000 tasks) a plethora of heurists are proposed in the related literature 

[8][25][26][27][28][29] [30].  

 

All these various scheduling algorithms differ in the methods used to assign 

priorities in order to create the ready list. They also differ in the way they select 

processors to accommodate tasks. When a task is selected from the priority list, it is then 

send to a processor to execute. In general, in order to create an efficient schedule the 

scheduler must allocate the task to the resource that allows the minimum completion time 

and minimize the data file transfer time. The most frequently used priority attributes are 

the b-level and t-level (see Section 2.4.1). The t-level can give information about the 

earliest start time of a task after it is assigned to a processor. This attribute has a dynamic 

characteristic. This is clear to realize is if we consider the case of two communicating 

tasks that are mapped to the same processor. Then the connecting edge and so the 

communication become zero and does not count any more on the calculation of the 

attribute. 

  

•   Modified Critical Path (MCP) 

 

The MCP algorithm was introduced in [25] [30]. It uses the Absolute Latest 

Starting Time (ALST) as it priority metric. The ALST is computed, subtracting the b-

level from the CP weight. Considering this the ALST of a node that lies on the CP is just 

its t-level. Afterwards a priority list is constructed in an ascending order of ALST times. 

Ties are broken based on the priorities of the descendant nodes. In this step ties are 

broken by all the descendants of the node. Experiments in [26] show that is not necessary 

to use all the descendants to break ties. Instead if we distinguish one level of descendants 

we can produce the same results. This can improve the time complexity of the algorithm. 

During the scheduling procedure there may appear empty spaces within the processors, 

between the nodes due to dependencies. MCP schedules a ready node in the first 

available empty space. This approach is called insertion. If a node is scheduled after its 

last predecessor node without consider the empty spaces then the approach is called non-

insertion.  
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Revised MCP 

 
                               

 

 
 

 

 
 

 

•  Fast Critical Path (FCP) 
 

The motivation behind FCP [27] is based on an observation about the time 

complexity of each individual step that is involved in most of list scheduling methods. 

The first step is the computation of the nodes priorities, needed to traverse (visiting all the 

graph nodes and edges) the DAG at least once. Consequently the time complexity for this 

computation is at least O(E+V). The second step is the specification of the priority list by 

sorting the tasks according to their predefined priorities. It takes O(VlogV) time. The 

third and last step assigns tasks to their “favorite” processor. In order to take the decision 

about the “favorite” processor usually the AEST metric is used. Considering that we have 

a set of P resources to map the tasks, the time complexity for the calculation of the AEST 

will be O((E+V)P). 

 

 Among these three steps the third one is the most time consuming in many cases. 

To reduce this complexity the FCP algorithm uses two queues. One shorted priority 

queue but with a constant number of tasks and one unsorted FIFO queue with just O(1) 

time access. The first queue accommodates only the ready tasks and all the others are put 

in the FIFO queue. When a task is ready and there is a free slot in the sorted queue it 

moves there or else moves in the FIFO queue. Keeping a good analogy between the sizes 

of the two queues could prevent the assignment of a ready task in the FIFO queue. The 

idea of shorting every time only ready tasks can lower the time complexity.  

 

Using a shorted queue with size K < V the complexity drops to O(Vlog(K)). They 

also prove that the complexity can drop if there is a restriction between the possible 

destinations (assignment to a processor) of a given task. The observation that they did 

was that there are just two processors that can minimize the starting time of a node. These 

are the task’s enabling processor and the first idle processor. As a consequence the 

complexity drops to just O(E+Vlog(K)).  
 

 

 

 

 

1.   Compute ( )iALST t T T∀ ∈ ∈  

2.   Create priority list of nodes. Ties are broken by the successor  

      that minimizes the ALST time. 

      3.   Assign the highest priority node to the processor that allows the  

     earliest execution time based on the insertion approach. 

      4    Repeat step (3) until the node list is empty. 
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The algorithm uses three basic functions (AddReadyTask(), SelectReadyTask(), 

SelectProcessor()) to schedule. Firstly the AddReadyTask function is used to stage the 

tasks into the two queues with a static priority assignment. Secondly the 

SelectReadyTask function selects the highest priority task from the priority queue having 

in mind to keep this list full after the selection. This can be done by moving a task from 

the FIFO queue (if there is one) to the priority queue. Finally the SelectProcessor 

function finds the best processor to accommodate the selected task using the lower 

complexity strategy they proposed. A comparison in [28] between FCP and other static 

scheduling heuristics shows that FCP outperforms in most of the cases even higher 

efficiency and complexity heuristics (e.g. MCP).  

 

 

•          Dynamic Critical Path (DCP) 
 

The DCP heuristic [29] is based on the observation of a mobility attribute. This 

attribute is the difference between AEFT and AEST. This can be defined as: 

  

( )DS b level t level− − + −  

 

They consider that the CP of a graph can change after a CP node is scheduled. For 

that reason they introduce a new attribute denoted by DCPL (Dynamic Critical Path 

Length) . This is simply the CP of the partially scheduled graph. The nodes on the CP are 

FCP 

 

 foreach  Task 

         Compute priority value 

               foreach  ready Task 

                       ()AddReadyTask              

             endfor  

 endfor  

while  unscheduled Task 

         ()SelectReadyTask            

         ()SelectProcessor    

         ()Schedule  

              foreach  new ready Task 

                      ()AddReadyTask  

            endfor  

endwhile      
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the ones where the difference between the ALST and AEST is zero. The algorithm uses a 

“looking ahead” strategy to select processors for tasks. The aim of this strategy is to 

prevent scheduling a task to a processor that has no space for a heavy communicating 

successor of the task. If this occurs, the possibility of zeroing the communication edge 

will be lost. The reaction on the application makespan will be obvious. They define a 

restriction on the examination of the processors in order to minimize the starting time of a 

node. This set can be reduced to the processors that accommodate its parent nodes and 

those processors that hold the nodes earliest scheduled children. The algorithm schedules 

the CP nodes first and updates its AEFT and AEST after each scheduling step to 

determine the next CP node. The DCP algorithm is described by a six step procedure as 

follows:    
 

1. Compute AEST and ALST  for all nodes. 

2. Select the node in  that minimizes the ALST AEST−  value and find its   

   unscheduled child cn  with the largest communication cost. 

          3.  Select a processor P such that gives the smallest ( ) ( )i cAEST n AEST n+     

               value among all the processors that hold the cn ’s parents or children. Doing   

               this first try to find an idle time slot. If not possible try to create an idle time  

               slot by moving some already scheduled nodes downward always considering    

               the mobility attributes. In case of failure select a new processor. 

.        4.   Schedule cn  to P . 

         5.   Update AEST and ALST for all nodes. 

         6.   Repeat 2-5 steps until all nodes are scheduled. 

 

 

      
                                               (a)                                                  (b)  

Figure 2.9: A Gaussian Elimination graph scheduled by DCP (a) and the 

                             result Gant-Chart (b). 

 

In Figure 2.9 (a) a type of DAG (Gaussian Elimination) is scheduled using the 

above six step procedure. The result schedule is represented by a Gant-Chart in Figure 
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2.9 (b). The thick arrows show the CP of the graph. This creates an upper bound to the 

final application’s execution length. As we can see from the result schedule, the 

algorithm arranges all the CP nodes in one processor in order to minimize the 

communication overhead between them.   

 

The DCP algorithm was designed specially for a Multiprocessor system 

(homogenous set of processors) with the same performance. They also assume the 

availability of an unbounded number of processors. This does not match to the dynamic 

Grid characteristic (heterogeneous and limited number of resources). The reason we 

referred to this particular algorithm is the correlation with our case study algorithm the 

Extend Dynamic Critical Path (xDCP) described in the next chapter.  
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Chapter 3 
 

 

 

 

Extended  Dynamic  Critical  Path 

(xDCP) 
 

       

 

3.1     Parameter-Sweep Task Graph/Workflow Semantics 
 

 

The xDCP algorithm is proposed in [8]. The aim of this algorithm is to schedule 

workflows with parameter sweep-tasks (PST’s). These types of task graphs belong to the 

DAG taxonomy. Compared to other applications, the graph structure and the workflow of 

parameter-sweep applications are distinguished by some special features:  

 
1.  Subtasks and resources are arranged as layers (sets of tasks and resources). 

2.  Given a set of n resources 
1

n

i
iR

=

U  and a set of n tasks
1

n

i
iT

=

U . A subtask iijt T∈    

is allowed to be scheduled only to iR . 

3.  There is no dependency between the same layer subtasks. 

4.  Dependency may exist between subtasks but only between an ancestor and a  

           descendant layer.  

 

               
                 Figure 3.1: An example of a parameter sweep task graph  

                 workflow. 
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Figure 2.9 illustrates a small part of a workflow graph that belongs to a parameter 

sweep application which consists of Ti {i = 1…n} tasks. Every separate task parts from a 

predefined number of subtasks. It is easy to notice that there are no dependencies 

between the same level subtasks. Dependencies appear only between subtasks from a 

current layer with subtasks from a previous and a next layer respectively. For example on 

the given graph there are dependencies between (Ti-1� Ti� Ti+1) layer. The subtask t13 

depends directly from the subtasks in the Ancestors circle (Figure 3.1). Correspondingly 

the subtasks in the Descendants circle depend from it. These dependency relations are 

denoted as follows: 

 

                                                      ∅   if  ijt ∈ Entry      

( )ijtAncestor =               

                                 "t   if  ijt ∈ ( )1

"
ijiT t t

−
∧ p   

 

The Ancestor of a subtask tij is the predecessor subtask the current subtask directly 

depends on. It is not allowed any subtask to have an intermediate execution between the 

two dependent subtasks. The subtask tij can not start executing before its Ancestor t’’ 
finishes, because depends directly from it. 

                                                            

                                                ∅    if  ijt ∈ Exit                        

( )ijtDescendant =  

                                                             
"t   if  ijt ∈ ( )1

"
ijiT t t+ ∧ p    

 

 The Descendant is the successor subtask that directly depends on the current 

subtask. The subtask t’’ can not start executing before the subtask tij finishes. Again the 

direct dependency defines this restriction. In general a subtask tij can not be executed 

before the time where all its ancestors finish and after the time where all its descendants 

start. 

 

Having a collection of K subtasks that construct a PST graph we can define using 

the above terms the Entry and the Exit of the graph respectively:  

 

          ( ) ( )( )|Exit K k k K Descedant k ∅= ∈ ∨ =  

         ( ) ( )( )|Entry K k k K Ancestor k ∅= ∈ ∨ =  

 

Although the above mentioned terms define the direct dependencies between 

subtasks, in a given PST task graph this is not only the case. A subtask depends not only 

on its Ancestor layer subtask(s), but also on other subtasks that belong to lower level 

layers. This new type of dependency that emerges in a PST graph is the indirect 



30 

dependency. Direct and indirect dependencies form a path from a current node to an entry 

node. This path creates a tree. Recursively this can be defined as: 
 

          ( ) ( )( ) ( )ij ijij AncestorS Ancestor t Ancestor tAncestorS t  
 
 

= UU  

 

The execution time is the time cost for the longest path from an entry node to an 

exit node in any given PST graph. Having a set of resources R we can map the collection 

of subtasks K within the resources and in this way we can compute the execution time as 

it is defined below. 

           

      ( ):f t K R→                   

          0 if K = ∅       

     ( ),ExTime K R =                                                                  

                                               
( ) ( )( ),max ijKij

ExTime AncestorS t R
t Exit

 
 
 ∈                                                                                          

 

 

3.2       Algorithm extensions 

 
The DCP [29] algorithm was designed to work efficiently in a homogenous set of 

processors. To remove this restriction they proposed some extensions in order to be able 

to find use in irregular heterogeneous resources. These extensions can be separated in two 

parts, one focusing on the structure and the other on the performance of the algorithm. 

The structure extensions simplify parts of the algorithm that have no more significance if 

we consider the attributes described in section 3.1. The other extensions target to improve 

the performance based on some observations and experiments performed on workflows 

with PST’s.  

 

 

• Structure Definitions 

 
1.   Instead of AEST and ALST two new metrics are introduced, the AEFT(Absolute 

Earliest Finish Time) and ALFT(Absolute Latest Finish Time). If we consider the 

case of a subtask that has better AEST on a particular resource than from any 

other resources available, then the assignment of the task to this resource will 

create a better schedule. In a heterogeneous resources environment the execution 

time of the same task is different on every resource and thus the AEST and ALST 

metric has no more meaning. In Figure 2.2 we can observe the variation of the 

range of these metrics when we assign the same task to different resources.  
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2.  When implementing the subtask dependencies the DCP algorithms considers the 

communication overhead between the subtasks when a message (file) passes from 

one depended subtask to the other. The xDCP algorithm claims that this overhead 

does not exist. They prove this considering the special characteristic of a PST 

workflow graph. In this type of graph there is no inner-task communication. 

Therefore the terms related with the communication cost from the DCP 

algorithms when implementing the xDCP are removed. 
 

3. Another distinct attribute of a PST workflow is that every separate layer of the 

application can only be scheduled to a pre-specified set of resources (e.g. 

heterogeneous cluster). The DCP algorithm tries to prevent deadlock situations by 

looking if a descendant is assigned to execute before of an ancestor in the same 

resource queue. On the other hand in the xDCP this check is not needed because 

the subtasks that form one layer are independent. Thus subtasks with 

dependencies among them will never be scheduled to the same set of resources. 
         

 
                                       Figure 3.2: Variation of AEST/AEFT  

                                                          and ALST/ALFT values 

   

 

• Performance Improvement  

         
1. The DCP algorithm initializes the tasks in one resource and then arranges them in 

sequential order in one queue. The other resources are initially empty. Reversely in 

xDCP the tasks are initialized in a round-robin way. This is done for every separate 

layer which targets the corresponding resource set (Ti scheduled to Ri). This naïve 

algorithm is called Shuffle. The description of the Shuffle algorithm follows: 

 

Given a set of n resources 
1

n

i

i

R
=
U and a set of m tasks  

1

m

i

i

T
=
U  with ij ir R∈  and ij it T∈  if 
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N(Ri) states the number of the individual resources in a particular resource array then 

initialize by mapping tij to rik  {k = j%N(Ri)}. Based on experiments, this can improve 

the effectiveness of the DCP by 30% for PST workflows.  

 

2. The xDCP algorithms does not terminate when all tasks are scheduled. Despite that 

it keeps looping with respect to a predefined tolerance value. This tolerance value is 

set to 5%. This value is the rate of the current schedule length and the new schedule 

length after the rescheduling. This can give an extra 10% to 20% effectiveness to 

the algorithm. 

 

 

3.3     Algorithm Description 

 
The new basic metrics behind the xDCP algorithm are the AEFT and ALFT. In 

order to define these two new metrics we have first to provide the definition of the 

resource queue. A processor queue is assumed to be a FIFO (First In First Out). This 

queue is composed of an unbounded number of slots. Every slot is able to accommodate 

only one subtask and do not allow any multitasking operations. Subtasks enter from the 

tail of the queue and leave from the head of queue to start their execution. We can see an 

example of such a type of queue in the Figure 3.3. In  the same  

 

                                
                  

                                          Figure 3.3: xDCP queue definition 

 

figure  we  can  observe the appearance of two new terms, the next and the previous of a 

current subtask in the same resource queue. These can be expressed as:     
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             ∅   if  '
&

' ,t T t t∀ ∈  are not in the same queue 

   ( )ijP t =       

                          't  if '
&t t are in the same queue ( )'t t∧ p   

 

 

                         ∅   if  '
&

' ,t T t t∀ ∈  are not in the same queue 

   ( )ijN t =         

                          't  if '
&t t are in the same queue ( )'t t∧ p  

 

Imagine  N(t) � t � P(t) as a pipeline with strict ties. There can not be other 

subtask between them. In order a subtask to start its execution it needs to satisfy some 

conditions. It can not start executing before all its ancestors finish their execution and 

before the resource that is assigned to is idle. This means that all the previous subtasks on 

the same resource queue have to finish their execution before the current subtask start. 

The Next and Previous terms refer to the execution order and not the queue order. 

Previous P(t) is the subtask being executed before the execution of a current examined 

subtask in the same processor. Next N(t) is the subtask that will execute right after the 

execution of the current examined subtask in the same processor queue.   

 

The AEFT value can be calculated by adding  the computation cost, in time units 

(denoted by ω(t)) in the current resource, to the AEST with respect to the resource queue 

restrictions. Starting from the Entry and using an up-down graph traversal strategy we 

can calculate the  AEFT value. This can recursively defined as : 

                                                                                                          

 

                                0  if  ( ) ( )tAncestor t P =∅=∅∧  

( )AEFT t =     

                                
( )

( ) ( ){ } ( )( ) ( ){ }'max max ' ,
t Ancestor t

AEFT t t AEFT P t tω ω
∀ ∈

+ +  

                 

• 
( ) ( ) ( ){ }'max '

t Ancestor t
AEFT t tω

∀ ∈
+  

 

The above term computes the absolute earliest time that the last Ancestor of a 

subtask (t) finishes its execution plus the computation time of (t) on its current resource. 

This value is not the real AEFT(t) value if we consider the queue restrictions.   
 
 

•   
( )

( ) ( ){ } ( )( ) ( ){ }'max max ' ,
t Ancestor t

AEFT t t AEFT P t tω ω
∀ ∈

+ +  
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The AEFT(t) is the maximum between the before mentioned value and the AEFT of 

its previous subtask on the same resource queue. For example if we refer to the first time 

as time1 and for the second as time2 and if time1 > time2 then AEFT(t) = time1. 

Although its previous subtask P(t) on the same resource queue has already finished, t can 

not be executed before his last Ancestor finishes executed in some other resource queue. 

Having the AEFT computed, another metric the DCPL can then defined: 
 

( ){ }max
t T

DCPL AEFT t
∈

=  

 

The Dynamic Critical Path Length (DCPL) is the maximum time between all subtask’s 

AEFT’s. It is a dynamic metric and its value changes every new scheduling step. The 

algorithm recalculates the AEFT of all the subtasks in every scheduling step to define the 

new DCPL. 

 

The ALFT value can be calculated traversing the graph in an opposite direction than 

the AEFT way (bottom-up) starting from the Exit and moving to the Entry. The DCPL is 

used as initial value for the calculation of the first scheduling step. This is defined as 

follows:  

 

                          DCPL  if ( ) ( )Descendant t N t=∅∧ =∅          

( )ALFT t =  

                      ( ) ( ) ( ){ } ( )( ) ( )( ){ }'

' 'max ,max
t Descendant t

ALFT t t ALFT N t N tω ω
∀ ∈

− −  

                       

• ( ) ( ) ( ){ }'

' 'max
t Descendant t

ALFT t tω
∀ ∈

−  

 

The above term computes the maximum latest starting time of a subtask’s 

Descendant. Subtracting the computation time on the current resource from the latest 

finish time we can calculate the latest starting time (ALST) of the subtask. This is logical 

if we consider that the earliest finish time is the sum of the earliest starting time and the 

computation on the current resource. A subtask can not finish its execution after the latest 

starting time of its last starting Descendant. 

 

•  ( ) ( ) ( ){ } ( )( ) ( )( ){ }'

' 'max ,max
t Descendant t

ALFT t t ALFT N t N tω ω
∀ ∈

− −  

 

Consequently  the Absolute Latest Finish (ALFT) time of subtask should not be later 

than the maximum latest starting time of its Descendant (the one that starts last its 

execution) and the latest starting time of the next (N(t)) subtask on the same resource 

queue. We can combine these new metrics with the previous we discussed (AEST and 

ALST) in Section 2.4.3 to create some rules needed to prevent deadlock situations during 

the scheduling process.  
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Rules:  If C denotes the communication cost between two directly dependent subtasks 

and '( )Ancestor t t= , ( ) ''Descendant t t=  then: 

 

             I.  ( )( ) ( )( ) ( )'' 't ttt
t Ansestor tDescedant tAEST C AEFT Cω+ ≥ + +  

II. ( )( ) ( )( ) ( )'' 'tt t t
tDescedant t Ancestor tALST C ALFT Cω+ ++ ≥  

 

Having stated all the algorithm semantics, we can now present the final form of the 

xDCP as it was originally proposed in [8]: 

 

1) Use the Shuffle algorithm to stage the all the subtasks in the resources   

2) 
1

n

ij i
i

t T
=

∀ ∈U  set flag FALSE  

3) 
1

n

ij i
i

t T
=

∀ ∈U  compute ( )AEFT t  and ( )ALFT t  

4) Select ijt
1

n

i
i

T
=

∈U  that orderly follows the next 3 criterions: 

    a)  Minimize the ( ) ( )ij ijALFT t AEFT t−  

    b)  Minimize the value of i                             

                                                                            

                   c)  Minimize the value of ( )ijAEFT t    

            5) 
1

ij

n

i
i

r R
=

∀ ∈U  select r  and the slot in  'r s queue that assuming  t    

                  is allocating into that slot orderly satisfying: 

                    a)  ( ) ( )( ) ( )ALFT t AEFT P t tω− ≥    

                    b)  Minimize the value of ( )AEFT t  

                 If there exist such a slot move t  or else do not move anything.              

            6)  Set  t  flag  TRUE . If t∃ FALSE  goto 3)                

                      

            7)  If  ( )*100% 95%/initDCPL DCPL <  goto 2) or else the algorithm  

                  terminates.  

 

 

3.4     Algorithm Analysis 
 

In the xDCP analysis we can distinguish four different functions used to create the 

final schedule result: 

  

• Initialization (1, 2, 3 steps) 

• Select Appropriate Task (4 step) 



36 

• Find Resource and Schedule Task (5,6 steps) 

• Reschedule  (7 step)  

 

The first function is the Initialization, where the Shuffle algorithm (see section 3.2) 

is being used to stage the subtasks within the resources. On every subtask a flag is then 

attached to provide its state (if is scheduled or not) and uses the two basic Boolean 

operators (TRUE or FALSE). Afterwards the new proposed attributes AEFT and ALFT 

are being computed respectively using the two traversal strategies (up-down and bottom-

up respectively). At this time the initial priority list is being constructed using the new 

calculated attributes.  

 

The second function is the appropriate subtask selection. At this point three 

conditions have to follow in the proposed order and are used to select  the highest priority 

subtask. The algorithm first checks which subtask minimizes the ALFT-AEFT value. 

This action takes place in order to determine which subtasks are on the CP path. If the 

difference of ALFT and AEFT for a given subtask is zero then it is on the CP. The 

algorithm collects all these subtasks in a set. Afterwards reduces the set to these subtasks 

that minimize the (i) layer value. This creates a restriction in the scheduling order of the 

PST graph layers. One layer has to follow the other going from an (i) to an (i+1) layer. 

Only when all the subtasks on a current layer are scheduled the algorithm starts 

examining the subtasks from the next layer. Finally from this set selects the subtask that 

minimize the AEFT value and this is the one that is considered ready and starts first its 

execution. 

 

Third in order is the Find Resource and Schedule function. The selected subtask is 

assumed to be allocated on every available resource queue. Following the queue 

restrictions mentioned in Section 3.3 the ready subtask can only be allocated at the tail of 

each queue. Then two new conditions have to be maintained to reduce the processors set. 

First the algorithm checks which processors follow the next rule: 
 

( ) ( )( ) ( )ALFT t AEFT P t tω− ≥  

 

                                     New ALFT(t)                                                   
                                                 Time Line 

                                                   d                                                                       

                                                                              Profit                                      ω(t) 

                                                                                            

           

                 ω(t’) 

                                                AEFT(P(t))                                       ALFT(t) 

                     

                                          Figure 3.4: Best  Processor Search  

 

Figure 3.4 illustrates a visualization of the above rule. It represents one processor queue 

that follows this rule. This particular processor is the one that can accommodate the 

selected subtask decreasing its ALFT value to the maximum possible. The ALFT of the 
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current subtask varies in the same way varies its computation cost due to the 

heterogeneous processor environment. The selected subtask is assigned to the processor 

that gives the biggest profit in time units and is now considered as a scheduled one (the 

subtask’s flag value becomes TRUE). 

  

The last is the Reschedule function. The algorithm after having assigned all the 

subtasks to the resources does not terminate but loop back and the scheduling procedure 

starts from the beginning. Although the subtasks are initially arranged now according to 

the first schedule. After the rescheduling a new DCPL value emerges. Then the rate 

between the new DCPL and the pre-rescheduling DCPL is computed. If this rate is less 

than a certain threshold value the scheduling is repeated again or else the algorithm 

terminates. This tolerance value is set to 5% for the xDCP case.         

  

 

• Algorithm Limitations 

 
During the analysis procedure we faced limitations in the structure of the 

algorithm and in the definition of the semantics. We enumerate these limitations-

drawbacks:  

 

1. When in [8] the AEFT value is defined, they claim that AEFT(t) = 0 if (t) is an 

entry node and there is no previous subtask (P(t)) in the same resource queue. This 

is not accurate. The AEFT of this subtask can not be zero. It has to be the execution 

time cost (ω(t)) on the current resource. This value is needed as the initial value for 

the graph traversal in order to determine the next subtasks AEFT. Thus in our 

implementation of the algorithm we use the ω(t) value and not zero that is defined 

in [8].    

 

2. In the Select Subtask function we reckon that it is needed to reverse the order of the 

(a), (b) step (see section 3.3). The algorithm first checks which subtask(s) minimize 

the ALFT-AEFT value and collect it/them into a set. After reduces the set according 

to which subtask(s) minimize the layer (i) value. We know that if ALFT(t)-AEFT(t) 

= 0 then the subtask lays on the CP. The subtasks that lay on the CP are not 

belonging only in the current examined layer but also in other layers. Thus if we 

make first the layer restriction we will have already the set reduced. This can give 

more speed to the algorithm in cases where the application consists of a large 

number of subtasks. 

 

3. Another drawback appears in the Find Resource function. The selected for 

scheduling subtask is assumed to be assigned to iijr R∀ ∈  for {i = 1…n} and after 

two conditions have to be followed in the given order. In Section 3.1 we described 

some special characteristics of a PST workflow. One of these is the fact that a 

subtask tij is only allowed to be scheduled to iR , this means it can only be scheduled 

to one particular resource array and not in every available ones. The (i) value is 

predefined before, in the Select Subtask function. The algorithm assigns subtasks to 
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resources that are by definition not allowed to execute them. Thus in our 

implementation we assume that a subtask tij is being mapped only to ∀ rij ∈  Ri for a 

constant (i) value. Moreover the second condition in the Find Resource function 

states that the selection of the appropriate processor from the set that was created 

before by the first condition is based on which one minimizes the AEFT(t) value. 

This value is later used to make the final processor choice. We reckon that instead 

of AEFT(t), the AEFT(P(t)) value has to be used and that is what we used in our 

implementation.  

 

We can prove this based on the Figure 3.4. The processor rij that minimizes the 

AEFT(P(t)) will give the biggest time units profit. Instead if we use the AEFT(t) we 

will have, every time that we assume a subtask is put in a different resource queue, 

to recalculate the AEFT and ALFT. For example if we have to map a PST layer 

with 100 subtasks to a given resource array with 40 resources then we will have to 

recalculate the AEFT and ALFT values 100 x 39 = 3900! times. Of course this can 

not be the case. 

 

4. The Reschedule function is executed at least once in order to obtain the new DCPL 

value and to create the proposed tolerance rate. This automatically raises the time 

complexity of the algorithm because it is initially executed twice. We find that the 

10%-20% more efficiency it gives is not a sufficient number that can overcome the 

time complexity if we consider an application with a high number of subtasks.  

                  

 

3.4     Modified xDCP with Communication  
 

The subtasks which compose one layer of a PST application are independent (there is 

no inter process communication) by definition. Each subtask typically evaluates a multi-

dimensional objective function at a point in a multi-dimensional parameter space. The 

work in [21] considers that subtasks in a PST may share file dependencies but despite 

that they target to schedule just one layer of a PST workflow and they do not treat it as a 

multilayer application. Thus they use independent task heuristics (e.g. XSufferage) to 

schedule. But layers of PST’s should communicate, not communicating horizontally 

among subtasks of a PST but at least vertically between layers of a PST. In the 

implementation of the modified algorithm we will consider this communication.     

  

In order to insert communication cost within the xDCP algorithm structure we have 

to revise the two basic attributes, AEFT and ALFT. These are being used to assign  

priorities to subtasks with a scope to define the ready for scheduling subtask in every 

step. We can calculate the AEFT value recursively starting from an entry node and 

traversing the graph till an exit node. The AEFT of the first ready subtask is the 

computation cost (in time units) in its current resource, if there is no Previous (P(t)) 

subtask on the same resource queue. In the case of the first ready subtask it will always 

have no Previous. Even if the resource array that is assigned to this subtask layer consists 

of one processor, it will be always first in order. Having this value calculated we can now 
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calculate the AEFT’s of the other subtasks that belong to the same layer. The first layer 

has no vertical dependencies thus no communication is considered. If the number of 

processors (N(Ri)) in the resource array is greater or equal to the number of subtasks then 

all of them AEFT’s will be the computation time on their current resource respectively. If 

this is not the case and the N(Ri) is less than the number of subtasks on layer, then the 

AEFT of a subtask will be the AEFT of its Previous on the same resource queue plus the 

computation time on this resource.  

  

Since we computed all the subtasks AEFT of the first layer we move to the second 

layer. In the original xDCP algorithm they continue traversing the graph and computing 

AEFT’s without considering any type of dependencies between the previous and the 

successor layer. They compute AEFT based on which of a particular subtask’s Ancestor 

finishes last its execution. Again if there is no Previous in the same resource queue the 

current subtask AEFT will be the maximum AEFT between its Ancestor(t) plus the 

computation time in the resource. If there is a Previous (P(t)) then the AEFT of this 

subtask will be the AEFT of P(t) plus its computation cost on the current resource. 

 

 We reckon that there is the point where we can insert communication time cost 

denoted by Cab where (a) is the subtask that sends the file and (b) the one that receives it. 

If (a) sends the data on a given time t to the other subtask (b), it can not start executing 

before the time step t + Cab. The new AEFT value denoted by AEFTC follows:  

 

 

                                     ( )tω   if  ( ) ( )tAncestor t P =∅=∅∧  

    

   ( )C
AEFT t =                                                

              

( ) ( ) ( ){ } ( )( ) ( ){ }'max max ,
'

'
t Ancestor t C C

C
t t

AEFT t t AEFT P t tω ω
∀ ∈

++ +                         

                                           (1)                         (2)       

                                                              

 

 

We have inserted communication cost only in the first term and not in the second. The 

reason is that the subtasks t and P(t) belong to the same layer and so there is no 

dependency between them.           

 

        Having the AEFT values computed, we are now able to compute the DCPL value. 

This is the maximum value between all the subtasks AEFT’s. We will work with the 

ALFT in the same way we work with the AEFT. In order to compute the ALFT the 

original algorithm uses a traversal strategy starting from the exit nodes and going to the 

entry nodes. If an exit node has no next N(t) in the same resource queue then the ALFT 

of this particular node will be the DCPL value. Thus the DCPL creates a lower bound at 

each scheduling step. If has next then the ALFT will be the ALFT of the next minus the 

computation cost of the next w(N(t)) in the current resource queue.  
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All the exit nodes have no descendants and so there is no dependency that 

influences the ALFT value in this layer. When the searching of all the exit nodes finishes, 

having all the subtasks ALFT values computed, the previous layer has to be examined. 

The exit layer that was examining first depends from this layer. Then the ALFT of a 

subtask will be the maximum time between its last starting descendant and the starting 

time of its next N(t) in the same resource queue. That is the point where we can insert 

communication time in the ALFT value. The new ALFT value denoted by ALFTC 
follows: 

 
 

                                  
C

DCPL  if ( ) ( )Descendant t N t=∅∧ =∅          

( )cALFT t =  
              

         

( ) ( ) ( ){ } ( )( ) ( )( )'

' '
'

max ,max
t Descendant t Ct tcALFT t t ALFT N t N tCω ω

∀ ∈

 
 
 

−− −  

                     (1)                              (2)                                               

                                                       

 

Again we inserted communication cost only in the first term because t and N(t) belong to 

the same layer and thus do not communicate. 

 

 

  
                               Figure 3.5:  Variation of AEFT,ALFT after the  

                                                   communication  insertion           

 

In this way we have inserted communication cost in the xDCP structure. We can now 

use the new metrics together with the remarks from Section 3.3 to propose a new 

modified version of the xDCP algorithm denoted by xDCPC. The new version of the 

algorithm follows and the modified parts are highlighted: 
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            1) Use the Shuffle algorithm to stage the all the subtasks in the resources   

2) 
1

n

ij i
i

t T
=

∀ ∈U  set flag FALSE  

3) 
1

n

ij i
i

t T
=

∀ ∈U  compute ( )C
AEFT t ,  ( )C

ALFT t  and 
C

DCPL  

4) Select ijt
1

n

i
i

T
=

∈U  that orderly follows the next 3 criterions: 

                  a)  Minimize the value of i         

   b)  Minimize the ( ) ( )ij ijC C
ALFT t AEFT t−  

                    

                                                                            

                   c)  Minimize the value of ( )ijC
AEFT t    

            5) ij ir R∀ ∈  select r  and the slot in  'r s queue that assuming  t    

                  is allocating into that slot orderly satisfying: 

                    a)  ( ) ( )( ) ( )C C
ALFT t AEFT P t tω− ≥    

                    b)  Minimize the value of ( )( )t
C

AEFT P  

                 If there exist such a slot move t  or else do not move anything.              

            6)  Set  t  flag  TRUE . If t∃ FALSE  goto 3)                

                      

            7)  If  ( )*100% 95%/initDCPL DCPL <  goto 2) or else the algorithm  

                  terminates.  
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Chapter 4 
 

 

 

Simulating the Grid 
 

 

 

4.1     Simulation tools 

 
The research in distributed systems and more precisely in Grid is mainly based on a 

collection of methodologies and tools. A researcher first observes the system considering 

all the involved parameters before being able to model it. In large distributed systems 

numerous parameters must be considered. The interaction between the resources is 

complex and this makes impractical the effort to create an analytical model. This 

established the need for high level observation tools. The Simulators belong to these 

tools. They are focusing in the analysis of a particular system behavior abstracting the 

rest of it. Simulators are very useful to observe, with high accuracy, local or global 

characteristics of a distributed system. The advantage they give is the independency from 

the execution platform. Using Simulators we can easily build a model of a real system in 

a single PC. Then we are able to experiment with it as it is the real platform, producing 

results with a high accuracy.  

 

For the evaluation of the xDCPC algorithm we did not try to create a Simulator 

from scratch but we looked in the correspond literature to find a Simulator that could fit 

the needs of our work. Grid Simulators we found in [6][33](SimGrid), [31](GridSim) and 

[32](OptoSim). All these Simulators try to investigate the dynamic Grid behavior 

focusing each one on different scheduling strategies. Examining their capabilities we 

decided to use SimGrid because it is more precise to our needs and allows us to define a 

DAG abstraction that is fundamental for our work. Thus we will present it analytically in 

the next Section.       

 
• GridSim 

 

The GridSim is a discrete event-driven Simulator implementing with Java on the 

top of SimJava, a discrete event simulation package written by the Department of 

Computer Science at the University of Edinburgh.  The work in GridSim focuses on the 

Grid economy where scheduling includes producers and consumers that are the resource 

owners and the users respectively. Distributed brokers (agents) that each one uses its own 
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scheduling strategy are trying to find acceptable trade-offs for all the users. The tasks for 

scheduling are treated as independent.  It is a high-level simulator and is mainly used to 

study cost-time optimization applications for scheduling PST’s on heterogeneous Grids 

dealing with task execution deadline and budget constraints.  

 
• OptoSim 

 

The OptoSim is a Simulator especially for the study of replication based scheduling 

algorithms. The design of OptoSim is based on the EU DataGrid project. It tries to 

address the lack of generic simulators for Data Grids. The data replication involves the 

creation of data replicas in different resources in order to optimize the communication 

cost of the application. The simulator allows the description of the network topology by 

enumerating the links between resources and the available bandwidth. OptoSim is proper 

for the investigation of the stability and the behavior of replication based  algorithms.  
      
 

 

4.2     The SimGrid Simulation Framework 

            
The SimGrid [6][33] is a toolkit that provides core functionalities for the evaluation 

of scheduling algorithms that target distributed applications in heterogeneous 

computational Grid environments. It aims to provide the proper level and model 

abstraction for studying Grid scheduling algorithms and is able to generate correct and 

accurate simulation results. Simgrid is widely used by many researchers [34][35][36] as a 

tool to evaluate their work. Simgrid performs event-driven simulation. It assumes that the 

resources have two performance characteristics: 

 

1) Latency 

2) Service rate 

 

The latency is defined as the time in seconds to access a resource and the service rate is 

the number of working units performed per time unit. Both can be expressed as constant 

or using vectors of time stamped values. These vectors are also called traces. An example 

of such a trace vector follows: 

    

                                0.0   1.0 

                                                               7.0   0.8  

                                                              11.0  0.5 

                                                              20.0  0.9 

 

 

The first column represents the time period and the second the rate of performance. The 

performance changes as it is defined by the time stamps. The user’s responsibility is just 

to define this vector in a text file and after the simulator parses the file during the running 

time. Traces allow the simulation to be more realistic if we consider that in a real Grid 
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environment the performance of a resource is possible to vary over time. Traces can only 

be used for dynamic and not for static scheduling where the priorities are calculated 

statically at the beginning of scheduling and the resource performance is assumed that is 

constant.  

 

In SimGrid is not possible to have an interconnection topology between two 

communicating processors. Both processors and network links are treated as separate 

tasks. There is no correlation between them. It is the responsibility of the user to define 

his topology requirements. The user can create links between hosts or between clusters of 

hosts defining like this his required topology. The next figure illustrates the task model 

used by SimGrid. The communication edges on the left graph (T1-T4) become tasks 

creating a new equivalent graph on the right. 

 

                             
                                           Figure 4.1: SimGrid Task Model                    

                                                    

 

4.3     SimGrid API 

 
The fundamental objects in SimGrid are Tasks and Resources. The SimGrid API is 

a library implemented in C that can be used to build simulators. In SimGrid tasks are 

either data transfers or computations. A task is being created using a call to the function: 

 

        SG_newTask (  SG_task_t  type, const char *  name, long double  cost, void *  

metadata )  

 

The user can define the type (SG_Computation or SG_Tranfer), the state, the name and 

the cost of a task. It is also possible to insert Metadata to the task using a void* pointer. 

Metadata can be used to describe a special task characteristic that the API does not allow 

to define. In the case of data transfer the cost is the data size in bytes and for the 

computation is the required processing time on the reference processor. The life cycle of 

a task is defined by its state. A task can be scheduled, not scheduled, ready, running and 

complete. Using both computations and transfers it is easy to create a workflow graph. 
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For that reason the function SG_addDependency (SG_Task child, SG_Task parent) is 

being used to define the dependencies that construct the graph. The way to create a 

simple task graph is presented in the next Figure.  

 

 

 

   SG_addDependency(B, A) 

   SG_addDependency(C, A) 

   SG_addDependency(D, B) 

   SG_addDependency(D, C) 

    

    

                                   

                       Figure 4.2: Simple Graph Definition 

 

Dependencies can be removed by a call to the function: 

 

         SG_removeDependency (SG_Task child, SG_Task parent) or 

         SG_clearAllDependencies ( ) 

 

The API offers a wide range of useful task related functions that can give flexibility to the 

user. Some of them are: 

 

 SG_setTaskPriority (SG_Task task, long double priority) 

 

Sets the priority value for a given task. Tasks with higher priority are executed first. The 

function takes two arguments. The task that we want to assign priority and the priority 

value we want to set.  

 

         SG_getTaskParents (SG_Task child) 

         SG_getTaskChildren (SG_Task parent) 

 

These functions return a list of a task’s children and parents respectively. 

 

Low-level resource objects in SimGrid are hosts and links. A host is described by 

its computational speed relative to that of a reference host, and by its CPU availability (a 

value between 0 and 100%). We can create a host by a call to the function:  

 

        SG_newHost (const char *name, long double rel_speed, SG_resourcesharing_t 

policy, const char *cpu_avail, long double cpu_offset, long double fixed_cpu, const char 

*failure_trace, long double(*failure_function)(long double), long double fixed_failure, 

void *metadata) 

 

A host can have constant or time varying performance using traces. Links are described 

by latency and a bandwidth. To create a link we just need a call to the function:  
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SG_newLink (const char *name, SG_resourcesharing_t policy, const char *latency, long 

double latency_offset, long double fixed_latency, const char *bandwidth, long double 

bandwidth_offset, long double fixed_bandwidth, void *metadata)  

 

Again is possible to attach Metadata both in links and hosts to define user-level useful 

information. The flexibility that  SimGrid offers is that it is easy to move from resources 

with constant performance to dynamic ones by just modifying some parameters of the 

resource creation function.   

 

The resources in SimGrid can be implemented using three different sharing strategies: 

 

           1) First in First Out (FIFO) 

           2) First Ready First Out (FRFO) 

           3) Shared  

 

In the FIFO mode tasks are executed in the same order they are assigned to a resource. In 

the FRFO mode only ready tasks are executed first. The last mode allows all ready tasks 

to execute concurrently on a resource and the user is able to implement a fair sharing 

strategy. 

 

Tasks can be assigned to resources with a call to the function: 

  

        SG_scheduleTaskOnResource (SG_Task task, SG_Resource resource) 

 

The user has simply to define the task and the target resource. A task can be removed 

from a resource using a call to the function: 

 

         SG_unScheduleTask (SG_Task task) 

 

The user is capable to choose which task is needed to remove without defining the target 

resource. The function finds the resource automatically and removes the scheduled task.  

 

 Having defined tasks, resources and task dependencies a call to SG_simulate() is 

enough to start the simulation procedure. This function executes tasks through their life 

time and simulates the resource usage. We are able to run the simulation until all or some 

tasks complete but also it is possible to simulate the application for a given number of 

virtual seconds. The SG_simulate returns a list of completed tasks since the last time it 

was called. This list includes the starting and the finishing time of every completed task 

as well with the resource that the task was assigned. The models that SimGrid uses for 

the task execution time(1) and the file transfer(2) time are: 

 

 

         (1) 
ComputationalCost

CPUSpeed
     (2)  

DataSize
Latency

LinkBandwidth
−  
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4.4     Using SimGrid to Build a Simulator  

 
The SimGrid API offers a wide range of functions that can help the user to define 

his system requirements and to simulate a PST application. Putting all together we will 

demonstrate an example to show how SimGrid can be used to simulate a simple DAG 

scheduling in a three processors network. In this example we will not implement any 

scheduling algorithm but we will assign tasks to the processors using a round-robin way.    

 
                                    Figure 4.3: Mapping a Simple DAG  

 
#include “simgrid.h”  

 

int main(){ 

 

//Objects and needed Variables Definition 

SG_Resource   Processor1, Processor2, Processor3, Link1, Link2, Link3; 

SG_Task   Computation1, Computation2, Computation3; 

SG_Task   Tranfer1, Tranfer2; 

SG_Task   *Completed_List; 

double clock; 

 

//SimGrid Initialization 

SG_init(); 

 

//Processors Creation  

Processor1 = SG_newHost ( “P1”, 1.0, SG_SEQUENTIAL_IN_ORDER, NULL, 0.0, 100.0,  NULL); 

Processor2 = SG_newHost ( “P2”, 1.0, SG_SEQUENTIAL_IN_ORDER, NULL, 0.0, 200.0,  NULL); 

Processor3 = SG_newHost ( “P3”, 1.0, SG_SEQUENTIAL_IN_ORDER, NULL, 0.0, 150.0,  NULL); 

 

//Links Creation 

Link1 = SG_newLink( “L1”, SG_FAT_PIPE, NULL, 0.0, 0.0, NULL, 0.0, 10.0, NULL); 

Link2 = SG_newLink( “L2”, SG_FAT_PIPE, NULL, 0.0, 0.0, NULL, 0.0, 5.0, NULL); 

Link3 = SG_newLink( “L3”, SG_FAT_PIPE, NULL, 0.0, 0.0, NULL, 0.0, 8.0, NULL); 

 

//Tasks Creation 

Computation1 = SG_newTask(SG_COMPUTATION, “Comp1”, 50.0, NULL); 

Computation2 = SG_newTask(SG_ COMPUTATION, “Comp2”, 200.0, NULL); 

Computation3 = SG_newTask(SG_ COMPUTATION, “Comp3”, 100.0, NULL); 

Tranfer1 =  SG_newTask(SG_TRANFER, “Com1”, 10.0, NULL); 

Tranfer2 =  SG_newTask(SG_TRANFER, “Com2”, 5.0, NULL); 

 

//DAG Dependencies Definition 

SG_addDependency( Com1, Comp1); 
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SG_addDependency( Com2, Comp1); 

SG_addDependency( Comp2, Com1); 

SG_addDependency( Comp3, Com2); 

 
//Scheduling Tasks one on each Processor 

SG_scheduleTaskOnResource( Comp1,P1); 

SG_scheduleTaskOnResource( Comp2,P2);             Instead a scheduling algorithm  

SG_scheduleTaskOnResource( Comp3,P3);             can be implemented here 

       

//Schedule File Transfers 

SG_scheduleTaskOnResource( Com1,L1); 

SG_scheduleTaskOnResource( Com2,L2); 

 

//Simulate until All Tasks Complete and Print the Total Execution Time  

Completed_List = SG_simulate(-1.0, SG_ALL_TASKS, SG_VERBOSE); 

clock = SG_getClock(); 

fprintf(stderr, "** Virtual clock = %f\n", clock); 

 

//Free Used Memory and Exit 

SG_clear(); 

free(Completed_List); 

exit(0); 

} 

 

 

This code can easily be used as a template to build a simulator using the SimGrid 

library. It describes all the fundamental aspects of this procedure. First tasks and 

resources are defined. Afterwards the task/file dependencies are created. Then it is up to 

the scheduling strategy that is used to take decisions about how to arrange tasks( 

computations or file transfers) to resources( CPU’s or links). The simulation starts with a 

call to SG_simulate and the total simulation time is printed on screen with the list of all 

completed tasks.      

 

 

4.5     Simulation System Specification 

 
We used the SimGrid functionalities to model our system and it is mainly based on 

the work discussed in [18]. The Computational Grid is defined that is a set of n unrelated 

heterogeneous computation clusters {Gi}, {i = 1...n}. Our heterogeneous machine model 

is based on Moore’s law. This law claims that computers double their speed every 18 

months. If we consider that a computer lifetime is about 5 years, in this period of time the 

faster computer will be 8 times faster than his oldest ancestor speed. Thus we will use a 

uniform distribution for the machines speed ranged between a current number and a 

number 8 times bigger (e.g. U(200, 1600)).       
 

We also assume without any loss of generality that each of these clusters is 

connected with a local storage facility. We have to make this assumption in order to 

reduce the communication overhead that will create the multiple transfer of the same file 

on a link. We can realize the need of this storage facility If we think about the case of a 
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subtask that has three successors in the next PST layer. This subtask will send the same 

file to all its successors to start executing. Knowing that the subtasks on any PST layer 

are independent, the file has to be send to each successor separately. Sending the file 

three times on the link will create match more delay than send it once and store it in a 

local storage facility. The time the successors subtasks will need to access this file from 

the local storage facility, is negligible for a normal file size.  

 

The user is able to access these cluster with n links. The independency of the 

subtasks on the same layer will allow us not to model any inner-cluster connection 

between resources. We will not try to model precisely the network contention by 

implementing routers within the links. The current SimGrid API does not give that 

flexibility and the user has to define everything manually. This could be done 

automatically using MSG (Meta-SimGrid), a simulator build at he top of SG but it targets 

to schedule independent tasks that share files and does not allow us to define a DAG 

structure. The new SimGrid API that is under development will include this flexibility 

and a more precisely network description can be scheduled as a future work. The user is 

assumed that can have access to a GIS (Grid Information Service) that can give him 

information about the availability and the performance of the resources. The next figure 

illustrates the Grid system that is used for the evaluation of the proposed modified 

algorithm.      
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                                        Figure 4.4: Grid System Specification  
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