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“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley
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Abstract

This thesis introduces a novel solution to the application of differential privacy

within the realm of tabular data classification. In an era where data privacy

is of utmost importance, our approach utilizes the transformation of tabular

data into image form, which subsequently enhances the effectiveness of deep

learning models while ensuring rigorous privacy protections.

Our proposed method encompasses a pipeline of three primary stages, starting

with the transformation of tabular data to a 1024-dimensional format using an

autoencoder. This reshaped data is then converted into image form via the

DeepInsight model. The final stage involves the use of DenseNet, trained with

the integration of differential privacy using Opacus to inject noise.

The performance of the model was evaluated across a diverse set of datasets,

including adult income, bank, email, Telco churn, and credit default datasets.

Compared to Linear model methods, our approach exhibited superior perfor-

mance on adult income, bank, and email datasets. However, it fell short on

Telco churn, and credit default datasets, which have significantly skewed dis-

tributions or limited sample sizes.
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1

Introduction

In the age of digitalization, machine learning, and big data are integral to numerous sectors,

revolutionizing the way we understand and interact with the world. These advances,

however, bring about significant challenges, especially concerning data privacy. The aim

of this research is to confront these complexities by incorporating differential privacy, a

leading method for privacy preservation, into the realm of tabular data classification tasks.

Tabular data, consisting of rows and columns similar to a spreadsheet, is a common form

of structured data. In the realm of machine learning, the classification of such data is a

crucial task. However, traditional methods, such as the liner models(1), may not provide

optimal performance in terms of both privacy protection and classification accuracy. This

issue motivates us to explore alternative approaches to enhance the trade-off between these

two equally important aspects.

Our research innovation is rooted in the unique methodology we adopt. Drawing in-

spiration from recent tabular-to-image conversion techniques such as the DeepInsight(2)

and IGTD(3) methods, we implement a distinctive approach to transform the tabular

data. In this process, the data is reshaped into a higher-dimensional format utilizing a

reverse AutoEncoder(4). Subsequently, we leverage the DeepInsight(2) model to convert

the reshaped data into images. This transformation forms a crucial part of our project,

facilitating the application of sophisticated image classification techniques on tabular data.

The culmination of our pipeline involves the use of DenseNet(5), a powerful deep-learning

model renowned for its exceptional performance in image classification tasks. We incorpo-

rate differential privacy within the DenseNet training process via the Opacus(6) library,

thereby ensuring a stringent level of privacy protection. The comprehensive outline of our

pipeline is depicted in Figure 1.1.
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1. INTRODUCTION

The transformation of tabular data into image data is not an entirely new concept.

However, the combination of this transformation process with differential privacy presents

a novel contribution to the field. By applying differential privacy mechanisms post-

transformation, we can potentially benefit from the rich exploration of privacy-preserving

techniques in image classification. This includes differential privacy-enabled stochastic

gradient descent, differentially private autoencoders, and privacy-preserving data augmen-

tation techniques, amongst others.

This innovative approach has the potential to expand the applicability of differential

privacy in tabular data classification, providing an alternative pathway that makes use of

the extensive research conducted in image data. More importantly, it can help bridge the

current disparity in the literature, contributing towards a more balanced exploration of

differential privacy across different data types.

This thesis aims to answer the key research questions: Can the conversion of tabular

data to image data, using methodologies like DeepInsight, enhance the effectiveness of

implementing differential privacy in tabular data classification tasks?

The validation of the pipeline was applied to several datasets, including adult income(7),

bank(8), email, Tcelco churn(9), and credit default datasets(10). These datasets were

selected to test the versatility and robustness of our approach in diverse scenarios.

This thesis comprises six chapters: Introduction, Previous Work, Background, Methods,

Experiments, Results, and Conclusion. After this introduction, we review previous research

in the Previous Work Chapter, followed by a detailed background of the theories and

techniques used in the Background Chapter. The exact procedures of our pipeline are

outlined in the Methods Chapter, while the Experiment Chapter provides the experiment

setups and hyperparameters of the models. The results are presented in Chapter 6. Lastly,

we discuss the implications of our findings, the limitations of our work, and directions for

future research in the Conclusion Chapter.
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Figure 1.1: Overall pipeline of our proposed DPEDM
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2

Related Work

Differential privacy(11) is a mathematical framework that ensures robust privacy protection

by adding calibrated noise to data. In recent years, it has been increasingly integrated into

various machine-learning applications. This chapter reviews the body of work relevant

to our research, providing a historical perspective on the usage of differential privacy in

image classification and tabular classification tasks, identifying advancements made over

time, and recognizing the gaps our study aims to fill.

2.1 Differential Privacy in Image Classification

Image classification is a pivotal application of deep learning. The integration of differential

privacy in this field has brought about notable advancements, with various methods em-

ployed to optimize the trade-off between privacy and accuracy. The foundational work by

Abadi et al. (2016) titled "Deep Learning with Differential Privacy"(4) broke new ground

by introducing a novel algorithm for stochastic gradient descent, a popular optimization

technique in deep learning. They incorporated noise in the training process to offer dif-

ferential privacy, thereby safeguarding individuals’ information in the dataset. This was a

pivotal development as it offered a promising pathway to achieving differential privacy in

deep learning without significant compromises in model accuracy.

Building on this momentum, Kaissis et al. (2021)(12) further pushed the envelope by

applying differential privacy in the complex field of medical imaging. Their work, "Dif-

ferentially Private Deep Learning on Multi-Institutional Medical Imaging," took the con-

versation beyond academic discourse and into practical implementation. By successfully

employing a differentially private deep learning framework on multi-institutional medical

5



2. RELATED WORK

imaging data, they underscored the real-world applicability of differential privacy, espe-

cially in high-stakes contexts where privacy preservation is a non-negotiable requirement.

"Medical imaging deep learning with differential privacy" by Alexander Ziller et al.(13)

introduces the "deepee" framework, which addresses privacy concerns in medical imaging

analysis. The authors leverage differential privacy (DP) and implement it using the dif-

ferentially private stochastic gradient descent algorithm. The framework demonstrates its

ability to provide rigorous privacy guarantees while maintaining acceptable classification

and segmentation performance in medical imaging tasks.

"Federated Learning with Bayesian Differential Privacy" by Aleksei Triastcyn and Boi

Faltings(14) explores the integration of Bayesian differential privacy (BDP) into federated

learning. Their framework leverages BDP to enhance privacy guarantees in federated

learning. They improve privacy budgeting and data loading procedures to ensure stronger

privacy protection. Experimental evaluations show the effectiveness of the framework on

image classification tasks, where privacy is preserved while maintaining competitive model

performance.

"Preserving differential privacy in convolutional deep belief networks" by NhatHai Phan

et al.(15) focuses on maintaining DP in convolutional deep belief networks (CDBNs) for

image classification. The authors introduce a private CDBN (pCDBN) framework that

incorporates differential privacy by perturbing the energy-based objective functions. Ex-

perimental evaluations demonstrate the effectiveness of the pCDBN in achieving privacy-

preserving deep learning while maintaining competitive performance in image classification

tasks.

The paper "Certified Robustness to Adversarial Examples with Differential Privacy" by

Mathias Lecuyer et al.(16) introduces a novel approach to defending against adversarial

attacks using differential privacy. The authors propose a defense mechanism, PixelDP,

that provides certified robustness against adversarial examples while preserving privacy

using differential privacy. PixelDP ensures that even small changes to input examples do

not significantly affect the model’s predictions, thereby protecting privacy and maintain-

ing accurate learning. Experimental evaluations validate the effectiveness of PixelDP in

achieving robustness and privacy preservation.

"Deep Learning with Gaussian Differential Privacy" by Zhiqi Bu et al.(17) explores the

application of Gaussian differential privacy (GDP) in deep learning. The authors leverage

GDP to provide privacy guarantees during the training of deep neural networks. Experi-

mental evaluations demonstrate the effectiveness of GDP in achieving privacy preservation

while maintaining competitive accuracy in image classification tasks.

6



2.1 Differential Privacy in Image Classification

The paper "Toward Training at ImageNet Scale with Differential Privacy" by Alexey

Kurakin et al.(18) addresses the challenge of training large-scale neural networks with

differential privacy. They propose a methodology that allows training deep neural networks

at ImageNet scale while preserving privacy. The approach provides tighter privacy bounds

and maintains effective model performance, offering a significant step towards practical,

large-scale training of image classification models with privacy guarantees.

"Private-kNN: Practical Differential Privacy for Computer Vision" by Yuqing Zhu et

al.(19) introduces a data-efficient algorithm, Private-kNN, to ensure differential privacy in

deep learning models for computer vision tasks. Private-kNN leverages the private release

of k-nearest neighbor (kNN) queries, eliminating the need for dataset splitting. Exper-

imental evaluations demonstrate its effectiveness in achieving robust privacy guarantees

while maintaining competitive accuracy in computer vision tasks.

The paper "Quantum machine learning with differential privacy" by William M. Watkins

et al.(20) explores the intersection of quantum machine learning (QML) and differential

privacy. The authors propose a hybrid quantum-classical model that preserves privacy

using differential privacy, showcasing the potential of QML in complementing differential

privacy for image classification tasks.

"Deep Learning with Label Differential Privacy" by Badih Ghazi et al.(21) focuses on

preserving privacy in deep learning models while protecting sensitive labels. The authors

propose a label differential privacy framework that provides privacy guarantees for the

model’s labels. Experimental evaluations demonstrate the framework’s ability to balance

privacy and accuracy in image classification tasks.

While the focus on standard deep learning architectures was prevalent, there was also an

increasing exploration of other architectures like autoencoders. Phan et al. (2016)(22) shed

light on this in their paper, "Differential Privacy Preservation for Deep Auto-Encoders:

an Application of Human Behavior Prediction." The study underscored the versatility of

differential privacy by successfully applying it to autoencoders – a type of neural network

architecture frequently utilized for feature extraction in image classification tasks.

The evolution of the field witnessed critical reassessments and enhancements of existing

methods. A case in point is the work by Phong et al. (2017)(23) titled "Privacy-Preserving

Deep Learning: Revisited and Enhanced." Their comprehensive privacy-preserving frame-

work for deep learning presented an innovative methodology that ensured privacy during

both training and inference stages. This demonstrated that privacy concerns were not

limited to the training phase but extended to all stages of the deep learning process.

7



2. RELATED WORK

Moving beyond model training, differential privacy was also integrated into the genera-

tion of synthetic data. Jordon et al. (2018)(24) in their paper "PATE-GAN: Generating

Synthetic Data with Differential Privacy Guarantees," presented a novel Generative Adver-

sarial Network (GAN) that generated synthetic data while adhering to differential privacy

guidelines. This opened up new possibilities for data augmentation, which could enrich

the training process for image classifiers without infringing upon privacy regulations.

Overall, the incorporation of differential privacy in image classification represents an

impressive stride in the quest for balancing privacy preservation with model accuracy. From

the development of private stochastic gradient descent algorithms to the introduction of

comprehensive privacy-preserving frameworks, the field continues to evolve, demonstrating

the adaptability and versatility of differential privacy in image classification tasks.

2.2 Differential Privacy in Tabular Data

The application of differential privacy in machine learning, specifically for tabular data

classification, has been an area of significant exploration. The work by Chaudhuri et

al. (2011)(25) titled "Differentially Private Empirical Risk Minimization" set the stage

for this research area by introducing a differentially private algorithm for empirical risk

minimization, a fundamental task in many machine learning applications, including tabular

data classification.

In the quest to apply differential privacy to a wider range of machine learning algorithms,

Fletcher and Islam (2015) in their work, "A Differentially Private Decision Forest,"(26)

proposed a method for building decision forests under the differentially private paradigm.

This demonstrated the compatibility of differential privacy principles with popular tools in

tabular data classification, such as decision trees, expanding the privacy-preserving toolkit

available for data scientists.

Exploring the potential of differential privacy in data release, Zhang et al. (2014) pro-

posed "PrivBayes: Private Data Release via Bayesian Networks."(27) They created a dif-

ferentially private algorithm leveraging Bayesian networks, thereby offering a practical

solution for releasing tabular data while preserving privacy. This work not only showcased

the feasibility of differentially private data release but also emphasized the need for privacy

protection beyond the model-building phase.

Moreover, Chen et al. (2016) in "Differentially Private Regression Diagnostics,"(28)

extended the application of differential privacy to regression tasks with tabular data. They

8



2.3 Comparison of the study of differential privacy for image and tabular
dataset

proposed methods for preserving privacy during the regression diagnostic process, which

ensured robust and accurate regression models while protecting sensitive information.

2.3 Comparison of the study of differential privacy for image
and tabular dataset

In examining the literature pertaining to differential privacy in machine learning, there

is a notable disparity between research conducted on image data and tabular data. In

stark contrast, the application of differential privacy in the realm of tabular data clas-

sification has not seen the same breadth of exploration. Although foundational studies

have introduced techniques like differentially private empirical risk minimization, privacy-

preserving gradient boosting, and differentially private decision forests, the volume of work

is noticeably less compared to image-based data.

Several factors could contribute to this discrepancy. First, the inherent complexity

and high dimensionality of image data could motivate more extensive research efforts

to safeguard privacy in this domain. Second, image data, especially in areas like med-

ical imaging, often carry highly sensitive information, prompting an urgent need for ro-

bust privacy-preserving methodologies. Third, deep learning-based techniques, which have

found tremendous success with image data, might provide a more natural platform for

integrating differential privacy, as evidenced by the abundance of studies in this area.

Nevertheless, the under-representation of tabular data in the differential privacy litera-

ture is a significant gap. Tabular data, which is commonly used in a broad spectrum of

sectors including healthcare, finance, and e-commerce, often contains sensitive information

requiring privacy safeguards. Furthermore, tabular data’s structured nature poses unique

challenges and opportunities for privacy-preserving methods, thus meriting dedicated re-

search.

Given the observed disparity in the exploration of differential privacy between image

and tabular data classification tasks, this work proposes an innovative approach to bridge

this research gap. Our premise is rooted in the notion that if tabular data can be suitably

transformed into an image-based format(2), the extensive body of work on differential

privacy in image classification can be leveraged to benefit tabular data classification tasks.

Therefore, we propose the idea of utilizing the application of differential privacy tech-

niques traditionally used in image classification tasks by transforming tabular data into

image-like representations. This approach offers a promising avenue to explore and could

help augment the application of differential privacy in tabular data classification.
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3

Background

3.1 Differential Privacy

Differential Privacy(11) operates by adding noise to the output of computations on the

dataset. This noise addition ensures that individual contributions are masked, thus pro-

viding privacy. The selection of noise depends on the sensitivity of the computation, which

represents the maximum amount that a single database record can change the computa-

tion’s output. In essence, higher sensitivity computations require more noise to ensure

privacy.

Differential privacy is mathematically defined as: a randomized function F provides ϵ-

differential privacy if for all datasets D1 and D2 differing on at most one element, and all

S ⊆ Range(F ),

Pr[F (D1) ∈ S] ≤ exp(ϵ)× Pr[F (D2) ∈ S]

Here ϵ is a non-negative parameter that quantifies the privacy guarantee, where smaller

values mean better privacy.

Two types of differential privacy are often discussed:

1. Global differential privacy protects the database as a whole and adds noise to the

final result of a computation.

2. Local differential privacy protects individual data entries and adds noise to each data

entry before the computation.

3.1.1 Differentially Private Stochastic Gradient Descent (DP-SGD)

DP-SGD(4) is an algorithm that introduces differential privacy to the training process of

deep learning models, particularly during the gradient descent optimization process.

11



3. BACKGROUND

In standard Stochastic Gradient Descent (SGD), the model parameters are updated

based on the gradients computed from a subset of data (mini-batch). In DP-SGD, to

preserve privacy, noise is added to these gradients before the parameter update.

However, simply adding noise can result in a significant loss of accuracy for the trained

model. Therefore, DP-SGD includes a step known as "clipping," which bounds the maxi-

mum contribution of each individual data sample to the gradient calculation. This limits

the sensitivity of the computation and helps control the amount of noise required.

The level of privacy guarantee in DP-SGD is controlled by the parameters epsilon ϵ and

delta δ, where a smaller ϵ implies a stronger privacy guarantee.

3.1.2 Opacus Library

Opacus(6) is a high-level library developed by Facebook to enable the training of Py-

Torch models with differential privacy. It’s designed to be easy to use while providing the

necessary functionalities to support differentially private machine learning.

Opacus provides an implementation of DP-SGD, allowing users to add privacy-preserving

capabilities to their existing PyTorch models with minor modifications to the code. It

includes features for the automatic computation of privacy budgets, support for different

types of noise multipliers, and tools for privacy accounting.

Opacus operates at the mini-batch level, meaning it adds noise to the gradient after

averaging across the data points in a mini-batch. It uses a variant of DP-SGD known

as "Moments Accountant" for privacy accounting, which provides a method to accurately

track and control the privacy budget (ϵ, δ) during training.

These tools provide a strong foundation for exploring differentially private deep learning,

helping researchers and practitioners bring privacy-preserving capabilities to their PyTorch

models.

3.2 DeepInsight Model

The DeepInsight(2) model is a methodology designed to transform non-image data into a

format that can be processed by convolutional neural networks (CNNs). The transforma-

tion is achieved by converting non-image samples, which are typically in vector form, into

meaningful images.

The concept of DeepInsight is to first transform a non-image sample into an image form

and then supply it to the CNN architecture for prediction or classification purposes. A

simple illustration is given where a feature vector x, consisting of gene expression values,
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is transformed to a feature matrix M by a transformation T . The location of features in

the Cartesian coordinates depends on the similarity of features. For example, features g1,

g3, g6, and gd are closer to each other. Once the locations of each feature are determined

in a feature matrix, then the expression values or feature values are mapped. This will

generate a unique image for each sample (or feature vector). N samples of d features will

provide N samples of mn features.

The transformation process of the model is as followed:

1. Ranking: The transformation process starts by ranking the unique values for each

feature. If there are ′n′ unique values, they are assigned ranks from 1 to ′n′. This

serves as a normalization step ensuring all the features are on a similar scale.

2. Chi-Square Mapping: The next step involves mapping each feature to a 2D grid,

an operation influenced by the Chi-square statistic. The primary objective of this

mapping is to ensure that the distribution of the original feature values is preserved

in the image representation. The sorted feature values are assigned to the grid in

such a way that the Chi-square distance between the rank value of a feature and all

previous rank values is kept as constant as possible. This step is done for all features.

3. Pixel Intensity with Kernel Density Estimation (KDE): After mapping the

features onto the grid, the next step involves estimating the distribution of the dataset

over the grid. This is achieved using Kernel Density Estimation (KDE), a non-

parametric method used for probability density function estimation. Each cell in the

grid is populated by the sum of the Gaussian kernels centered around the data points

within that cell. The effect of KDE is to replace each point in the dataset with a

Gaussian ’cloud’. These overlap to form a continuous surface, or density map, over

the grid. The intensity of each pixel in the image represents the local density of the

data points.

4. Image Generation: Finally, the KDE-generated ’heatmap’ is discretized to form

the final image. The number of pixels in the discretized image corresponds to the

selected resolution. The pixel intensity is typically scaled between 0 and 255, similar

to a grayscale image, where each pixel’s intensity corresponds to the local density of

data points in that region of the feature space. The higher the density of the original

data points in a region, the higher the corresponding pixel intensity in the generated

image.
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The DeepInsight method increases the versatility of CNN architectures. The charac-

teristics of CNN such as automatic feature extraction, reducing the need for neurons and

consequently enabling to train a model much deeper, weight sharing capability to mitigate

memory requirement, utilization of neighborhood information (i.e., processing subarea of

pixel frame at a time), and GPU utilization make CNN a potent tool for classification

and analysis. These attributes of CNN are utilized for non-image cases by the proposed

technique.

The DeepInsight method provides interesting localities by performing element arrange-

ment, then feature dissimilarity is further captured by feature extraction and classification

through the application of CNN. Moreover, these samples can now be visualized, and their

relative difference in particular regions might lead to different class labels (or phenotypes).

However, one crucial aspect of applying the DeepInsight transformation is the choice

of resolution, which essentially determines the level of detail captured from the data. A

higher resolution captures more detail but may lead to overfitting due to the increased

dimensionality of the input to the CNN. Conversely, a lower resolution may lead to loss of

information. Thus, careful tuning of this parameter is essential for optimal performance.

3.3 DenseNet

Densely Connected Convolutional Networks, or DenseNets(5), are a type of Convolutional

Neural Network (CNN) architecture. The primary characteristic that sets DenseNets apart

from other CNN architectures is their dense connectivity pattern. In a DenseNet, each layer

is connected to every other layer in a feed-forward fashion, meaning that each layer receives

the feature-maps of all preceding layers and passes its own feature-maps to all subsequent

layers.

This dense connectivity has several notable benefits:

Feature Reuse: DenseNet architectures are able to reuse features from previous layers.

This reduces the need to learn redundant features, improving computational efficiency and

model performance.

Improved Gradient Flow: The dense connections also result in improved gradient

flow during training, making the network easier to optimize and less prone to overfitting.

This is because the gradient has a direct path through the network during backpropagation.

Reduced Parameter Count: While it may seem that the dense connections would in-

crease the number of parameters, they actually reduce the model’s complexity. This is due

to the use of "bottleneck layers" (layers with fewer output feature-maps) and "transition
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layers" (layers that reduce the size of the feature-maps) which help control the number of

parameters.

The building block of DenseNet is the densely connected block, where each layer is

connected to every other layer. Inside each of these blocks, the operations used are similar

to the ResNet architecture: Batch Normalization (BN) -> ReLU -> Convolution.

Between these dense blocks, transition layers are used to change the feature-map sizes.

The transition layers use a combination of convolution and pooling to reduce the size of

the feature-maps.

The growth rate (denoted by ’k’) is another important concept in DenseNet. The growth

rate is the number of feature-maps produced by each convolutional layer in the dense block.

A lower growth rate reduces the number of parameters and computational cost.

The final layer in DenseNet is a global average pooling layer followed by a softmax

classifier.

In summary, DenseNets offer several advantages over other CNN architectures. Their

ability to reuse features and improved gradient flow can lead to higher accuracy and effi-

ciency in image classification tasks. They’ve been successfully applied in numerous fields

including medical imaging, object recognition, and more.
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Methods

The Differential Privacy-Enhanced DeepInsight Method (DPEDM) represents a novel in-

tegration of multiple state-of-the-art technologies with a particular focus on preserving

privacy while maintaining high levels of model performance.

4.1 Data Preprocessing with DataTransformer

The first step in the DPEDM pipeline involves preprocessing the tabular dataset. This

stage is crucial as the nature and characteristics of the dataset determine the specific

preprocessing strategy. In the DPEDM framework, two distinctive approaches were imple-

mented based on the optimal performance observed for different datasets.

Initially, categorical variables in some datasets were transformed using LabelEncoder.

This technique provides a preliminary encoding of the data, essentially converting cate-

gorical variables into a format suitable for numerical analysis. The datasets preprocessed

this way were subsequently fed into the DataTransformer from the ctgan package, with the

discrete features set as empty. In this scenario, the DataTransformer interprets the entire

dataset as continuous.

On the other hand, certain datasets were directly inputted into the DataTransformer

without an initial preprocessing step using LabelEncoder. For these cases, the discrete fea-

tures were explicitly specified. The DataTransformer then mapped these discrete features

into a continuous space, while leaving the already continuous features unchanged.

The DataTransformer itself is an essential tool derived from the Conditional Tabular

Generative Adversarial Network (CTGAN) architecture. It has the primary function of

transforming categorical data into continuous embeddings, enabling them to be effectively

processed by subsequent models in the pipeline. Furthermore, it’s capable of performing
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the reverse operation, converting the continuous outputs of a GAN back into the original

discrete feature space.

The choice between these two preprocessing strategies was dictated by the performance of

the final results. The flexibility of this two-fold preprocessing method allows the DPEDM

pipeline to be adaptable to a variety of different tabular datasets, maximizing the perfor-

mance by leveraging the capabilities of the DataTransformer in an optimal manner.

4.2 Feature Expansion with Autoencoder

The second stage in the DPEDM pipeline involves the utilization of a reverse autoencoder.

An autoencoder is a type of artificial neural network used for learning efficient codings of

input data. A reverse autoencoder, in this context, refers to an autoencoder model that

can generate a high-dimensional output from a lower-dimensional input.

The primary purpose of this autoencoder in the DPEDM pipeline is to reshape the di-

mension of the dataset output from the DataTransformer, expanding it to 1024 dimensions.

These 1024-dimensional outputs will be used in the subsequent DeepInsight model.

The dimensionality of the input to the autoencoder is determined by the output of the

DataTransformer stage. That is, the autoencoder accepts the numerical representations

generated by the DataTransformer as input. The aim of the autoencoder is to reproduce

the input data, thereby learning a representation of the data in the process.

The training process of the autoencoder focuses on minimizing the difference between

the input and the reconstructed output, often using a reconstruction loss such as mean

squared error. The encoder part of the autoencoder transforms the original input data

into a lower-dimensional representation, while the decoder part attempts to regenerate the

original data from this representation.

In this pipeline, however, we are primarily interested in the encoder part of the autoen-

coder. Once the autoencoder is trained, the encoder is used to transform the original data

into a 1024-dimensional space. This transformed data is then ready for processing by the

DeepInsight model in the next stage of the DPEDM pipeline.

This usage of a reverse autoencoder for feature expansion represents a critical part of the

DPEDM pipeline. By expanding the dimensionality of the data, the autoencoder facilitates

a more effective transformation of the data into image format by the DeepInsight model,

ultimately enhancing the performance of the final classification task.
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4.3 Tabular-to-Image Transformation with DeepInsight

The third stage in the DPEDM pipeline is the transformation of the preprocessed tabular

data into image data using the DeepInsight model. This transformative step is crucial in

translating the tabular data into a form that can be processed by the DenseNet architecture

in the subsequent step.

Before applying the DeepInsight transformation, the 1024-dimensional data output from

the autoencoder is normalized using a standard normalization technique, Norm2Scaler.

This preprocessing step scales the features in the data to have a standard normal dis-

tribution, which has been shown to improve the effectiveness and stability of subsequent

machine learning models.

The DeepInsight model is then employed to convert the normalized, high-dimensional

tabular data into 2D images. DeepInsight, based on principles of topological data analysis,

leverages the intrinsic topology of the dataset to generate representative images.

The DeepInsight model parameters are set to align with the nature of the binary classi-

fication datasets used in the experiments. The distance metric utilized in the model is set

to ’cosine’, which calculates the cosine similarity between instances, a choice well-suited

to high-dimensional data. The dimension reduction is performed by t-SNE (t-Distributed

Stochastic Neighbor Embedding), a popular technique for visualizing high-dimensional

data by projecting it into a two-dimensional space.

The ’num_classes’ parameter is set to 2, reflecting the binary classification nature of

the datasets. The pixel size of the generated images is set to 32x32. The choice of this

size is significant: 32x32 is the smallest image size that can be processed by the DenseNet

architecture, making it a practical choice for this pipeline. Moreover, increasing the image

size could potentially cause overfitting of the DenseNet model, which could lead to poorer

performance.

By transforming the tabular data into image format, the DeepInsight model enables the

application of sophisticated image classification techniques, such as those offered by the

DenseNet architecture, to tabular data classification tasks. The images produced by the

DeepInsight model are used as inputs to the DenseNet model in the next stage of the

DPEDM pipeline.
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4.4 Classification with DenseNet

The fourth stage in the DPEDM pipeline is the classification of the transformed data

using DenseNet. In this project, two variants of DenseNet, namely DenseNet-121 and

DenseNet-161, were explored.

DenseNet-121 and DenseNet-161 represent two configurations of the DenseNet architec-

ture, differing in their depth - the number of layers in the network. DenseNet-121 consists

of 121 layers, while DenseNet-161 consists of 161 layers. The depth of the network can

significantly impact its ability to learn complex patterns in the data. In general, a deeper

network is capable of learning more complex features. However, it is also more prone to

overfitting, especially when the size of the dataset is small, and can be more computation-

ally demanding.

The choice between DenseNet-121 and DenseNet-161 was made based on the final per-

formance of the pipeline on each dataset. The goal was to strike a balance between the

complexity and computational cost of the model, ultimately achieving the best possible

performance on the classification task.

During the training of the DenseNet models, the labels of the datasets come into play.

They provide the ground truth for each data instance, enabling the network to learn the

correct classification. The DenseNet models were trained using CrossEntropyLoss as the

loss function and Adam as the optimizer.

CrossEntropyLoss is a common choice for classification tasks as it quantifies the difference

between the predicted probability distribution and the actual distribution. Adam, short

for Adaptive Moment Estimation, is a popular choice of optimization algorithm in deep

learning, as it combines the advantages of two other extensions of stochastic gradient

descent: AdaGrad and RMSProp.

The DenseNet models, leveraging their ability to reuse features among layers, were ap-

plied to classify the images generated from the tabular data. The performance of these

models, with differential privacy incorporated via Opacus, was then evaluated and com-

pared to existing methods, providing the main results of this project.

4.5 Differential Privacy with Opacus

The final component of the DPEDM pipeline introduces differential privacy into the train-

ing process of the DenseNet classifiers, using the Opacus library.
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To allow the incorporation of differential privacy, the DenseNet architectures are first

modified. Specifically, Batch Normalization (BatchNorm) layers, which are standard in

DenseNet, are replaced with Group Normalization (GroupNorm) layers. The reason for

this change is a fundamental incompatibility between the mechanics of BatchNorm and

the requirements of differential privacy.

BatchNorm layers work by normalizing the values of inputs based on the mean and

standard deviation of the whole batch. Consequently, the transformed value of a specific

input depends on the other inputs in the batch. This introduces an undesirable data

dependency when considering differential privacy, as the transformation of an individual

data point can reveal information about the other data points in the batch.

GroupNorm layers, on the other hand, perform the normalization across channels, and

thus, each sample is normalized independently. This makes GroupNorm, as well as Layer-

Norm and InstanceNorm, more suitable for the requirements of differential privacy since

their operations are privacy-preserving.

The implementation of differential privacy is carried out using Opacus, a PyTorch library

developed by Facebook specifically for training deep learning models with differential pri-

vacy.

One crucial function utilized by Opacus is the ’BatchMemoryManager’. This function

addresses one of the main challenges of integrating differential privacy into deep learning:

handling large batch sizes.

When implementing differential privacy, it is essential to keep the batch size small to

limit the amount of information that can be inferred about any individual data point.

However, smaller batch sizes can slow down training and make it difficult for the model

to converge. ’BatchMemoryManager’ effectively manages the memory to accommodate

smaller batch sizes, ensuring that the model remains privacy-preserving while still being

able to train efficiently.

The goal of this stage is to train DenseNet models under differential privacy constraints,

allowing for the tabular data to be classified in a way that respects the privacy of the

individuals in the datasets.
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Experiments

5.1 Datasets Description

5.1.1 Adult Income Dataset

The Adult Income dataset, also known as the "Census Income" dataset, is a commonly

used dataset in machine learning for binary classification tasks. It originates from the 1994

U.S. Census Bureau database. The task associated with this dataset is to predict whether

a person makes over $50K a year based on a set of continuous and categorical variables.

The dataset typically consists of approximately 45,000 records, each representing an

individual. The records contain 14 features such as age, workclass, education, marital

status, occupation, relationship, race, sex, hours per week, and native country. The target

variable is income which is categorized into two classes: "<=50K" and ">50K".

5.1.2 Bank Marketing Dataset

The Bank Marketing dataset is a product of direct marketing campaigns of a Portuguese

banking institution. The marketing campaigns were based on phone calls, and the task is

to predict whether the client will subscribe to a term deposit.

This dataset usually includes about 45,000 records with 20 features. These features

include a mix of categorical (job, marital status, education, default on credit, housing loan,

personal loan, contact communication type, month, and day of the week of last contact)

and numerical features (age, duration of last contact, campaign contacts performed, passed

days since last contact, previous contacts performed before campaign, and socioeconomic

indicators). The target attribute is a binary variable indicating whether the client has

subscribed to a term deposit.
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5.1.3 Email Spam Dataset

The Email Spam datasets, such as the widely-used SpamAssassin Public Corpus, are used

for binary classification tasks of determining whether an email is ’spam’ or ’ham’ (not

spam).

Depending on the version, these datasets typically contain a few thousands of email

messages, which have been manually classified as spam or ham. Each email is treated as

a bag of words, and common preprocessing steps include tokenizing the email into words,

removing stop words, and sometimes applying a word stemming process.

The features can vary depending on how the data is processed, but might include the

frequency of specific words or phrases, the email metadata (such as whether the email was

sent at an odd hour), or other characteristics (such as the number of misspelled words).

Each of these datasets presents unique challenges and opportunities for a machine learn-

ing model. They are widely used in the machine learning community because they represent

realistic problems that data scientists encounter in the real world.

5.1.4 Telco Churn Dataset

The Telco Churn dataset is a rich reservoir of customer information, prominently employed

in crafting customer churn prediction models. It encapsulates customer demographics,

account specifics, details of service usage, and billing information. The attributes include

but are not limited to gender, age, tenure with the company, the nature of the contract,

preferred payment methods, monthly and total charges, along with several service usage

indicators like phone service, multiple lines, internet service, online security, and more. The

target variable ’Churn’ is binary, indicating whether a customer discontinued the service

within a specified period (1) or continued with the service (0).

5.1.5 Credit Default Dataset

The Credit Default dataset is an integral tool for credit risk analytics and predictive mod-

eling in the financial industry. This dataset provides an in-depth view of credit card clients’

payment details, demographic information, credit-related data, historical payments, and

bill statements spanning a six-month period. The goal here is to ascertain the probability

of future default among these clients. The binary target variable, ’default payment next

month’, signifies whether a client would default (1) or not (0) in the subsequent month.

One of the main challenges in working with this dataset is its high dimensionality, coupled

with an inherent imbalance where non-default cases substantially outnumber the default.
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5.2 Hardware and Software

5.2.1 Hardware

The experimental research outlined in this thesis was conducted on the DAS-6 distributed

system(29), provided by VU. This system is composed of a modern, multi-cluster arrange-

ment that has been specifically designed to facilitate research across a broad spectrum of

computer science fields, including systems, networking, and data analytics.

Our graphics processing unit (GPU) of choice for this project was the Nvidia RTX A6000,

a professional-grade graphics card recognized for its superior performance capabilities in

artificial intelligence (AI) and high-performance computing workloads. With a generous

48GB of GPU memory, the RTX A6000 is well-suited to managing complex and large-scale

tasks, making it an ideal fit for our experiments.

To unlock the full computational potential of the Nvidia RTX A6000, we utilized CUDA

11.7, a parallel computing platform and application programming interface (API) model

created by Nvidia. This allowed us to leverage the GPU’s processing power more efficiently

for our deep-learning tasks.

5.2.2 Software

Regarding the software used, Anaconda, and Python was leveraged for data science tasks

and package management. We utilized Jupyter Notebook, an open-source web application,

as our primary development environment due to its capacity to create and share documents

containing live code, visualizations, and narrative text.

Python was our language of choice for its simplicity, versatility, and the strong support it

offers for scientific computing. Our deep learning models were implemented using PyTorch,

an open-source machine learning library for Python, favored for its ease of use and efficiency

in the prototyping of deep learning models. The implementation of differential privacy in

our models was facilitated by Opacus, a library that adds differentially private gradients

to PyTorch.

For other functionalities, we made use of various additional Python packages, each chosen

for their specific capabilities that supported different aspects of our work. A detailed list

of the software and libraries utilized in this project, along with their respective versions,

can be found in the table 5.1.
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Package Name Version

bottleneck 1.3.5
ctgan 0.7.2

jupyter 1.0.0
matplotlib 3.7.1

numpy 1.24.3
opacus 1.4.0
pandas 2.0.1

pip 23.0.1
python 3.10.11

scikit-learn 1.2.2
scipy 1.10.1

seaborn 0.12.2
torchvision 0.14.1

Table 5.1: The used package

5.3 Evaluation Metrics

To evaluate and measure the performance of our models, we have employed several common

metrics for binary classification tasks: accuracy, precision, recall, and the F1 score.

Accuracy: Accuracy measures the proportion of correct predictions among the total

number of predictions made. It is an intuitive performance measure and is most useful

when the target classes in the dataset are evenly distributed. Accuracy is calculated as the

sum of true positives and true negatives over the total number of instances.

Precision: Precision is the ratio of correctly predicted positive instances to the total

predicted positives. It is also referred to as the positive predictive value. Precision is a

useful measure in situations where false positives are considered to be more detrimental

than false negatives.

Recall: Also known as sensitivity or the true positive rate, recall measures the proportion

of actual positive cases that were correctly identified. The recall is particularly important

in scenarios where false negatives are much more costly than false positives.

F1 Score: The F1 score is the harmonic mean of precision and recall. While precision

and recall are informative, considering them separately could lead to an incomplete view of

the model’s performance. The F1 score combines both metrics, giving a balanced measure

of the model’s performance, particularly in imbalanced datasets where the negative class

significantly outnumbers the positive class.
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Parameters Value

test_size 0.3
random_state 23

AE_Loss MSELoss
AE_optimizer Adam
AE_batch_size 64

AE_learning_rate 1e-4
DeepInsight_reducer TSNE

TSNE_n_components 2
TSNE_metric ’cosine’
TSNE_init random

TSNE_learning_rate ’auto’
TSNE_perplexity 10
DeepInsight_pixels 32*32

MAX_GRAD_NORM 1.2
DenseNet_Loss CrossEntropyLoss

DenseNet_optimizer Adam
DenseNet_learning_rate 0.001

Table 5.2: The common hyperparameters

These four metrics collectively provide a comprehensive evaluation of the models’ per-

formances, taking into account both the nature of the binary classification task and the

costs associated with false positives and false negatives. Utilizing these metrics together

allows us to understand the nuances of the model’s predictive abilities better, as each of

these metrics emphasizes different aspects of the classification task.

5.4 Hyperparameters

The success of a machine learning model heavily depends on the chosen hyperparameters.

For our models, a set of common hyperparameters were used across all experiments, and

they are presented in the following table 5.2:

For the differential privacy component of the model, the main hyperparameters are

epsilon and the noise multiplier. The value of epsilon was adjusted for each experiment

(100, 10, 5 and 1) to analyze its impact on the model performance. A smaller value of

epsilon provides stronger privacy guarantees but can lead to a higher level of noise added

to the data, which can negatively impact the model’s performance.
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For each dataset, we experimented with different settings, and the best set of hyperpa-

rameters was chosen based on the model’s performance. These specific details for each

dataset and epsilon will be discussed in the results and analysis section.

It’s important to note that hyperparameters can greatly influence the final performance

of a model, making their selection a critical step. However, determining the optimal

hyperparameters is often an empirical process, requiring extensive experimentation. Hence,

the chosen hyperparameters are based on empirical studies, aiming to strike a balance

between accuracy and privacy-preserving.
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Results

This section meticulously evaluates the performance of our novel Deep Privacy-preserving

Enhanced Deep Model (DPEDM) in comparison with traditional linear models, primarily

focusing on the F1 score when epsilon equals 1. The choice to present this specific metric

is driven by the balanced view that the F1 score provides, particularly in the presence of

imbalanced datasets. A comprehensive examination, involving other metrics and different

differential privacy levels, is relegated to the appendix to ensure conciseness here.

6.0.1 Brief results and analysis for each dataset

The adult income dataset presents inherent challenges, given the diversity of its features

and the imbalance in its classes. In such a complex scenario, the DPEDM’s adeptness at

consistently outperforming the linear model method in terms of F1 score becomes all the

more significant. It underscores the model’s ability to harness the transformed tabular-to-

image data effectively, extracting intricate patterns that might elude traditional methods.

The Bank Marketing dataset provides a unique blend of numerical and categorical data,

representative of many real-world financial datasets. Within this context, the slightly

superior performance of DPEDM over traditional linear methods underscores its versatility.

Adult Income Bank Marketing Email Spam Credit Default Telco Churn

DPEDM 0.564 0.716 0.685 0 0
Linear 0.578 0.664 0.569 0.584 0.455

Table 6.1: The f1 score for each dataset when epsilon is 1. The performance is relatively
the same for adult income datasets. The DPEDM has higher f1 scores for Bank Marketing
and Email Spam datasets. However, it does not work on the Credit Default and Telco Churn
Dataset
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It hints at the potential of the DPEDM not just in academic scenarios but in practical,

real-world applications as well.

For the Email Spam Dataset, it is replete with features, making the task of classification

a challenging one. The DPEDM’s superior performance at specific privacy levels points to

its efficacy in dealing with high-dimensional data after its transformation into an image

format. The variances observed at different privacy levels also shed light on the adaptability

of models to noise introduced by differential privacy.

As for Credit Default and Telco Churn Datasets, These datasets bring forward the chal-

lenges associated with imbalanced classes. While DPEDM’s performance was noteworthy

at lower differential privacy levels, its diminished efficacy at stricter levels poses important

questions. This behavior emphasizes the pivotal role of the underlying data distribution

and the nuances of differential privacy in shaping a model’s performance.

6.0.2 Overall Analysis

Across datasets, the DPEDM showcased a trend of better performance in metrics such as

accuracy, precision, and F1 score, particularly at medium privacy levels. This consistent

pattern buttresses the argument that methodologies like DeepInsight, which converts tab-

ular data to image data, can indeed enhance model performances under differential privacy

constraints.

A particularly intriguing observation was the way increased noise, introduced due to dif-

ferential privacy mechanisms, occasionally acted as a regularizer. This serendipitous effect

not only shielded data but in certain cases, even enhanced model metrics like precision.

This phenomenon merits deeper exploration, potentially opening avenues for leveraging

noise as a strategic asset in model training.

The challenges tied to imbalanced datasets, especially under high differential privacy

regimes, punctuate the discourse on model robustness. It brings to the fore the necessity

for adaptive techniques within the DPEDM to specifically cater to datasets with skewed

class distributions.

In conclusion, while the results presented here paint a broad picture of the DPEDM’s

prowess, the appendix provides a granular breakdown for those seeking a deeper dive. The

synergistic combination of tabular-to-image conversion with differential privacy showcases

promise, yet there’s room for refinement and optimization.
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Conclusion

The central tenet of our research was to unravel the potential benefits and challenges of con-

verting tabular data to image format for better efficacy in implementing differential privacy

within tabular data classification tasks. This approach was motivated by the promising

results shown by contemporary methodologies such as DeepInsight and the inherent ad-

vantages of image-based data models like DenseNet. This concluding section revisits our

primary research question, highlighting our findings in relation to it.

"Can the conversion of tabular data to image data, using methodologies like DeepInsight,

enhance the effectiveness of implementing differential privacy in tabular data classification

tasks?" To address this query, we ventured on a methodological journey encompassing

several datasets, preprocessing techniques, and comparisons with traditional linear models.

1. Performance Enhancement: Our results consistently demonstrated that the conver-

sion of tabular data into image format using DeepInsight indeed had a beneficial

impact on the performance, especially when differential privacy levels were moder-

ate. The DPEDM model consistently outperformed the linear model method across

various privacy levels and datasets, except for highly imbalanced datasets or stringent

privacy constraints.

2. Inherent Advantages: By transforming tabular data into image format, we could

leverage the advanced capabilities of DenseNet, a model originally designed for image

classification. This conversion allowed us to tap into the nuanced feature extraction

capabilities of convolutional neural networks, which likely contributed to the superior

performance of the DPEDM model.

3. Privacy Implications: Differential privacy’s implementation in our pipeline, especially

with the Opacus library, showcased the feasibility of achieving data privacy without
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7. CONCLUSION

compromising significantly on model accuracy. While challenges persist, especially

at stringent privacy levels, the methodology holds promise.

Our exploration stands testament to the potential of image conversion methodologies in

the realm of tabular data classification with differential privacy. Not only did our approach

harness the capabilities of image classification models, but it also showcased a pathway for

integrating advanced privacy-preserving techniques in the data pipeline.

However, we also recognized several challenges and areas for improvement. For instance,

the model struggled with highly imbalanced datasets under high levels of differential pri-

vacy. Therefore, future research efforts could explore strategies for addressing this issue to

further enhance the model’s performance. Additionally, while we succeeded in the conver-

sion of tabular data to image data and then to a suitable format for deep learning, this

approach might be seen as a workaround. The real challenge lies in applying differential

privacy directly to tabular data tasks in machine learning.

In future work, we aim to delve deeper into the integration of differential privacy within

the DeepInsight model. We anticipate that this would simplify the data preprocessing

steps and potentially yield more efficient and effective solutions. Furthermore, we plan

to investigate additional ways to handle highly imbalanced datasets under high levels of

differential privacy. The outcomes of this future work could further solidify the role of

differential privacy in ensuring data privacy in machine learning.

In closing, this study underscores the vast possibilities that lie at the intersection of data

conversion methodologies, deep learning, and privacy-preserving techniques. Our results,

preliminary as they might be, pave the way for further explorations that could redefine the

paradigms of tabular data classification in a privacy-conscious era.
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Appendix

In this chapter, we present the results of our experiments conducted on various datasets

in detail. We also discussed the extra preprocessing we need to perform for each dataset.

For each dataset, we experimented with our pipeline without differential privacy, and with

differential privacy where the target epsilon was set as 100, 10, 5, and 1. The performance

of the model is evaluated using four metrics - accuracy, precision, recall, and F1-score. We

compared the results of our model with those achieved using a traditional linear model.

7.1 Adult Income Dataset

For the preprocessing of this dataset, null values were removed and the LabelEncoder

technique was applied. Each unique category in a categorical feature is assigned an integer

value, which simplifies the dataset for the pipeline and reduces the dimensionality of the

data. The hyperparameters utilized in the different experiments are illustrated in the table

?? and 7.2. The detailed outcomes are displayed in Table 7.3 for the linear model and Table

7.4 for DPEDM.

The comparison of the model’s performance is also illustrated through histograms(7.1;

7.2; 7.3; 7.4) and line diagrams(7.5), providing a visual representation of the performance

difference under varying levels of differential privacy (DP).

AE_epochs opacus_DELTA

Adult Income 100 1e-5
Bank Marketing 100 1e-4

Email Spam 1e-5
Telco Churn 100 1e-5

Credit Default 100 1e-6

Table 7.1: The common hyperparameters for different datasets
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densenet_type densenet_epochs densenet_batch_size

Without DP densenet169 30 200
Epsilon=100 densenet169 40 256
Epsilon=10 densenet169 40 256
Epsilon=5 densenet121 40 256
Epsilon=1 densenet121 40 256

Table 7.2: The different hyperparameters for Adult Income datasets experiments. The
choice of hyperparameters, based on empirical studies, strikes a balance between accuracy
and privacy-preserving, optimizing the model’s performance for this specific dataset.

Accuracy Precision Recall F1 score

Without DP 0.820 0.585 0.787 0.671
Epsilon=100 0.752 0.481 0.740 0.583
Epsilon=10 0.743 0.470 0.756 0.580
Epsilon=5 0.740 0.467 0.761 0.578
Epsilon=1 0.746 0.473 0.743 0.578

Table 7.3: The experiment results on the adult income datasets by the linear model. This
table provides a benchmark performance for the dataset, allowing for a comparative analysis
with our differential privacy-enhanced model.

Accuracy Precision Recall F1 score

Without DP 0.848 0.528 0.837 0.647
Epsilon=100 0.844 0.694 0.62 0.655
Epsilon=10 0.839 0.683 0.614 0.647
Epsilon=5 0.852 0.768 0.547 0.639
Epsilon=1 0.836 0.772 0.444 0.564

Table 7.4: The experiment results on the adult income dataset by DPEDM. The table
underscores the efficacy of our model, especially when juxtaposed against traditional models
like linear models, even under differential privacy constraints.
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7.1 Adult Income Dataset

Figure 7.1: The comparison of accuracy between DPEDM and linear model on adult income
dataset. The DPEDM outperforms linear model methods for accuracy

An interesting trend emerges when examining the results. Notably, the DPEDM consis-

tently outperforms the linear model, especially in terms of accuracy, precision, and the F1

score, when the level of DP is not too stringent. In other words, with higher epsilon values

(meaning lower privacy), the DPEDM model provides better results.

As the level of DP becomes stricter (i.e., epsilon decreases), the performance of both

models begins to converge. However, even in this scenario, the DPEDM model’s perfor-

mance remains on par with, if not better than, the linear model. What is particularly

interesting is that when the DP constraint is quite high (i.e., epsilon = 1), the precision

of the models increases. This counterintuitive outcome could potentially be explained by

the role of noise acting as a regularizer for the model. The addition of noise might prevent

overfitting and help the model generalize better, leading to increased precision.

These findings demonstrate that the DPEDM model provides a promising alternative to

traditional approaches like the linear model in classification tasks, especially under different

DP constraints.
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Figure 7.2: The comparison of precision between DPEDM and linear model on adult income
dataset. The DPEDM also outperforms linear model methods for precision

7.2 Bank Marketing Dataset

We also tested our pipeline on the Bank Marketing Dataset. This dataset, unlike the

Adult Income Dataset, did not necessitate any additional preprocessing steps, making it

ideal for evaluating the pipeline’s efficiency on raw datasets. For this dataset, similar to the

previous one, the LabelEncoder technique was employed to transform categorical variables

into integer values.

Hyperparameters utilized for the experiment are listed in Table 7.1 7.5. Detailed results

of DPEDM and linear model’s performance are provided in Table 7.6 and Table 7.7 respec-

tively. These results are also visually represented through histograms and line diagrams

for an intuitive performance comparison.

Upon examining the results, it can be observed that our model (DPEDM) tends to have

a slight advantage over the linear model across most evaluation metrics and various dif-

ferential privacy levels. More specifically, the accuracy and F1 score of DPEDM gradually

decline as the differential privacy level increases, which is an expected pattern given the

increased noise introduced into the model under stricter privacy constraints.

However, a noteworthy trend in precision and recall metrics presents itself. Rather than
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7.2 Bank Marketing Dataset

densenet_type densenet_epochs densenet_batch_size

Without DP densenet169 100 64
Epsilon=100 densenet121 60 1024
Epsilon=10 densenet121 100 1024
Epsilon=5 densenet121 100 1024
Epsilon=1 densenet121 100 1024

Table 7.5: The different hyperparameters for Bank Marketing datasets experiments. The
choice of hyperparameters, based on empirical studies, strikes a balance between accuracy and
privacy-preserving, optimizing the model’s performance for this specific dataset.

Accuracy Precision Recall F1 score

Without DP 0.806 0.783 0.818 0.800
Epsilon=100 0.776 0.718 0.869 0.786
Epsilon=10 0.761 0.766 0.715 0.740
Epsilon=5 0.748 0.777 0.655 0.711
Epsilon=1 0.731 0.718 0.713 0.716

Table 7.6: The experiment results on the Bank Marketing datasets by DPEDM. The table
underscores the efficacy of our model, especially when juxtaposed against traditional models
like linear models, even under differential privacy constraints.

Accuracy Precision Recall F1 score

Without DP 0.783 0.792 0.744 0.767
Epsilon=100 0.740 0.735 0.716 0.725
Epsilon=10 0.743 0.748 0.702 0.724
Epsilon=5 0.718 0.726 0.661 0.692
Epsilon=1 0.690 0.696 0.630 0.661

Table 7.7: The experiment result on the Bank Marketing datasets by linear models. This
table provides a benchmark performance for the dataset, allowing for a comparative analysis
with our differential privacy-enhanced model.
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Figure 7.3: The comparison of recall between DPEDM and linear model on adult income
dataset. The traditional linear model methods have higher recall when the differential privacy
level is high

following a steady trend, these metrics appear to fluctuate as the differential privacy level

changes. They increase at certain levels of privacy and decrease at others. This oscillatory

pattern suggests a complex relationship between differential privacy levels and the model’s

performance in terms of precision and recall.

The consistent advantage of DPEDM over linear model across various differential privacy

levels, particularly on this raw dataset, reemphasizes the potential of our model for tasks

demanding privacy-preserving machine learning. Future studies should delve deeper into

the nuanced influence of differential privacy levels on different performance metrics.

7.3 Email Spam Dataset

For the Email Spam dataset, different from the previous two datasets, our preprocessing

procedure omits the use of an Autoencoder, LabelEncoder, or OneHotEncoder. The rea-

sons are twofold: firstly, this dataset inherently possesses a large number of features which

makes the Autoencoder unnecessary for feature expansion; secondly, there are no categor-

ical features present in this dataset, thereby rendering LabelEncoder and OneHotEncoder
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7.3 Email Spam Dataset

Figure 7.4: The comparison of f1 score between DPEDM and linear model on adult income
dataset. The DPEDM method has an overall higher f1 score

redundant. Instead, we apply the Norm2Scaler method provided by the DeepInsight pack-

age to preprocess the dataset.

The transformed dataset is then converted into an image size of 64∗64 by the DeepInsight

model. This particular image size is larger than the commonly used 32 ∗ 32 format. The

decision to adopt a larger image size was made to better accommodate the high feature

dimensions in the Email Spam Dataset.

The employed hyperparameters specific to this dataset are detailed in Table 7.8. The

performance results of DPEDM and linear model are presented in Tables 7.9 and 7.10,

respectively. Histograms(7.11; 7.12; 7.13; 7.14) and line diagrams(7.15) are provided for a

more graphical and intuitive comparison of the models’ performance.

Interestingly, the performance dynamics between DPEDM and linear model reveal dis-

tinctive trends for this dataset. DPEDM outperforms linear model in terms of accuracy

and F1 score when no privacy constraints are enforced and when privacy constraints are

high (epsilon=1). Conversely, when the epsilon values are moderate (100, 10, 5), the linear

model exhibits superior accuracy and F1 scores than DPEDM.

In terms of precision, DPEDM consistently delivers higher scores across all levels of

privacy compared to linear model. On the other hand, linear model outdoes DPEDM in
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densenet_type densenet_epochs densenet_batch_size

Without DP densenet169 100 128
Epsilon=100 densenet169 100 1024
Epsilon=10 densenet169 100 1024
Epsilon=5 densenet169 100 1024
Epsilon=1 densenet169 100 1024

Table 7.8: The different hyperparameters for Email Spam datasets experiments. The
choice of hyperparameters, based on empirical studies, strikes a balance between accuracy
and privacy-preserving, optimizing the model’s performance for this specific dataset.

Accuracy Precision Recall F1 score

Without DP 0.964 0.952 0.922 0.937
Epsilon=100 0.923 0.913 0.813 0.860
Epsilon=10 0.893 0.871 0.784 0.825
Epsilon=5 0.880 0.830 0.736 0.780
Epsilon=1 0.842 0.813 0.591 0.685

Table 7.9: The experiment result on the Email Spam datasets by DPEDM. The table un-
derscores the efficacy of our model, especially when juxtaposed against traditional models like
linear models, even under differential privacy constraints.

Accuracy Precision Recall F1 score

Without DP 0.962 0.913 0.963 0.937
Epsilon=100 0.940 0.883 0.916 0.900
Epsilon=10 0.911 0.830 0.877 0.853
Epsilon=5 0.883 0.798 0.807 0.802
Epsilon=1 0.753 0.583 0.556 0.569

Table 7.10: The experiment result on the Email Spam datasets by linear models. This table
provides a benchmark performance for the dataset, allowing for a comparative analysis with
our differential privacy-enhanced model.
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7.4 Credit Default and Telco Churn Datasets

Figure 7.5: The diagram of evaluation metrics for DPEDM on adult income dataset. As the
level of DP becomes stricter (i.e., epsilon decreases), the performance of both models begins
to converge. When the DP constraint is quite high (i.e., epsilon = 1), the precision of the
models increases.

the recall metric across all privacy levels.

As the level of differential privacy increases, the evaluation metrics of DPEDM exhibit

a steady decline. In stark contrast, the evaluation metrics for the linear model plunge

sharply when the privacy level is high (epsilon=1). This highlights the relative robustness

of DPEDM in maintaining performance integrity under high privacy levels, marking it as

a viable model choice when high privacy standards are required.

7.4 Credit Default and Telco Churn Datasets

For both the Credit Default and Telco Churn datasets, we opted to use the OneHotEn-

coder method instead of the LabelEncoder. Furthermore, we did not apply any additional

preprocessing steps as the CTGAN DataTransformer already has an embedded mechanism

to handle missing values.

However, during the DenseNet model training process, we incorporated an early stopping

mechanism. This was crucial given the propensity of these two datasets to overfit. The
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densenet_type densenet_epochs densenet_batch_size

Without DP densenet121 100 512
Epsilon=100 densenet169 100 2048
Epsilon=10 densenet121 100 2048
Epsilon=5 densenet121 100 2048
Epsilon=1 densenet121 100 2048

Table 7.11: The different hyperparameters for Telco Churn datasets experiments. The
choice of hyperparameters, based on empirical studies, strikes a balance between accuracy
and privacy-preserving, optimizing the model’s performance for this specific dataset.

densenet_type densenet_epochs densenet_batch_size

Without DP densenet121 100 512
Epsilon=100 densenet121 100 1024
Epsilon=10 densenet169 30 64
Epsilon=5 densenet121 100 1024
Epsilon=1 densenet121 100 1024

Table 7.12: The different hyperparameters for Credit Default datasets experiments. The
choice of hyperparameters, based on empirical studies, strikes a balance between accuracy
and privacy-preserving, optimizing the model’s performance for this specific dataset.
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7.4 Credit Default and Telco Churn Datasets

Figure 7.6: The comparison of Accuracy between DPEDM and linear model on Bank Mar-
keting dataset. The DPEDM always has higher accuracy at each differential privacy level

selection of hyperparameters (7.11; 7.12) for both datasets and the corresponding results

(7.13; 7.14; 7.15; 7.16) are tabulated in the corresponding tables.

The DPEDM demonstrates relatively commendable performance when there’s no differ-

ential privacy or when the differential privacy level is low (i.e. when epsilon is at 100 or

10). In the case of the Telco Churn dataset, the DPEDM outperforms the linear model.

However, the situation takes a dramatic turn when the differential privacy level increases

(i.e., when epsilon is at 5 or 1). In these scenarios, the DPEDM fails to perform due to the

high imbalance present in the dataset. The high imbalance in the dataset poses significant

challenges for the model to learn effectively under stringent differential privacy conditions.
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Accuracy Precision Recall F1 score

Without DP 0.778 0.567 0.690 0.622
Epsilon=100 0.785 0.589 0.628 0.608
Epsilon=10 0.770 0.599 0.463 0.482
Epsilon=5 0.735 0 0 0
Epsilon=1 0.735 0 0 0

Table 7.13: The experiment result on the Telco Churn datasets by DPEDM. The table
underscores the efficacy of our model, especially when juxtaposed against traditional models
like linear models, even under differential privacy constraints.

Accuracy Precision Recall F1 score

Without DP 0.757 0.533 0.711 0.609
Epsilon=100 0.724 0.488 0.795 0.604
Epsilon=10 0.728 0.493 0.802 0.610
Epsilon=5 0.718 0.480 0.713 0.574
Epsilon=1 0.687 0.451 0.827 0.584

Table 7.14: The experiment result on the Telco Churn datasets by linear. This table pro-
vides a benchmark performance for the dataset, allowing for a comparative analysis with our
differential privacy-enhanced model.

Accuracy Precision Recall F1 score

Without DP 0.705 0.371 0.482 0.420
Epsilon=100 0.814 0.652 0.337 0.444
Epsilon=10 0.810 0.631 0.345 0.446
Epsilon=5 0.779 0 0 0
Epsilon=1 0.779 0 0 0

Table 7.15: The experiment result on the Credit Default datasets by DPEDM. The table
underscores the efficacy of our model, especially when juxtaposed against traditional models
like linear models, even under differential privacy constraints.
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7.4 Credit Default and Telco Churn Datasets

Figure 7.7: The comparison of precision between DPEDM and linear model on Bank Mar-
keting dataset. The DPEDM has a higher precision level except when epsilon being 100.

Figure 7.8: The comparison of recall between DPEDM and linear model on Bank Marketing
dataset. The DPEDM has an overall higher recall level.
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Figure 7.9: The comparison of F1 score between DPEDM and linear model on Bank Mar-
keting dataset. The DPEDM has a higher f1 score at each differential privacy level.

Accuracy Precision Recall F1 score

Without DP 0.797 0.547 0.410 0.469
Epsilon=100 0.658 0.341 0.600 0.435
Epsilon=10 0.723 0.404 0.558 0.469
Epsilon=5 0.715 0.394 0.564 0.464
Epsilon=1 0.6985 0.376 0.575 0.455

Table 7.16: The experiment result on the Credit Default datasets by linear model. This
table provides a benchmark performance for the dataset, allowing for a comparative analysis
with our differential privacy-enhanced model.
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7.4 Credit Default and Telco Churn Datasets

Figure 7.10: The diagram of evaluation metrics for DPEDM on Bank Marketing dataset.
A noteworthy trend in precision and recall metrics presents itself. Rather than following a
steady trend, these metrics appear to fluctuate as the differential privacy level changes. They
increase at certain levels of privacy and decrease at others.
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Figure 7.11: The comparison of Accuracy between DPEDM and linear model on Email
Spam dataset. The DPEDM has a higher accuracy without privacy and when epsilon is 1.

Figure 7.12: The comparison of precision between DPEDM and linear model on Email Spam
dataset. The DPEDM has a higher precision at each differential privacy level.
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7.4 Credit Default and Telco Churn Datasets

Figure 7.13: The comparison of recall between DPEDM and linear model on Email Spam
dataset. The linear model has a higher recall except when epsilon being 1.

Figure 7.14: The comparison of F1 score between DPEDM and linear model on Email Spam
dataset. The DPEDM has a higher f1 score without differential privacy and when epsilon
being 1.
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Figure 7.15: The diagram of evaluation metrics for DPEDM on Email Spam dataset. All
metrics decrease when differential privacy level increases
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