
Master Thesis

Design and Implementation of a 5G
Ray-Tracing Simulation Pipeline for

Dataset Generation

by

Chris Benhard Armanda
(VUnetID: car100 / UvA Studentnummer: 15998034)

First supervisor: dr. A. S. Z. Belloum
Daily supervisor: Z. Yang, MSc

Second reader: dr. N. Kokash

August 22, 2025

Submitted in partial fulfillment of the requirements for
the joint UvA-VU degree of Master of Science in Computer Science

“The Road goes ever on and on,
Down from the door where it began.
Now far ahead the Road has gone,

And I must follow, if I can,
Pursuing it with eager feet,

Until it joins some larger way
Where many paths and errands meet.

And whither then? I cannot say.”

—J. R. R. Tolkien, The Road Goes Ever On

ii

Abstract

In this work, we investigated a challenge faced by mobile operators as they

upgrade their radio infrastructures to support 5G New Radio (5G NR) tech-

nology. We propose to address the challenge of predicting 5G NR coverage

in diverse environments through a simulation pipeline based on Ray Tracing.

The system is to support varied geographical datasets, from 2D tile maps to

detailed 3D digital twins, producing numerical arrays that characterise 5G sig-

nal propagation under different transmitter configurations and environmental

conditions.

The pipeline should be capable of generating thousands of datasets, enabling

its integration into a larger Machine Learning (ML) training workflow for signal

quality prediction. The research also examines potential improvements to the

pipeline and to the third-party dependencies used in its development.

iv

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Research Questions . 1

1.2 Work Structure . 3

2 Background 5

2.1 High-Level Architecture of 5G Radio Network 6

2.2 Radio Propagation Effects and Simulation Challenges in 5G RAN 6

2.3 Challenges in Site Planning and RF Surveys 9

2.4 Active Simulation in Network Digital Twin 9

3 Overview of Third-Party Dependencies 11

3.1 Nvidia Sionna . 11

3.2 Distributed ASCI Supercomputer-6 (DAS-6) 12

3.3 3D Data Sources and Scene Preparation . 12

3.3.1 3DBAG . 13

3.3.2 Mitsuba 3 . 13

4 Implementation 15

4.1 Pipeline Architecture . 15

4.2 Producer Node . 17

4.3 Consumer Nodes . 17

4.4 Stages Performed by the Consumer Nodes 17

4.4.1 Input Parsing . 18

4.4.2 Geometric Extraction and Metadata Creation 19

4.4.3 3D Conversion and Assignment of Radio Materials 19

i

CONTENTS

4.4.4 Signal Simulation . 21

4.4.5 Ground Truth Creation . 22

5 Analysis of Pipeline Prototype Development 25

5.1 The Alpha-version . 25

5.1.1 Batch-oriented File Processing . 25

5.1.2 Monolithic Execution Model . 26

5.1.3 Reliability and Fault Tolerance Issues 27

5.1.3.1 Segmentation Faults Caused by CJIO 27

5.1.3.2 Zombie Processes . 28

5.1.3.3 Process Recovery . 28

5.2 The Kafka-version . 29

5.2.1 Transition to File Streaming . 29

5.2.2 Distributed Processing . 29

5.2.3 Fault Tolerance and Recovery Mechanisms 30

5.3 Ansible for Portability . 30

5.4 Comparative Summary . 31

6 Analysis of External Dependencies 33

6.1 Evaluation of Input Dataset Quality . 33

6.1.1 Structural Coverage of 3DBAG and Implication for Telecommunica-

tion Research . 33

6.1.2 OpenStreetMap as Alternative to 3DBAG as Input 34

6.1.3 Coverage and Completeness . 34

6.1.4 Missing Terrain Information . 35

6.2 CJIO as File Converter . 36

6.3 Sionna as Simulator Engine . 37

7 Future Work 41

7.1 Upgrading Dependencies . 41

7.2 Input Format Interoperability . 42

7.3 Input Source Interoperability . 42

7.3.1 Outdoor Scenes . 43

7.3.2 Indoor Scenes . 43

7.4 Input Transience . 44

7.5 Incorporating Database as Stage Progress Tracker 45

ii

CONTENTS

7.6 Pipeline Packaging for Reusability and Reproducibility 46

8 Discussion 47

9 Related Work 53

9.1 Simulation Approaches in Ray Tracing Prediction 53

9.2 Simulation Approaches in System-Level Telco Simulations 55

9.3 Simulation Approaches in Urban Scenarios Simulation 56

9.4 Simulation Approaches in Distributed Physics 57

10 Conclusion 59

References 61

iii

CONTENTS

iv

List of Figures

4.1 Satellite view and 3D rendering comparison of UvA Science Park 20

4.2 Sample of RSS and SINR coverage maps . 22

4.3 Sample of satellite view image and 2D projection slice 23

6.1 3D rendering comparison of Erasmus Bridge in Rotterdam 34

6.2 3D rendering of contour comparison of La Paz, Bolivia 36

6.3 Composite of figures generated when simulating mouth of Rijnkanaal area . 39

v

LIST OF FIGURES

vi

List of Tables

5.1 Architecture comparison of Alpha and Kafka-versions of the pipeline prototype 31

8.1 Pipeline architecture considerations . 48

vii

LIST OF TABLES

viii

1

Introduction

Today, mobile operators worldwide are rapidly increasing their 5G coverage. The deploy-

ment of the technology requires the construction of cell tower sites, where the operators will

install radio equipments providing signal coverage for their end customers. Before the op-

erators can proceed with the construction stage, they first have to plan the radio coverage

design by asking some important questions: Which 5G-compatible frequency should the

radio equipment transmit? Are there physical obstacles that may degrade the transmitted

signal quality? Are the planned signal spectrum available in the area without the risk of

crosstalk? In most cases, these questions can be definitively answered only by conducting

site survey.

However, site surveys are costly and manpower-intensive. This is especially true for

planned sites in remote areas, such as isolated island resorts or mountainous regions. For

faster decision making during the planning and design stage, mobile operators may leverage

simulation tools before deciding whether a physical site survey is required. Given accurate

geodesic maps, a simulation tool can predict the behaviour of transmitted signal along

with the important indicators, such as signal loss and Line-of-Sight (LoS).

1.1 Research Questions

The objective of this work is two-pronged. Firstly, we will study the generated datasets

to understand what factors would affect signal transmission the most, so as to create

a reliable dataset to improve upon the numerical analysis-based tools available in the

market. Secondly, we will also benchmark the available tools in a distributed computing

environment, by examining the usage of compute resources such as CPU, memory usage,

1

1. INTRODUCTION

and the computing efficiency rates. To guide us in our objectives, we attempt to address

the following research questions:

• RQ1: What considerations should be taken into account in developing a dataset-

generating pipeline for the purposes of academic research, but also extendable for use

in the telecommunications industry?

The pipeline should have the capability to cater a wide variety of stakeholders in the

5G technology. The datasets to be produced by the pipeline will be geared for further

academic research by the end of the project, but it should also lay the foundations for

a functional software to be utilised by mobile operators to assist them in planning

their future state of their network infrastructure. Since multiple stakeholders will

introduce their own business objectives with their own constraints, we will document

all of our design and architectural decisions in the pipeline’s development lifecycle,

after which we will analyse what consequences are produced by taking each design

decision.

• RQ2: To what extent can ML models and Network Digital Twin (NDT) platforms be

effectively combined to leverage their complementary strengths for 5G network plan-

ning and troubleshooting, and what criteria should guide such integration?

Telecommunication standardisation bodies, such as ITU-T and 3GPP, have proposed

integrating ML techniques into Network Digital Twin (NDT) platforms. While NDTs

can continuously monitor network performance, their effectiveness depends on the

quality of the datasets they consume. NDT platforms with simulation capabilities

can generate physically accurate data, but often at high computational cost. ML

models, once trained, can produce results quickly but risk reduced accuracy in un-

familiar scenarios. This research examines whether combining the two approaches

can generate datasets that are both representative and trustworthy, and how this

trustworthiness can be assessed for use in automated decision-making.

• RQ3: What gaps exist in the effort of accurately capturing real-world environmental

and operational factors to generate accurate datasets, and what are the implications

of these gaps for downstream modelling and analysis?

The propagation of electromagnetic signals in urban and rural environments is in-

fluenced by a multitude of interacting variables, such as atmospheric conditions,

obstructions, and material properties. These variables can change unpredictably

2

1.2 Work Structure

over time and space. This question seeks to identify which aspects of the physi-

cal and operational environment are most critical to capture, what gaps persist in

current simulation and measurement techniques, and how those gaps impact the

interpretability, trustworthiness, and operational relevance of generated datasets.

1.2 Work Structure

This work is structured as follows. In Chapter 2, we will provide the necessary background

information on the 5G signal propagation simulation tools and the ML techniques used in

this work. In Chapter 3, we will describe the methodology used to conduct our experiments,

including the simulation setup, data collection, and analysis techniques. In Chapter 4, we

will present the results of our experiments, including a comparison of the simulation tools

and an analysis of the key parameters affecting signal propagation. In Chapter ??, we will

discuss the potential threats to the validity of our findings and how we mitigated them. In

Chapter 9, we will review related work in the field of 5G signal propagation simulation and

ML techniques. In Chapter 8, we will discuss the implications of our findings for mobile

operators and the telecommunications industry as a whole.

Our work aims to provide a comprehensive understanding of the current state of 5G

signal propagation simulation tools and their potential for improving the planning and

design of mobile networks. As such, discussions on other aspects to 5G technologies will

be omitted, as they are not directly related to our research questions. The topics that

this work will not discuss include the 5G backhaul network and packet core network. We

will focus on the ray-tracing simulation tools and the ML techniques that can be used to

improve the accuracy and efficiency of these simulations. We will also discuss the potential

for hybrid approaches that combine traditional simulation methods with ML techniques to

leverage their complementary strengths. We hope that our findings will contribute to the

ongoing development of more efficient and effective tools for mobile network planning and

design, ultimately leading to better service quality for end customers.

3

1. INTRODUCTION

4

2

Background

The 5th Generation (5G) of mobile cellular network systems is being actively deployed by

Mobile Network Operators (MNOs) worldwide. Compared to its predecessors, 5G offers

significantly lower latency and higher data throughput, enabling new use cases such as

the Industrial Internet of Things (IIoT) and large-scale machine-to-machine communica-

tion. To facilitate widespread adoption, the 3rd Generation Partnership Project (3GPP)

standardised Frequency Range 1 (FR1), which overlaps with the frequency bands pre-

viously allocated for 4G (LTE). This allows MNOs to initially deploy 5G using existing

infrastructure, ensuring a smoother migration path and reducing capital expenditure.

However, co-deployment of 4G and 5G services within the same spectrum introduces

trade-offs. Shared use of FR1, spanning 410 MHz to 7125 MHz, increases the risk of inter-

ference and spectral congestion. Moreover, physical constraints in these lower frequency

bands limit the achievable data rates and latency improvements promised by 5G. To over-

come these limitations, 3GPP introduced Frequency Range 2 (FR2), which includes bands

from 24.25 GHz to 71 GHz (1). These higher-frequency signals fall in the millimeter-wave

(mmWave) range, characterised by shorter wavelengths and larger available bandwidth.

mmWave is a key enabler of ultra-low-latency communication and multi-gigabit-per-

second data rates. However, it also introduces new challenges. Due to their short wave-

lengths, mmWave signals experience greater path loss and are more susceptible to attenua-

tion from buildings, foliage, and atmospheric conditions. As a result, mmWave deployments

require a denser infrastructure of small cells and base stations to maintain reliable coverage.

Before deploying such infrastructure, MNOs must conduct detailed site surveys to as-

sess the radio environment, including potential obstacles and diffraction patterns. These

surveys are traditionally performed in the field and involve considerable operational costs,

5

2. BACKGROUND

particularly in remote or urban-dense regions. To reduce planning overhead and accel-

erate rollout, operators increasingly rely on simulation-based approaches. By leveraging

high-resolution digital maps and propagation models, signal simulators allow operators to

estimate coverage, signal degradation, and line-of-sight availability before any physical de-

ployment occurs. This thesis investigates such simulation tools in the context of generating

datasets for training machine learning models for signal quality prediction.

2.1 High-Level Architecture of 5G Radio Network

All mobile devices used by end subscribers to a MNO connect wirelessly via the MNO’s

Radio Access Network (RAN). In a 5G network, the base station is referred to as a gNodeB.

Each gNodeB typically comprises multiple radio units operating on frequencies standard-

ised by 3GPP. Wireless communication between user devices and the gNodeB is bidirec-

tional: data sent to user equipment is termed downlink (DL), while data sent from the

user device back to the network is called uplink (UL).

A single gNodeB generally covers three sectors, each serving a cell. These cells are often

conceptualised as 120◦ arcs dividing the gNodeB’s coverage area into three roughly circular

segments. The gNodeB may transmit across multiple frequency bands simultaneously. The

range and behaviour of these transmissions are frequency-dependent: signals in higher

bands (e.g., mmWave) suffer greater path loss and therefore cover shorter distances. This

introduces an engineering and economic trade-off: achieving wide-area mmWave coverage

would require deploying many additional gNodeBs. A common approach to mitigate this

limitation is to deploy gNodeBs capable of dual-band operation using both FR1 and FR2

frequencies (2). This allows devices located outside the mmWave range to fall back to FR1,

albeit with lower data rates and higher latency.

2.2 Radio Propagation Effects and Simulation Challenges in
5G RAN

This section outlines the physical layer phenomena relevant to signal propagation in 5G

networks and their implications for simulation and coverage modelling. Since our focus is

on the radio access side, backhaul and core network components are excluded.

Radio Frequency (RF) communication planning involves estimating the signal’s electro-

magnetic power at both the transmitter and receiver ends. During its airborne transmis-

sion, a signal undergoes various propagation effects that reduce its power before reaching

6

2.2 Radio Propagation Effects and Simulation Challenges in 5G RAN

the receiver. These include reflection and diffraction around obstacles, scattering from

rough surfaces, and refraction due to atmospheric inhomogeneity. Collectively, these ef-

fects result in path loss, i.e., degradation of the signal’s power as it travels through the

environment.

To account for these effects, RF engineers develop what is known as a link budget. A

link budget estimates whether the received signal power exceeds the minimum required for

successful demodulation and decoding. A simplified link budget equation is shown below:

PRx = PTx +GTx − LTx − LFS − LM +GRx − LRx

Here, PTx is the transmit power, and PRx is the received power. The transmitter’s

antenna introduces gain GTx and internal loss LTx, often due to cabling or impedance

mismatches. LFS represents free-space path loss, which dominates in open environments

and follows an inverse square law relative to distance. LM captures miscellaneous losses

including building penetration, diffraction, and foliage attenuation. On the receiver side,

GRx is the antenna gain and LRx is any internal loss before signal processing. All power

gains and losses in this equation are in their logarithmic forms, defined by the units of

decibels (dB).

Calculating path loss is not arbitrary. A reliable model should therefore take into account

the behaviour of the transmitted signal. A commonly used theoretical model for estimating

free-space path loss is the Friis transmission equation:

PRx

PTx
= GTxGRx

(
λ

4πd

)2

Here, λ is the wavelength of the transmitted signal, and d is the distance between trans-

mitter and receiver. This expression assumes ideal, line-of-sight (LoS) conditions with no

reflections or obstructions. In practice, this model defines the baseline for free-space loss

(LFS) in the link budget. Since wavelength λ is inversely proportional to frequency f ,

higher-frequency signals (e.g., FR2/mmWave) experience greater path loss over the same

distance compared to lower-frequency signals (e.g., FR1/sub-6 GHz). This relationship

imposes a strong frequency dependence on coverage planning and is a key factor in the

decision to deploy multi-band 5G systems.

The miscellaneous losses as represented by the symbol LM in the link budget equation is

the accumulation of all other losses that occur during transmission. These losses are highly

dependent on the environment and the specific deployment scenario. In urban environ-

ments, buildings can cause significant diffraction and reflection, leading to additional path

7

2. BACKGROUND

loss. To estimate the effects of the building materials against the signal, simulators often

based the calculations using models such as ITU-R P.1238, which provides a framework for

estimating the diffraction loss due to buildings and other obstacles. This model considers

the height, width, and material properties of the buildings, as well as the angle of incidence

of the incoming signal. Another model that simulators use is the COST 231 model, which

is based on empirical measurements and provides a more accurate estimate of the path

loss in urban environments. This model takes into account the frequency of the signal, the

distance between the transmitter and receiver, and the height of the buildings in the area.

The development of 5G signal standardisation, which evolved from 4G Long-Term Evo-

lution (LTE) standards, utilised a modulation technique called Orthogonal Frequency Di-

vision Multiple Access (OFDMA). This technique divides the available bandwidth into

multiple subcarriers, each carrying a portion of the data. The physics behind OFDMA

provides additional challenge in estimating path losses, as the signal is transmitted over a

wide range of frequencies. This means that the path loss can vary significantly depending

on the frequency of the subcarrier. The mmWave frequency range, for example, is partic-

ularly susceptible to scattering and signal fading due to its shorter wavelengths. This can

lead to significant variations in the received signal strength, especially in urban environ-

ments with many obstacles. To account for these variations, simulators often use models

such as the ITU-R P.1411 model, which provides a framework for estimating the path loss

in urban environments based on empirical measurements. This model takes into account

the frequency of the signal, the distance between the transmitter and receiver, and the

height of the buildings in the area.

In rural areas, foliage and terrain can introduce further attenuation. The modelling of

these losses is complex and often requires empirical measurements or advanced simulation

techniques. The ITU-R P.833 model is commonly used to estimate the effects of foliage on

signal propagation. This model considers the type and density of vegetation, as well as the

frequency of the signal. The model provides a framework for estimating the attenuation

caused by foliage, which can be significant in rural areas with dense vegetation.

Accurately modelling the individual components of this link budget is critical for simula-

tion tools aiming to reflect realistic 5G coverage in urban, rural, or industrial deployments.

It is especially important for the ML models to take into account the various factors of

power losses introduced by the transmission distance and environment-specific causes. In

particular, ray-tracing simulators must account for site-specific propagation factors, which

vary significantly depending on frequency band (e.g., FR1 vs FR2), antenna configuration,

and terrain complexity.

8

2.3 Challenges in Site Planning and RF Surveys

2.3 Challenges in Site Planning and RF Surveys

The deployment of 5G networks requires careful planning and site surveys to ensure optimal

coverage and performance. However, traditional RF surveys can be time-consuming and

costly, particularly in urban environments where access to rooftops and other elevated

locations may be limited. According to a survey conducted by the United States Federal

Communications Commission (FCC) in 2023, the average cost of an in-situ survey of

potential radio station in the contiguous United States site can range from US$ 945 to

US$ 25,000. This range may increase up to 50% for remote areas outside the contiguous

United States, such as Alaska, Hawaii, and Guam (3). A trained ML model can help

reduce the time and cost of RF surveys by predicting the signal quality and coverage based

on data, either existing or obtained from simulations and open-sourced datasets. This can

help MNOs identify the best locations for new base stations and optimise their existing

infrastructure.

Simulation sweeps can be used to generate datasets for training ML models. These sweeps

involve simulating the signal propagation in a specific area using a ray-tracing simulator,

which takes into account the terrain, buildings, and other obstacles with slight granular

differences to parameters such as antenna height, frequency, and power. The simulator

generates a large number of samples, each representing a different scenario, which can

be used to train the ML model. By using simulation sweeps, MNOs can generate large

datasets without the need for extensive field measurements. This can significantly reduce

the time and cost of RF surveys and improve the accuracy of the predictions made by the

ML model.

2.4 Active Simulation in Network Digital Twin

Network Digital Twin (NDT) are systems designed to provide virtualised, software-based

representations of physical communication networks. Traditionally, these systems relied

on passive telemetry collection from deployed infrastructure to track performance metrics

and support diagnostics. However, the developments of 5G technologies and the research

on 6G technologies have extended the role of NDTs to include predictive and prescriptive

capabilities.

Standardisation bodies such as the ITU and the European Telecommunications Stan-

dards Institute (ETSI) have proposed incorporating Machine Learning (ML) techniques

9

2. BACKGROUND

within NDT architectures. These techniques enable estimation of key performance indi-

cators (KPIs), such as signal strength or throughput, at locations or times where direct

telemetry is unavailable. In this capacity, the NDT evolves into a tool for forward planning

and optimisation, supplementing real-time measurements with inference-based projections.

Rather than relying solely on data collected from operational networks, synthetic datasets

generated through large-scale signal propagation simulations can also be used to train ML

models. These simulations model signal degradation across varying terrains, frequencies,

and deployment scenarios, and offer fine-grained control over transmitter parameters such

as height, power, and antenna orientation. Once trained, the resulting ML models can ap-

proximate signal quality metrics in previously unsurveyed areas, helping operators identify

potential coverage gaps or capacity bottlenecks prior to deployment.

This approach extends the functional range of NDTs beyond traditional monitoring,

enabling the estimation of radio conditions in spatial regions not yet instrumented with

physical infrastructure. Combined with digital mapping data and RF propagation models,

simulation-enhanced NDTs provide a low-cost method to support RF planning, assess

environmental impact on signal quality, and reduce the need for costly field surveys in

early-stage deployment planning.

10

3

Overview of Third-Party
Dependencies

This chapter outlines the experimental setup of the pipeline, including some descriptions on

the pipeline’s third-party dependencies such as the simulation platform and input dataset.

We also describe the computing environments where the pipeline was developed and tested,

along with the key configuration parameters used in the simulations.

3.1 Nvidia Sionna

Sionna is an open-source library developed by Nvidia Labs for simulating 5G signals and

channels. Sionna includes channel models based on stochastic and deterministic ray trac-

ing, as well as PHY-layer simulation modules for Multi-Input and Multi-Output (MIMO)

radio communications, OFDM, and Low-Density Parity Check (LDPC) decoding (4).

Sionna is implemented in Python using TensorFlow, thus enabling hardware acceleration

via CUDA and simplifies integration with deep learning models. Sionna takes 3D models

of structures and buildings, combined with terrain and foliage data as input to generate

realistic channel models. In our pipeline, Sionna is the main signal ray-tracing simulation

engine, to which we repackaged the input datasets through multiple processing stages to

fit Sionna’s requirements.

During the development phase of the pipeline, Sionna has undergone several version

upgrades. At the start of this thesis project, Sionna was publicly released with the version

number v0.19.2. Since the major version number was indicated with a 0, it is presumably

intended to be a Beta version. At the time of writing this report, the developers of Sionna

has released v1.1.0, which consequently deprecates some of the API functions used in our

11

3. OVERVIEW OF THIRD-PARTY DEPENDENCIES

pipeline. For the purposes of this project, we decided to persist with developing the pipeline

around the Beta version of Sionna to limit feature creep. The consequences of this design

decision will be further explored in the Evaluation chapter.

3.2 Distributed ASCI Supercomputer-6 (DAS-6)

DAS-6 is a cluster of distributed computing infrastructure maintained by the Advanced

School for Computing and Imaging (ASCI) in the Netherlands (5). It is designed to support

high-performance computing (HPC) applications and provides a scalable environment for

running simulations and data-intensive tasks. Due to the high computational requirements

of repeated 3D ray-tracing simulations, DAS-6 is a suitable environment for executing

large-scale parameter sweeps with Sionna. In our experiments, we utilised the DAS-6 node

hosted by the University of Amsterdam, with the following specifications:

• CPU: AMD EPYC 7402P 2.7 GHz 24-Core Processor

• RAM: 128 GB

• GPU: NVIDIA A10

In our prototype development, DAS-6 was the chosen environment where we mainly

performed our testing and execution runs. DAS-6 architecture of separation between head

node and GPU-equipped worker nodes enabled us to perform some testing for scalability

and flexible resource detections.

3.3 3D Data Sources and Scene Preparation

To simulate signal propagation in realistic urban environments, we must first assemble

accurate 3D models of the physical surroundings. This process involves sourcing building

and terrain data from public geospatial datasets, followed by preparing the data using

specialised tools to ensure compatibility with the simulation framework. This section

introduces the key datasets and software tools used to construct and preprocess urban

scenes. The full pre-processing and simulation workflow is described in detail in chapter 4.

12

3.3 3D Data Sources and Scene Preparation

3.3.1 3DBAG

3DBAG is a project maintained by the 3D Geoinformation Research Group at the Delft

University of Technology, providing datasets and 3D models of buildings and structures in

the Netherlands (6). Among 3DBAG’s data sources was the Basisregistratie Adressen en

Gebouwen (BAG), which is the publicly available Dutch national addresses and buildings

register. The dataset includes detailed 3D models of urban environments, offering a source

of building geometries with a varying degrees of Levels of Detail (LoD), namely LoD 1.2,

1.3, and 2.2. We chose to run all simulations during this project by standardising all input

datasets to LoD 2.2. To scale the project, 3DBAG has divided the map of the Netherlands

into smaller tiles, so that the user may download only the tiles corresponding to their

areas of interest. After processing the geographic data to suit Sionna’s compatibility, we

can use Sionna to simulate the propagation of signals in urban areas, taking into account

the effects of buildings on signal strength and quality.

3.3.2 Mitsuba 3

Mitsuba 3 is a physically-based differentiable rendering system designed for high-fidelity

simulation of light transport in complex scenes (7). It supports various ray-tracing algo-

rithms and material models, enabling accurate simulation of surface interactions such as

reflection, refraction, and scattering. Unlike rasterization-based systems such as Tensor-

Flow Graphics, which prioritize speed and real-time visualization, Mitsuba’s ray-tracing

approach is better suited for simulating the physical behaviour of waves, making it more

appropriate for modeling electromagnetic wave propagation at high frequencies (8). This

distinction is crucial, since rasterization determines visibility per pixel by projecting 3D

geometry onto a 2D screen, often ignoring indirect light paths. Ray tracing simulates the

physical travel of light or waves through space, tracing rays from the source and capturing

interactions with surfaces in a physically plausible manner.

In this project, Mitsuba is used as a plugin within Blender to export annotated 3D scenes

in a format that Sionna’s ray tracer can parse. Specifically, Mitsuba generates auxiliary

metadata files (also commonly referred to as sidecar files) describing the relationships be-

tween meshes, materials, and scene geometry. These sidecar files are essential for ensuring

that Sionna interprets object boundaries and surface properties correctly, thereby enabling

realistic urban channel simulations that take into account occlusions, multipath effects,

and diffraction.

13

3. OVERVIEW OF THIRD-PARTY DEPENDENCIES

14

4

Implementation

This chapter presents the implementation of our pipeline, from processing raw geographic

and building data to preparing simulation-ready 3D environments for ray tracing. The

pipeline is designed around a distributed Producer–Consumer architecture, enabling par-

allel execution of tasks across multiple nodes while maintaining precise control over stage

dependencies and job tracking.

4.1 Pipeline Architecture

The core of the implementation follows a Producer-Consumer model, coordinated through

Apache Kafka, which serves as the message broker between processing stages. This design

ensures:

• Scalability — Additional consumer nodes can be deployed to handle larger work-

loads without altering the pipeline logic.

• Fault isolation — Failures in one stage do not halt the entire pipeline; instead, they

are reported and can be retried independently.

• Stage decoupling — Each stage operates on its own queue, enabling independent

scaling and flexible orchestration.

All stages exchange status updates via Kafka topics. A sample of such message is shown

below.

15

4. IMPLEMENTATION

{
"<tile-id>": {

"status": "success" | "failed",
"stage": 2,
"error": "Exception message here"

}
}

Messages with ‘"status": "failed"‘ also include the last thrown exception for debugging

purposes. At the start of a run, the Producer generates a Manifest.json, a dictionary

listing all detected input files along with their current processing stage. The manifest is

updated whenever a stage reports completion, and it provides both a recovery point for

interrupted runs and a real-time overview of pipeline progress.

The pipeline is divided into sequential stages, each consuming the output of its prede-

cessor and producing input for the next. The roles of the stages as listed below are further

expanded in section 4.4. In the current architecture, the pipeline comprises of 5 stages:

1. Stage 1 — Input Parsing: Checks input file integrity and normalises metadata

for downstream processing.

2. Stage 2 — Geometric Extraction: Extracts and crops CityJSON tiles, preserving

the original EPSG:7415 coordinates for spatial consistency.

3. Stage 3 — 3D Conversion & Assignment of Radio Materials: Converts

intermediate CityJSON to OBJ format, applies ITU-compatible material mapping,

and exports Mitsuba-compatible XML with corresponding PLY meshes.

4. Stage 4 — Signal Simulation: Runs Sionna ray-tracing simulations and outputs

SINR, path loss, and coverage maps.

5. Stage 5 — Ground Truth Creation: Produces images for ground truth baseline

comparison for downstream ML training pipeline. The images consist of 2D sliced

projection of the tile and satellite view of the tile.

16

4.2 Producer Node

4.2 Producer Node

The Producer is the control point for initiating jobs, assigning work to consumers, and

managing the manifest. Its responsibilities include:

• Input discovery — Scans the input directory for valid raw files and records them

in Manifest.json.

• Queue management — Publishes work items to the appropriate Kafka topic for

the next stage.

• Progress tracking — Updates the manifest upon receiving ‘"success"‘ messages

from consumers, or logs errors upon ‘"failed"‘ messages.

For example, when tile nl-3dbag-12345 completes Stage 1 successfully, the Producer:

1. Updates the manifest to mark Stage 1 as complete.

2. Places the tile into the Stage 2 queue.

4.3 Consumer Nodes

Each consumer node processes messages from its assigned stage’s Kafka topic. Tasks vary

depending on the stage (see section 4.4), but all consumers share:

• A loop for retrieving jobs from the Kafka topic.

• A try–except block for task execution, reporting success or failure.

• Emission of a completion message back to the Producer’s status topic.

Consumers are stateless with respect to pipeline history; they operate only on the files

and metadata available to them when the job arrives. This design reduces complexity and

makes it easier to replace or scale stages independently.

4.4 Stages Performed by the Consumer Nodes

In the following subsections, we detail the tasks assigned to each stage of the pipeline,

including their inputs, processing steps, and expected outputs. This breakdown follows

the execution order within the Producer-Consumer architecture described earlier, following

the transformation of raw input data into assets ready for future ML model training.

17

4. IMPLEMENTATION

4.4.1 Input Parsing

The input files are obtained from 3DBAG, as explained in chapter 3. The 3DBAG project

offers three formats for downloading 3D building models, namely the GeoPackage (GPKG),

the Wavefront OBJ format, and CityJSON. The 3DBAG project published a map of the

Netherlands that has been divided into rectangular tiles. Each tile represents a defined

bounding box, which refers to the Cartesian axis-aligned rectangle containing the tile’s

geometry. A user can download the building models that are located in the tiles repre-

senting the geographical area where the buildings reside in the physical world. We chose

CityJSON for its structured representation and flexibility during preprocessing.

For example, in the case of the University of Amsterdam’s Science Park campus, 3DBAG’s

tiling system divides Building 904 across two separate tiles. In OBJ format, the building is

completely retained, protruding the borders of the rectangular area previously defined by

3DBAG. The CityJSON format, by contrast, removes all buildings that are not completely

within the defined bounding box. However, the missing building can be restored with the

help of CJIO tool, by merging two neighbouring tiles together. In the scope of this project,

we have not attempted to use the GPKG format since there is no obvious file conversion

path to suit the dataset into Sionna’s supported XML file.

The CJIO tool, a Python-based library developed by the same team of researchers main-

taining the 3DBAG project, is useful to pre-process the input datasets for improved fidelity

of the simulation. The datasets released by 3DBAG has up to 10 different sizes, which are

inversely proportional with the density of the buildings located in the area the correspond-

ing tile represents. As such, a tile covering a densely built residential area in Rotterdam

represents an area of 250000 m2, whereas a tile that partially covers the sparsely populated

Hoge Veluwe National Park covers 64 km2. For the purposes of the dataset, we use the

CJIO tool to clip all tiles to fit a uniform size of 128m × 128m. This size is chosen since

the area roughly corresponds to coverage area of an FR2 cell in an urban environment.

Additionally, 128m × 128m area in a densely built urbanised region covers enough geo-

metric diversity to simulate realistic multipath effects, but small enough to run thousands

of simulations within the bounds of compute resource limits.

The CityJSON files include information such as the location descriptions, land terrain

of the selected area, and physical structures present within the area. 3DBAG uses the

‘Amersfoort RD New + NAP height’ standard for its geospatial reference system, instead

of the more generalised longitude/latitude coordinates system. The standard, referred

to as EPSG:7415 by geographic surveyors, placed the origin coordinates in the city of

18

4.4 Stages Performed by the Consumer Nodes

Amersfoort, Netherlands, and its use is limited only for surveying within the Netherlands.

The coordinates along the X- and Y-axes of the Cartesian plane-like in the map of the

Netherlands follow the distance from the origin in metres. This provides an easy method

of checking the correctness of all maps when measured with other 3rd party tools such as

Blender, since the representation of distances between two objects can be scaled following

the real-world distance, unlike the longitude/latitude coordinate system that is more useful

when looking at a global-scale map but not intuitive for determining locations in a city-wide

map.

4.4.2 Geometric Extraction and Metadata Creation

With the CityJSON files loaded as inputs, the pipeline creates a Metadata file for each

input tile. The Metadata file include information such as the bounding box, which are

the 2 pairs of coordinates denoted as (xmin, ymin) and (xmax, ymax) representing the

southwest and northeast corners of the bounding box respectively. The bounding box

coordinates are listed following the EPSG:7415 format, along with the EPSG:4326, which

is the standard longitude and latitude coordinates system more commonly used by the

general users. Using the bounding box information, the pipeline searches for antenna sites

that are within the borders of the bounding box, with a further tolerance of 200m, to

accommodate capturing 5G signal transmitted from further away and may possibly find

its way into the bounding box. In the scope of this project, We retrieved a public list of

licensed antenna sites from Antennebureau, the Dutch government’s information agency

responsible to educate the public on the laws and regulations of antenna placements.

4.4.3 3D Conversion and Assignment of Radio Materials

This stage converts the preprocessed 3D building geometry into a Mitsuba-compatible XML

scene. A scene is the complete 3D environment derived from a tile that has undergone the

preprocessing steps, and is ready to be loaded onto Sionna for ray-tracing simulation. The

conversion include assigning ITU-compliant material properties to each surface. The choice

to use Blender at this point in the pipeline follows the Sionna developers’ recommended

approach for preparing scene inputs. Sionna’s ray-tracing engine requires Mitsuba XML,

but neither Sionna nor CJIO offers a direct CityJSON-to-XML conversion. To bridge this

gap, the pipeline first exports the preprocessed CityJSON tiles from CJIO into Wavefront

OBJ format. While 3DBAG already provides pre-generated OBJs, those files cannot be

19

4. IMPLEMENTATION

easily modified; merging tiles or cropping them to fit the chosen size would require invok-

ing Blender much earlier in the process, introducing unnecessary GPU load during bulk

preprocessing. In contrast, CityJSON is highly malleable; as a Python-based library, CJIO

can efficiently merge, crop, and simplify geometry while retaining semantic attributes, and

only once the data is finalised is it exported to OBJ.

Figure 4.1: Side-by-side comparison of the Satellite View of the University of Amsterdam
Science Park Campus (left), and the Blender 3D rendering of the tile (right). This illustration
captures Building 904, Lab42, and Universum Sport Hall.

Since we use an input with an LoD of 2.2, the rendered OBJ file models building ge-

ometries with relatively high shape accuracy. However, this does not necessarily include

surface material data. Since no comprehensive material database exists for all Dutch build-

ing surfaces, and the LoD specification does not distinguish different materials on the same

building, any material assignment would be inherently approximate. We chose to assign

all building surfaces the ITU-R P.2040 standard material concrete, on the rationale that

concrete is structurally present in all buildings, even if not always externally exposed. As

shown in Figure 4.1, the rendered 3D tile has a uniform building material, despite the

University of Amsterdam’s Science Park campus features a grid of solar panels on the

rooftop, which could be more accurately assigned the ITU-R P.2040 glass material instead.

To represent terrain, we add a flat plane covering all building footprints, positioned at the

lowest footprint elevation in the tile. This mesh is assigned the ITU material medium-wet

ground, reflecting typical Dutch soil and climate conditions.

After assigning all polygon meshes their respective radio materials, Blender exports the

OBJ file into XML files with the associated .ply files using the Mitsuba-Blender library.

20

4.4 Stages Performed by the Consumer Nodes

This step is essential, since Sionna can only load scenes from XML files. All of the steps

where Blender is involved are executed programmatically, leveraging Blender’s own bundled

Python virtual environment, separate from the main pipeline’s Python environment. This

enables the entire stage to run in headless mode without a graphical interface, reducing

GPU overhead and making it suitable for HPC or other server-based execution.

4.4.4 Signal Simulation

With the geographical scene packaged into Mitsuba-compatible XML and .ply files, the

pipeline is ready to load the scene into Sionna for wireless ray tracing simulation. The

pipeline focuses on three parameters that are particularly relevant for FR2 propagation

analysis and machine learning-based path prediction:

1. Received Signal Strength (RSS): The expected signal power at each point in the

tile, measured in decibel-milliwatts (dbm).

2. Signal-to-Noise Ratio (SINR): An estimate of link quality considering both en-

vironmental multipath effects (e.g., reflections, scattering) and thermal noise.

3. Path Loss: The reduction in signal power over the line-of-sight path, isolating the

geometric and environmental attenuation from other impairments

The simulation setup is aligned with Sionna’s ray-tracing workflow as follows:

• Scene description: A Mitsuba XML scene is generated by Blender, with building

geometry and material properties derived from 3DBAG and ITU-compliant material

mappings.

• Transmitter/receiver configuration: The transmitter devices are positioned ac-

cording to coordinates suppplied by the Antennebureau. The frequency of the signal

transmitted by the devices is configured per scene. In the scope of this project, we

randomise the exact frequency from the valid list of FR2 frequencies. The receiver

devices are randomly positioned within the bounds of the scene, at a height of ± 1

metre from the terrain to emulate the behaviour of the typical mobile phone user.

• Antenna model: We assign a random antenna type to each transmitter devices,

from the available choices of isotropic (#TODO). We also randomise the antennae’s

transmission patterns to introduce a variety of signal conditions in the dataset. The

21

4. IMPLEMENTATION

antenna type and transmission patterns are then recorded back into the tile’s respec-

tive metadata. The antennae are then configured to face random, various angles in

the scene.

The simulation produces NumPy arrays for each parameter, which serve as the ground-

truth data for ML training. To aid human inspection and preliminary validation, the

pipeline also generates heatmaps of RSS and SINR over the tile, allowing quick identifica-

tion of shadowing regions, strong-reflection zones, and coverage boundaries.

By the completion of this stage of the pipeline, a user may obtain the visual aids illustrat-

ing the heatmaps of perceived RSS and SINR for easier troubleshooting. The Figure 4.3

below is a sample of the heatmap we obtained when we simulated a tile covering the

Weesperplein neighbourhood in Amsterdam, the Netherlands.

Figure 4.2: Sample of RSS (left) and SINR (right) coverage maps obtained at the end of the
Signal Simulation stage.

4.4.5 Ground Truth Creation

To facilitate the training of a Machine Learning model from the .npy objects generated in

the previous stage, the pipeline produces a cross-sectional 2D horizontal slice of each scene,

highlighting potential obstructions such as buildings and other large structures. These are

the dominant contributors to signal reflection, diffraction, and attenuation. The slice is

taken at a user-specified height above local terrain and compared against the distribution

of building heights in the tile. This slice is compared to the distribution of building heights

in the tile. If the target height is below or equal to the 75th percentile of building heights,

the projection includes the full building footprints from the terrain up to the target height.

Otherwise, the projection captures only the cross-sections of buildings intersecting that

22

4.4 Stages Performed by the Consumer Nodes

height, with a ±2 m tolerance to account for modelling precision. This approach ensures

that the resulting binary projection image represents relevant obstructions at the chosen

altitude without including irrelevant structures above or below the slice.

The generated 2D images serve as geospatial ground truth for future ML training. How-

ever, neither the original input files nor the intermediate outputs include certain landscape

features. Most notably, the omitted features include bodies of water such as rivers, canals,

and coastlines. Without these, a model might incorrectly infer that the Dutch landscape

consists exclusively of built-up and flat terrain. To address this gap, the pipeline includes

an optional augmentation step that queries the Mapbox API to obtain unlabelled high-

resolution satellite imagery for the scene’s bounding box. These images provide visual

context and improve completeness of the ground truth dataset. This step is disabled by

default due to Mapbox’s usage-based pricing, for which a user is to obtain their own API

token key to enable this feature. In addition, we made an assumption consistent with ITU

guidance, that FR2 cell coverage areas are small enough that water bodies have negligible

impact on path loss. This contrasts with long-distance microwave backhaul links, where

propagation over water can introduce refractive effects and additional losses over distances

of up to 10 km.

Below is a sample of the satellite image view obtained from Mapbox and the 2D pro-

jection slice of the Weesperplein neighbourhood tile, showing consistency of the shapes of

structures in a tile across different stages of the pipeline.

Figure 4.3: Sample of satellite view image (left) and 2D projection slice at a targeted height
of 8 metres above the terrain (right) obtained at the completion of the pipeline.

23

4. IMPLEMENTATION

24

5

Analysis of Pipeline Prototype
Development

In this chapter, we recount the development lifecycle of the prototype, focusing on the

design choices and decisions that shaped its current form. A key milestone in this process

was the creation of an early implementation in which the completion of one stage triggered

the execution of the next through an API call. We refer to this initial implementation

as the Alpha-version. Components of the Alpha-version were subsequently refactored

and integrated into the current iteration of the prototype, hereafter referred to as the

Kafka-version. We shall begin with an evaluation of the Alpha-version, highlighting its

characteristics, limitations, and lessons learned. This provides the basis for understanding

the motivation behind the migration to the Kafka-version, which is then assessed in detail.

5.1 The Alpha-version

5.1.1 Batch-oriented File Processing

The Alpha-version was built wholly on Python without implementing any sort of message

broker and queueing system. Each stage was assigned a dedicated directory to monitor,

and is responsible to produce intermediate files into its corresponding directory. Each

stage ends with checking whether there is an equal number of files between the directory

to which it is assigned, and the directory which was assigned to the previous stage. This

conditional check served as the completion signal to indicate the termination of the stage,

ready to call for the next stage.

This design was simple to implement and to debug, but its scalability was quickly limited.

With small inputs (e.g., one CityJSON file), throughput was acceptable: processing a single

25

5. ANALYSIS OF PIPELINE PROTOTYPE DEVELOPMENT

file into .npy objects took 39 seconds on DAS-6. However, the architecture forced each

stage to wait until the entire batch of files was completed before proceeding. Consequently,

no intermediate results were available until the full input set had finished, even though

resources were actively being used. For larger inputs (tens to hundreds of CityJSON

tiles), this batch-orientated architecture created the perception of inactivity and, more

critically, withheld partial results that could otherwise have been exploited downstream.

This behaviour conflicted with the broader design goal of integrating the pipeline into an

ML training workflow. In iterative ML development, early access to even partial datasets

is valuable: model training can begin on smaller batches while the remainder of the data

continues to be processed. Alpha-version’s architecture fundamentally delayed this process,

and hence was the primary motivation for us to migrate the pipeline to Kafka-version.

5.1.2 Monolithic Execution Model

In addition to the scalability issues of the Alpha-version with respect to input size, it was

also unable to efficiently leverage available computing resources. The DAS-6 environment

separates the head node from the worker nodes where GPUs are installed. While processes

on the head node can run for extended durations, processes on worker nodes are forcibly

terminated after 15 minutes by DAS-6’s job scheduling policy. This constraint imposed a

fundamental testing dilemma: executing the pipeline on the head node avoided premature

termination but prevented the use of GPU to accelerate 3D scene rendering and tensor

computations, whereas executing on a worker node provided GPU access but with no

guarantee of completing a task within the allotted time. The absence of such guarantees

diminished the utility of the pipeline, as there was no assurance that any usable output

would be produced before termination.

To mitigate this, we attempted to restructure the Alpha-version so that the main pro-

cess ran persistently on the head node, delegating individual stages as child processes on

worker nodes. While this approach initially appeared promising, it introduced race condi-

tions: the system could not reliably ensure that an input file had fully completed one stage

before being processed by the next. This arose because there was no runtime messaging

mechanism between nodes to signal the start and completion of a stage. Since Python

does not natively provide inter-node messaging, we briefly considered migrating the imple-

mentation to Julia, which was designed for parallel and distributed computing. However,

such a migration would not resolve the more fundamental limitation of input scalability,

and thus was not pursued further.

26

5.1 The Alpha-version

5.1.3 Reliability and Fault Tolerance Issues

Unit testing of the Alpha-version quickly revealed how the absence of recovery mechanisms

translated into practical faults during execution. Individual dependencies behaved incon-

sistently when exposed to malformed or incomplete input: some failed gracefully by issuing

termination signals, while others collapsed more severely, leaving the main pipeline in a

stalled state with no indication of progress. These behaviours underscored not only the

fragility of the prototype, but also how heterogeneous error-reporting conventions across

the toolchain complicated fault detection.

5.1.3.1 Segmentation Faults Caused by CJIO

During our initial unit tests, we found that the CJIO tool utilised to export the JSON

input files into OBJ files ready for rendering in Blender has a limitation. If the total

number of vertices in the polygons of the produced OBJ file exceeds a certain threshold,

the conversion could fail due to segmentation faults. We investigated further, and found the

issue reproducible when the pipeline processed densely built tiles, such as those representing

Rotterdam Centrum neighbourhood. Such densely built tiles could represent hundreds

of distinct houses and buildings, which in turn are converted into hundreds of polygons

constructed by thousands of vertices. On DAS-6’s head node, we found that CJIO regularly

failed when a tile has a total number of vertices exceeding a threshold of between 40 to

50 thousand. We have not tested further if the issue is reproducible in other computing

environment, or whether the threshold would change.

Segmentation faults typically occur when a process attempts to access memory it does

not own. In our case, we suspect the failure is related to excessive memory usage due to

large polygon counts combined with Alpha-version’s pattern of repetitive process spawning.

Fortunately, this specific issue, when it occurs, would happen very early along the input

tile’s lifecycle in the pipeline prototype. A simple mitigation is to mark the tile causing

segmentation error to its corresponding Metadata file, informing the next stages of the

pipeline not to process the tile further. However, this mitigation would not be persistent

should the pipeline is executed anew, as a new metadata would be created for all tiles in the

input directory, overwriting the records of previous runs. As such, the segmentation fault

would occur again, wasting the users’ time and computing resources for tiles we already

know will be doomed to fail. Another mitigation tactic might be to instruct the pipeline to

delete the problematic tiles from the input directory altogether to avoid repeating future

faults, but this comes with the cost of accountability and reproducibility.

27

5. ANALYSIS OF PIPELINE PROTOTYPE DEVELOPMENT

5.1.3.2 Zombie Processes

The Blender software, used in the pipeline for 3D scene rendering, is resource-intensive

and occassionally failed to terminate cleanly. Over time, "zombie" Blender processes could

accumulate, consuming memory and slowing down the initiation of new Blender processes.

This behaviour was observed as Alpha-version reached Stage 3, where the pipeline would

read the OBJ files produced by Stage 2, initiate a Blender process, exported the input

to Mitsuba-compliant XML files, and finally terminate the Blender process. We observed

that as the number of input size increases, the time taken for DAS-6’s head node to

initiate a new Blender process for a new tile exponentially increased. Further analysis

by observing ps -aux showed that some Blender processes initiated for previous input

tiles may not be fully terminated, resulting in multiple unutilised Blender processes. As

a temporary mitigation, we periodically monitored the head node’s processes and issue

kill -9 commands to terminate such zombie processes. This mitigation step contradicts

with our vision of a pipeline which requires minimum user supervision.

Spawning Stage 3 on GPU-equipped worker nodes could theoretically mitigate CPU

stress, but the underlying root cause of failed process termination will remain unresolved.

This mitigation tactic would also ultimately reintroduce the issues relating to the parallel

node management as explained in subsection 5.1.2.

5.1.3.3 Process Recovery

The DAS-6’s job scheduling policy highlighted another critical weakness of the Alpha-

version: it had no mechanism to resume from partial progress after unexpected termination.

Such recovery is essential not only for compliance with the cluster policies but also for

resilience against random process failures or infrastructure downtime. Although per-file

metadata tracked the last completed stage, Alpha-version’s batch-oriented design meant

reprocessing was required from the beginning. For small runs of 5 input files, this was

manageable, but is prohibitive for a pipeline expected to process hundreds and thousands

of input files for a complete simulation covering the entirety of the Netherlands. An easy

workaround against this issue was to simply disable the completed stages in the main

pipeline script, so the pipeline would jump into the stage where it can proceed from the

last runtime. But this solution is insufficient for a self-aware pipeline to be ran with

minimum user intervention.

28

5.2 The Kafka-version

5.2 The Kafka-version

The limitations of the Alpha-version, including lack of scalability, resilience, and recovery,

motivated a fundamental redesign. The Kafka-version introduces a message broker (Apache

Kafka) as the backbone of the pipeline, replacing batch file checks with asynchronous,

event-driven communication between stages. The scripts for the different stages from the

Alpha-version were refactored into the Kafka-version, where each stage is called upon

receiving successful message from the previous stage. This migration provides message

persistence, decoupled execution, and greater fault tolerance, enabling the pipeline to scale

to national-level simulations.

5.2.1 Transition to File Streaming

With Kafka’s message broker available as a communication channel between all stages, the

conditional check of accounting files to proceed to the next stage is no longer necessary.

Stages now operate on individual messages representing input tiles, allowing incremental

outputs to be produced as soon as they are available. This aligns the pipeline with ML

workflows, where training can begin before all data is processed.

This architectural shift, however, introduces a trade-off. In the Alpha-version’s batched

processing model, errors typically occurred in a uniform, “all-or-nothing” manner: if one

input file triggered a fault, the entire batch would fail. While this was inefficient, it

made debugging relatively straightforward, since the failing stage could be identified and

addressed directly. By contrast, in the Kafka-version, faults can occur unevenly, with

some tiles progressing through all stages while others remain stuck at an intermediate

stage. This non-uniform behavior complicates post-mortem analysis and requires more

fine-grained logging to trace silent failures at the level of individual files.

5.2.2 Distributed Processing

By decoupling the pipeline stages into independent Consumer scripts, each running as a

child process, we enabled distribution across multiple worker nodes, with Kafka ensuring

reliable delivery and ordered processing within partitions. This design allows the main

pipeline process to run on the DAS-6 head node, while offloading compute-intensive child

processes to GPU-equipped worker nodes. Each Consumer script performs a lightweight

resource check at startup using TensorFlow: if a GPU is available on the assigned node,

the GPU would be utilised; otherwise, the script defaults to CPU execution.

29

5. ANALYSIS OF PIPELINE PROTOTYPE DEVELOPMENT

This strategy resolved two limitations of the Alpha-version. Firstly, the pipeline is no

longer constrained to run entirely on either the head node or the worker nodes, eliminating

the earlier deployment dilemma. Secondly, GPU-aware Consumers increase the pipeline’s

adaptability, allowing repackaging of the prototype for diverse compute environments, in-

cluding HPC clusters, virtual machines, or containerised deployments.

5.2.3 Fault Tolerance and Recovery Mechanisms

Although the Kafka-version improves throughput and decoupling, recovery after failures

remains incomplete. The current design maintains a single Manifest.json written by

the Producer, recording for each input the last completed stage and whether processing

should continue. If a stage reports status = failed, the input is excluded from subse-

quent stages. This prevents cascading failures within a run but does not persist reliably

across runs. Because the tracker file is regenerated at pipeline start-up, all prior failure

annotations are overwritten, leading to repeated attempts on inputs that are known to fail.

The core limitation lies in using a single JSON file as a shared job tracker. JSON offers

no native support for atomic updates: a system crash during a write can produce duplicates

or “stuck” jobs. Concurrent access exacerbates the problem, since read-write contention

risks corruption. To mitigate this, access was restricted to the Producer alone, but this

introduces indirect and delayed progress updates from other stages. A file lock mechanism

was briefly considered and tested, but we eventually discarded this idea. While file locks

prevent simultaneous writes, it accumulate delays when multiple nodes attempt updates,

and still cannot guarantee atomicity. Consequently, the JSON-based tracker remains a

bottleneck, insufficient for robust recovery in a distributed environment.

5.3 Ansible for Portability

Introducing Apache Kafka further added to the mounting list of dependencies, which could

complicate portability and ease of use for future users. The current prototype was devel-

oped and tested on DAS-6, with processes executed by invoking individual Python scripts

through multiple terminal sessions. While functional, this approach is not easily accessible

to future users without extensive documentation. Some dependencies, which are discussed

in further detail in chapter 6 require non-standard procedure to download and install. For

example, obtaining the Blosm dependency involves registering through a shareware por-

tal and receiving a unique download link, a step that cannot be reliably automated or

redistributed.

30

5.4 Comparative Summary

To improve portability, we have added Ansible automation script to assist in provisioning

the deployment environment and installing the required dependencies. This significantly

reduces the installation burden for future users, with the exception of Blosm, which must

still be obtained manually. The decision to use Ansible was particularly motivated by

Blender’s non-trivial addon installation procedure. While installing addons such as Blosm

and Mitsuba-Blender is straightforward through Blender’s graphical interface, our headless

deployment on DAS-6 required a more complex process. Specifically, addons must be

manually placed into Blender’s hidden configuration directory, and additional steps must be

performed via Blender’s embedded Python environment to register them. The automation

script encapsulates this process, making the pipeline reproducible in headless environments.

5.4 Comparative Summary

We outline the key differences between the two implementation versions, highlighting the

motivations for migration and the improvements achieved.

Table 5.1: Architecture comparison of Alpha and Kafka-versions of the pipeline prototype

Metric Alpha-version Kafka-version

Testability Easy: The batch-oriented file pro-
cessing architecture means a funda-
mental error or fault occurring in one
stage tends to propagate across all in-
put files. This makes faults more visi-
ble and reproducible, simplifying root-
cause analysis.

Moderate: Since files are pro-
cessed independently, errors may oc-
cur silently on a per-file basis with-
out immediately halting the pipeline.
While this increases resilience, it re-
duces transparency.

Deployment Sim-
plicity

Easy: The architecture requires min-
imal dependencies, with straightfor-
ward directory-based workflow.

Medium: The architecture requires
relatively large one-time dependency
installation effort, where configuring
Apache Kafka and Zookeeper requires
its own learning curve.

Continued on next page...

31

5. ANALYSIS OF PIPELINE PROTOTYPE DEVELOPMENT

Metric Alpha-version Kafka-version

Scalability Poor: The architecture couples all
stage scripts to the main process, pre-
venting offloading to GPU-equipped
worker nodes and limiting parallelism.

Excellent: Kafka enables inter-node
communication, allowing stages to run
on separate processes across differ-
ent compute nodes. This architecture
supports coherent, distributed scaling
across heterogeneous resources.

Fault Tolerance Weak: Unexpected system failures or
incomplete runs require reprocessing
of already-completed stages, wasting
both compute time and user effort.

Unclear: Incorporating lightweight
databases (e.g., SQLite) for per-file
stage tracking could potentially im-
prove resilience, but this mechanism
is not yet implemented.

Supervisory Over-
head

High: Zombie processes and some
faults that may cause the main process
to hang means it is up to the user to
monitor the pipeline’s behaviour peri-
odically.

Low: The pipeline is sufficiently re-
liable to terminate “hanging” pro-
cesses and keep track of each input’s
progress, thereby minimising the need
for user’s intervention during runtime.

Portability Limited: The pipeline requires exe-
cution on a single kernel environment.
This rigidity leads to resource con-
tention for large inputs, posing issues
in constrained compute environments
(e.g., personal laptops).

Promising but unverified: De-
coupling stages into child processes
(and potentially LXC containers or
cloud-deployed services) suggests high
portability across environments. How-
ever, additional testing is needed to
benchmark practical scalability ceil-
ings.

As shown in Table 5.1, the Kafka-version improves scalability and reduces the need for

user supervision. However, fault tolerance remains only partially addressed due to the

limitations of JSON-based job tracking. These trade-offs demonstrate that while Kafka

resolves the major bottlenecks observed in the Alpha-version, further work is needed to

harden recovery and accountability mechanisms.

32

6

Analysis of External Dependencies

In this chapter, we analyse how the external dependencies utilised in our prototype helped

shaped the pipeline, and discuss what limitations does each dependency bring. Where

appropriate, we consider other alternatives to the dependency, while discussing what trade-

offs will be involved between the chosen dependency and the suggested alternative.

6.1 Evaluation of Input Dataset Quality

6.1.1 Structural Coverage of 3DBAG and Implication for Telecommu-
nication Research

While 3DBAG provides a highly detailed representation of Dutch buildings, it is impor-

tant to note its scope limitations when applied to wireless propagation research. 3DBAG’S

design focus is on buildings with registered postal addresses, ensuring a high level of con-

sistency and reliability for urban studies and cadastral applications. As such, other civil

infrastructure without registered address such as bridges, overpasses, and viaducts are ex-

cluded. This omission introduces challenges for our application, where large reflective or

obstructive objects that can significantly influence radio propagation are not represented.

For example, the Figure 6.1 illustrates the Erasmus Bridge in Rotterdam, which is omitted

in 3DBAG but is represented in the Municipality of Rotterdam’s 3D digital twin project.

The absence of the bridge in 3DBAG will influence the fidelity of simulation, due to its

prominent structural and electromagnetic impact on the surrounding environment.

Similarly, canals and waterways are absent from 3DBAG. Although this omission is

logical given the dataset’s building-centric scope, it reduces fidelity in scenarios where water

bodies can affect propagation through reflection or absorption. Such missing features may

lead to underestimation of multipath effects in urban simulations.

33

6. ANALYSIS OF EXTERNAL DEPENDENCIES

Figure 6.1: Side-by-side comparison of 3D object availability in the datasets provided by
3DBAG (left) and 3DRotterdam project (right).

6.1.2 OpenStreetMap as Alternative to 3DBAG as Input

An alternative to 3DBAG would be to use OpenStreetMap (OSM), which offers worldwide

geographic coverage and includes both terrain and building geometries. This makes OSM

attractive for extending the simulation beyond the Netherlands. However, OSM frequently

lacks accurate or complete building height information, which can introduce errors in line-

of-sight and path loss calculations.

To improve building height accuracy, OSM data can be supplemented with external

sources such as the Microsoft Building Footprints dataset, which provides information on

1.4 billion building footprints and estimated heights derived from satellite imagery. While

this increases global coverage, the inference-based nature of the data introduces uncertainty,

particularly in dense or complex urban environments. Using OSM would also require

the integration of third-party tools such as Blosm, a Blender add-on for extracting OSM

data. This introduces additional dependencies into the pipeline. In contrast, 3DBAG’s

standardisation and consistency make it highly convenient for a prototype with a national

focus.

There are other data sources available, such as CityGML format to represent major

metropolitan areas. These datasets are typically maintained by the local governments and

councils, and may lead to possible improvements to the prototype in the future.

6.1.3 Coverage and Completeness

As a maintained dataset covering a national scope, 3DBAG covers both densely-populated

metropolitan areas and rural environments. As such, the input data set quality is guar-

anteed to be uniform, whether the user is simulating signal propagation in built-up areas

34

6.1 Evaluation of Input Dataset Quality

such as The Hague or farmlands of Het Groene Hart. This comes with the trade-off, that

tiles where there are no buildings are completely omitted, unavailable to be downloaded.

This makes sense given 3DBAG’s primary focus, but can lead to silent absences in an

automated workflow such as our prototype.

The OSM dataset is crowdsourced and has a global scope, but the quality of maps rep-

resenting different regions are heterogeneous. In dense cities, completeness of the OSM

dataset can rival official datasets. In less urban or less digitally active regions, buildings

may be sparse, misaligned, or missing entirely. The Microsoft Building Footpritns dataset,

although not crowdsourced, featured the same limitation, as the building height informa-

tion is much more complete and detailed for buildings in North American and European

regions as compared to Asian and African regions.

6.1.4 Missing Terrain Information

A further consideration concerns the treatment of terrain. 3DBAG employs the ‘EPSG:7415

Amersfoort / RD New + NAP height’ coordinate system, which provides accurate georef-

erencing of building footprints, including their elevation relative to sea level. In contrast,

OSM data exported through Blosm is centred at the origin of a Cartesian coordinate sys-

tem, complicating the alignment of additional data sources such as antenna placements.

Despite these differences, both 3DBAG and OSM share a key limitation: neither ex-

plicitly represents natural terrain features such as elevation changes, water bodies, or

vegetation. This omission has minimal consequences in environments with relatively flat

topography, such as most of the Netherlands, but becomes highly consequential in regions

with pronounced elevation variation. In cities such as Rio de Janeiro, Brazil, or La Paz,

Bolivia, steep gradients can introduce substantial elevation differences over short distances.

A hilltop or a cliff could be considered as a conducive terrain choice to erect a gNodeB

site, but the coverage area served by the site would be highly dependent on the antenna

configuration (e.g., azimuth, orientation, and terrain obstruction).

In our prototype implementation, scenes with extreme elevation changes over short dis-

tances can cause gNodeB positioning errors, resulting in transmitters that appear to float

unrealistically above the built environment. Without terrain elevation data, the system

unrealistically overestimates coverage areas by simulating elevated transmitters as having

unobstructed 360◦ line-of-sight coverage. In reality, terrain irregularities would block or

attenuate significant portions of these signals. Figure 6.2 illustrates this issue through a

comparison of La Paz’s urban contours rendered with and without terrain information.

35

6. ANALYSIS OF EXTERNAL DEPENDENCIES

Figure 6.2: Comparison of the side-view contours of La Paz, Bolivia, where terrain informa-
tion is unavailable (top) and where terrain information is available (bottom)

This rendering shows La Paz viewed from south to north, with the El Alto plateau

visible on the left and the Obrajes neighbourhood on the right. Brown cubes represent

buildings and structures. The comparison demonstrates how terrain integration affects

visibility: when terrain data is available, natural topography obscures certain buildings

from view, creating realistic line-of-sight limitations. Without this terrain information,

most structures appear to have direct line-of-sight with each other, leading to overoptimistic

coverage predictions.

Even when a user is simulating within the Netherlands, the absence of terrain mod-

elling can introduce small but perceptible inconsistencies. For example, land reclaimed

from the sea (referred to in Dutch as polders) often lies several metres below surrounding

water levels and can feature subtle elevation differences. In our Stage 3 prototype, where

Blender introduced a flat two-dimensional plane aligned to the lowest Z-coordinate of the

tile in order to emulate the ground, building footprints did not always share a uniform base

height. As a result, some buildings were rendered as if slightly elevated above the ground

plane. While deviations of ±3 metres in areas such as Almere are negligible compared to

the extreme elevation changes of La Paz, they nonetheless highlight a potential misrep-

resentation of reality. Future applications requiring higher-fidelity datasets may therefore

need to incorporate terrain data to improve accuracy.

6.2 CJIO as File Converter

As described in chapter 4, the CJIO tool was incorporated into our pipeline for two main

purposes: (i) filtering 3DBAG’s CityJSON files by bounding box and level of detail, and

(ii) converting the CityJSON format into OBJ for downstream processing. In practice, we

36

6.3 Sionna as Simulator Engine

observed that CJIO occasionally encountered segmentation faults during the conversion

stage. Inspection of CJIO’s source code revealed that the tool first enumerates all vertices

prior to transforming the CityJSON structure. We discovered that failures were most likely

to occur on densely built tiles containing more than ±40,000 vertices, suggesting that the

conversion step is memory-intensive and prone to exceeding allocated memory resources

under these conditions.

This behaviour posed significant challenges in our Alpha-version prototype as detailed in

chapter 5, where CJIO was executed as a subprocess in Stage 1. A segmentation fault in this

setting would terminate the subprocess without propagating an error back to the parent

process, leaving the pipeline in a indefinite stalled state. No reliable runtime mitigation

was possible, which contributed to the motivation for adopting the more fault-tolerant

Kafka-based architecture.

A pragmatic workaround was later introduced by preprocessing the input tiles. Whereas

the smallest native 3DBAG tile covers approximately 500 m × 500 m, subdividing tiles

into 128 m × 128 m bounding boxes significantly reduced the likelihood of segmentation

faults by lowering the simulation’s coverage area, thereby lowering the number of vertices

processed in a single run. Coincidentally, this subdivision step was also required by the

downstream ML training pipeline, making it a natural fit within our workflow. Never-

theless, this finding highlights an important limitation: while merging tiles into larger

simulation regions may appear convenient in certain scenarios, it risks reintroducing insta-

bility during runtime and should therefore be approached with caution.

6.3 Sionna as Simulator Engine

Sionna constitutes a central component of our pipeline, providing a highly customisable

framework in which users can adjust parameters to increase simulation fidelity. Neverthe-

less, we identified several limitations relevant to urban-scale wireless modelling.

Firstly, Sionna applies certain transmitter parameters (specifically transmitting power

and frequency) uniformly across all devices in a scene. In dense urban environments, this

assumption does not reflect operational practice. For example, an antenna site in Amster-

dam may host multiple gNodeBs, each equipped with transmitters configured differently

in terms of azimuth, orientation, power, and frequency. Our inspection of Antennebureau

records revealed that a 500×500 m tile of an Amsterdam neighbourhood contained up to 23

licensed transmitters. In reality, operators rely on heterogeneous configurations to achieve

37

6. ANALYSIS OF EXTERNAL DEPENDENCIES

differentiated Quality of Service (QoS), mitigate path loss, or comply with regulatory spec-

trum allocations. By treating all transmitters as identical, Sionna risks underrepresenting

interference dynamics (such as crosstalk) and over-simplifying the propagation environ-

ment. This simplification constitutes a major barrier to adoption by mobile operators, as

it reduces the realism of propagation modelling and undermines the simulator’s ability to

reproduce conditions encountered in real-world networks.

Secondly, we observed that Sionna’s material library does not include water as a prede-

fined medium for electromagnetic propagation. This omission arises from its reliance on

ITU-R P.1238, which does not prescribe conductivity or permittivity constants for water.

While Sionna allows users to manually define additional materials, the absence of native

support for water introduces challenges when modelling environments containing signifi-

cant surface water, such as coastal areas or river-dense cities. In such cases, additional

empirical calibration would be required to ensure accurate propagation characterisation.

Notably, this mirrors a limitation we observed in the 3DBAG and OSM dataset, which

also omits water bodies from its representation. The fact that both the geographic source

and the simulator share this absence underscores a broader challenge: ensuring that the

tools and data used for wireless system evaluation align with the full range of conditions

present in operational networks.

The composite Figure 6.3 illustrates the effect and consequences of omitting features

including bridges and bodies of water. These figures were obtained when we simulated the

area near the mouth of the Rijnkanaal, featuring the section of the A10 Ring Road, where

the Zeeburgerbrug bridge connects the Watergraafsmeer neighbourhood in the south and

Zeeburgereiland in the north. It is noticeable that the canal, bridge, and the Buiten-IJ lake

are missing from the 3D scene rendering and therefore are not taken into account during

the signal propagation simulation.

In summary, while Sionna provides a flexible foundation for research-oriented simulation,

its current design choices limit its fidelity in scenarios requiring heterogeneous transmitter

configurations or accurate modelling of water surfaces. These issues highlight areas where

further extensions would improve its alignment with real-world operator requirements.

38

6.3 Sionna as Simulator Engine

Figure 6.3: Composite of figures generated by the pipeline when simulating area around the
mouth of Rijnkanaal, showing the absence of the Zeeburgerbrug and surrounding bodies of
water Clockwise from the top left: satellite image view, 2D projection slice of the area, RSS
and SINR coverage maps.

39

6. ANALYSIS OF EXTERNAL DEPENDENCIES

40

7

Future Work

This chapter outlines potential extensions and refinements to the prototype. These include

mitigation strategies that are yet to be tested and implemented for the limitations identified

in previous chapters, as well as new features to improve accuracy, fidelity, and scalability.

We also highlight directions for extending the utility of the pipeline and the datasets it

generates.

7.1 Upgrading Dependencies

Like many research prototypes, the pipeline relies on a frozen set of software versions cho-

sen at the time of development. While this ensured stability during experimentation, it

also created technical debt: several dependencies are already lagging behind their current

stable releases, constraining compatibility and long-term sustainability. The current pro-

totype relies on legacy versions of several dependencies, primarily dictated by the use of

Sionna v0.19.2. This release supports only Python 3.10, which has in turn constrained the

compatibility of other libraries such as TensorFlow. While this choice was necessary at

the outset of the project, it is not sustainable. Migrating the pipeline to the latest stable

release of Sionna (v1.1.0) is essential to ensure long-term maintainability. The urgency of

this migration is underscored by the planned end-of-support (EoS) for Python 3.10 in Oc-

tober 2026, after which downstream dependencies may no longer provide security patches

or functional updates, creating risks for reproducibility and deployment.

Another critical dependency is Apache Kafka, which serves as the message broker be-

tween the pipeline’s nodes. For this prototype, Kafka v3.7.0 was adopted rather than the

most recent stable release (v4.0.0). The rationale was pragmatic: v3.7.0 represents the

last stable version using ZooKeeper for node membership and consensus, while subsequent

41

7. FUTURE WORK

releases replace ZooKeeper with KRaft, a Raft-based consensus mechanism. Although

KRaft promises improved scalability, v3.7.0 was selected for its simpler learning curve and

smoother integration during development. As Kafka functions primarily as a subprocess

orchestrator and does not directly intervene in data processing, upgrading to a KRaft-

enabled release can be deferred to future iterations.

In addition, the pipeline currently depends on third-party Blender addons whose com-

patibility is limited to specific versions. For instance, as of August 2025, Blosm is sup-

ported only in Blender 4.0-4.3, while the Mitsuba-Blender exporter has been validated up

to Blender 4.4. Although Blosm is optional, where it is required only when extracting

geospatial data from OSM as the pipeline’s input, its constraints effectively freeze the

development environment to older Blender releases. Upgrading to the latest long-term

support (LTS) version 4.5 is not recommended, since Mitsuba-Blender addon has not yet

been tested against it. Future work should therefore include systematic migration planning

for both Blender and its addons, to reduce reliance on frozen versions and enable a more

flexible and sustainable software stack.

7.2 Input Format Interoperability

The current pipeline processes CityJSON input files through two intermediate conversions:

CityJSON to OBJ, and OBJ to Mitsuba-compliant XML. A future extension would be to

implement direct ingestion of intermediate formats. For instance, if an OBJ or XML file

is provided as input, the pipeline could bypass the preceding stages and enqueue the file

directly to Stage 2 or Stage 3. This would reduce redundant processing and increase

flexibility for users who already maintain assets in these formats.

7.3 Input Source Interoperability

A natural extension of the pipeline concerns interoperability with additional input sources.

While the current prototype has focused on publicly available outdoor geodata, future

applications will require the ability to ingest both urban-scale digital twins and highly

specialised indoor environments. These two domains present different challenges and op-

portunities, which are outlined below.

42

7.3 Input Source Interoperability

7.3.1 Outdoor Scenes

Beyond format handling, a key challenge for future work lies in supporting additional

sources of urban geodata. Several municipalities are actively developing 3D digital twins,

such as Rotterdam’s 3DRotterdam project, or London’s London Datastore, and similar

projects across Europe. Incorporating these datasets would extend the relevance of the

pipeline beyond the Netherlands.

However, such integration poses two primary challenges. Firstly, digital twins are pub-

lished in a wide variety of file formats, ranging from geospatial standards such as CityGML

and ArcGIS to general-purpose formats such as OBJ. While OBJ is widely adopted, its

lack of semantic richness makes it unsuitable as a native representation of urban envi-

ronments. Conversions from semantically rich geospatial formats to OBJ may result in

loss of information, such as vegetation or land-use attributes. To support more formats

beyond CityJSON, OBJ, and XML as inputs, additional dependencies would need to be

incorporated into the pipeline. Tools such as the CityGML2OBJ library, developed at the

Technical University of Munich (9), provide one path toward bridging this gap.

Secondly, coordinate system heterogeneity introduces alignment risks when merging

datasets across regions. For example, the 3DBAG project uses EPSG:7415, which is specific

to the Netherlands, whereas other digital twins may adopt the more globally recognized

EPSG:4326 (latitude/longitude). Conversions between these systems are supported by li-

braries such as Pyproj, but must account for differences in underlying datums. Neglecting

datum shifts can cause geographic drift on the order of ±10m, potentially leading to mis-

aligned structures in scenarios where users would like to simulate a scene in an area across

the borders of the Netherlands and Germany, where the latter does not use EPSG:7415 in

their geographical datasets. There are more extreme cases arising from different coordi-

nate systems: China mandates the use of the GCJ-02 coordinate system, which introduces

offsets of up to 700m relative to EPSG:4326. This discrepancy, historically visible in the

misalignment of map labels and satellite imagery in China, underscores the importance

of carefully managing coordinate transformations in any globally interoperable simulation

pipeline.

7.3.2 Indoor Scenes

Signal propagation in indoor environments has received comparatively little attention in the

research community, despite its growing importance in the telecommunications industry.

A key driver is the emergence of Private 5G as a Service (P5GaaS), offered by mobile

43

7. FUTURE WORK

operators to enterprises operating in enclosed or expansive facilities such as manufacturing

plants, mining sites, harbours, or military bases (10). In such contexts, conventional

outdoor gNodeBs may provide insufficient coverage or raise concerns over data privacy.

P5GaaS addresses this by deploying dedicated gNodeBs that operate on isolated frequency

bands, with users receiving devices locked to those bands. This ensures both improved

coverage and a degree of separation from the public mobile network.

Extending the prototype to cover such scenarios requires the generation of indoor-specific

datasets. However, publicly available indoor datasets are scarce and often unsuitable: most

consist of LIDAR scans of residential houses, whereas industrial-scale sites, which are the

primary targets of P5GaaS service offerings, remain inaccessible. Privacy and security

considerations largely explain this absence, as operators of sensitive facilities are unlikely

to release detailed scans, regardless of nondisclosure agreements. Some curated datasets

do exist, but these are typically gated behind administrative restrictions and therefore

unavailable for incorporation within the timeframe of this project.

That said, it is possible for dedicated users to obtain their own input representations of

indoor scenes. One approach is to employ a robot equipped with LIDAR to scan the desired

facility, producing point clouds that can be converted into an .obj file. Alternatively,

computer-aided design (CAD) software such as AutoCAD or SketchUp can be used to

manually construct a 3D representation of a facility and export it into a compatible format.

While these approaches lie beyond the scope of the present work, they illustrate potential

pathways for future users who wish to simulate custom indoor environments.

7.4 Input Transience

While the current pipeline focuses on spatially accurate simulations, it implicitly assumes

static conditions for both transmitters and receivers. In real-world deployments, however,

environmental and user-related factors often exhibit temporal variability that can signifi-

cantly influence propagation characteristics. For instance, human users frequently act as

receiver devices yet may move continuously across streets or within buildings, creating

dynamic propagation paths. Similarly, vehicles or temporary structures can introduce ad-

ditional sources of reflection or obstruction over time. Sionna as our simulation engine

already provides support for time-evolution parameters (e.g., velocity and orientation) for

both nodes and scatterers, enabling the modeling of Doppler effects and time-varying mul-

tipath conditions. Incorporating these temporal parameters would bridge the gap between

44

7.5 Incorporating Database as Stage Progress Tracker

the current static modeling assumptions and the dynamic nature of real-world wireless

environments.

A second limitation concerns the temporal validity of geospatial input datasets them-

selves. The 3DBAG input datasets used in this pipeline provide accurate structural repre-

sentations at the time of data collection but remain inherently frozen until the next release

cycle. Ongoing construction or demolition projects may thus create discrepancies between

the modeled environment and the real world, particularly in rapidly evolving urban areas.

This limitation underscores the need for input-source interoperability: the pipeline should

support seamless integration of alternative or real-time data sources when primary datasets

become outdated or unavailable. Such flexibility would enable the simulation framework

to remain operationally relevant even as environmental conditions evolve over time.

7.5 Incorporating Database as Stage Progress Tracker

Reliable tracking of pipeline progress is crucial for correctness and recovery. In the current

design, progress is logged through a shared file (Manifest.json), which introduces both

performance and fault-tolerance limitations, as we have previously discussed in chapter 5.

Relying on constant status updates by reading and writing the tracker file Manifest.json

introduces risk to the file’s correctness and integrity, especially when it is accessed by

multiple nodes simultaneously. At the moment, the tracking file’s safety is guaranteed

owing to the fact that only the Producer node has access to the file. Regular documentation

on JSON file works under a single-writer and low-scale conditions, hence the tracker has

a single-point of failure in an otherwise parallelisable workload. Databases on the other

hand allows safe concurrent writes, transactional integrity, and better recovery.

Migrating the tracker to a database can also help solve the issue of recovering the

pipeline’s in the event of system failure. If the pipeline has been forcefully terminated,

for example due to power failure, in the middle of processing thousands of files, the Pro-

ducer will have to restart thousands of file processing, each at different stages. A single

node executing multiple I/O read operations to relaunch stages is a bottleneck, but at the

same time, the Consumer nodes cannot be trusted to read the tracker file and relaunch their

own processes. The atomic behaviour of SQLite, which rejects read and update wholesale

if one operation is found to be invalid, will help creating a more robust recovery system.

45

7. FUTURE WORK

7.6 Pipeline Packaging for Reusability and Reproducibility

At its current shape, executing the prototype involves launching multiple scripts over mul-

tiple terminal windows manually. This deployment is neither user-friendly nor scalable. A

more robust packaging solution could be implemented to streamline the deployment pro-

cess. An easy first step may be to create a single wrapper script to launch the necessary

components with a customisable flag to determine the number of Consumer nodes to be

launched. Further development could involve containerisation using Docker, providing op-

erating system agnosticism and a simplified, single entry point deployment. The container

could include all dependencies, precluding the need of configuring Ansible for each new

machine. The container could then be deployed on a public cloud for an even larger scale

of simulation inputs.

46

8

Discussion

In this chapter, we shall revisit the Research Questions (RQs) outlined in chapter 1, dis-

cussing how our findings provide answers to these questions. We will also reflect on the

implications of our results, the limitations of our study, and potential avenues for future

research.

To address RQ1, we have implemented a prototype pipeline and documented the ratio-

nale behind key design decisions, along with the lessons learned during development, as

presented in Chapters 5 and 6. Building on these insights, we now frame our recommenda-

tions for a pipeline suitable for both academic and professional use by evaluating its desired

characteristics against the ISO 25010 software quality attributes. This standard provides

a structured framework for assessing software quality, enabling us to highlight where the

current implementation meets essential requirements for generating 5G signal-propagation

datasets and where future iterations can be strengthened.

While the prototype has reached a stage of minimum viability, all future improvements as

outlined in chapter 7 must be iteratively tested against the criteria in Table 8.1 to ensure

both resilience and adaptability. With iterative feedback, continuous integration, and

continuous deployment (CI/CD) of the underlying dependencies, such as those mentioned

in chapter 6, we anticipate steady improvements in both the pipeline and the resulting ML

models over time, enabling the pipeline to serve a wide variety of purpose and users with

diverse objectives.

47

8. DISCUSSION

Table 8.1: Pipeline architecture considerations defined as per ISO 25010 software quality
characteristics

ISO 25010 Sub-
characteristic

Explanation to Consideration & Assessment Criteria

Functional Suitability: This characteristic evaluates whether the pipeline provides the
essential functionalities required for generating signal characterization datasets from geospa-
tial inputs.

Functional Completeness The pipeline implements the following core stages: input parsing,
pre-processing, simulation, ground-truth generation for baseline
comparison, and dataset export. Future implementations tar-
geting similar objectives may adapt these criteria to suit their
domain-specific needs.

Functional Correctness The pipeline’s outputs should remain consistent with real-world
measurements where applicable. They should also exhibit deter-
ministic behavior across different runtime environments, avoiding
variability caused by non-deterministic factors.

Performance Efficiency: This characteristic considers the pipeline’s responsiveness and
resource usage under varying execution environments.

Time Behaviour Processing times for input files should remain within reasonable
bounds and degrade gracefully as input sizes grow, without intro-
ducing significant bottlenecks during batch processing.

Resource Utilization The pipeline should demonstrate measurable performance gains
when granted access to more powerful hardware, such as multi-
node HPC systems or GPUs with higher compute capacity.

Compatibility: This characteristic measures how effectively the pipeline integrates within
larger workflows and interacts with heterogeneous data sources or tools.

Co-existence The pipeline should integrate seamlessly into downstream work-
flows (e.g., ML training pipelines, simulation frameworks, or NDT
platforms) without causing failures or requiring substantial re-
work.

Interoperability The pipeline should accept diverse input sources (e.g., multiple
geospatial formats, antenna databases) and produce outputs in
formats suitable for varied downstream objectives.

Continued on next page...

48

Table 8.1 (continued): Pipeline architecture considerations

ISO 25010 Sub-
characteristic

Explanation to Consideration & Assessment Criteria

Reliability: This characteristic reflects the pipeline’s ability to maintain correct and con-
sistent operation over time, including its resistance to crashes, handling of runtime faults,
and overall stability under varying workloads.

Maturity The pipeline is expected to achieve consistent performance over
extended runs. Metrics such as Mean-Time-to-Failure (MTTF)
and Mean-Time-Between-Failure (MTBF) can serve as indicators
of robustness and resilience. Future iterations could incorporate
automated logging of these metrics to guide improvements.

Fault Tolerance The pipeline should detect and handle runtime faults (e.g., miss-
ing or corrupted inputs) without silently failing or halting the en-
tire workflow. Partial results generated from valid inputs should
remain valid, and users should be notified of any issues for follow-
up.

Flexibility: This characteristic captures the ease with which the pipeline can be deployed,
configured, and operated across diverse environments without requiring extensive customi-
sation or manual intervention.

Adaptability The pipeline should be installable and executable across different
environments (e.g., from an HPC cluster to a public cloud server)
with minimal changes to configuration or dependencies. Ideally,
installation steps remain consistent across platforms.

Scalability The pipeline should maintain functional correctness and stable
performance when processing large-scale inputs (e.g., millions of
files) as well as small ones, with output quality unaffected by input
size.

Understanding what existing gaps in NDT platform are expected to be bridged by ML

models is key to address RQ2. When assisting engineers to plan networks and troubleshoot

faults, NDT platforms are capable of providing what-if scenarios through simulations and

poll network devices at regular intervals for keep-alive messages, the device performance

metrics, and the other analytics involving the data they are transmitting and receiving. At

a glance, this is similar to our pipeline prototype, which includes a simulation module, with

49

8. DISCUSSION

a downstream ML pipeline architecture featuring a feedback training loop to iteratively

train with incoming dataset on top of existing dataset. Some crucial distinctions between

the two frameworks is that the NDT polls query for real-time, just-in-time status, whereas

ML pipelines learn from historical and simulated observations, producing predictive models

than real-time snapshots.

The differences of objectives between the two frameworks are:

• Unknown unknowns: ML models may fail when encountering operational condi-

tions absent from the training data. In our own generated datasets, omissions such as

missing environmental features (e.g., bodies of water) can lead to biased predictions

or faulty assumptions, leading to AI hallucinations when ML outputs diverge from

real-world conditions.

• Risk of automation: Standards proposed by bodies such as ETSI envision ‘zero-

touch’ architectures where ML-driven decisions could act on NDT observations. How-

ever, faulty models risk propagating erroneous automated actions, potentially trig-

gering degraded network performance or even service outages.

Based on the lessons learned in this project, we propose three criteria to guide ML-NDT

integration:

1. ML-NDT Feedback Loop: NDT-generated status polls should continuously up-

date ML models, creating a closed-loop system where real-time data supplements

historical training sets, reducing the drift between predictions and operational real-

ity.

2. Bounded Autonomy: ML models should augment, not replace, NDT observa-

tions. For instance, when NDT polling fails for some network elements, ML models

could interpolate missing data. However, decision-making authority should remain

constrained until robust safeguards against erroneous predictions are established.

3. Error Detection and Trustworthiness Assessment: Determining when the

combined ML-NDT outputs can be trusted remains an open research problem. While

our work has incorporated basic quality checks within the ML pipeline, defining sim-

ilar mechanisms for the combined framework (e.g., anomaly detection, confidence

scoring, rollback mechanisms) requires further study and standardisation efforts.

50

These criteria provide a starting point for safe hybridisation of ML models with NDT

platforms. Future research must focus on formalising trustworthiness metrics and auto-

mated fail-safes before fully autonomous, zero-touch network management can be realised.

While RQ2 examined the criteria for a combined ML and NDT framework to be trusted,

we shall investigate why such trust should remain conditional in our attempt to answer

RQ3. Accurate modelling of wireless environments hinges on how well real-world factors

are captured in datasets feeding both simulation platforms and ML models. However, our

own analyses of our prototype as outlined in Chapters 5 and 6 reveal several critical gaps:

• Incomplete representation of environmental geometry: Publicly available

datasets, such as 3D building models with low LoD, often lack finer-scale environ-

mental features (e.g., foliage, bodies of water, street furniture) that strongly affect

signal propagation. Our own pipeline exposed this limitation: missing environmental

elements led to systematic prediction biases when training ML models on simulated

coverage maps, even before downstream analysis began.

• Temporal drift between datasets and deployment reality: The constant evo-

lution of wireless environments should be acknowledged: new buildings, vegetation

growth, or even temporary events (e.g., construction sites) can rapidly invalidate pre-

viously accurate datasets. ML models trained on stale data may thus fail to predict

real-world behaviours in real-time, producing outputs that look plausible but diverge

from current network conditions.

• Sparse or biased simulation scenarios: ML models for zero-touch NDT rely

heavily on the diversity and representativeness of their training datasets. However,

simulation pipelines often generate scenarios with uneven coverage: urban environ-

ments tend to dominate due to their structural complexity and higher transmitter

density, while rural or topographically diverse regions remain underrepresented. This

imbalance risks creating models that perform well in dense metropolitan settings but

fail to generalize to areas with sparse infrastructure or unique terrain features. Our

prototype, for instance, highlighted this issue by showing how simulations of the

flat Dutch landscape yielded propagation characteristics unlikely to reflect those of

mountainous or heterogeneous regions. Future dataset generation efforts must there-

fore account for geographic and structural diversity to avoid biased model behavior

in real-world deployments.

51

8. DISCUSSION

Together, these insights not only address our research questions but also chart a roadmap

for evolving today’s experimental prototypes into tomorrow’s trustworthy, autonomous,

and adaptive digital twin ecosystems. Building on our findings will help ensuring the

future networks are built on both technical rigour and operational resilience.

52

9

Related Work

This chapter reviews prior work relevant to our research on 5G propagation and simula-

tion. Signal propagation modelling has become a key research area, attracting significant

interest from both academia and industry. We highlight selected projects, focusing on their

methodologies, design choices, and outcomes, and discuss how these compare to our own

approach.

9.1 Simulation Approaches in Ray Tracing Prediction

A substantial body of work has examined the use of ray-tracing for predicting 5G propa-

gation. One notable example is the BostonTwin project, which served as a methodological

inspiration for our prototype. BostonTwin was developed to characterise the behaviour

of 6G signals and relied on Nvidia Sionna as its core simulation engine (11). Because of

the overlap in goals and tools, BostonTwin was a major inspiration source to our method-

ologies, where we encoutered several challenges which mirrored those we faced during

development. In addition, the findings of the BostonTwim team provide a useful bench-

mark for comparison. For instance, the BostonTwin team collaborated with the Boston

Planning and Development Agency (BPDA) to obtain geospatial input datasets and a

database of licensed antenna sites. BPDA maps employed EPSG:4269 (North American

Datum 1983) and EPSG:5703 (North American Vertical Datum 1988), which were sub-

sequently normalised to EPSG:4326 in the released datasets. While appropriate for the

areas within the contiguous United States and Canada, the varying availability of coordi-

nate systems highlight the complexity and potential for error when integrating data from

multiple government sources.

53

9. RELATED WORK

There are also methodological differences between BostonTwin and our approach. First,

BostonTwin re-centres all scenes to the origin point (0,0,0) in its simulations and published

datasets. We explicitly avoided this design choice. While re-centering simplifies single-scene

visualisation, it shifts the burden of coordinate management and multi-tile merging to the

user. In contrast, our pipeline retains original coordinates, enabling seamless merging of

adjacent tiles. We believe this to be particularly important since signal transmission is

inherently continuous and not bounded by arbitrary scene limits (see chapter 4). Sec-

ond, BostonTwin outputs its datasets in .geojson format, whereas we adopt .npy. The

likely motivation behind .geojson is to preserve geospatial metadata and 3D structure

information. Our focus, on the other hand, is on compact numerical representations of

propagation outcomes, leaving the inference of environmental context to downstream ML

models. The trade-off here is clear: BostonTwin datasets are richer but heavier, while ours

are lightweight and optimised for large-scale training at the cost of requiring additional

inference effort.

Finally, BostonTwin provides publicly available datasets for the Boston metropolitan

area, whereas our contribution lies in releasing a configurable pipeline prototype. This

enables future researchers to customise simulations to their own use cases, including choice

of geographical input, antenna database, and transmission parameters.

Another representative project is PMNet, which proposes a trained neural network model

for predicting 5G and 6G path loss (12). PMNet was trained on datasets generated from

scenes at the University of Southern California (USC), University of California, Los Angeles

(UCLA), and selected areas in Boston. Alongside the trained model, the authors released

their datasets and ML training pipeline. Their evaluation compared PMNet against more

established signal propagation models, namely 3GPP and RadioUNet, using Wireless InSite

simulations as the ground truth of the comparisons. PMNet influenced our design choice

to include automated satellite image generation for each scene, and to extend our own

work by validating our generated datasets against 3GPP baselines and alternative models,

which would be a central objective of the next phase of our research.

The PMNet pipeline differs from ours in several respects. Most notably, it employs the

proprietary Wireless InSite simulator, whereas our pipeline is built on the open-source

Nvidia Sionna framework. Furthermore, PMNet focuses exclusively on predicting path

loss between transmitters and receivers. In contrast, our pipeline additionally computes

Received Signal Strength (RSS) and Signal-to-Interference-plus-Noise Ratio (SINR), and

provides direct visualisation tools for quick analysis of user-defined geographical inputs.

54

9.2 Simulation Approaches in System-Level Telco Simulations

Finally, although PMNet publishes its ML training pipeline, it is oriented towards extend-

ing the authors’ pre-trained model. By comparison, our emphasis is on generating flexible

propagation datasets and visualisation maps, facilitating use cases ranging from ML model

training to exploratory scenario testing.

This comparison illustrates the diversity of approaches in recent literature: from dataset

publication (BostonTwin), to trained-model release (PMNet), to pipeline-oriented contri-

butions such as our own. Our work aims to complement this ecosystem by providing a

lightweight, extensible pipeline that bridges between raw simulation, dataset generation,

and ML-ready outputs.

9.2 Simulation Approaches in System-Level Telco Simula-
tions

Characterising radio propagation through RSS and SINR is only one part of simulation

for a gNodeB site-planning and building. Other critical aspects belong to the Physical

(PHY) and System (SYS) layers, such as OFDM modulation and demodulation, MIMO

precoding and decoding, and the evaluation of Bit Error Rate (BER). These parameters

ultimately shape the Quality of Service (QoS) perceived by end users and are sensitive

to both network conditions (e.g., user density) and engineering choices in infrastructure

planning. Our ray tracing pipeline does not cover these PHY/SYS-level effects, as its focus

is on the spatial and material-dependent behaviour of radio signals.

The 5G-LENA project began as an experimental module for the ns-3 software, an open-

sourced telecommunications simulation tool, to extend the software’s use for simulating 5G

RAN (13). Similar to our prototype’s architecture, 5G-LENA is a pipeline-driven software

modeling packet behaviour at the PHY and SYS layers. It enables configurable scenarios

at the PHY and SYS layers, such as variable numerologies, bandwidth allocations, and

scheduling policies, thereby capturing packet-level interactions within the RAN rather than

physical-environment propagation. In this sense, 5G-LENA complements our prototype:

whereas our work centres on propagation modelling, 5G-LENA abstracts the radio channel

and concentrates on the pipeline-like flow of packets through the radio stack. Both types

of simulation are essential, but they target different aspects of telco research.

By contrast, Nvidia Sionna framework can bridge both domains: it supports PHY and

SYS layer simulations while also integrating with ray tracing. These features are currently

outside the scope of our work, where we use it primarily for signal propagation modeling.

A potential future direction would be to extend our pipeline to incorporate PHY/SYS

55

9. RELATED WORK

aspects, thereby offering a more comprehensive simulator that spans both physical channel

characteristics and system-level performance.

9.3 Simulation Approaches in Urban Scenarios Simulation

Our proposed multi-stage pipeline architecture for dataset generation resonates with ap-

proaches developed in other domains to model and simulate the dynamic behaviour of

complex urban environments. A notable example is the Multi-Agent Transport Simulation

(MATSim), a Java-based platform originally designed to simulate and predict car traffic

flows in an urban setting (14). MATSim is structured around five core components:

• Initial Demand: Defines the input to the simulation, such as the population of a

city or the number of vehicles in circulation. Each entity in the dataset is represented

as an agent (e.g., a person, vehicle, or passenger)

• mobsim: The mobility simulation engine, responsible for executing the activities

of each agent. This includes fine-grained behaviours such as vehicle responses to

traffic conditions or time-dependent travel patterns. Each agent follows a plan, i.e.,

a synthesised sequence of activities within a defined set of parameters.

• scoring: Evaluates batches of agent plans using a game-theoretic framework. Plans

are ranked, typically following a normal distribution, with underperforming plans

flagged for removal.

• replanning: Functions as the feedback mechanism of the pipeline. Plans marked

for removal are modified by incorporating alternative activities referred to as “best-

response” adjustments. If these modified plans outperform the originals, they original

plans are retained for subsequent iterations. Otherwise, they are discarded.

• analyses: Aggregates the accepted plans after the final iteration and provides per-

formance metrics according to user-defined objectives.

The modular design of MATSim enables research groups to extend the framework for

diverse use cases, including the optimisation of road toll and tax pricing (15) and calculating

commuting cyclists’ safety risks (16). MATSim’s adaptability was the key reason that it

was incorporated as the core of the SIMBA MOBi framework, developed by Swiss Federal

Railways (SBB) in 2017 to forecast passenger demand by simulating door-to-door travel

patterns (17). MATSim illustrates how a modular, feedback-driven simulation system can

56

9.4 Simulation Approaches in Distributed Physics

be progressively extended from a tool for academic research into a robust platform for

nationwide infrastructure planning.

This trajectory mirrors our aspirations for the proposed prototype: although devel-

oped within a different application domain, it shares the principles of staged processing,

feedback-based refinement, and reliance on realistic datasets to evaluate large-scale, com-

plex systems. Drawing inspiration from this architecture, our prototype could be extended

to support future-oriented simulations. This would enable telecom radio engineers to in-

corporate potential gNodeB deployment sites and assess how such additions may influence

existing signal propagation patterns.

9.4 Simulation Approaches in Distributed Physics

Distributed computing has long been employed to enable large-scale simulations of physics-

constrained systems, where spatial and temporal dependencies demand high levels of par-

allelism. An illustrative example is the eSalsa-POP (Parallel Ocean Program) project, a

Fortran-based framework designed to predict oceanic Eddy currents on multi-year time-

frames (18). As a simulation workload, eSalsa-POP exhibits two dimensions of parallelisa-

tion. First, the global map is partitioned into grid cells, excluding cells whose more than

50% of the area is covering landmass. Each ocean cell’s state is iteratively updated based

on neighbouring ‘halo cells’, reflecting the continuous nature of physical processes such as

temperature, salinity, and wind-driven circulation. Convergence is reached once successive

iterations plateau, indicating that local interactions have been sufficiently stabilised.

Secondly, a single execution generates multiple sub-simulations with slight variances

to initially-assigned parameters. This design reflects the sensitivity of chaotic systems,

where small parameter variations may produce divergent outcomes. In HPC terms, this

corresponds to ensemble simulations, enabling exploration of a parameter space and the

identification of possible worst-case scenarios.

Although our pipeline prototype originates from a different application domain, there are

parallels that can be drawn. Although the map-tiling strategy was primarily necessitated

by the division of 3DBAG input datasets, this nonetheless mirrors the spatial partitioning

of eSalsa-POP. A potential avenue for future improvement lies in adopting a ‘halo-cell’

strategy for radio signal propagation, allowing neighbouring tiles to influence simulation

outcomes at their borders. In the present iteration, a halo-like approximation has been

implemented by including gNodeB sites located within 200 m beyond a tile’s boundaries.

However, this approach may still be insufficient, as it neglects the effects of signals being

57

9. RELATED WORK

reflected or absorbed by surfaces beyond the simulated region. Similarly, the ensemble

approach of sub-simulations could be adapted to systematically test parameter variations

in transmitter placement or power levels, thereby offering insights into system robustness

and Quality of Service (QoS) degradation risks.

58

10

Conclusion

This work presented a prototype pipeline for simulating and characterising 5G signal propa-

gation behaviour, intended to support both researchers and telecommunications profession-

als. Within the scope of our study, we generated datasets by simulating signals transmitted

by all Base Transceiver Stations (BTS) located in the Netherlands. These datasets included

key parameters such as Received Signal Strength (RSS), Signal-to-Interference-plus-Noise

Ratio (SINR), and Path Loss.

The pipeline was conceived as an input subsystem, producing training datasets for down-

stream Machine Learning models. This contributes to the broader objective of augmenting

Network Digital Twin (NDT) platforms with Artificial Intelligence. To this end, we exam-

ined the feasibility and trustworthiness of ML-trained data as a component of hypothetical

automated decision-making within NDT environments, and identified the future improve-

ments necessary to move towards a practical integration of AI and NDT.

At its current iteration, the prototype is not without limitations, especially in terms

of performance benchmarking, the representativeness of generated data, and the absence

of indoor scenarios. Nonetheless, it demonstrates the viability of large-scale simulation

pipelines as a foundation for AI-driven experimentation. The work thus establishes a

methodological bridge between radio-propagation simulation, dataset generation, and the

emerging paradigm of intelligent NDTs.

Looking ahead, scaling the approach beyond the Netherlands, incorporating richer phys-

ical environments, and aligning outputs with industry standards will be critical steps.

Ultimately, the central lesson of this thesis is that NDT platforms enriched by AI are not a

distant aspiration, but a feasible trajectory, provided that the research community contin-

ues to invest in reproducible pipelines, trustworthy datasets, and transparent evaluation.

59

10. CONCLUSION

60

References

[1] 3GPP. NR; User Equipment (UE) radio transmission and reception; Part

1: Range 1 Standalone. Technical report, 3GPP, 4 2025. 5

[2] Christopher Cox. An Introduction to 5G: The New Radio, 5G Network and Beyond.

John Wiley & Sons, Inc., 2021. 6

[3] Federal Communications Commission. Final Catalog of Eligible Expenses

and Estimated Costs. Technical Report 3060-1270, Federal Communications Com-

mission, September 2021. Accessed online. 9

[4] Jakob Hoydis, Sebastian Cammerer, Fayçal Ait Aoudia, Avinash Vem,

Nikolaus Binder, Guillermo Marcus, and Alexander Keller. Sionna:

An Open-Source Library for Next-Generation Physical Layer Research. 3

2022. 11

[5] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John Romein,

Frank Seinstra, Cees Snoek, and Harry Wijshoff. A Medium-Scale

Distributed System for Computer Science Research: Infrastructure for the

Long Term . Computer, 49(05):54–63, May 2016. 12

[6] Ravi Peters, Balázs Dukai, Stelios Vitalis, Jordi van Liempt, and

Jantien Stoter. Automated 3D Reconstruction of LoD2 and LoD1 Models

for All 10 Million Buildings of the Netherlands. Photogrammetric Engineering

& Remote Sensing, 88:165–170, 3 2022. 13

[7] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-

David, Delio Vicini, Tizian Zeltner, Baptiste Nicolet, Miguel Crespo,

Vincent Leroy, and Ziyi Zhang. Mitsuba 3 renderer, 2022. https://mitsuba-

renderer.org. 13

61

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3283
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3283
https://docs.fcc.gov/public/attachments/DA-21-1034A2.pdf
https://docs.fcc.gov/public/attachments/DA-21-1034A2.pdf
https://doi-ieeecomputersociety-org.vu-nl.idm.oclc.org/10.1109/MC.2016.127
https://doi-ieeecomputersociety-org.vu-nl.idm.oclc.org/10.1109/MC.2016.127
https://doi-ieeecomputersociety-org.vu-nl.idm.oclc.org/10.1109/MC.2016.127

REFERENCES

[8] Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini.

DR.JIT: a just-in-time compiler for differentiable rendering. ACM Transac-

tions on Graphics, 41:1–19, 7 2022. 13

[9] Filip Biljecki and Ken Arroyo Ohori. Automatic Semantic-preserving

Conversion Between OBJ and CityGML. In UDMV, pages 25–30, 2015. 43

[10] Cisco. Cisco Private 5G-Simple, Intuitive, and Trusted. Technical report,

2024. 44

[11] Paolo Testolina, Michele Polese, Pedram Johari, and Tommaso Melo-

dia. Boston Twin: the Boston Digital Twin for Ray-Tracing in 6G Net-

works. In Proceedings of the 15th ACM Multimedia Systems Conference, MMSys ’24,

page 441–447, New York, NY, USA, 2024. Association for Computing Machinery. 53

[12] Ju-Hyung Lee and Andreas F. Molisch. A Scalable and Generalizable

Pathloss Map Prediction, 2023. 54

[13] Natale Patriciello, Sandra Lagen, Biljana Bojovic, and Lorenza Giup-

poni. An E2E Simulator for 5G NR Networks, 2019. 55

[14] Kay W. Axhausen. The Multi-Agent Transport Simulation MATSim. Ubiquity

Press, 8 2016. 56

[15] Artem Chakirov and Alexander Erath. Overcoming challenges in road

pricing design with an agent-based transport simulation. Arbeitsberichte

Verkehrs-und Raumplanung, 766, 2012. 56

[16] Mohsen Nazemi. Cyclists’ perceived safety and its impact on bicycle mode

choice. In 2nd Future Cities Laboratory Conference: Transactions. Exchanging knowl-

edge between Switzerland and Asia. Eidgenössische Technische Hochschule Zürich,

IVT, Institute for Transport Planning and Systems, 2017. 56

[17] Joschka Bischoff. MATSim at SBB: Using and contributing to the open-

source transport simulation for advanced passenger demand modeling. Pre-

sentation at FOSDEM’24, 2 2024. Accessed: 2025-08-17. 56

[18] B. van Werkhoven, J. Maassen, M. Kliphuis, H. A. Dijkstra, S. E.

Brunnabend, M. van Meersbergen, F. J. Seinstra, and H. E. Bal. A dis-

tributed computing approach to improve the performance of the Parallel

Ocean Program (v2.1). Geoscientific Model Development, 7(1):267–281, 2014. 57

62

https://doi.org/10.2312/udmv.20151345
https://doi.org/10.2312/udmv.20151345
https://www.cisco.com/c/en/us/products/collateral/wireless/private-5g/private-5g-service-so.pdf
https://doi-org/10.1145/3625468.3652190
https://doi-org/10.1145/3625468.3652190
https://arxiv.org/abs/2312.03950
https://arxiv.org/abs/2312.03950
https://arxiv.org/abs/1911.05534
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-2203-matsim-at-sbb-using-and-contributing-to-the-open-source-transport-simulation-for-advanced-passenger-demand-modeling-/
https://archive.fosdem.org/2024/schedule/event/fosdem-2024-2203-matsim-at-sbb-using-and-contributing-to-the-open-source-transport-simulation-for-advanced-passenger-demand-modeling-/
https://gmd.copernicus.org/articles/7/267/2014/
https://gmd.copernicus.org/articles/7/267/2014/
https://gmd.copernicus.org/articles/7/267/2014/

Appendix

The pipeline prototype developed in this project is currently given a temporary name

‘5G-RT-SIM ’, being a simple abbreviation of ‘5G Ray Tracing Simulator’. We are still

brainstorming for new names fitting of a pipeline that can be promoted to the larger

scientific community and telecommunications industry.

As of the submission of this Thesis report, it is available as a private repository under

the author’s GitHub account https://github.com/chrissembiring. The author may be

contacted via email for access to clone or pull the repository. We expect to fully release

the pipeline prototype and the generated dataset to the general public at a later date

(after this Thesis’ defence date) for further quality checks and more rigorous testing to be

performed by the staff of Institute of Informatics (IvI), University of Amsterdam.

63

https://github.com/chrissembiring

REFERENCES

64

Reflection

This Thesis is the culmination of the author’s studies pursuing a Master’s degree in Com-

puter Science jointly with Vrije Universiteit Amsterdam and University of Amsterdam.

The project described in this Thesis document was influenced by the author’s choices of

courses taken, applying the knowledge gained in pursuit of a new research path. Those

courses and the lessons learned in shaping this Thesis were:

• Distributed Systems (course taken in Period 2, AY2023-24, coordinated by Prof.

dr. Alexandru Iosup): The course which taught the author of the complexity in

dealing with workloads across heterogeneous computing infrastructures.

• Programming Large-Scale Parallel Systems (course taken in Period 1, AY2024-

25, coordinated by dr. Francesc Verdugo Rojano): This course gave the author the

first exposure towards parallel computing using OpenMPI and Julia, which was a

stack briefly considered as an alternative technique for performing job-offloading

across different DAS-6 worker nodes.

• Digital Architecture (course taken in Period 2, AY2024-25, coordinated by dr.

Remco de Boer): The course which taught the author of the value of analysing soft-

ware qualities against known standards such as ISO 25010 and valuable software

design pattern habits such as Architecture Tradeoff Analysis Method (ATAM), de-

veloped by Software Engineering Institute in Carnegie Mellon University (SEI CMU)

The author’s journey in developing the research topic to the completion of prototype

and the Thesis report could not be said as straightforward. The topic of 5G signal charac-

terisation caught the interest of the author simply due to the author’s previous academic

and professional background in telecommunication engineering. However, as the research

unfolded, the author learnt much more about geoinformation and pipeline development

habits rather than gaining new insights around 5G technology. This showed how research

65

REFERENCES

could indeed be volatile, showing one from an unknown path to the next; nonetheless, the

journey was fruitful all the same.

66

	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Questions
	1.2 Work Structure

	2 Background
	2.1 High-Level Architecture of 5G Radio Network
	2.2 Radio Propagation Effects and Simulation Challenges in 5G RAN
	2.3 Challenges in Site Planning and RF Surveys
	2.4 Active Simulation in Network Digital Twin

	3 Overview of Third-Party Dependencies
	3.1 Nvidia Sionna
	3.2 Distributed ASCI Supercomputer-6 (DAS-6)
	3.3 3D Data Sources and Scene Preparation
	3.3.1 3DBAG
	3.3.2 Mitsuba 3

	4 Implementation
	4.1 Pipeline Architecture
	4.2 Producer Node
	4.3 Consumer Nodes
	4.4 Stages Performed by the Consumer Nodes
	4.4.1 Input Parsing
	4.4.2 Geometric Extraction and Metadata Creation
	4.4.3 3D Conversion and Assignment of Radio Materials
	4.4.4 Signal Simulation
	4.4.5 Ground Truth Creation

	5 Analysis of Pipeline Prototype Development
	5.1 The Alpha-version
	5.1.1 Batch-oriented File Processing
	5.1.2 Monolithic Execution Model
	5.1.3 Reliability and Fault Tolerance Issues
	5.1.3.1 Segmentation Faults Caused by CJIO
	5.1.3.2 Zombie Processes
	5.1.3.3 Process Recovery

	5.2 The Kafka-version
	5.2.1 Transition to File Streaming
	5.2.2 Distributed Processing
	5.2.3 Fault Tolerance and Recovery Mechanisms

	5.3 Ansible for Portability
	5.4 Comparative Summary

	6 Analysis of External Dependencies
	6.1 Evaluation of Input Dataset Quality
	6.1.1 Structural Coverage of 3DBAG and Implication for Telecommunication Research
	6.1.2 OpenStreetMap as Alternative to 3DBAG as Input
	6.1.3 Coverage and Completeness
	6.1.4 Missing Terrain Information

	6.2 CJIO as File Converter
	6.3 Sionna as Simulator Engine

	7 Future Work
	7.1 Upgrading Dependencies
	7.2 Input Format Interoperability
	7.3 Input Source Interoperability
	7.3.1 Outdoor Scenes
	7.3.2 Indoor Scenes

	7.4 Input Transience
	7.5 Incorporating Database as Stage Progress Tracker
	7.6 Pipeline Packaging for Reusability and Reproducibility

	8 Discussion
	9 Related Work
	9.1 Simulation Approaches in Ray Tracing Prediction
	9.2 Simulation Approaches in System-Level Telco Simulations
	9.3 Simulation Approaches in Urban Scenarios Simulation
	9.4 Simulation Approaches in Distributed Physics

	10 Conclusion
	References

