
50

Chapter 5

Performance Measurement

5.1 Fundamental Questions

The design of a scheduling algorithm includes four fundamental aspects (see

Section 2.1). Among these, being the most important is the performance of the algorithm.

Trying to measure the performance of a Grid scheduling algorithm can be a great

challenge. The dynamic Grid character makes difficult the development of any kind of

standard benchmarks. The number of different factors that have to be considered if

someone tries to create such a standard benchmark can be extremely large. Before

measuring the performance of the xDCPC algorithm we will try to answer some basic

questions as they are formulated in [37]:

• What problem parameters can affect the performance of the algorithm?

The task graph topology influences the most the performance of the

algorithm. Moreover some other parameters may react on the

performance. These can be the number of edges that start from a node

(number of successors), the number of processors available and the CCR

(Communication to Computation) value. All these factors need to be

considered and thus it is imperative to use a various range of structure

graphs with numerous different parameter configurations. This is the only

way to do an accurate evaluation of such an algorithm. We will use the

above mentioned factors for the xDCPC evaluation.

• What are the important performance measures?

The quality of the schedule is the total execution time of the application

and states the performance of a scheduling algorithm. That is what we will

measure for the evaluation of the xDCPC algorithm. We will use the

Shuffle (see Section 3.2) algorithm to compare the scheduling length that

it creates with the scheduling length that creates the xDCPC algorithm. The

difference between the two algorithm scheduling lengths is the gained

51

Profit. We measure the Profit variation for a big number of configuration

scenarios.

5.2 Factors and Performance Metrics

The metric we use for the evaluation of the xDCPC algorithm is the average value of

the Profit, obtained after a 20 times simulation run for the same configuration settings

under the same task graph. We denote this metric AGP (Average Gained Profit). Our

scope will be to investigate the AGP value variation under different parameter and graph

settings. We regard the performance of the Shuffle algorithm as a basic performance

under a certain graph topology and configuration setting, as it is described in [8].

 Another performance metric is the E (Effectiveness). It is the ratio (percentage)

between the final scheduling length of the xDCPC algorithms and the scheduling length

that produces the Shuffle algorithm. Again the AE (Average Effectiveness) value is being

calculated, for the same simulation settings and input graph. It is the average value after

20 simulation runs. In terms it is:

 1..20

1..20

1 100%
C

i

i

xDCP lenght

Shufflelenght
AE x=

=

 
 
 
 
 

= −
∑

∑

The subtasks weights are creating randomly using the given function:

Comp_Size = rand(1, k) x base1

We can vary the k value generating more or less computation demanding applications.

The base1 value is a constant and defines the smaller computation size allowed in any

subtask.

The data files weights are influenced by the given CCR value. For our experiment

we use 2 different values of CCR (0.01 and 0.1). A DAG with CCR smaller than 1 is

considered as coarse grain (low communicating application) and with CCR greater or

equal than 1 as fine grain (heavy communicating application). Thus we use these 2 values

to cover both aspects. For a given node, the size of the data file that it creates and sends

to his successor(s) after its execution will be:

For CCR = 0.01 Data_Size(t) = Comp_Size(t)/100
For CCR = 0.1 Data_Size(t) = Comp_Size(t)/10

The size of every heterogeneous cluster N(Ri) is also generating randomly following the

function:

52

N(Ri) = rand(1, l) x base2

Again we can vary the l value creating smaller or bigger clusters but we will keep

constant the base2 value defining this way the smaller allowed cluster for the experiment.

For machines (CPU’s) speed we rely on the model influenced by the Moore’s law as it is

discussed in Section 4.5. The links speed is also generated randomly. The difference

between the slower and faster link is given by an increasing factor of 10 (e.g. slower 2

Mb/sec and faster 20 Mb/sec).

5.3 Input Task Graph Generation

A precise evaluation of the algorithm can not be done without using a wide range of

input task graphs. Thus we used five different types of graphs. All the input graph

weights are being valued using the factors mentioned in Section 5.2. An analytically

description of each graph that is used follows:

(a) PTG (Parallel Task Graph)

In a PTG the number of subtasks on every layer is the same constant value. We

generate random PTG’s by defining the number of tasks on the first layer and the total

number of layers. A paradigm of a PTG graph follows:

 Figure 5.1: Parallel Task Graph

(b) OTG (Out-Tree Task Graph)

 An OTG is created by attaching nodes starting from the entry (only one entry) we

respect to the branch number (λ). The branch states the number of successors that a

current node has. This value is constant for all the graph nodes. The number of subtasks

on each layer is given by the term λ
(i-1)
. For the experiment we generate random OTG

graphs for various (λ) and layer values.

53

 Figure 5.2: OTG (λ=2) Figure 5.3: OTG (λ=3)

(c) ITG (In-Tree Task Graph)

The ITG graph is generated starting from the exit nodes, an opposite than for OTG

way. Now the branch number (λ) does not state the successors but the predecessors of a

current node. Thus the number of subtask on the first layer is given by the term λ
(µ-i)

where µ is equal to the maximum number of layers and (i) is the number of the current

layer. We generate random ITG’s varying the (λ) and (µ) value.

 Figure 5.4: ΙTG (λ=2) Figure 5.5: ΙTG (λ=3)

(d) DOTG (Densified Out-Tree Graph)

The creation of a DOTG starts by defining the number of subtasks on the first layer

(e.g. N1=2). The number of subtasks on the next layer can be calculated recursively

starting from the subtasks on the firsts layer by the function Nι = δ(Ν(i-1)-1) + λ . The
factor δ describes the allowed step value and the λ is the branch value, being again

constant for all the nodes. We generate random DOTG’s by defining the number of

subtasks on the first layer and the number of application layers. We use for step (δ) the

value of 1 and for branch (λ) the value of 2 for our experiment.

 Figure 5.6: DOTG (λ=2, δ=1, Ν1=2)

54

 (e) DITG (Densified In-Tree Graph)

A DITG is created emerging predecessor tasks to create one successor. The (λ)

value defines the number of predecessors that is needed to create one successor. The

number of subtasks on each parameter sweep task (level) is defined recursively by the

function Ni = (Ni-1-λ)/δ + 1 starting from an initial first layer value (Ν1). The values that

we use is 2 for (λ), 1 for the step (δ) and various for Ν1.

 Figure 5.6: DΙTG (λ=2, δ=1, Ν1=5)

Using all the above mentioned cases (a), (b), (c), (d), (e) we will cover a quite wide

range of possible PST applications. Of course more graphs can be used as input for a

more precisely evaluation of the algorithm. This can be scheduled as a future work.

5.4 Performance Evaluation

For the evaluation of the new proposed algorithm we will use the two performance

metrics described in Section 5.2. Combining the factors we discussed in Section 5.2 and

the input task graphs (see Section 5.3) we can build a simulation configuration table.

 Table: Simulation Configuration Settings

As the reader can easily observe there are 8 different factors and 5 input graphs

considered for the simulation. The variation of these factors can create a huge number of

possible simulation runs. In our evaluation we keep constant the k, base1, base2 and l

Graph

 CCR

 k

 base1

 l

base2

 λ

 δ

 µ
PTG 0.01-0.1 5 100 3 10 1 - 1...10

OTG 0.01-0.1 5 100 3 10 2-3-4 - 2...9

ITG 0.01-0.1 5 100 3 10 2-3-4 - 2...9

DITG 0.01-0.1 5 100 3 10 2 1 2...10
DOTG 0.01-0.1 5 100 3 10 2 1 2...10

55

values (see Section 5.2) and we vary the CCR, λ and µ values (see Section 5.3). We will

investigate the impact of the variation of file, layer size and graph structure on the

performance of the algorithm. We validate these factors as the most important because

they have the biggest influence on the performance of the algorithm. The total number of

simulation runs we performed overcomes the 2000 and the maximum number of tasks

allowed is less or equal to 550.

For convenience we mention that the variation of the AGP value is sometimes

different from the variation of AE for the same case of graph. By increasing the layer size

increases the total subtask number. The consequence is a higher in time units (sec)

makespan. The rate of the Effectiveness can be lower (now we compute the rate on

bigger weight sizes) but the Profit value may still stay within or near a high rate. For

example if the scheduling length produced by the Shuffle algorithm is 500 sec and this

created by the xDCPC is 450 sec the profit would be 500-450=50 sec. The same profit we

might obtain if the first algorithm produced 300 sec length and the second 250 sec length.

Despite that the effectiveness would be 1-(450/500) = 10% for the first case and 1-

(200/250) = 20% for the second case. Thus lower effectiveness might sometimes create a

higher or similar AGP value than a higher one.

5.4.1 Parallel Task Graph

 Two different graph structures are generated for this particular type of graph. One

with initial subtasks number N1=50 and one with N1=100. The maximum number of

subtasks that is allowed is 500. This is proportional to a total number of 10 layers for the

first case (Plot 1&2) and 5 layers for the second (Plot 3&4). In both cases we vary the

CCR value.

AGP

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8 9 10

LAYERS

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

AE

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9 10

LAYERS

CCR=0.01

CCR=0.1

 Plot 1: PTG (N1=50) Plot 2: PTG (N1=50)

56

AGP

0

5

10

15

20

25

30

35

2 3 4 5
LAYERS

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

AE

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 4 5

LAYERS

CCR=0.01

CCR=0.1

 Plot 3: PTG (N1=100) Plot 4: PTG (N1=100)

The result plots for PTG’s show that the performance of the algorithm drops when

the layer size increased for both cases (N1=50, N1=100). The same observation can be

made when varying the CCR value from 0.01 to 0.1. This can be easily observed from the

decreasing slope in all the above AGP plots. In this type of graphs there is only one

successor for every subtask and so only one dependency. The CP of the graph does not

change in every scheduling step. The xDCPC algorithm tracks the changes on the CP,

something that will never happen in the case of a PTG. Thus the effectiveness of the

algorithm drops when the layer size is increasing. Consider the scenario of a PST graph

that consists of 500 subtasks. This is a total of 10 layers for the case of N1=50 and 5

layers for the case of N1=100. The result AE for the first case (Plot 2) is 5% and for the

second case (Plot 4) is 16% (for CCR=0.01). There is a 9% difference in the performance

for the same subtask size application but for different graph structure. This difference is

less easy to observe in the case of CCR = 0.1 graphs because of the negative influence

that has the insertion of higher communication cost (consider that we keep the same link

speed values).

5.4.2 Out-tree Task Graph

For the case of OTG’s we use 3 different λ values (2, 3 and 4) to generate the task

graphs needed for the experiment. The maximum number of subtasks allowed is 512

(scenario λ=2, µ=9).

AGP

0

20

40

60

80

100

120

140

2 3 4 5 6 7 8 9

LAYERS

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

AE

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 2 3 4 5 6 7 8 9

LAYERS

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

 Plot 5: OTG (λ=2) Plot 6: OTG (λ=2)

57

AGP

0

20

40

60

80

100

120

140

160

180

2 3 4 5 6

LAYERS

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

AE

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1 2 3 4 5 6

LAYERS

CCR=0.01

CCR=0.1

 Plot 7: OTG (λ=3) Plot 8: OTG (λ=3)

AGP

0

20

40

60

80

100

120

140

160

2 3 4 5
LAYERS

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

AE

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5
LAYERS

CCR=0.01

CCR=0.1

 Plot 9: OTG (λ=4) Plot 10: OTG (λ=4)

For OTG’s (see Section 5.4.2) the performance of the algorithm increases when

increasing the layer size. This happens because the shuffle algorithm leaves more gaps

when the number of subtasks and layer increases. In the case of an OTG the CP may

change after a scheduling step. The algorithm perform better than the PTG’s (see Section

5.4.1) case because it is now able to track these changes and to take correct decisions

when assigning tasks to processors. The optimization space becomes bigger when the

layer size increases. The sizes of graphs that are created for different λ values are

incommensurable thus we do not try to make a comparison in the same way we did for

the PTG case. It is clear from the result plots (AGP and AE) that the effectiveness of the

algorithm raises when the λ value (number of successors per predecessor) increases. The

xDCPC tries to minimize the ALFT value of a ready to be schedule subtask. In the

calculation of this attribute the algorithm considers all the successors of the ready

subtask. Bigger the successors number greater the optimization space available.

5.4.3 In-tree Task Graph

ITG’s are being generated using 3 different λ values (2, 3, and 4). This type of

graph is a reverse version of an OTG. Both ITG and OTG have the same total number of

58

subtasks for the same λ and µ values. Again the maximum number of subtasks allowed is

512 (scenario λ=2, µ=9).

AGP

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9

LAYERS

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

AE

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 4 5 6 7 8 9

LAYERS

CCR=0.01

CCR=0.1

 Plot 11: ΙTG (λ=2) Plot 12: ITG (λ=2)

AGP

0

20

40

60

80

100

120

2 3 4 5 6

LAYERS

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

AE

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6

LAYERS

CCR=0.01

CCR=0.1

 Plot 13: ΙTG (λ=3) Plot 14: ITG (λ=3)

AGP

0

20

40

60

80

100

120

2 3 4 5
LAYERS

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

AE

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5

LAYERS

CCR=0.01

CCR=0.1

 Plot 15: ΙTG (λ=4) Plot 16: ΙTG (λ=4)

From the result plots one can observe that the algorithm performs worst than in an

OTG (see Section 5.4.2) but better than a PTG (see Section 5.4.1). For scenario (λ=2,

59

µ=9, CCR=0.01) and an ITG graph (Plot 12), the effectiveness of the algorithm is 28%.

For the same scenario but for an OTG graph (Plot 6) the effectiveness is 38%. There is a

total 10% difference on the effectiveness for the same configuration settings and number

of subtasks (total number 512 subtasks for both cases). If we consider an application with

higher communication cost (e.g. scenario with λ=3, µ=6, CCR=0.1) then the effectiveness

for ITG (Plot 14) is 40% and for OTG (Plot 8) is 48%. Again there is a total 8%

difference in the performance of the algorithm. In ITG’s there is only one successor

subtask for various constant number of predecessor subtasks. The λ value defines the

number of predecessors. Thus the ALFT value of λ number predecessors subtasks

depends only on one successor subtask. The effectiveness of the algorithm increases with

the increment of the λ value. The algorithm is now able to consider more subtasks in the

calculation of the ALFT thus the probability for optimization is higher.

5.4.4 Densified Out-tree Task Graph

For the case of DOTG we use 2 N1 values (50 and 100) to generate the graphs. The

maximum number of subtasks allowed is 545.

AGP

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8 9 10

LAYER

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

60

The performance of DOTG’s is comparable to OTG’s for a limited number of

layers. For example for a DOTG with N1 = 50, µ = 5 and CCR=0.01 (Plot 18) the total

number of subtasks that compose the graph will be 250 and the effectiveness is 32%. This

number is almost the same for an OTG (Plot 6) with λ=2 and µ=8 with total number of

subtasks equal to 255 and effectiveness 37%. The small difference on their effectiveness

is due to the number of dependencies per subtask in a DOTG layer. This number is not

constant. The outline subtasks have dependency 1 and the inline 2 (see Section 5.3 (d)).

This discrete characteristic influences negatively the effectiveness of the algorithm. For a

high number of layers this is easier to realize.

For a scenario (λ=2, µ=9, CCR=0.01) and for OTG graph (Plot 6) the effectiveness

is about 38% and the number of subtasks is 512. Almost the same number of subtasks

includes a DOTG with (N1=50, µ=9, CCR=0.01). There the effectiveness is just 20%. It

is obvious that the structure of two different but with equivalent subtask number graphs

produces dissimilar results. The increment of the layer value has a negative influence on

the effectiveness of the xDCPC in the case of a DOTG. This is verified by the AE result

plot values.

5.4.5 Densified In-tree Task Graph

A DITG is constructed the other way around than a DOTG. We use the same values with

the DOTG case, N1=50 and N1=100 to create the random DITG’s for the two CCR values

(0.01 and 0.1).

AGP

0

5

10

15

20

25

30

35

2 3 4 5 6 7 8 9 10

LAYERS

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

AE

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 2 3 4 5 6 7 8 9 10

LAYERS

CCR=0.01

CCR=0.1

 Plot 21: DITG (N1=50) Plot 22: DITG (N1=50)

61

AGP

0

10

20

30

40

50

60

2 3 4 5

LAYERS

P
R
O
F
IT
(S
E
C
)

CCR=0.01

CCR=0.1

AE

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1 2 3 4 5

LAYERS

CCR=0.01

CCR=0.1

 Plot 23: DITG (N1=100) Plot 24: DITG (N1=100)

The effectiveness of the algorithm drops when increasing the layer size for both

cases (N1=50 and N1=100). In the case DITG the algorithm performs with less

effectiveness than for the case of a DOTG (see Section 5.4.4). This is something similar

with the comparison of an OTG and ITG case. The result plots show to keep an analogy

on the effectiveness with an OTG and an ITG respectively, at least for a high subtask

number application (e.g. for µ=10, N1=50 and µ=5, N1=100).

62

Chapter 6

Conclusions and future work

This thesis describes the xDCPC, a distributed algorithm for scheduling PST’s in a

Grid computing environment. Our goal was the insertion of communication cost within

the structure of the xDCP algorithm. Besides that we did some more modifications to

solve limitation problems we faced on the algorithm analysis procedure (see Section 3.4).

The result plots for all the above cases (PTG, OTG, ITG, DOTG, and DITG) prove

that the graph structure influences the most the effectiveness of the algorithm. For

applications with the same subtask number we find dissimilar effectiveness results (see

section 5.4.3). Thus the answer we gave to the question in section 5.1 is proved to be

correct. Moreover we observe that the algorithm performs better in the Out-tree Graphs

than in the In-tree Graphs. The same observation can be made for the case of a DOTG

and a DITG. The different kinds of dependencies that emerge in these particular types of

graphs (see sections 5.4.4 and 5.4.5) have an individual influence on the performance of

the algorithm.

Due to the lack of limited simulation runs (20 runs per layer value for every case),

there is sometimes observed a greater variation on the AE and AGP value for some

particular layer values. A higher number of simulation runs would likely create a

smoother result. Of course this does not prevent us to make realistic conclusions about

the performance of the algorithm. We reckon that 100 simulation runs per layer value

would be enough to create a higher efficiency result. Such a number can reduce the

probability to obtain similar, or near ranged random values (we used rand() to weight all

the factors involved in the simulation). The various numbers of input graphs and factors

that we used for the evaluation of the algorithm and the lack of time prevented us to use

such a high number of simulation runs. A bigger number of input graphs with a higher

number of simulation runs are sorely needed for a more precise evaluation of the

algorithm. This can be scheduled as a future work.

There is one last question that we have to answer. This is:

“What was the impact of adding communication time cost into the xDCP algorithm

structure?”

63

In order to answer this question we experimented with two CCR values (0.01 and

0.1) because we found wise to cover both a low and a heavy communicating application

aspect. For the case of CCR = 0.01 (low communicating application) the results obtained

keep an analogy with the results in [8], where the communication cost is not considered.

Of course the link speed may have a very important role in the final schedule length. A

heavy communicating application that uses high speed links can be equalized with a low

communicating application that uses slow speed links. In our evaluation we kept the link

speed within the same range for both cases (again we weighted the links randomly).

Comparing the results we obtained for all the input graphs and both CCR values we find

that high CCR creates lower effectiveness than a lower CCR value. That is what we

where expected.

The impact of the network infrastructure is another factor that influences the

performance of the algorithm and can raise or lower the communication cost of any PST

application. In our implementation we assume that the links the user uses to communicate

with the resource arrays (heterogeneous clusters) do not include routers. The current

SimGrid API does not give us the flexibility to define more sufficient network cohesion.

The new SimGrid API that is currently under development will include this flexibility

and a higher efficiency network modeling can be a future work. It is necessary for a

better evaluation to compare the xDCPC with another Grid scheduling algorithm. Thus

for future study we will try to modify the pM-S [8] algorithm. This is a dynamic

algorithm that can be applied to a PST workflow but does not consider communication

cost between the PST layers.

64

Bibliography

[1] Maurice Yarrow, Karen M. McCann, Rupak Biswas, Rob F. Van der Wijngaart “An
Advanced User Interface Approach for Complex Parameter Study Process

Specification on the Information Power Grid” Computer Sciences Corporation, Mail

Stop T27A-1 NASA Ames Research Centre, Moffett Field, CA 94035 2003

[2] Abramson D, Giddy J, Kotler L. “High performance parametric modeling with
Nimrod/G: Killer application for the global Grid?” Proceedings of the International

Parallel and Distributed Processing Symposium (IPDPS 2000). Cancun, Mexico, 1–

5 May 2000 IEEE Computer Society Press: Los Alamitos 2000.

[3] SETI@HOME http://setiathome.berkeley.edu/

[4] J. Basney, R. Raman, and M. Livny. “High Throughput Monte Carlo” In
Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific

Computing, March 1999

[5] T. Casavant, J.Kuhl, “Taxonomy of Scheduling in General-purpose Distributed
Computing Systems”, IEEE Trans. On Software Engineering Vol. 14, No.2, pp.

141- 154, 1998.

[6] Henri Casanova “Simgrid: a Toolkit for the Simulation of Application Scheduling”
Computer Science and Engineering Department University of California, San Diego

2001

[7] J. D. Ullman, “NP-Complete Scheduling Problems”, Journal of Computer and
System Sciences 10, 384-393 (1975).

[8] Tianchi Ma and Rajkumar Buyya “Critical-Path and Priority based Algorithms for
Scheduling Workflows with Parameter Sweep Tasks on Global Grids” Computing

and Distributed Systems (GRIDS) Laboratory Department of Computer Science and

Software Engineering the University of Melbourne, Australia 2005

[9] Wikipedia http://en.wikipedia.org/wiki/Directed_acyclic_graph

http://en.wikipedia.org/wiki/Directed_acyclic_graph

65

[10] Ishfaq Ahmad, Yu-Kwong Kwok Min-You “Performance Comparison of
Algorithms for Static Scheduling of DAGs to Multiprocessors” Wu Department of

Computer Science the Hong Kong University of Science and Technology, Clear

Water Bay, Hong Kong Sep. 1995.

[11] Yu-Kwong Kwok “High-Performance Algorithms for Compile-Time Scheduling of
Parallel Processors”, A Thesis Presented to the Hong Kong University of Science

and Technology in Partial Fulfillment of the Requirements for the Degree of Doctor

of Philosophy in Computer Science Hong Kong May 1997

[12] Cooper, K. Dasgupta, A. Kennedy, K. Koelbel, C. Mandal, A. Marin, G. Mazina,
M. Mellor-Crummey, J. Berman, F. Casanova, H. Chien, A. Dail, H. Liu,

X. Olugbile, A. Sievert, O. Xia, H. Johnsson, L. Liu, B. Patel, M. Reed, D.

Deng, W.Mendes, C.Shi, Z.YarKhan, A.Dongarra, J.Dept. of Comput. Sci., Rice

Univ., Houston, TX, USA; “New grid scheduling and rescheduling methods in the

GrADS project” International Journal of Parallel Programming 2005

[13] Fangpeng Dong and Selim G. Akl “Scheduling Algorithms for Grid Computing:
State of the Art and Open Problems” Technical Report No. 2006-504 School of

Computing, Queen’s University Kingston, Ontario January 2006

[14] Tracy D. Braun, Howard Jay Siegel, Noah Beck Ladislau, L. Boloni, Muthucumaru
Maheswaran and Albert I. Reuther “A Comparison of Eleven Static Heuristics for

Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing

Systems” Journal of Parallel and Distributed Computing 2001

[15] Yu-Kwong Kwok and Ishfaq Ahmad “Benchmarking and Comparison of the Task
Graph Scheduling Algorithms” Department of Electrical and Electronic Engineering
The University of Hong Kong, Pokfulam Road, Hong Kong Department Of

Computer Science the Hong Kong University of Science and Technology, Clear

Water Bay, Hong Kong 1999

[16] Yu-Kwong Kwok and Ishfaq Ahmad “Static Scheduling Algorithms for Allocating
Directed Task Graphs to Multiprocessors” the Hong Kong University of Science

and Technology1999

[17] Howard Jay Siegel, Shoukat Ali “Techniques for mapping tasks to machines in
Heterogeneous computing systems” Journal of Systems Architecture 46 627±639

School of Electrical and Computer Engineering, Purdue University, West Lafayette,

IN 47907-1285, USA 2000

[18] Henri Casanova, Arnaud Legrand, Dmitrii Zagorodnov and Francine Berman
“Heuristics for Scheduling Parameter Sweep Applications in Grid Environments”

Proc. 9th Heterogeneous Computing Workshop (HCW) Cancun, Mexico 2000

[19] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling independent tasks
on no identical processors,” Journal of the ACM, Vol. 24, No. 2, Apr. 1977

66

[20] Howard Jay Siegel and Shoukat Ali “Techniques for Mapping Tasks to Machines in
Heterogeneous Computing Systems” Purdue University School of Electrical and

Computer Engineering West Lafayette, IN 47907-1285 USA June 1999

[21] Henri Casanova, Graziano Overtelli, Francine Berman and Richard Wolski “The
AppLeS Parameter Sweep Template: User-Level Middleware for the Grid”

Computer Science and Engineering Department University of California, San Diego

USA 2000

[22] T. Yang and A. Gerasoulis “DSC: Scheduling Parallel Tasks on an Unbounded
Number of Processors”, in IEEE Trans. on Parallel and Distributed Systems, vol. 5,

no.9, pp.951--967, 1994

[23] S. Darbha and D.P. Agrawal “Optimal Scheduling Algorithm for Distributed
Memory Machine” in IEEE Trans. On Parallel and Distributed Systems, vol. 9, no.

1, pp. 87-95, January 1998

[24] A. Radulescu and A.J.C. van Gemund, “Fast and Effective Task Scheduling in
Heterogeneous Systems,” The 9th Heterogeneous Computing Workshop (HCW),

pp.229238, Cancun, Mexico 2000

[25] M. Wu and D. D. Gajski, “Hypertool: A programming aid for message-passing
systems IEEE Trans. Parallel and Distributed Systems, vol. 1, pp. 330–343, July

1990

[26] M. Wu “MCP Revisited” Department of Electrical and Computer Engineering The
University of New Mexico

[27] Andrei Radulescu and Arjan J.C. van Gemund “On the Complexity of List
Scheduling Algorithms for Distributed-Memory Systems” Faculty of Information

Technology and Systems Delft University of Technology The Netherlands 2000

[28] Andrei Radulescu and Arjan J.C. van Gemund “Fast and Effective Task Scheduling
in Heterogeneous Systems” Faculty of Information Technology and Systems Delft

University of Technology The Netherlands In Proceeding of Heterogeneous

Computing Workshop 2000

[29] Yu-Kwong Kwok and Ishfaq Ahmad “Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors.” IEEE

Transactions on Parallel and Distributed Systems 1996

[30] Min-You Wu and Wei Shu “On Parallelization of Static Scheduling Algorithms”
IEEE Transactions On Software Engineering Vol.23 No.8 pp.517-528 1997

[31] Rajkumar Buyya and Manzur Murshed Gridsim: “A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid computing.”

67

The Journal of Concurrency and Computation: Practice and Experience (CCPE),

14(13-15), 2002

[32] William H. Bell, David G. Camerona, Luigi Capozza, A. Paul Millar, Kurt
Stockinger, and Floriano Zini “Optorsim - A grid simulator for studying dynamic

data replication strategies.” International Journal of High Performance Computing

Applications, 17(4) 2003.

[33] Henri Casanova, Arnaud Legrand, and Loris Marchal “Scheduling distributed
applications: the simgrid simulation framework.” In Proceedings of the third IEEE

International Symposium on Cluster Computing and the Grid (CCGrid'03) 2003

[34] Hiroyuki Ohsaki, Soushi Watanabe, and Makoto Imase “On Dynamic Resource
management Mechanism using Control Theoretic Approach for Wide-Area Grid

Computing” by in Proceedings of IEEE Conference on Control Applications (CCA

2005), 2005

[35] Eddy Caron, Vincent Garonne and Andrei Tsaregorodtsev “Evaluation of Meta-
scheduler Architectures and Task Assignment Policies for high Throughput

Computing” by Proceedings of 4th Internationnal Symposium on Parallel and

Distributed Computing Job Scheduling Strategies for Parallel Processing(ISPDC'05)

2005.

[36] Y. Yang and H. Casanova “RUMR: Robust Scheduling for Divisible Workloads” by
Proceedings of the 12th IEEE Symposium on High Performance and Distributed

Computing (HPDC-12), Seattle, June 2003

[37] Y.K. Kwok and I. Ahmad “Benchmarking the task graph scheduling algorithms.” In
Proc. Int'l Parallel Processing Symp. / Symp. on Parallel and Distributed Processing,

1998.

68

