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Chapter 5 
 

 

 

Performance Measurement  
 
 

 

5.1     Fundamental Questions 

 
The design of a scheduling algorithm includes four fundamental aspects (see 

Section 2.1). Among these, being the most important is the performance of the algorithm. 

Trying to measure the performance of a Grid scheduling algorithm can be a great 

challenge. The dynamic Grid character makes difficult the development of any kind of 

standard benchmarks. The number of different factors that have to be considered if 

someone tries to create such a standard benchmark can be extremely large. Before 

measuring the performance of the xDCPC algorithm we will try to answer some basic 

questions as they are formulated in [37]: 

 

• What problem parameters can affect the performance of the algorithm? 
 

The task graph topology influences the most the performance of the 

algorithm. Moreover some other parameters may react on the 

performance. These can be the number of edges that start from a node 

(number of successors), the number of processors available and the CCR 

(Communication to Computation) value. All these factors need to be 

considered and thus it is imperative to use a various range of structure 

graphs with numerous different parameter configurations. This is the only 

way to do an accurate evaluation of  such an algorithm. We will use the 

above mentioned factors for the xDCPC evaluation. 

   

• What are the important performance measures? 
 

The quality of the schedule is the total execution time of the application 

and states the performance of a scheduling algorithm. That is what we will 

measure for the evaluation of the xDCPC algorithm. We will use the 

Shuffle (see Section 3.2) algorithm to compare the scheduling length that 

it creates with the scheduling length that creates the xDCPC algorithm. The 

difference between the two algorithm scheduling lengths is the gained 
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Profit. We measure the Profit variation for a big number of configuration 

scenarios.     

 

 

5.2     Factors and Performance Metrics 

 
The metric we use for the evaluation of the xDCPC algorithm is the average value of 

the Profit, obtained after a 20 times simulation run for the same configuration settings 

under the same task graph. We denote this metric AGP (Average Gained Profit). Our 

scope will be to investigate the AGP value variation under different parameter and graph 

settings. We regard the performance of the Shuffle algorithm as a basic performance 

under a certain graph topology and configuration setting, as it is described in [8].      

 

     Another performance metric is the E (Effectiveness). It is the ratio (percentage) 

between the final scheduling length of the xDCPC algorithms and the scheduling length 

that produces the Shuffle algorithm. Again the AE (Average Effectiveness) value is being 

calculated, for the same simulation settings and input graph. It is the average value after 

20 simulation runs. In terms it is: 
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The subtasks weights are creating randomly using the given function: 

 

Comp_Size = rand(1, k) x base1   

 

We can vary the k value generating more or less computation demanding applications. 

The base1 value is a constant and defines the smaller computation size allowed in any 

subtask. 

 

The data files weights are influenced by the given CCR value. For our experiment 

we use 2 different values of CCR (0.01 and 0.1). A DAG with CCR smaller than 1 is 

considered as coarse grain (low communicating application) and with CCR greater or 

equal than 1 as fine grain (heavy communicating application). Thus we use these 2 values 

to cover both aspects. For a given node, the size of the data file that it creates and sends 

to his successor(s) after its execution will be: 

 

For CCR = 0.01    Data_Size(t) = Comp_Size(t)/100        
For CCR = 0.1      Data_Size(t) = Comp_Size(t)/10        
 

The size of every heterogeneous cluster N(Ri) is also generating randomly following the  

function: 
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N(Ri) = rand(1, l) x base2   
 

Again we can vary the l value creating smaller or bigger clusters but we will keep 

constant the base2 value defining this way the smaller allowed cluster for the experiment. 

For machines (CPU’s) speed we rely on the model influenced by the Moore’s law as it is 

discussed in Section 4.5. The links speed is also generated randomly. The difference 

between the slower and faster link is given by an increasing factor of 10 (e.g. slower 2 

Mb/sec and faster 20 Mb/sec).   

 
 

5.3     Input Task Graph Generation 

 
A precise evaluation of the algorithm can not be done without using a wide range of 

input task graphs. Thus we used five different types of graphs. All the input graph 

weights are being valued using the factors mentioned in Section 5.2. An analytically 

description of each graph that is used follows: 

 

 

(a)    PTG (Parallel Task Graph)  

 

In a PTG the number of subtasks on every layer is the same constant value. We 

generate random PTG’s by defining the number of tasks on the first layer and the total 

number of layers. A paradigm of a PTG graph follows:  
 

 

    

 

 

 

 

 

 

 
                                                      

                                                  

 

                                                Figure 5.1: Parallel Task Graph   

 

 

(b)    OTG (Out-Tree Task Graph) 

 

     An OTG is created by attaching nodes starting from the entry (only one entry) we 

respect to the branch number (λ). The branch states the number of successors that a 

current node has. This value is constant for all the graph nodes. The number of subtasks 

on each layer is given by the term λ
(i-1)
. For the experiment we generate random OTG 

graphs for various (λ) and layer values.   
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                   Figure 5.2: OTG (λ=2)                             Figure 5.3: OTG (λ=3) 

 

(c)    ITG (In-Tree Task Graph) 

 

The ITG graph is generated starting from the exit nodes, an opposite than for OTG 

way. Now the branch number (λ) does not state the successors but the predecessors of a 

current node. Thus the number of subtask on the first layer is given by the term λ
(µ-i)
 

where µ is equal to the maximum number of layers and (i) is the number of the current 

layer. We generate random ITG’s varying the (λ) and (µ) value.        

 

 

 

 

 

 

 

 

                      

           Figure 5.4: ΙTG (λ=2)                                       Figure 5.5: ΙTG (λ=3) 

 

(d) DOTG (Densified Out-Tree Graph) 

 

The creation of a DOTG starts by defining the number of subtasks on the first layer 

(e.g. N1=2). The number of subtasks on the next layer can be calculated recursively 

starting from the subtasks on the firsts layer by the function Nι = δ(Ν(i-1)-1) + λ . The 
factor δ describes the allowed step value and the λ is the branch value, being again 

constant for all the nodes. We generate random DOTG’s by defining the number of 

subtasks on the first layer and the number of application layers. We use for step (δ) the 

value of 1 and for branch (λ) the value of 2 for our experiment.       

 

 

 

 

 

 

 

 

 

                                            

                                            Figure 5.6: DOTG (λ=2, δ=1, Ν1=2)  
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 (e)   DITG (Densified In-Tree Graph)   

 

A DITG is created emerging predecessor tasks to create one successor. The (λ) 

value defines the number of predecessors that is needed to create one successor. The 

number of subtasks on each parameter sweep task (level) is defined recursively by the 

function Ni = (Ni-1-λ)/δ + 1 starting from an initial first layer value (Ν1). The values that 

we use is 2 for (λ),  1 for the step (δ) and various for Ν1. 

 

 

 

 

 

 

 

 

 

 

                                          Figure 5.6: DΙTG (λ=2, δ=1, Ν1=5) 

 

Using all the above mentioned cases (a), (b), (c), (d), (e) we will cover a quite wide 

range of possible PST applications. Of course more graphs can be used as input for a 

more precisely evaluation of the algorithm. This can be scheduled as a future work.   

 

 

5.4   Performance Evaluation 

 
For the evaluation of the new proposed algorithm we will use the two performance 

metrics described in Section 5.2. Combining the factors we discussed in Section 5.2 and 

the input task graphs (see Section 5.3) we can build a simulation configuration table.  

 

 

 

 

 

 

 

 

 

 

 

              Table: Simulation Configuration Settings 

 

As the reader can easily observe there are 8 different factors and 5 input graphs 

considered for the simulation. The variation of these factors can create a huge number of 

possible simulation runs. In our evaluation we keep constant the k, base1, base2 and l 

 

Graph 
 

  CCR       
  

  k     

 

 base1      

  

 l     

 

base2        

 

    λ          

 

 δ      

           

   µ 
PTG  0.01-0.1     5   100  3   10     1  -  1...10 

OTG      0.01-0.1       5   100  3   10  2-3-4  -   2...9 

ITG        0.01-0.1       5   100  3   10  2-3-4  -   2...9 

DITG       0.01-0.1       5   100  3   10     2  1  2...10 
DOTG  0.01-0.1       5   100  3   10     2  1  2...10 
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values (see Section 5.2) and we vary the CCR, λ and µ values (see Section 5.3). We will 

investigate the impact of the variation of file, layer size and graph structure on the 

performance of the algorithm. We validate these factors as the most important because 

they have the biggest influence on the performance of the algorithm. The total number of 

simulation runs we performed overcomes the 2000 and the maximum number of tasks 

allowed is less or equal to 550.  

 

For convenience we mention that the variation of the AGP value is sometimes 

different from the variation of AE for the same case of graph. By increasing the layer size 

increases the total subtask number. The consequence is a higher in time units (sec) 

makespan. The rate of the Effectiveness can be lower (now we compute the rate on 

bigger weight sizes) but the Profit value may still stay within or near a high rate. For 

example if the scheduling length produced by the Shuffle algorithm is 500 sec and this 

created by the xDCPC is 450 sec the profit would be 500-450=50 sec. The same profit we 

might obtain if the first algorithm produced 300 sec length and the second 250 sec length. 

Despite that the effectiveness would be 1-(450/500) = 10% for the first case and 1-

(200/250) = 20% for the second case. Thus lower effectiveness might sometimes create a 

higher or similar AGP value than a higher one.  

 

 

5.4.1     Parallel Task Graph 

 
     Two different graph structures are generated for this particular type of graph. One 

with initial subtasks number N1=50 and one with N1=100. The maximum number of 

subtasks that is allowed is 500. This is proportional to a total number of 10 layers for the 

first case (Plot 1&2) and 5 layers for the second (Plot 3&4). In both cases we vary the 

CCR value.         
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                   Plot 1: PTG (N1=50)                                        Plot 2: PTG (N1=50) 

 

 

 



56 

AGP

0

5

10

15

20

25

30

35

2 3 4 5
LAYERS

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

  

AE

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 4 5

LAYERS

CCR=0.01

CCR=0.1

 
                Plot 3: PTG (N1=100)                                   Plot 4: PTG (N1=100) 

 

The result plots for PTG’s show that the performance of the algorithm drops when 

the layer size increased for both cases (N1=50, N1=100). The same observation can be 

made when varying the CCR value from 0.01 to 0.1. This can be easily observed from the 

decreasing slope in all the above AGP plots.  In this type of graphs there is only one 

successor for every subtask and so only one dependency. The CP of the graph does not 

change in every scheduling step. The xDCPC algorithm tracks the changes on the CP, 

something that will never happen in the case of a PTG. Thus the effectiveness of the 

algorithm drops when the layer size is increasing. Consider the scenario of a PST graph 

that consists of 500 subtasks. This is a total of 10 layers for the case of N1=50 and 5 

layers for the case of N1=100. The result AE for the first case (Plot 2) is 5% and for the 

second case (Plot 4) is 16% (for CCR=0.01). There is a 9% difference in the performance 

for the same subtask size application but for different graph structure. This difference is 

less easy to observe in the case of CCR = 0.1 graphs because of the negative influence 

that has the insertion of higher communication cost (consider that we keep the same link 

speed values).  

 

5.4.2     Out-tree Task Graph 
  

For the case of OTG’s we use 3 different λ values (2, 3 and 4) to generate the task 

graphs needed for the experiment. The maximum number of subtasks allowed is 512 

(scenario λ=2, µ=9). 
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                Plot 5: OTG (λ=2)                                                 Plot 6: OTG (λ=2) 
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                Plot 7: OTG (λ=3)                                                 Plot 8: OTG (λ=3) 
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                Plot 9: OTG (λ=4)                                                 Plot 10: OTG (λ=4) 

 

For OTG’s (see Section 5.4.2) the performance of the algorithm increases when 

increasing the layer size. This happens because the shuffle algorithm leaves more gaps 

when the number of subtasks and layer increases. In the case of an OTG the CP may 

change after a scheduling step. The algorithm perform better than the PTG’s (see Section 

5.4.1) case because it is now able to track these changes and to take correct decisions 

when assigning tasks to processors. The optimization space becomes bigger when the 

layer size increases. The sizes of graphs that are created for different λ values are 

incommensurable thus we do not try to make a comparison in the same way we did for 

the PTG case. It is clear from the result plots (AGP and AE) that the effectiveness of the 

algorithm raises when the λ value (number of successors per predecessor) increases. The 

xDCPC tries to minimize the ALFT value of a ready to be schedule subtask. In the 

calculation of this attribute the algorithm considers all the successors of the ready 

subtask. Bigger the successors number greater the optimization space available.    

 
5.4.3     In-tree Task Graph 

 
ITG’s are being generated using 3 different λ values (2, 3, and 4). This type of 

graph is a reverse version of an OTG. Both ITG and OTG have the same total number of 
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subtasks for the same λ and µ values. Again the maximum number of subtasks allowed is 

512 (scenario λ=2, µ=9). 
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                Plot 11: ΙTG (λ=2)                                                 Plot 12: ITG (λ=2) 
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                Plot 13: ΙTG (λ=3)                                                 Plot 14: ITG (λ=3) 
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                Plot 15: ΙTG (λ=4)                                              Plot 16: ΙTG (λ=4) 

 

From the result plots one can observe that the algorithm performs worst than in an 

OTG (see Section 5.4.2) but better than a PTG (see Section 5.4.1). For scenario (λ=2, 
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µ=9, CCR=0.01) and an ITG graph (Plot 12), the effectiveness of the algorithm is 28%. 

For the same scenario but for an OTG graph (Plot 6) the effectiveness is 38%. There is a 

total 10% difference on the effectiveness for the same configuration settings and number 

of subtasks (total number 512 subtasks for both cases). If we consider an application with 

higher communication cost (e.g. scenario with λ=3, µ=6, CCR=0.1) then the effectiveness 

for ITG (Plot 14) is 40% and for OTG (Plot 8) is 48%. Again there is a total 8% 

difference in the performance of the algorithm. In ITG’s there is only one successor 

subtask for various constant number of predecessor subtasks. The λ value defines the 

number of predecessors. Thus the ALFT value of λ number predecessors subtasks 

depends only on one successor subtask. The effectiveness of the algorithm increases with 

the increment of the λ value. The algorithm is now able to consider more subtasks in the 

calculation of the ALFT thus the probability for optimization is higher. 

 
5.4.4     Densified Out-tree Task Graph 
  

For the case of DOTG we use 2 N1 values (50 and 100) to generate the graphs. The 

maximum number of subtasks allowed is 545.      
 

AGP

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8 9 10

LAYER

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

 



60 

The performance of DOTG’s is comparable to OTG’s for a limited number of 

layers. For example for a DOTG with N1 = 50, µ = 5 and CCR=0.01 (Plot 18) the total 

number of subtasks that compose the graph will be 250 and the effectiveness is 32%. This 

number is almost the same for an OTG (Plot 6) with λ=2 and µ=8 with total number of 

subtasks equal to 255 and effectiveness 37%. The small difference on their effectiveness 

is due to the number of dependencies per subtask in a DOTG layer. This number is not 

constant. The outline subtasks have dependency 1 and the inline 2 (see Section 5.3 (d)). 

This discrete characteristic influences negatively the effectiveness of the algorithm. For a 

high number of layers this is easier to realize.  

 

For a scenario (λ=2, µ=9, CCR=0.01) and for OTG graph (Plot 6) the effectiveness 

is about 38% and the number of subtasks is 512. Almost the same number of subtasks 

includes a DOTG with (N1=50, µ=9, CCR=0.01). There the effectiveness is just 20%. It 

is obvious that the structure of two different but with equivalent subtask number graphs 

produces dissimilar results. The increment of the layer value has a negative influence on 

the effectiveness of the xDCPC in the case of a DOTG. This is verified by the AE result 

plot values.    

 

 

5.4.5     Densified In-tree Task Graph 

 
A DITG is constructed the other way around than a DOTG. We use the same values with 

the DOTG case, N1=50 and N1=100 to create the random DITG’s for the two CCR values 

(0.01 and 0.1).  
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            Plot 21: DITG (N1=50)                                  Plot 22: DITG (N1=50) 
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                Plot 23: DITG (N1=100)                                  Plot 24: DITG (N1=100) 

 

 

The effectiveness of the algorithm drops when increasing the layer size for both 

cases (N1=50 and N1=100). In the case DITG the algorithm performs with less 

effectiveness than for the case of a DOTG (see Section 5.4.4). This is something similar 

with the comparison of an OTG and ITG case. The result plots show to keep an analogy 

on the effectiveness with an OTG and an ITG respectively, at least for a high subtask 

number application (e.g. for µ=10, N1=50 and µ=5, N1=100).          
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Chapter 6 
 

 

 

Conclusions and future work 
 

 

This thesis describes the xDCPC, a distributed algorithm for scheduling PST’s in a 

Grid computing environment. Our goal was the insertion of communication cost within 

the structure of the xDCP algorithm. Besides that we did some more modifications to 

solve limitation problems we faced on the algorithm analysis procedure (see Section 3.4).     

           

The result plots for all the above cases (PTG, OTG, ITG, DOTG, and DITG) prove 

that the graph structure influences the most the effectiveness of the algorithm. For 

applications with the same subtask number we find dissimilar effectiveness results (see 

section 5.4.3). Thus the answer we gave to the question in section 5.1 is proved to be 

correct. Moreover we observe that the algorithm performs better in the Out-tree Graphs 

than in the In-tree Graphs. The same observation can be made for the case of a DOTG 

and a DITG.  The different kinds of dependencies that emerge in these particular types of 

graphs (see sections 5.4.4 and 5.4.5) have an individual influence on the performance of 

the algorithm.  

 

Due to the lack of limited simulation runs (20 runs per layer value for every case), 

there is sometimes observed a greater variation on the AE and AGP value for some 

particular layer values. A higher number of simulation runs would likely create a 

smoother result. Of course this does not prevent us to make realistic conclusions about 

the performance of the algorithm. We reckon that 100 simulation runs per layer value 

would be enough to create a higher efficiency result. Such a number can reduce the 

probability to obtain similar, or near ranged random values (we used rand( ) to weight all 

the factors involved in the simulation). The various numbers of input graphs and factors 

that we used for the evaluation of the algorithm and the lack of time prevented us to use 

such a high number of simulation runs. A bigger number of input graphs with a higher 

number of simulation runs are sorely needed for a more precise evaluation of the 

algorithm. This can be scheduled as a future work. 

 

There is one last question that we have to answer. This is: 
 

“What was the impact of adding communication time cost into the xDCP algorithm 

structure?”   
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In order to answer this question we experimented with two CCR values (0.01 and 

0.1) because we found wise to cover both a low and a heavy communicating application 

aspect. For the case of CCR = 0.01 (low communicating application) the results obtained 

keep an analogy with the results in [8], where the communication cost is not considered. 

Of course the link speed may have a very important role in the final schedule length. A 

heavy communicating application that uses high speed links can be equalized with a low 

communicating application that uses slow speed links. In our evaluation we kept the link 

speed within the same range for both cases (again we weighted the links randomly). 

Comparing the results we obtained for all the input graphs and both CCR values we find 

that high CCR creates lower effectiveness than a lower CCR value. That is what we 

where expected. 

 

The impact of the network infrastructure is another factor that influences the 

performance of the algorithm and can raise or lower the communication cost of any PST 

application. In our implementation we assume that the links the user uses to communicate 

with the resource arrays (heterogeneous clusters) do not include routers. The current 

SimGrid API does not give us the flexibility to define more sufficient network cohesion. 

The new SimGrid API that is currently under development will include this flexibility 

and a higher efficiency network modeling can be a future work. It is necessary for a 

better evaluation to compare the xDCPC with another Grid scheduling algorithm. Thus 

for future study we will try to modify the pM-S [8] algorithm. This is a dynamic 

algorithm that can be applied to a PST workflow but does not consider communication 

cost between the PST layers.         
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