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Reproducibility and verifiability are core scientific principles, but nevertheless they are

not easily achievable for scientific computations. The main reason is the immense com-

putational power and storage needed for some of the computations. Another reason is

the storage of the results in data silos that are only limited accessible. This work pro-

poses a solution to the problem by introducing a distributed blockchain or public ledger,

that keeps track of all computations and related data, makes them verifiable, reusable

and reproducible. The resulting overlay network makes scientific computations not only

more transparent, but also enables sharing of storage and computation resources. Addi-

tional to the specification of the blockchain and the related protocol, the work provides

a proof of concept implementation.
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Chapter 1

Introduction

“Science is nothing but perception.”

— Plato

If science is nothing but perception, access to scientific results, as well as all intermediate

and related knowledge, is essential to form a grounded and scientific opinion about a

topic or field and build on top of it. That was trivial in the past centuries, because

one person could learn the whole knowledge of humanity, although it is impossible in

the 21th century. Take for example early scientists, they had a holistic understanding

of all human scientific knowledge. That is only possible if the available knowledge is

comprehensive and not too extensive. In comparison the modern scientist is highly

specialized and not able to have in-depth knowledge about his or her own field, only in

a specific subfield. Human brains are evolutionary hardwired for survival and not for

data and computational intensive scientific work [Cha13]. As compensation we rely on

technology, but in the end a human scientist has to evaluate and use the results.

1.1 The Problem

Technology so complex that it could not be understood by one single person, introduces

a set of new problems. For example the internet, originally meant as free and open

platform, accessible by everybody and as “knowledge database”, has moved towards

islands of data silos. This trend of vendor lock-in, could be seen in social media platforms

(Figure 1.1), in mobile app stores (e.g. Apple App Store, Google Play), for digital

contents (e.g. Amazon Kindle), but also in scientific communities. This paper will focus

on the latter and propose a potential solution, that could be deployed on top of the

current infrastructure, without violating existing workflows used by scientists. Vendor

1



Introduction 2

Figure 1.1: Depiction of social media data silos. The same trend could also be seen
in other parts, e.g. for digital contents, like ebooks, or app store, but most importantly

and worrisome for scientific results.
Source: Unknown/Various, has gone viral a few years ago.

locking may have a place in industry, but, except for well defined border cases, not in

science. One example of an exception is medical research, involving confidential patient

data.

In order to pinpoint the concrete problem - why most scientific results are only repro-

ducible, verifiable and reusable to some extend or not at all - the problem is broken

down into the following high-level categories:

Technology Heterogeneity: The vast amount of different computation and data

storage frameworks, but also the existence of closed and private infrastructure, creates

data silos, with inaccessible scientific results. Also if results are published, valuable

information is lost, e.g. the path to the results via traceable intermediate steps.

Result and Data Publication Process: The published results are only part of the

complete experiment or computation. Moreover interpretations of raw data can have

a subjective bias, e.g. by cherry-picking suitable data [Bal15]. Without access to the

original data and without a method to verify the results by reproducing them, it is

nearly impossible to verify the overall scientific claim.

Publisher Access Rights: In most cases the publisher gets all access rights to the

publication and the resulting commercialization, by making the papers only accessible

via expensive subscription fees, makes them even less accessible.

This paper tackles the challenge of Technology Heterogeneity and provides in the

process a solution to the Result and Data Publication Process issue. The Pub-

lisher Access Rights point is a social-economical problem and can not be solved with

a scientific or technical solution. Hence, it will be ignored in the scope of this work,

although the author encourages the scientific community to face this well known and
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Figure 1.2: The Economist, issue October 31st - November 6th 2015, featuring
Blockchain technology

behind-closed-door discussed issue and start a public discussion, with the goal to sepa-

rate commercial from scientific interests.

1.2 The Enabler Technology

The emerging of new technologies allows the evaluation of previous challenges and the

investigation of new potential solutions. The same way as the internet has created a

new ecosystem and changed society and the economy in a fundamental way, a new big

technology wave may be on the rise. This new technology, with the name “blockchain”,

was first introduced as the digital currency Bitcoin [Nak08], at the end of 2008, and has

been applied since then in a variety of new applications. The fact that this technology

solves the double-spending problem without introducing a centrally controlled clearing

house, makes it suitable for a trust-less distributed ledger for non-copyable assets. The

encapsulating of transactions into blocks, chaining of these blocks and distribution to all

involved nodes makes historical transactions tamper-resistance. Each node cryptograph-

ically verifies the validity of this chain and all involved parts1. In contrast to classical

distributed databases, there is no trust-relationship between the nodes and the historical

data can not be changed anymore.

Most of the involved pieces of a blockchain, e.g. the underlying cryptography, are not

new, but the smart combination of them has triggered a discussion. This discussion goes

1Transactions and Blocks
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far beyond the technology and has reached, since the first emerging of the digital currency

Bitcoin in 2008, mass media and even conservative sectors, like financial institutions2

and was featured on the cover of The Economist (November 2015, see Figure 1.2).

Additionally, non-financial alternatives are investigated by different parties. A good

non-technical overview about blockchains is presented in the book Blockchain - Blueprint

for a new econonomy by Melanie Swan [Swa15a]. As of the writing of this paper, most

parts of the book are accurate, but that could change pretty quickly. As expected from

new technology driven fields, progress is measured in weeks, not in years or even decades.

A more futuristic paper was published by the same author under the title Blockchain

Thinking: The Brain as a DAC (Decentralized Autonomous Organization) [Swa15b].

The vast amount of projects and startups emerging in the space and the discussion of

futuristic, even crazy, ideas, but also the joining of more serious players, gives a good

indication that the technology is here to stay.

Figure 1.3: Comparison of VC investment in Bitcoin and the early internet.
Source: Pantera Capital - https://panteracapital.com/.

Blockchain technology is often compared to the internet in 1995, only time will show

if that statement is an over- or underestimate, but the venture capital investments as

shown in Figure 1.3 seam to support that claim. Also if the numbers are optimistically

chosen in favor of Bitcoin and inflation is not considered, it shows investments in Bitcoin

and not in the broader blockchain technology. Moreover, the general spirit of optimism

and the reaction of different stakeholders to this new technology is comparable to the

early internet age. A source, that underlies this point, is the blog post Why Bitcoin is

and isn’t like the internet by Joichi Ito (Director of MIT Media Lab) [Ito15].3 Indica-

tions of the importance of this technology are the number of related meetups and the

involvement major financial institutions. Like the internet before, the impact seams to

be omnipresent and spans across social classes and nearly all verticals.

2For example Banks and exchanges turn to blockchain published in the Financial Times
3 As of this writing Bitcoin core developers have joined the MIT digital currency initivate.
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1.3 Proposed Solution

In this thesis the above mentioned technology is used to propose and develop a dis-

tributed data structure, with related protocol, with minimal disruption and intrusion

to current workflows and frameworks. Instead of proposing yet another framework to

solve the problem, a technology agnostic solution, that could be integrated into the

existing landscape, is developed. After analysing the problem and investigating past,

unsuccessful solutions the following properties were extracted:

Technology Agnostic There is no need to reproduce current, available and well func-

tional infrastructure, e.g. computation and workflow engines. It is far more ef-

fective to develop a plug-and-play solution that could be integrated into different

technology stacks; from home computers and interent of things, via cloud services,

to grid infrastructure.

Transparent Scientific results must be traceable in a transparent way. Each involved

and interested party must be able to verify the validity of past computations.

Non-Intrusive The proposed solution must fit into current scientific workflows, with-

out the need to re-educate researchers.

Trusted The overall network and the confirmed results must be trustworthy, also if

singles nodes are not. More important than preventing malicious nodes from

submitting wrong results, is the cross validation of scientific results by multiple

nodes or entities.

With these key properties in mind, it is getting clear, that instead of another com-

putation and workflow engine, a trusted and cross-organizational meta-data store, on

top of existing infrastructure, is needed. This meta-data store should keep track of

computation requests and performed computations.

In this chapter, a short introduction to the problem was given. Additionally, the used

technology was introduced and the potential impact of it was explained. Furthermore

a first path to a solution was shown. Continuing with chapter 2, past and current

approaches are outlined and analysed. That includes not only related work about repro-

ducible, verifiable, reusable and transparent computations, but also related work about

the key technical concepts, used to solve the higher level problem. Chapter 3 bridges

the gap between the introduced blockchain technology and scientific computations. It

furthermore explains why this technology is key to solve this long standing problem.

Before describing in detail the solution and specifying all involved parts (chapter 5), a
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multi blockchain approach with different extensions is introduced in chapter 4. This

unconventional order should help the reader to understand the importance of sharable

transactions and what side-effect such a system has. Without limiting authority of

different parties, it can be nevertheless assured that computations can be shared and

reused. The accompanying implementation is described in chapter 6. In the following

chapter 7 the results are discussed. The paper concludes with chapter 8.

A blueprint how to develop a new blockchain can be found in Appendix A, followed by

the binary specification of transactions in Appendix B and blocks in C.



Chapter 2

Related Work

In this chapter the related work is outlined. It contains a domain-specific section, that

explains past and current efforts to make scientific computation reproducible. Addi-

tionally, it contains a technology section that describes available solutions which can be

used to solve the domain-specific problem directly or indirectly, by combining multiple

approaches.

2.1 Reproducible Scientific Computations

Making scientific computations reproducible is not a new problem and researchers across

fields agree that science must be more collaborative. The raise of Big Data has not solved

the problem, but made the collbaration between groups even more complex, e.g. collab-

oration with external parties, not originally involved in the research project. Different

fields have tried to tackle that problem in variable ways. For example earthquake engi-

neers have used a more social approach for their own field [FJ10], by trying to establish

standards for collaboration. In comparison other parties have tried to solve it from a

technical perspective [Jha+07; KKS08; Bec+13; SKC00]. A closely related paper to

the presented approach is Toward Executable Scientifc Publications [Str+11]. The here

presented approach does not directly specify a workflow and does not embed a workflow

into publications, but specifies a URI schema that can be used to reference a single

computation, as well as track and verify all related (linked) computations from there.

In difference to domain-specific solution of earthquake engineers, this paper is domain-

agnostic and can hence be used across all fields. The past technical solutions are based

on one or more specific frameworks or technology stacks, e.g. Grid infrastructure. This

7
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tightly coupling with existing frameworks introduces problems in perspective of obsoles-

cence. A more sustainable and future proof approach is to separate the computation and

storage frameworks from the part that makes the scientific computations reproducible.

2.2 Consensus at Large Scale in a Trust-less Environment

The most challenging part of a trust-less, large scale distributed ledger is to reach consen-

sus via node majority. In order to guarantee consensus related to executed computations

and to verify, via majority votes, the correctness of the results, the network has to agree

on valid transactions and encapsulate only them into blocks. Based on the fact that

each block can only have one predecessor and one or none (if currently last) successor,

the network has to agree on both the block order and content. Most importantly, each

node must have the same chain of blocks with the same ordered list of transactions per

block. More details and the concrete structure are describe later in the paper.

2.2.1 Pre-Blockchain Consensus Algorithm

The consensus problem in an untrusted environment was first described in the paper

The Byzantine Generals Problem [LSP82], published in 1982, and is now known under

the same name. Over the years different extensions and modifications were proposed

[C+99; Rei85; Bra87] in order to overcome the scalability problem and the static nature

of the algorithm (all nodes have to be known upfront). For more than two decades,

researchers in the field of computer science have tried to solve the Byzantine Generals

Problem in a more generic way, without completely solving it. The major challenges, till

today, are scalability and the dynamic nature of peer-to-peer systems, nodes join and

leave over time. Algorithm based on the original proposed solution to the Byzantine

Generals Problem require a fixed set of nodes, e.g. 2f+3 nodes to guarantee correctness

if less then f nodes are malicious or failing, or a slight variation of it. Moreover the

need to exchange a multitude of messages between nodes hinders scalability. Another

problem is the existence of a broadcaster that propagates a value on which all correct

processes agree. It is shown later in the paper that in the here presented case there is

no single broadcaster and theoretically all nodes can broadcast potentially a different

value. A value in this case is a new block with an uniquely ordered transaction list, that

was not part of any previous block and is valid.

There are more consensus algorithms for closed and small scale networks, like Raft

[OO14], a simplified version of Paxos [Lam05], but with the same efficiency and short-

comings.
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Why a Blockchain overlay network has no single broadcaster?

In the context of the first blockchain designed and implemented, Bitcoin, there are mul-

tiple broadcasters aka. multiple nodes that are generating or mining blocks. Conflicting

blocks are minimized by making it computational expensive to generate new blocks. The

computational complexity is adapted by the network, based on the overall computation

power availability, assuring an average block generation every few minutes. The incen-

tive of a node to invest a vast amount of computation power is the gain of an asset that

has value, if successful, e.g. Bitcoin.

Byzantine Generals Problem Description: As mentioned previously, the Byzantine

General Problem was introduced the first time in 1982 [LSP82] and copes with failure

of involved nodes under the assumption that the number of such entities is less then 1
2 .

That means that 2∗f+1 nodes have to be deployed in order to assure that the majority

of nodes reach consensus if a maximum of f nodes are failing. The communication

overhead is high and scalability is limited, because each node has to communicate with

each other. Also after decades of research and the proposal of different modifications

these problems couldn’t be solved completely.

In summary that means the originally proposed solutions to the Byzantine Generals

Problem, including extensions and modifications, are not applicable for the following

reasons.

Dynamic Nodes In the here proposed solution, nodes join and leave the peer-to-peer

overlay network. This behaviour is not regarded as a fault, but as build-in func-

tionality.

Internet Scale Depending on the popularity of the scientific computations the under-

lying data structure and the overlay network must be able to scale.

Multiple Broadcasters In comparison to the original approach, each node is able

to broadcast a new value. This results in conflicting values, leading potentially to

network forks and inconsistencies in the long run. A single broadcaster in this case

would defeat the purpose of the solution and re-introduce a previously eliminated

party.

2.2.2 Blockchain

As mentioned previously, Bitcoin [Nak08] was and is a game changer. Before the intro-

duction of blockchain technology, more specifically the mining process and a consensus

algorithm that prevents double spending of assets, digital currencies needed a central
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clearing house to check for double-spending. In hindsight that was the reason why previ-

ous digital currency approaches, like [MN93; PHS98; Cla98], failed. Sometimes Bitcoin

is praised as solution to the Byzantine Generals Problem, although it is only applicable

for a specific usecase and it does come with a price. In order to guarantee the functional-

ity of the network and provide tangible value, the block generation (known as mining1)

changes automatically the hashing complexity, based on the current available compu-

tation power. For example if the complexity is not adapted, but the computational

power increases, more blocks are produced in a specific time frame. This behaviour

assures that blocks are only generated after a couple of minutes (currently 10), mini-

mizing the amount of conflicting blocks in the network. There are multiple downsides

to that approach, one of which is the “wasted” computation power. One article from

2013 estimates the computation power of the whole Bitcoin network as 256 times faster

than the top 500 supercomputers combined2. The article is most likely outdated and

the invested computation is now even higher. A resulting problem is the emerging of

ASIC miners. As of this writing the majority of mining is done with these Application

Specific Integrated Circuit miners, that are designed for Bitcoin mining or any other

hashing with the same algorithm. From a scalability point of view, the Bitcoin network

can handle at the moment a maximum of 7 transactions per seconds, because of the

block size restriction. In comparison, only the VISA network can handle around 10000

transaction per second at peak times3.

The limitations of Bitcoin mining, called Proof of Work, or for short PoW, has motivated

different parties to develop alternatives like Proof of Stake (PoS). In PoS nodes vote and

are selected based on the percentage of how much they own of the whole network. Such

alternative consensus approaches introduce a new set of problems and are not yet proven

in practise. There are further approaches that are hybrid solutions or build on top of

more classical consensus algorithm, presented in the previous section.

2.2.2.1 Proof of Work (PoW)

Used by: Bitcoin and most Altcoins4

Description: Consensus algorithm based on solving a complex mathematical problem,

which needs a lot of computation power, but can be verified easily. The network auto-

matically adapts the complexity of the problem, in order to guarantee that the network

1It is called mining, because the entity that generates the next valid block gets an amount of Bitcoin
as compensation.

2Global Bitcoin Computing Power Now 256 Times Faster Than Top 500 Supercomputers, Combined!
- http://onforb.es/1dcxVIN Accessed: 5. July 2015

3Bitcoin needs to scale by a factor of 1000 to compete with Visa. Here’s how to do it. -
http://wapo.st/1KuETz3 Accessed: 5. July 2015

4http://coinmarketcap.com/ - accessed: 5. July 2015

http://www.forbes.com/sites/reuvencohen/2013/11/28/global-bitcoin-computing-power-now-256-times-faster-than-top-500-supercomputers-combined/
https://www.washingtonpost.com/blogs/the-switch/wp/2013/11/12/bitcoin-needs-to-scale-by-a-factor-of-1000-to-compete-with-visa-heres-how-to-do-it/
http://coinmarketcap.com/
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is not flooded with conflicting blocks. In Bitcoin the network tries to assure that a

block is generate approximately every 10 minutes. This approach solves the consensus

by making it harder to generate new blocks and minimizes potential conflicts. Also if

not 100% accurate5, Bitcoin has shown that this approach is suitable for day-to-day use

and furthermore can be used to build a distributed system that is capable to transfer

and create a financial asset and prevent double spending.

Advantage: Deployed since the beginning of 2009 and has real financial value. The

protected digital asset, Bitcoin, can be exchanged to fiat currency, like Euro or Dollar.

Disadvantage: Rather high economical costs to “only” prevent double spending, high

latency (more than 10 minutes for first confirmation, up to an hour to be certain) and

poor scalability (max. of 7 transactions per second). Computations can be used to solve

scientific problems, e.g. cure cancer, but these altcoins are not yet widespread and if that

problem is solved and the mining algorithm is not generic enough, the block generation

algorithm falls back to the before mentioned problem of Bitcoin. Also not suitable for

smaller system, because it is easier to get 51% majority and control hence the network.

2.2.2.2 Proof of Stake (PoS)

Used by: Peercoin6, Tendermint7 (membership based on proof of stake)

Description: Voting mechanism based on the percentage of owned assets of the whole

network, posted collateral. Nodes with higher stakes are preferred. Different variation

of the approach, e.g. stakes are all issued upfront or over time, deflationary stakes to

increase fairness or penalties for bad behaviour.

Advantage: More economical, because costs are lower, also faster block generation,

that could solve the scalability limitations of PoW.

Disadvantage: Not yet proven to work in a real world setting. Debatable if distributed

consensus could be achieved with Proof of Stake [Poe15]. Additionally, “nothing at

stake” problem, where a node can vote for both variants of a chain fork, because it has

stakes in both branches, making double spending possible.

2.2.2.3 Stellar Consensus - SCP Quorum Slicing

Used By: Stellar8

Description: In the original paper [Maz] the algorithm is described as federated Byzan-

tine agreement (FBA) with the Stellar Consensus Protocol (SCP). Instead of having a

5Conflicting blocks and chain can occur, but the majority of the network will then favour one.
Additionally, the block generation of 10 minutes may vary.

6http://peercoin.net/ - accessed: 5. July 2015
7http://tendermint.com/ - accessed: 5. July 2015
8https://www.stellar.org/ - accessed: 5. July 2015

http://peercoin.net/
http://tendermint.com/
https://www.stellar.org/
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single, global consenus the approach introduces quorum slices (subset of nodes that

agree on facts) that together determine a global agreement. In comparison to the other

solutions the algorithm claims to satisfy all of the following properties: decentralized

control, low latency, flexible trust, asymptotic security.

Advantage: Claims to be faster than Proof of Work with flexible trust and asymptotic

security, based on cryptographic families with fine tunable parameters.

Disadvantage: Same as Proof of Stake, not yet proven to work in real world setting.

Dependent on the setup of quorum slices by the user.

2.2.2.4 Other Approaches

Currently multiple entities experiment with different alternatives to the here outlined

consensus algorithms. Most of the approaches have not yet reached a degree of maturity

that allows to analyse them.

The only tested consensus algorithm at scale9, with enough real value that justifies a

large scale attack, is Bitcoin with Proof of Work. Proposed alternatives, like Proof of

Stake and hybrid solutions are currently explored and deployed in smaller scale or not

at all. That is also the reason why potentially each blockchain, in the here proposed

blockchain ecosystem, can implement a different consensus algorithm. Additional to the

advantage of choosing the right algorithm for the task at hand, it allows also to test and

integrate new approaches, without breaking the ecosystem.

9Here scale means globally deployed and used as accepted payment method. The hard limit of 7
transactions per second is temporary ignored and will potentially be fixed in future releases of the
protocol.



Chapter 3

Scientific Computations and the

Blockchain

The previous chapter has described related work in the field of scientific computations

and Blockchain. This chapter will bridge the gap between the two fields and describe

why the Blockchain can make scientific computations, and computations in general,

reproducible, but also verifiable, reusable and transparent.

Figure 3.1: Visualization of the two, domain-specific, transaction types.

The here presented solution does not reproduce the functionality of computation frame-

works, but extracts instead meta-data of an execution and stores it in an tamper-resistant

and distributed way. Each execution request, or execution instance, is modelled in a

transaction that is part of one blockchain. The main fields of an execution request are

links to the input data (Input Data Reference) and the executable (Executable Refer-

ence). The related execution instances contain a link to the computed results (Result

Data Reference), as shown in Figure 3.1. The technical details are given in the subse-

quent chapters.

13
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Figure 3.2: Chain of properties that result in a more transparent computation envi-
ronment. If a transaction can be verified and comes from trusted sources the encoded
computation can be reproduced and after that reused. That makes the whole environ-

ment more transparent and allows to trace results back to the origin.

Figure 3.2 visualizes the properties needed for a transparent environment. Computations

are only executed if they were created by a trusted party. The linking of computations

to any form of identity allows to make them cryptographically verifiable, resulting in a

trusted and verified transaction, with related data, for execution or results, that can be

safely reproduced and later reused to build on top of it.

3.1 Key Properties

3.1.1 Trusted

Trust is a delicate and subjective metric that is hard to quantify. The approach, as

used in Blockchains, to mistrust single nodes, but trust the collective is also used for

the domain-specific Blockchain ecosystem that is developed in the scope of this work.

It basically means that computation requests are executed by multiple nodes. This

redundancy comes with performance costs, but if executed on enough and independent

parties, it could be assumed that the result as computed by the majority is correct. A

malicious actor or group has to control more than half of the involved nodes.

If a number of malicious nodes mn is expected, the following formula computes the

needed redundancy r to assure that the majority reaches the correct result. r nodes

have to execute the same computation and publish the results to the network.

r = 2 ∗mn+ 1

The formula calculates r, the number of nodes that have to execute the same computa-

tion request and publish the results to the network, if it is assumed that there are mn

malicious nodes in the network. Then all, assumed correct, results of the majority are

added to a new block and hence confirmed.
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A high redundancy value decreases the changes that a malicious group could manipulate

results, but comes with a performance penalty. It means that the overall network can

execute less computation requests, because precious resources are used to prevent mali-

cious intent. This approach assumes that the overlay network responsible for a specific

Blockchain will have a certain degree of malicious players. In a completely untrusted

network the value of expected malicious nodes mn will be higher than in a trusted envi-

ronment. Also if assumed that all involved parties are trustworthy, e.g. if a Blockchain

is used for a specific research project, were each involved party is part of a consortium, a

certain degree of uncertainty should be expected. Also without malicious indent results

could be wrong, e.g. because of error or malfunctions.

How to determine the number of redundancy? It can not be assumed that

enough information is available to know the number of expected malicious actors in

the network. Additional, if known this number will most likely change over time. The

solution could be a build-in mechanism that determines this value automatically and

constantly. By having, so called, reference computations with known results, malicious

or malfunctioning actors can be detected. By combining that approach with a reputation

system these actors can be banned or ignored, e.g. each wrong result that is propagated

to the network decreased the reputation value and each correct result, that is included

in a block and hence confirmed, increases it. One suitable algorithm could be the

EigenTrust algorithm [KSG03], originally used for reputation management in peer-to-

peer filesharing networks, or any other reputation algorithm for peer-to-peer networks.

By combining the reputation mechanism with strong digital identities1 Sybil attacks

could be prevented, identities could not be easily forged.

3.1.2 Verifiable

Each computation request, with related execution instances, must be independently

verifiable. An easy understandable and computational cheap verification process, based

on cryptography, allows each involved or interested party to verify if the data source

is really the entity that it claims to be (signed transactions) and that the published

data was not altered (data hashes as part of the transaction). The process of detecting

corrupted or intentionally modified data is shown in Figure 3.3. By using a multilayer

protection approach, it is possible to detect changes of referenced and external stored

data and transaction modifications. Referenced data is protected by simple file hashing

and including these hashes inside a transaction. To assure that the transaction could

1Strong digital identities are governement issued IDs that are backed by cryptography and could be
used in the digital world. One prominent example is the Estonia e-Residency - https://e-estonia.com/e-
residents

https://e-estonia.com/e-residents
https://e-estonia.com/e-residents
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not be modified by an unauthorized party, the issuer signs the transaction with a private

key. It not only protects the transaction from changes, but proofs also the identity of

the issuing party, increasing trust.

Figure 3.3: Detection of data or transaction corruption by multi layer protection.

As described in the previous section 3.1.1 only correct transactions can be part of a

block. By using a majority vote and the right selection of redundancy the verifying

node can be quite certain that results are correct. Moreover the chaining of blocks

makes it over time harder and harder to modify past transactions. Combined with the

fact that each node has the whole blockchain stored locally, makes it nearly impossible

to compromise a once established fact about the validity of a transaction. In order to

verify past computations, the node can access the local stored blockchain and verify all

computations that are part of this blockchain. A valid and well behaving node will reject

invalid transactions and blocks, making it even harder to inject invalid data.

3.1.3 Traceable

Trust (section 3.1.1) and verification (section 3.1.2) establishes an environment where

nodes in the network can agree on basic facts, e.g. the correctness of computations, but

that is not enough for scientific computations. Given a specific (final) result it must be

possible to trace the result back to the origin and if necessary reproduce or reuse each

intermediate step. Similar to workflow engines, where a specific description language is

used, to define worklows, the here presented approach contains a build-in mechanism

to define a flow of transaction by references. For starters there is always a reference

from an execution instance, that publishes the computed results, back to the execution

request, including the executable and input data. Additional to the possibility to have

different data source links, e.g. a p2p filesharing magnet link or data on a shared cloud

storage, data can be referenced from a previous transaction. This makes it possible

to use the result of one computation as input for another or the reusing of executables.
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Referenced data has not be explicitly copied, but can be fetched from the original source

if needed. The input and result references could be used to trace computations. It is

also possible to find executions that use the same executable, but with different input

data. Workflows are not explicitly specified, but a result of data reuse. Although, any

existing workflow manager can be used to specify a worklfow on top of this transaction

model. Making the approach technology agnostic.

3.1.4 Reproducible

Each execution request transaction can be re-executed if necessary. There is no difference

between a first time execution and consecutive ones, except that the result is not included

in a block. This property makes all computations inside a blockchain reproducible. The

meta data, and the referenced data, encapsulated in transactions and verified in blocks

are adequate. After the re-execution the results can be verified against results computed

earlier and verifed by the network.

3.1.5 Reusable

Another scientific principle is the reusability of computed results, but also developed

executables and existing input data. Reusability allows to build on top of new results

and achievements. As described in section 3.1.3 all data can be reused by referencing

it.



Chapter 4

System of Blockchains

In comparison to other blockchain projects and the reference blockchain Bitcoin, the here

presented approach comes with build-in sidechain [Bac+14] support, but without the

need of a main blockchain and without the need to handle assets exchanges. The main

motivation behind the splitting of scientific, or general, computations into smaller units

is the project structure of such computations. Results and other data are shared between

few projects or the whole field, but most times are not reusable in other fields. With that

in mind it makes sense to encapsulate a set of computations, with related workflows, in

independent blockchains. To keep the specification future proof and to facility sharing of

data between blockchains, by referencing cross blockchain transactions, the transactions

come with build-in support for references in external blockchains.

Allowing references from one blockchain to another, as build-in mechanism, allows shar-

ing of results, but also executables and input data, across projects. Additional it allows

each project to maintain and release customized blockchains.

+ Advantages

Solves Scalability Problem Maintaining smaller blockchains solves the scalability

problem during block generation. Consensus can be easier reached in these smaller

overlay networks.

Independence By allowing each project and/or organization to maintain an own blockchain,

there is no need to maintain a shared overlay network. Additional it allows private

blockchains for specific scenarios, where the data can not be shared, e.g. because

of privacy or regulatory issues.

18
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Interoperability By design the blockchain structure and protocol supports cross-blockchain

references, in order to not compromise the scientific principles of reproducible, ver-

ifiable, reusable and transparent computations.

Referencable Each entity inside the blockchain, e.g. input data, executables and re-

sults, are not only referable by other blockchains, but also from papers and other

publications. The unique URI to the data can be used to refer to a data entry,

but also to a complete workflow, empowering executable scientific computation as

presented in [Str+11].

Smaller blockchains size Instead of downloading and managing a big global blockchain,

with all transactions ever made, this approach allows to handle only the needed

(own and referenced) blockchains. Old blockchains can be hence purged, without

compromising the verifiable of new blockchains.

- Disadvantages

Blockchain management overhead The need to maintain multiple blockchains in-

troduces, to some extend, an overhead. The fact that the blockchain management

is build into a lower level protocol reduces this overhead to some extend, at least

for application developers and researchers that are using the system.

4.1 Cross-Blockchain References

As mentioned in the previous chapters the idea behind this project is to make compu-

tations reproducible, verifiable, reusable and transparent. The encapsulation of compu-

tations in separated project or organization specific blockchains should be hidden inside

the protocol and not be visible to the user. To maintain these properties it is necessary

to have a build-in mechanism to share data references across blockchains. The same

mechanism makes it possible to share results in scientific publications or any means

appropriate, e.g. project website, posters, presentation slides.

4.1.1 Reference Specification

The following formal URI specification, in EBNF [Pat80], is used to reference fields

inside transactions from the same or external blockchains. By using the magicno, the

identifier of the blockchain, the transaction id and the referenced field, it is possible to

uniquely reference each data entry.
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〈URI 〉 ::= ‘‘blockchain:’’ 〈magicNo〉 〈trx 〉

〈trx 〉 ::= ‘‘?trx=’’ 〈trxid〉 [ ‘‘#’’ 〈field〉 ]

〈field〉 ::= ‘‘inputDataRef’’ | ‘‘executableRef’’ | ‘‘resultId’’ |
‘‘resultDataRef’’

It is also possible to only reference a single blockchain, e.g. for the initial sharing where

the research partners can publish project related transactions, or a single transaction.

Examples with shortened magicno and trxid, normally a sha256 hash.

• Result reference:

blockchain:01ba47...ca546b?trx=96dcec...9824cc#resultId

• Executable reference:

blockchain:01ba47...ca546b?trx=96dcec...9824cc#executableRef

• Input reference:

blockchain:01ba47...ca546b?trx=96dcec...9824cc#inputDataRef

• Specfic result reference:

blockchain:01ba47...ca546b?trx=13a804...58c43a#resultDataRef

Cross-blockchain references inside transactions are automatically dereferenced by first

checking if the blockchain is locally available, if not a DHT lookup is made. After

fetching the blockchain or waiting until the referenced transaction is locally available,

the field is extracted and the new reference is dereference the same way, or alternatively

the data is fetched and used.

Not part of the reference implementation, but a feature needed for production use, is

a user interface that allows to dereference links shared in publications and via other

means. The steps are the same as described above, with the only difference that they

are trigger manually by providing the link.

4.1.2 Hierarchical blockchain references

By introducing a generic transaction for transaction sharing across blockchains, it is

possible to build hierarchical blockchains with a more abstract representation for higher

blockchains in the hierarchy. In the scope of this domain specific blockchain the lowest

blockchain keeps track of each execution with related flow. This representation is related

to one specific project, e.g. a four year EU-funded research project. Main results
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Figure 4.1: Example of hierarchical blockchains, with one shared project over two
organizations.

are shared in a blockchain one level higher. This blockchain does not contain each

intermediate result, but only relevant data for the organization or the broader field.

Such a hierarchical structure makes it possible to have smaller blockchains, that keep

track of relevant results and if necessary each result can be traced and verified by fetching

blockchains one level deeper. An example of such a hierarchy is shown in Figure 4.1.

Additional to the technical advantage, to have smaller blockchains with only relevant

data, this structure reflects also real world organizational structures, making the inte-

gration easier.

4.1.3 Accessing the overlay network of an unknown blockchain

Using independent, but linked, blockchains and the dynamic nature of the overlay net-

works that manage these blockchains, introduces the challenge of finding the right nodes.

One solution to this problem is the encoding of entry point nodes inside the reference.

From a theoretical point of view that would solve the problem, but makes the lookup

unreliable and dependent on the specified entry point. What happens if this entry point,

or even entry points, are not reachable? One solution, borrowed from file sharing tech-

nologies, is the use of a Distributed Hash Table, or DHT for short, to lookup nodes

that control specific data, in this case blockchains. That solution not only scales well,

but also adapts, in nearly realtime, to leaving and joining nodes and structure itself

accordingly.
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Figure 4.2: Cross blockchain lookup, if referenced blockchain not known

In Figure 4.2 a cross blockchain lookup is shown, on the example of two blockchains X

and Y, from the perspective of Node A. In this example one node from blockchain Y an-

nounces participation to the global Distributed Hash Table. After that Node A receives

an internal transaction in blockchain X that references a transaction in blockchain Y

(not shown here). In order to be able to dereference the data, it has to fetch and verify

the blockchain Y. By looking up managing node of blockchain Y in the DHT, Node A

knows from where to fetch the blockchain.

4.2 Future Extensions

The here proposed hierarchical multi-blockchain approach can be extended in multiple

ways. The inherent structure has some basic semantic meaning and can be used to build

on top more sophisticated search mechanism. Without going into detail or proposing

a first approach, it can be said that the higher levels expose a more abstract view,

are hence faster searchable. Most times this view on the computations, that focuses

only on the results is adequate enough. Although, if raw data or executables should be

reused it is necessary to be capable to search over all computations ever made. This,

much broader, search is more expensive and can be supported with technologies such

a semantic triple stores [Roh+07], graph databases [Jia+07] or alternatives. A further

simplification and optimization for search algorithms build on top is the introduction of
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a computational blockckhain classification ontology, that classifies transactions during

creation time.

The underlying trusted distributed data structure, that is shared via multiple parties,

makes is possible to deploy multiple technologies and approaches on top, without break-

ing the underlying trusted core. Meaning that different parties can deploy different

extensions, without breaking the interoperability.

The here proposed multi-blockchain approach, with related discovery mechanism and

URI schema for web-compatible sharing capabilities, is only the minimal set to guarantee

interoperability. It was developed with extensibility in mind, in order to increase the

future proof nature, needed for such systems.



Chapter 5

Blockchain and Protocol

Specification

5.1 Blockchain Specification

5.1.1 Transactions

One of the main concepts of a blockchain are transactions. This section defines the two

transaction types, ExecutionRequest and ExecutionInstance. An ExecutionRequest is

used to submit a new computation to the network. Additional to references to input

data and executable, it also contains an identifier for the result. By introducing such

a field, it is possible to reference the result, without waiting for the computation to

finish. After executing a ExecutionRequest a new transaction of type ExecutionInstance

is created. This transaction references the ExecutionRequest and includes also a reference

to the result data. Only valid transactions, as computed by the majority of nodes,

are confirmed by the network and added to a new block. A high-level view of both

transactions and the relationships between them are visualized in Figure 5.1.

Fields only relevant for the serialization are not explicitly explained in this section, e.g.

the type field or all length fields, but can be found in Appendix Table B.1 and B.2. These

tables include a short description, the byte size of each field and all relevant information

for an implementation.

Header Section

Both transaction types share the same header structure. The following list explains the

most important fields and the functionality.
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Figure 5.1: Visualization of the two, domain-specific, transaction types.

Transaction ID This field is used to uniquely identify the transaction and assures

that it can not be modified. The ID is computed by hashing the hexadecimal

representation of the rest of the transaction. As hashing algorithm a double SHA-

256 is used.

Timestamp The time when the transaction was created.

Version The protocol version that was used to create the transaction. Used for stepwise

roll-outs of new protocol versions, without breaking existing implementations.

Type Could be either ExecutionRequest or ExecutionInstance.

ScriptSig Extensible scripting field that is currently used for cryptographically signing

the transactions. A signature has the following format “$signature $publicKey

OP CHECK SIGN BTC” and uses the same format and algorithm as Bitcoin.

The specified OP code constant allows the future switch to another algorithm.

The signature links the transaction to an identity, that could be as simple as a

cryptographic keypair or as complex as a strong identity, verified by an identity

provider, and protected by smart contracts1.

Data Section

Both transaction types have a different data section. An ExecutionRequest has the

fields, Input Data Reference, Executable Reference and Result ID. In comparison an

ExecutionRequest has only the field Result Data Reference.

All fields ending with the term Reference can have the following format:

1Smart contract backed strong identities are a pretty new concept and could be used complementary to
this system, in order to increase trustworthiness in the system, by validating institutions and individuals
involved in a project. The author of this paper works on such an identity layer.
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Shared Data Storage Local reference to a remotely shared data storage, prefixed by

file://$$SHARED DATA DIR$$/. Could be for example SSHFS, Amazon S3,

SMB or any other remote mountable format.

Magnet Link URI scheme as used de facto standard in p2p filesharing, see http:

//magnet-uri.sourceforge.net/magnet-draft-overview.txt.

Internal Reference Cross-blockchain transaction reference as described in subsection

4.1.1

Other Future extensions are possible, as long as they are released and rolled out with

a version update.

5.1.2 Block

Figure 5.2: Simplified Blockchain structure and linking of blocks.
Source: http://bitcoin.org, Accessed: 25. November 2015

A Block is a collection of transactions with a unique order. Each block has exactly

one predecessor and exactly one or none successor, dependent if it is the last generated

block or not. Each block is cryptographically linked to all predecessor and a change

in any block generated in the past, breaks all newer blocks (see Figure 5.2). These

properties make older blocks, and hence the containing transactions, tamper-resistant.

By including cryptographic proof of referenced files, hashing of file content, it is possible

to detect changes in external referenced files. The resulting blockchain acts as proof

of execution, but also protects results from changes. Additional it allows to trace back

execution flows to the beginning and have a global overview about all computations ever

performed. Per definition a transaction is verified if it is part of a valid block that is

part of the blockchain, or formulated otherwise, if the majority agrees to include that

block in the agreed blockchain.

http://magnet-uri.sourceforge.net/magnet-draft-overview.txt
http://magnet-uri.sourceforge.net/magnet-draft-overview.txt
http://bitcoin.org
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5.1.2.1 Block Generation

The network has to agree on the next block, but also on a uniquely ordered transaction

list. If the majority of the network accept the next block and uses it as reference for a

successor block the included transactions are confirmed.

Purposely, this work does not limit the choice of a consensus algorithm. Dependent

on the network size that could be something like a modified version of the Byzantine

Generals Problem algorithm or alternatively the Proof of Work of Bitcoin, if computation

power could be spared and nodes can be incentivized to participate. The first part is

assumed to be false, the latter true.

The developed multi-blockchain approach allows to have smaller overlay networks that

are responsible for the block generation. In combination with cross- blockchain references

global interoperability is assured. Breaking the consensus problem down to a size that

is managable by most well-tested algorithms, e.g. Paxos [Lam05] and similiar.

The proposed framework allows also to substitute the block generation aka. conensus

algorithm rather easily, assuming that the majority of the blockchain nodes agree on the

change.

Figure 5.3: Transaction Sets inside a Block.

Important for the block generation, in the context of the scientific computation engine,

is the fact that all ExecutionInstances have to be part of the same block as the related

ExecutionRequest, see Figure 5.3. This allows the node that generates this block to

verify if the majority of the nodes have computed the same result and only then add all

transactions to the new block. If that is not the case, e.g. if every node has computed

a different result, the computation transactions are rejected. Majority means at least

50% + 1.

When are ExecutionRequests executed and how does that relate to the block generation?
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There are two potential ways when a node can execute a received ExecutionRequest, (a)

when a new transaction is received, that is not yet part of a block or (b) when a new block

is received, that includes one or more ExecutionRequest transactions. In order to have an

additional check of the validity of an ExecutionRequest with related ExecutionInstances,

computations are immediately executed when a new transaction is received. That allows

to verify only valid ExecutionRequest with related ExectionInstances if the majority of

nodes have published the same results, otherwise all related transactions are ignored

by the network. A positive side-effect of this design choice is that one block contains

a complete computation with request and results. That makes not only conceptional

sense, but improves also performance. A node that receives a new block can be sure

that all relevant information are part of this block, without waiting for potentially new

results. If nevertheless a new computation has to be performed a new ExecutionRequest

transaction can be created.

Formalization of the steps from a single node perspective:

1. The node receives a new ExecutionRequest transactions.

2. The node checks if it has related ExecutionInstance transactions.

Through network delays and time that it takes to propagate a transaction it is

possible that computational results are received before the actual request).

(a) Number of known ExecutionInstances is lower than the threshold value α:

Execute the ExecutionRequest and propagate the results in a new Execution-

Instance to all known nodes.

(b) Number of known ExecutionInstances is higher or equal than the threshold

value α:

If this transaction set (request + related instances) is not yet part of a block

generate a new block.

3. The node responds to each new block request of the same blockchain and that

reference the previous block with the new block.

5.1.3 Scripting Language

The script field ScriptSig inside a transaction specifies how the transaction should be

validated. The current version only accepts the following format, but is extendible for

future more complex scenarios.

$signature $address OP CHECK SIGN BTC
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For compatibility and the possibility to re-use the intensive work done by the open source

community the keypair uses the same cryptographic algorithm as Bitcoin does. It uses

the Elliptic Curve Digital Signature Algorithm (ECDSA) [JMV01]), with the elliptic

curve secp256k1, and the shortened version of the public key also known as address.

The $address in this context looks the same as a Bitcoin address and is derived from

the public key. The $signature is computed signature of the hexadecimal representation

of the binary transaction (excluding the ScriptSig field), made with the related private

key. The OP CHECK SIGN BTC defines the action and the keypair format and is

used to differ between current and future implementations. Such a structure makes it

also possible to use different cryptographic algorithm at the same time and in the same

blockchain.

Figure 5.4: Shortened address derivation from public key.
Source: http://en.bitcoinwiki.org/Bitcoin_address, Accessed: 25. November 2015

The derivation of the address from the public key is shown in Figure 5.4. The shortened

version is easier to share and manually to validate.

5.2 Protocol Specification

Message are exchanged via TCP in raw binary format. The internal representation of the

message with related payload is transformed to a byte sequence in big endian notations.

The following table specifies the format of a raw package send between nodes over the

wire.

A node that received a package, as specified in Table 5.1 always performs the following

generic steps:

1. De-serialize the raw binary package

http://en.bitcoinwiki.org/Bitcoin_address
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MagicNo Command PayloadSize Checksum Payload

Size (Byte) 32 1 4 4 dynamic

Description Blockchain
ID

Command
flag (see
below)

Size of pay-
load in bytes

Payload
checksum

Content to
transmit

Creation Double
SHA-256
of UUID

Predefined
commands

Size in bytes
of the pay-
load

First 4
Bytes
of hash
checksum
of the
payload
content
(hex repre-
sentation
of seri-
alized
version)

The pay-
load that
has to be
transmit-
ted. Differs
based on
command,
e.g. trans-
action or
block

MagicNo Command PayloadSize Checksum Payload

Table 5.1: Specification of a serialized package.

2. Compute the checksum of the payload (sha256(sha256(payload))) and validate the

first four bytes against the provided checksum field. This validation is needed to

detect compromised payloads, e.g. because of transmission errors.

3. De-serialize the payload if necessary, e.g. to a Transaction or Block

4. Execute the command related logic

Command Name CMD Flag Description

VERSION 0x00 Initiates handshake and it is the first pack-
age send to a new node

VERSION ACK 0x01 Response to the VERSION package and
finalizing of the handshake

REQUEST BLOCK 0x02 Periodical message to request a newer
block

BLOCK 0x04 Response to REQUEST BLOCK request

TRX 0x08 Propagation of a transaction

CONFIRM TRX 0x10 Confirmation that transaction was re-
ceived

GET PEERS 0x20 Request all known nodes, related to a spe-
cific blockchain, from a node

PEERS 0x40 Response to the GET PEERS request
with a list of known nodes

Table 5.2: Specification of all package types available in the protocol.
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5.2.0.1 Example: Serialized VERSION package

0000: 9595 c9df 9007 5148 eb06 8603 65df 3358 ..I_..QHk...e_3X

0010: 4b75 bff7 82a5 10c6 cd48 83a4 1983 3d50 Ku?w.%.FMH.$..=P

0020: 0000 0000 146b c383 fdff ffff ff00 0000 .....kC.}.......

0030: 0000 0000 0041 d553 2c1b 8000 00 .....AUS,....

Message Header:

9595 c9df 9007 5148 eb06 8603 65df 3358

4b75 bff7 82a5 10c6 cd48 83a4 1983 3d50 - Blockchain MagicNo

00 - VERSION command flag 0x00

0000 0014 - Payload size; In this case 20 Bytes.

6bc3 83fd - 4 Byte Checksum of Payload

Version Payload:

ffff ffff - Protocol version of the node

0000 0000 0000 0000 - Supported services

41d5 532d 9640 0000 - Unix timestamp. In this case:

Fri May 08 2015 15:12:57 GMT+0200 (CEST)

5.2.0.2 Example: Serialized VERSION ACK package

VERSION ACK has the same structure as the VERSION message, except the change of the command

flag from 0x00 to 0x01.

5.2.1 Inter Node Communication

The following section describes the interaction of a node with the network. The first time a node joins

the network it bootstraps itself by connecting to a specific bootstrap server or any other node in the

network. The bootstrap server is not needed and introduces a single point of failure. Nevertheless it is

used until a bigger network with stable nodes is available.

Definition of ’Boostrap Server’ A boostrap server is a node that does not host any blockchain,

nor any business logic, it only provides an entry point to the Distributed Hash Table (DHT),

containing references from magicNo (blockchain IDs) to node IPs that manage this blockchain.

lookup($magicNo) Accepts lookup calls with the magicNo as input parameter and returns a

list of all nodes. Each entry reflects an enpoints in the form of IP:Port where the blockchain

handler that manages that specific blockchain runs.

announce($magicNo, $IP, $Port) Accepts announce messages from nodes. An announce

message means that the specified node runs a blockchain handler on the specified port and

IP, that manages the blockchain with the specified magicNo.

Definition of ’Node’ A participant in an overlay network that manages at least one blockchain and

actively participates, by verifying and forwarding transactions and querying for new blocks.
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Defintion of ’Peer’ A remote node that has an active connection with the local node. More specifically

the handshake was successfully completed and if the Peer is online it will be queried for new blocks

and new transactions are send to it.

Figure 5.5: First time handshake to remote node and periodical block requests.

The following steps describe the actions that have to be performed by a single node, in order to be part

of the network. These steps are executed for all known blockchains independently. A node can only

participate in the blockchain ecosystem if at least one blockchain magicNo is known. As described in

the previoius chapters, the blockchain magicNo could be retrieved from a scientific paper, where it was

shared as part of a computation or the research project. It could be also shared in private, e.g. by e-mail

or instant messaging.

1. Check how many active connections to nodes with the same blockchain are open (foundNodes).

(a) If foundNodes >= MAX PEER CONNECTIONS

Nothing to do.

(b) If foundNodes < MAX PEER CONNECTIONS

Continue with step 2

2. Find inactive peers in the local database and try to connect to them. If none or not enough peers

are found a DHT lookup with the current magicNo is triggered, as shown in Figure 4.2.

3. Connect to the newly found or previously known and now online peers and start periodical block

requests. Figure 5.5 shows the first time handshake and the periodical block request calls.

Additional to executing these steps for each blockchain, they are also executed periodically in a random

time interval. The default of this interval is between 500 milliseconds and 4 seconds. Randomness in

the interval distributes the load if the node manages multipe blockchains. Dependent on the number

of blockchains (more blockchains means a longer time interval) and the available hardware (how many

requests can be executed) these values can be fine tuned, making the overlay networks more dynamic

and tailored to the needs of specific nodes.
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Implementation

6.1 Software Environment

In order to guarantee optimal performance and a simple code base each part of the software stack was

chosen with the task at hand in mind. This section justifies each major decision.

Before going into details the overall context has to be specified. Most importantly the fact that the

software should run on off-the-shelf computers, e.g. laptops and desktops. That limits the choices by

eliminating heavy weight server software, in favour of of light weight ones. Nevertheless the imple-

mentation needs to be capable to handle multiple connections in parallel, for exchange of blocks and

transactions, with potentially multiple blockchains.

All here mentioned components are well tested and popular in industry, making the design suitable for

a production ready system.

NodeJS (https://nodejs.org/) as event-driven, non-blocking I/O programming language is best suit-

able to handle the communication between nodes, but also internally between components. The whole

implementation is event driven and actions are triggered by the users or by an incoming package from

the network.

Redis (http://redis.io/) is used for inter component communication. Components are loosely cou-

pled via publish/subscribe channels. This allows substitution and extension of the software during run-

time. Additional it allows to have multiple components that handle the same event, but in a different

way, e.g. a new transaction triggers a computation, but also notifies the user.

Docker (https://www.docker.com/) was chosen as virtualization tool for the execution environment,

but also for during development to simulate an overlay network. The compromise between lightweight,

speed and portability makes it the perfect choice to encapsulate execution and run multiple nodes on the

same machine. By deploying the containers executions are run on each node inside the same environment,

avoiding dependency and version problems.

MongoDB (https://www.mongodb.org/) Not as light weight as the other components, but suitable for

the storage of transactions and blocks in BSON representation. MongoDB is a document based NoSQL

database, that stores files in a JSON similar format, that supports also binary data. The powerful

querying capabilities allow the extension of a future single node search engine.

33
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Figure 6.1: High Level Architecture with inter component communication and exe-
cution environment design. ZeroMQ parts were substituted at a later stage with Redis
publish/subscribe channels, for extensibility. Conceptional the flow is similar to the

one shown here.

Figure 6.1 depicts a first architecture design. It defines needed components and their interaction with

the two conceptional overlay networks, one for blockchains and one for raw data. The initial design of

the internal communication was done via ZeroMQ sockets (http://zeromq.org), but later one change

to Redis publish/subscribe channels. The change was made in favour of a simpler structure and easier

extensibility, e.g. extension with new modules, without changing the underlying communication flow.

In Figure 6.2 these channels and the resulting flow is shown. The extracted framework, that is reusable

for other blockchain architectures for other domains, can be seen in Figure A.1.

6.2 Event-Driven Architecture

The complete architecture is event-driven and reacts on events trigger by a local user, e.g. creating

and propagating a new execution request, or by remote nodes, e.g. incoming blocks and transactions.

http://zeromq.org
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Internally events are communicated via Redis publish/subscribe channels. In Figure 6.2 the internal

communication between component is shown on the example of an incoming ExecutionRequest trans-

action. Not shown here, but possible is the listening of multiple components to the same channel. For

example a block generation component will be listenting to the same transactions channel and decide if a

new block should be generated or not. Another example is the subscription of a notification component

to the executions channel. If an execution fails the user is notified via e-mail or any other means. This

type of architecture plugs well into the blockchain protocol and makes it also easy extensible.

Figure 6.2: Incoming ExecutionRequest Scenario - Node receives a new transaction,
triggers computation and propagates the result.

6.2.1 Publish/Subscribe Channels with Message Format

Table 6.1 describes the most important and current available inter-component publish/subscribe channels

in the reference implementation.

6.3 Development Environment

Distributed systems are notorious difficult to develop and to debug, that is one of the reasons why

docker containers with a shared database and redis server was used. Each node has an unique identifier,

encapsulating the database and publish/subscribe channel names (attached to the end of the name,

e.g. transactions $NODEID). This specific setup can be run completely locally by creating a virtual

network.

The following steps explain the setup and start of the development environment. All steps are executed

via ./build virtual network.sh X, where X is the number of nodes that should be started.

1. Step: Build a generic docker image that includes all components and exposes the default port

6431 to the host.

2. Step: Build and start a generic MongodDB and Redis container for each group of 5 nodes.

3. Step: Start the number of nodes as specified by as input parameter. Each node performs a setup

step during first time start. During this setup phase a new node ID and a keypair is generated.

The node ID is only relevant for the development environment and is not necessary for a production

environment where only one node per machine is started or where MongoDB and Redis are not shared.
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Channel transactions
Description All incoming and new transactions are published to this channel.
Producer Blockchain Handler
Consumer(s) Filesharing Component, ...
Message { magicNo: $magicNo, id: $id, type: $trxType }

Channel blocks
Description All incoming and new blocks are published to this channel.
Producer Blockchain Handler
Consumer(s) ...
Message { magicNo: $magicNo, id: $id }

Channel downloads
Description Status of data download, most importantly when ready to use.
Producer Filesharing Component
Consumer(s) Execution Environment, ...
Message { status: $status, magicNo: $magicNo, id: $id, inputData: $in-

putData, executable: $executable, resultPath: $resultPath }

Channel executions
Description Status of executions, most importantly when execution is fin-

ished and results are ready to be published.
Producer Execution Environment
Consumer(s) Blockchain Handler, ...
Message {magicNo: $magicNo, id: $id, returnCode: $returnCode, result-

Path: $resultPath, resultFile: $resultFile, errorFile: $errorFile,
resultDataRef: $resultDataRef }

Table 6.1: Publish/subscribe channels as used in the reference implementation.

Additional to the node ID a keypair is generated. For compatibility and convenience (short form) this

keypair has the same format as bitcoin addresses. This keypair is used to sign all created transactions

and blocks.

A positive side-effect of the use of docker containers is the easy deployment of containers to a production

system. Participating in the scientific computation engine is then only a matter of deploying a docker

container.
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Results and Discussion

The here presented approach proposes a new solution to solve the reproducibility, verifiability, reusabil-

ity and transparency of computations. Instead of building another framework for computations, the

meta data that describe an execution is de-capsulated from the real computation. All needed data, like

executables, input and output data, are referenced and made tamper resistant by introducing crypto-

graphic mechanism, like transaction signing with asymmetric keys and hashing of referenced files. The

non-obtrusive nature of the resulting solution, combined with secured meta data and the introduction

of an URI scheme for easy sharing, satisfies all of the above mentioned properties. Additionally, the

integration in existing computation frameworks is made as easy as possible.

Lets analyse the mentioned properties and how the proposed solution empowers them. More details

were given in the previous chapters.

Reproducibility and Traceability Per definition a blockchain is a distributed ledger where each node

stores all transactions ever made. By having access to the complete meta data of all computations,

it is possible to execute a past computation by using exactly the same transaction that was

originally used. Furthermore, it is possible to run multiple executions by following the references

between the transactions.

Verifiability Each transaction is verifiable on its own and in the scope of the whole blockchain. By using

multiple layers of cryptography single executions, but also computations consisting of multiple

steps, can be verified by any involved party.

Reusability A well defined cross-blockchain URI schema allows the referencing of transaction and

moreover fields inside a transaction. That could be input data, executables or results. The steps

needed for executing a past computation are exactly the same as the first execution. Proposed

extensions to this approach, like a scientific marketplace, increases reusability by increasing us-

ability.

7.1 Fine-tuning for different use cases

In order to be able to compare use cases and how different changes effect performance and quality

metrics, two base cases are given. The first scenario is tuned for performance and does not at more
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value to current computation frameworks. In comparison the second one is the other extreme, has lower

performance, but is more resilliant against malicious nodes and error.

7.1.1 [Base Case #1] Tuned for Performance

The base case that is used as reference for all other use cases. It establishes a baseline by adding the

distributed ledger as parallel data structure that keeps track of executed computations. This base case

does not satisfy the properties of reproducible, verifiable, or only in a limited way.

All transparency values are at a scale from 0 (worst) to 1 (best) and chosen from an outsider point of

view, a party that has not participate in the original computations. For the performance zero means

worst performance and one highest.

Bootstrapping One central DHT bootstrap server that is used by every node that wants to join the

overlay network.

Overlay Network Private overlay network, only accessible by participating parties. All nodes are

trusted and verified.

Performance High performance, without intercepting or slowing down the original computations.

(Value: 1)

Transparency All values are 0.1, and not 0, because they are satisfied for the participating parties,

but not for the overall scientific community.

Reproducible Value: 0.1

Verifiable Value: 0.1

Reusable Value: 0.1

7.1.2 [Base Case #2] Tuned for Transparency

This use case is the other extreme. Nodes are not trusted, because everybody can theoretically participate

in the network. Similar to the open structure of Bitcoin, it introduces bad actors, but also a more

transparent and self-regulating environment.

Bootstrapping If at least one active node in the network is known it can be used for bootstrapping.

If no node is known a fallback bootstrapping server exists.

Overlay Network Public overlay network, everybody can participate. Nodes are not trusted and

decisions are made via distributed consensus algorithm.

Performance Lower performance as legacy system, because computations have to be performed mul-

tiple time, in order to guarantee there correctness and prevent bad actors to inject wrong results.

The consensus algorithm adds another performance slowdown to the mix. (Value: 0.1)

Transparancy All results, with all intermediate steps, are accessible by everybody and can be verified,

reproduced and reused without limitations.

Reproducible Value: 1

Verifiable Value: 1

Reusable Value: 1
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7.1.3 Discussion: How to decide for what to optimize?

The two base cases point out the two extreme ends. The first one (7.1.1) resembles mainly the current

status quo. The proposed solution does only support the involved parties and does not add much

more value. The same functionality can be achieved with current workflow management framework. In

comparison the second use case (7.1.2) makes scientific computations accessible for the general public and

other researchers. By building in mechanism to weaken bad actors, e.g. redundant computations and

majority votes, trust in the overall system and the confirmed results could be increased. Even more the

confirmation of computations can be seen as peer-review process. By crowd-sourcing the confirmation,

experts can double check the computations and increase the overall quality even further. The downside

of this approach is the decreased performance. Even if the computations are confirmed automatically,

they have to be executed multiple times and the network has to agree on the order of confirmation, to

have a global consistent state. The latter is not as big of a problem, because it can be performed in

an asynchronous way, without intercepting with on-going or future computations. Although the former

may be a limiting factor, especially when computations are intensive and can not be easily reproduced

or split up into smaller junks.

The solution to this optimization problem is a hybrid approach. As outlined in this work, the proposed

system is capable to handle multiple blockchains at the same time. That means a closed, but trusted,

blockchain could be used for computations that have not to be confirmed or can not be executed multiple

times. At the same time an open blockchain could be used for smaller scientific computations. A

node can access and verify both blockchains, it can also reuse and reproduce results, but only actively

participate in the latter. Dependent on the use, it is also possible that multiple blockchains build a

hierarchy, as shown in Figure 4.1. This hierarchy allows to share only parts of the results in higher up

blockchains, increasing performance by a smaller and easier to maintain structure, but without sacrificing

traceability and verifiability. If necessary a node can fetch all blockchains of the hierarchy and trace the

full computation, but it can also only use the higher level results.

7.2 Verifiable and tamper-resistance

Transactions, and hence computations, are verifiable and tamper-resistance per design. The distribute

data structure allows each node to verify transactions. The following points explain the design decisions

made and how they support the verifiability and tamper-resistance.

1. Point: The distributed data structure makes it harder to tamper with it, because every partici-

pating party has an identical copy.

2. Point: ScriptSig with signature and public key is a cryptographically strong means to protect

transactions and proof that the content was (a) not changed by anybody and (b) was really

created by the party that claims to have created it.

3. Point: Weaker protection against transfer errors and alike, is the hashing of the transaction and

using the resulting hash as ID.

4. Point: The transaction ID is used for inter-transaction references, making it even harder to change

transactions. If a reference transaction is changed the reference to it automatically breaks (ID

changes).
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5. Point: Combination of transactions inside a block. Blocks build a chain with references to previous

and next blocks. References are created based on hashed content. If the content changes, the

reference breaks.

7.3 Sharing of scientific computations

The development of a distributed and tamper resistant data structure is not enough to satisfy the use

case of scientific computations. Another important property is the availability of a mechanism to share

computed results. By introducing a URI schema and by having a global Distributed Hash Table (DHT),

it is possible to look up and fetch any public available blockchain. The URI schema is similar to HTTP

and the global DHT keeps in real time track who is currently online and manages a specific blockchain.

Referencing one specific computation is only a matter of combining the blockchain ID (magicNo) with

an ExecutionRequest transaction ID and sharing that link. The support for data sharing is part of the

original design.

7.4 Performance and Reliability

The prototype implementation allows to fine tune different values. Dependent on the use case and the

node context, the right parameters can increase performance for the single node, but also for the overall

network. The following section describes each parameter and how it affects the behaviour.

Packages, consisting of a fixed size header and the payload, are exchange via TCP in binary repre-

sentation. The following values allow to fine tune connection parameters to optimize for the current

environment. One node can manage multiple smaller blockchains or fewer, but bigger ones, or anything

in between.

TIMEOUT Default: 3 seconds - Synchronous connections, like the handshake procedure or the prop-

agation of transactions, accept a response from the other node. If no response is received the

connection timeouts in the amount specified in the TIMEOUT variable. Faster networks should

have a lower value, in order to be able to detect broken connections earlier and close them as

soon as possible. Resulting in the possibility to open faster new connections.

TICK LOWER and TICK UPPER Default: 9 and 10 seconds A time interval from which a

random value is chosen. This time interval marks the time between connection checks. A randomly

selected time interval assures that, also if all nodes are started at the exact time, they do not

perform at the same time the handshake procedure. Randomness spreads the global network load

and minimizes peak times, e.g. during boot times or if multiple nodes join or leave at the same

time.

BLOCK REQUEST LOWER and BLOCK REQUEST UPPER Default: 3 to 4 seconds

Time interval for random value that indicates the waiting time between block requests. The

same way TICK LOWER and TICK UPPER is used, also these values are chosen randomly for

each iteration. A different random waiting time for each node minimizes peak requests, not only

for the single node, but if each node behaves the same way also for the whole network.

BLOCK REQUEST TIMES After this amount of requests, block requests are stopped and during

the next connection checking cycle (see “TICK LOWER and TICK UPPER”) randomly a new
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(a) Static Overlay Network (b) Dynamic Overlay Network

Figure 7.1: Total number of nodes that received the propgated transaction.

node is selected. Additional to distributing load between nodes and switching them periodically,

it also prevents nodes to be stuck with malicious nodes.

MAX PEER CONNECTIONS Maximum open connections at the same time per blockchain. If

a node manages multiple blockchains at the same time this value should be lower. A higher value

improves network propagation performance by receiving transactions and blocks faster (less hops

between nodes if the connection degree is higher).

7.4.1 Transaction propagation

Transaction propagation is import for two reasons. First it assures that enough nodes receive an Exe-

cutionRequest transaction and the minimum amount of executions can be reached. Second the node, or

nodes, responsible for block generation have to receive the transactions too. This point could be solved

for smaller, permissioned blockchains by actively propagating transactions to a selected subset of nodes

responsible for this task.

Maximum Open Connections

2 3 4 5

10 nodes 5 (50%) 5 (50%) 10 (100%) 10 (100%)
15 nodes 10 (67%) 10 (67%) 15 (100%) 15 (100%)
20 nodes 4 (20%) 4 (20%) 18 (90%) 20 (100%)

Table 7.1: Total number of nodes that receive the propagated transaction.

One requirement of the overlay network of a blockchain is that the graph depicting the network is

connected. That means no node is unreachable. During the evaluation phase with a first implementation

this property was not satisfied under all circumstances. In Table 7.1 and Figure 7.1a these results are

shown. Most notable is that if the maximum open connections value is lowered and the total number of

nodes is increased the number of nodes that receive a propagated transaction decreases. In Figure 7.1b

it is shown that 100% propagation could be reached if nodes are selected randomly afer some time and

transactions are propgated to all, and not only the current open, nodes.

The total number of nodes and maximum open connections per node reflect a smaller blockchain, as

could be expected for a research project executed by a consortium.

7.4.2 Choosing right consensus algorithm

As described in chapter 2 the biggest challenge is the choice of right consensus algorithm. The first

blockchain, Bitcoin, uses expensive computations to proof that work was done, to generate new assets
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(Bitcoin) and encapsulate transactions inside blocks. This approach is not suitable, because it wastes

too much computation power for block generations, that can be used instead for scientific computations.

Additionally, it assumes that the network is untrusted, that is not true for research done by a trusted

consortium. Another point against Proof of Work is the fact that the here presented blockchains are only

a distributed ledger of transactions, without non-copyable assets that have to be protected. Alternative

blockchain consensus algorithm are at this stage not mature enough to be considered. More research

and deployment in a real world context is needed to finally decided if they are a better fit or not.

Consensus algorithms presented here as pre-blockchain approaches (see subsection 2.2.1) can be used

for blockchains that agree on a trusted subset of nodes and are responsible for the block generation.

Instead of assuming that every node can theoretically create new blocks and that the block generation

has to scale at internet scale. It is assumed that research projects with a well-defined and trusted

consortium can agree on a subset of nodes for this task. Nevertheless it allows external parties to access

the computed results and reused them in the same, or any other, blockchain.

The here presented multi-blockchain approach, together with a sophisticated discovery mechanism, solves

the consensus problem by breaking it down into smaller overlay networks. Allowing nodes to decided

what blockchain overlay networks could be trusted and referencing transactions and fields across them,

guaranteeing interoperability.
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Conclusion

In the scope of this work a solution to the reproducible computation problem was proposed. By using

state-of-the-art (e.g. cryptography) and emerging (e.g. blockchain) technologies an alternative, non

intrusive, but more trustworthy solution was designed. Furthermore, this work explains the first time

how to develop a new domain specific blockchain in a systematic way and how it can be plugged into a

hierarchical blockchain ecosystem.

The overhead of redundant computations, especially for big data computations, is for most industrial

use case too expensive and inefficient, but for scientific computations it adds essential more value. The

fact that no single entity has to be trusted and more importantly that scientific computations can be

verified and checked independently. Additionally, the here proposed architecture results in a computation

marketplace, where each computation can be traced back and easily shared via unique URI, the same

way as we share today websites, creating a more open environment that empowers faster progress and

innovations.

Future extensions and work include the integration of the here proposed solution into existing com-

putation and data storage frameworks, but also into higher level workflow management solutions. An

interesting future extension is the creation of a scientific computation marketplace on top of the available

system. The hierarchical structure gives a first clustering of computations by projects, organizations,

fields, etc. A next step can be the classification of single transactions by well-defined tags. By building

a search engine and user interface on top of it, with an additional integration with a workflow manager,

scientific computations can become more efficient by reusing off-the- shelf data and executables for com-

putations. Everybody could then theoretically access the marketplace and create new computations by

recombining them, e.g input data from a specific project combined with an executable from a completely

different one, even from another discipline.

Figure 8.1 shows where such a scientific marketplace could fit into the current architecture. The

Blockchain Stack and the underlying distributed ledger structure was developed in the scope of this

work. The scientific marketplace can be build on top of it, as extension.

A more accessible scientific computation environment, with off-the-shelf data and executables, makes

computations not only reproducible, verifiable, reusable and transparent, as the original goal was, but

has also the potential to accelerate progress and innovation. The trend to involve the general public in
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Figure 8.1: A Scientific Computation Marketplace as extension to the here proposed
approach, for increased usability.

science can be seen in projects like SETI@home, ATLAS@home, CureCoin1 and frameworks like BOINC

[And04]. For now these efforts are mainly focused on using the raw computation power or crowd-sourcing

a well-defined task, making it more accessible for non-experts. In comparison the resulting marketplace

makes the underlying data and computation steps accessible and is more powerful, but assumes also

some degree of expertise or willingness to experiment and explore. A positive side-effect could be the

spark of interest in science and the increase in science from home.

The here proposed solution does not claim to be more efficient in perspective to performance, but it

brings scientific principles back to digital computations and makes in the process science more accessible

and more flexible. The scientific community has to ask itself if these principles are worth the decrease

of overall performance.

The here designed framework, most notable the cross-blockchain references and the related blockchain

discovery mechanism, are reusable for a multitude of use cases. As continuation of the started work in

this paper, the author works on an identity layer based on the here designed and evaluated principles.

1CureCoin is a digital currency that combines Proof of Work with Folding@Home, see https://www.

curecoin.net/, accessed: 5. July 2015

https://www.curecoin.net/
https://www.curecoin.net/


Appendix A

A Blueprint to design and

develop new blockchains

This chapter introduces a blueprint how new blockchains could be developed. After discussions with ex-

perts in the field, researching public available blockchain projects and developing two internal blockchains

(the here presented one and a Distributed Hosting Engine1), the here presented blueprint is a generic

approach that can be reused to develop domain specific blockchains. By finding key components that

every blockchain shares and by developing a modular framework, it is possible to use off-the-shelf com-

ponents and only customizing domain specific parts. At the time of the writing there is no public known

framework that allows to create new blockchain in a fast and painless way.

The here presented framework for blockchain applications must satisfy at least the following properties:

Modular By splitting the application into well defined components with a clear interface, it is possible

to change parts, without touching the rest.

Loosely Coupled The rather complex nature of blockchain applications and the fast pace that new

algorithm and approaches are introduced, makes it necessary to encapsulate components in such

a way that they can be changed without touching any other part.

Well Documented In order to customize the here presented framework and to build on top of it, it is

essential that all generic parts are well documented and a stepwise guide is given how to customize

them.

Different software components: Blockchain Handler (key component) Filesharing Component (optional

for all blockchains that reference files) Domain specific logic (one or more backend components that take

care of domains specific parts).

1Distributed Hosting Engine http://blackgate.networld.to
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A.1 Steps to develop a new blockchain

The following steps below show the non-trivial nature of developing a domain specific blockchain. It is

a collection of useful questions to support the decision process. It should be seen as overall guideline.

Some of the steps mentioned below can be executed in parallel.

1. Collect domain specific knowledge and investigate if a blockchain is the right technology. Answer

for this the following questions.

• For what purpose do you need a proof mechanism?

• Why should that data be tamper resistant? Why should nobody be able to change historical

information?

• How does a transaction/block look like? What do you want to model?

• What type of blockchain do you need? Is it permissioned/permission-less, public/private,

...?

• What type of block generation aka. mining do you need? Is the deciding network small

enough to use a classical consensus algorithm like [C+99] or do you need proof of work,

proof of stake or any other approach?

• Do you have one global blockchain or multiple smaller ones? If so, how are they linked?

(Can be reused from this work)

2. Design a block and transaction specification based on the gathered domain knowledge.

3. Design a protocol specification. (Can be reused from this work!)

The inter-blockchain transaction referencing and the multi-layer protocol, developed in the scope of this

paper, can be reused for the new blockchains. Making it possible to plug-in new blockchain, but only

focusing on the domain- specific essentials, like how does a transaction look like and for what properties

has the blockchain to be fine-tuned.

A.2 Framework Architecture

The here presented reference architecture can be used as starting point for blockchain applications. It

introduces a highly modular and loosely coupled message oriented architecture. This type of architecture

is useful for future modifications, without touching the existing components. Additional to be able to

remove existing components, it is also possible to add new ones. The modularity allows to reuse existing

off-the-shelf components and only build or modify domain specific ones.

A.2.1 Basic Component List

The following list outlines basic components, as identified during the work on different blockchain

projects. Generic components can be reused and/or implemented in different ways, e.g. by switch-

ing the underlying algorithm.
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Figure A.1: Reference Architecture of the Framework

Blockchain Handler Each blockchain includes at least a component that implements the protocol

and manages the blockchain. A basic protocol could be shared across different domain-specific

blockchains, e.g. the transaction propagation and block querying, different block generation aka.

consensus algorithm implementations and basic validation logic.

Web Interface (+ API) A generic blockchain viewer with basic functionality and API for third party

integration could be reused. Functionality could include transaction submission, network statis-

tics, ...

File or Document Management An optional file or document component could combine external

data management with proof and tamper-resistance of blockchains. Such a component could be

reused, not matter of the document or file semantics.

“Message Broker” Middleware that takes care of message passing in a publish/subscribe pattern.

Could be Redis, RabbitMQ or similar.

Domain Specific Components These components are developed for a specific use case and could

not be reused in an easy way. They are plugged into the framework by subscribing to one of the

existing channels and optional creating a new channel for other components.



Appendix B

Binary Transaction Specification

Size Description Data Type Comments

HEADER

32 Byte TransactionID char[32] Hexadecimal representation of dou-
ble SHA-256 hash of the transaction
(excluding Transaction ID field).

8 Byte Timestamp uint64 Unix timestamp: Seconds since
1. January 1970 (UTC) Note:
Use 64 Bit to allow dates
after 19. January 2038, see
http://www.unixtimestamp.com/

4 Byte Version uint32 The specification version of this
transaction. This field could be used
to gradually upgrade the network to
a new version.

1 Byte Type uint8 For ExecutionRequest 0x00 and for
ExeuctionInstance 0x01. Extensible
for future use.

4 Byte ScriptSigLen char The length of the following ScriptSig
field in Bytes.

? Byte ScriptSig char[?] TODO: Figure out suitable script-
ing language.

4 Byte ExtHeaderLen uint64 The length of the following exten-
sion header. Default: 0. Used for
future extensions.

? Byte ExtHeader char[?] Future transaction header exten-
sions, currently not used.

DATA SECTION

4 Byte ResultDataRefLen char The length of the following Result-
DataRef field in Bytes.

? Byte ResultDataRef char[?] Reference to the result data.

Table B.1: ExecutionInstance specification with field size and data type.
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Field Size Description Data Type Comments

HEADER

32 Byte TransactionID char[32] Hexadecimal representation of dou-
ble SHA-256 hash of the transaction
(excluding Transaction ID field).

8 Byte Timestamp uint64 Unix timestamp: Seconds since
1. January 1970 (UTC) Note:
Use 64 Bit to allow dates
after 19. January 2038, see
http://www.unixtimestamp.com/

4 Byte Version uint32 The specification version of this
transaction. This field could be used
to gradually upgrade the network to
a new version.

1 Byte Type uint8 For ExecutionRequest 0x00 and for
ExeuctionInstance 0x01. Extensible
for future use.

4 Byte ScriptSigLen char The length of the following ScriptSig
field in Bytes.

? Byte ScriptSig char[?] TODO: Figure out suitable script-
ing language.

4 Byte ExtHeaderLength uint64 The length of the following exten-
sion header. Default: 0. Used for
future extensions.

? Byte ExtHeader char[?] This field is used for future trans-
action header extensions and is cur-
rently not used (see ExtensionHead-
erSize default value zero).

DATA SECTION

4 Byte InputDataRefLen char The length of the following Input-
DataRef field in Bytes.

? Byte InputDataRef char[?] Reference to the input data. Cur-
rently recommendation is the use of
the magnet URI scheme and as de-
fault protocol for file sharing Bit-
Torrent with streaming capabilities.

4 Byte ExecutableRefLen char The length of the following Exe-
cutableRef field in Bytes.

? Byte ExecutableRef char[?] Same format as Input Data Refer-
ence, but points to an executable.
This could be a binary, a script or
even virtual machine instances that
can be executed.

32 Byte ResultId char A random identifier that can be
used to reference results of this com-
putation. Needed to generate prede-
fined workflows without waiting for
results.

Table B.2: ExecutionRequest specification with field size and data type.



Appendix C

Binary Block Specification

Size Description Data Type Comments

HEADER

32 Byte MagicNo char[32] Hexadecimal representation of dou-
ble SHA-256 hash that uniquely
identifies the blockchain.

8 Byte Timestamp uint64 Unix timestamp: Seconds since
1. January 1970 (UTC) Note:
Use 64 Bit to allow dates
after 19. January 2038, see
http://www.unixtimestamp.com/

4 Byte Version uint32 The protocol version of this block.
Could be used to gradually upgrade
the network to a new version.

32 Byte HashPrevBlock char[32] Hash of the previous block header.
Assures that historical blocks, in-
cluding transactions, can not be al-
tered. Additionally, it creates a
chain of blocks.

32 Byte HashMerkleRoot char[32] Merkle root hash of all transactions
that are part of this block. Allows
to remove old transactions from the
local store, if they were success-
fully executed. Resulting in smaller
blockchain size, without breaking
the verifiability.

TRANSACTIONS SECTION

4 Byte TransactionLen char The length of the following, serial-
ized transaction.

? Byte Transaction char[?] Transaction in serialized binary
form.

Table C.1: Block specification with transaction list. Last two fields repeat for each
transaction.
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