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Abstract 

 
The analysis and interpretation of the variety of spatial interpolation and regression 

techniques became an important topic in the last decade. This process used to be highly 

human dependent with different individuals approaches, but with the increased 

availability of digital datasets and with the enormous software and hardware capabilities, 

this process became more machine dependent. There are a small number of projects that 

have provided a comparison and superiority of some spatial techniques over others. The 

objective of this thesis is to provide a comparison between eight interpolation and 

regression techniques through an automated model that is able to produce different 

species distribution and abundance maps based on information obtained from sample 

sites. This automated model will be run under the Grid-based Virtual Laboratory 

Amsterdam (VLAM-G) which provides access to geographically distributed resources. 

This will provide extra accessibility and will speedup the performance of the automated 

model.  
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Chapter 1 
 

1 Introduction 

 
In the last years, the analysis and interpretation of spatial datasets became an important 

topic in geostatistics. In the past, this process was highly human dependent and 

individuals would take different approaches, this lead to large distinct different solutions. 

Each case was dependent on the judgment and experience of individuals to select the 

right interpolation or regression technique. 

 

However, the variety of spatial interpolation and regression technique, the increase 

availability of digital datasets, and with the increase software and hardware capabilities, 

the process of interpretation and analysis of spatial datasets became more machine 

dependent. 

 

Although there are several projects that investigated a large number of spatial 

interpolation and regression techniques, a small number have provided a comparison and 

a superiority of some techniques over others. The expanded interest in Geographical 

Information Systems (GIS) with there wide usage made such a comparison important 

since it will investigate and show the applicability of these techniques that are embedded 

in some of these systems. 

 

Nationwide maps of different species abundance and distribution are needed at a high 

spatial and temporal resolution. Such maps are not easily obtained and not readily 

available. Intensive fieldwork of thousands of volunteers is needed and can be carried out 

every few decades since it is not an easy process and needs a lot of preparation. 

 

To be able to produce distribution and abundance maps for different species, information 

obtained from a small number of sample sites are used. The sample sites do not cover the 

whole entire area of interest. Several interpolation and regression techniques are available 

and are able to fill the gabs between these observation sites. 

 

Many species are protected through national and international laws. Several projects 

concerning constructions of roads and buildings close to species distributions must be 

reconsidered. Other issues such as climate-change and pollution must be addressed to 

know their consequences on species populations. Other human-species relationship such 

as bird-planes collisions cause plane crashes, loss of human lives, and sometimes plane 

damages. 
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In order to address and eliminate all these issues and in order to compare the different 

spatial interpolation and regression techniques used, a toolbox has been created in this 

thesis to provide a decision support tool. This toolbox is able to produce prediction and 

distribution maps for different species and will assist in some projects such as Bird 

Avoidance Model/ Bird Avoidance System (BAMBAS). 

 

In order to provide an extra accessibility to KansK toolbox, which is a toolbox that 

automates the distribution and prediction maps of different kind of species, and to make 

the toolbox easy to run and use by scientists, the Grid-based Virtual Laboratory 

Amsterdam (VLAM-G) provides a generic service for managing data and resources and 

performing experiments location independent. VLAM-G provides access to 

geographically distributed powerful resources that will speedup the performance of 

KansK processes. 

  

The reset of this thesis is organized as follows: 

 

Chapter 2  Several related work are discussed in this chapter. Different spatial 

interpolation and regression techniques are used in each one of them. 

 

Chapter 3 A statistical background is given for each interpolation or regression 

technique used in this thesis. 

 

Chapter 4  A description about the methodology used and the workflow design of 

KansK toolbox. 

 

Chapter 5  The results are presented in this chapter, we will try to decide which is the 

best interpolation or regression technique to choose for the sample dataset 

used. 

 

Chapter 6  Conclusions and Future Work. 
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Chapter 2 
 

2 Related Work 

 
In this chapter, four different spatial case studies are presented. Each case study is 

investigating a wide variety of spatial interpolation and regression techniques. Some of 

these techniques are the same as the spatial interpolation techniques we presented in 

chapter 3. In the case studies, different spatial datasets are used: breeding-birds, rainfall, 

and temperatures. Breeding-birds dataset is similar to the dataset we used in this thesis 

which was provided by SOVON – the Dutch Center for Field Ornithology.  In each 

section we are providing a background about each project, spatial interpolation or 

regression techniques used, and finally the results. 

 

 

2.1 Bird Avoidance Model/ Bird Avoidance System 

 
Bird Avoidance Model (BAM) project was conducted between 2002-2005 as a joint 

project between Computational Biology and Physical Geography department at the 

University of Amsterdam, SOVON – the Dutch Centre for Field Ornithology and the 

Royal Netherlands Air Force. BAM is used by the Royal Netherlands Air Force as a 

decision support tool to try to eliminate the risk of bird-aircraft collisions. 

 

Nationwide maps of bird abundance are needed at a high spatial and temporal resolution, 

for a BAM. Such maps are however not readily available [11]. Intensive fieldwork of 

thousands of volunteers is needed but can be carried out every few decades because it 

needs a lot of preparation and collaboration. To be able to produce distribution and 

abundance maps of birds, information obtained from sample sites, which do not cover the 

entire area of interest, are used. A technique known as regression-kriging has 

subsequently been used to fill the gaps between observations sites in space and time. 

 

2.1.1 Test Data 

 

Monitoring of Dutch bird population is in majority part of a governmental monitoring 

scheme which includes other organisms as well [12]. Fieldwork and data processing is 

conducted by non-governmental organisations such as SOVON, Statistics Netherlands 
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and around 3000 volunteers and small number of ornithologists. Table 2.1 lists some 

SOVON bird data sources. 

 

Bird datasets from several fieldwork projects have been used to produce the BAM-maps, 

see Table 2.1. One of these datasets is the Point Transect Count. Terrestrial wintering 

birds are being monitored since 1980 along about 400 transects with 20 observation 

points. Observers counted all species at each observation point during exactly 5 minutes. 

 

The spatial distribution module includes spatial density maps of the 62 bird species 

selected as most relevant for flight safety in the Netherlands in bi-weekly intervals, 4 

time periods per day and at five altitude layers [11], sample data for the Common 

Buzzard was used in this project for the production of the density maps. 

 

 

Table  2.1: SOVON bird data sources 

 
 

Non-breeding bird data 
 

Count description Abbreviation Months/years Numbers 

Winter bird counts PTT Feb. 1993-1997 

Aug. 1988-1992 

Nov. 1992-1996 

Dec. 2000-2004 

Observed 

individuals  

Water bird counts WAV Monthly 1999-2004 Observed 

individuals 

Casual observations BSP Monthly 2000-2005 Observed 

individuals 
 

Breeding bird data 
 

Breeding bird counts BMP 2000-2004 Pairs 

Colony Breeders LSB 2000-2004 Pairs 

Rare breeding birds LSB 2000-2004 Pairs 

 

 

2.1.2 Statistical modelling  

 

General Additive Model GAM which is a regression model was built for different years 

for the number of the Common Buzzards. The Poisson distribution with the log link was 

the appropriate choice for modelling the procedure because the number of Buzzards per 

point is always positive, many points contains zeros and finally the variance increases 

while the abundance increases. The best fitting model predictions and standard errors 

were calculated at 1 km 2  resolution and the predictions were mapped using ArcGIS 

Geographical Information System. 
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The difference between the counts and the prediction was calculated. The residuals were 

spatially interpolated using Ordinary Kriging and producing a 1 km 2  residuals map that 

covers the entire Netherlands. This technique is called Regression Kriging and has two 

separate steps (GAMs, Kriging). Maps of Buzzard densities are obtained from the 

addition of the estimated trend from the GAM and the predicted values of the residual. 

Figure 2.1 shows the final map of the distribution of the Common Buzzards in December 

2000 as a result of regression Kriging as mentioned by Sierdsema and van Loon in [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2.1: The Distribution of the 

Common Buzzards in December 2000 

as a result of regression kriging 

 

 

 

2.2 Spatial interpolation techniques for Rainfall Estimation 

 
The analysis and interpolation of spatial data is important and highly human dependent. It 

is well known that different individuals will take different approaches, yielding a large 

assortment of distinct solutions [13]. Spatial interpolation technique is being chosen for 

each case based on the judgement and experience of different individuals  

 

Estimating rainfall at different locations based on meteorological observations results 

encouraged the development of gridded estimates of rainfall as inputs for spatially 

distributed hydrologic and management models. Geographic Information Systems (GIS) 

provide ready-to-use spatial interpolation techniques that need to be investigated through 

such models. 
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2.2.1 Spatial interpolation techniques 

 

Twelve interpolation techniques are used to estimate the missing gages values based on 

the remaining ones. These techniques are available in ArcView GIS software and are 

ranked based on the best minimum average to the worst maximum average and to other 

statistics. Figure 2.2 summarizes the twelve spatial interpolation techniques as a result of 

this study presented by Naoum and Tsanis [13]. 

 

• Spline (Regularized & Tension): is a form of interpolation where the 

interpolant is a special type of piecewise polynomial called spline. Spline 

interpolation is preferred over polynomial interpolation because the 

interpolation error can be made small when using low degree polynomials for 

the spline [14]. 

 

• Inverse Distance Weighted (IDW): is a simple technique for curve fitting, a 

process of assigning values to unknown points by using values from known 

points [14]. 

 

• Kriging: Kriging, as a form of generalized liner regression technique, is used 

to estimate the value of a property at un-sampled location by referring to 

neighbouring locations. 

 

• Trend Surface: trend creates a floating-point grid by using polynomial 

regression to fit a least-square surface to the input points. Users are allowed to 

control the order of the polynomial. 

      

• Theissen Polygons: this approach is appropriate when we want to define the 

region of influence. It is based on the nearest neighbours to a line or a point. 

For a series of points, the region of influence is represented by a set of 

polygons called Theissen Polygons. These polygons are the most common 

approach to model spatial distribution rainfall. The approach is based on 

defining the area closer to the gage then any alternate gage and the assumption 

that the best estimate of rainfall on that area is represented by the point 

measurement at the gage [13]. Using Theissen Polygons, discontinues 

surfaces were developed defining the rainfall depth at the desired area. 

 

 

2.2.2 Test Data 

 

This model was applied to a group of rain-gages in Switzerland. The dataset used was 

taken around the period of Chernobyl Nuclear Power Plant accident in (26
th

 of April 

1986). Right after the accident a radioactive plume crossed many European countries 

causing a radioactive deposition on the ground because of the rainfall. The air pollution 

Group at Imperial College London prepared the dataset. The dataset was made in 8
th

 of 

May 1986 and included 467 records of daily rainfall. 
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Figure  2.2: Digital elevation model and interpolated rain surfaces in 

Switzerland 

 

2.2.3 Results 

 

Based on the multiple random selections of gages to eliminate any errors or outliers, no 

statistical data preparation was done. Table 2.2 concludes the results of the twelve 

techniques. Kriging (Exponential and Universal_1) and Inverse Distance are 

recommended.  

 

 

Table  2.2: Spatial interpolation techniques results for rainfall 

 

Interpolation Technique Type Results 

Regularized Poor performance Spline 

Tension Reliable estimates 

Trend Surface 2
nd

 order polynomial Poor performance 

Theissen Polygons - Vary from one case to the 

other 

Linear 

Gaussian  

Circular 

Universal_2 

 

Vary from one case to the 

other 

Spherical 

Exponential 

Kriging 

Universal_1 

 

Reliable estimates 

IDW - Reliable estimates 
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2.3 Spatial interpolation techniques for Temperature Estimation 

 

Landscape scale models such as regeneration, growth, and mortality of forest ecosystems 

depend on their performance about the accurate estimation of temperature. Temperature 

prediction at un-sampled sites is of interest to individuals involved in fire management, 

resource management, and spraying or seeding operations [15]. Scientists are also 

interested in accurate temperature to study greenhouse effect and global warming. 

Depending on the data spatial attributes, accuracies among spatial interpolation 

techniques vary.  The choice of spatial interpolator is important especially in mountain 

regions where variables may change over short scale. 

  

 

2.3.1 Spatial interpolation techniques 

 

Eight interpolation techniques were used to study two regions in western and eastern 

North America. Region 1 has stations spread all over the study area, Region 2 has 

stations surrounding population areas. These techniques are: Inverse Distance Weighted, 

Spline, Trend Surface, and Kriging were already discussed in section 2.2.1, the other four 

interpolation techniques are explained below: 

 

• Optimal Inverse Distance Weighted: is a form of inverse distance weighted 

where the power parameter is equal to the minimum mean absolute error. 

 

• Polynomial Regression: the variable of interest, which is weather, is being 

fitted to some linear combination of regressor variables (weather station’s X, 

Y, and Z coordinates). There is a chance of increasing multicollinearity 

because of adding regressor variables, this might decrease the model ability to 

predict outside the rounded hull of data points.  Temperature was fitted to 

first, second, and third order polynomial models of the X and Y coordinates 

plus elevation [15]. 

 

• Lapse Rate: usually temperatures decreases while elevation increases. This 

relationship for a region is used to predict temperatures at un-sampled sites by 

using the temperature values of the nearest weather station and the difference 

in elevation. 

 

• Cokriging: Cokriging is an extension of kriging as mentioned in section 

2.2.1, except it is more intensely sampled. Cokriging estimates a variable from 

the observations of that variable and the values of related variables at nearby 

sampling locations. 
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2.3.2 Results 

 

Interpolation techniques were compared based on the basis of bias, mean absolute error 

(MAE), and mean squared error (MSE). Other factors where investigated such as the 

effect of data variance, data correlation with elevation, and lapse rate on MAE. Each 

technique was repeated several times to obtain the cross validation statistics. 

 

Polynomial regression had the preferred performance and the lowest MAE value among 

the different techniques ranked. Based on higher correlation between elevation and 

temperature, Polynomial regression and lapse rate technique gave the preferred 

performance. Inverse distance weighted, optimal inverse distance, and kriging showed a 

similar robustness to apriori data range, correlation (between elevation and temperature), 

and variance [15]. 

 

Kriging performed better than optimal inverse distance when the data were anisotropic. 

However, when data were isotropic, optimal inverse distance was better. Table 2.3 

concludes the results of the eight techniques: 

 

 

2.4 Minimum Habitat Requirements of Forest-Breeding Birds 

 
Loss of habitat because of human-induced activities is the only threat to the survival of 

many species and to global biodiversity. Many different organisms are affected in 

different regions such as amphibians, beetles, butterflies, and small mammals. There is a 

special concern about the effects of habitat loss on forest birds that breed in the eastern 

United States and Canada and winter in the Neotopics [16].   

 

This study is concerned about the habitat loss and the species survival threats. Biologists 

are trying to understand the effect of habitat loss by predicting the minimum amount of 

habitat necessary for population survival. Life-history knowledge of these species is 

important since it gives more information about species more sensitive to habitat loss 

than others. 

 

 

2.4.1 Test Data 

 

This model was applied to 41 species of forest-breeding birds. The dataset used was 

taken from the North American Breeding Bird Survey to estimate the ‘proportion 

presence’ of each of 41 forest bird species over a 10-year window [16].  To calculate the 

forest percentage covered of the 779 landscapes in central and eastern USA, U.S. 

Geological Survey (USGS) Land Use and Land Cover (LULC) digital data are used.  
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Table  2.3: Spatial interpolation techniques results for temperature estimation 

 

Interpolation Technique Results Comments 

Inverse Distance Weighted Poor performance.  Results are questionable and 

temperature peaks because of 

discontinuities at station 

locations. 

Optimal Inverse Distance 

Weighted 

Better performance 

than Inverse Distance 

Weighted and Kriging. 

The most preferred technique 

when the data are not correlated 

and isotropic. 

Trend Surface Poorest performance. Broad regional trends because 

of the bias introduced by 

multicollinearity. 

Polynomial Regression  Preferred performance. Technique is recommended 

when the correlations between 

temperature and elevation are 

not low.  

Spline Poor performance. Interpolated values are outside 

the observed data range. Cubic 

Spline is not recommended for 

irregularly-spaced data. 

Kriging Better performance 

than Inverse Distance 

Weighted.  

When data are anisotropic 

Kriging is better than Optimal 

Inverse Distance. 

Cokriging Poor performance. When temperature and elevation 

are not correlated, Cokriging is 

similar to Kriging. This is not 

expected because elevation 

component is not significant in 

Cokriging. 

Lapse Rate  Reasonable 

performance. 

It is preferable over Cokriging 

based on visual plausibility and 

adherence. When elevation and 

temperature are not correlated 

then the technique is degraded 

into a nearest neighbour 

technique. 
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Figure  2.3: Study area of 779 landscapes in central and eastern United States 

 

 

Figure 2.3 (Vance et al. [16]) shows 779 landscapes, each one of them has a radius of 

19.7 km and is centred in a breeding bird survey route. Zigzag line is the survey route, 

each route is 39.4 km with a total of 50 stops, each stop is 3 minutes and conducted at 0.8 

km interval. All birds heard or seen by the observers at 0.4 km radius are counted. Black 

areas are forests, and white areas are other landscapes.  

 

 

2.4.2 Data Analysis and Results 

 

Locally weighted regression, or Loess, is used to smooth the dependent variables in a 

moving window fashion by fitting a local regression that was weighted by the distance of 

the data points within a specified neighbourhood from a point x on the independent axis 

[16]. Points close to x have large weights and points far from x have smaller weights as 

explained by Cleveland in [6]. Loess curves were fit using default parameters from SAS, 

local linear multiple regression, and normal weight function. This model provides good 

compromise between data goodness of fit and Loess curves smoothness.  

 

Smoothed regression curves are used to estimate the minimum habitat for each of the 41 

forest bird species. Species have a 50% probability of presence in the landscape which is 

considered a tendency of occupancy. Figure 2.4 (Vance et al. [16]) demonstrates the 

estimation of minimum habitat required using Loess smoothed data. Figure 2.4(a) 

presents the ‘normal’ Loess curve where the minimum habitat amount of 50% presence 

can be predicted directly from the map which is 26.5% for this species. 
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Figure 2.4(b) represents one kind of species that is always had a presence of less than 

50% regardless of the presence of other habitats. Figure 2.4(c) represents the opposite 

situation where the species never reached the 50% presence with a minimum habitat of 

99%. Figure 2.4(d) represents the situation of more than one habitat, the minimum habitat 

amount needed here is 53% in which the species have a chance of 50% probability of 

presence. 

 

 

 
 

Figure  2.4: Results of different Loess curves 

 

 

2.5 Summary  

 

This chapter presented several spatial interpolation techniques used in different case 

studies. BAM project recommended using a combination of Poisson and regression 

kriging on the basis of exploratory analyses and expert knowledge. This combination is 

the appropriate choice since count data often follows a Poisson distribution.  

 

In the rainfall estimation case, it appeared that increasing the number of gages available 

for interpolation enhanced the performance of several techniques especially inverse 

distance weighted where it is known to provide good results for dense networks such as 

this study. Ordinary kriging (exponential and universal_1) showed consistent 

performance and provided reliable estimates regardless of the number of gages or the cell 

size used in the interpolation [13]. 
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The temperatures estimation study recommended using polynomial regression, kriging, 

and optimal inverse distance weighted. For these techniques, the results indicated that 

they have small temperatures variances and temperatures ranges which tend to decrease 

the interpolator Mean Absolute Error (MAE) and they also have high correlation between 

the temperature and elevation. These two factors had a strong influence on the predictor 

performance. 

 

Finally, the minimum habitat study used locally weighted regression to smooth the data 

since with nonlinear regression it is not necessary to choose a model in-advance, and this 

allows the data to estimate the best regression surface. 

 

The different spatial cases described in this chapter used different interpolation 

techniques and different datasets. Three cases recommended using kriging interpolation; 

two cases recommended using inverse distance weighted interpolation. Polynomial 

regression and locally weighted regression were recommended to be used by two 

different cases. From this chapter, we expect that kriging, inverse distance weighted, 

polynomial, and locally weighted regression will most probably give a reasonable 

performance in KansK toolbox.  

 

In the next chapter, the statistical background of eight spatial interpolation and regression 

techniques are presented. These techniques are similar to some of the techniques 

presented in this chapter.  
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Chapter 3 
 

3 Statistical Background 

 
In this chapter we will go through the statistical background of each interpolation and 

regression techniques that are investigated in this thesis. 

 

 

3.1 Akima Linear interpolation (LIN) 

 

A method of bivariate interpolation and smooth surface fitting for z values at irregularly 

distributed data points in the x-y plane was presented by Akima in 1978 [1]. Akima’s 

design of the method assumes that the resulting surface will pass through all the 

irregularly spaced data points.  

 

The method first triangulates the x-y using the Max-Min angle triangulation suggested by 

Lawson in 1972 [2]. This triangulation works as follows. For each quadrilateral 

consisting of a four-point set (p1, p2, p3, p4) with each internal angle smaller than π , 

two triangles are created from the partitioning of the quadrilateral based on the choice 

that maximizes the minimum interior angles or the choice of the shorter diagonal. New 

points are added in this way forming new triangles, each point, p5, is connected to the 

closest pair of points and lies outside the quadrilateral. Figure 3.1 is an example that 

illustrates the Max-Min angle triangulation. 

 

 

 
Figure  3.1: Max-Min angle triangulation 

 

P5 

p4 p3 

p2 
p1 
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A fifth-degree bivariate polynomial in x and y is used to interpolate the z values in a 

triangle at any point (x, y): 
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To determine the 21 coefficients ijq  [3], the values of (eq. 3.1) and its first-order and 

second-order partial derivatives are provided at each vertex of the triangle at points (p1, 

p2, p4), this yields to 18 independent conditions: 

 

• The z values:  

 

z1, z2, and z3 ; 

 

 

• The first order partial derivatives: 

 

;,,,,
321321 pppppppppppp y

z
and

y

z

y

z

x

z

x

z

x

z

====== ∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
 

 

 

• The second order partial derivatives: 
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• The partial derivative of the function differentiated in the normal direction to 

each side, sn ^ , of the triangle [3]. This is a third-degree polynomial, at most, 

in the variable measured in the direction of the side of the triangle [1].  

Additional three independent conditions are added: 
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Partial derivatives are evaluated for every data point p k by determining the vector normal 

to the surface of each data point, this can be performed by calculating the vector product 

of  p k  = (x k , y k , z k ) and two close neighbors pi and p j: 
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                    ))(())(( kjkikjkiikj xxyyyyxx −−−−−=dz                               (3.2) 

                    ))(())(( kjkikjkiikj yyzzzzyy −−−−−=dx                                (3.3) 

                    ))(())(( kjkikjkiikj zzxxxxzz −−−−−=dy                                 (3.4) 

 

where ikjdz , ikjdx  and ikjdy  are the three components of the vector product and must be 

positive to assure that the vector normal to the surface is also positive [3].  

 

Gradient vectors in the direction of x and y are evaluated through the following 

equations: 
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Where nc is the closest neighbors. To calculate the second order partial derivatives, the 

same approach can be used. 

 

3.2 Inverse Distance Weighted (IDW) interpolation 

 

Another technique that is frequently used to interpolate scattered points is Inverse 

Distance Weighted interpolation (IDW). IDW assumes that a point to estimate is 

influenced most by nearby points, hence each observed point has an associated weight 

that is inversely proportional to the distance to the point to be estimated. Figure 3.2 

illustrates the IDW interpolation, scatter points (p1, p2, p3, p4, p5) are within the search 

radius of the estimated point z. 

 

 

 
 

Figure  3.2: IDW interpolation 
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Inverse distance weighted interpolation method was first presented in its simple form by 

Donald Shepard in 1968 [4]:  

 

( ) i

n

i

i fwyxz ∑
=

=
1

,                    (3.7) 

 

where n is the total number of observations, if are the observed values, and iw is the 

weighted associated with each observation point, relative to an observation at (x, y). 

Weights are calculated using the following weight function: 
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where p is the power parameter that defines the rate of the reduction of the weights as 

distance increases [5], ih  is the distance between the observation point and the point to be 

estimated: 

 

                                                       ( ) ( )22

iii yyxx −+−=h                                      (3.9) 

 

where ( yx, ) and ( ix , iy ) are the coordinates of the interpolation point and the scatter 

point. The weight function (eq. 3.8) approaches zero when the distance from the scatter 

points increases. 

 

 

3.3 Locally Weighted Regression (LWR) 

 

A technique used to smooth a scatterplot ( )ii yx , , where i = 1, …, n, is Locally Weighted 

Regression (LWR), or loess. The observed value iz  at ( )kk yx ,  is the value of a 

polynomial fit to the data using weighed least squares, where the weight of ( )ii yx ,  is 

large if ( )ii yx ,  is close to ( )kk yx ,  and small if it is not [6], The smoothing procedure has 

been designed to accommodate data for which 
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where ( )iii yxB ,  are the estimates of the parameters in a polynomial regression of degree 

d and the ε i  are random variables with mean 0 and constant scale. Neighboring points of 

( )ii yx ,  are used to form the observed value iz , the weights  ( )iik yxw ,  decrease as the 

distance between ( )kk yx ,  and ( )ii yx ,  increases [6]. Figure 3.3 is an example that 

illustrates the LWR. 

 

 

 

 

 

 

 

 

 

  
 

Figure  3.3: Scatterplot of robust smoothed data 

  

 

Locally weighted regression and robust locally weighted regression are estimated by 

following these operations: 

 

• Compute the estimate ( )
iij yxB ,ˆ , j = 1, …, d, of the parameters in a 

polynomial regression of degree d as mentioned by Cleveland [6]. The 

estimate ( )
iij yxB ,ˆ  are the values of the jB  that minimizes:  

                

( )( )22

5

2

43210

1

, yBxByBxByxBBzyxw kkk

n

k

iik −−−−−−∑
=

         (3.11) 

 

z is the observed value and ( )2

5

2

43210 yBxByBxByxBB kk −−−−−  are the 

fitted values of the locally weighted regression at ( )ii yx , .  

 

• Let Q be the bisquare weight function and iki zze −=  be the residuals from 

the current observed values. Let s be the median of ie  and the robustness 

weights: 

        ( )seQ kk 6/=δ                                   (3.12)        

 

• Compute new iz  by fitting a dth degree polynomial with weight ( )iikk yxw ,δ  

at ( )kk yx , . This Step and the step of (eq. 3.12) will be repeated and the final 

iz  are robust locally weighted regression observed values. 
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The weight function W is used to define weights for all ( )kk yx , , where k = 1, …, n: 

 

                                       ( ) ( ) ( )( )( )2/1221
, kikiiiik yyxxhWyxw −+−=

−
                      (3.13) 

 

where ih  is the distance beyond which W(x) = 0.  

 

 

3.4 Ordinary Kriging (OK) 

 
Kriging named after the South African mining engineer D. G. Krige. It was designed 

originally to accurately predict ore reserves as mentioned by Davis [7]. Kriging, as a form 

of generalized liner regression, is used to estimate the value of a property at un-sampled 
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surface when reaching the Range which is the maximum neighbourhood over which 

observation points are selected to estimate the estimation point. 

 

The calculation of all possible combination of different pairs at different distances will be 

performed. The initial distance used is called Lag and will increase by the same amount 

though the dataset. Every point is compared to all other points to determine the variance 

between the points that have the same Lag distance and their geographical orientation. 

This process is repeated until all distance possibilities are analyzed.  

 

In Figure 3.4, each small circle represents a pair of points. The big circles are the 

averages obtained from the ranges. Using Ordinary Kriging the semivariogram needs to 

be reduced to a mathematical function so that it will be evaluated at any distance and this 

is implemented by the solid black line.  

 

 

 

 

 

 

 

 

  

            

 

         Figure  3.4: Semivariogram 

 

 

W and B are estimated from the spatial covariance function of the semivariogram 

modelγ , and Λ is the weights after inserting the Lagrange Multiplier µ  which increases 

the number of unknown coefficients to be estimated, s is the observed point ),( kk yx .  
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Ordinary Kriging weights are estimated using the following matrix equation: 

 

                                                      Β=Λ −1
W                                                                (3.17) 

 

 

h = 21 xx −  

( )hγ  
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A vector Y of the k observations around locations 0x is needed to estimate the ( )0
ˆ xz  of the 

regionalized variable desired: 
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The Ordinary Kriging estimate of the estimated value at location 0x  [7]: 

 

      ( ) ΛΥ= '

0
ˆ xz                             (3.18) 

 

 

3.5 Generalized Linear Models (GLM) 

 
Generalized Linear Models (GLM) extend the classical linear regression model to data 

that have a non-normal distributed residuals. GLM supports a wide variety of explanatory 

variables next to (x, y) coordinates such as vector, matrices, and lists. The linear model 

assumes that the components of Y are independent Normal variables with the constant 

variance 2σ and 

 

( ) µ=YE  where XB=µ                  (3.19) 

 

where the Bs are the unknown parameters that need to be estimated from the data  [8]. 

The generalization of the linear model by rearranging (eq. 3.19) will produce the 

following three parts: 

 

• The random component: each component of Y has independent Normal 

distribution and constant variance 2σ . 

 

• The systematic component: a linear predictor η , which is a linear sum of the 

effects of explanatory variables jx , is produced: 

 

j

p

j Bx∑=
1

η                                                       (3.20) 

 

       Where x are the values of the different p values. 
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• The link function: is the relationship between the random and systematic 

components. The link function ( )•g , that relates the mean value of Y to its 

linear predictor [8]: 

 

( )µη g=                     (3.21)  

 

  

Each component of Y has a distribution that is a member of the exponential family and 

has the following form: 
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by
yfY       (3.22) 

 

where functions ( )•a , ( )•b , and ( )•c  will depend in φ , if it is known then this is an 

exponential–family model with the parameter of interest θ  which is called the canonical 

link function. If φ  is unknown this may leads to a two-parameter exponential family. 

  

The exponential family contains a large number of useful distributions, for example 

among continuous distributions there are Normal, inverse-Gaussian, and Gamma and 

among discrete distributions there are Binomial, Poisson and negative Binomial. Table 

3.1 lists some probability distributions that are used with GLM: 

 

 

Table  3.1: GLM probability distributions 

 

 Range of y F(y) Canonical link: ( )µθ  

Binomial 

B ( )µ,k  

{0, …, k} 
( ) yky

y

k −
−








µµ 1  logit = 









− µ

µ

k
log  

Poisson 

P ( )µ  

{0, 1, 2, …} 
µµ −

e
y

y

!
 

log = ( )µlog  

Normal 

N ( )2,σµ  

{ ∞∞− , } ( ) ( ){ }
πσ

σµ

2

2exp 22
−− y

 
identity = µ  

 

 

Different canonical link functions are available, each distribution has a link function 

Table 3.1. log link is used where negative fitted values are forbidden and logit link is 

used where proportion of data is needed. Canonical link functions are the default options 

and will only occur when the linear predictor η  is equal to the canonical parameter θ  as 

defined in (eq. 3.22). 
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Two distributions will be discussed in the following sections, the Normal (Gaussian) 

distribution as an example of continuous distributions and the Poisson distribution as an 

example of discrete distributions:  

 

3.5.1 The Normal Distribution  

 

Normal or Gaussian distribution, a bell-shape curve, is considered to be an important 

probability model in statistics. A normal process results when a number of unrelated, 

continuous random variables are added together [10]. Normal distribution is important 

because it is the most used statistical distribution since it arises naturally in many 

physical situations by the accumulation of many independent errors. A standard normal 

distribution is shown in Figure 3.5. 

 

The normalized sum Z of mutually independent random variables in which the mean 

0=µ  and the variance 12 =σ is: 

 

n

XXX
Z n+++

=
...21                (3.23) 

 

As n becomes large, Z is likely to be normally distributed according to the Central Limit 

Theorem which states: 

 

For any distribution with a finite variance, the mean of a random sample from that 

distribution tend to be normally distributed [9]. 

 

Normally distributed random variables are standardized by employing the following 

transform: 

 

σ

µ−
=

y
Z        (3.24) 

 

A standardized normal Probability Density Function (PDF) is shown in Figure 3.5.The 

PDF is centered around the mean µ  and its distribution spread is determined by the 

variance σ . The standardized normal distribution maybe viewed as the special case 

N(0,1) [10]. 
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   Figure  3.5: The standard normal distribution 

 

 

3.5.2 The Poisson Distribution  

 

A Poisson process describes the total number of independent events occurring during a 

specified observation period in which the event arrival rate is fixed [10]. Poisson PDF is 

shown in Figure 3.6, each arrival is causing a ‘jump’ of unit magnitude. 

 

 
Figure  3.6: Poisson Probability Density Function (mean = 3) 

 

 

The Probability Density Function (PDF) of Poisson process has only one parameter 

which is the arriving rate λ . Adding the terms of Poisson PMF will provide the 

following: 
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where t is time and the expansion on the right hand side of the (eq. 3.25)  is the Taylor 

series for t
e

λ . As a result, Poisson distribution is 1=− tt
ee

λλ  and this is a required 

condition for all probability distributions. 

 

The expected value of the Poisson distribution is calculated by multiplying every term by 

y: 

 

                                [ ] tNE t λ=                                                 (3.26) 

 

If tλ increases without limit, the coefficient of skewness will reach zero and the Poisson 

distribution will become normal in appearance. The Poisson PDF can be expressed in the 

following compact way: 

 

                     { }
!y

e
yP

y

N

µµ−

=                  (3.27) 

 

where y = 0, 1, 2, …,  and 0≥µ  (Table 3.1). In general, P ( )µ  denotes a random variable 

with a Poisson distribution and tλµ = . 

 

 

3.6 Normal and Poisson Regressions followed by Ordinary Kriging 

(Regression Kriging) 

 
Regression kriging is carried out by combining two steps. First, the Generalized Linear 

Model (GLM) is fit with Poisson and Normal errors as discussed in section 3.5, and the 

observations for all data points are calculated. Then the Residuals are calculated and 

interpolated using ordinary kriging as discussed in section 3.4. Regression kriging is 

likely to enhance the spatial prediction because the error in the regression-prediction 

contains a spatial structure that can be described using ordinary kriging. 
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Chapter 4 
 

4 KansK & Scientific Workflow 

 
Scientific workflows are modules of data that flow through processing components. Each 

module represents the ways data being exported and imported through different software 

packages. Scientific workflows provide visual communication of different components 

and reproducibility of workflow components in different experiments.  

 

Scientific workflows often manage large and heterogeneous data that can be 

computationally intensive. It constructs and executes complex scientific experiments such 

as the different processes in KansK toolbox, which is a toolbox that automates the 

distribution and prediction maps of different kind of species. Scientific workflows 

provide data reusability for different datasets, some basic processes can be replaced with 

a newly developed ones. 

 

In the first section of this chapter, KansK toolbox methodology for spatial data prediction 

is presented, more information about the sample datasets used will be given. The second 

section discusses the need for scientific workflow management systems. Finally, in the 

third section, KansK will be presented as a sample case to be performed within a 

scientific workflow management system. 

 

4.1 KansK Toolbox 

 

KansK toolbox was created to automate the distribution and the prediction maps of 

different kind of species over the entire Netherlands. The datasets used were provided by 

SOVON - the Dutch Centre for Field Ornithology, these datasets are sample datasets for 

six different breeding-bird species distributed around the Netherlands. The unit modeled 

for the datasets is pairs/km 2 . Table 4.1 lists the environmental predictive variables of the 

datasets. 

 

In KansK toolbox, eight spatial interpolation and regression techniques are examined. 

These techniques are explained in detail in chapter 3. One of the most important reasons 

of creating KansK toolbox is to investigate and evaluate these techniques. Based on the 

datasets we are using, the best spatial interpolation and regression techniques will be 

chosen. 
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KansK toolbox was developed using R. R is a programming language and environment 

for statistical computing and graphics. R provides a wide variety of statistical (linear and 

nonlinear modeling, classical statistical tests, time-series analysis, classification, 

clustering, …) and graphical techniques, and is highly extensible [20]. Some of R 

benefits are: 

 

• R is free, open-source, and runs on UNIX, Windows and Macintosh. 

 

• R provides an excellent built-in help. 

 

• R provides good graphing capabilities. 

 

• R has many built-in statistical functions and can easily call other user-written 

functions, C and Java functions. 

 

 

Table  4.1: Environmental predictive variables 

 

Variable  Description 

Physical Geographical 

sub-regions in km 2  

A division of the Netherlands in Physical Geographical 

Regions based on the major soil type of the region. Division 

of sub-regions has been made based also on the soil type, 

general land use, and broad spatial trends in densities. 

X- and Y- coordinates  

Land use: top 

classification in  km 2   

Based on data from the top10-vector land use map, satellite 

information for different sources has been composed. 36 

legend items have been used such as forest, marshland, urban 

and agricultural. 

Land use: higher order in 

km 2  

Higher order ecotopes such as forest and marsh. 

Land use: lower order in 

km 2  

Lower order ecotopes such as deciduous and coniferous 

forests. 

Ground water table in 

km 2  

Information of ground water levels are stored based on the 

soil types, there are 63 legend items in the ground water map 

that are combined in 6 classes from very wet to very dry. 

Openness landscape Based on the top 10-vector several maps has been made to 

describe the Dutch landscape. One of these maps describes 

the openness of the landscape on the scale of square 

kilometers. The 1 km-grid was not enough to describe the 

openness of the landscape. Therefore km-grid was 

interpolated using kriging to 25 meter-grid version with 

continues scale of 0-100. 

Nature grassland in km 2  Grasslands are managed as nature reserve and hold different 

bird compositions compared to ordinary, intensively used 

grasslands. A vector map has been made of all the grasslands  
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4.1.1 Methodology proposed for spatial data prediction 

 

In this section we present the methodology proposed for implementing KansK toolbox as 

a useful decision support tool for spatial data prediction. Figure 4.1 shows the structure of 

the methodology proposed for spatial data prediction using interpolation and regression 

techniques.  

 

In KansK toolbox there are two main processes that are concerned with finding the 

appropriate spatial interpolation or regression technique to be used for spatial data 

prediction. In the first process, data evaluation, based on the species chosen, part of the 

data concerning that species is returned. This part is used to evaluate the model with a 

Calibration/ Validation cycle. This process will be repeated several times through a 

bootstrap procedure. Several error measurements will be monitored for each interpolation 

or regression technique. In the second process, data prediction, based on the results of 

data evaluation, the best interpolation or regression technique will be used for further 

species prediction. The methodology proposed processes are explained in details below: 

 

• In Figure 4.1, the first process, process data preparation, is a common process 

and is needed by the other three processes, data need to be interpolated are 

prepared in this process. Process data preparation consists of three main steps. 

The first step creates two object files, one for evaluation data (FIT data) and 

the other is for prediction data. Each file will be return as an object dataset 

with the same environmental predictive variables listed in Table 4.1. These 

variables are subject to change based on the dataset being used. 

 

In the second step, prepare data files,  different text files are created, these 

text files contain information regarding the datasets created in the first step, 

the interpolation and regression techniques for each bootstrap,  years and 

months of the records of the datasets, and the environmental predictive 

variables used with each interpolation or regression technique. These text files 

are used as count references in other processes in KansK toolbox. 

 

In the third step, prepare species run, an object for the chosen species is 

created. This object is created based on the data returned from the first and the 

second steps. The object dataset is changed to km 2  and then passed to the 

other processes to be interpolated by the interpolation and regression 

techniques. In this step we can also produce distribution maps of the 

environmental predictive variables. 

 

• In the second process, process data evaluation, FIT object dataset will be 

passed from the first process and the bootstrap number will be set. This 

dataset will be split into 80% calibration data and 20% validation data. These 

calibration/ validation data are then being interpolated using the eight 

interpolation and regression techniques explained in details in chapter 3.  
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As a result of the second process, a number of text files are returned. For each 

bootstrap a group of Residuals and RMSE (Root Mean Square Error) for each 

interpolation or regression technique are stored as text files. 

 

 

 
 

                Figure  4.1: The methodology proposed for spatial data prediction 

 

 

• In the third process, process data prediction, PRED object dataset will be 

passed from the first process. This dataset will be interpolated using the eight 

interpolation and regression techniques explained in details in chapter 3. 

 

As a result of the third process a number of map files are returned. The first 

group of map files will be visualized in R and the second group of map files 

have ArcView Geographical Information System (GIS) format. 

 

In the second and the third processes, the datasets are interpolated using eight 

interpolation and regression techniques. Figure 4.2 shows the flow of these 

processes. If Ordinary Kriging (OK) is chosen, the best semivariogram is 

returned first and then the datasets are interpolated. However, when using the 

Generalized Linear Models (GLM), the estimation values of the best 

significant values are chosen. Based on the estimation values, the 

environmental predictive variables are chosen and interpolated. More 

information about semivariogram and GLM are available in chapter 3. 

 

• In the fourth process, process data plot, the results of the second and the third 

processes will be plot. Several kinds of plots and maps will be used. The 

results of the second, the third and the fourth processes will be discussed in 

details in chapter 5. 
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Figure  4.2: (Calibration/Validation/Prediction) method in the methodology 

proposed 

  

 

4.2 Scientific Workflows and Management Systems 

 

Grid environments break down barriers to communication and interaction, and make 

valuable resources accessible among groups of trusted users (called Virtual Organizations 

(VO)) [17]. Large numbers of people and sharable resources are involved in such 

environments to be able to make data and computing intensive scientific experiments 

possible. Scientific workflows consists of experiment routines and processes, each 

successful experiment is considered as a workflow template that will be considered as a 

reusable resource for studying other related problems. 

 

Scientific Workflow Management Systems (SWMS) were introduced as system that is 

able to manage the dependencies between scientific experiment processes and to 

orchestrate resources runtime behavior. Scientific workflows are important for spatial 

systems like KansK for several reasons: 

  

• The increasing demand on using the Grid computing capacity for running 

computation intensive processes such as the interpolation and regression 

techniques used in the (Calibration/Validation/Prediction) method, Figure 4.2. 

 

•  The integration of different environments into a single environment which 

deals with different software packages with expanding CPU processing 

capabilities such as integrating  R for statistical computing and graphics into 

the scientific workflow. 

 

• The discovery of distributed software resources and the availability of the 

Grid resources.  
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To be effective in running KansK toolbox, a scientific workflow management system 

needs to fulfill general quality criteria apart from meeting the specific requirements from 

the application domain [18].  Some of the generic quality requirements are: 

 

• Flexible and generic modeling mechanism which is not domain specific and 

distributed resources are captured during runtime. 

 

• A friendly environment which will allow the user to customize the 

configuration of the environment. 

 

• User support and assistance at different levels. 

 

Several scientific workflow systems have been introduced in the last decade and 

increasingly being used by scientists to construct and execute complex scientific analysis. 

Such analyses are typically data-centric and involve “gluing” together data retrieval, 

computation, and visualization components into a single executable analysis pipeline 

[19]. Some of these components contain computational intensive processes such as the 

interpolation and regression techniques discussed earlier. These processes are part of 

other software applications such as R scripts. Scientific workflows, such as VLAM-G, 

provide a way to compose and configure all these components.  

 

 

4.3 Run KansK toolbox in VLAM-G 

 

The Virtual Laboratory for e-Science (VL-e) project aims to realize a Grid enabled 

generic framework where scientists from different domains can share their knowledge 

and resources, and perform domain specific research [18]. The domains are: food 

informatics, medical diagnosis and imaging, bio-diversity, bio-informatics, high energy 

physics, and tele-science.  

 

VLAM-G (Virtual Laboratory Amsterdam for Grid) is used as a prototype for the shared 

framework. It provides a service for managing data and resources, performing 

experiments location independent, and utilizing Grid resources transparently. VLAM-G 

also gives the scientists an access to geographically distributed resources, this is needed 

in KansK toolbox since scientists might run the toolbox location independent.    

 

Experiment processes in VLAM-G are modeled explicitly using three elements: physical 

entities which are the instruments to be used, activities to be performed by the scientists, 

and data elements which are the input/output of the activities [17]. Each experiment has 

three levels: Process Flow Template (PFT) which is an abstract description of 

dependences, Studies which are instantiations of template, and Experiment Topology 

which is a set of self-contained software modules that performs computer tasks. 
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Domain experts and scientists are able to define Studies by instantiating a PFT through 

VLAM-G environment GUI. Scientists are able to define an experiment and execute it 

through an engine called Run Time System (RTS).  

 

Modules, which are software entities, can be run in any computational resource within 

VL-e testbed. Each resource might contain different software libraries. The data stream 

between them is represented by connected arrows which represent the flow of data. 

Figure 4.3 shows the interface of VLAM-G, the PFT is displayed on the upper right side 

and KansK experiment is displayed on the lower right side. 

 

VL-e provides support for R for statistical computing and graphics. In the experiment 

editor the scientist can define the elements composing the experiment. Such experiments 

are represented by modules that are implemented in R and connected to each others by 

arrows, each module has number of input/output ports. Figure 4.3 shows the experiment 

of KansK process data evaluation which matches with the first, second, and the fourth 

process of the methodology proposed in section 4.1.1.  

 

KansK R-modules can be used in multiple experiments. Process data prediction can get 

advantage of data reusability since it is close to process data evaluation. A new 

experiment can be created or data prediction module can be added to the current 

experiment. Each module is being run in parallel with other modules on different 

computational resources, this will speed up the processing time for each module. One 

future advantage of this design is to run each interpolation or regression modules, as 

presented in Figure 4.2, in parallel by using the large number of Grid resources. 

 

 

 
 

Figure  4.3: The interface of VLAM-G for composing a PFT and evaluation process 

experiment in KansK toolbox 
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Chapter 5 
 

5 Results 

 
In this chapter we discuss the results obtained by running KansK toolbox, which dataset 

we used, and an analysis and discussion will be presented.  

 

In the first section we present the datasets used. We used three different tests to 

investigate the interpolation and regression techniques. Residuals results, which are the 

differences between observed and predicted values, are presented in section two. Root 

Mean Square Error (RMSE), RMSE are commonly used measures of success for numeric 

prediction, are presented in section three. Finally, in the fourth section, prediction maps 

using different spatial interpolation techniques are presented.  

 

 

5.1 Datasets and bootstraps 

 
KansK toolbox is created to work with different kind of spatial datasets. We tested 

KansK toolbox using six bird species datasets provided by SOVON, the bird species are 

listed in Table 5.1. In this chapter, the results of the Common Buzzard are presented in 

details as a sample result of these sample datasets. 

 

Table  5.1: Bird species used in KansK toolbox 

 

Dutch Name English Name Scientific Name 

Buizerd Common Buzzard Buteo buteo 

Scholekster Eurasian Oystercatcher  Haematopus Ostralegus 

Grutto Black-tailed godwit Limosa limosa  

Houtduif Common Wood Pigeon Columba palumbus 

Blauwborst Blue throat  Luscinia svecica 

Spreeuw Common Starling Sturnus vulgaris 

 

 

To obtain the results of KansK toolbox, several tests have been made to return the 

Residuals and the RMSE for each bird species. Bootstraps are used to repeatedly sample 

the data in order to estimate confidence intervals for various parameters [9].  



 41 

Each test was made using 100 bootstraps, each bootstrap has different random indexes for 

different chosen specie’s dataset. Residuals and RMSE are averaged and presented in the 

next sections. 

 

5.2 Residuals  

 
The first test we used to investigate the spatial interpolation and regression techniques is 

the Residuals. Residuals are the experimental errors obtained using a model to predict the 

individual observations. The general formula for Residuals is: 

 

Residuals = response variable – predicted values 

The predicted values are calculated from the chosen model after estimating all unknown 

parameter from the experimental data. Residuals estimation and analysis give us a good 

indication about the assumptions and the choice of the models if they are reasonable and 

appropriate.  

There are several graphical assumptions to examine the Residuals. Residuals should be 

similar to the normal bell-shaped discussed in details in section 3.5.1. Residuals have 

been examined in this thesis using two kind of tests, Residuals Normality and Residuals 

Homoscedasticity. The two tests are presented in the next sections. 

 

 

5.2.1 Test of Residuals Normality 

 

The first test we used to investigate the Residuals of the spatial interpolation and 

regression techniques is the Test of Residuals Normality. There are two common plots to 

display the Residuals Normality: 

 

• Histograms: the range is split into equal-sized bins, each bin represents the 

count of the number of points from the chosen dataset that fall in it. The 

vertical axis is the Frequency and the Horizontal axis is the response variable, 

see Figure 3.5. 

 

• Normal Probability Plots: it is a way to assess if the dataset is approximately 

normally distributed or not. The data are plotted against a theoretical normal 

distribution in a way the points will fall roughly on a straight line. This 

straight line passes through the first and the third quantiles of the dataset. The 

more the points deviate from the straight line, the less reasonable is the 

distribution. It is possible to tell from the Normal probability plots the 

following: 
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� Weather the distribution has longer or shorter tails than the normal 

distribution.  

 

� Weather the distribution is skewed and in which direction. 

 

In KansK toolbox, the normal probability plots are chosen to assess the normality of the 

data. Figure 5.1 and Figure 5.2 show the normal distributions of the eight spatial 

interpolation and regression techniques discussed in details in chapter 3. 

 

 

 
                 (a) Akima Linear Interpolation          (b) Inverse Distance Weighted Interpolation  

 

 
                    (c) Locally Weighted Regression                                   (d) Ordinary Kriging  

 

Figure  5.1: Residuals - normal probability plots for spatial interpolation techniques 

for the Common Buzzard Buteo buteo 
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The normal plots of the Residuals of the four spatial interpolation techniques are close to 

the straight line. Figure 5.1(a, b) have some outliers, which are some data points that are 

higher or lower than the reset of the data points, from the straight line which is common 

in normal probability. Figure 5.1(c, d) appear to deviate to the left from both sides of the 

straight line. This indicates a non-normal distribution behaviour in both the first and the 

third quantiles and a long tail to the right with a positive skewness in these techniques.  

 

 
                      (a) Normal Regression                                                   (b) Poisson Regression 

 

 
                 (c) Normal Regression – Kriging                         (d) Poisson Regression - Kriging 

 

Figure  5.2: Residuals - normal probability plots for spatial regression techniques for 

the Common Buzzard Buteo buteo 
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Figure 5.2(a) has some extreme negative outliers, this indicates that the predicted values 

are less than the validation values for these techniques. Figure 5.2(b, c) have also extreme 

outliers from both sides of the straight line, they also have the S shape and this indicates 

that these two models have short tails relative to the normal distribution. Figure 5.2(d) 

has a straight line because this technique failed to return any Residuals results.  

 

The test of Residuals Normality for the spatial interpolation techniques showed that 

Akima linear interpolation and inverse distance weighted interpolation have more 

reasonable results than the locally weighted regression and the ordinary kriging. Figure 

5.1(c, d) showed that the two techniques have a non-normal distribution in both side of 

the straight line with positive skewness. 

 

For spatial regression techniques, the Test of Residuals Normality showed that the four 

techniques have some extreme negative outliers and S shape and this indicates a short tail 

and a failure for these techniques to model this dataset. Because of this result, we won’t 

present any further graphical results for these regression techniques.  

 

 

5.2.2 Test of Homoscedasticity 

The second test we used to investigate the Residuals of spatial interpolation and 

regression techniques is the Homoscedasticity. Homoscedasticity means that the residuals 

are approximately equal for all the predicted dependent variables. Dataset is 

homoscedastic if the residuals plot has the same width for all values of the predicted 

dependent variables. However, dataset is heteroscedastic if a cluster of points gets wider 

as the values of the predicted dependent variables get larger.  

Figure 5.3(a, b, c, d) show the scatterplots for the linear interpolation, the inverse distance 

weighted interpolation, the locally weighted regression, and ordinary kriging. For each 

interpolation technique the Residuals are scattered around the mean line which is biased 

to the positive side for the four techniques, this indicates that there are around 0.5 less 

species predicted in each observation point. There are more outliers for the small 

predicted fitted values.  

 

We have indicated from this test that the four spatial interpolation techniques gave a 

similar behaviour of being heteroscedastic and biased. Table 5.2 shows that locally 

weighted regression and ordinary kriging are more biased than Akima linear interpolation 

and inverse distance weighted. The biases for the regression techniques are not valid 

since they are negative and not close to the biases of the interpolation techniques and this 

also indicate a failure for these techniques. More tests are applied to this dataset in the 

coming sections to investigate more the behaviour of these techniques.  
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      (a) Akima Linear Interpolation           (b) Inverse Distance Weighted Interpolation  

 

 
      (c) Locally Weighted Regression                                      (d) Ordinary Kriging  

 

Figure  5.3: (Residuals vs. Fitted Values) - Scatter plots for spatial interpolation 

techniques for the Common Buzzard Buteo buteo 
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5.3 Root Mean Square Error 

 
The second test we used to investigate the spatial interpolation and regression techniques 

is the Root Mean Square Error (RMSE). RMSE is commonly used to measure the success 

of numeric prediction. It is a measure of the average error across a map and is used in 

digitising to give an approximate measure of the difference between the real-world 

coordinates and the registration points on the digital layer [21]. 

 
RMSE is the square root of the square of the difference between estimated point and 

interpolated observation point divided by the total number of the observation points: 
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where ix  is the i-th point in array X, iy  is the y-th point in array Y, and n is the total 

number of points in array X and Y. 

 

Figure 5.4 shows the RMSE normal probability plots for the spatial interpolation 

techniques of the Common Buzzard. The normal plots for the four techniques are close to 

the straight line with some outliers which is common in normal probability.  

 

 
Table  5.2:  (RMSE/ Bias) results for spatial interpolation and regression techniques 

for the Common Buzzard Buteo buteo 

 
Interpolation/Regression 

 

Bias RMSE 

Akima Linear Interpolation 0.4461777 1.524020 

Inverse Distance Weighted 

Interpolation 

0.5166599 1.504721 

Locally Weighted Regression 0.5657069 1.486310 

Ordinary Kriging 0.6693147 1.507431 

Normal Regression -2710.592 370907.0 

Poisson Regression -2259.087 2.376199 

Normal Regression - Ordinary 

Kriging 

-1936.364 3.208888 

Poisson Regression - Ordinary 

Kriging 

-1694.318 NA 
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Table 5.2 shows the average results of the RMSE for the eight interpolation and 

regression techniques used in KansK toolbox. The first four techniques have close results 

to each other and indicate a success. However, the last four techniques have high RMSE 

results. These techniques performed poorly for the Common Buzzard dataset and the 

other datasets, this is because these datasets are not normally distributed, and this 

indicates that regression techniques for such datasets are not appropriate. 

 

 

 
                  (a) Akima Linear Interpolation               (b) Inverse Distance Weighted Interpolation 

 
                     (c) Locally Weighted Regression                                      (d) Ordinary Kriging  

 

Figure  5.4: RMSE normal probability plots for spatial interpolation techniques for 

the Common Buzzard Buteo buteo 
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Both Residuals and RMSE tests showed close results for the spatial interpolation 

techniques with an advantage to Akima linear interpolation and inverse distance weighted 

interpolation. In the next section, we present the prediction maps of the Common 

Buzzard species. 

 

 

5.4 Prediction Maps 

 
The third test we used to investigate the spatial interpolation and regression techniques is 

the Prediction Maps. In this section, prediction maps for the Common Buzzard species 

are presented. These maps are created using the spatial interpolation techniques and are 

comparable to the prediction map of the Common Buzzard of the BAMBAS project 

presented in details in chapter 2.  

 

Common Buzzards are mostly concentrated in High and Riverine Netherlands with less 

population in Low Netherlands and fewer populations in the north part of Low 

Netherlands, Figure 5.5 shows the distribution of the Common Buzzard around the 

Netherlands. 

 

 

 
 

Figure  5.5: Common Buzzard prediction map - BAMBAS project 
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        (a) Akima Linear Interpolation            (b) Inverse Distance Weighted Interpolation 

 

 
 (c) Locally Weighted Regression                                      (d) Ordinary Kriging  

 

Figure  5.6: Common Buzzard prediction map – KansK toolbox 

 
Birds 
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Figure 5.6 shows the prediction maps for the Common Buzzard using KansK toolbox. 

The Residuals and the RMSE results recommended using Akima linear interpolation and 

inverse distance weighted interpolation. The prediction maps for both interpolation 

techniques are close to each other, Figure 5.6(a, b). However, Akima linear interpolation 

has connected regions because of the way the interpolation technique works, which 

triangulate the estimated points as discussed in section 3.1. 

 

Locally weighted regression makes contours of the Common Buzzard species densities, 

Figure 5.6 (c) shows that concentration of the Common Buzzards are in the red contour 

and the surrounding contours have less densities. Ordinary Kriging is making regions of 

high densities of the Common Buzzards Figure 5.6 (d), and these regions are covering 

several empty or less density smaller regions. 

 

The maps give the final results in favour for inverse distance weighted interpolation since 

it is smoother than the linear interpolation and the other interpolation techniques. It is 

also close to the prediction map of BAMBAS project for the Common Buzzard species 

Figure 5.5. The results obtained in this chapter also validate the expectation we reached 

in chapter 2 that kriging, inverse distance weighted and locally weighted regression will 

give reasonable performance. Other datasets prediction maps are presented in Appendix 

B. 
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Chapter 6 
 

6 Conclusions and Future Work 
 

6.1 Conclusions  

 

In this thesis, we compared different spatial interpolation and regression techniques for 

spatial data prediction. We concluded that it is important to investigate such techniques 

because of the expanding interest of the spatial prediction and the limited knowledge 

about the applicability of these techniques.  

 

We started this thesis by investigating several projects and cases where interpolation and 

regression techniques were used for different spatial datasets. These projects and case 

studies indicated that inverse distance weighted interpolation, kriging interpolation, and 

locally weighted regression were relatively suitable techniques. All of these techniques 

showed a good performance and this gave us a good indication that these techniques will 

work well for other different datasets. 

 

A methodology overview of KansK toolbox has been given, KansK toolbox investigated 

a computational intensive spatial interpolation and regression techniques that are written 

in R script, the Grid-based Workflow Management Systems such as VLAM-G provide a 

way to compose and configure all these techniques. The benefits of using VLAM-G are 

uncountable, the future users of KansK toolbox will be able to benefit from the 

geographically distributed resources available which will speedup the performance of 

KansK modules. Another important benefit is that the scientist will be able to reuse the 

proposed experiment for different datasets and will be able to change some of the basic 

components with newly developed ones. 

 

We presented our results for one dataset of the six datasets tested. The dataset is for the 

Common Buzzard. We used three kinds of measurements, Residuals, RMSE, and 

prediction maps. Residuals and RMSE showed reasonable results for the interpolation 

techniques and bad results for the regression techniques. Regression Residuals results are 

not normally distributed for the datasets used. Interpolation Residuals and RMSE were in 

favour towards Akima linear and inverse distance weighted interpolations. Predication 

maps made it clear that inverse distance weighted interpolations produced smoother maps 

which are close to the results of BAMBAS project.  
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6.2 Future work 

 
This toolbox is a building block for a decision support tool. This toolbox can be expanded 

easily to support other interpolation techniques. Future research may also include an 

analysis of the datasets used to try to know more about the unexpected behavior of the 

regression techniques. 

 

More tests and analysis have to be performed on other species datasets for the entire 

region of interest. It is important to monitor if the behavior and the differences of these 

interpolation techniques stay the same or become better or even worse. 

 

From a reusability point of view, it would be easier for the user to be able to merge 

different topology experiments. The proposed experiments in KansK toolbox are 

executed separately. The intermediate data have to be saved then reloaded to be used in 

the next phase of the experiment. This lack of control flow in VLAM-G adds an 

unnecessary burden to the end user. Finally, a future good research is trying to run this 

toolbox in different workflow systems and making a comparison out of it. 
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Appendices 
 

Appendix A – Acronym and Abbreviations  

 
ArcGIS Arc- Geographical Information Systems 

BAMBAS Bird Avoidance Model/ Bird Avoidance System 

GAM  General Additive Model  

GIS  Geographical Information Systems 

GLM  Generalized Linear Models 

IDW  Inverse Distance Weighted 

KansK  Kans Kaart 
LIN  Linear Interpolations 

LULC  Land Use and Land Cover  

LWR  Locally Weighted Regression 

MAE  Mean Absolute Error  

MSE  Mean Squared Error 

NKR  Normal Regression followed by Ordinary Kriging 

NRE  Normal Regression 

OK  Ordinary Kriging 

PDF   Probability Density Function 

PFT  Process Flow Template 

PKR  Normal Regression followed by Ordinary Kriging 

PRE  Poisson Regression 

RMSE   Root Mean Square Error 

RTS  Run Time System 

SOVON the Dutch Centre for Field Ornithology 

SWMS  Scientific Workflow Management Systems 

USGS   U.S. Geological Survey  

VLAM-G  Virtual Laboratory Amsterdam for Grid 

VL-e   Virtual Laboratory for e-Science 

VO  Virtual Organizations 
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Appendix B – Prediction Maps (Scholekster) 
 

 
BAMBAS 

 

  
                (a) Akima Linear Interpolation            (b) Inverse Distance Weighted Interpolation 

 
           (c) Locally Weighted Regression            (d) Ordinary Kriging  
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Prediction Maps (Grutto) 
 

 
BAMBAS 

 

 
                (a) Akima Linear Interpolation            (b) Inverse Distance Weighted Interpolation 

 
           (c) Locally Weighted Regression            (d) Ordinary Kriging  
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Prediction Maps (Houtduif) 
 

 
BAMBAS 

 

 
                (a) Akima Linear Interpolation            (b) Inverse Distance Weighted Interpolation 

 
           (c) Locally Weighted Regression            (d) Ordinary Kriging  
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Prediction Maps (Blauwborst) 
 

 
BAMBAS 

 

 
                (a) Akima Linear Interpolation            (b) Inverse Distance Weighted Interpolation 

 
           (c) Locally Weighted Regression            (d) Ordinary Kriging  
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Prediction Maps (Spreeuw) 
 

 

 
BAMBAS 

 

 
                (a) Akima Linear Interpolation            (b) Inverse Distance Weighted Interpolation 

 
           (c) Locally Weighted Regression            (d) Ordinary Kriging  


