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Accelerating reproducible research in computational
sciences

ABSTRACT

Initially introduced as the act of merely reproducing someone’s laboratory experiments, repro-

ducible research has gradually mutated into more than just the act of providing a detailed de-

scription of the experimental setup. The marriage between theoretical and experimental sciences

that drives the field of computational sciences has introduced a series of concerns when matters of

reproducibility are instigated. These concerns are caused by a continuous increase in complexity

of systems that choose to employ a large number of functionalities and methods in order to create

novel solutions that aim at solving real-world problems. One of the most significant drawbacks

that are encountered very often nowadays with such complex systems is the inability to reproduce

the full software environment that generated these state-of-the-art results. In the discipline of ma-

chine learning, despite numerous attempts to avoid it, these issues have prevailed throughout time

and have caused several publications that claim novel solutions to be rendered unreproducible. In

this thesis, we initially investigate the current efforts taken towards achieving fully reproducible

systems and identify the current limitations these efforts encounter. Furthermore, we present our

prototype architecture and implementation that addresses the key drawbacks necessary towards

attaining reproducible workflows. This is done by challenging the design of traditional workflow

systems and envisioning the workflow as a conglomerate of isolated logical environments that fa-

cilitates reproducible workflows across environments effortlessly.
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1 Background and rationale
The concept of reproducibility in the field of machine learning and statistical analysis has become

a growing concern, especially when handling complex scientific workflows. Ranging from smaller

studies to more extensive studies that tend to cover multiple information-theoretical properties,

parameters, transformations, and algorithms; the vast field of machine learning has been con-

tinuously growing in complexity until the point where re-implementing algorithms can even take

months [1]. Unfortunately, due to its increasing velocity, it is growing at a pace where vital informa-

tion about each novel or state-of-the-art algorithm is either lost, misinterpreted or unreproducible.

This matter has slowed down the advancements of research and has rendered a vast majority of

empirical research the impossibility of being re-implemented or re-used. This phenomenon has led

to a debilitating paradox [2, 3] where publications that focus only on summarizing their empirical

results are accepted by the journal and conference reviewers solely based on faith. This faith-based

empiricism factor has driven scientists and researchers that activate in the field of empirical re-

search into a series of distrust in scientific communities and has challenged the credibility factor

of numerous publications. An article published previously shows us that out of 259 bio-medical

articles (51.7% of which presented novel findings) that contained empirical data, only four (1.5%)

articles were identified as efforts to replicate previous knowledge [4]. The lack of publications that

openly publish their source code, data and experiment details has prefaced, especially due to its

highly empirical nature of work, a series of poorly documented work in many cases has led to

research discontinuation.

Multiple initiatives that attempt to mitigate the risk of achieving highly unreproducible work

have stemmed with the aim of conserving numerous aspects of the experiment themselves. Some

efforts have focused on creating an open ontological standard with the purpose of describing various

stages of the workflow to avoid misinterpretation (Predictive Model Markup Language [5]). Other

initiatives focus on ensuring the experiments survivability by facilitating the release of software

developed by researchers (software repository such as Github or Bitbucket). While many of these

initiatives [5–8] are iteratively investigating techniques that conserve parts of entire workflows,

little to none of them are combining all the aspects into one solution that would ease the steps

of reproducing smaller to more massive scale experiments. In an effort to create a more modular

and portable workflow, tools for composing workflows have emerged which allow users to inter-

actively set-up their end-to-end experiments by providing a set of features, widgets, and plugins

that streamline the process of conserving the end-state of complex workflows. These initiatives
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are called scientific workflow platforms; they combine various interactive functionalities, state-of-

the-art algorithms and collaborative tools into a multi-functional platform that provides effortless

methods of conceiving building blocks for end-to-end workflows.

With the features mentioned above in mind, researchers need not pay attention to various log-

ging’s or meta-data required to ensure that every step of the workflow is documented, stored and

version managed such that once an experiment is complete, it can be entirely exported along with

its necessary data sources and code-base. In an ideal world, the usage of such platforms would pro-

vide users with sufficient freedom to define their custom software but due to current limitations,

these platforms have constantly relied on wrappers and connectors to ensure that users can take

full advantage of user-define libraries when using these platforms. In an attempt to improve the

adaptability of these workflows, data pipelines are progressively being utilized to process a signif-

icant amount of data through numerous sequential components which each take in a set of input

data and produce the desired output. The length or complexity of such pipelines can vary based on

the amount of workload required, one pipeline can be comprised of numerous third-party tools and

can vary from a simple function to fully-fledged workbenches that require the usage of job sched-

ulers, resource negotiators and many other tools that manage the execution of each component.

The main issue identified by system administrators with traditional pipeline setups is the con-

stant integration with third-party or user-defined tools in the pipeline. Software packages, libraries

and dependencies emerge on a daily basis, with the ever-increasing requirements of such tools in

HPC (High Performance Computing) environments, a set of conflicts emerges when integrating

software dependencies in multi-tenant shared environments. Software environment requirements

demands have increased drastically, numerous tools such as Virtual environments [9] and software

modules [10] attempts to address the issues of environment incompatibility or version mismatch,

but due to underlying software dependencies and configurations, have failed to address the topic

of reproducibility across computing environments. In Figure 1 we depict the specific fields and

currently available solutions that concern our proposed topic. In this Thesis, We are going to ad-

dress three types of systems that are currently utilized in empirical scientific research, specifically

the application of machine learning workflows, this is done such that we can cover sufficient ma-

terial that will help us build up the theoretical framework and motivation required to efficiently

formulate and reason our proposed solution.

Machine learning toolkit in the figure below refers to the vast software packages and ecosystem

that is currently utilized in scientific computing, the focus of this report shall be strictly on the
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Figure 1: Venn Diagram

usability of such software packages as module components throughout a scientific workflow. This

aspect is defined as a module due to the frequent use of such packages across numerous projects;

users take advantage of the packages mentioned above to adequately formulate the specific steps of

their workflows. A module can be comprised of pre-processing, algorithms or evaluation packages

offered by either open source communities or software companies. We briefly mentioned scientific

workflow above; this is due to the fact that scientific workflows are end-to-end workbenches which

are comprised of multiple complicated execution steps. Each step consists of a series of one or more

computational procedures. Workflows are designed in a manner that users can compose, execute

and manage each step in an interactive and real-time environment. Over and above that is vir-

tualization, which typically is applied in use cases where the isolation of resources, networks, and

operating systems is required. This isolation is applied so that multiple applications can effectively

run on the same machine, but due to the additional layers of abstraction added by virtualization

techniques, processes do not interfere with each other and are executed independently from each

other. Virtualization mechanisms in our experiments are going to be utilized to segregate each step

(module) in scientific workflows and will provide users with the ability to reproduce the same exper-

iment across multiple environments. Virtualization is key to our solution due to its ability to isolate

hardware, network and process usage from each other, this allows the users to distribute and share

their workflows with their peers or export their work on any desired environment. Last but not
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least lies the relationship between all three technologies that from our point of view, is a miss-

ing component that would further encourage the reproducibility aspect of scientific experiments,

that is Containerized Machine Learning Modules (CMLM). CMLM serves as a gateway towards

digitally preserving scientific investigations that would encapsulate essential open-sources tools to

capture essential technical run-time characteristics. In this thesis, we will present the conceptual

groundwork and performance metrics required for achieving and evaluating reproducible scientific

experiments. This goal will be met by initially introducing the usage of scientific workflows nowa-

days, followed by two popular platforms namely, Weka and KNIME. Furthermore, we will introduce

the concept of virtualization and its usability nowadays, along with the comparison of two popular

container-based virtualization mechanisms. Moreover, we will define the methodology that depicts

the setup and execution of our experiments. Finally, in the results chapter we will plot and discuss

the findings resulted from our investigations, this is followed by a future work chapter that is going

to encapsulate the necessary work required to extend our implementation with other HPC tools. In

the following chapters, we will present the research questions that will drive the entire study, with

a keen focus on (i) reproducibility aspect of empirical research, (ii) portability of solutions across

environments, and (iii) applicability within the field of machine learning.
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2 Research questions
In this thesis, we propose to extend the functionalities of platforms that try to achieve fully re-

producible workflows. This aspect is achieved by making use of containers, or more specifically a

container-based virtualization mechanism. This mechanism is known for its ability to encapsulate

active applications away from the host system processes. By doing so we introduce an abstrac-

tion layer between the host machine and the running processes, the purpose is that of facilitating

the capability of achieving fully portable and modular workflow components. A component here

is defined as a function that helps researchers shape up the workflow according to their specifica-

tion; They can choose from data sources, data transformations and algorithms to achieve so. The

workflow itself is composed of components that activate as connected edges which execute a se-

ries of functions in a Directed Acyclic Graph (DAG) based formulation, allowing users to design

reproducible workflows. The contributions of this thesis are twofold; First, we present a thorough

literature study of two widely used workflow platforms and two container-based technologies with

the aim of unveiling the benefits and limitations of such systems and mechanisms in reproducible

sciences. Secondly, we plan on using the results of the prior section to perform two types of valida-

tions; (i) By initially quantifying the degree of reproducibility in our proposed solution (ii) Carrying

out a performance comparison between the two proposed container-based workflows when faced

with two machine learning use-cases.

The purpose of this study is that of identifying and validating the matter of reproducibility and

re-usability in scientific workflows by using widely-used container-based virtualization mechanism

as well as the performance of the two container mechanisms once faced with two machine learning

use cases. The three main target groups the result of this study is going to focus on are as follows:

(i) Researchers that are about to or are currently implementing complex components in workflows

and want to achieve a higher level of reproducibility to avoid inaccurate or inconsistent solutions.

(ii) A method that complements the requirements of conference review experts that require a higher

degree of reproducibility when a paper submission is reviewed. (iii) Research that aims to build

upon the results of other state-of-the-art machine learning systems, but fail to do so due to incon-

sistent/incomplete solutions. In the following section, we are going to elaborate on the specific goal

by using a Goal-Question-Metric perspective (i.e., purpose, issue, object, viewpoint). The general

aim of this study is going to be phrased into research questions along with it’s relevance to this

study as follows:

RQ1: What are the limitations imposed by widely-used scientific workflows platforms when con-
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cerned with highly empirical work that is difficult to reproduce?

Rationale: This research question aims at identifying the faults or drawbacks encountered

by widely-used collaborative scientific workflow systems. The demand for platforms that

handle a multitude of computing tasks has seen an increase [1] in recent years. This is due

to the increasingly empirical nature of numerous fields (examples of such can be bioinfor-

matics, economics, artificial intelligence) rather than that of a philosophical approach. Over

the years the increasing amount of empirical work has as increased in complexity when at-

tempting to develop and create systems that are considered state-of-the-art or novel. One

aspect that has been repetitively omitted when inventing these complex systems is the as-

pect of reproducibility and re-usability. Thus, it has brought us to a time where newly created

state-of-the-art algorithms or methods cannot be adequately reproduced or re-applied in dif-

ferent scenarios. Here we plan on identifying the current drawbacks of scientific workflow

platforms that aim at easing the process of creating reproducible and re-usable end-to-end

workflows such that we can pinpoint the specific aspects that can be improved to achieve

fully-reproducible systems.

RQ2: What are the trade-offs when introducing a thin layer of virtualization to ensure the integrity

of entire scientific workflows?

Rationale: Virtualization technologies have allowed us to envision entire system as inde-

pendent blocks that activate as guest operating systems on top of the host system itself.

light-weight virtualization has pushed the limits of distributed applications and shifted the

abstraction level when purely envisioning a system as just an isolated block into one where

it is broken down into smaller functional chunks that once glued together make up an entire

system. The primary application of such light-weight virtualization technique in scientific re-

search has been that of entirely fitting systems into smaller blocks that are initially created

for serving one specific function rather than that of an entire system. Here we leverage light-

weight virtualization mechanisms to break down complete workflow systems into smaller

logical blocks and use that to investigate the performance and advantages of such methods

in practice.

The first research question will be addressed by means of a thorough assessment of two well-

known scientific workflow platforms, namely Weka and KNIME. Each platform will be analyzed

from two different perspectives, firstly the techniques implemented that allow the system to export

workflows in a reproducible manner across environments and secondly, the pitfalls encountered
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once dealing with incompatible custom-defined software.

The second research question will be addressed by initially introducing the concepts and

applications of virtualization techniques in HPC, followed by the comparison of two well-known

container-based virtualization technologies. Afterwards, we will introduce two own implementa-

tions of container-based workflows that will be tested and compared with a non-virtualized system

in order to determine the trade-off when utilizing the workflow in practice as well as the the level

of encapsulation.

In the next Chapter we will start addressing the first research question by introducing the

concept of scientific machine learning workflows. Furthermore we will describe and discuss the

differences between two widely-used platforms in order to determine the drawbacks and similari-

ties of both platforms. Moreover, after we identify the main characteristics and set-backs of such

work-flows, we will dive into how our solution came to be, and how, by means of a result-centric

manner, our solution relates to the topic at hand. We will further elaborate on the main state of

the art solutions, this is done such that we can sufficiently argue their results along with their

set-backs.
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3 Literature Study
With this literature study, we plan on systematically identifying and unfolding two widely-used

workflows that are currently put in practice, from an academic standpoint. In the following sub-

sections, it is fundamental to achieve a good trade-off among the coverage of the existing research

on the topic considered. Thus, our search strategy consisted of an automatic search, where by

means of a filtering and querying process, it enabled us to have more control over the number of

publications investigated. This section is entirely driven by our research questions, having a keen

focus on;

1. Solution-oriented research papers, where the type of research that is being carried out aims at

solving an existing problem by proposing a novel/illustration/improved version of the existing

solution.

2. Publications that address scientific work-flows that are specifically designed for handling

large-scale applications or tasks.

3. The level of interpret-ability and reproducibility of the proposed solution itself.

That being said, this literature study will provide a solid theoretical framework on which our

proposed solution is based upon.

3.1 Scientific machine learning workflows

The amount of research on proposed scientific workflows has been steadily increasing in recent

years; this is due to the necessity of achieving a structured and unified method of approaching

experiment designs. This necessity was instigated by numerous publications that failed to provide

sufficient observations and methods which would enable other scientists to reproduce their results.

Reproducibility in this context ranges from low-level atomic activities of developer actions to out-

comes of entire projects [11]. The significant amount of recent breakthroughs in many sciences has

shown that the complexity and comprehensiveness of publications that propose novel or state of the

art solutions has vastly increased. Measures have been taken by major conferences to ensure that

experiments undertaken along with the submitted results of the publications submitted are fully

reproducible [12]. The Sad Tale of the Zigglebottom Tagger [2] outlines the consequences that are

typically encountered nowadays. The paper tells the story of a researcher that, even after multi-

ple unsuccessful attempts, cannot seem to reproduce the same results as described in the targeted

publication. Whereby means of a faith-based empiricism, the researcher believes that their own
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reproduced solution is inconsistent or inaccurate and that there is some component or parameter

that they are overlooking. Numerous key details and observations are omitted from scientific pub-

lications, and as a consequence, this renders the results unusable which ultimately tends to lead to

slower progress in its scientific field.

Many efforts have been taken towards facilitating the reproducibility aspect of experiments that

are designed by authors of such state-of-the-art solutions. Some efforts [13–15] focused on lever-

aging scientific workflows to track and store immutable provenance information with the aim of

preserving crucial meta-data about the history of the workflow and the specific outcomes. Where,

by utilizing a series of one or more history-tracing extractors, users and scientists alike could model

the specifications of multiple dependent tasks in a workflow into a thoroughly documented work-

flow template. This template, when shared with other peers or published openly, would be utilized

in combination with a multitude of tools in order to reconstruct the control-flow patterns of each

of the tasks defined. Each task mentioned before is attested and verified by the author with the

use of legally valid digital signatures which would further enforce the integrity of the workflow

and preserve data and process related provenance. In this Thesis report we will omit the aspect of

provenance in scientific workflows throughout our literature study and we will focus our efforts in

establishing a solid groundwork towards identifying the software limitations when designing such

workflows.

Many scientific workflows have thrived towards seamlessly streamlining the process of design-

ing fully-functional computational pipelines. To name a few, WEKA [16], KNIME [17], WINGS [18]

and OpenML [7], the purpose of each of these platforms is that of creating a standardized workflow

for statistical analysis that would allow scientists and researchers to work more efficiently by col-

laborating throughout their undertaken experiments. With the release of the mentioned platforms

stemmed multiple benefits, while some provided a user interface that would a users visualize and

represent the models performance over a datasets, other platforms would focus on modularizing

the scientific knowledge (preserve the state of the flow that was used to achieve a particular out-

come) as much as possible. The integration of graphical interfaces and modular libraries in these

platforms provides scientists the ability to investigate and compare their datasets or results by

interactively plotting their analysis in real-time. These platforms provide users with the ability to

set up a specific workflow structure for their current project; these workflows are meant to keep

track of the modifications and changes iteratively. Furthermore, some platforms have achieved

widespread acceptance in academia [19]; this aspect additionally stresses the need and awareness

of such tools and frameworks in scientific research. Each of them provides a specific set of tools
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and algorithms that are developed and maintained by scientists or developers over-time, examples

of such would be regression, classification and clustering techniques. The concept of modularized

components in workflows is increasing, this is due to the numerous steps (pre-processing, training

and evaluating) that need to be added for an end-to-end machine learning workflow to be complete.

One standard feature that can be seen across each platform is that of having a visual programming

paradigm concept where by employing a drag-and-drop approach it enables users to plug and exe-

cute various components of the workflow interactively. This functionality can be reached from the

dashboard of each initiated project or workbench. We have introduced a minimal representation

of what scientific machine learning workflows currently exist, in the following sub-sections we will

dive into the technical implementation of such and further investigate the workflows reproducibil-

ity capability and modular traits.

3.1.1 WEKA - The Waikato Environment for Knowledge Analysis

Designed with the outlook of accomplishing a modular object-oriented type architecture, Weka has

been re-built from the ground-up in the Java [20] Language, initially written in C [21] and Pro-

log [22], Weka is currently distributed under the GNU(General Public) License. Due to its gain in

popularity, the Weka project has continuously improved since its release in 1994 [16]. The main

reason behind the decision of re-writing the source code of the Weka platform was due to the in-

creasing difficulty users would face when dealing with the management of dependencies, libraries,

and configurations of the system. With the upbringing of the newly re-built system, Weka focused

its attention on the ability to "Write Once, Run Anywhere" [19], this allowed the platform to incor-

porate a more modular approach of packaging their distributions. While this change allowed the

system to have more platform agnostic capability, Java was still in its early stages at that time, (less

than two years old at that time) consequently making it an uncertain decision whether it would

handle the computational workload necessary when dealing with machine learning algorithms.

The newly re-written system highly facilitated the acceptance of the software in the community,

resulting in the development team receiving a SIGKDD Data Mining and Discovery Service Award

1 in 2005.

With newer versions, the Weka project extended towards adding more pre-processing features,

graphical improvements and embracing the support for standards in the academic community. In

addition to its primary features, at the core Weka workbench lies a variety of state-of-the-art ma-

chine learning algorithms. Users could take advantage of the available algorithms, pre-processing
1http://www.kdd.org/awards/sigkdd-service-award
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Figure 2: Preprocess Panel of Weka

tools, and drag-and-drop functionality to experiment and analyze the results of their trained mod-

els on new datasets in an effective way. The graphical user interface named the "Explorer" is used

to reach any of the functionalities provided by the system and can be seen in Figure 2. Each func-

tionality would be located on the panel part of the interface itself, where all the plug-ins are ordered

by their intended use in the workflow. The initial stage of the workflow would typically start off

with the data source that is intended to be utilized in future stages of the experiments. Datasets

could either be loaded into the main memory by importing it from a CSV file or extracted from

a database. The ability to extract information was facilitated by the Java Database Connectiv-

ity [23], whereby making use of SQL queries, users could retrieve their relevant information from

any database that would have the compatible supported drivers. Weka’s Explorer is only designed

to support batch-type data processing, due to this aspect, the system itself encounters multiple per-

formance issues when handling large data sets. This typically causes the system to load the entire

corpus into the main memory leading to a slower overall performance; the user can overcome this

issue by using a set of streaming algorithms that would split the data-set into mini-batches.

One of the dependencies of using any of Weka’s interfaces is that of being required to provide

the system with a certain amount of heap space. This is considered one of Weka biggest stumbling

block [19]; the user needs to specify the amount of memory (lower than the host’s memory) allocated

to the Java Virtual Machine (JVM) such that swapping can be avoided. This is due to the just-in-

time (JIT) [24] compiling trait of JVM. Numerous attempts have been made towards resolving this

impediment by automating the just-in-time compiler of JVM [25] so users would not specify the

amount of heap space.
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One of the critical features of Weka is that of not only having a rich collection of state-of-the-art

algorithms but more so having a modular implementation of the algorithms. By employing a mod-

ular implementation, Weka enables users to combine various algorithms (bagging, boosting and so

forth) without even specifying a single line of code (Interactive drag-and-drop functionality). The

Weka Architecture relies on partitioning significant components into Java classes such that new

functionalities (filters, algorithms and so forth) can be added much quicker. Weka is a promising

and elaborate tool that provides users with a graphical interface from which they can take advan-

tage of the various functionality offered by the system, in the following section we will investigate

a similar tool named KNIME. This is done so that we can distinguish the functionality of both

systems as well as their drawbacks within scientific research.

3.1.2 KNIME - The Konstanz Information Miner

KNIME [17], initially intended as a data pipeline for data mining challenges within scientific re-

search communities, it is used to empower researchers with the ability to streamline the process of

implementing end-to-end data mining workflows. The combination of interactive interface, visual

intuitiveness, and collaboration tools allowed KNIME to become a favorite data mining medium

when developing machine learning models. Multiple efforts were taken by other well-established

competing data pipelining tools that were aiming at providing similar data-mining functionalities,

but one of the key developments of the project itself was thanks to the community contributions and

open source model. Many of the interactive graphical functionalities of Weka can also be seen in

KNIME; users can interactively connect building blocks, named Nodes, in a Directed Acyclic Graph

(DAG) based workflow formulation. Nodes represent a collection of data preprocessing tools, algo-

rithms, and visualizations in the workflow. In Figure 3 we observe connecting nodes that can be

comprised of transformations, algorithms, and visualizations that help shape up the workflow ac-

cording to the users’ hypothesis or needs. Much like Weka, a vital aspect of the design is that of

being modular. The decision of having a modular design was taken to encourage the development

of independent algorithms; this would allow the users to customize and adapt their workflow based

on their specific needs. While doing so, the development team of KNIME focused on implementing

open transformations and preprocessing nodes that would not rely on specific data types and pro-

vide a more generic functionality. The system leveraged a series of connectors and extensions that

take advantage of the currently available big data tools and frameworks2. The project supports

popular big data frameworks such as Spark [26] and Hive [27] which were integrated to levarage
2https://www.knime.com/software
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Figure 3: Workflow view

their ability to parallelize and distribute the workload of KNIME nodes respectively and store large

amounts of information across a cluster of servers. The KNIME system also allows users to further

fine-grain each node into nested-nodes called Meta nodes 3, this allows for the creation of complex

workflows which encapsulate a series of actions or processes into a single node. Thus treating

the meta-node as a form of a sub-workflow, each encapsulated sub-workflow may be recursively

executed, meta-nodes can be utilized when more complex scripts or transformations are required

(bagging, cross-validation and so forth).

The architecture is divided into two main components, the KNIME server, which is dedicated

to collaboration and deployment of models in organizations, and the KNIME analytics platform,

where researchers and users can interactively set-up their project and develop their workflows

by taking advantage of more than 1500 modules available. The server provides a secure layer of

access management on each level (Node, workflow, and application) such that users are allowed

only to interact or edit resources for which they have permission to do so. Both engines are built in

Java4 and suffer from the same limitation that Weka does as well as the manual JVM heap space

allocation. New components are incrementally added to the platform that attempt to extend its

support towards other programming languages and frameworks.
3https://www.knime.com/metanodes
4https://github.com/knime
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3.1.3 Discussion

As seen in the above work-flows, they both offer a variety of functionalities, support for popu-

lar frameworks and a rich collection of state-of-the-art algorithms. While both are open-source

systems and are widely used in academic circles, the aim of the platforms in research is that of of-

fering a medium for researchers and scientists alike where they can share their experiments such

that every published result can be reproduced starting from the data source until the evaluation

phase. The design of both systems allows users to add their customized functions,transformations,

and algorithms by using the currently supported programming languages and wrappers(Java,

Python,R, and Weka). The matter of reproducibility has been addressed to a certain extent, due

to the monolithic design (hypervisor-based virtualization system), both systems suffer from the

same consequences that have not been adequately addressed. Which is represented by the limited

amount of frameworks supported, version dependencies, portability of workflows and the inabil-

ity to isolate different stages of the workflow (ingestion, preprocessing, training and evaluation).

The isolation of each stage of the workflow allows scientists to preserve the state of each execu-

tion undertaken, underlying dependencies, hardware independence, availability accompanied with

the appropriate ability to handle heavy workloads in an HPC (High-Performance Computing) en-

vironment. Hypervisor-based virtualization has caused a significant amount of doubt in HPC en-

vironments [28–30], thus being avoided for as much as possible. Its promising abilities to isolate

processes and applications align with the reproducibility aspect of our subject and VMs have been

investigated previously [31] for their applicability in HPC environments. In the following section,

we will investigate the usage of various container-based virtualization systems and the benefits

they might bring.

3.2 Container-based virtualization

Virtualization technologies have arrived with their own set of essential functionalities, and they

have gained quite a momentum due to their ability to encapsulate independent applications or

processes. One benefit that comes along with virtualization is that of granting the encapsulated

application the ability to achieve resource and process independence on the same host OS (Op-

erating system) which is necessary when trying to avoid any interference between other running

processes. Multiple Guest OS can run on a single machine due to the systems hypervisor on which

it enables the usage of virtualized instances, or more specifically VMs(Virtual machines) or Con-

tainers, on the same host machine. Each VM that is provisioned on the same machine function as

independent blocks, they abstract essential components such as storage and network to restrict the

14



amount of resources the VM is allowed to tap into (specified by the user).

Due to their ability to provide such an abstraction layer, commercial virtualization technologies,

such as (Xen and VMware), are considered one of the foundation technologies of cloud computing

[31]. In recent studies [32, 33], it is shown that the use of virtual machines, or more specifically

hypervisor-based virtualization technologies, achieve a high overhead in the execution of CPU-

intensive applications and incur a performance degradation in network latency. Whereby abstract-

ing an entire operating system that executes jobs and processes in complete isolation results in

issues such as double-cache, network-driver abstraction and an overall performance degradation

in HPC environments [33, 34].

Container-based virtualization, a "lightweight" version of the hypervisor-based virtualization,

aims at mitigating the performance overhead and introduces a new set of features that prevail

those of hypervisor-based virtualization technologies. Due to their ability to share resources with

the host machine, containers are able to avoid some of the penalties incurred on the hardware

level isolation and reach near-native performance when tested against CPU-intensive applications

[31, 34]. Containers come with the advantage of achieving lower start-up times [35] than that of a

traditional hypervisor based virtualization, this is due to the degrees of isolation each of these vir-

tualization technology employ. Each of the aforementioned technologies handles processes, filesys-

tems, namespace and spatial isolation differently such that resources and operating systems can

be provisioned independently for each running instance. Both virtualization techniques allow the

sharing of resources and aspire to optimize the cost of provisioning additional isolated resources

on top of host machines. Where each provisined instances would propagate a series of hardware

abstractions for each virtual machine or container in order to segregate different components of the

application.

In recent years, the focus has shifted towards the usage of container-based virtualization in HPC

applications. These applications have a large amount of processor-intensive tasks, thus requiring

the usage of parallel infrastructures so that each job can be divided in multiple mini-batches and

distributed across a network of connected machines. Once this workload would be encountered by a

hypervisor-based virtualization technology, multiple performance penalties would emerge once exe-

cuted on top of the hypervisor context needed for Hypervisor-based virtualization [36]. Containers

have gained increasing attention in HPC applications due to the benefit of removing thethe hy-

pervisor dependency, just-in-time compilation, the performance degradation and the slow booting

times of VMs.
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The additional benefits that containers bring to the table made it a viable choice for general ap-

plication isolation, infrastructure deployment and packaging of software services compared to the

traditional hypervisor-based virtualization approaches, especially in I/O intensive applications. Ad-

ditionally, the process, filesystem, and resource isolation layer bring the advantage of sealing shut

an application along with all the global resources and environment dependencies. This prevents

users from running into incompatibility issues that would otherwise render the entire applica-

tion/job unusable until the required internal dependencies are addressed. Container technologies

such as Singularity, Docker, OpenVZ and Linux containers (LXC) have rapidly contributed to the

development and wide-spread of container-based virtualization mechanisms. Each of the tech-

nologies mentioned above implements their method of achieving process hardware and network

isolation, while some focus on specific applicability in the industry, such as Docker [37], others fo-

cus on the portability containers across HPC environments, such as Singularity. Container-based

virtualization has gained an increasing popularity in the scientific field as well, one of the most

desired applicability of contains would be the reproducibility and portability aspect.

In the previous section, we have provided a high-level overview of which virtualization tech-

niques and why they are widely-used nowadays as well as the applicability of each in scientific

research. In the following Sub-section, we will dive into how two well-known container technolo-

gies (Docker and Singularity) achieve isolation and effectively overcome the limitations imposed by

traditional hypervisor-based virtualization methods. With this piece of information, we will inves-

tigate the extensive experiments done throughout the time that concern container-based virtual-

ization and pinpoint the advantages that these container mechanisms can introduce in scientific

workflows. The goal of this subsections is not of promoting any particular technology but that of

investigating the technical solutions that address the challenge of reproducibility across numerous

domains. The following sub-sections will provide us the necessary literature such that a solution

can be derived based on the benefits that container technologies might bring into scientific work-

flows.

3.2.1 Docker Containers

Released in 2013, Docker [37] has rapidly become one of the most important leaders and contrib-

utors in the open source community due to their commitment and wide-spread of their container-

based virtualization technology. Docker provides users and industry-wide experts alike the abil-

ity to wrap software applications or services into a reproducible, re-usable and rapidly-deployed

self-contained unit, allowing them to migrate their application to any platform or operating system
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efficiently. The industries "Dev-Ops" approach has vigorously enforced the usage of Docker contain-

ers. The approach is that of documenting each stage of the deployment such that each documented

stage contains its own set of dependency and requirements that are necessary for its execution.

Similar to the DevOps approach, Docker containers are built from the OS up, each container build

requires a list of instruction that is executed at runtime, named a Dockerfile.

A Dockerfile, as seen in Listing 1, is a clear record that contains specific requirements listed

by the user, each requirement is seen by the Docker daemon as an independent readable/writable

layer. A list of instruction can contain commands such as FROM, which initializes a new build

phase and selects a base image for the container, or MOUNT, that allows containers to mount

volumes located on the host machine into the container at runtime.

Listing 1: Dockerfile example

FROM ubuntu :14.04

COPY . /app

WORKDIR /app

RUN pip install numpy

ENTRYPOINT ["python"]

CMD ["app.py"]

Each layer is comprised of a list of generated instructions and previously (the default is now Over-

layFS) was stored in the AUFS (Advanced multi-layered Unification Filesystem) storage driver

that merged multiple image layers into a single representation [37] in the union file system. This

allows for a faster start-up time by preserving and compressing the disk space of each layer such

that the integrity of the container is kept.

Each of the executed layers is represented by a unique ID, once an exact similar layer is be-

ing executed in another Dockerfile, the same layer can be reused across an unlimited number of

Dockerfiles. An uninstantiated container, also named as an image, is comprised up of multiple

layers, once a Dockerfile is built and the list of instructions are fully executed, an image is created

containing the specified requirements, meta-data containing the history of layers, and a randomly

generated UUID (refer to Listing 2).

A Docker image is made up of the layers specified in the Dockerfile, once an image is instan-

tiated it first pulls all layers located remotely, stores them in the AUFS, and then executes all

the remaining layers that are can be executed locally. Both the generated image and Dockerfile

have important functionalists because they provide users and existing CI (Continuous integra-
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tions) tools, such as Travis CI5 and Jenkins6, the usage of simple scripts that defines the exact

layers required and instructions scripted by the users. Both the Dockerfile and the image object

generated can be stored and version managed in external/internal repositories, examples can be

code repositories(Git, Bitbucket) and image repositories (Docker Hub, private image repository)

respectively.

Listing 2: Instantiating a Docker container

awdayk@YOGA :~/hello -world\$ docker run -it ubuntu :14.04 /bin/bash

Unable to find image ’ubuntu :14.04 ’ locally

14.04: Pulling from library/ubuntu

99 ad4e3ced4d: Pull complete

ec5a723f4e2a: Pull complete

2a175e11567c: Pull complete

8d26426e95e0: Pull complete

46 e451596b7c: Pull complete

Digest: sha256:ed49036f634 ....

Status: Downloaded newer image for ubuntu :14.04

root@fcc8e83cf641 :/#

In Listing 2, an example command is shown of a docker command that is utilized to instantiate

a container. Once this command is executed, the docker-client first initializes the process by send-

ing the necessary meta-data (image specified, version, image repository and so forth) to the Docker

daemon. Then the daemon itself will attempt to pull the ubuntu version 14.04 image from an im-

age repository that is, if the image cannot be found locally, by downloading each layer specified in

the ubuntu image sequentially until fully loaded. Furthermore, once the Docker daemon fires up

the container instance, it allocates a file system to the container, allowing it to have its directory

structure and files, creates a network interface that grants the container access to connect to the

default network (designates an IP address for the container) and initializes the container by execut-

ing the /bin/bash command in an interactive terminal [31]. The command mentioned above spins

up a container that inherits the Ubuntu distribution as a base image; traditionally users would

execute the docker run command pointing at the dockerfile (as seen in Listing 1) such that multiple

instructions can be carried out during runtime. Docker images allow developers and users alike to

escape the "Dependency hell" often encountered nowadays [37].
5https://travis-ci.org/
6https://jenkins.io/
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The images enable users to easily export a binary object containing all the software dependen-

cies, files used and underlying software specification of their experiments and applications. This

would typically be a difficult task for researchers that want to understand, evaluate or alter those

dependencies when using traditional hypervisor-based virtualization technologies [38]. Due to the

ever-changing and actively developed tools, system administrators have to deal with issues such

as library versions, dependencies, and software compatibility [31]. Usually, the code and data pub-

lished alongside research papers would be accompanied with various undocumented assumptions

and configurations [39]. Dockerfiles and docker images encourage users to create their isolated en-

vironment based on the code and tools they require such that platform portability can be achieved

regardless of the tools, configurations, and dependencies needed. Another vital trait that Docker

achieves is the reproducibility aspect of experiments where researchers can immediately recon-

struct the computational environment such that the source code can be ported and executed across

numerous platforms.

The process of materializing a container from an image involves the creation of multiple levels of

abstraction (hardware, process, and network) that allow the creation of a loosely coupled container

instance on top of the host machine. In order to achieve that, Docker implements a client-server

type architecture, namely the docker client and docker daemon. The docker client can be controlled

by using the Docker CLI or API; users can perform commands such as docker build, docker run

and docker pull to interact with a single or multiple docker daemon(s) (dockerd). The docker dae-

mon resides on top of the host-machine and listens to incoming Docker API requests, when once

a request is received, it initializes the creation of Docker object (images,containers, and networks)

or executes a specific action on the daemon level. The Docker daemon is also capable of communi-

cating with multiple docker daemons and create a distributed network that allows containers to be

distributed across multiple Docker daemons.

To do so, Docker uses a built-in feature named Swarm [40]. Swarm is a container-network solu-

tion that provides standardized interfaces between Docker daemons and their network drivers [41].

This functionality allows containers living on different docker daemons to communicate and inter-

act with one another through an overlay network, this simplifies the network configuration and

ensures that each service (a group of containers that have the same functionality but are repli-

cated across different hosts) is under the same network subnet. Among other features, Swarm

works as a cluster manager and load balancer for managing container; it makes sure that each

exposed service is evenly distributed across multiple nodes (a node is defined as an instance of
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the Docker engine participating in a swarm7. Docker Swarm is also in charge of maintaining the

replicas resilient (auto-healing is triggered whenever one replica crashes, docker swarm replaces

the crashed replica with a new replica).

Docker containers provide a promising range of functionalities that maintain the integrity and

structure of executed experiments across various environments as well as it increases the aware-

ness of reproducibility among researchers due to its high adoption in the software community with

its rich ecosystem. Nonetheless, despite its advances, Docker containers are not perfect, and they

face a series of limitations and potential shortcomings. [38] Pinpoints the issues that are cur-

rently faced when reproducing research with docker, namely computer security issues that have

not been thoroughly evaluated, possible limitations in reproducibility introduced by the OS-level

virtualization and the lack of significant adoption of Docker in scientific circles. These limitations

were identified by reviewing current approaches in hypervisor-based virtualization and workflow

systems and successfully deriving four significant challenges. Namely, Dependency Hell, Impre-

cise documentation, Code rot and Barriers to adoption. [42] proposes a new approach for modeling

containers in a multi-node setup that addresses the lack of management and runtime system evo-

lution in Docker containers. This was achieved by introducing an event processing application that

is used to verify, reason, deploy and manage the life-cycle of Docker containers.

Other publications such as [41, 43–45] compare the performance of Docker containers in I/O,

CPU, GPU, TCP Throughput, energy consumption against bare metal systems, hypervisor-based

and other container-based technologies. Docker containers manage to reach near-native perfor-

mance in nearly all the tests faced while not incurring any notable drawbacks, in most cases 8

performing significantly better than its hypervisor-based virtualization counterpart. In the follow-

ing sub-section, we will continue to investigate another container-based virtualization technology,

namely Singularity, to accurately distinguish and differentiate the benefits and disadvantages of

both container-based solutions.

3.2.2 Singularity Containers

[46] proposes a new container-based virtualization technique that aims at solving various difficul-

ties encountered by Docker containers named Singularity. With the promise of offering a more

secure, scalable, compatible and reproducible solution, Singularity containers have opened a new

door towards the usage of containers in supercomputer and HPC environments. Where concerns
7https://docs.docker.com/engine/swarm/key-concepts
8Higher energy consumption when executing computationally-intensive tasks were encountered in some cases.
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such as the lack of performance, security, and usability are partially or fully mitigated by removing

the necessity of granting users root-level access in multi-tenant shared environments. Such ab-

straction layer that is created by Singularity, as touched upon in previous sections, bring various

advantages that enable the usage of customized environments that results in reducing the effort

scientists take when building custom software.

As many of the container-based technologies found nowadays, Singularity containers take ad-

vantage of the chroot and bind mount Linux kernel features and MPI (Message Passing Interface)

implementations to introduce the usage of containers across a wide range of HPC architectures.

Singularity also introduces the capability of leveraging existing docker images (described in Sec-

tion 3.2.1) to generate singularity container definitions. This allows users to convert their existing

Docker image manuscript into a re-usable single-file image that can be ported in a wide-range of

architectures. The usage of Docker containers in scientific computing has proven to bring forth a

myriad of security and usability challenges [47]; this exposes multiple failures points when utilizing

Docker in multi-tenant shared environments that cannot be immediately addressed. Singularity

containers emerged due to the necessity of achieving entirely isolated portable environments in

scientific computing that provides users and researchers alike the ability to reproduce end-to-end

workflows seamlessly secure.

Listing 3: Singularity container instantiation

singularity exec ubuntu.simg cat /etc/os-release

NAME="Ubuntu"

VERSION="14.04 , Trusty Tahr"

ID=ubuntu

ID_LIKE=debian

PRETTY_NAME="Ubuntu 14.04 LTS"

VERSION_ID="14.04"

HOME_URL="http :// www.ubuntu.com/"

SUPPORT_URL="http :// help.ubuntu.com/"

BUG_REPORT_URL="http :// bugs.launchpad.net/ubuntu/"

Users have the freedom to share, collaborate or publish their experiments and source code by

making use of the Singularity hub [48]. A singularity container can be launched, by using the

command shown in Listing 3, and interacted with in a shell terminal where users can execute their

required tasks.Once finished, users can commit their changes and push their newly created image
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to the Singularity hub repository. The Singularity hub adds an additional layer of reproducibility

and automation with the purpose of capturing, storing and analyzing the meta-data of each cre-

ated container. Considering the urgency of reproducible software and workflows, Singularity hub

complements the needs of HPC communities by enabling the use of web-hooks and version control

management. Users benefit from such features by serving the necessary scripts via a RESTful

interface that allows the automation of builds and version control.

Singularity containers are represented by a single-file image that comes packaged with the nec-

essary Linux distribution, files, libraries, dependencies and environment requirements. They also

come with the promise of addressing most of the security concerns found in most container tech-

nologies utilized in HPC environments [49]. The reason why Singularity touches upon such con-

cerns is that the use of other9 container technologies enables users to execute arbitrary code with

escalated privileges (root) on the host machine. This has rendered multiple container solutions

unusable in HPC environments due to the high level of control users would inherit when instanti-

ating a container, allowing the usage of root-level commands would introduce security risks when

handling environments that are shared across a vast amount users. For this reason, Singularity

containers have become an appealing choice in multiple supercomputing or cluster-computing en-

vironments [47]. This is because of Singularity integrating essential features from other container

technologies while also preserving the integrity and security of containers in a balanced approach.

Another functionality that Singularity containers have adopted is being able to bootstrap a singu-

larity container by using a Docker image.

Listing 4: Creating a blank image

awdayk@YOGA :~/hello -world\$ singularity image.create ubuntu14 .04

Creating empty 768MiB image file: ubuntu14 .04

Formatting image with ext3 file system

Image is done: ubuntu14 .04

Singularity containers leverage the usage of the docker image manifest by tapping into the

Docker registry, pulling the desired image, extracting each layer of the image and fully converting

it into a single Singularity image. The connection between Singularity and the Docker registry is

made through the Docker registry API that uses a RESTful interface to extend access to all image

manifests of the respective repository that provides the capability of retrieving the necessary layers

from the requested image.
9Namely Docker among others.
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A Singularity container can be described as a merely a file that is created by specifying the

compatible Linux distribution (distribution-specific tools and kernel-dependent features 10) and the

size of the image; an example can be observed in Listing 4. Once come into shape, the file created is

an empty file system containing only the folder tree structure of Linux. To populate the file system

with user-defined packages and dependencies a list of instruction named a bootstrap definition

recipe is required such that each specification can be acquired and placed accordingly in the created

image file. This command can be reached by simply specifying the image file and manifest intended

to be used in the bootstrapping procedure. Similar to the COPY or MOUNT feature of Dockerfile,

users can automatically access relevant file system located on the host machine when executing a

container.

Listing 5: Singularity image manifest

Bootstrap: docker

From: ubuntu

%help

Help section

%setup

touch Hello -worlds.txt

%files

/home/awdayk/hello -world/hello -world.txt

/hello -world.txt

%labels

Maintainer Awday Korde

This functionality allows users to share files across the contexts of the containers that carry the

same access rights as the user executing the command; an example can be seen in Listing 5. The

manifest brings forth numerous sets of parameters users are allowed to specify in order to create an

ideal execution environment. Two main sections divide the manifest mentioned above, the Header,

and Section parts. The Header of the manifest, users specify the Linux distribution by defining the

core operating system and kernel version which the container is going to inherit at build time.
10http://singularity.lbl.gov/faq
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Each build base (references to layers the users want to make use of) brings forth a set of par-

ticular details the users needs to address to retrieve the desired image, such as using "shub" or

"docker" to retrieve images hosted on Singularity hub or Docker hub in the order described. In

the Section part of the manifest, among other user-defined parameters, users can specify in the

"%post" Section of the manifest a series of scripts that are to be executed during runtime of the

bootstrapping procedure. Configuration, installation and download commands are specified in the

"%post" section and executed so users can install and pre-populate the container environment with

the desired software packages. The copying of host files into the container file system cannot be ex-

ecuted in this section of the manifest, this section only allows users to specify download commands

such as wget and curl to retrieve packages, data, and files. The section that is used to copy files

from the host machine into the container at build time is specified as "%files", where it strongly

reassembles and shares the functionality as that of the cp command in Linux. The execution of the

"%files" section of the singularity manifest always occurs before that of the aforementioned "%post"

command. The singularity manifest also provides users with the ability to inject tests, checks and

environment variables into containers during the build time execution.

Once the container is bootstrapped and instantiated, the materialized container acts as an en-

capsulated read-only (defaults to a compressed immutable format) environment, where each func-

tion and script invoked within the container will inherit the underlying distribution and dependen-

cies specified in the bootstrap recipe. As soon as an execution command is sent to the container,

the script executed will not face any imposed limitation concerning processes or threads. Another

aspect of Singularity that adds up to features that allow for the execution of programs is the ability

to redirect IO, pipes, arguments, files, shell redirects located on the host machine directly from

inside the container [46].

This shows that Singularity containers do not entirely achieve complete isolation from the host

machine but primarily focuses on achieving collaboration between the host machine and container

processes. Singularity containers also provide the users with the functionality of inspecting the

content of a container by using the command shown in Listing 6. Checks allow system admin-

istrators to perform all the necessary tests required when initializing a container instance, this

functionality when coupled with kernel interruption on failed tests or non-success stages brings an

additional layer of verification which would indicate the existence of unexpected execution behavior

on runtime.

Listing 6: Singularity check functionality
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awdayk@YOGA :~/hello -world\$ singularity check /tmp/Centos -7.img

START 1-cache -content.py tags[default clean bootstrap] level[LOW]

PASS: (retval =0) python /usr /../ singularity /../1 -cache -content.py

Singularity containers emerged as yet another method of providing an efficient image-based

technique that is tailored for the existing HPC ecosystem. The ability to convert Docker images

into Singularity images adds an additional layer of re-usability with the existing large amount of

Docker images. This allows users to wrap and port their current docker image manifest into an

HPC environment which mitigates security and usability concerns in HPC systems. While shar-

ing some of its features with its other competitor container mechanisms, Singularity brings forth

a number of advantages when operating in HPC systems, such as the omission of cgroups, root

level operations and the ability to bind, mount, or overlay system libraries or distributed file sys-

tems [47]. Due to their high demand in large-scale supercomputing environments, users can create,

modify and update their solutions on their local machine and deploy the containerized solution to

their desired HPC cluster or cloud provider without running into compatibility constraints. Many

clusters, supercomputers, and commodity systems have included Singularity containers in their

stack, examples of such clusters are the Cray XC supercomputer [47] and the San Diego Supercom-

puter Center 11.

Cloud computing research has also adopted the usage of container-based virtualization; this

enabled the usage of singularity containers in task-based parallel applications [50]. [50] proposes

the usage of container-based parallel execution of code that leads to a more efficient use of resource

when compared to traditional KVM solutions. As part of the Open Container Initiative 12, [51]

suggests an automatic generation of standard runtime specifications for Docker and Singularity

containers as well as an object ingestion process that preserves the specification of a container

at execution time, archiving and extraction tool of the intended specification respectively. The

Boutique13 Framework has tightly integrated the usage of Singularity containers, the framework

automatically publishes, executes and deploys applications across numerous environments. Users

can specify their desired execution flow by leveraging a JSON structure that specifies the command-

line template, input, and outputs [52].

Singularity containers are implemented as a means to complement and encourage the as-

pect of reproducibility that allows the deployment automation of application sets and workflows
11http://www.sdsc.edu/support/user_guides/comet.html
12https://www.opencontainers.org/
13http://boutiques.github.io/
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across environments. Singularity has proven on-par with native-executions when computationally

intensive-applications were concerned; multiple studies address the performance efficiency of Sin-

gularity containers against other competing virtualization mechanisms [47, 50, 53–56]. Singularity

containers currently appear to be one of the most secure, robust and attractive solutions in HPC

environment, this due to its ability to natively support technologies such as the Luster file system

[57], the InfiniBand architecture [58] and several other resource managers. Finally, Singularity

containers bring their own set of flaws as well, the primary aim of singularity was that of being

able to run container-based applications in any HPC environments, ironically the challenge faced

nowadays is that of Singularity not being supported on all supercomputing platforms [47]. Even

though Singularity comes with the promise of achieving a higher level of security than Docker, its

main container connector occasionally escalates to root privileges when executing for loops in the

process of mounting images [54]. Other flaws that can be considered would be that of not possess-

ing native support for I/O or networking virtualization; this typically means that with Singularity

users cannot benefit from shared virtual networking or multi-container orchestration [50]. In the

next section, we will discuss the differences between both Docker and Singularity, and observe the

similarity between the features embraced by both container mechanisms.

3.2.3 Discussion

In the previous section, we have laid out an in-depth depiction of two container-based virtualization

mechanisms that are currently adopted in industry-wide and scientific computing communities.

We have found that both technologies share some features with each other but do differ when

investigating their underlying design and in some characteristics, the mechanisms differ in the

interaction and dependency between the container engine and host machine. The first identified

characteristic, among others, would be that of both container mechanisms requiring a manuscript,

or simply an instruction list when bootstrapping a container instance.

Both technologies tackle the degree of reproducibility from different perspectives; Docker fo-

cuses more on adopting a Development and Systems Operation (DevOps) philosophy where com-

munities have embraced it as a de-facto standard format for micro-service type deployments (One

service per container). Whereby Singularity harnesses the portability of containers to bring the

mobility of computing in the HPC community to satisfy the requirements of achieving scientific

computational usage in cluster environments and computational centers. The different angles nar-

row down to the requirements of both technologies in different communities, that is for industry

usage and scientific world respectively [46].
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We have discovered multiple aspects of both container systems that bring along their own set of

limitations or design flaws, with this in mind; containers are pushing the frontier of virtualization

techniques where resource, filesystem, process and network isolation is of high concern. Both

container mechanisms have proven to be potential solutions when reproducibility and portability of

workflows and experiments are required, they enable the use of applications throughout numerous

platforms and provide through different methods process and application isolation.

Table 1: Comparison table between Docker and Singularity

Docker Singularity

Namespace isolation Yes Yes

Resource isolation Yes Not supported

Network Isolation Yes Host network

Image portability Multi-layered image Single-file image

Storage drivers OverlayFS ext3

Host FS access Mount/Volume Mount

Image repository Docker hub Singularity Hub

Security Requires escalated privileges
Doesn’t require escalated privileges a

aUsers require root access to preform
build (create), bootstrap or modify container

OS requirements Ubuntu CentOS Fedora and Debian Only compatible Linux Distribution

Community adoption Adopted in enterprise and
open-source applications

Slowly getting adopted
in HPC communities

In table 1 we depict the main differences between Singularity and Docker, this is done such

that we can get a broader overview of what these mechanisms ultimately entail. Namespace isola-

tion plays an important role when users are concerned with the ability of spinning up a significant

amount of containers on a single host machine or cluster of machines. This is because namespace

isolation enables containers to activate in an enclosed userspace environment such that the con-

tainer itself has its own set of processes and network drivers. The reason behind this partition

is that it allows the processes and functions that are executed within the container not to inter-

fere with other running processes on the host machine or other running containers on the same

machine. An example would be that of Container A mounting a directory D and changing the di-
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rectory name that is located on the host machine and Container B accessing the copied directory

D without being aware that a specific action has been executed by Container A. This limits the

visibility of other containers/processes that are executed on the same machine, thus creating the

illusion of an independent execution across containers instances.

Docker brings its own implementation of namespaces, named libcontainer, which functions as a

cross-system abstraction layer which enables the container interaction with Linux native names-

paces. By default (Namespace isolation can be activated), Singularity offers no namespaces iso-

lation due to the nature the containers were designed for, that is for HPC workflows and envi-

ronments. Singularity relies on resource managers and queuing systems, such as SLURM [59],

HTCondor [60] and Torque [61], to achieve process isolation; hence Singularity containers share

almost everything with the host machine as would a normal script running on the host machine

would.

Users can view, kill and modify host or other running container processes (Assuming the user

has the privileges to do so) from inside the singularity container. Resource isolation or restriction

refers to the hosts’ ability to limit the upper bounds of resources (CPU, memory, I/O block and so

forth) that is allowed to be consumed by a container. Docker, through its libcontainer implemen-

tation, leverages the Linux kernel cgroup feature to restrict the number of resources a running

container can consume. However, Singularity does not support any kind of resource isolation due

to it relying on resource schedulers to control the upper bound resource limit of their containers.

Network isolation shares many specifications to that of the resource isolation; the Docker imple-

mentation allows containers to be spawned in a privately encapsulated network space on the host

machine allowing for an added network isolation layer that utilizes the network kernel namespace

feature through libcontainer. Singularity offers no network container isolation thus inheriting

the host’s network interface and offers network transparency across all running containers which

eliminates the network virtualization overhead and introduces the need for an orchestrator or job-

scheduler when multi-container deployment is required.

The main differences lie in the design of both system, Docker being designed for enterprise-

grade application deployment that is made up of a conglomerate of light-weight services, whereas

Singularity is designed for general scientific use cases where the focus is that of executing a single

heavy-weight job targeting only one specific application. Hence, Singularity’s focus is on single-

application execution rather than multi-application execution. Both mechanisms employ different

storage drivers, Docker by default implements an Overlay File System, also named OverlayFS,
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whereas Singularity implements an extended file system, named ext3, typically utilized by Linux

kernels. Both implementations bring forth a set of trade-offs and influence the containers density

and other performance aspects when dealing with I/O related operations.

The OverlayFS of Docker, faster than its previously implemented predecessor (AUFS storage

driver), unifies a pair of two directories into a single directory on the Linux host. Usually referred

to as layers, these directories enables a hard-linkage between layers in a multi-layer docker image

setup. For example, a six-layered image retrieved by using the docker pull command creates seven

directories where the first six directories correspond to its respective layer and content, while the

last folder depicts the symbiotic link between each layer by referencing the layer identifier from its

lowest directory (child-layer) til its upper directory (parent-layer). Singularity ext3 driver storage

simplifies the process by creating a single-file image, as soon as a singularity create command is

executed, which contains a traditional Linux filesystem organized by root directories followed by a

series of sub-directories. Docker OverlayFS caches previously downloaded image layers, enabling

for a faster build time, where Singularity does not support image caches requiring the image to

be fully downloaded every time a Singularity create/build is executed. Both technologies bring

forth their own image repositories, Docker hub, and Singularity hub, where users can choose to

publish, update or retrieve an image from either a public or private registered image repository.

The security measures taken by both Docker and Singularity containers vary and allow users to

execute commands based on the degree of privileges they have. Singularity employs more robust

secures measures than Docker does when the creation or execution of images is concerned.

Singularity comes with the promise of retaliating the security flaws identified in Docker (as pre-

viously addressed in Sub-section 3.2.2) by forcing the container to inherit the users’ privileges from

the host machine during runtime which results in limiting the use of root privileges when executing

commands within containers. Both mechanisms are compatible with numerous operating systems

such as Windows, MacOS (by leveraging hypervisor-based virtualization) and Linux distributions.

While Docker natively supports Linux distributions such as CentOS, Debian, Fedora, and Ubuntu,

Singularity supports only specific Ubuntu and Debian distributions due to the restrictions of some

kernel-dependent features. Numerous cloud-providers have widely adopted docker containers and

have integrated them into multiple third-party applications such that it has become the de-facto

standard format for micro-service type deployments whereas Singularity containers gained some

traction in HPC environments where the usage of a secure container is required when activating

containers in a multi-tenant shared scientific computing environment. In the following chapter, we

will start describing the methodology design that is going to leverage the technologies described
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above to achieve reproducible analytical workflows.
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4 Methodology definition
In this Chapter, we will elaborate on our experiment processes and use case selection. The main

idea behind these experiments is of validating the reproducibility aspect of the workflow and that

of measuring the performance of container-based virtualization mechanism in combination with

machine learning techniques.

More specifically, it is fundamental to achieve a good trade-off between the performance of such

technologies and the re-usability aspect of such modules in empirical scientific research. To achieve

this trade-off we will run two rounds of experiments, which are going to be defined below, they will

provide us with sufficient information to evaluate the performance impact of using container mech-

anisms, that wrap user-specific function when compared to the performance of a bare-metal ap-

proach. The main takeaway point we expect to retrieve from these experiments would be whether

the container mechanisms mentioned above are sufficiently mature enough to handle the required

workload when dealing with machine learning use cases. Hence, our experiments will test the per-

formance of two well-established machine learning applications, precisely that of computational

linguistics and machine-learned ranking. In the following sections we will start depicting the hard-

ware and software specification, methods utilized, and assumptions taken for each experiment as

well as the specific parameters used for each algorithm.

Hardware specification. The aim of this section is that of providing information regarding the

hardware configuration in which our experiments have been executed. In Table 2 we show the

hardware specification that was utilized as well as the respective Docker and Singularity versions

used. In order to make sure that we made a fair comparison in our experiments, we used the same

compiler, software libraries and Linux distribution across all environments (Docker, Singularity

and Host machine).

CPU type Intel Core i5-7200U
CPU speed 2.50GHz

CPU # cores 4
Memory(RAM) 8 GB

Storage size 512 GB
Storage type SSD

OS Type Linux
OS Distribution Ubuntu 16.04 LTS
Docker version 18.03.0-ce

Singularity version 2.4.5-dist

Table 2: Hardware configuration
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In the following section, we will describe the setup that is going to be followed by both of our

experiments. At first, we will describe the experiment setup on a more generic level explaining

the various features and functions that are going to be utilized. This is done through the use of

illustrations that will be portraying the system architecture. This will provide us a wider-overview

on how our experiments can be applied to various use cases, the purpose of these experiments is not

that of promoting a specific technology or algorithm but that of validating the purpose of our study.

This section will be followed by the description of each of our use cases, that will undergo a series

of experiments in order to ensure the integrity of our analysis and results.

4.1 Experiment setup

Initially, the first part of the stages that are defined below is made up of both Singularity and

Docker’s workflow. Our focus is that of introducing the aspect of re-usability and reproducibility

while also keeping in mind the overhead this may entail. Thus, in order to ensure that our ap-

proach might be even considered a viable solution at a low-level of complexity, we decided to keep

both container-technologies at the default configurations (some minor changes were undertaken

to maintain similar configurations). The purpose of this decision is that of emphasizing on the

usability of container mechanisms, introducing multiple layers of complexity at this point would

entail lower odds of adoption among users and researchers alike. We have divided the flow of both

systems into two different illustrations; this is due to the fact that the underlying design of both

container mechanism differ from one another. As mentioned in Sub-section 3.2.3, both mechanisms

have some similar features but are optimized for specific use cases.

4.2 Docker workflow

In Figure 4 we depict the specific steps executed when building the initial and custom images for

our modules in Docker containers. As a first step we created a dockerfile (see Sub-section 3.2.1)

that contains a set of software dependencies the component itself would require and a Linux dis-

tribution similar to the one the host machine utilizes (Ubuntu 16.04). With this in mind, after

executing the build process in docker, the Docker client sends a build request to the Docker dae-

mon. The Docker client in our case has explicit access (assigned to Docker access group on the

host machine) to the Docker Daemon, inherently enabling escalated privileged calls to the Docker

daemon power and ultimately allowing the users that are specified in the Docker group to inherit

root-equivalent privileges. After the Docker daemon successfully receives the build request, it will

initiate the build procedure. Which in combination with the instruction specified in the docker-

32



file manifest will propagate a series of layer retrievals that will materialize the base image and

stored the layers in the OverlayFS (see Sub-section 3.2.3). After the base image has been retrieved

and stored, the Docker daemon will execute the remaining series of instructions in the dockerfile.

Each instruction is a series of one or more commands that constitute a set of differences from the

Figure 4: Build flow Docker

previously executed layer. Each executed command is contained in one thin read/write layer and

executed in a sequential manner such that it is added on top of the previous layer. In our ex-

periments, each layer constituted of a series of instruction that would import (by using the COPY

instruction) the required files into one R/W container layer and another layer for the required pack-

ages and dependencies. Furthermore, the process of building our specified containers ends as soon

as each instruction has been successfully executed and similar to the base image, our custom im-

age is stored and cached into the overlay file system such that it can be started up at any point

in time. Each module in our Docker experiments is materialized into a container and follows the

aforementioned build flow. This is done such that there is a consistent build and run process across

modules. In Figure 5 we depict an overview of the execution flow that will be employed by each

stage in our experiments. The execution of the models will be commenced in a sequential manner

such that each module will follow a process similar to that of an ETL (Extract-Transform-Load)

process. The ETL process follows a specific pull, process, and dump pattern, in our approach we

employ a similar process where each module created will ingest, process and dump the data into a
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Figure 5: Execution flow Docker

shared storage driver.

This enables us to pass the processed documents from a container to another in a consistent

manner and enables us to define inter-dependencies between containers, such as module B can

only be executed if and only if module A precedes. In the aforementioned we bring forth four

main steps, that is mount, workdir, metrics and run. Each representing instructions specifying

which data repository to mount, designation of the working directory (specified as the absolute

path of the function), metric function (extracting the required metrics for analysis purposes) and

the execution command (containing the required arguments for each module) of each respective

container. As soon as the execution flow is initialized, each step will propagate a series of actions

that will shape up the intended workflow and will initiate the execution of the specified modules

in a containerized environment as foreground processes. After each execution, the container cache

will be cleaned up along with the removal of its file system, expect the removal of inherited mounted

volumes such as the specified data repository located on the host machine. With the clean-up and

removal of the unwanted file system, the life-cycle of a Docker module ends such that the following

inter-dependent module can be initiated until the workflow is fully executed. We will continue by

depicting the design of the Singularity container build and execution process, while similar to that

of the docker workflow, it contains multiple design differences that will impact the method in which

the container materialize.

4.3 Singularity workflow

In Figure 6 we illustrate the build process of the singularity flow, while at hindsight has a similar

layout with that of the aforementioned docker build flow (see Figure 4), it follows a different build

pattern that will be described below. As soon as the build process is initiated by using the singu-

larity build command, we specify each image as an argument before the execution of the writable
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Figure 6: Build flow Singularity

images. The writable aspect of the images will enable us to perform read/write operations and

conduct changes within the container without having the restriction of a read-only image. In order

to execute a singularity build command as a writable ext3 single image that requires a Singularity

recipe file (See section 3.2.2), the command needs to be carried out with escalated privileges (root)

for the installation of software packages and dependencies. As soon as the command is initiated,

Singularity invokes the get image function by initially specifying the required URI (In our case we

pull an image from a public Docker image registry with the docker:// prefix) and the image name

along with the version number which is parsed through by making use of regular expression look-

ups. Once this command is executed, the underlying Singularity application will initially retrieve

all the layers specified in the base image and will gradually start assembling all layers into one

single ext3 singularity image (See section 3.2.2).

After the process of retrieval and conversion has been successfully realized, the bootstrapping

procedure of the container will be initialized. This is done, similar to that of the dockerfile approach,

by populating the image through the instruction provided by the singularity recipe file. The exe-

cution of the instructions specified in the %files and %post section of the recipe will be carried out

from inside the containers such that each module will be contained with its specific packages, files

and dependencies. As soon as each instruction is carried out successfully, the state of the container

will be stored as a custom image file containing the specified Linux distribution, files, meta-data
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and variables required for each respective module. The build flow of Singularity containers ends

by storing the image into the local file system as a single file image that contains a virtual file sys-

tem tailored for each module. In Figure 7, the execution flow of a Singularity strongly resembles

that of the Docker execution flow specified above. The differences here are the different methods

in which both mechanism mount the storage drivers, handle the execution of the functions or the

techniques in which each mechanism allows us to spawn commands within the container instance

(See section 3.2.2). The execution of both build and run flows will be carried out in a consistent

Figure 7: Execution flow Singularity

fashion such that each flow will be using default configuration values and the same configurations

for the modules and Linux distributions. We will not take into account the time elapsed, resource

usage or I/O operations undertaken when carrying out the build flow of both mechanism due to

the fact that these figures do not represent the overall performance or applicability of such mech-

anism in scientific research. Hence, our focus is that of investigating the runtime executions of

such mechanism, information such as I/O performance, CPU usage, memory usage and many other

metrics will be extracted for the purpose of comparing their performance to that of the native one

(bare-metal). Each experiment will be performed 50 times (Number of executions performed for

each module), this is done in order to ensure the reliability and validity of the metrics extracted

from all the workflows by aggregating all the results of the experiment executions. We avoided

introducing any variations that would slow down or damage the integrity of our experiments, that

would consequently damage the quality of our data and the contribution of our study.

In the following two sections we will expand on the specific use cases that were selected, along

with the execution architecture of each stage. This section will provide the functional layout for

our main contribution, here we will start expanding on specific widely-used application of machine

learning in scientific research. This is achieved with the purpose of mimicking the Directed Acyclic

36



Graph (DAG) formulation of KNIME and WEKA (see Sub-sections 3.1.2 and 3.1.1) and to build

upon on main objective of achieving reproducible and re-usable scientific workflows.

4.4 Experiment one: Machine-learned ranking using LambdaMART on

Expedia Hotel Search data

The first use case has been retrieved from a Kaggle 14 challenge, namely the 2013 Expedia person-

alized hotel searches challenge 15. The purpose of the challenge was that of optimizing the process

of matching users to hotels, this was done by implementing a recommendation engine that would

rank, for each user independently, the most likely hotel to be booked based on information such

as hotel characteristics, location attractiveness, user’s purchase history and click data. Hotel here

refers to numerous establishments, examples of such can be hotels, apartments or B&Bs. The ob-

jective of the participants was that of ranking the expected user response that was represented by a

click on a hotel or purchase of a room. A train and test are provided that have the size of 2.4 GB and

1.5 GB, respectively, but due to the nature of our experiments we have downsampled both datasets

to 100,000 rows each. Participants are expected to submit a CSV (Comma Separated Value) file

containing the searchId and propertyid sorted corresponding to the ranking of the entry. We choose

this use case due to the popularity of recommendation engines among numerous industries and

the interest in such systems in scientific research. The algorithm chosen by the winners of this

challenge was either an ensemble of gradient boosting machines [62] or the LambdaMART [63]

ranking algorithm. In our use case we decided to use the LambdaMART algorithm along with

numerous pre-processing steps (Which will be described below) in order to make sure we mimic

the exact steps of a machine learning workflow (training and prediction-wise) that would entail

data ingestion, pre-processing of samples and training of the model on the preprocessed samples.

Furthermore each of the processing stages will be segregated into separate containers to make

sure that the integrity and preservation of the pipeline is kept that would enable the immediate

re-usability of such modules. In Figure 8 we depict the main functionalities of our workflow that

consist of three pre-processing steps and one training step.

The purpose and functionality of each step will be described in Table 3, for now the focus will be

the interaction and requirements of each of the established steps. All steps make use of the Python

version 3.5.2 programming language, while some of the steps share some specific package depen-

dencies such as numpy or pandas, which are well-known scientific computing software packages,
14https://www.kaggle.com/
15https://www.kaggle.com/c/expedia-personalized-sort
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Figure 8: Experiment one execution flow

other steps come wrapped with software packages that are only required for that specific task, such

as pyltr, which is a Python learn to rank toolkit16 that contains ranking models, evaluation metrics

and carries numerous other features. Each step follows a inter-dependent design pattern, where

in order to achieve the desired outcome, the user will have to run the full pipeline as specified by

the authors dependencies between modules or stages. The author in this situation refers to the

publisher of the pipeline or algorithm, this is done with the aim of achieving exactly the result as it

would be specified in the published paper. While other users or researchers can take advantage of

such design in order to either build upon the work of their peers or retrieve the required modules

defined in the pipeline and make use of it in different experiments or use cases.

Each component of the pipeline will be initialized with a shared storage driver, as seen in Ta-

ble 3 after each component is executed it will dump the resulting object into the shared storage

driver. This enables the users to maintain a consistent data flow between components as well as

facilitating the ability to investigate the outcome of each module independently, similar to that of

KNIME(refer to section 3.1.2).

16https://github.com/jma127/pyltr
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Stage Description
std() Function that aggregates the values of multiple columns and

maps the median,standard deviation and mean value of each
aggregate group in three new columns

rank() Function that ranks the relationship between sets of elements
and controls how ranks are assigned to equal values

tmonth() Function that converts the visit month of users from a cate-
gorical one to a numerical value

train() Function which splits the data set into training and test-
ing samples on equally distributed search ids, generates
the target label and fit the LambdaMART model( Parame-
ters: number of boosting stages(estimators) = 150, fraction
of queries (queries_subsample) = 0.5, max tree leaf nodes
(max_leaf_nodes) = 15, min number of values required to be
a leaf node (min_samples_leaf) = 64, Maximum depth of re-
gression estimators (depthmax_depth) = 6)

Table 3: Stage definition - Expedia Kaggle challenge

4.5 Experiment two: A Simpler and more generalizable story detector

using verb and character features

The second and last selected use case activates in a different sub-field of machine learning than

the previously specified use case, namely, computational linguistics or more specifically, Natural

Language Processing (NLP). Natural language processing is a sub-field of artificial intelligence

that is concerned with the interaction or reasoning between the computer and natural languages,

such as the English language. Here the focus would be that of applying NLP-techniques for the

detection of stories in a paragraph. A story here is defined as a set of one or more actors that

have taken an action that would result into an outcome. Automatic story detection overcomes the

human-driven methods by automating the process in which stories or events can be discovered in

news articles or social media posts. The usage of story detector systems is required when users

or journalists are concerned with the detection or parsing of relevant parts of the text in large

corpus. While otherwise a time-consuming task, the aim of these systems is that of accurately

identifying these story blocks within large corpus or paragraphs and mitigate the risk of missing

vital information about the subject at hand.

While there have been many efforts [64, 65] in conceiving an automatic story detector that

would accurately identify a story, the detectors developed would not capture the essence of the sto-

ries. More specifically, the lack of a more generic approach led to a situation where once a story

detector would be used on a different corpus other than the one that it has been trained, users

would notice a high performance degradation and a lower model accuracy when identifying sto-
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Figure 9: Experiment two execution flow

ries [66]. [66] proposes a state-of-the-art story detector by leveraging features that focus on events

involving characters and actual characters themselves, namely verb and character features. In our

experiments, we employ [66] story detector as one of our use cases, here we plan on segregating

each of the main components of the developed story detector into independent working blocks. In

order to do so, we initially look up the components that can be re-used in different contexts, this

helps us determine which component will benefit more if isolated from the others. The main idea

behind our approach is that of allowing each component to activate independently from each other,

such that (as described at the beginning of section 4) each of the aforementioned components can

be defined as module in our experimentation phase. As observed in Figure 9 we divided the system

into three main components that are going to be utilized in our experiments. As mentioned previ-

ously, the setup of both use cases will be somewhat similar, the only main factors differentiating

them from each other is the content of each container, dependency-wise and functionality-wise. The

second use case follows a Java implementation, thus each component that is described below will be

compiled during the execution of the program. In order to successfully embed each component with

its own module, multiple separation of the system were required. This is due to the fact that each

major component made use of a set of software libraries that were required once the files would be

compiled and executed. Hence, we have identified 3 major components in the story-detector system,

the first component is in charge of sentence splitting, annotating and tokenizing the raw text that

returns an array list of split and annotated sentences. The second component will use the first com-

ponents output sentence to pass it through the it makes sense Word Sense Disambiguation(WSD)
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system [67] such that an array of wordnet sense keys is returned for each predicate. Here in order

to use the WSD system to be used in combination with WordNet key mapping, the Java WordNet

Interface (JWI) [68] and Java VerbNet Interface 17 were used to facilitate this interaction. Further-

more, The resulting key mapping will be piped into the second component that given a wordnet

synset key, returns an array list of the corresponding verbnet classes. As illustrated in table 4,

Stage Description
getsent() Given a text in String format, it returns an array list of sen-

tences that are separated and cleansed.
WSD() Given a split sentence it returns the wordnet sense keys for

each token
mapverb() Given a wordnet synset key, return an array of the correspond-

ing verbnet classes

Table 4: Stage definition - Story detector

the three major components depicted for the story detector can be seamlessly integrated with each

other in order to achieve the desired story detector system. This enables researchers and devel-

opers to tap into the ability of container mechanisms depicted previously, hence, the components

can function on an independent level as well as a group level by allowing the usage of a shared

storage driver. The shared storage driver here, that is shared across components, activates as a

medium between each component such that each containers can make use of a persistent file sys-

tem directory or storage. Thus, creating a pipeline that can makes use of one or more sources of

data (Distributed file system, file system or external storage’s) in such a way that it will not affect

the integrity of the component itself, or more specifically, the integrity of the containers content

and functionality. Furthermore, each component is expected to perform a specific action, which in

our experiments would be that of satisfying the objective of each component. With this aspect in

mind, which is briefly depicted in Table 4, the order and output of each component is utilized in

a sequential formulation by adjusting the order of the components in the layout described by the

author of the pipeline itself. This allows the users to experiment with a multitude of component

combinations in their own custom order, but would only achieve fully reproducible results if the

user does not introduce any changes in the order of the initial pipeline.

With the aforementioned specifications in mind, the layout of the experiments themselves rep-

resent the extent to which we validate the objective of our study, which is providing the ability

to reproduce and re-use an end-to-end machine learning workflow. In order for this to be even

considered as a valid solution for such systems or workflows, one criteria defined when measuring

the success factor of our approach was the degree of performance overhead incurred by leveraging
17http://projects.csail.mit.edu/jverbnet/
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such container mechanisms. The re-producability and re-usability aspect of our approach is that

of attaining a platform-agnostic feature and low-level detail reproducible aspect of the system so

that the entirety of the developed pipeline can be re-used either as a whole (which is in the ex-

act same way the author of the pipeline intended the system to be used) or in a component-based

formulation by users that are seeking only to reproduce some aspects of the system (that is, only

the component that are necessary for the user). In this way, the advancement of research can be

achieved in multiple ways, first being that of building on top of the groundwork that is laid-out by

researchers that publish their end-to-end pipelines, and secondly, re-using only certain components

of the system in order to derive a solution based on a combination of components extracted from

other published pipelines and user-defined components. In the following Chapter we will start pre-

senting the results of our aforementioned specified experiments that are going to be accompanied

with the findings and setbacks encountered once implementing such pipeline.
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5 Results
The initial assumptions behind our experiments were that of investigating whether container

mechanisms are able to reshape the ways in which current machine learning workflows are de-

signed. Here, we challenge the design of traditional workflow by implementing a container-based

workflow that, in the context of our thesis, reduces the pitfalls encountered in empirical scientific

research. One of the main pitfalls described previously in our study (check Chapter 1), was the

vast amount of highly empirical studies that could not be reproduced due to the lack of or the in-

consistent description of system specifications that has slowed down the advancements of research.

Due to this aspect, our results, that are going to be depicted and discussed below, improve the over-

all portability and re-usability of machine learning workflows that require complex dependencies

between various components of the system while also preserving the integrity of each component.

Our thesis focuses on scientific publications that aim to publish their code and data in a private or

public community and aim at facilitating the ability to reproduce their own results or experiments.

That being mentioned, our study will focus on two aspects required for validating the reproducibil-

ity and applicability of our solution. To asses the reproducibility degree of our solution we decided

to employ the framework and guidelines defined in [69], where the authors of the paper quantify

the degree of reproducibility in computational biology publications. We will examine and determine

the number of drawbacks mitigated by employing our solution, and we will depict the benefits of

such in practice. Furthermore, in order to determine the applicability of our solution, we have

laid out a number of experiments that allow us to measure the performance of such a workflow.

By doing so, we take into account factors such as CPU usage, resident set size during its lifetime,

context-switches and other resource indicators for each component in the workflow and compare

these values with a system that is not virtualized (bare metal). The two main points behind our

experiments are that of investigating:

• The extent to which our solution can solve the matter of unreproducible empirical work in

scientific research

• The performance overhead of a container-based multi-component machine learning workflow

The granularity level chosen for our workflow enables the usage of a combination of modules

that encapsulate the entirety of a components underlying dependency. Each component specified

requires two or more arguments depending on the type of component, this varies based on the func-

tionality of each specific component. However, while some components can be combined together

to form an entire workflow, in some cases (see Sub-section 3) a component requires a specific data
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type as input such that the desired output can be achieved. This allowed us to segregate the func-

tionality of one component in such a way that it can be used in combination with data sets or data

sources that share the same specification traits.

Moreover, the usage of the Docker and Singularity manifest files (see Sub-section 3.2.1 and

3.2.2) allowed us to bootstrap the content of the containers by using a series of instruction that

would populate the container during execution. This, in combination with the shared storage con-

nected with the pipeline at runtime, allowed us to specify the path where each I/O operation would

be initiated. Furthermore, in order to extract the required performance metrics for each compo-

nent, such that it can be further analyzed, we make use of system calls (time and getrusage) to

extract various time and resource-specific statistics about the life-cycle of the component.

Later on, in this chapter, we will describe the results of our experiments by making use of ta-

bles and figures that will contain the averaged values of each extracted statistic. We repeated the

experiments 50 times such that we would increase the confidence and decrease the uncertainty of

our estimations while also ensuring the precision of our extracted statistics; this is done by mea-

suring the performance of multiple executions. Furthermore, based on all the extracted statistic

we will reason the results in accordance with our initial assumptions and evaluate whether or not

our proposed solution confers the right approach to the issues identified in Chapter 1 and Section

3.1.

5.1 Degree of reproducibility

To assess whether our solution is able to encapsulate numerous aspects of the system, we employ

[69] reproducibility guidelines so we can determine how our proposed workflow is able to surpass

and cover them. One of the major drawbacks in reproducible empirical research is the ability to

reproduce an algorithm or system on a different environment as they are intimately tied to specific

features of the operating environment [70]. This tends to lead to a series of internal compiler errors

or runtime error caused by the unavailability of the environment, missing third-party packages or

other conflicting underlying dependencies [71]. In Table 5 we depict the reproducibility guidelines

extracted from a publication [69] that quantified various aspects of empirical research in compu-

tational biology to determine the most vital aspects when reproducing empirical research. Both of

our workflows are based on container technologies, specifically Docker and Singularity containers.

This design decision has enabled us to go beyond the ability of hypervisor-based virtualization or

virtual environments and facilitate the ability to isolate processes and software dependencies in

a thin virtualized without introducing the additional overhead entailed. However, the ability to
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Table 5: Reproducibility Guidelines

Guideline Description

Input data The source of the original dataset utilized
Dataflow Diagram Diagram that represents the steps in which the computations

are performed.(This involves software tools, scripts and cus-
tom defined software that requires an input data source)

Software Specification of the software tools utilized along with the spe-
cific version and source for all of the scripts or components in
the workflow.

Configurations Values and parameters utilized to execute the workflow
Intermediate data Key intermediate data that resulted from important steps

that would aid users determine whether they reproduced the
method according to the author specification

reproduce algorithms or entire workflows does not entirely rely on the software packages them-

selves, but also on the underlying configurations and operating system compatibility. In Chapter

4, we have depicted the workflow proposed in a way that each component created is encapsulated

in a virtual space. This feature allows users to contain the underlying software dependency and

OS distribution of each component in a single file format that grants users the ability to export

their workflows and capture the configuration parameters of each component. Not only does this

maintain the integrity of the container itself, but it also accounts for the immutability of the objects

inside the image itself once exported as a read-only image. Thus, a container image relies on the

host OS kernel for implementing the container execution environment, isolation and resource us-

age based on the requirements of the image or manifest file. This allows users to achieve an easier

and more descriptive method of defining and attaining the software and configuration guideline as

specified in the table above.

As for the input and intermediate data guideline, our architecture design allows users to read

and write from a wide range of data sources, file systems (LFS, HDFS, S3, EXT3, EXT4 and so forth)

and web services. We decoupled the storage space from the component execution environment such

that each component can ingest data and output artifacts into a shared mounted storage which

is mounted in the container at runtime execution. The data flow diagram can be easily depicted

based on the workflow itself, that is defined in makefile scripts that draws the relation and inter-

dependency between each component in a DAG formulation. Hence, the design of our workflow

provides users the ability to create reproducible workflows that captures the bare requirements for

a component to function in a different computational environment. The modular aspect encourages

users to envision their computational workflows in a more modular and decoupled formulation that
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is easier to reproduce and share among private or public communities.

Based on all the observation depicted above, we attain a high level of reproducability due to

the possibility of easily exporting, version managing and securing the integrity of each component

independently. Once an entire workflow is exported as multiple image-ready components, users

have the ability to share, edit, or investigate the functionality of each container. Thus avoiding the

VM approach of acting as a "black box" which does not allow users to perform any changes in the

execution pipeline. By breaking down the pipeline into simpler, more de-coupled components we

do not only capture the complete executable environment but also secure that the same software

package version will be utilized across computational environments, thus avoiding running into

missing third party packages issues. In the next section we will investigate the applicability of our

workflow when faced with two machine learning use cases (Described in Chapter 4), this is done in

order to determine the performance overhead implied when utilizing container-based mechanism

as component in a workflow.

5.2 Performance indicators

In the first use case we made use of four main components that make up the entire work-flow,

as specified in Chapter 4, the first three components serve as pre-processing modules, and the

last component is where the model is trained and saved into the shared mounted storage. Each

component makes use of multiple I/O bound operations; thus each component entails a degree

of computation necessary for achieving the desired output. In the second use case; three main

components were identified that make up the story detector pipeline. While both systems have

similar layouts, the main factor that is differentiating between them is the underlying software

functions and package dependencies.

5.2.1 CPU time

Below we have plotted the average CPU time for each component specified in the first use cases. In

hindsight, we observe the results across the experiments when using the Docker-based or Singularity-

based workflow show near or even better than native timings. Here we measure the User CPU-time

for our running components, where for each component initiated we measure the duration the CPU

was utilized for performing the computations and processing required. The CPU-time allows us to

quantify the amount of time the system was actively working with the input as well as the amount

of processing power delay acquired when achieving the desired outcome of a process which in our

case is specified per component analysis.

46



Figure 10: CPU time in the First use case

Each component was executed independently such that other components would not interfere

with each other while performing the computations. In Figure 10, we observe the execution of the

first pipeline execution where the main programming language that was used here was Python in

combination with other third-party dependencies(scipy, numpy, pandas and so forth). We discover

that the results extracted from the Singularity pipeline were able to achieve a slightly better over-

all performance than that of the Docker pipeline and the native execution. On a more independent

performance of each component, we notice that singularity spends less time processing the data on

tasks that require light-weight transformations, while at tasks that require heavy-weight trans-

formations it performs either poorer or on-par with native performance. While the Docker pipeline

in this experiment overall performance is the poorest among all the other methods. However, the

Docker-based pipeline still exhibited near-native performance at most of the components specified

in its work-flow.

We observe a higher variance in the standard deviation across components such as targetmonth

and model of the pipeline, this may indicate the performance variations brought forth by map/apply

functions and the early stop feature of the LambdaMART algorithm. Whilst the other two compo-

nents indicate a steadier CPU time due to the functions we utilized to manipulate data structures

in pandas.
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Figure 11: CPU time in the Second use case

Figure 11 shows the CPU-time average of the components in the second use case that is fully

written in Java, unlike the previous Python written pipeline. Here, we notice similar performance

indicators as in the previous use case, where the Singularity-based pipeline outperforms native,

and the Docker-based pipeline in two out of three component and manages to reach near-native

performance in the third and last component. Similarly, we notice that components that are com-

putationally expensive (WSD component) tend to perform slightly poorer in container-based envi-

ronments. The two aspects identified here are (i) Singularity-based solution executes the compo-

nents faster than the Docker-based and native workflows. (ii) Singularity-based and Docker-based

workflows encountered a slight overhead when dealing with computationally-heavy components.

Both of these aspects are argued as follows: (i) In both figures we observe that the Singularity-

based solution managed to obtain a better overall performance than native or docker, this is caused

by the hardware virtualization. Due to the design of the container mechanism, singularity con-

tainers does not fully emulate the hardware virtualization paradigm, with the exception of kernel

namespaces environment. Hence, the creation of a singularity image yields high CPU performance

due to the created encapsulated space that once a command is executed inside this space, it is es-

sentially a single meta-data lookup. The single file images start-up, unlike docker, makes little to

no use of cached data and the lack of a heavy implementation, performance costs of emulation and
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redundancy allows it to perform better than Docker. Furthermore, docker default CPU settings

restrict the docker daemon from using the CPU for larger amounts of time, thus resulting into the

additional overhead. (ii) The marginal overhead encountered in both docker and singularity when

dealing with a heavy workload is caused by the implementation of kernel namespaces that add

a slight performance penalty as the compiler requires to search for additional items. The WSD

component makes use of mapping of each word to verbs that iterates over a massive amount of

verb stored in dictionaries. This requires the system to parse through each file independently thus

incurring a slight overhead when accessing each document in the file system.

5.2.2 CPU Utilization

Figure 12: CPU utilization in the first use case

We plot the percentage of CPU that has been used by each component within both use cases. This

estimation allows us to measure the system performance once executing a specific process which in

our case is that of executing the functions (see Chapter 4) that are encapsulated in the respective

container mechanism. The CPU percentage is calculated as follows:

U + S

E
(1)
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Here S stand for the total number of seconds the component spent in kernel mode, U represents

the total number of seconds the component sent in kernel mode, and finally, the E is the total real

time duration spent executing the component. High CPU usage may indicate that the function

itself (in our case component) is highly demanding CPU processing power in order to gracefully

execute the function, while a lower CPU usage typically shows that the function itself wasn’t as

power demanding. This indicator helps us determine whether a running component is going to

demand more CPU power than it would do when executed on the bare-metal host. As observed in

Figure 12, we do not observe any unusual spike in the performance extracted from the first use

case. One aspect that we have remarked in this is the brief increase in the first component; this

can be caused by the hardware emulation and the fact that the component is executed through a

single look-up file while in kernel mode, this allowed the component to access all memory locations

and system resources.

Figure 13: CPU utilization in the Second use case

As seen in Figure 13, the second use case shows strong multi-core utilization (multiple core

system user during the experiments, see Chapter 4), while the previous figure only used up only

half as much as this use case. The overall CPU utilization values do not vary highly when compared

to the bare-metal environment with the container-based mechanisms. In this part of the metrics,

we observe that the Docker and Singularity based workflow perform somewhat similar, having only
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encountered a slight overhead on the processing power itself when compared to the bare-metal

environment. Hence, both implementations manage to achieve near-native performance as well

as having the ability to deal with the same amount of multi-threaded workload as the bare-metal

machine would.

5.2.3 Memory intake

Figure 14: Memory intake in the First use case

The following figures show us the resident set size expressed in KB for each component in both use

cases. The Resident Set Size(RSS) represents the maximum amount of main memory a process,

or in our case component, has occupied in real RAM (not swapped) over its lifetime (where less

is better). This accounts for the code, shared libraries, data and other memory types that are in-

volved when executing a specific component. This metric will allows us to determine the amount of

memory intake each component has consumed considering the similar layout across environments.

Furthermore, the memory usage metric collected serve as an indicator on the memory deviation

when compared to the bare-metal environment, here we investigate whether components occupies

larger parts of the RAM when utilizing container-based mechanism. This metric is useful espe-

cially in machine learning; this is due to the reasonable amount of memory a machine requires

to be able to handle large amounts of information. In the first use case, plotted in Figure 14, we
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deduce that the overall memory intake of all the components across environment are somewhat

similar, no abnormal or memory spikes were registered when conducting our experiments. As in

the previous experiments, the singularity workflow comes in first as the environment that utilized

the least amount of memory, followed by the bare-metal environment and the docker environment

coming in last. Another factor observed while conducting the experiment on this use case is the std

component (That aggregates the values of multiple columns and maps the median,standard devi-

ation and mean of each group, refer to Chapter 4), where the bare-metal environment manages to

slightly overcome the Singularity and Docker work-flow in the matters of memory consumption.

Figure 15: Memory intake in the Second use case

In Figure 15 we plot the maximum RSS values for the second use case, whereas observed previ-

ously the container-based workflows shows lower or similar values to that of a bare-metal approach,

this shows us that container-based system does not add additional overhead to the system itself.

The reason behind the container-based workflow consuming less memory in some task is due to the

amount of code, shared libraries and data types located on the containers themselves. Where in

comparison to that of bare-metal, it significantly reduces that amount of libraries needed to look-up

when invoking a library. Another aspect observed here is that the Docker-workflow itself sometimes

performs poorer than the Singularity-based one, this is caused by the go-routines that Docker itself

spins up. The go-routines are spawned by Golang (the language Docker is implemented in) and its
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virtual memory usage tends to show high RAM allocation due to its pre-allocated stack space. How-

ever, accessing smaller files tends to yield better performance in Docker while larger files on the

host system are inclined to perform better. Here singularity performs the best due to the escalated

runtime required to build the sandboxed image environment of the function which was executed in

kernel mode allowing access to all memory locations.

5.2.4 Context-switches

Figure 16: Context-switches in the First use case

Furthermore, we depict the frequency of context switches per component in both use cases.

When managing multiple processes, an operating system switches context from one process to an-

other, where a process here is defined as an executing instance of a program. The context here

represents the content a CPU would register that provides fast executing memory within the CPU,

that typically is used to quicken the execution of a certain process which in our case a component

is made up from multiple processes. These context switch costs vary from process to process partly

because the cost of executing the kernel code to do context switches is affected by cache perfor-

mance [72]. Here we measure the context switches in the circumstances of our setup in order to

ensure that there are not many context-switch when executing a process within a container that

would entail additional CPU costs. Context switches can only occur in kernel mode via system
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calls; this will help us identify which container-technology makes use more of system calls when

running specific tasks in a container-based setup. In Figure 16 we plot the voluntary (explicitly

changing process thread) context-switches from the first use case, as seen the values extracted

here highly vary from each other. Here the higher the frequency of context switches we observe the

more computationally intensive that specific operation will be. In hindsight, we remark the highest

frequency of context changes in the Docker-based workflow than the other two environments. Op-

erations executed in the singularity-based environment made overall less frequent usage of context

changes for the first two components while for the last two, the bare-metal environment achieved

the least frequent context changes. Considering the CPU usage estimation from Figure 12, the

first round of experiment (first use case) was mostly executed on a single thread in all three envi-

ronments thus widely differing from the one from the seconds use, where we see (Figure 17) more

frequent context changes.

Figure 17: Context-switches in the Second use case

The reason behind the Singularity-workflow behaving as such, in the model and rank compo-

nents, is that singularity does not support context changes; thus I/O operations flow directly be-

tween environments reducing the operational overhead and execution times(as seen in Figures 10

and 11). This also means that each operation executed inside the container continuously redirects

all IO in and out of the container directly between the environments. Typically, the Docker-based
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workflow would yield the most frequent context changes due to the existence of the docker daemon

itself, where for each container executed, the container itself is launched as a child root owned by

the daemon, thus granting it access to kernel mode [46] (where all the context switches would oc-

cur). As briefly mentioned earlier in this paragraph, in Figure 17 we notice more frequent context

changes, this is due to the fact that once a process requires the use of multiple processors it will

make use of numerous threads, thus the context changes occur more often as a result of the process

voluntarily relinquishing their time in the CPU 18.

5.2.5 Output operations

Figure 18: Output operations in the First use case

In the last round of extracted metrics, we plot the number of output operations written on the

binded mounted storage across the container-based environments as well as the number of outputs

in the bare-metal environment. The output transfer operations is represented by B
512

19, where B

stands for the number of bytes written to disk. Here each write performed on the mounted storage

is continuously propagated to the host file system, this allows files that are written to the shared

directory maintain consistency across environments. The initial write propagating from the initial
18http://www.linfo.org/context_switch.html
19https://github.com/torvalds/linux/blob/5924bbecd0267d87c24110cbe2041b5075173a25/include/linux/task_io_

accounting_ops.h#L30
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container file system, where Docker leverages the usage of OverlayFS and Singularity uses the ex-

tended file system (ext3) where each of these file systems brings forth a set of features that enables

the usage of bind propagation towards the hosts’ file system. The main point takeaway point we

expect to get from this extracted metric values is whether the container-mechanisms themselves

have an impact on the writing performance of a file (which can either be a model object, data set

and so forth). This aspect is essential when dealing with a large amount of information being pro-

cessed and written into the storage driver; this performance indicator will allow us to determine

whether both container-mechanisms are able to manipulate the data itself quickly and efficiently.

As observed in Figure 18, the system output between the various workflow environments follows

somewhat similar values, where here the environment that achieved the lowest system outputs is

the singularity-based workflow. However, the Docker-based workflow achieved on-par write per-

Figure 19: Output operations in the Second use case

formance with the bare-metal environment which can be due to the underlying mechanism of the

OverlayFS where near-native write performance is achieved because the mount itself bypasses the

storage driver and does not incur any potential overhead that would typically be encountered when

dealing with thin provisioning and copy-on-write operations. In Figure 19, we observe a different

behaviour from that of the first use case, where the Docker-based workflow manages to achieve bet-

ter write performance than that of the bare metal run across all component. Moreover, We remark
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that the singularity-based workflow remains the environment that achieves the lowest output op-

erations among the three environments. The speed that the singularity-based workflow exhibits

here are due to its file system implementation of ext3 that allows the component to achieve an

overall better I/O performance than other file system types. However, the Docker-based workflow

own Overlay file system while achieving a high overall performance brings its own set of impedi-

ments when handling I/O operations in large files. The downside when an application or a process

attempts to write a new value to a file on the file system is that every value written must copy on

write up the file from the underlying image. When this occurs, the overlayFS storage driver will

start searching for each image layer for the file, where the look-up order here is from the top layers

to bottom layers. As soon as the file is located, it is entirely copied onto the top writable layer of

the container itself. The existence of the copy-up and write-up operations leads to a higher latency

because the overlayFS would perform these operations on the entire file itself, regardless of the fact

that only part of the file is modified or its corresponding file size. Due to this aspect, the Docker-

based workflow performs poorer than that of the singularity-based one. Singularity outperforms

all other environments due to its native ability to redirect all IO in and out of the container directly

between the environments reducing the operational overhead significantly.

5.2.6 Singularity container image format

Another aspect explored throughout our experiments is the various types of singularity images

that can be produced by Singularity. The three types defined20 are:

• ext3: Format that allows the users to interact openly with the container environment allow-

ing changes to be made inside the environment, presents itself as a single image file.

• squashfs: Production-ready image, presents itself as a single compressed immutable read-

only image file.

• chroot directory: Sandbox environment that allows the creation of a container as a writable

directory for development purposes.

As seen from above each of the aforementioned types are specifically tailored for the environment

desired the be created by the user. Users can convert the images from one format to the another

freely so once a user has fully developed the component itself they can convert the image into an

immutable production ready image. One aspect that we investigated with the various types of

images was their performance when faced with our first use case (see Table 3 for specific details
20https://singularity.lbl.gov/docs-build-container
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on the functionality of each component), this was done in order to determine whether there are

significant performance differences between the various image formats. After executing 50 rounds

of experiments with our first use case, we noticed that in most of the metrics extracted from them

there was no statistical significance between the different types.

Table 6: Singularity-based workflow performance for each image type

Component Type Elapsed seconds Context switch

targetmonth ext3 24.25 873.51
squashfs 24.53 5835.38
chroot 24.04 19.98

std ext3 13.85 836.88
squashfs 14.53 6161.18
chroot 14.09 24.84

rank ext3 27.40 1343.51
squashfs 27.92 9680.30
chroot 27.25 22.26

model ext3 8.01 1548.55
squashfs 8.80 11117.62
chroot 7.65 8.56

However, we have noticed two metrics that were affected by the change in type, namely the

elapsed time and frequency of context-switches. As observed in Table 6, the context-changes vary

highly from one type to another, this is due to the number of times the component itself has to

switch from operating in kernel-model to user-mode that is caused by the immutable degree of

the materialized image. Thus, this requires the component to execute many more system calls in

order to achieve the desired computations. Each of the image types specified brings forth a specific

degree of immutability that requires the executed instance of that image to perform more system

calls the higher the degree of immutability. However, as specified previously in this section, as

soon as a component increases the frequency of context-switches that is required the higher the

computational cost to perform that task. This can be observed in the table above, where once

a component is executed across the three different types, it tends to yield lower execution times

once a component requires less frequent context-changes. Another remark that we identified in

our experiments is a faster execution time once the ext3 image type is combined with the std

component execution, this is due to the fact that the std component outputs an entire dataset that

will be used by the remaining components. Here the execution time is due to the I/O performance

of the ext3 filesystem implementation of Singularity, that allows for an improved write operation

when heavy-write operations are required.
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6 Future Work
We plan on extending the currently developed workflow to different use cases as well as extending

its current functionalities and features. First, in order for our workflow to take full advantage of

the HPC ecosystem, we plan on integrating our workflow implementation with currently available

third-party software as well as integrate data provenance for each of the component designed.

Third-party software that can be comprised of;

• Resource negotiators that would take care of the resource allocation of each component on a

larger scale.

• Job schedulers that would ensure a coherent execution order and would reduce the interfer-

ence among all the running jobs in the computing environment.

• Container orchestrator that would take care of the scaling up/down and life-cycle of containers

in multi-container applications.

• Monitoring system that would extract the metrics/outputs of each executed component which

would be further stored and visualized in a graphical user interface. As well as the ability to

take actions or alert sysadmins of certain metrics based on the degree of resources allocated

of each job.

• Private image and package repository that would keep track of the lineage of the utilized

packages and images in each experiment.

• and other relevant third-party HPC tools based on the environment.

Each of the mentioned items allows the proposed workflow to utilize the most popular frame-

works and tools within the HPC community. This brings system administrators and users the

benefit of overseeing the resources and jobs that are currently executed in containers effortlessly.

Furthermore, throughout our study we have intentionally omitted the aspect of provenance

within our designed workflows. We plan on embedding a data provenance image layer for each

component type, this allows our implementation to extract user-specific meta-data as well as main-

tain a digitally signed record of every entity, activity and person involved in the creation of each

workflow. By implementing such feature, users can attest the validity of each component such that

there will exist a clear distinction between each contribution. This aspect will not only facilitate

users the ability of modelling various workflow specifications but also enable the usage of legally

binding signatures [14] that would further certify the validity of each created component. The
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data provenance layer would allow users to determine the inter-dependent relation [13] (BranchA,

TaskA1, TaskA2, ParamaterA1, PredecessorA1, EventsA1 and so forth) between each action and

entity in the order originally depicted by the author itself. A workflow management system would

allows us to determine the data provenance and information flow of each action created within

the workflow as well as automatically generate workflow templates [15] which would encapsulate

execution-independent specifications of each task.

Secondly, we plan on employing our workflow in a medical use case that leverages exascale

learning in medical image data. The use case aims at improving the currently utilized state-of-

the-art algorithms in cancer diagnostics and medical treatment planning by using a multitude of

data sources and modeling techniques throughout numerous computational centers. On a high-

level overview the workflow is separated in multiple stages; initially high-resolution patches are

extracted from raw Whole Slide Images(WSI), which are surgical tissues or biopsy images retrieved

by means of a high-resolution scanner. The patches are extracted from normal tissue or tumor

Region Of Interest (ROI) that were previously annotated by field experts. These patches will serve

as the target variable during the statistical modeling phase. Once each image has been processed,

the next step specified is that of using a multitude of unsupervised an supervised algorithms that

perform a series of model trainings. These models would be re-iterated on the next step by of

the workflow by executing multiple training runs in order to address the model robustness and

generalization.

Each of the above-mentioned steps is comprised of a multitude of pre-processing steps that

are monitored and stored in a distributed fashion across nodes. Each depicted step will make

use of numerous third-party frameworks or libraries required by the machine learning and deep

learning algorithms utilized in this workflow. As an initial step towards identifying the number of

components this use case will utilize we need to segregate each main component from each other

such that we can encapsulate and distribute the image across the targeted environments without

running into incompatibility or dependency conflicts. One of the primary requirements of this

workflow is that of having to train the models in across different data centers and locations (private

data not allowed to leave hospital data center) by using the same workflows across environments.

This use case would provide us the opportunity of reproducing similar setups across different HPC

environments and thus further validate the purpose of our study.
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7 Conclusion
With this thesis, we initially unveiled the drawbacks encountered in reproducible empirical re-

search that impacts the velocity at which research is advancing nowadays. This phenomenon

has slowed down the advancements in empirical research and has created a series of distrust in

publications that propose state-of-the-art or novel solutions. After establishing the main problem

statement, we went on and identified the current limitations that scientific workflow platforms

are confronting with reproducible sciences that are concerned with highly empirical work. This

has allowed us to determine the current limitations encountered with the currently available sci-

entific workflow platforms. Even though these platforms are designed with the concept of "Write

once, Run anywhere", they still encounter a significant amount of difficulties(see Chapter 3) when

attempting to reproduce a workflow across different environments. Traditionally, in order to re-

produce a similar execution environment, system administrators have to constantly integrate an

ever-changing spectrum of tools and dependencies that raise a series of software conflicts in shared

multi-tenant computing environments.

With the interest of overcoming this drawback, we proposed a simplistic yet generalizable ap-

proach to reproduce machine learning workflows in a more effective fashion in which we capture

and encapsulate low-level atomic changes and configurations. In order to achieve this goal we ini-

tially made us of two container-based virtualization mechanisms that allowed us to segregate and

wrap each component within the workflow into a thin virtualized layer. This layer has not only

allowed us to break down the workflow into multiple blocks, but it has also accelerated the pro-

cess of spinning up complex environments without interfering with the dependencies of the host

system. One of the main concerns that we aimed at solving with our solution was that of over-

coming the limitations identified in section 3.1 with traditional workflow platforms. Our proposed

container-based workflow successfully eliminates the need for connectors that bridge the gap be-

tween programming languages by abstracting away each component in an enclosed virtual space.

The usage of containers has also eliminated other drawbacks such as the need for instruction level

emulation or JIT compilation, "dependency hell", and the portability of these workflows across

environments.

In our experiments, we made use of two popular container-based mechanisms when implement-

ing the workflows namely, Docker and Singularity. Both of the mentioned container mechanisms

are tailored for either industry usage or scientific applications respectively. With this aspect in

mind, we have implemented two separate workflows where each makes use of one of the previ-
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ously mentioned container-based mechanisms. This was done to determine whether our proposed

solution would satisfy the applicability requirement in practice. This requirement was achieved

by means of performance testing our workflows with two machine learning use cases. The two use

cases comprised of one use cased that was utilized as a story detector in large corpora while the

second use case was a recommendation engine utilized to recommend the most likely hotel to be

booked. The results of our experiments show that both of our container-based workflow implemen-

tations perform on a near-native level, while the singularity-based workflow overcomes both native

and the Docker-based workflow in most cases. This shows us that our proposed singularity-based

workflow is able to overcome most of the limitations encountered in reproducible sciences while

also achieving high performance when tested against two highly-empirical use cases.

To conclude, our solution overcomes the current limitations and drawbacks encountered in re-

producible sciences as well as the shortcomings of widely-used scientific workflows by providing

users the ability to break-down workflow components into reproducible blocks. This approach has

been proven to be promising based on our experiments and has shown that traditional workflows

are able to evolve into a more modular-based concept in order to achieve a higher degree of re-

producibility with less effort. The ability to share and port workflows across environments allows

scientists and researchers to build upon the previously established work without requiring them

to stumble over incompatibility or dependency conflicts which would traditionally slow down the

advancements in research.
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