
PERFORMANCE ANALYSIS OF A DATABASE
LAYER’S MIGRATION FROM RDBMS TO A

NOSQL SOLUTION IN AMAZON AWS

MSc Thesis of Internet and Web Technology

written by

Carlo Butelli
(born June 26st, 1984 in Grosseto, Italy)

under the supervision of Dhr. Dr. A.S.Z. Belloum, and submitted to the
Board of Examiners in partial fulfillment of the requirements for the degree of

MSc in Computer Science

at the Universiteit van Amsterdam and Vrije Universiteit Amsterdam.

Date of the public defense: Members of the Thesis Committee:
Date of publication(soon) Dr. Adam S.Z. Belloum

Dr. Patricia Lago

This is the Dedication.

Declaration of originality

I hereby declare that this thesis was entirely my own work and that any addi-
tional sources of information have been duly cited.

I certify that, to the best of my knowledge, my thesis does not infringe upon
anyone’s copyright nor violate any proprietary rights and that any ideas, tech-
niques, quotations, or any other material from the work of other people included
in my thesis, published or otherwise, are fully acknowledged in accordance with
the standard referencing practices. Furthermore, to the extent that I have in-
cluded copyrighted material, I certify that I have obtained a written permission
from the copyright owner(s) to include such material(s) in my thesis and have
included copies of such copyright clearances to my appendix.

I declare that this thesis has not been submitted for a higher degree to any
other University or Institution.

Contents

1 Introduction 1
1.1 Scope of the Work . 2
1.2 Research Questions . 2
1.3 Structure of the report . 3
1.4 Useful used tools . 3

2 Background and Literature Review 5
2.1 Related Work . 5
2.2 Overview of RDBMS . 6

2.2.1 The Relational model . 8
2.2.2 The ACID properties . 10
2.2.3 SQL Language . 11
2.2.4 Amazon RDS for MariaDB 11

2.3 Sharding . 12
2.4 Replication . 13
2.5 Eventual & Strong consistency 14
2.6 NoSQL Databases . 14

2.6.1 NoSQL data models . 14
2.6.2 The CAP Theorem . 17
2.6.3 Query language . 18
2.6.4 Overview of Amazon DynamoDB 18

3 Framework design and DB engines 20
3.1 How do DBs store data? . 20

3.1.1 Amazon RDS for MariaDB 20
3.1.2 Amazon DynamoDB . 22

3.2 Database manipulation . 25
3.2.1 Insert operation . 25
3.2.2 Update operation . 28
3.2.3 Delete operation . 29
3.2.4 Read operation . 31

3.3 Indexing . 34
3.3.1 MariaDB . 35
3.3.2 DynamoDB . 35

3

CONTENTS 4

3.4 Join operations . 36
3.5 Highlights . 37

4 Benchmarking Framework Implementation 38
4.1 Caching . 39
4.2 API level(Django Framework) . 40

4.2.1 Operation’s definitions . 40
4.2.2 Django models . 41
4.2.3 Boto 3 SDK for DynamoDB 44
4.2.4 Database Tables . 48
4.2.5 Indexes . 49
4.2.6 Items’ types . 49

4.3 DB Connection time, logic behind the schema 50
4.3.1 Used queries . 52
4.3.2 TCP ping . 52

4.4 Benchmarking operators . 53

5 Discussion of analysis 55
5.1 Connection measurements . 55
5.2 Key metrics . 56
5.3 Speed and throughput . 57
5.4 Scalability . 62

6 Conclusions and future work 63
6.1 Conclusions . 63
6.2 Future work . 65

A Standard Deviation on measurements 70

B Measurement Tables 71

CONTENTS 5

List of Abbreviations

DBMS DataBase Management System

NoSQL ”Not Only SQL”

RDBMS Relational Database Management System

SQL Structured Query Language

UML Unified Modeling Language

Abstract

Nowadays, IT is dealing with a huge constant increase of data that is coming
faster and in greater volumes than ever before. Companies are exploring ways
to face the rise of these data and to create value out of them, being innovative
and gaining competitive advantages. Such data is commonly referred to as Big
Data and besides standard SQL databases, NoSQL databases have been created
to better deal with this situation.

Traditional SQL databases provide powerful mechanisms to store and query
structured data under strong consistency and transaction, guaranteeing data
integrity and consistency. Nowadays, this kind of database turned out to be
critical in managing the explosion of Big Data especially because they are not
completely able to scale too big, too fast or with ”diverse” data. This can reflect
their ”failure” to cope with high-volume, high-velocity, and high-variety of data.

This new technology called NoSQL database instead is gaining more and
more popularity with the debut of social media and cloud computing. NoSQL
basically deal with non-structured or semi-structured data and certain work-
loads seems to scale better and to be more cost-effective using this solution.

The main goal of this research is to investigate on the performance of
this NoSQL database compared with an instance of the already popular SQL
database underlying advantages and disadvantages by performing some bench-
mark analysis. The entire research has been done under the profile of a company
that currently is intended to migrate the whole system to the cloud(Amazon
AWS) and make use of the NoSQL Amazon DynamoDB for tables with high
load of reads.

Chapter 1

Introduction

Nowadays, the huge growth in spread of mobile devices, social networks, “Inter-
net scale” web applications and Web 2.0 are making the world more information-
driven and companies have been starting to seek new ways to deal with the large
amount of data coming up time by time. One of the major goal for companies
is to get value out of those data, being innovative and gaining competitive ad-
vantages in order to increase the speed up of getting and tracking data in their
own applications.

Today, software architects and developers have several choices for data stor-
age and persistence. At the top of them there are two main technologies, the
well known RDBMS and the novel data storage system called NoSQL, most
commonly referred to as ’Not Only SQL’.

RDBMS guarantees and have reached an unmatched level of reliability, sta-
bility and support through decades of development. However, in recent years,
the amount of useful data in some application areas has become so vast that it
cannot be stored or processed by traditional database solutions.

Its structure presents some ”deficiency”. The information that are spread on
several tables linked together through a clause called JOIN, eventually involves
many query requests to the database producing high slowdowns. Moreover,
those incoming requests are also outgoing, meaning that every simple insert,
update or delete operation even involving a single record, it will entail a mix
of requests to the database and joining several tables in a distributed system is
pretty difficult end expensive.

On the other side, NoSQL is a term that describes a broad class of technolo-
gies surged in popularity providing a different approach to data storage com-
pared with traditional SQL databases. Some refer to them as ’No relational’
or ’No RDBMS’, some others simple prefer to call them Distributed Database
Management Systems. Among the main features they seem to be able to over-
take some of the problems above by offering horizontal scalability, elasticity and
higher availability than relational databases by sacrificing querying capabilities
and consistency guarantees. [13]

SQL in most typical situations scale vertically, which means that they can

1

CHAPTER 1. INTRODUCTION 2

face the increase of loads by increasing RAM and SSD capacities, CPU and so
on, on a single server.

In a Web application where the number of users and data will start growing
beyond expectations making it hard to keep up with the data requirement, an
RDBMS will start to feel the heat and a migration from a relational database
to a non-relational one sometimes could be a powerful solution.

The popularity of NoSQL has some key factors as compared to the RDBMS
systems. Some of them are the increase of data availability, a lightweight com-
puting (no more operations on data aggregation), more scalability(from vertical
to horizontal just adding Servers) even if it could present some drawbacks like
data redundancy.

1.1 Scope of the Work

This thesis is aimed to independently investigate the performance of the NoSQL
key-value store Amazon DynamoDB against Amazon RDS for MariaDB as SQL
database in the provision of migrating the database layer from a RDBMS to a
NoSQL solution. The comparison has been made through simple operations,
that are, read, write, delete and update measuring their operational time to
have a good estimation to what extent migrating the database layer (or a part
of it) to a new solution could worth. This crucial step has been done by taking
into consideration the literature review. An additional operation that iterates
through all keys has also been investigated. Experimental results measure the
timing of these operations and how the databases stuck up against each other.

1.2 Research Questions

RQ1 What are the main features of NoSQL databases and why companies are
more and more going to adopt such structure for their database layer?
Which trade offs are involved in the choice of a NoSQL database?

RQ2 Considering the increase of data available in a fast growing company, to
what extent making use of a database layer based on NoSql instead of the
traditional RDBMS may be useful?

RQ3 Which trade offs should the application owner make in order to face data
integrity, data type, complex/ad-hoc queries also under the transactional
point of view? DynamoDB for instance only support a few data types
compared with SQL, which is the impact of such lack?

RQ4 ACID properties (Atomicity, Isolation, Durability and Consistency) are
the golden rules which an ideal DBMS should follow and implement. In
contrast, a NoSQL DB follows the CAP theorem (Consistency, Availabil-
ity and Partition Tolerance). What is the impact that a NoSQL database
can have on other application layers? And what happen in case that

CHAPTER 1. INTRODUCTION 3

some functionalities are missing or have different non-functional proper-
ties? (Example of JOIN or other operations not supported from NoSQL)

1.3 Structure of the report

The project starts with a literature review introducing a background overview
of both databases’ landscapes to discuss their features, how their engines work
and to recognize some strengths and weaknesses (and technologies used to deal
with them). The purpose is also to explore the requirements typically posed to
a NoSQL database systems and the techniques used to fulfill these requirements
along with the trade-offs which have to be considered.

Because of the increasing number of available options about NoSQL solu-
tions, and due to the fact that the company was migrating the system into
Amazon Cloud Services, it has been decided to limit the scope of this work
focusing only on the key-value store Amazon DynamoDB rather than other im-
plementations like column-stores (such as BigTable), document stores (such as
MongoDB), or some combination between a simple store and a more compli-
cated store (like Cassandra, which is essentially a combination between BigTable
and DynamoDB) [5, 6, 54].

The fourth chapter will introduce the framework used in support of all the
operations mentioned above along with the design and the implementation in
Django.

In conclusion, a performance benchmark will be performed towards both DBs
and results will be compared also to get some proof of concepts. Throughout the
experiment the Unified Modeling Language (UML) will be used to represent and
underlining architectural and design differences for the chosen implementations.

1.4 Useful used tools

To perform all the benchmarks some tools have been used:

• Amazon EC2 instance(t2.2xlarge). The instance is running Ubuntu
16.04.1 LTS (Xenial Xerus) and it is provided of 32GB RAM, 8 Intel(R)
Xeon(R) CPUs E5-2676 v3 at 2.40GHz with 8 cores, high frequency and
the ability to burst above the baseline. [18] This is the instance where
Django application has been deployed to run all the benchmarks towards
Amazon RDS(MariaDB) and Amazon DynamoDB.

• Amazon RDS for MariaDB. It is a managed relational database ser-
vice. The instance provides 10.0.24-MariaDB Server, mysql Ver 14.14
Distrib 5.7.17, for Linux (x86 64), InnoDB v. 5.6.28-76.1 storage engine,
500GB storage (up to 6TB). [46]

• Amazon DynamoDB. It is a fully managed fast and flexible NoSQL
database service that supports both document and key-value store models.
Data is stored on solid state disks (SSDs) and automatically replicated

CHAPTER 1. INTRODUCTION 4

across multiple Availability Zones in an AWS region, providing built-in
high availability and data durability. [45]

• Django Framework v. 1.9.4. Django is a high-level, free and open
source Python Web framework. It provides to the developers a way to
handle user authentication (signing up, signing in, signing out), a man-
agement panel for your application, forms, models to query the databases,
a way to upload files and so on. [35]

• Driver boto3. The Amazon Web Services (AWS) SDK for Python. It
allows Python developers to write software making use of Amazon ser-
vices(S3, EC2, DynamoDB, ...). Boto3 provides an easy to use, object-
oriented API as well as low-level direct service access. [19]

Chapter 2

Background and Literature
Review

This chapter provides a brief introduction to the Relational Database Man-
agement Systems (RDBMSs) with their properties and an overview of NoSQL
databases presenting some data models and their features. It worths to say that
traditional RDBMS does not have anything wrong, just they were not built to
deal with a really huge amount of data and the entrance in the market of NoSQL
databases with their roughly cheap hardware needs, has designed the necessity
of some SQL databases to be converted to NoSQL ones. [12] However, the real
goal of NoSQL is not to reject SQL but instead to be used as alternative data
model in situation where relational databases do not work well enough.

2.1 Related Work

In [10] A. Diomin and K. Grigorchuk show some useful key criteria to take into
account when the choice of a DB is required.
Scalability has to be guaranteed since when your application’s traffic rises,
rapid scalability upon requests is strictly required to fill up the lack of your DB’s
capacity. In the same line, when the system is idle, it has to be able to reduce
the used resources. NoSQL DBs provides horizontal scalability by splitting the
system into smaller components hosted on several physical machines that can
be added on the fly and performs the same operation in a parallel manner.
Performance is important to persistently provide low latency regardless data
size or task. ”In general, the read and write latency of NoSQL databases is very
low because data is shared across all nodes in a cluster while the application’s
working set is in memory.” [10]
High Availability is necessary because large amount of money could be lost
from a business at any time the application is down. It is strongly required the
possibility to provide disaster recovery, to perform online upgrades, backups or
easily remove a node for maintenance without affecting the availability of the

5

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 6

cluster.
Ease of deployment since SQL databases own a rigid schema, if the appli-
cation change, most probably the DB’s schema will have to change too while
NoSQL DBs are know to be schemaless so this constraint should not be an issue
anymore. [44]

In early times there has been many papers studying relationships between
NoSQL and relational databases providing overviews and showing their charac-
teristics, benchmarks and performance. [8, 59]

From [11] NoSQL seems to have a kind of structure that allow to store and
process large amounts of data of (almost)any type providing high availability
and being way faster than RDBMS.

Besides all the advantages like speed, better performance and high scala-
bility NoSQL may bring into the market, Leavitt in [49] shows that they still
present some drawbacks when compared with relational databases. He espe-
cially observed that even though they are fast in performing simple operations,
they becomes tedious when operations get more complex.

Nowadays, security has becoming more and more an undertaken feature
being on of the most considerable concern for IT Enterprise Infrastructures.
Unfortunately, the weakness of security in NoSQL is mainly due to the fact that
their designer focuses on other purposes than security and Authentication/En-
cryption where implemented are almost absent. [15]

The research made by Indrawan-Santiago in [47] had the intention to gather
together some basic comparisons that could be made among NoSQL DBs and
against relational databases. The research that eventually shown the comple-
mentarity between NoSQL and RDBMS included transaction and data model,
indexing, sharding, support for ad-hoc-queries and license type.

In [27] a comparison between relational and NoSQL databases had been
described, precisely by using Oracle and MongoDB. From the study came up
that the query time calculated performing an insert operation was a factor higher
in Oracle than in MongoDB while performing delete and updates took several
factors more than MongoDB.

2.2 Overview of RDBMS

A database can be considered as an organized collection of data [26], a huge
library where every shelve is represented by a table containing records, split
by attributes (columns). The system which is in charge to manage all the
interaction with the database is called Database Management System(DBMS)
and it is represented by an organized set of facilities to controls the organizations,
accesses, retrieval of data and to maintain one or more storages. [26] DBMSs can
be classified based on their criteria in Data Model, User Numbers and Database
Distribution.

• Data Model comprehends several types:

– Relational Model(RDBMS): nowadays the most widely used data

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 7

model. It uses structures consistent with the first-order predicate
logic based on the relational model proposed by E. F. Codd in 1970
[28] and the one it has been used in this work. [4]

– Hierarchical Model: data is organized in a rooted-tree-like struc-
ture (no cycles) and stored as records linked together by links. The
relationships between a parent and a child must be one-to-many or
one-to-one and the database schema is represented as a collection
of tree-structure diagrams where every diagram has one single in-
stance of a database tree rooted at a dummy node. This model’s
structure was the base of one of the firsts database models used and
implemented in IBM’s Information Management System(IMS). [3]

– Network Model: it can be seen as a generalization of the hierarchi-
cal model where each data object can have multiple parents and each
parent object can have multiple children forming a lattice-type struc-
ture in contrast to the tree-like structure of the hierarchical model.
It is useful to represents real-world data relationship more naturally
and under less constrained environment. [24]

– Object-Relational Model(OODBMS): it has been introduced in
recent years and it is one of the newer and more powerful models of
all the aboves. Information are represented by objects and it adds
object-oriented concepts to facilitate data modeling and its relation-
ships. [2]

• User Numbers: it can be distinguished in DBMS which supports one
user at a time(single-user), or in a DBMS, which supports multiple users
concurrently(multiuser). [63]

• Database Distribution: it in turn is divided in four main distributions:

– Centralized systems: the database and DBMS are both placed in
the same site used from other systems too.

– Distributed database system: the database and DBMS are placed
in different locations each one connected to each by a computer net-
work.

– Homogeneous distributed database systems: make use of the
same DBMS from multiple locations.

– Heterogeneous distributed database systems: it makes avail-
able additional common software in order to support data exchange
among locations that make use of different DBMS software.

Further and in-depth description of these models is beyond the scope of the
present work. However, the next section will show a bit more in details the
Relational Model that is on protagonist of this research.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 8

Figure 2.1: Example of a relational model

2.2.1 The Relational model

Over the years the relational database management systems (RDBMS) have
been the leading technology in the IT world. The relational model is funda-
mentally based on two mathematical components: first-order predicate logic [4]
and the theory of relations. This approach of using the relational systems in all
scenarios came under scrutiny with the introduction of the web. The relational
data model works well with the traditional applications where the data is not
massive and distributed. Despite being on top for several years the capability
of the RDBMS for processing and handling large amount of data remains in
question.

The relational model, as discussed in [28] was developed to assign some is-
sues like removing data consistency, hiding from the users the organization of
the data in a machine and to protect users’ activities (and applications’ pro-
grams) from growing data types and internal data changes. The data structure
in a relational model is made by several components identified as relation, en-
tity, domain, attribute(column), tuple, and attribute’s value. As in fig. 2.1 a
relation(table) is represented by the Cartesian product of a set of records(rows
or tuples) identified by a name and is then intended to represent data through
tables composed by rows and columns. A schema is a description of the data in
terms of data model.

Basically, a database is represented by a collection of one or more relations,
where each one is based on a relation schema and a relation instance. The
relation schema is used to specify relations’ name, attributes’ names Ai and
attributes’ domains(types) Di while the relation instance is a finite set of tuples.
[4]

In a relation schema denoted by R(A1:D1, A2:D2, . . . , An:Dn), R stands for
the relation name while A1, A2, . . . , An represents a list of attributes and each
Di indicates the domain of the related attribute(column).

Eventually, a Relational Database is a collection of relations with dis-
tinct relation names and Relational Database Schema is the collection of
relations’ schemas in the database and Integrity Constraints.

In an abstract level, tables represent entities like the ones in fig. 2.2 that
are user and food while user favorites represents the relation between these two
entities. The relational style is very useful to design a database schema mapping
real world objects as database tables and relations among them expressed by

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 9

Figure 2.2: Example of a database schema

primary and foreign key to link tables together. [4]

2.2.1.1 Integrity Constraints: the concepts of Primary key and For-
eign key

A primary key is represented by a single column or a combination of columns(in
this case is called composite key) and it identifies uniquely a tuple in a relation.
In a composite key, every column taking part to the key, should be a foreign
key, but not necessarily [31]. If more attributes could identify the tuples, such
attributes are called candidate keys.

A foreign key is again a column or a set of columns in one relation that make
a reference to the primary key in another table. As example, in fig. 2.2 the table
vg user favorites maintains two foreign keys that are food id and user id.

Every table must satisfy several constraints in order to be a valid relation.
The following main classes of integrity constraints are described in [26,31]:

• Entity Integrity Constraint: every primary key has to be unique and
not to contain NULL values since they are used to identify every tuple in
a relation.

• Referential Integrity Constraint states that if a relation has a foreign
key, this one must refer to an existing tuple. It is intended for maintain-
ing consistency between tuples of two tables. Records from a table, for
instance, cannot be deleted/changed if matching records exist in another
table.

• Domain Constraint designates and important condition to be satisfied,
”every attribute value inserted in a specific column must be in line with
the domain specified for such column”.

Other types of constraint are extensively explained in [26] section 5.3.∗.

2.2.1.2 The concept of Normalization

One of the main goals of relational database design is to normalize a rela-
tion schema together with a set of data dependencies into an suitable normal

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 10

form [31] to eliminate issues related to inconsistency and redundancy improving
data integrity. E. F. Codd introduced the term normalization and what is well
known as First Normal Form(1NF) that consist of eliminating repeating data
by creating a new table for each group of related data identified by a primary
key. [28] Later on he also defined the Second Normal Form(2NF) and Third
Normal Form(3NF) [29] that are presented as the following:

• 2NF: if the table has some values which are the same for multiple records
then move them into a new table and link the two tables through a foreign
key.

• 3NF: keep in the table only fields that depend on the primary key, at
maximum put non depending fields into another table.

A few years later together E. F. Codd and Raymond F. Boyce introduced a form
that looks like slightly strong than 3NF called Boyce-Codd Normal Form .
[30] This form ensures that no redundancy can be detected using functional
dependency [34] and every candidate keys do not have any partial dependency
on other attributes.

All these normal forms are someway related: every relation in BCNF is also
in 3NF which in turn is in 2NF and every relation in 2NF is in 1NF.

2.2.2 The ACID properties

A transaction is a very small unit and it may contain many other low-level tasks.
RDBMSs ensure four properties under the name of ACID properties in order
to guarantee completeness, data integrity and to get transaction reliability in
concurrent accesses and system failures. ACID stands for [4, 26]:

? Atomicity: based on ”all or nothing” statement. Every transaction must
be considered as an atomic unit meaning that either all or none operations
are accomplished.

? Consistency: every completed transaction brings the database from a
consistent state to another so any values’ changes in an instance are con-
sistent with other values’ changes in the same instance.

? Isolation: every transaction is isolated, so in case of concurrent transac-
tions, the system is able to prevent conflicts and it will eventually end in
the same state as if the transactions would have been performed serially.

? Durability: every changes applied to the database once a transaction
has been committed, it will persist in the database in any case of power
failures, errors and crashes.

RDBMs achieve atomicity and durability by a log file that keeps track of
any updates performed by any transaction so that if a error/failure occurs the
database rolls back the transaction itself unbinding the update. Using a log file
gives the advantage that nothing in memory has to be maintained and in case of

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 11

failure the rollback can be performed when the system restarts. If a transaction
succeeds but the crash comes up right before the data was saved to the disk
then all the updates can be started over through the log file.

Isolation is usually obtained through ”locking”. Locks can be shared by any
number of transactions that only want to read the data but not to update it(or
vice versa). If a transaction is read-locked then no write-locks can be performed
on the same transaction. If the transaction is write-locked no other write/read
locks can do anything until the lock has been released.

2.2.3 SQL Language

SQL, also known under the name of Structured Query Language, is a compre-
hensive query language based on Codd’s concepts built from a simplified version
of DSL/Alpha that was previously developed by IBM [25].

It represents a combination of Data Definition Language(DDL, used
to define schemas), View Definition Language(VDL, used to specify user
views and their mappings to the conceptual schema) and Data Manipulation
Language(DML,used to define set of operations to manipulate data) and it
mainly allows to perform query language to define both conceptual and external
schema, user and application views as results of predefined queries. [34]

Relational DBMSs make totally use of it to query data in databases’ rela-
tions. The following example, based on the relations in fig.2.2, shows how simple
is to query a table with SQL:

1 SELECT ∗
2 FROM vg use r U
3 WHERE U. surname = ”Ross i ”

This example allows to retrieve all the users with surname equal to ”Rossi” from
the relation vg user.

2.2.4 Amazon RDS for MariaDB

Amazon RDS(Relational Database Service) is a solution that requires no dealing
with administration and maintenance since RDS is born to be a fully functional
alternative to common hardware databases. It is fast, scalable and can be repli-
cated among Availability Zones(AZs) in order to get a better level of accessibility
because low-latency network connectivity is provided towards the other Avail-
ability Zones in the same region. As well, your applications can be protected
from failure in a single location if just they are launched from separated Avail-
ability Zones. RDS supports the management of several well know database
engines like MySQL, PostgreSQL, Amazon Aurora, MariaDB, Microsoft SQL
Server and Oracle. [46]

The basic ”building block” of Amazon RDS is the DB instance which rep-
resent an isolated database environment in Amazon cloud. Each DB instance

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 12

can own from 5GB to 6TB of associated storage capacity. Storage capacity
comes int three different ways that also have distinct performances and costs:
Magnetic, General Purpose (SSD), and Provisioned IOPS (SSD). [46]

Moreover, each DB instance can be launched in various Availability Zones
and Amazon accordingly provisions a ”synchronous standby replica of your DB
instance in a different Availability Zone” to minimize latency in case of system
backups, to supply data redundancy, fail-over support and so on. [46]

More detailed and fully documented information about Amazon RDS can
be found in [46].

2.3 Sharding

Every application’s developer or DB’s administrator is aware that if the load
of transactions and DB’s size increase linearly, the response times rise logarith-
mically. Performance and scalability mainly depends on how database manage-
ment systems are built and in turn they rely on Memory, CPUs and Disks.

Figure 2.3: Example of Sharding

Of course, it is not enough in-
crease only one of these components
to reach performance improvements
or scalability but if more processing
cores are provided also memory and
hard drive capacity need to be in-
creased.

Due to the way they are struc-
tured, relational databases usually
scale vertically, a single server hosts
the entire DB ensuring acceptable
performance for cross-table joins and
transactions. This places limits on
scalability, gets expensive and adds a

few failure points for DB infrastructure.
The term Sharding(or partitioning) represents the approach under which

data can be stored over many thousands of computers to improve the throughput
and the overall performance especially if related to high-transactions.

Instead of storing data in a DB on one single machine, it is partitioned in
smaller DBs called Shards across a cluster of nodes allowing to structure the
DB with smaller index size, smaller working set and improving the handle of
writing operations. Nodes can be added to the cluster to increase both capacity
and write/read operation performance, contrary, if the demands decrease the
size of a sharded DB cluster can be reduced. This ability goes under the name
of Horizontal scalability.

Relational DBs do not provide the ability to scale horizontally but Sharding
could be achieved through Storage Area Networks(SANs) and other complex
arrangements for making hardware act as a single server.

The concept of Database Sharding has been gaining popularity over the past

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 13

several years, due to the high increase in transaction volume and size of business
application DBs.

However, a couple of drawbacks can be found in relational database with
the use of operations like Joins, used to combine associated tuples from two
relations into single ones [34]. It is not difficult to realize that, as joins work
with two relations, performing such operation in a sharded DB would require
many search requests to all the nodes containing items from one of the two
relations causing high network traffic. Moreover, making use of sharded DB,
the probability of node (or connection) failures increases hand in hand with the
increase of the number of used nodes. Relational databases are not well suited
to scale in this fashion, they look more appropriate towards vertical scaling (e.g.
adding more memory, storage, ...) but of course it rises the limit of the number
of resources that eventually can fit inside a machine. There could come a point
where horizontal scaling becomes the only option.

2.4 Replication

Figure 2.4: Example of Replication

Regardless the evident advantage of
added performance DB, replication is
recommended over sharding as it pro-
vides redundancy and increases data
availability. Having multiple copies of
data in different DB servers allows not
only to protect the DB from loss on a
single servers but also to recover from
hardware failures or service interrup-
tions and to increase the locality and
availability of data in distributed ap-
plications. With additional replicas
of the data, each one can be dedi-
cated to different tasks like disaster
recovery, reporting, or backup. e.g
with more and more page requests,
more and more reads are forwarded
and replication may be used to in-
crease read capacity, replicate the DB to read servers in such a way that the
load balancer can forward writes operations to master and reads to the read
server.

Is common use to replicate database to different locations(or regions) in
order to decrease latency in requests since data will be closer to the user. In
any case, write operations are the drawback in replicated database environments
because every write has to be forwarded to each node supposed to store such
data item. [1] Depending on the desired level of availability and consistency a
DB requires, there are two recommended ways to perform such operation:

• Commit the write towards all the nodes.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 14

• Commit it towards one or a limited number of nodes then send it asyn-
chronously to all the others.

2.5 Eventual & Strong consistency

In talking about consistency the scenario where every entity owns a copy of the
data object is take into consideration. Conflicts can arise because each node can
perform updates on its own copy and users connected to different nodes may
see different values.

• Eventual Consistency: (also called weak consistency) each node com-
municates to each other its own changes and eventually after a fixed period
of time without any other value’s modification they agree on a definitive
value. The update operation here ends as soon as the local copy of the
item is updated then it is ”broadcasted” to all the other nodes. The
system does not guarantee that at every access the most updated value
will be picked up during such period of time called inconsistency window.
Moreover, in case of data replication, during the inconsistency window the
process that writes the values could also get a non updated version of the
data. [62]

• Strong Consistency: when a user makes an update to the data the
system does not return anything instantaneously indeed it locks all the
accesses to any copy of the data until all nodes have agreed on such up-
dated value. Doing so every user will always read the same version of the
data at the same time. [41]

2.6 NoSQL Databases

There are a lot of NoSQL database solution to take into account and it is hard
to keep track about where they shine, where they fail or even where they are
different, as implementation details change quickly and feature sets evolve over
time. [10] A common feature is their capability to store big data and work with
Cloud computing systems. Many of them are able to offer horizontal scalability
and provide higher availability than relational databases by sacrificing querying
capabilities and consistency guarantees. Every outstanding database has been
designed for a specific class of application or in order to achieve a precise solution
based on clear-cut system properties’ requirements. The reason behind the
presence of such large number in different database systems would be pretty
clear thinking that any system would struggle to achieve all desirable properties
at once.

2.6.1 NoSQL data models

The most common way to make a distinction among NoSQL databases is based
on how they store and allow access to data. In the following subsections five dif-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15

ferent data-models’ categorizations of NoSQL DBs will be presented and briefly
described [47].

2.6.1.1 Key-value store

Key-value stores are the simplest among the NoSQL category and consist of a
set of key-value pairs with unique keys. They work similarly to a traditional
dictionary or hash table(where values are retrieved by using the key) but dis-
tributing keys and values among a set of physical nodes.

Figure 2.5: Example of key-value store

The data is stored in two parts,
the real data that represents the value
stored(string, integer, list, dictionary
and so on) and a string represent-
ing the key to reference that value.
Their very simple abstraction makes
the database easy for partitioning and
querying the data reaching in general
low latency and high throughput.

However, due to their simplicity,
Key-value stores just support basic
CRUD (Create, Read, Update and
Delete) and conditional operations.
They are not suitable for applications
with complex query operations like
join or range queries. Due to this
drawback, often data has to be ana-

lyzed in the application code to extract information, where queries more complex
than simple lookups are required.

Key-value stores turns out to be in general good solutions if the applica-
tion presents only one kind of object and the main operations are look ups of
objects based on one attribute. Examples of widely used Key-value stores are
DynamoDB [45], Project Voldemort [51] and Redis [60].

2.6.1.2 Document store

Figure 2.6: Example of a document

A Document-oriented DBs use a doc-
ument oriented model extending the
basic key-value store concept and
storing data in the fashion of semi-
structured formats such as JSON,
XML or PDF [9]. Documents are ad-
dressed by using a key(simple string
or a string that refers to a path
or URI) that represent a sort of
ID and uniquely identifies a docu-
ment. To some extent every docu-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 16

ment looks similar to a record in re-
lational databases but way more flex-
ible because they are schema less. While every record in a relational database
may contain data in each field or it may leave unused field empty but still there,
a document store is schema less and so every document may contain different
data as different sized fields, they may be similar to each other document but
do not have to be the same. They also allow to wrap key-value pairs in a doc-
ument and due to this their complexity becomes slightly higher than key-value
stores. [9] It is not advised to make use of a document-store if the data own a lot
of normalization and relations [9], but, if the data does not need to be stored in
uniform size or the domain model can be partitioned in some parts then a doc-
ument store looks the right choice. MongoDB [54] and Apache CouchDB [40]
are two of the most known and used document-stores nowadays.

2.6.1.3 Graphs database

Figure 2.7: Example of Graph data struc-
ture1

Graph databases use the graph the-
ory approach to store entities and re-
lationship among these entities. The
graph is made by two components,
nodes, representing the objects and,
edges, representing the relationships
between those objects(interlinked el-
ements). Nodes also have properties
and are organized by relationships al-
lowing to find interesting patterns be-
tween the nodes. To optimize the
lookups Graph DBs use a so called
index free adjacency technique where every node has a direct pointer to the ad-
jacent node. With this technique millions of records can be traversed. However,
it is very difficult to achieve sharding because it is very hard to cluster them.
Graph databases are widely used in applications like social networks, bioinfor-
matics, security and access control, content management etc. Neo4j [55] and
Titan DB [43] are some of the notable Database-as-a-Service(DBaaS) provider
using graph data stores.

2.6.1.4 Wide-column store

The main feature of Wide-column stores is that instead of storing data by
rows(as it happens with relational databases), they store data in column fami-
lies that are nothing more than groups of related data often accessed together,
in this manner, data can be aggregated rapidly with less I/O activity.

This kind of databases look like a distributed multidimensional sorted map
where columns are defined for every row (key-value pairs) in such a way that

1Thanks to https://s3.amazonaws.com/dev.assets.neo4j.com/wp-content/uploads/

data-modeling-5.png

https://s3.amazonaws.com/dev.assets.neo4j.com/wp-content/uploads/data-modeling-5.png
https://s3.amazonaws.com/dev.assets.neo4j.com/wp-content/uploads/data-modeling-5.png

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 17

any row can have different columns and any number column can be added to
any row. [9]

To make things more clear, as shown in fig.2.8, a column family could be seen
as a container of rows(in RDBMS) everyone consisting of multiple columns and
everyone identified by a key. This structure offers flexibility in data definition
and allows to apply data compression algorithms per column.

Figure 2.8: Simple example of Column-
store

The storage scheme is identified
by both row keys to identify rows and
column keys which in turn identifies
columns [14]. On disk data values
are stored from the same column fam-
ily and from the same row in lexi-
cographic order of their keys in such
a way that they result physically co-
located. However, to retrieve a row,
a single lookup is not enough instead,

a join from the columns of all the column families is required.
Examples of well known Wide-column store are Google Big Table [5] and

Cassandra [39].

2.6.2 The CAP Theorem

In contrast to the ACID transaction properties respected by relational databases,
NoSQL databases trusts on the CAP theorem exposed in 2000 during a Sym-
posium on Principles of Distributed Computing. The theorem presented by Eric
Brewer and later confirmed by Gilbert and Lynch in [42] brought to the light
an upper bound based on a trade-off between:

• Availability(A): data must always be available,

• Consistency(C): data is always the same no matter which replication or
server,

• Partition Tolerance(P): database is able to work even in presence of
machine/network failures.

According to this theorem, in distributed systems, only two of the three prop-
erties could really be guaranteed at a specific moment in time [16]. Brewer
stated that in partitioned system having both consistency and availability was
not fully possible because in case of a host’s failure that will lose the connection
with the other nodes, for instance, it will have to choose if to preserve avail-
ability(AP) keep processing requests form clients and so violating consistency
or to guarantee consistency rejecting clients’ requests and sacrificing system’s
availability(CP). Another scenario is the one with a single-node system where
availability and consistency can be preserved at the price of lacking completely
in partition tolerance(CA) [16]. Depending on the use cases, the most important

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 18

combination needs to be chosen. When the consistency of data is crucial, rela-
tional DBs should be used but when data is distributed across multiple servers,
such consistency becomes hard to achieve.

Cap theorem has then evolved into what is now known as BASE principle
which means Basically Available, Soft State and Eventual Consistency and that
is characterized by high availability of data, while sacrificing its consistency
[56,57].

2.6.3 Query language

Despite relational DBs that use the SQL language to make queries, NoSQL DBs
do not have any real standard query language. Most of the NoSQL DBs have
created their own query language, some examples are MongoDB which uses
mongo query language , Cassandra that make use of CQL(Cassandra Query
Language) or boto3 used by DynamoDB and S3.

2.6.4 Overview of Amazon DynamoDB

DynamoDB is the high-performance, self managed, NoSQL database service
solution build for the cloud and presented by Amazon [17].

Self-managed means that the service takes care about all the building blocks
required to make a database scalable, the management of the database software
and the provisioning of hardware needed to run it, allowing developers to focus
on building applications rather than managing infrastructure. [45] The only
instruction needed is telling the service how many requests it has to handle
per seconds and it does the rest automatically. If the application takes off and
it has to be able to handle thousands of thousands of requests, just rise the
provisioned throughput and automatically the data will be spread towards a
sufficient number of nodes to provides consistent performance and protect them
against downtimes. [45]

Amazon DynamoDB provides two consistency options:

• Eventual consistency which maximizes the throughput at the expense of
not having the last updated data.

• Strong consistency which reflects all write and updates.

Based on these two options two kind of secondary indexes can be crated: Local
Secondary Indexes(LSI) that supports both strong and eventually consistent
read/write options and Global Secondary Indexes(GSI) which only supports
eventual consistency. As most of the key-values store

To guarantee fast access to the data, instead of using traditional hard-drives
to store data, DynamoDB make use of Solid-state drives(SSD). In addition
of being fast, DynamoDB is also extremely reliable and to enforce high avail-
ability, read consistency and durability DynamoDB applies replication of each
table across three geographically distributed AWS Availability Zones creating a
backup copy of the table in one or more geographic locations. [45]

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 19

DynamoDB does not have any limits on data storage per user, nor any
maximum throughput per table.

Chapter 3

Framework design and DB
engines

Application developers surely have plenty of experience in the use of relational
databases and SQL. Besides underling all the differences, working with NoSQL
databases brings to discover that eventually they have even more similarities
than it is thought.

The design and architecture of data models are key factors in the flexibility of
any database considering that they determine how data is stored, organized and
can be manipulated. Understanding differences and similarities between NoSQL
and RDMS database engines, their data models and how they work might help
to better interpret the results obtained from our benchmarking analysis. For
instance, it could be interesting to find out that the way a DB stores its data
could impact the query time needed to retrieve such data in respect to the other
database. For this purpose, this chapter aims to describe the data models used
by Amazon RDS for MariaDB and Amazon DynamoDB comparing SQL basic
statements with their equivalent NoSQL operations.

3.1 How do DBs store data?

In relational databases every information is supplied through models explained
in section (2.1). By using an user-oriented approach, SQL queries work out
pretty well assuming that data would be aggregated in one place to give all
the needed information at once. However, creating the DB schema providing
transactional guarantees and maintaining this kind of pattern requires a lot of
time and effort.

3.1.1 Amazon RDS for MariaDB

The basic building blocks for Amazon RDS are represented from the so called
DB instances. Each instance is an isolated database environments in the cloud,

20

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 21

running its own DB engine with its features and supporting from 5GB up to
6TB of associated storage capacity [46]. Amazon RDS supports various DB
engines like MySQL, MariaDB, PostgreSQL, Oracle, and Microsoft SQL Server.
However, this work has been focused only on MariaDB to represent the relational
database category.

The data-structure in DBMS varies considerably, from fixed/variable length
records of structured data to variable length records of opaque data, hash table
entries and nodes of tree indexes(e.g. B-Tree, R-Tree, ...). Most commonly
RDBMSs use variations of B-Tree as organizational structure for information
storage to separate user applications from the physical database. Some examples
could be found with MySQL which uses B+ tree to store data indexes, InnoDB
stores both data and index file into the memory while MyISAM maintains only
the index file, MariaDB instead uses a fork of InnoDB called Percona XtraDB
which incorporates InnoDB’s ACID-compliant design and MVCC architecture
building greater scalability and providing a good tuning degree. [52]

Figure 3.1: Example of B-tree structure

B-Trees [7] owns a particular structure well suited to store large sorted dic-
tionaries on a fixed size blocks called pages(fig. 3.2). In each page, Infimum
and Supremum point respectively to the lowest key value and the highest key
value inside the page itself. Every page is linked with the previous and the next
pointers in ascending order by key while each record is only linked to the next
one again in ascending order by key. Beside the Leaf Level 0, fig. 3.1 shows that
there are other two levels, respectively Internal Level 1 and Root Level 2. Both
internal and root level point to the lower key of the child and maintain the node
pointer which is represented by the child page number.

Pages are in general maintained in a storage device such as HDD or SSD.
In order not to lose any required data, it is advised to adjust each page size
according to the device blocking factor, since that, when a request is made, the
disk always read/write an entire block at a time even if the data requested is
not large.

Supposing to have a disk block size of 6KB and we want to forward a read

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 22

Figure 3.2: Example of B-tree page

operation on a sequence of 150 bytes of data. The disk firstly reads the whole
6KB block, containing the 150 byes, into its cache, the 6KB of data is then
copied into the file system’s cache and finally, only the 150 bytes requested will
be copied into the program’s buffer. In this case, it would have been truly
inefficient to have pages of 1KB or 4KB, since the disk would have been reading
6KB regardless.

Moreover, to reduce the impact of I/O requests, the database system memory
maintains an index of cache pages so that firstly DBMS performs a lookup of
such index to determine if the page containing the requested data is in the cache,
or not. If yes, a file I/O is avoided and even if also cache index lookup takes
time, it is way less expensive than direct I/O request toward the database.

3.1.2 Amazon DynamoDB

DynamoDB data model is made by three main components: tables, items and
attributes. Tables are similar to the ones used in relational databases with
the difference that in DynamoDB they do not follow any precise schema, those
only need a defined primary key and a specified data type to uniquely identify
every item in a table and by then, any number of items can be stored in a
single table(no other attributes are defined in advance). The primary key in
DynamoDB can be created in two ways: by a simple single attribute, called
Partition key, or, by two attributes forming a Composite key(Partition key and
Sort key). Items represent records composed by a primary/composite key and
an arbitrary number of attributes that can also be defined at runtime. The only
limit is on the item’s size which cannot exceed 400KB. An attribute is composed
by a name and a value or set of values. Also here, there is no limits in size for
individual attributes but still the total item’s value cannot exceed 400KB.

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 23

Figure 3.3: DynamoDB data model

Although relational databases support many data types, DynamoDB at-
tributes support just a few: scalar data types (String, Binary, Number, Boolean,
and Null), multivalued data types (string set, binary set and number set) and
document (List and Map). A simple data model with some of the described
components is shown in fig. 3.3.

Every table’s data is stored in Partitions that are nothing more than allo-
cation of storage in a SSD.

Figure 3.4: Example of table’s partitions

The distribution among the partitions is based on the partition key value and
the partitioning logic depends upon two things: table size and throughput. To
reach the full amount of the specified provisioned throughput, since DynamoDB
is ”optimized for uniform distribution of items across a table’s partitions, no
matter how many partitions there may be” [23], it is strongly recommended to
create tables where partition keys have very distinct values in such a way to
maintain the workload smoothly spread across those partition key values and
distribute the requests across partitions.

Amazon documentation explains that ”if a table has a very small number
of heavily accessed partition key values then request traffic is concentrated on a
small number of partitions. If the workload is heavily unbalanced, it means that
it is disproportionately focused on one or a few partitions and so the requests
will not achieve the overall provisioned throughput level” [23]. Generally, the
throughput is more efficiently utilized when the access ratio of partition key

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 24

values to the total number of partition key values, in the table, increases.
During the creation of a new table the user is required to specify the provi-

sioned throughput capacity that such table needs to be reserved for reads(read
capacity units) and writes(write capacity units) [45]:

• One Read Capacity Unit allows to have one strongly consistent(or two
eventually consistent) read/s per second towards items of size up to 4KB.
Read capacity unit depends either on item size and whether the user needs
strongly or eventually consistency. In case it is required to read larger
items, read capacity units will need to be increased(at some price).

• One Write Capacity Unit depends on the item size since it allows to
write items up to 1KB per second. If the item that needs to be written is
larger than 1KB than write capacity units need to be increased.

Exception is done for table with Global Secondary Indexes(GSI) that will con-
sume double capacity units, one to write in the table and one to write in the
index. It is worth to specify that DynamoDB estimates the number of consumed
write/read capacity units based on item size and not on the amount of data that
has to be stored or returned to an application. ”The number of capacity units
consumed will be the same whether you request all of the attributes (the default
behavior) or just some of them using a projection expression” [20].

Once the table is created DynamoDB automatically allocates a sufficient
number of partitions to it in order to be able to handle the specified provi-
sioned throughput(every single partition supports at maximum 3000 read ca-
pacity units, 1000 write capacity units and approximately 10GB of data) and
from that moment on all the concerns about partition is fully managed by Dy-
namoDB [23]. After the creation, data is also automatically replicated across
multiple Availability Zones within an AWS region. In the case that more stor-
age is needed because provisioned throughput exceeds the limit a partition can
support or the partition’s capacity is fully used, then DynamoDB will allocate
additional partitions.

To see how many partitions a new table would require in order to accommo-
date the provisioned throughput the following equation can be used:

#ThroughputPartitions =
readCapacityUnits

3000
+
writeCapacityUnits

1000
(3.1)

To calculate the number of partitions to accommodate the table size indeed:

#PartForTableSize =
TableSize(GB)

10(GB)
(3.2)

Eventually the total number of partition to be created is given by the equation:

#Partitions = MAX(#ThroughputPartitions|#PartForTableSize) (3.3)

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 25

Example 1:
Supposing we are required to create a new table of about 20GB
in size with 600 read capacity units(rcu) and 600 write capacity
units(wcu), the initial number of partitions required would be as follow:

#ThroughputPartitions =
600

3000
+

600

1000
= 0.8→ 1

#PartForTableSize =
20

10
= 2

#Partitions = MAX(1|2) = 2

Since it has been created DynamoDB adopts a combination of several well
known approaches to obtain such a performing system. It reaches uniform data
partitioning through a consistent hashing algorithm and ensures consistency by
making use of object versioning and quorum techniques to preserve consistency
among the replicas [33]. The DynamoDB system is also properly balanced
thanks to its symmetric structure made by a ring of nodes where none of them
is master and none of them has extra responsibilities or performs extra work.

3.2 Database manipulation

Once the database and tables are created and populated with the data, every
user must be able to manipulate such data and tables as desired. Typical
manipulations operations involve Update(Insertion, Deletion, Modification) and
Retrieval operations and relational databases as NoSQL have different ways to
perform them.

3.2.1 Insert operation

The purpose of an insert operation is to add one or more items to an existing
table. An interesting feature is the fact that after an INSERT statement edits
are non permanent until a COMMIT statement is issued since SQL databases are
transaction-oriented rather in Amazon DynamoDB, every action is permanent
once it replies with an HTTP 200 status code.

3.2.1.1 MariaDB

Relational databases present a two-dimensional data structure composed of rows
and columns. The relation’s name with a list of attributes values have to be
provided and listed in the same attributes’ order as the one used during the
CREATE TABLE command. Only the values of attributes created with the
clause NULL or DEFAULT can be omitted. Some RDBMS also support semi-
structured data with native JSON or XML data types but it mainly depends

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 26

on the vendor. As explained in subsection 2.2.1.1 every new item to be inserted
does not have to violate integrity constraints specified on the relational schema.
Insertion is considered a sensitive operation since every constraints could poten-
tially be violated. It is enough to provide a NULL value for the primary key of
the new tuple to violate the Entity integrity. Key constraint could be violated
by providing already existing key/s inside the same relation as Referential con-
straint could be broken by adding a foreign key pointing to a non existing tuple
in the referenced table. Domain constraint can also be violated by supplying
an attribute’s value that does not correspond to the associated domain. SQL
language uses INSERT statement to add tuples:

1 INSERT INTO f i t v g f d f o o d (food guid , name , u s e r i d ,
nutr 203 , nutr 209)

2 VALUES(’ 625414b7−e77b−4c32−a29d−56d956842c5a ’ ,
3 ’ Apple p i e prepared from r e c i p e ’ ,
4 3 , 3716 .541 , 1479 .689) ;

If any of the previous constraints is not respected, then the whole operation is
rejected.

3.2.1.2 DynamoDB

Write operations in DynamoDB are based on the primary key(s) which is the
only attribute strictly required [45]:

• With only a Partition Key, once the request is forwarded, DynamoDB
uses the partition key as input to an internal hash function which returns
a value representing the partition where the item will be stored.

• With a composite key, the partition where the item will be stored is again
calculated with the hash function through the partition key but within
the partition the item will be stored in ascending order based by the Sort
key among the ones with equal partition key.

Besides the primary keys, there are a couple of other constraints to be respected
like attributes values must not be NULL and String/Binary type attributes
lengths has to be greater than zero [20]. DynamDB uses the PutItem action
[45] to insert a new item, or, if the item already exists, to replace the old item
with the new one, in an existing table.

1 {
2 ”TableName” : ’ f i t v g f d f o o d ’ ,
3 ”Condit ionExpress ion ” : ” s t r i n g ” ,
4 ”Express ionAttr ibuteNames ” : {
5 ” s t r i n g ” : ” s t r i n g ”
6 } ,
7 ”Expres s ionAttr ibuteValues ” : { . . . } ,

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 27

8 ”Item” : {
9 ” food gu id ” : { ’ S ’ : ’ 625414b7−e77b−4c32−a29d−56

d956842c5a ’ } ,
10 ”name” : { ’ S ’ : ’ Apple p i e prepared from r e c i p e } ,
11 ” u s e r i d ” : { ’N ’ : 3} ,
12 ” nutr 203 ” : { ’N ’ : 3716 .541} ,
13 ” nutr 209 ” : { ’N ’ : 1479 .689} ,
14 } ,
15 ”ReturnConsumedCapacity ” : INDEXES | TOTAL | NONE,
16 ”ReturnI temCol l ec t ionMetr i c s ” : ” s t r i n g ” ,
17 ”ReturnValues ” : ” s t r i n g ”
18 }

Another DynamoDB insertion operation is called BatchWriteItem [45] and it
allows to insert batches of 25 item(up to 16 MB of data) in parallel in one or
more tables.

1 {
2 ”RequestItems” : {
3 ” f i t v g f d f o o d ” : [
4 {
5 ”PutRequest” : {
6 ”Item” : {
7 ” food gu id ” : { ’ S ’ : ’ 625414b7−e77b−4

c32−a29d−56d956842c5a ’ } ,
8 ”name” : { ’ S ’ : ’ Apple p i e prepared

from r e c i p e } ,
9 ” u s e r i d ” : { ’N ’ : 3} ,

10 ” nutr 203 ” : { ’N ’ : 3716 .541} ,
11 ” nutr 209 ” : { ’N ’ : 1479 .689} ,
12 }
13 }
14 } , . . .]
15 } ,
16 ”ReturnConsumedCapacity ” : ” s t r i n g ” ,
17 ”ReturnI temCol l ec t ionMetr i c s ” : ” s t r i n g ”
18 }

If the provisioned throughput will exceed or any other failure breaks the execu-
tion, it would return the failed items in a parameter called UnprocessedItems so
that the request with the unprocessed items can be submitted again. However,
due to the throttling on the individual tables, Amazon advices to delay the
operation by using exponential backoff algorithm so that individual requests in
the batch are more likely to succeed [20, 45].

With BatchWriteItem also some constraints have to be respected. First of
all, primary key(s) attribute must match the ones from the table schema, then
all the tables specified in the request must exist and items cannot exceed the
number of 25 in each batch or individual items within a batch cannot exceed
400KB. Moreover, within the same BatchWriteItem operations is not allowed
to perform multiple operations(like Insert and Delete) and the total request size

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 28

must be smaller or equal to 16MB [20,45].
If any of these constraints is not respected, the whole operation will be

rejected.

3.2.2 Update operation

Update operation allows to modify attributes’ value(s) related to one or more
tuples in a specific table.

3.2.2.1 MariaDB

MariaDB uses the UPDATE statement to update items in a DB’s table. It
requires to specify the relation’s name and specific conditions on the attribute
of such relation in order to select the ones to be modified. Generally, if no
primary/foreign keys are involved, it is enough to check for domain and data
type correctness, otherwise, editing a primary key value is equal to delete one
tuple and inserting another one, so all the integrity constraints from the INSERT
operation have to be validated, especially those who are related to referential
constraint [26].

1 UPDATE f i t v g f d f o o d
2 SET f o o d u r l i d = ’ app le s raw with sk in ’
3 WHERE food gu id = ’ 625414b7−e77b−4c32−a29d−56d956842c5a

’ ;

3.2.2.2 DynamoDB

DynamoDB uses UpdateItem action to edit existing items’ attributes’ or to
add new one in case it is not already present in the specified table [20,45].

In contrast with relational databases, here attributes can be added or simply
updated to meet the business requirements because. Since NoSQL databases
are schema-less every item might have not only a different number of attributes
but also different attributes’ types’(apart from the partition/sort keys).

Following an example of Update request towards the table fit vg fd food on
the attribute food url id :

1 {
2 ”TableName” : ’ f i t v g f d f o o d ’ ,
3 ”Key” : {
4 ’ f ood gu id ’ : {
5 ’ S ’ : ’ 625414b7−e77b−4c32−a29d−56d956842c5a ’
6 }
7 } ,
8 ”Condit ionExpress ion ” : ” s t r i n g ” ,
9 ”Express ionAttr ibuteNames ” : { . . . } ,

10 ”UpdateExpression ” : ’ s e t f o o d u r l i d = : t ’ ,

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 29

11 ”Expres s ionAttr ibuteValues ” : {
12 ’ : t ’ : { ’ S ’ : ’ app le s raw with sk in ’ }
13 } ,
14 ”ReturnValues ” : ’UPDATEDNEW’
15 ”ReturnConsumedCapacity” : True | False ,
16 ”ReturnI temCol l ec t ionMetr i c s ” : ” s t r i n g ”
17 }

3.2.3 Delete operation

The purpose is to delete an entire record/item from an existing table.

3.2.3.1 MariaDB

MariaDB uses a so called DELETE statement to delete existing record in a
table. The clause WHERE has to be specified to indicate which record(s) will
be deleted, otherwise, the omission of such clause will cause the deletion of all
the tuples in the table (TRUNCATE operation is designed for this operation
indeed). Following an example of a delete operation:

1 DELETE FROM f i t v g f d f o o d
2 WHERE food gu id=’ 625414b7−e77b−4c32−a29d−56d956842c5a ’ ;

The operation of records’ deletion takes time because when a DELETE state-
ment is typed, firstly all the data get copied into the rollback segment1, then the
delete get performed. That is the reason why when a ”ROLLBACK” is typed
after a table has been deleted, the system is still able to get the data back from
the Rollback segment. If the table involved in a delete operation is small in size,
it is possible to play around and speed things up with the following:

1 LOCK TABLE f i t v g f d f o o d WRITE;
2 DELETE FROM f i t v g f d f o o d WHERE food gu id=’ 625414b7−

e77b−4c32−a29d−56d956842c5a ’ ;
3 UNLOCK TABLES;

The LOCK and UNLOCK statements might also be avoided but they helps to
prevent potential deadlocks. Unfortunately, this solution may be very slow if
the table’s size is large because it locks row by row. If a large amount of items
have to be deleted the process of locking a row, deleting it, and then locking the
next row and also deleting it(and so on) may take longer than a simple delete.

TRUNCATE TABLE always locks the table and page but not each row.)
When you issue a delete table it locks a row, deletes it, and then locks the next
row and deletes it. Your users are continuing to hit the table as it is happening.
I would go with truncate because its almost always faster.

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 30

With delete operation only referential integrity may be violated if the record
being deleted is referenced by foreign keys from other records in the same DB.
If a violation is detected after a delete operation’s request, the system can reject
the entire operation or attempt to propagate the deletion to the referenced tuples
in the other relations. Another option is to edit(set to NULL[only if it is not
part of a primary key] or set a reference to another valid tuple) the referencing
attribute values which have caused such violation [26].

3.2.3.2 DynamoDB

DynamoDB uses the DeleteItem to remove a single existing item by using its
primary key and attributes’ values of such delete item might be returned in the
response under the parameter ReturnValues [20].

A conditional delete might also be performed to delete an item with a spe-
cific attribute value. If no conditions are specified, the DeleteItem operation is
idempotent meaning that running it several times on the same item does not
return any error [45].

1 {
2 ”TableName” : ’ f i t v g f d f o o d ’ ,
3 ”Key” : {
4 ’ f ood gu id ’ : { ’ S ’ : ’ 625414b7−e77b−4c32−a29d−56

d956842c5a ’ } ,
5 ’ d e l e t ed ’ : { ’N ’ : 0}
6 } ,
7 ”Condit ionExpress ion ” : ” s t r i n g ” ,
8 ”Express ionAttr ibuteNames ” : { . . . } ,
9 ”Expres s ionAttr ibuteValues ” : { . . . } ,

10 ”ReturnConsumedCapacity” : True | False ,
11 ”ReturnI temCol l ec t ionMetr i c s ” : ” s t r i n g ” ,
12 ”ReturnValues ” : ” s t r i n g ” ,
13 }

Another way to delete items in DynamoDB is by making use of the previously
described BatchWriteItem in subsection 3.2.1.2. Changing the key from Pu-
tRequest to DeleteRequest, it allows to delete large amount of data(in batch of
25 items per time):

1 {
2 ”RequestItems” : {
3 ”Table Name” : [{
4 ”DeleteRequest ” : {
5 ”Key” : {
6 ”Primary Key Name” :

1For recovery purposes, the system keeps track of transactional states. The ROLLBACK
segment is an object that keeps track of data written in the database, used for undo changes
when a transaction is rolled back and to avoid that other transactions see uncommitted
changes.

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 31

7 { ”Primary Key Type” : ”
Primary Key Value” }

8 }
9 } ,

10 }]
11 } ,
12 ”ReturnConsumedCapacity” : INDEXES | TOTAL | NONE,
13 ”ReturnI temCol l ec t ionMetr i c s ” : SIZE | NONE
14 }

3.2.4 Read operation

Read operations are used to select a subset of records/items from an existing
table. They can be decorated with many clauses to retrieve any kind and any
amount of data from one or more tables.

3.2.4.1 MariaDB

MariaDB uses the SELECT(expressed by the symbol σ) statement to retrieve
rows from a relation(R) under a given logic expressed by the user through one or
more selection condition(s) to filter rows of user’s requirements. Select operation
works almost always in combination with PROJECT(expressed by the symbol
π) operation which fundamental to specify the required attributes resulting from
the query.

These two operations are represented by the following statements:

σ<selection conditions>(R) (3.4)

π<attributeslist>(R) (3.5)

The following expression instead presents a basic combination of both SELECT
and PROJECT operations:

π<attributeslist>(σ<selection conditions>(R)) (3.6)

which in turn is translated as:

1 SELECT <a t t r i b u t e s l i s t >
2 FROM < t a b l e s l i s t >
3 WHERE <s e l e c t i o n c o nd i t i o n s >;

Attributes’ list could contain any attribute as long as it is present in the specified
table(s) and attributes in this list are the ones returned in the response once
the query will be executed. Tables’ list contains any table name in the database
where the attributes specified in attributes list have to be present. Selection
conditions represent the user’s choice.

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 32

3.2.4.2 DynamoDB

DynamoDB make use of GetItem, BatchGetItem, Query and Scan operations to
retrieve items from specified tables matching a provided Primary Key(Partition/
Composite key) or, in case of Query and Scan, matching a Global Secondary
Index(explained later in subsection 3.3.2) if the table owns any. The values of
the key(s) are used as input to an hash function which returns the partition
where the item is stored. If no matching items are found those operation does
not return any data in the response [20].

GetItem operation returns attributes of the matching Primary Key from
one table. Following an example of GetItem request:

1 {
2 ”ConsistentRead” : True | False ,
3 ”Express ionAttr ibuteNames ” : {
4 ” s t r i n g ” : ’ s t r i n g ’
5 } ,
6 ”Key” : {
7 ” food gu id ” : {
8 ”S” : ’ 625414b7−e77b−4c32−a29d−56d956842c5a ’ }
9 } ,

10 ” Pro j e c t i onExpre s s i on ” : ’ s t r i n g ’ ,
11 ”ReturnConsumedCapacity” : TOTAL,
12 ”TableName” : ’ f i t v g f d f o o d ’
13 }

By default GetItem implements eventually consistent read which in turn can be
changed to strongly consistent read just by setting the parameter ConsistenRead
to True.

BatchGetItem action returns attributes matching the Primary Key of one
or more item(s) in one or more table(s). The size limit of the returned items
in the response is set to 16MB and if the limit is exceeded BatchGetItem will
return a partial result and the missing items will be returned in the parameter
UnprocessedKeys to continue retrieving data form the next item(as in subsection
3.2.1.2 is advised to use exponential backoff algorithms) [20].

1 {
2 ”RequestItems” : {
3 ” f i t v g f d f o o d ” : {
4 ”AttributesToGet ” : [” s t r i n g ”] ,
5 ”ConsistentRead” : True | False ,
6 ”Express ionAttr ibuteNames ” : {
7 ” s t r i n g ” : ” s t r i n g ”
8 } ,
9 ”Keys” : [

10 {
11 ” food gu id ” : {
12 ”S” : ’ 625414b7−e77b−4c32−a29d−56

d956842c5a ’

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 33

13 }
14 }
15] ,
16 ” Pro j e c t i onExpre s s i on ” : ’ s t r i n g ’
17 }
18 } ,
19 ”ReturnConsumedCapacity” : TOTAL
20 }

BatchGetItem will return a ProvisionedThroughputExceededException if the Pro-
visioned throughput is not enough to process even one item [20].

Query uses partition key to access data of a table, a local secondary index,
or a global secondary index and return a result set. Specific values of the
partition key can be specified in the parameter KeyConditionExpression to
allow the Query operation to return all the matching items. Resulting items
are always returned in ascending order by the sort key value(Number of UTF-
8 bytes). To filter the results, FilterExpression can be applied to determine
exactly which items from the resulting ones(after Query has been executed)
should be actually returned to the user [20]. If the limit of 1MB on queried
items is exceeded, the missing items might be retrieved in subsequent query
operations starting from LastEvaluatedKey but in this case the result set might
be required to be paginated [22]. Following an example of a Query request:

1 {
2 ”ConsistentRead” : True | False ,
3 ”Exclus iveStartKey ” : {
4 ” s t r i n g ” : { . . . }
5 } ,
6 ”Express ionAttr ibuteNames ” : {
7 ” s t r i n g ” : ” s t r i n g ”
8 } ,
9 ”KeyCondit ionExpress ion ” : ” food gu id = : a and

de l e t ed = : b” ,
10 ”Expres s ionAttr ibuteValues ” : {
11 ” : a” : { ’ S ’ : ’ 625414b7−e77b−4c32−a29d−56d956842c5a

’ } ,
12 ” : b” : { ’N ’ : 0}
13 } ,
14 ” F i l t e rExp r e s s i on ” : ” s t r i n g ” ,
15 ”IndexName” : ” s t r i n g ” ,
16 ”Limit ” : number ,
17 ” Pro j e c t i onExpre s s i on ” : ” s t r i n g ” ,
18 ”ReturnConsumedCapacity” : ” s t r i n g ” ,
19 ”ScanIndexForward” : boolean ,
20 ” S e l e c t ” : ” s t r i n g ” ,
21 ”TableName” : ’ f i t v g f d f o o d ’
22 }

Query operation only operates on matching records(not the entire table) with
primary key attribute values eventually supporting a collection of comparison

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 34

operators on key attribute values to refine the look up process. All of this
means that the user only pay for the throughput of the items that match, not
for everything that is actually scanned [20].

Scan operation allows to query a table or a secondary index returning one or
more items and attributes. A big issue with Scan operation is that it firstly goes
through the entire table, iterating over every item and filtering out the returned
results only afterwards. As with Query operation FlterExpression parameter
can be set to filter returning items once the complete scan is performed. What
is worst is that a single Scan can only retrieve data up to 1 MB, if this limit is
exceeded, the remaining results are returned in as LastEvaluatedKey to continue
to retrieve items in a subsequent Scan operation. Moreover, Scan operation may
be really slow as the table(index) size increases

Following an example of Scan request is shown:

1 {
2 ”TableName” : ’ f i t v g f d f o o d ’ ,
3 ”ConsistentRead” : True | False ,
4 ”Exclus iveStartKey ” : {
5 ” s t r i n g ” : { . . . } ,
6 ”Express ionAttr ibuteNames ” : {
7 ” s t r i n g ” : ” s t r i n g ”
8 } ,
9 ”Expres s ionAttr ibuteValues ” : {

10 ” : a” : { ’ S ’ : ’ 625414b7−e77b−4c32−a29d−56d956842c5a
’ } ,

11 ” : b” : { ’N ’ : 0}
12 } ,
13 ” F i l t e rExp r e s s i on ” : ’ f ood gu id = : a and de l e t ed = : b

’ ,
14 ”IndexName” : ” s t r i n g ” ,
15 ”Limit ” : number ,
16 ” Pro j e c t i onExpre s s i on ” : ” s t r i n g ” ,
17 ”ReturnConsumedCapacity” : ” s t r i n g ” ,
18 ”Segment” : number ,
19 ” S e l e c t ” : ” s t r i n g ” ,
20 ”TotalSegments ” : number
21 }

Since by default Scan operation works sequentially scanning the whole table,
with large tables(or secondary indexes) it would result to be really slow and high
amount of provisioned throughput would be required, so, to reach performance
improvements it is advised to set the TotalSegments and Segment parameters
in such a way that parallel Scans operation will be performed.

3.3 Indexing

Indexes represent a supplementary access pattern very useful to speed up the
lookup and retrieval of items matching specific search conditions. This section

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 35

aims to provide a brief presentation of the type of indexes used in MariaDB and
in DynamoDB.

3.3.1 MariaDB

Indexes are used to improve lookup times in retrieving specific information more
frequently than others. They’re usually tree-based, so that looking up a certain
row via an index takes O(log(n)) time rather than scanning through the full
table.

However, there could be drawbacks if unnecessary indexes are added making
INSERT, DELETE and UPDATE operations slower than the usual since the
more indexes a table maintains the more extra information for each indexed
column MariaDB needs to store. By definition, it is known that any column in
a large table that is frequently used in ORDER BY, WHERE and especially
JOIN operation should have an index [32].

Imagine a table with no indexes at all. During a lookup towards one or more
attribute(s) the DB engine will start from the first row reading sequentially
through the whole table to reach the matched rows. The inconvenient here is
that the larger is the table, the higher is the cost in time and money. With the
presence of an index regarding the desired column(s), object of the lookup, the
DB engine might rapidly find the position to explore in the middle of the data
file without to browse all the data [32].

However, if the table is small or the queries are performed on big tables
that return most or all the rows then indexes are not a plus because sequential
reads minimize disk seeks, so, in such cases sequential lookups result faster than
working through an index [32].

3.3.2 DynamoDB

Indexes are available also in DynamoDB under the name of Secondary Indexes
and with the form of ”alternate key” to query data in a table in addition to
perform queries towards the primary key. It offers two types of indexes:

• Local Secondary Indexes(LSI) allow the user to create up to 5 different
sort keys(range attributes) besides the existing Partition Key(that has to
remain the same as the one created in the table). They must be created
within the creation of the table and once created they cannot be deleted or
edited anymore. LSIs support eventual consistency as strong consistency
and basically they consume provisioned throughput from the base table in
the case of read operation while they consume two write capacity units(one
for the table and one for the index) for each of the write operations(update,
delete, insert). Last but not the least LSI also allow to ”retrieve attributes
that are not projected to the index” at the price of higher latency and
provisioned throughput costs [21].

• Global Secondary Indexes(GSI) represent a new paradigm allowing the
user to create up to 5 completely new primary keys(hash key and range

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 36

key) each one with its own provisioned throughput. GSI might be created
whenever the user needs and once they are created they can be edited and
deleted at any time. However, they only support eventual consistency and
they can only retrieve attributes projected to the index.

3.4 Join operations

JOIN is a fundamental relational algebra operator widely used in relational
databases to retrieve data from multiple tables combining matching tuples
among the involved relations [26]. As it is well known, most of (if not all)
the NoSQL database do not support this operation, not being born as rela-
tional database and not having a schema, most of them neither really need
it. DynamoDB does not support JOIN operations indeed and since, as other
NoSQL databases, is born to deal with the increase of data, with big tables it
would be better to avoid JOINs because the latency overhead of an individual
key lookup would somewhat large by the reason that the database would need
to discover firstly towards which node(s) make the query, then make the query
itself and finally wait for the response(in most of the cases, this process would
create a huge amount of foreign keys lookups through many different nodes).
Moreover, if the application needs to perform large amount of JOIN operation
may be worth to denormalize2 the data. It is a common use in NoSQL databases
to have redundant data in different places to make lookups easier and faster.
Moreover, most of non relational databases do not support secondary indexes
either meaning that duplicated stuff is strictly required if the application needs
to make queries by other criterion.

DynamoDB should maintain denormalized data, same keys could even be
stored across multiple tables but NoSQL DBs will not synchronize them auto-
matically and they will not have any foreign-key meaning, even if they exists,
they will be technically considered as a different set than ones in other tables and
it would only be a task of the application itself to perform such synchronization.
Having said that, in most of the cases for a NoSQL database like DynamoDB
having normalized or denormalized data depends on the application use cases.

On the one hand, data could be normalized if:

• every item stored exceed the limit of 400KB and every item could be stored
in different tables or in Amazon S33.

• the application needs to perform a lot of writes/updates and persistent
writes of/on item(s) larger than 1KB will impact the amount of write
capacity units(that have 1KB limit per item size) even if only one attribute
is edited the WCUs considered will be the one of the entire item.

On the other hand, data’s normalization could be useful if:

2Denormaliation is a strategy used to improve lookups in a database by having redun-
dant(or grouped) data and loosing something in write performance [26].

3https://aws.amazon.com/documentation/s3/

https://aws.amazon.com/documentation/s3/

CHAPTER 3. FRAMEWORK DESIGN AND DB ENGINES 37

• items to be stored have small size and it should maintain just a few at-
tributes. For reads operation an item should be equal or smaller than
4KB, to not exceed the fixed limit of read capacity units while for write
the limit is 1KB.

• the application has high-traffic and consistency as data synchronization
among tables is not its main concern.

3.5 Highlights

Besides the issue about Joins that are of course impossible and so complex
data relations have to be managed on the code/cache layer, the first thing to
come to an hand is the fact that querying data in DynamoDB is extremely
limited especially in the need to query non-indexed data. Indeed queries can
be only performed towards a single hash, on a hash/range key, or an index
and only up to 5 secondary global indexes can be created. Moreover, when it
comes to anything beyond the most basic key/value queries, DynamoDB looks
still a bit crippled. While in MariaDB, besides being possible to make queries
towards any attributes in the table, there are no specific limits on the number
of indexes(single or composite) to be created. Mainly indexes in DynamoDB
are not built to speed up tables’ lookups rather to query the table towards
attributes different from the original primary key specified at the table creation
step. Another aspect which comes up from the data models is the difference in
number of supported data types between the two databases. For sure it will be
necessary to parse some attributes values to build unfailing queries.

All these aspects have to be taken into account during the framework design
where all the system is set up, the tables are created and the queries are built
to perform the benchmarking analysis.

Chapter 4

Benchmarking Framework
Implementation

To perform our benchmarking analysis towards Amazon RDS and Amazon Dy-
namoDB, a full scale testing on both online versions where required. Amazon
also provides a local version of DynamoDB but it mainly has been developed
as a sort of ”getting to know” to help developers in getting familiarity with the
Amazon NoSQL DB. Moreover, getting in contact with DynamoDB’s develop-
ers, also them have advised not to perform analysis on local version since the
results may fluctuate drastically.

Figure 4.1: Example of a simple AWS application structure

AWS applications, in general, involve a lot of different components interact-
ing among them, setting up connections, exchanging messages and informations.
To avoid any traffic interaction time in our analysis the main idea was to log
all the benchmarking analysis at database level so that the real query time(and
only that) could be monitored and recorded. Although this could have been
easily done with RDS, DynamoDB does not support any kind of database level
logging and due to this, the plan has been deviated in favour of the API level.
In order to do that, and to deal with some issues such as DB caching, TCP
times, connection times, authentication (and so on) a proper framework has
been implemented.

38

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 39

Fig. 4.1 shows a really simplified AWS application structure and the ex-
tracted components used in this work. The API is maintained in the EC2 in-
stance and it is directly connected to both Amazon RDS instance and Amazon
DynamoDB. All of this happens within a private subnet availability zone.

As it has already been explained in the previous chapter, since most of the
useful operations from relational databases, such as JOIN, AVG, MIN, MAX are
not supported by DynamoDB (and NoSQL DBs in general), the benchmarking
analysis framework on this work has been built essentially on five basic oper-
ations to be performed, that are Read, Write(Insert and Update), Delete and
Query on Indexes.

All the queries shown in subsections 4.2.2 and 4.2.3 have been performed
across all the tables involved in both databases retrieving, updating and deleting
items through their Primary Key/Indexes or inserting by providing a Food
object built through the Factories5. The time recorded from every API calls
is the time that starts when the query is issued until a valid response is returned
back by the database.

4.1 Caching

Amazon RDS makes use of database caching which allows to store results of
SELECT queries so that if an identical query is received in future, the results
can be quickly returned. In order to avoid that, for a fair comparison, caching
had to be disabled in both databases. Connecting to the RDS instance it is
pretty simple to check whether the query cache is available and enabled, by just
running the following query:

SHOW VARIABLES LIKE ’have_query_cache’;

+------------------+-------+

| Variable_name | Value |

+------------------+-------+

| have_query_cache | YES |

+------------------+-------+

If the query returns YES as in the result above, then the query cache is available.
To disabled it, it is enough just to set a couple of variables to 0. This has been
done by running:

set global query_cache_type=0;

set global query_cache_size=0;

flush query cache;

reset query cache;

From now on, the RDS cache is disabled so every query can be run fairly un-
der this point of view. From the AWS documentation and AWS support, Dy-
namoDB does not provide any caching service.

5http://factoryboy.readthedocs.io/en/latest/orms.html

http://factoryboy.readthedocs.io/en/latest/orms.html

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 40

4.2 API level(Django Framework)

Django framework has been chosen as high-level Python Web framework since it
is free of charge, open source, it is provided by a really complete documentation
and it takes care of many concerns about Web development. This framework
also allows the developers to create custom fully integrated commands to be
executed from the instance’s terminal and for the purpose of this work this
feature was perfect since it was possible to create a command to be run for each
of the operation involved in the benchmarking analysis.

Django provides an official backend1 for relational databases to take care
about setup and connections while it provides models to allow any interaction
between the application and the database instance. However, Django does not
provide any implemented backend for NoSQL DBs and unfortunately to build an
entire backend from the scratch would have meant to rewrite the whole Django
ORM which takes a huge amount of work, time and effort.

Playing around the inconvenient, luckily Amazon released an interesting
SDK for Python called boto3 which allows to get the connection to DynamoDB
and to perform operations on it. ”Boto is the Amazon Web Services (AWS) SDK
for Python that provides an easy to use, object-oriented API as well as low-level
direct service access” [19].

4.2.1 Operation’s definitions

All the operations taken into account in this work are defined as follow:

? Reads.

– Read the value corresponding to a given key. This is the same as
the read operation in the CRUD model.

– Read the value/values corresponding to a non-key(index or general
attribute)

? Write.

– Save a new item in the table. This represents the same as the insert
operation in the CRUD model.

– If a given key-value pair is not found in the table, then the item is
added to the table. Otherwise, it updates the value for the given
key. This operation combines Create and Update operations of the
CRUD model.

? Update.

1Django provides some basic well-documented implementations of authentication, caching,
database setup, setting variables (and so on) to anticipate the need of adding own custom
”backend” implementation and own custom modules.

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 41

– Update an item in the table. This is the same as the update opera-
tion in the CRUD model.

– If a given key-value pair is found, then it updates the provided value
for the given key.

? Delete.

– Delete the record corresponding to given primary key. This is the
same as the delete operation in the CRUD model.

– If the key is not found, then an empty response is returned.

? Read by Index. Retrieve one or more item(s) corresponding to a given
index value. This could be thought as the same as the read operation in
the CRUD model but by providing an index instead of a primary key.

? Read by Index with Conditions. Retrieve one or more item(s) corre-
sponding to the given index value and matching a specified condition.

Besides these queries to evaluate scalability and performance on items’ requests
also throttling, errors and Global Secondary Index creation have been treated
and monitored.

The query time of each operation was simply recorded through a straight-
forward Python module called time2 [38]. The following lines of code show the
actual calculation of the query time used throughout the benchmarking analysis:

1 l i s tQueryTimes = []
2 t = time . time ()
3 ”””QUERY TO BE PERFORMED”””
4 newTime = (time . time () − t) ∗ 1000
5 l i s tQueryTimes . append (newTime)

Although the time is returned as floating point value, not all the system can
assure better precision of 1 second so, as workaround of possible issues, the time
has been always recorded in milliseconds by simply multiplying per 1000 the
difference between the start and stop values returned from time function.

4.2.2 Django models

In a Django web application, data is accessed and managed through Python
objects known under the name of models. Django models map to database
tables defining the structure of the stored data, including field types, sizes, de-
fault values, etc. and providing an ”environment” to encapsulate business logic.
This helps developers to have a more structured logic without having to deal
with long complex queries built in plain SQL. Once a database engine is chosen

2time.time() returns the time in seconds since the epoch as a floating point number. Even
though the time is always returned as a floating point number, not all systems provide time
with a better precision than 1 second.

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 42

and settled, Django takes care about all the communications and transactions
and developers can concentrate their efforts in building the application making
all the queries through the database-abstraction API provided by Django.

For the purpose of our analysis a model to map the table fit vg fd food(object
of this work) has been created as class FoodBase(models.Model). The name
base has been given because the model is actually a base to create all the other
needed tables in such a way they are all equals but with different sizes.

Once models are created, to let Django the use of them, it is enough to set
the INSTALLED APPS parameter by adding the name of the module which
contains the created models.

Django uses the class QuerySet3 to create queries towards its models:

1 c l a s s QuerySet (model=None , query=None , us ing=None) [
source]

Most of these QuerySets return other QuerySet objects allowing to chain refine-
ments together in order to perform a sort of complex nested queries.

The operations defined in subsection 4.2.1, in Django are performed as fol-
lows:

4.2.2.1 Write

Both the following insert operations come from the description in subsection
3.2.1.1:

• Insert a single item. Django uses the class Model(**kwargs) [36] to
build the object and the keyword arguments are simply the names of the
fields(attributes) defined in the Food model.

1 Food (∗∗ food) . save ()

In this case the keyword argument **food represents a dictionary contain-
ing keys and values of the item that has to be saved in the table. The
method save() eventually performs the operation to insert the built object
in the table.

• Insert batch of items Objects are saved in batch through the QuerySet
bulk create(objs, batch size=None) [36]. The list objs may contain
”any” number of items to be inserted in the table and in the case of this
work is expressed by rdsBulkList :

1 Food . ob j e c t s . bu l k c r e a t e (rdsBulkL i s t [index : index + 25])

To have a fair comparison has been decided to limit the batch at 25 ele-
ments since DynamoDB has this limit with batch write item operation.

3https://docs.djangoproject.com/en/1.11/ref/models/querysets/

https://docs.djangoproject.com/en/1.11/ref/models/querysets/

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 43

4.2.2.2 Update

Firstly the item(s) to be updated are filtered by primary key through the Query-
Set filter(**kwargs) and it returns the QuerySet containing objects matching
the given lookup parameters [36].

1 Food . ob j e c t s . f i l t e r (guid=guid)
2 . update (f o o d u r l i d=’ apples−raw−with−sk in ’)

As in subsection 3.2.2.1 objects are updated through the QuerySet update(**kwargs)
[36] where kwargs contains the attribute(s) to be updated.

4.2.2.3 Delete

As in subsection 3.2.3.1, objects are deleted through the QuerySet delete() [36].
The item(s) to be deleted are firstly selected through the QuerySet filter.

1 Food . ob j e c t s . f i l t e r (guid=keys [i] , d e l e t ed=0) . d e l e t e ()

With Foreign keys Django adopts ON DELETE CASCADE feature deleting
also any object pointing at the objects to be deleted.

4.2.2.4 Read

As in subsection 3.2.4.1, objects are retrieved from the database through the
QuerySet get(**kwargs) [36]. The following primary key

1 key = {
2 ’ f ood gu id ’ : { ’ S ’ : ’ 871 af1c4−1e32−4278−91ab−0a31ae83abc8 ’ } ,
3 ’ d e l e t ed ’ : { ’N ’ : 0 }
4 }

is given. In this query the keyword arguments are represented by only the
composite primary key (guid, deleted):

1 Food . ob j e c t s . get (guid=key [’ f ood gu id ’] [’ S ’] , d e l e t ed=0)

4.2.2.5 Operation on indexes

• Query on index. Objects are retrieved from the database with the
QuerySet get(**kwargs) where the keyword arguments are represented
by a single index attribute:

1 Food . ob j e c t s . f i l t e r (user = 3)

• Query on index with conditions. Objects are retrieved from the database
through the Query Related tool class Q[source]. Q() objects allow the
creation of complex query with conditions:

1 Food . ob j e c t s . f i l t e r (Q(user=3) &
2 Q(f o o d t y p e l t e =3, f o od t yp e g t e=1) &
3 Q(de l e t ed=0))

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 44

The previous query is in charge to retrieve all the food items matching
the following combinations:

1 u s e r i d = 3 , 1 < f ood type < 3 and de l e t ed = 0

4.2.3 Boto 3 SDK for DynamoDB

While, in Django framework, provided models have been used, in DynamoDB
a wrapper class called DynamoDBManager has been created to deal with
the connection and to collect all the operations required to perform our bench-
marking analysis properly allowing to easily manage all the boto3 calls in every
script. Boto 3 provides a resource or a low level low-level client to represent
Amazon DynamoDB and operates on the tables. For this work client has been
chosen to have better performance benchmarking since resource keeps trying to
query if the operation does not succeed straight away while client returns an
error.

1 c l a s s DynamoDBManager :
2 de f i n i t (s e l f , table name) :
3 s e l f . dynamo=boto3 . c l i e n t (’dynamodb ’ , region name=’ eu−west−1 ’)
4 s e l f . t ab l e=table name
5

6 de f i n s e r t (s e l f , item) : . . .
7

8 de f i n s e r t b a t c h (s e l f , item) : . . .
9

10 de f de l e t e i t em by key (s e l f , key) : . . .
11

12 de f d e l e t e ba t ch (s e l f , keys) : . . .
13

14 de f update (s e l f , key , update expres s ion , e xp r e s s i o n va l u e s) : . . .
15

16 de f ge t i t em (s e l f , key) : . . .
17

18 de f batch ge t i t em (s e l f , key) : . . .
19

20 de f query (s e l f , key cond i t ion , e xp r e s s i on va l u e) : . . .
21

22 de f query by index (s e l f , index , key cond i t ion , e xp r e s s i on va l u e) :
. . .

23

24 de f que ry index cond i t i on (s e l f , index , key cond i t i on ,
exp r e s s i on va lu e s , f i l t e r e x p r e s s i o n) : . . .

25

26 de f scan (s e l f , f i l t e r e x p r e s s i o n , e xp r e s s i on va l u e) : . . .

The DynamoDBManager class makes use of the class DynamoDB.Client as a
low-level client representing Amazon DynamoDB and a table name. To create
an object with DynamoDBManager an existing table name has to be provided.
Once the object is created it can make use of all the methods provided by the

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 45

DynamoDB.Client(some of them, the ones used in this work, are provided in
the class as methods of the object itself)4. Following all the operations used in
this work are presented.

4.2.3.1 Write

Both the following insert operations come from the description in Subsection
3.2.1.2:

• Insert a single element with the method put item(**kwargs). Keyword
arguments are represented by the table name and the item to be inserted
in the form exposed in fig. 4.3.

1 re sponse = s e l f . dynamo . put item (
2 TableName=s e l f . tab le ,
3 Item=item
4)

• Insert a batch of 25 items with the method batch write item(**kwargs).
Keyword arguments are represented by the table name and a list of items
each one in a dictionary shape as shown in fig. 4.3.

1 re sponse = s e l f . dynamo . ba t ch wr i t e i t em (
2 RequestItems={
3 s e l f . t ab l e : i tems
4 }
5)

4.2.3.2 Update

The update operation makes use of the method update item(**kwargs) largely
discussed in Subsection 4.2.3.2(3.2.2)

1 re sponse = c l i e n t . update item (
2 TableName=s e l f . tab le ,
3 Key={
4 ’ f ood gu id ’ : { ’ S ’ : s t r (guid) } ,
5 ’ d e l e t ed ’ : { ’N ’ : 0}
6 } ,
7 UpdateExpression=” s e t f o o d u r l i d = : t ” ,
8 Expres s ionAttr ibuteVa lues={
9 ’ : t ’ : { ’ S ’ : s t r (’ apples−raw−with−sk in ’) }

10 } ,
11 ReturnValues=”UPDATEDNEW”
12)

The keyword arguments passed to the method is made by five parameters: the
table name, the primary key needed to specify the item to be updated, a state-
ment containing the attribute name to be updated, the new value to be set
in the specified attribute and a parameter ReturnValues that has been set to
UPDATED NEW to return the updated items in the response(useful to check
if the query has been executed properly).

4http://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html

http://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 46

4.2.3.3 Delete

Both the following delete operations come from the description in subsection
3.2.3.2

• delete item(**kwargs) method is used by DynamoDB to perform the
deletion operation of a single item. It takes as keyword arguments the
table name and the primary key of the item to be deleted.

1 re sponse = s e l f . dynamo . d e l e t e i t em (
2 TableName=s e l f . tab le ,
3 Key={ ’ f ood gu id ’ : { ’ S ’ : s t r (guid) } ,
4 ’ d e l e t ed ’ : { ’N ’ : 0 } }
5)

• batch write item(**kwargs) is method used by DynamoDB to delete
batch of items. It takes as keyword arguments the name of the table and
a list of primary keys to be deleted from such table.

1 i tems = []
2 f o r i in range (l en (keys)) :
3 i tems . append ({
4 ’ DeleteRequest ’ : {
5 ’Key ’ : { ’ f ood gu id ’ : { ’ S ’ : keys [i] } ,
6 ’ d e l e t ed ’ : { ’N ’ : 0 } }
7 }
8 })
9 t = time . time ()

10 re sponse = s e l f . dynamo . ba t ch wr i t e i t em (
11 RequestItems={ s e l f . t ab l e : i tems }
12)

4.2.3.4 Read

As presented in subsection 3.2.4.2 DynamoDB owns four methods to retrieve
items from the tables. The following primary key was provided:

1 key = {
2 ’ f ood gu id ’ : { ’ S ’ : ’ 871 af1c4−1e32−4278−91ab−0a31ae83abc8 ’ } ,
3 ’ d e l e t ed ’ : { ’N ’ : 0 }
4 }

• DynamoDB retrieves item(s) corresponding to a given primary key through
the method get item(**kwargs), which takes as arguments such pri-
mary key and the table name.

1 re sponse = s e l f . dynamo . ge t i t em (
2 TableName=s e l f . tab le ,
3 Key=key ,
4 ConsistentRead=True
5)

The parameter ConsistentRead has been set to True to have strongly
consistent reads and so to read from an updated table.

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 47

• To return attributes from one or more items in one or more tables Dy-
namoDB uses the method batch get item(**kwargs). Same line of
get item() but with a list of keys passed as parameter.

1 re sponse = s e l f . dynamo . batch ge t i t em (
2 RequestItems={
3 s e l f . t ab l e : { ’ Keys ’ : [key] }
4 }
5)

• To access items of a the table through either a primary key or index
DynamoDB uses the method query(**kwargs). Keyword arguments are
the table name, the key conditions and the required values to compute the
condition expression.

1 re sponse = response = s e l f . dynamo . query (
2 TableName=s e l f . tab le ,
3 KeyCondit ionExpress ion=’ food gu id = : a AND de l e t ed = : b ’ ,
4 Expres s ionAttr ibuteVa lues={ ” : a” : key [’ f ood gu id ’] ,
5 ” : b” : key [’ d e l e t ed ’] }
6)

• scan(**kwargs) represent a really expensive operation that could also
be used to retrieve items from a table but it first accesses every item in
such table(or secondary index). As query operations, the keyword argu-
ments are the table name, the key conditions and values for the condition
expression.

1 re sponse = s e l f . dynamo . scan (
2 TableName=s e l f . tab le ,
3 F i l t e rExp r e s s i on=’ food gu id = : a and de l e t ed = : b ’ ,
4 Expres s ionAttr ibuteVa lues={ ” : a” : key [’ f ood gu id ’] ,
5 ” : b” : key [’ d e l e t ed ’] }
6)

4.2.3.5 Operation on indexes

To query items by index(GSI different attribute from the primary key) has been
decided to use query(**kwargs) because scan operation required too high read
capacity units and it anyway took a really high query time.

• By only index.

1 re sponse = s e l f . dynamo . query (
2 TableName=s e l f . tab le ,
3 IndexName=’ us e r id−index ’ ,
4 KeyCondit ionExpress ion=’ u s e r i d = : u ’ ,
5 Expres s ionAttr ibuteVa lues={ ” : u” : { ’N ’ : s t r (3) } }
6)

The keyword args are the table name, the index name, the key condition
represented by the index and the value for the condition expression.

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 48

• By index with conditions.

1 re sponse = s e l f . dynamo . query (
2 TableName=s e l f . tab le ,
3 IndexName=’ us e r id−index ’ ,
4 KeyCondit ionExpress ion=’ u s e r i d = : u ’ ,
5 Expres s ionAttr ibuteVa lues={ ’ : u ’ : { ’N ’ : s t r (3) } ,
6 ’ : g ’ : { ’N ’ : s t r (1) } ,
7 ’ : l ’ : { ’N ’ : s t r (3) } ,
8 ’ : d ’ : { ’N ’ : s t r (0) }
9 } ,

10 F i l t e rExp r e s s i on=’ food type BETWEEN : g and : l AND de l e t ed=:d
’

11)

The keyword args are the table name, the index name, the key condition
expression, a dictionary for the expression attributes values and the filter
expression for such values.

4.2.4 Database Tables

In each database have been created four tables of different sizes, respectively
100 thousands, 1 million, 10 millions and 75 million items. For the purpose
of these analysis has been decided to populate all of the tables with the same
data migrated in parallel from a real table, fit vg fd food, containing real data
from the cloud. To migrate data in parallel has been used a multiprocessing
environment with 8 CPUs and 32GB of RAM. Every process was in charge to
migrate around 50 thousands of items(each one of about 1KB in size) at time
not to bubble over the DyanamoDB write capacity units that have been set to
5000 in all the tables to speed up the process. Further description and details of
the migration process are out of the purpose of this work. The following table
shows the final setup of the tables with their final size and number of items:

Table Name Table Size Number of items
fit vg fd food 71.58 GB ∼ 75 millions
food 100 ths 111.90 MB ∼ 115 thousands
food 1 mln 966.64 MB ∼ 1 million
food 10 mln 9.55 GB ∼ 10 millions

The tables used in Amazon MariaDB roughly reflects the one used in produc-
tion with same indexes, data and settings. Tables used in Amazon DynamoDB
needed to be adjusted in matters of indexes and data types presented in sub-
sections 4.2.5 and 4.2.6.

The Primary Key in all the tables have been thought to be a composite key
made by:

• a string value food guid(e.g. 0cc14119-c723-4687-9d76-80ddc4438a76)

• an integer value deleted(e.g. 0 or 1)

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 49

4.2.5 Indexes

To reflect the real table, several indexes had to be also added:

Figure 4.2: Indexes created in the tables

As described in subsection 3.3.2 DynamoDB allows the creation of only five
Global Secondary Indexes and other five Local Secondary Indexes while Mari-
aDB has no fixed limits. Also the meaning of these indexes is a bit different,
DynamoDB indexes are mainly thought to allows lookups through different pri-
mary keys and not to speed up the lookups as in MariaDB.

From Amazon Best Practices for Local Secondary Indexes1 there are some
precautions to take into account in matter of indexes. Adding or updating an
item in a table which contains also LSI will also affect the update/creation of
any LSI involved making the indexes growing fastly. A good advice is not to
create and maintain multiple indexes if the table is frequently updated and to
keep the size of the index as small as possible projecting it only in the most
returned attributes because unused indexes contribute to increase storage and
I/O costs. Unfortunately, the 95% of the attributes from the table are most of
the time needed in the real app to populate the UI so the projection to ALL in
the chosen indexes was required. In table 4.2 the chosen indexes are shown.

Since queries in DynamoDB can be made only towards primary key or in-
dexes, if it is required to query a different attribute is not possible unless such
attribute is part of an index. Besides LSIs that mainly allow to create a new
primary key by only choosing a different Sort Key but still the Hash Key has to
be the same, Global Secondary Indexes(in subsection 3.3.2) are the components
that may do the trick. The attribute to be required can be created as GSI and
so being queried directly without any Hash Key need. For the purpose of this
work a GSI index was enough so the most used one(user id) has been chosen
for the job.

4.2.6 Items’ types

As partially shown in fig. 4.3 each record is made by 57 attributes. A concern
to take into account while working with DynamoDB is about data types. Re-

1http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

GuidelinesForLSI.html

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForLSI.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GuidelinesForLSI.html

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 50

lational databases support a huge amount of data types while NoSQLs (in this
case DynamoDB) do not.

Figure 4.3

Example of Django model(sx) and item from DynamoDB(dx)

Data types supported by DynamoDB are just a few compared with MariaDB:

• Scalar: Number, String, Binary, Boolean, and Null

• Multi-valued: String Set, Number Set, and Binary Set

• Document: List and Map

Even if less types are supported, these seem to be enough to collect all the
required data. Sometimes workaround can be found from the API level, as
for DATETIME that can be easily converted in a timestamp as integer to be
saved in the database and then it could be converted back in plain date after a
response back from the db when it is requested from the API.

4.3 DB Connection time, logic behind the schema

As it has already been said in the intro of this chapter, benchmarking analy-
sis performed from the API level are affected by several components involved
in the connection process towards the DB such as the three-way handshake,
authorization, authentication, etc.

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 51

Figure 4.4: APP - DBs transactions

Being conscious to what extent these values can interfere with the actual
query time it is fundamental. To measure the connection time it has been
decided to run a million times a very simple query(select) towards a table con-
taining only one element. Doing so, the time it takes to be executed from the
database engine is negligible and most of the time is taken by the connection
process.

Throughout the project the actual time is simply taken by using a python
module called time. It is called just before the query call to get the starting
timestamp λ1 and right after the same query to get the stopping timestamp λ2.
Having those timestamps, the amount of time between the two is calculated with
a simple subtraction getting δ(Eq. 4.1). Summing n times δ it becomes possible
to calculate its average that goes under the name of Θ(Eq. 4.2). Furthermore,
to have a more refined estimation of the connection time, Θ has been computed
several times(m) and its average has been also calculated ending up with an
overall average called Γ(Eq. 4.3). (Details of the equation below can be found
in table 4.1)

Variable Description Value
n N. of calls to the database 2000
m N. of cycles 5
λ1 Start time counter time.time(ms)
λ2 Stop time counter time.time(ms)
δ Range of time between start counter and stop λ2 − λ1
Θ Sum of the timestamps from the n calls −
Γ Sum of the Θ values calculated in the m cycles −

Table 4.1: Formulas’ legenda.

δ = λ2 − λ1 (4.1)

Θ =
1

n

n∑
i=1

δi (4.2)

Γ =
1

m

m∑
i=1

Θi (4.3)

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 52

4.3.1 Used queries

The only table used in both RDS and DynamoDB during the connection analysis
is(fit vg fd food). Such table stores only one simple record.

In RDS the simplest operation to retrieve one item by its primary key is
get(in code 4.2.2.4).

In DynamoDB, Boto3 provides a function to get only the connection(in
code 4.4) without involving any table. However, to maintain the same logic
just like the one used for RDS also the query time to retrieve one item has
been estimated in DynamoDB. Since Boto3 provides four methods described in
subsection 3.2.4.2 to fetch an item from a specified table the connection times
were provisioned with all of them: get item(), batch get item(), query(),
scan().

4.3.2 TCP ping

Another interesting factor is the TCP ping from the EC2 instance to the DBs
to test the reachability of the service on a host using TCP/IP and measure the
time it takes to connect to the specified port.

Unfortunately, this test can only be performed towards DynamoDB because
RDS instances are not configured to accept(and respond) to an ICMP packet
for pings. The only way to establish connectivity to an RDS instance is through
a standard SQL client application.

In DynamoDB it is possible to compute the TCP ping by using a Python
module called socket [61] that is ideal for low-level networking interface and
provides an high-level function called create connection [37] which helps to set
the connection specifying the host to be pinged, the port and the optional
timeout parameter:

1 socke t . c r e a t e c onne c t i on (
2 (’dynamodb . eu−west−1.amazonaws . com ’ , 80) , 1
3)

Following is shown the method used in the framework to calculate the TCP
ping in our benchmarking analysis.

1 de f t cp p ing (host , n) :
2 to ta l ms = 0
3 f o r i in range (0 , n) :
4 t ry :
5 t open = time . time ()
6 s = socket . c r e a t e c onne c t i on ((host , 80) , 1) # aws
7 s . c l o s e ()
8 f i n a l l y :
9 t c l o s e = time . time ()

10 ping ms = (t c l o s e − t open) ∗ 1000
11 to ta l ms += ping ms
12 r e turn (to ta l ms / n)

By using the equations explained above (4.1, 4.2, 4.3) the estimated time needed
it is pretty easy to compute.

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 53

4.4 Benchmarking operators

Round-trip times of requests from API level can ”bounce” up and down. This is
the reason why every query has been run for many times and every timestamp
has been recorded and saved in a list. Once the list has been created three
methods have been used. To get a good approximation of the query time the
average of the timestamp’s list has been calculated and along with this also the
standard deviation to have a precise measure of the mathematical dispersion of
the query times from the mean.

• Mean. To calculate the average a formula from the original algorithm to
compute the weighted average of RTT in the Adaptive Retransmission
Based on Round-Trip Time [48] has been applied:

OldT imestamp = (α∗OldT imestamp)+((1−α)∗NewTimestamp) (4.4)

In the formula, α represents a smoothing factor with a value between 0
and 1. Values of α closer to 1 provide a better smooth in situation where
the query time fluctuate wildly. In contrast values of α closer to 0 make
the query time change more quickly in reaction to changes in measured
query times. Between 0.8 and 0.9 (typically 0.875) is the ”optimal” value.

1 de f mean(t imestampList) :
2 alpha = 0.875
3 n = len (t imestampList)
4 OldTimestamp = timestampList [0]
5 f o r i in range (1 , n) :
6 OldTimestamp = (alpha ∗ OldTimestamp) + ((1 − alpha) ∗

t imestampList [i])
7 r e turn OldTime

The function mean accepts a list of timestamps taken from the performed
queries as argument. Then it applies the formula in Eq.4.4 to calculate
the mean throughout the provided list.

• Variance.

σ2 =

∑n
n=1(X − µ)2

n
(4.5)

where µ is the mean of the query times(from Eq.4.4) and n is the total
number of query times recorded in each query test.

1 de f var i ance (data , mu) :
2 n = len (data)
3 i f n < 2 :
4 r a i s e ValueError (’ va r i ance r e qu i r e s at l e a s t two data

po in t s ’)
5 v = (sum((x − mu) ∗∗2 f o r x in data)) /n
6 r e turn v

• Standard Deviation. Once the mean and the variance are calculated,
it is pretty easy to compute the standard deviation(σ) that is represented

CHAPTER 4. BENCHMARKING FRAMEWORK IMPLEMENTATION 54

by the square root of the variance σ2:

σ =
2
√
σ2 (4.6)

The Standard deviation helps to understand how good are the found means
in respect to the amount of query times recorded.

1 de f s td dev (data , mu) :
2 var = var iance (data , mu)
3 r e turn math . s q r t (var)

• DynamoDB connection. With this operation it is possible to have a
rough estimation of the setup time required to build the connection to
Amazon DynamoDB from API level created through the client. It could
be interesting to see if this plain connection is in line with the connection
times examined in subsection 4.3.

1 de f dynamo connection (db , r eg i on) :
2 t s end = time . time ()
3 boto3 . c l i e n t (db , region name=reg i on)
4 r e turn (time . time () − t s end) ∗ 1000

Chapter 5

Discussion of analysis

Unfortunately, there are no universal metrics to measure performance of key-
values solutions due to their different goals and capabilities. It is clear that
trying to evaluate a database as DynamoDB, which is designed for write avail-
ability above everything else, in the area of consistency, is not fair since the
overall system has been create to enforce availability above consistency.

Beside this, one of the most important concerns about web application is the
time required to complete a task. In case of a database, this factor is redirected
to the time required to complete a transaction. Analysing this time along with
scalability and throughput it turned out that all these components may help to
get some requirements and eventually to provide an accurate overview and deep
understanding of the examined solutions.

The main aim of this work is to present a benchmarking analysis from the
requirement of the company Virtuagym that is trying to solve the problem of
slow queries in some transactions due to the day by day increase in size of some
specific tables.

5.1 Connection measurements

From fig.5.1, the connection time to DynamoDB from the EC2 instance reach
a peak at about 33.8ms in the first connection then it tends to balance to
about 1.9ms in all the other connection tests. This happen because when a
command towards DynamoDB is performed, it firstly needs to verify the AWS
credential and then to make resources available for the tables to read while for
every subsequent call it will reuse those resources. Indeed, running the script
many times(by calling it from the Django command manage.py) it always takes
around 30ms(which is roughly the same amount of time compare with the peak),
but when the call is made several times in a for loop within the same script, each
call’s time decrease drastically until a period of no operation where Dynamo
seems to close down the resources to save on it. For this reason and for the
purpose of our benchmarks analysis the very first call to DynamoDB should

55

CHAPTER 5. DISCUSSION OF ANALYSIS 56

always be discarded.
The TCP ping time to DynamoDB is almost always around 0.85ms in aver-

age, meaning that DynamoDB instance is fastly reachable.

Figure 5.1

Connections times(table B.1)

Query time to get an item from an RDS instance seems to be pretty bal-
anced along all the calls and cycles keeping on track at about 2.16ms while
all the query times to DynamoDB fluctuate a lot due to the many interac-
tions(connections, latencies, packet exchanges) happening in the backend side
of DynamoDB. However, since DynamoDB has several methods to retrieve a
record from a table, it was interesting to check if the time every method takes
to get the same item was roughly the same or extremely different. As shown
in fig. 5.1, most of the times are pretty close in time, between 2ms and 7ms,
apart from Scan operation that in average takes around 28ms.

5.2 Key metrics

The following table shows some of the key metrics considered throughout the
benchmarking analysis:

CHAPTER 5. DISCUSSION OF ANALYSIS 57

Name Description
Successful Request
Latency

Response time (in ms) of successful requests in
the selected time period to metric the perfor-
mance. Also can report an estimated number
of successful requests (data samples).

Provisioned Read
Capacity Units

Number of read capacity units you provisioned
for a table (or a global secondary index) dur-
ing the selected time period .

Provisioned Write
Capacity Units

Number of write capacity units you provi-
sioned for a table (or a global secondary index)
during the selected time period .

5.3 Speed and throughput

One of the most popular metrics to measure database performance is the speed
to perform a full transaction taking into account its throughput, that involves
the number of completed transactions in a unit of time. For each pf the following
bar charts, the tables showing the exact results are provided in appendix B while
the errors charts to check the Standard Deviation is provided in appendix A.

The following benchmarks were performed for read operations setting read
units to 200. In DynamoDB Query operation is expected to be very fast and
only slightly slower than Get operation. The scan operation on the other hand
may take anywhere from few milliseconds to a few hours to complete depending
on the size of the table because it is performed by going through each item in
the table. For any reasonably sized table the scan operation will consume all
the provisioned read units until the operation finishes. Indeed, in fig. 5.2 Scan
operation is the one that takes most to execute the fetching of the data.

Figure 5.2

Read operations with Dynamo Scan (table B.6)

To have a better overview of the query times, in fig.5.3 it has been decided

CHAPTER 5. DISCUSSION OF ANALYSIS 58

to get rid of Scan operation and shows only the others. It was expected to
see DynamoDB being faster than MariaDB in retrieving data, especially with
the growth of the tables’ sizes. As it is clear, RDS Get is faster on the overall
test ranging between 2.26 and 2.86 ms compared with any of the DynamoDB’s
queries. Query operations results stable overall and mostly faster than both
GetItem and BatchGet which seem to perform better with large size tables
than smaller ones.

Figure 5.3

Read operations without Dynamo Scan(table B.5)

Write benchmarks described in subsections 4.2.2.1 and 4.2.3.1 with 500
writes units are shown in fig.5.4. Against every expectation the overall write
operations run from DynamoDB turns out to be faster than the RDS coun-
terpart. DynamoDB PutItem results faster than SaveRDS which takes more
than double of the time to retrieve one item. DynamoDB BatchWrite with a
range of 33 to 37 ms still performs faster inserts with batch of 25 items than
RDS BulkCreate that takes from 84ms in the smallest table up to 115ms in
the biggest one. This test also shows the scalability performed on PutItem by
DynamoDB while other operations seem to be affected by the increase in size
of the table.

CHAPTER 5. DISCUSSION OF ANALYSIS 59

Figure 5.4

Write operations(table B.2)

Fig.5.5 shows the comparison between two updates operations described in
subsections 4.2.2.2 and 4.2.3.2. Both write and read capacity units were set
to 100. Throughout the test all the update operations made by RDS remain
balanced around 4ms and faster than DynamoDB update operations that are
also pretty balanced around 5ms with a peak of almost 6ms in the 75millions
items table.

Figure 5.5

Update operations(table B.3)

As shown in fig.5.6 delete one item from RDS MariaDB employs on average
around 4ms resulting slightly faster than DynamoDB. DeleteItemDynamo(code
4.2.3.3) seems to be affected by the increasing table size, indeed, it takes around
5ms towards the 100thousands table ms and the query times rises up to around
6ms for the item’s deletion from the biggest table of 75millions items. Besides
single item’s deletion, a 25 items’ deletion from their primary keys was tested
in DynamoDB while MariaDB does not own any query to delete more keys in

CHAPTER 5. DISCUSSION OF ANALYSIS 60

parallel. BatchDeleteDynamo has a peak at 8.44ms in the smaller table while
the query time seems to balance at around 5ms in the other tables being even
faster than RDS in the table with 10millions items. All the delete operations
from DynamoDB had read capacity units set to 100.

Figure 5.6

Delete operations(table B.4)

Fig. 5.7 shows the query times to retrieve items matching a provided index
key-value(in code 4.2.3.5 and 4.2.2.5) while fig. 5.8 shows query times to fetch
items by providing index key-value and conditions(in code 4.2.3.5 and 4.2.2.5).
Both operations from DynamoDB had read capacity units set to 100. The results
from both the tests look pretty similar meaning that with this implementation,
querying a table towards an index with or without conditions does not affect
the query time too much. However, the difference in time among the opera-
tion from RDS and DynamoDB in both the test is embarrassedly huge with
RDS constantly standing between 0.28 and 0.42 milliseconds while DynamoDB
ranging between roughly 900 and 921 milliseconds in fig. 5.7.

CHAPTER 5. DISCUSSION OF ANALYSIS 61

Figure 5.7

Query on index operations(table B.7)

Fig. 5.8 shows that results from DynamoDB range a bit better than the
ones in fig. 5.7 scoring times between 627 and 671 milliseconds but still way
higher than RDS which maintains the boundaries between around 0.44 and 0.57
milliseconds.

Figure 5.8

Query on index with conditions(table B.8)

Due to the complexity of the dyanamoDb system, the obtained operational

CHAPTER 5. DISCUSSION OF ANALYSIS 62

times are very much the expected behavior of the DynamoDB system. Dyan-
moDb being a noSQL database, owns a lot of moving parts on the backend.
What has been mainly experienced throughout the analysis is that at any time,
a given request could vary in times due to the network traffic/latency on Amazon
DynamoDB backend nodes. Being present numerous components on a network,
such as DNS servers, switches, load balancers, and others can generate delays
anywhere in the life of a given request due to which it is not possible to provide
an exact operational time for DyanmoDb requests.

Dynamodb only promises to customers in average a single digit millisecond
latency on a single item API calls such as getItem, updateItem, DeleteItem and
putItem only when the item size is less than 4KB for reads and 1KB for writes.
For batches operations such as query and Scan, since the number of results
returned by respective API calls varies due to which it is difficult to provide any
precise latency values.

DynamoDB latency promises are only made for the server side latency i.e. it
is monitored from the moment the requests hits the DynamoDB end-point till
it fetches the result, and sends it back to the end-point. Any delays/latencies
occurred during the time request reaches from client instance to the end-point
or return is not calculated in the DynamoDB latency.

In our case, the latencies obtained might be more than the DynamoDB
latency promises since it involves the client side latency as well, or they might
have been minor fluctuations from the service side.

5.4 Scalability

Even if DynamoDB does not have any limit on the amount of data being stored
in a table, while RDS fixes the limit at 6TB per table, under the scalability
point of view, from all the bar charts exposed so far it could be admitted that
both databases guarantee high scalability. On one hand, DynamoDB scales
automatically spreading the data over sufficient machine resources to meet stor-
age requirements. On the other hand, RDS allows to set from 1,000 IOPS to
30,000 IOPS per DB Instance for scalability reasons. Both databases are able
to maintain roughly the same query time with the increase in size of the tables
performing the exactly the same operation.

Chapter 6

Conclusions and future
work

6.1 Conclusions

Nowadays, web application can generate and consume huge amounts of data.
They might start with just a few users and grow drastically to millions creating
thousands of write/read operations per seconds and generating a large amount
of gigabytes(if not terabytes) per day. Due to this, scalability is not an option
anymore, it is a must.

At this time, new RDBMSs providing improved horizontal scaling have been
introduced in the market, however, the SQL systems still strive to provide hori-
zontal scalability without getting rid of SQL itself and ACID transactions. This
fact represents one of the main reasons why many companies are moving their
database layers to a NoSQL solution. Subsection 2.6.1 presented several types
of available NoSQL solutions describing some of their key features. The right
one to chose strictly depends on company’s use cases. In general talking, if the
application needs to handle a lot of data, it will be limited when using MySQL
or other RDBMS by their structure. The right choice between NoSQL and
RDBMS only depends on the actual needs of the application. In fact, some ap-
plications might be well served by using both. On one hand, if the application
require to store data that does not lend itself well to a relational schema (tree
structures, schema-less JSON representations, and so on) that can be looked
up against a single key or a key/range combination then DynamoDB (or some
other NoSQL store) would likely be the best bet. On the other hand, to have a
well-defined schema for application’s data that can fit well in a relational struc-
ture and the flexibility to query the data in a number of different ways (adding
indexes as necessary of course) is strictly required, then RDS might be a better
solution(answer to RQ1). Our choice in respect of Amazon DynamoDB was
guided by the structure of the dataset in the tables subjects of the analysis.
Such dataset could be easily interpreted as a key-value and since the system’s

63

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 64

migration was about to be done in favor of AWS, DynamoDB has been chosen
for the purpose of the benchmarking analysis.

In the overall considerations, DynamoDB results highly available and sta-
ble against failures thanks to the automatic replication and failover policies.
It shows an excellent scalability and aggregated throughput, although, it guar-
antees the maximum throughput instead of latency, users will not get faster
response if they use low throughput. This means that with a large amount of
users it will not work as fast as it would with fewer users, instead, with few users
it will work as slow as with many. This ”feature” has been built to avoid users
from reaching easily the provisioned throughput by lowering down the latency
in the case they have only fewer users [50].

RDS is also a Managed service, however the use case for both of them is
entirely different. Thus, query speeds in DynamoDB and RDS also depends
upon a lot of different factors as explained in chapter 5. DynamoDB as NoSQL
storage layer is mainly considered for lookup queries (and not Join queries).

Our benchmarking analysis exposed in chapter 5 shows that choosing a
NoSQL database to speed up query times is not always the right chose to be
done(at least with our implementation and tables’ structure). In our case, Dy-
namoDB have not met our expectation. We expected to see its query times to
be faster in fetching records than writing them into the tables, thus, compared
with Amazon RDS, most of the queries performed were slower than the lat-
ter with the exception of queries related to write operations where DynamoDB
unexpectedly jumped up in speed resulting overall faster than RDS. The main
benefit for using DynamoDB as a NoSQL store is that the user gets guaran-
teed read/write throughput at whatever level required without having to worry
about managing a clustered data store. If, for example, the application requires
a thousand reads/writes per second, DynamoDB table can just be provisioned
for that level of throughput and the developer does not really have to worry
about the underlying infrastructure. Moreover, it allows the user to start small
and arrange capacity’s table as long as the requirements increase without being
exposed to downtimes(research question RQ2).

Having said that and looking at the overall picture under another point
of view, taking care of database scalability, management, performance, and
reliability does not cover all the lacks from the functionalities that can be found
in a relational database. In DynamoDB querying data is extremely limited
especially about non-indexed data. Not to have a good support for complex
transactions or complex queries like JOINs could be a big concern for a workload
that requires this range of capabilities even if SQL JOIN operations, for example,
kill performance, especially when is required to aggregate data across such joins.
Thinking at the situation where there are dozens of joins with thousands of
simultaneous users, an RDBMS system would start to fall apart. On the other
hand, in NoSQL databases complex data relations have to be managed on the
code/cache layer and sometimes it can be hard to do. Furthermore, on matter
of data integrity, while the idea of fluid data may be interesting and desirable
to begin with, some applications’ workloads may be better suited if used with
an unchangeable structure. Strong type might save the whole database when a

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 65

little bug attempts to destroy it and in DynamoDB, being schema-less, most of
the time anything that can go wrong, it exactly does(research question RQ3).

Moreover, as explained from Eric Brewer in [42], a system could maintain
only two out of three among consistency, availability and partition-tolerance and
in case of NoSQL systems, generally, consistency is the one that gives up. Most
of the time, the lack of consistency brings to better performance and scalability
but for some kinds of applications and transactions, like the ones involved on
banking services, it could be a real issue(research question RQ4).

One more concern to take into account is the limit in matter of indexes in
DynamoDB. Changing or adding Local Secondary Indexes on-the-fly is impossi-
ble without creating a new table. Global Secondary Indexes creation is available
up to five meaning that if more indexes are required workarounds have to be
implemented in the code. Moreover, once the read/write capacity units are set,
Amazon allows to decrease them only four times per day while there is no limits
of provisioned IOPS in RDS for MariaDB.

Eventually, NoSQL databases are targeted to a specific set of applications
scenarios. They will not and cannot replace RDBMSs, they can address certain
limitations and are a complement to deal with issues such as complexity, per-
formance, and scalability. Once again, the right database to be used should be
chosen according to the data model and dataset to be used with.

6.2 Future work

As this work aimed to analyze the performance testing with just simple queries,
there are several possibilities for further extensions and improvements. One of
the most interesting aspects that could be explored would be the behaviour of
DynamoDB in presence of queries involving multiple tables with JOINs oper-
ations. This would require a precise schema to be implemented, for example,
involving redundancy of data, to test if effectively a NoSQL database can deal
with lack of JOIN’s operator.

Another interesting topic for future works could be the implementation of
our benchmarking analysis on other NoSQL databases besides DynamoDB, like
document stores or column stores presented in subsections 2.6.1.2 and 2.6.1.4.
This would give the opportunity to compare the performance of them with real
world data.

Other further investigations about performance improvements could be made
by adding caching, that in key-value stores seems to be an excellent use case
when running a medium to high volume dataset where data is mostly read.

Moreover, the benchmarking analysis involved in this project could also be
replicated in other clouds solutions like OpenNebula [58] or Microsoft Azure [53]
as long as they provides services for NoSQL databases with similar features of
the ones own by Amazon DynamoDB.

Bibliography

[1] Replicated data management in distributed systems. 1992.

[2] Object-relational dbmss: The next great wave. IBM Redbooks, 1996.

[3] Ims premier. IBM Redbooks, 2000.

[4] Database Management Systems 3nd edition. McGraw-Hill Higher Educa-
tion, 2003.

[5] Bigtable: A distributed storage system for structured data. ACM Trans-
actions on Computer Systems, 26(2), June 2008.

[6] Cassandra: A decentralized structured storage system. Operating Systems
Review, 44(2):35–40, April 2010.

[7] Database System Concepts 6th Edition. McGraw-Hill, January 2010.

[8] Sql and nosql databases. International Journal of Advanced Research in
Computer Science and Software Engineering, 2(8):20–27, August 2012.

[9] Type of nosql databases and its comparison with relational databases. In-
ternational Journal of Applied Information Systems, 5(4), March 2013.

[10] Benchmarking couchbase for interactive applications with high in-memory
data loads. March 2014.

[11] Relational vs. nosql databases: A survey. International Journal of Com-
puter and Information Technology, 03(3):598–601, May 2014.

[12] Database migration from structured database to non-structured database.
International Journal of Computer Applications (ICRTAET 2015), 2015.

[13] Nosql databases: a survey and decision guidance. https://medium.

baqend.com/, August 2016.

[14] Sql versus nosql movement with big data analytics. pages 59–66, December
2016.

66

https://medium.baqend.com/
https://medium.baqend.com/

BIBLIOGRAPHY 67

[15] Geeta Pattun Abdul Haseeb. A review on nosql: Applications and chal-
lenges. International Journal of Advanced Research in Computer Science,
8(1), Jan-Feb 2017.

[16] Veronika Abramova, Jorge Bernardino, and Pedro Furtado. Which nosql
database? a performance overview. Open Journal of Databases(OJDB),
1(2), 2014.

[17] Inc. Amazon Web Services. Amazon aws. https://aws.amazon.com/.

[18] Inc. Amazon Web Services. Amazon ec2. https://aws.amazon.com/ec2/
?nc2=h_m1.

[19] Inc. Amazon Web Services. Boto3. https://boto3.readthedocs.io.

[20] Inc. Amazon Web Services. Amazon dynamodb. http://docs.aws.

amazon.com/amazondynamodb/latest/APIReference/Welcome.html,
2017.

[21] Inc. Amazon Web Services. Local secondary indexes. http://docs.aws.

amazon.com/amazondynamodb/latest/developerguide/LSI.html, 2017.

[22] Inc. Amazon Web Services. Paginating the results. http:

//docs.aws.amazon.com/amazondynamodb/latest/developerguide/

Query.html#Query.Pagination, 2017.

[23] Inc. Amazon Web Services. Partitions and data distribution. http:

//docs.aws.amazon.com/amazondynamodb/latest/developerguide/

HowItWorks.Partitions.html, 2017.

[24] Charles W. Bachman. The programmer as navigator. Communications of
the ACM, 16(11):653–658, November 1973.

[25] Alan Beaulieu. Learning SQL, 2nd Edition. O’REILLY, April 2009.

[26] Paul Beynon-Davies. Database Systems 3rd edition. PALGRAVE
MACMILLAN, 2004.

[27] Alexandru Boicea, Florin Radulescu, and Laura Ioana Agapin. Mongodb
vs oracle – database comparison. pages 330–335, 2012.

[28] E. F. Codd. A relational model of data for large shared data banks. 1970.

[29] E. F. Codd. Further normalization of the data base relational model. Au-
gust 1971.

[30] E. F. Codd. Recent investigations into relational data base systems. April
1974.

[31] E. F. Codd. The relational model for database management: version 2.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

https://aws.amazon.com/
https://aws.amazon.com/ec2/?nc2=h_m1
https://aws.amazon.com/ec2/?nc2=h_m1
https://boto3.readthedocs.io
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/amazondynamodb/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html#Query.Pagination
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html#Query.Pagination
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html#Query.Pagination
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.Partitions.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.Partitions.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.Partitions.html

BIBLIOGRAPHY 68

[32] Oracle Corporation. How mysql uses indexes. https://dev.mysql.com/

doc/refman/5.7/en/mysql-indexes.html, 2017.

[33] Tanmay Deshpande. Mastering DynamoDB. PACKT, August 2014.

[34] Ramez Elmasri and Shamkant Navathe. Fundamentals of Database Sys-
tems. Addison-Wesley Publishing Company, USA, 6th edition, 2010.

[35] Django Software Foundation. Django 1.9.4. https://www.djangoproject.
com.

[36] Django Software Foundation and individual contributors. https://docs.

djangoproject.com/en/1.11/ref/models/instances/, 2005-2017.

[37] Python Software Foundation. socket — low-level networking interface.
https://docs.python.org/2/library/socket.html, 1990-2017.

[38] Python Software Foundation. Time access and conversions. https://docs.
python.org/2/library/time.html, 2017.

[39] The Apache Software Foundation. Cassandra. http://cassandra.

apache.org/.

[40] The Apache Software Foundation. Couchdb. http://couchdb.apache.

org/.

[41] Shahram Ghandeharizadeh, Jason Yap, and Hieu Nguyen. Strong consis-
tency in cache augmented sql systems. pages 181–192, 2014.

[42] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, June 2002.

[43] Github. Titan. http://titan.thinkaurelius.com/.

[44] Venkat N. Gudivada, Dhana Rao, and Vijay V. Raghavan. Nosql systems
for big data management. pages 190–197, 2014.

[45] Amazon Web Services Inc. Amazon dynamodb. https://aws.amazon.

com/documentation/dynamodb/.

[46] Amazon Web Services Inc. Amazon relational database service. http:

//docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html.

[47] Maria Indrawan-Santiago. Database research: Are we at a crossroad? re-
flection on nosql. pages 45–51, 2012.

[48] Charles Kozierok. The TCP/IP Guide: A Comprehensive, Illustrated In-
ternet Protocols Reference. No Starch Press, San Francisco, CA, USA,
2005.

https://dev.mysql.com/doc/refman/5.7/en/mysql-indexes.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-indexes.html
https://www.djangoproject.com
https://www.djangoproject.com
https://docs.djangoproject.com/en/1.11/ref/models/instances/
https://docs.djangoproject.com/en/1.11/ref/models/instances/
https://docs.python.org/2/library/socket.html
https://docs.python.org/2/library/time.html
https://docs.python.org/2/library/time.html
http://cassandra.apache.org/
http://cassandra.apache.org/
http://couchdb.apache.org/
http://couchdb.apache.org/
http://titan.thinkaurelius.com/
https://aws.amazon.com/documentation/dynamodb/
https://aws.amazon.com/documentation/dynamodb/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html

BIBLIOGRAPHY 69

[49] Neal Leavitt. Will nosql databases live up to their promise? Computer,
43(2):12–14, February 2010.

[50] Tonglin Li, Xiaobing Zhou, Kevin Br, and Ioan Raicu. Distributed key-
value store on hpc and cloud systems, 2013.

[51] LinkedIn. Project voldemort. http://www.project-voldemort.com/.

[52] MariaDB. About xtradb. https://mariadb.com/kb/en/mariadb/

about-xtradb/, 2017.

[53] Microsoft. Microsoft azure. https://azure.microsoft.com, 2017.

[54] Inc. MongoDB. Mongodb. https://www.mongodb.com.

[55] Inc. Neo Technology. Neo4j. https://neo4j.com/.

[56] Jaroslav Pokorny. Nosql databases: A step to database scalability in web
environment. pages 278–283, 2011.

[57] Dan Pritchett. Base: An acid alternative. Queue, 6(3):48–55, May 2008.

[58] OpenNebula Project. Opennebula. https://opennebula.org/, 2017.

[59] M. R. Patra R. P. Padhy and S. C. Satapathy. Rdbms to nosql: Reviewing
some next-generation non-relational database’s. International Journal of
Advances in Engineering, Science and Technology, 11(1015):15–30, 2011.

[60] REDISLABS. Redis. https://redis.io/.

[61] Stuart Sechrest. An introductory 4.3bsd interprocess communication tuto-
rial. Unix Programmer’s Supplementary Documents, 1, April 1986.

[62] Werner Vogels. Eventually consistent. 2008.

[63] Adrienne Watt. Database Design. B.C. Open Textbook project, October
2012.

http://www.project-voldemort.com/
https://mariadb.com/kb/en/mariadb/about-xtradb/
https://mariadb.com/kb/en/mariadb/about-xtradb/
https://azure.microsoft.com
https://www.mongodb.com
https://neo4j.com/
https://opennebula.org/
https://redis.io/

Appendix A

Standard Deviation on
measurements

Figure A.1

Standard Deviation on Write
operations

Figure A.2

Standard Deviation on Delete
operations

Figure A.3

Standard Deviation on Update
operations

Figure A.4

Standard Deviation on Read
operations

70

Appendix B

Measurement Tables

Table Size Test 1 Test 2 Test 3 Test 4 Test 5
Connection 33.829152 1.904969 1.882047 1.886137 1.923552
TCP ping 0.606203 1.139283 0.637483 1.196694 1.185750
RDS Get 2.193022 2.171395 2.130826 2.112163 2.111112
Dynamo Get 5.934749 4.802551 5.147996 5.105661 5.329197
Dynamo Batch 6.123057 4.939521 5.237638 4.959187 6.658048
Query 6.179594 4.90613 5.117563 4.775432 5.834731
Scan 6.092347 33.379617 33.311775 33.338368 33.346722

Table B.1: Connection times5.1

Table Size PutItem SaveRDS BatchWrite BulkCreateRDS
100 thousands 8.35632 14.3593 33.84644032 84.5713289
1 million 7.08584 16.4825 33.72320054 94.84135521
10 millions 7.35798 15.3919 34.69473784 101.4228945
75 millions 7.6677 20.6777 37.5436328 115.0309117

Table B.2: Query times of write operations5.4

Table Size UpdateRDS UpdateDynamo
100 thousands 4.072516951 5.120555672
1 million 3.845012568 5.077892324
10 millions 4.014368688 5.003209089
75 millions 4.056824424 5.957543907

Table B.3: Query times of update operations5.5

71

APPENDIX B. MEASUREMENT TABLES 72

Table Size DeleteItemDynamo DeleteItemRDS BatchDeleteDynamo
100 thousands 5.13576 4.346059582 8.441925049
1 million 5.5659 4.687962605 4.945039749
10 millions 5.7765 5.232647829 5.028963089
75 millions 6.37653 4.749733263 5.138158798

Table B.4: Query times of delete operations5.6

Table Size RDS Get GetItem BatchGet Query
100 thousands 2.86985 4.47293 5.47253 4.57457
1 million 2.36627 5.66778 6.23182 4.47119
10 millions 2.27676 4.55873 4.44165 4.349
75 millions 2.2687 4.50455 4.50312 4.42043

Table B.5: Query times of read operations5.3

Table Size RDS Get GetItem BatchGet Query Scan
100 thousands 2.86985 4.47293 5.47253 4.57457 70.2685
1 million 2.36627 5.66778 6.23182 4.47119 67.9173
10 millions 2.27676 4.55873 4.44165 4.349 72.5129
75 millions 2.2687 4.50455 4.50312 4.42043 99.7251

Table B.6: Read operation measurements with Scan5.2

Table Size IndexRDS IndexDynamo
100 thousands 0.42135403 900.55684210
1 million 0.28062441 921.59544002
10 millions 0.28042024 921.41932658
75 millions 0.29035418 908.36303211

Table B.7: Query times of read operations on index5.7

Table Size IndexRDS IndexDynamo
100 thousands 0.57958679 671.15132658
1 million 0.49703823 644.91465506
10 millions 0.45861939 627.17970174
75 millions 0.44604116 642.31136806

Table B.8: Query times of read operations on index with conditions5.8

	Introduction
	Scope of the Work
	Research Questions
	Structure of the report
	Useful used tools

	Background and Literature Review
	Related Work
	Overview of RDBMS
	The Relational model
	The ACID properties
	SQL Language
	Amazon RDS for MariaDB

	Sharding
	Replication
	Eventual & Strong consistency
	NoSQL Databases
	NoSQL data models
	The CAP Theorem
	Query language
	Overview of Amazon DynamoDB

	Framework design and DB engines
	How do DBs store data?
	Amazon RDS for MariaDB
	Amazon DynamoDB

	Database manipulation
	Insert operation
	Update operation
	Delete operation
	Read operation

	Indexing
	MariaDB
	DynamoDB

	Join operations
	Highlights

	Benchmarking Framework Implementation
	Caching
	API level(Django Framework)
	Operation's definitions
	Django models
	Boto 3 SDK for DynamoDB
	Database Tables
	Indexes
	Items' types

	DB Connection time, logic behind the schema
	Used queries
	TCP ping

	Benchmarking operators

	Discussion of analysis
	Connection measurements
	Key metrics
	Speed and throughput
	Scalability

	Conclusions and future work
	Conclusions
	Future work

	Standard Deviation on measurements
	Measurement Tables

		2017-07-19T15:50:13+0200
	Adam Belloum

