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“All software sucks, be it open-source [or] proprietary. The only question is what can be

done with a particular instance of suckage, and that’s where having the source matters.”

Alexander Viro, original author of Linux namespaces
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Comparative performance analysis of distributed web applications running

in three common virtualization scenarios.
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An ongoing trend in the software industry is moving web applications to run in the

cloud. A common case is deploying (web) applications packaged as a container image,

which run regularly on top of a virtual machine. This allows for better scalability, easier

deployments, and often improved resource usage efficiency.

Existing research on the performance of virtualized environments often shows negligible

performance penalties, as a result of using standardized benchmarks. However, due to

the ever-increasing complexity of distributed systems, these often isolated performance

measurements merely depict an optimal scenario. The overall performance can be heav-

ily affected by the nature of a distributed system and the complexity of its workload.

This research aims to find the performance differences arising when shifting the web

applications of these distributed systems to run inside virtualized environments. A

simple open-source microservices application is used to realize a more realistic test setup.

As a result, this thesis shows that distributed tracing could offer an accurate way to

measure performance penalties on distributed web applications. However, during this

research some caveats were acknowledged. This can provide a way for enterprises to gain

insight into performance changes while using virtualization layers in their infrastructure.

Additionally, it has been proven that different virtualization techniques are more resource

intensive compared to non-virtualized environments.
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Chapter 1

Introduction

1.1 Motivation

An ongoing trend in the software industry is moving enterprise applications to cloud

environments, where virtualized environments are the norm. As Gartner states in their

annual research report on cloud trends “By 2025, 51% of IT spending in these four

categories will have shifted from traditional solutions to the public cloud, compared to

41% in 2022. Almost two-thirds (65.9%) of the spending on application software will be

directed toward cloud technologies in 2025, up from 57.7% in 2022.” [30]. Organizations

often make this choice to reduce operating costs and simplify the architecture of their

applications. This transition often results in faster deployment, more efficient resource

utilization, and better scalability of their services [2].

With virtualization, generally two technologies are considered. Both containers and

virtual machines (VMs) are virtualization techniques. Although containers are often

perceived as ‘lightweight VMs,’ they are two vastly different concepts. Both virtualiza-

tion techniques benefit from the characteristics named above, making them attractive

for software-focused companies. Unfortunately, in most cases, this transition towards

virtualized environments eventually results in overhead caused by the layer of abstrac-

tion that offers this virtualized environment. This is not necessarily a blocking issue

as the advantages can still outweigh these limitations. Although this overhead may, for

example, decrease the performance of a single service (e.g. latency), the transition could

still improve the overall performance of the application by allowing for better scalability.

Naturally, it is important to be aware of any performance implications, specifically for

services that require a high-performance application offering low latency and high avail-

ability. This thesis is written at Adyen, a Payment System Provider (PSP) and bank

conforming exactly to these requirements.

1
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1.2 Scope

Although virtualization has been around for decades, a large increase in adaption can

be seen over the past years, with new technologies like Docker and Openstack gaining

more attention. Alongside the increased number of appliances, more research has been

done on the subject. Specifically, we look at what effect these technologies have on the

performance of all kinds of applications, ranging from High Performance Computing

(HPC) to web services. Most research studies apply an existing benchmark to a single

virtualized instance. These benchmarks execute a high workload close to the environ-

ment its resource limits. Although this can already give good insight into the capabilities

of different virtualization environments, it merely depicts an optimal scenario [25] [17]

[14] [21]. This results in a trade-off between testing against a representative system

and testing against a small isolated system to exclude unwanted effects. To resemble

a real-life scenario, it is sensible to look beyond a system that works at its maximum

capacity. Organizations often tend to run a system at a lower average resource usage, to

make sure that spikes do not cause any unforeseen issues. As mentioned above, virtu-

alization is often used in distributed environments, where it offers improved scalability

and resiliency. Analysis on Google Cluster Data has already shown around 2016 that

96.2% of the VMs do not operate as a standalone application. On average, a virtual

machine cooperates with 19.2 other virtual machines, and then 49.1% of these virtual

machines even interact with more than 1000 other virtual machines [23].

Due to the ever-increasing complexity of these distributed systems, the aforementioned

isolated performance measurements do not always resemble production environments.

The overall performance can be heavily affected by the nature of a distributed system

and the complexity of its workload [16]. In Ousterhout et al. [32] for example, the

Apache Spark distributed data analytics framework is being benchmarked. As can be

seen in Figure 1.1 the unexplained overhead is significant for production workloads,

compared to typical benchmarks.

Figure 1.1: Overhead in the execution of Spark workloads. This figure depicts the
fraction of unaccounted overhead for the production workload. [16]
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This phenomenon is quite common. It seems that there is a gap in this field of research,

whereas few benchmarks on typical distributed systems are performed in an actual

distributed setup, close to a production environment. This research aims to fill this gap

by taking into account the common characteristics of a distributed enterprise application.

One common subject regarding virtualization is scalability. The increase in scalability

when moving towards virtualized environments is often the main reason for organizations

to make this switch. Comparing the scalability of bare metal servers / VMs to containers

is sometimes considered inequitable, whereas with the former, possibilities for automated

orchestration are very limited. To clarify, this research has no objective of demonstrating

the advantages/disadvantages of virtualization. Instead, it is assumed that the choice

to move towards containerized web applications is already made, but the performance

implications of this are yet to be determined.

1.3 Problem statement

The goal of this research is to find the performance differences that arise when moving

the web applications of these distributed systems to run inside containers. Before bench-

marking performance, it is important to establish what the correct metrics are to make

a fair comparison. The focus will be to let the testing environment and workload be as

close to the production environment as is practically feasible. Based on these goals, the

following main research questions are listed.

• What is the effect on performance when moving web applications from bare metal

servers to containers in a highly distributed system?

• What metrics can be a good indication of how the performance of a distributed

system is being affected?

Based on the last question, we introduce one more research question below. We already

mention code instrumentation here. In the next chapter we’ll provide more context on

what this is and how it works.

• Does code instrumentation (tracing) offer a suitable way to measure the perfor-

mance of distributed web applications?

Before answering these questions, it is important to determine which metrics define

good performance for a distributed web application that requires low response time and

high availability. As mentioned above, we are looking at metrics seen from the user
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perspective, such as meeting Service Level Agreements (SLAs). This means that the

focus is mainly on latency, not throughput. With increased scalability, it should be

possible to achieve higher throughput more easily.

1.4 Outline

The remaining part of this thesis is outlined as follows. In Section 2, background infor-

mation is provided on the technologies applied in this research. Subsequently, Section 3

will give a comprehensive review on existing literature. Section 4 will describe the ap-

plied methodology and elaborates on the techniques involved. The results of the applied

methodology will be discussed and are set out in Section 5. Finally, Sections 6 and 7 will

present any conclusions drawn from this research, following a discussion of the results

and the applied methodologies.



Chapter 2

Background information

This chapter aims to give a brief background on the different virtualization techniques

applied in this research. First of all, it is important to have a clear distinction between

the four different environments that are considered for this research. This includes a

high-level overview of their working principles. Finally, we present a quick overview of

distributed tracing, also known as code instrumentation.

2.1 Virtualization techniques

In the world of computer science, virtualization often refers to the abstraction of some

software component into a logical object. In general, there are two types of virtualiza-

tion, namely hardware-level virtualization (VM), and OS-level virtualization (contain-

ers). Now we look at the four different scenarios that will be tested in this research

[35].

2.1.1 Bare-metal

In the context of the rest of this research, bare metal will be the baseline. In the

broader sense, applications running on bare metal always have all of the server its

resources available to themselves. This is limited by other processes running on the

same server and also using these resources. Due to the lack of an additional layer of

abstraction, such as additional network or input/output (IO) interfaces, this results in

applications capable of providing higher network and IO throughput [25]. The extra

layer of abstraction introduced by virtualization often causes extra resource usage (e.g.

CPU cycles) for the same operation on a bare metal machine.

5
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2.1.2 Virtual Machines

A VM is a virtual operating system that functions as a mimic of a regular OS, having

its own resources like CPU, memory, and I/O interfaces. A simple example of a VM is

running a Windows OS on an Apple Mac OSX system. However, there are many more

use cases, especially in cloud and edge systems. In the latter case, virtual machines are

often running Linux. In those cases, the underlying OS could be running another, or

perhaps even the exact same, distribution of Linux. Running cloud and edge applications

on VMs offers numerous of advantages amongst platform independence, isolation, and

resource abstraction. Furthermore, the use of virtualization, in general, allows for better

support for (elastic) scalability [43].

The core component of this type of virtualization is the hypervisor. This layer of ab-

straction manages the hardware and separates the physical resources from the virtual

environments. Resources can be assigned to a VM according to preset values. When a

process within the guest OS requires more resources from the host machine, the hypervi-

sor issues a request to the host to gain a larger partition of the shared pool of resources.

There are two types of hypervisors:

• Type-1 hypervisor (bare metal)

A type-1 hypervisor runs on bare metal, without a host OS as a layer in between.

In fact, the host OS itself becomes the hypervisor. This is common practice for

production-like workloads/performance. A well-known example of a Type-1 hy-

pervisor are Kernel-based Virtual Machines (KVMs).

• Type-2 hypervisor (hosted)

Type-2 hypervisors run on top of the host OS. This type of hypervisor is often used

for development purposes or individual usage. This type of hypervisor introduces

additional latency for basically any operation, albeit very little these days. All

operations of the virtual machines and hypervisor have to pass through the host

OS. Well-known examples are VMware Fusion and VirtualBox.

To investigate the performance implications for the ‘thinnest’ layer of abstraction, this

research does not consider type-2 hypervisors, corresponding to production environments

with the lowest virtualization overhead.

Intel and AMD, being the biggest CPU manufacturers in the market, realized around

2005 that the major challenges of virtualization were full virtualization. Both due to the

performance overhead and due to the complexity arising when designing and maintaining
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virtualization solutions. In response, Intel and AMD independently created new proces-

sor extensions of their respective CPU architectures, called Virtualization Technology

(VT-X) and Secure Virtual Machines (SVM) respectively. These extensions allow the

hypervisor to run a guest OS that is expected to run with kernel privileges. Nowadays,

other CPU vendors also support these technologies under different names.

Hardware-assisted virtualization not only proposes new instruction sets, but also intro-

duces a new privileged access level, called ring -1. The hypervisor can now run at the

newly introduced privilege level, ring -1, meaning that the guest OS can run on ring 0.

This setup is also shown in Figure 2.1.

Figure 2.1: An illustration of different access levels and how hardware virtualization
(e.g. VT-x or SVM) adds an additional ring for the hypervisor. [8]

Furthermore, with hardware virtualization, the hypervisor is relaxed and needs fewer

CPU cycles compared to type-2 hypervisors, which reduces performance overhead. Sim-

ply put, the hardware assisted virtualization provides the support to have a hypervisor

running on the kernel and avoid isolation with the guest operating system. This improves

performance and reduces the complexity of running VMs.

Kernel-based Virtual Machine

Kernel-based Virtual Machine (KVM) is an open source hypervisor technology has been

built into the mainline Linux distribution since 2007. KVMs allow users to turn Linux

into a hypervisor that enables one or more VMs to run directly on the kernel. Every VM

is implemented as a regular Linux process, scheduled by the standard Linux scheduler,
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with dedicated hardware like a network interface, GPU, CPU, memory, and disks. KVMs

are known to be one of the fastest implementations of virtual machines, as proved by

multiple research papers [34] [20] [1]. Naturally, there is no winner-take-all, as for some

operations other hypervisors. like Xen, still outperform KVMs.

2.1.3 Containers

Containers are, simply put, a way to group processes and manage them together as

isolated environments. This means that compared to VMs there is no additional OS

layer or hypervisor needed. This difference is also depicted in Figure 2.2.

Figure 2.2: Virtual Machines vs. Containers

Containers share underlying features of the operating system, such as the kernel, but

are otherwise separated from other containers. In this way, isolated environments can

thus be created sharing the resources of the host machine, without the overhead of a

hypervisor. Containers do not mimic a hardware layer via a hypervisor. In essence,

any process in Linux can be considered a container, having its boundaries set by its

namespaces and control groups.

Namespaces and control groups (cgroups) are fundamental aspects of how Linux systems

operate. Namespaces are an abstraction where a global system resource makes it appear

to the process within the namespace that they have their own isolated instance of that

global resource 1. A straightforward example is an Ubuntu container image where the

filesystem is abstracted by the mnt (mount) namespace. From a perspective within the

container, it seems as there is a full filesystem for a complete Ubuntu OS, with no higher

layer in the filesystem (root level). However, this is because the container filesystem itself

1https://man7.org/linux/man-pages/man7/namespaces.7.html
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is limited by the mnt namespace set on the host OS. In fact, control groups themselves

are also a namespace. cgroups are a mechanism for partitioning/aggregating different

processes, and all child processes, into hierarchical groups specific to the operation.

Simply said, namespaces limit what can be seen from within a namespace, e.g. other

process ids. cgroups limit how much resources you can use, for example, memory or

CPU.

Container runtime & APIs

Nowadays, containers are being used as a tool rather than just under the hood of a UNIX

system. The adaptation of enterprise applications is immense. IT research company

Gartner claimed in 2020 ”by 2022, more than 75% of global organizations will be running

containerized applications in production, up from less than 30% today.” [29]. This trend

seems to become reality. At the time of writing, Docker is a very well-known and the

most widely used tool. The latter is confirmed by a survey conducted by Enlyft 2, where

among 50,000 companies using containers, 97.77 % uses Docker.

In the current software era, there are often two components at the foundation of using

containers, the container runtime and the container engine. The engine is the user-facing

piece of software. It is responsible for a wide range of activities like user input, API,

pulling images from a registry, or managing meta-data. Examples are Docker or LXC

(Linux Containers). Commonly, the user-facing process does not run the containers

themselves, but are dependent on the container runtime. The latter has different, more

low-level, responsibilities including setting up namespaces, consuming the meta-data,

or communicating with the system kernel. Docker and many other container engines

rely on the container runtime runc. The architecture of the Docker ecosystem has

changed frequently in the past. For Docker specifically, there is a layer in between called

containerd which runs as a daemon. It is mainly responsible for managing and running

the containers (via runc), pulling/pushing images, and managing IO.

On a high-level distinction, there are two types of containers currently used as a tool in

practice, OS containers and application containers. OS containers are virtual environ-

ments that share the kernel of the host OS but provide isolation of the user space. This

type is more similar to a lightweight VM, as it contains most libraries and tools that

come with common Linux distributions. Examples of OS containers are LXC and So-

laris. On the contrary, there are application containers. While the former are meant to

run multiple processes and services, application containers are designed to run a single

service. An example is a container that runs a single Java application and, therefore,

contains the JDK distribution. Most Docker containers are application containers.

2https://enlyft.com/tech/products/docker
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User-space vs kernel-space

An important aspect of Linux processes / containers is the interaction between user space

and kernel space. The former refers to all operations that live outside of the kernel. This

is often higher-level code, such as applications written in C or Java. Consider an example

where a Java application is running in a (Docker) container. The code and runtime live

in the user space. In a broader sense, all applications function by modifying the data.

However, these data are commonly stored in memory and on disk. These data basically

live in the kernel space and are accessed by system calls. A common example of a system

call is fopen() , which associates a stream with a file based on its path.

In the context of this study, when comparing VMs with containers, it is important to

understand where the abstraction layer is located. This seperation is depicted by Figure

2.3.

Figure 2.3: Visualization of where the layer of abstraction lies at for VMs (left)
compared to containers (right) [26].

From this visualization it becomes clear that, in contrast to containers, with VMs, the

user space and kernel space lie in the same layer of abstraction.

2.2 (Distributed) tracing

Tracing is a type of correlated logging that helps to gain visibility into the operation

of a system, often for performance profiling or debugging. It can provide insight into

what exactly a particular individual service is doing as part of the whole system. In the

context of distributed systems, new challenges arise when tracing an application. Most

distributed systems have components that scale independently, whereas it is common

for redundant services to run on different servers, even geographically distributed. Most

production-grade distributed systems are very heterogeneous, which makes instrumen-

tation challenging. Distributed tracing techniques can solve these problems, allowing for

proper structure in the insights of your distributed application [33].
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Distributed tracing works by the so-called spans. Take for examle an HTTP request

received by an application. At this point, the operation is assigned a unique trace

identifier (ID)e. Every subsequent operation that is performed in the context of this

request, called a child span, is tagged with the trace ID of that first request, plus its own

ID and the parent span ID. Every span comes with its own metadata, which includes

(but is not limited to) the service name, IP address, logs/events of the operation itself,

configurable tags of the operation, and stacktraces/error messages.

Commonly, these traces are stored in a database, with a buffer inbetween (e.g. Kafka),

allowing high throughput for all incoming events (traces). Subsequently, these traces

can be queried and visualized with dedicated tracing tools such as Jaeger (Figure 2.4).

Another way to use these traces is by applying some kind of anomaly detection, NewRelic

is a well-known tool for performing these kinds of analyses.

Figure 2.4: Example of distributed tracing visualization (Jaeger UI).

One thing to keep in mind when using Opentelemetry distributed tracing is the overhead

that comes with it. Several investigations indicate that distributed tracing can incur

significant overhead [37][13]. Sampling is often used in such a way that only a segment

of the request is recorded, generally around 1%. Sambasivan et al. [38] tries to compare

the overhead of different tracing frameworks. However, their results contain mostly

surveys of different tracing frameworks/techniques, no actual experiments were applied

to those systems. They express some drawbacks in their conclusion, without presenting

any numerical results. Sigelman et al. (2010) [41] presents Google its DAPPER, which

is a distributed tracing framework. The paper presents some overhead measurements

of their original paper. They show that with proper sampling (1/1024), overhead is

negligible. When sampling every request (1/1) they show a decrease of approximately

16 % in latency and a decrease in throughput of only 1.6 %. Note that this study is

already 12 years old at the time of writing. Opentelemetry code instrumentation has

gained a lot of contributions and acceptance in the industry. We see these measurements

as a worst-case scenario, and the currently available tools might result in significantly

less overhead. Unfortunately, we have not found any more recent studies on this.
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Although it could be interesting for the industry, this research also does not consider

the overhead of distributed tracing. A bare metal baseline is assumed, where each other

environment has the same tracing configuration. Therefore, no significant differences

in overhead are expected amongst virtualization layers that could affect performance

comparisons of the underlying system. With this assumption, we will check that we are

not exhausting any resources such as CPU or networking by the tracing framework.

It is of interest to evaluate whether distributed tracing offers a way to measure the

performance of distributed web applications. In doing so, it is important to know the

accuracy of these traces. Specifically, because the tracing can be very fine-grained. In

principle, every method defined in the source code of the application could be traced.

However, in the case of recording every log statement, the duration of data collection on

the span might take longer than the actual log statement. This means that traceability

should be added to your application while carefully taking best practices into account.

Information on the accuracy of span durations is very scarce. This might be simply

because that is not the main use case of this technique, where end-users might care

more about the code paths than the actual durations. Another good practice is to set

up time synchronization between servers with distributed tracing.



Chapter 3

Related work

In this chapter, the existing literature on virtualization techniques, distributed systems

and benchmarking will be discussed. The goal of this chapter is to review existing

literature, as well as to support upcoming decisions and design choices while working

towards answering the earlier stated research questions.

3.1 Performance of virtualization

This section outlines the different approaches and results of the literature which fo-

cus on performance comparisons of different virtualization techniques. Starting with a

high-level overview of limitations that virtualization can have, different aspects of the

introduced overhead are discussed in more detail.

In the past two decades, virtualization has gained significant attention in the software

industry and is now being applied in almost any organization its software stack. It

started off with commercial use on IBM mainframes, and was reinvented by VMware

in the late 90s. Around 2000, Xen and KVMs have been introduced to the public [15].

Virtualization comes with several benefits, amongst energy/cost reduction, faster and

more flexible deployment strategies, and improved scalability. Unfortunately, there are

also caveats when running applications in a virtualized environment. The added layer

of abstraction introduced commonly causes virtualization overhead. This can affect

the choice of moving applications towards virtualized environments. Specifically, if the

application is focused on stable and high performance (e.g. low latency), organizations

might refuse switching to virtualized environment.

McDougall et al. [27] describes the perspective back in 2009 and the challenges ahead

with respect to virtualization, with a focus on hardware virtualization (VMs). They state

13
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that the most common way to reason about virtualization overhead is by looking at how

much extra resources the application consumes when running in a virtual environment.

This can be CPU/Memory usage, but also IO operations, having longer instruction paths

to run additional layers of the stack for IO virtualization. Less obvious are concepts

like cache misses or extra cycles for the Translation Lookaside Buffer (TLB). This can

happen because of arising capacity conflicts caused by unaccounted for instructions due

to the virtualization layer[27]. Additionally OS interactions can add overhead on these

resources, namely system calls made between the user space and kernel space. This type

of overhead is often considered insignificant compared to the overhead in VMs.

Next to VMs, these OS interactions are specifically interesting for containers, where

CPU/memory overhead is often considered negligible [25] [15]. Most research does not

highlight the minor differences between containers and bare-metal / VMs, which can still

be of interest for many organizations. Pointing out the differences between VMs and

bare metal could be considered more self-evident because the hypervisor often introduces

more CPU cycles for the same operations.

For this research, the focus lies on type-1 hypervisors (bare metal), because this is

the most obvious choice when aiming for the best performance. A type-2 hypervisor

(hosted) can be seen as a thicker layer of abstraction, implying more overhead. Different

researches investigate the performance differences between available type-1 hypervisors

like Xen, KVM and VMware Vsphere. The main conclusion that emerges from this

existing research is that there is no single outperforming hypervisor. However, Xen and

KVMs seem to have the least overhead compared to others. In a more recent work by

Algarni et al. [1] it was pointed out that Xen is more suitable for intensive IO workloads,

while KVMs perform better for CPU / memory throughput and caching behaviour. In

the end, performance of different hypervisors depends on factors like the application’s

nature and host architecture, and no winner takes all. Therefore, the hypervisor has to

be chosen carefully and taken into account when comparing it with other virtualization

techniques [34] [20] [1].

3.2 Overhead teardown

A high-level overview of the different performance issues that come with virtualization

has been presented. This paragraph will further elaborate on the overhead mentioned

above for both containers and virtual machines. In that way, we work towards a hy-

pothesis for the upcoming benchmarks and allow ourselves to reason about any possible

optimizations.
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Historically, common hypervisors struggled to provide proper baseline speeds for IO and

networking due to indirect IO paths that, for instance, sent every packet through the

host OS its user space. This has led to considerable research on complex acceleration

technologies such as hypervisor bypass and improved polling techniques.

In this context, VMs have come a long way to achieve acceptable performance, but

are still suboptimal. On the contrary, containers already started off with near-native

performance. Most of the upcoming related work being discussed here ranges from the

2013 - 2017 period. Most likely, new improvements have been made to the performance

of both containers and VMs during and after this period. Therefore, some performance

implications might be outdated, but there is a lack of more recent work that performs

these benchmarks. This also implies the need for a new updated performance comparison

of different virtualization techniques.

Bare metal machines are assumed as the baseline for performance, where virtualiza-

tion overhead is not present. It is unexpected that any form of virtualization would

outperform a bare-metal execution environment, which naturally does not have any

virtualization layers. In the upcoming subsections, different system metrics will be dis-

cussed to create an overview of the available information on virtualization overhead. We

try to present overviews of different papers and their results in a schema and/or table.

However, often this does not result in a one-to-one comparison due to different testing

environments. Therefore, to avoid bias, the overviews will have a quantative focus by

avoiding exact numbers when suitable.

CPU

Mazaheri et al. (2016) [25] uses the Cloud Tester Benchmark Suite. The benchmark

we discuss here has regular memory access and focuses on the floating-point operations

capabilities of the CPU. The general observation made here is that the virtual machine

(KVM) introduces some overhead, although it may be only 7.93% less GFlops. With

a KVM, the kernel acts as a hypervisor, providing the minimal abstract layer between

the hardware and the guest OS. For containers, no CPU overhead is introduced. It is

intuitive to reason about this, as a container is simply a process running on a UNIX

system, bounded by its namespaces. The only CPU-specific overhead could be the extra

CPU load from the container runtime, e.g. Docker.

Felter et al. (2015) [14] also emphasizes this performance overhead in their full IBM

research report [15]. They perform CPU/memory benchmarks with the LINPACK li-

brary. During these benchmarks, most of the time is also spent performing mathematical

floating-point operations. The paper itself presents a performance comparison between

the execution environments Linux (bare metal), Docker (container), and kernel-based

virtual machines (KVM). The result of this benchmark can be seen in Figure 3.1a. First
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of all, it shows that the number of Floating Point Operations per second (FLOPs) de-

creases by more than 50% in a virtual machine. Additionally, a slightly higher variability

is observed with the black error bars.

In IBM its published article, they state that containers and VMs impose almost no

overhead on CPU and memory usage [14]. Contrarily, in their full research report they

point out that the KVM performs remarkably worse than the other environments when

no CPU specific optimizations take place. This shows the costs of abstracting away

the host its system information from the execution environment (VM). As the guest

OS is unable to detect the exact nature of the system, the CPU employs more generic

instruction sets, with fewer CPU-specific performance optimizations.

(a) Comparison of Gflops during Linpack
benchmark in three different execution environ-

ments [15].

(b) Comparison of execution time during the
Y-cruncher benchmark for Docker and Flock-

port vs bare-metal [19].

Figure 3.1: Two visualizations from existing works showing the effect of virtualization
on CPU performance.

The latter is also pointed out in their research, whereas configurability is the weakness

of virtual machines. CPU performance is manually optimized by configuration of large

pages, CPU model, vCPU pinning, and cache topology. KVMs do not run without

Hardware-Assisted Virtualization, which is available in common AMD / Intel processors

since 2005 and gained a lot of attention in the past decades. This allows the hypervisor

to run in root mode, often allowing better compatibility with the host’s CPU [11].

For a benchmark like LINPACK, performing the same operations over and over again,

it would indeed be practically feasible to come close to bare metal performance when

specific optimizations are added. However, it is questionable whether this extent of per-

formance optimizations is feasible for real-life applications performing far more complex,

unpredictable, sequences of operations. Additionally, a KVM might not be exposed to

the underlying CPU architecture, for example, not being aware of its memory or cache

architecture. However, exposing these types of underlying features of the host machine

to the guest OS decreases the portability and maintainability of an application. The
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latter properties are often the reason for enterprises of moving towards a virtualized

environment and may therefore not be applied in real-life production environments.

For containers, this analogy does not hold. A trend can be noticed where, in the above-

mentioned research, most threefold (bare metal, container, VM) performance researches

do not focus on the performance implications of containers. Although considered in-

significant, they often show some effect on performance.

Kozhirbayev et al. (2016) [19] performs different benchmarks to measure CPU per-

formance. The CPU intensive benchmarks Y-cruncher and LINPACK were selected,

showing some decrease in performance for containers compared to bare metal. For the

former number crunching benchmark, the differences are very small, as shownin Figure

3.1b. The total computation time increases by 1% for Docker and 3% for LXC. Linpack

measures throughput and results in approximately 413 MFlops as a baseline. Docker

shows a decrease in throughput of 2.5 % while LXC results in a decrease of only 0.6

%. This implies that, although it can be considered insignificant compared to virtual

machines, these operations are affected by the layer of abstraction of a container. Nev-

ertheless, this might not necessarily be related to CPU operations, but could also have

been caused by disk I/O affecting the benchmark by longer IO waits.

Source Container VMs Remark

Mazaheri et al. (2016) [25] ±0% 8 % Matrix-matrix multiplications and fourier transformations.

Felter et al. (2015) [14] ±0% 31 % Floating-point operations with LINPACK.

Kozhirbayev et al. (2016) [19] - 3 % N.A. Does only take containers into account.

Table 3.1: Numeric comparison of the research papers on memory performance over-
head virtualized environments discussed.

Altogether, it seems that containers impose no significant overhead on CPU bounded

workloads. However, VMs do suffer from extra CPU cycles, as the hypervisor needs to

forward operations to the underlying host. It should be taken into account that mea-

surements are never completely isolated to a single metric, such as CPU usage. Other

metrics, like memory and disk IO performance, can affect these measurements. Finally,

existing research shows that host-specific optimizations can increase performance. How-

ever, this decreases the maintainability and portability of how VMs are used nowadays.

Therefore, those performance optimizations can negate the purpose of using the VMs.

We suspect this is also depicted by the overhead percentage shown in Table 3.1. Reading

both studies, it looks like the bare metal case within Felter et al. was able to use more

CPU specific optimizations on bare metal, resulting in a higher overhead compared to

Mazaheri et al.
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Memory

When measuring the performance of Random Access Memory (RAM), the focus often

lies on the throughput that could be achieved. Looking at read/write latency might

not be representative for memory performance. This performance is hampered due

to involvement of factors like caching, pre-fetching, and simply performance, which are

unrelated to memory. An example of this is the overhead of thread execution schedulers.

It is important to note that there is often a significant difference in achieved throughput

when having random memory access versus sequential memory access. This is mostly

related to the way memory is accessed, such as the way page tables are read within

virtualized environments. More on this follows later in this section.

In Felter et al. [14] (2016), memory performance is being investigated with the STREAM1

benchmark. This is a simple synthetic benchmark that performs simple vector calcula-

tions while measuring sustainable memory throughput. These operations have regular

patterns, meaning sequential access, and thus allow hardware prefetches to detect those

patterns and correctly prefetch data. These measurements are again performed on Linux,

Docker, and KVMs, resulting in negligible differences with a maximum difference in the

median of 1.4% between the three environments. This is considered too small to assume

any performance implication, taking noise / variance into account.

Li et al. [21] (2017) also presents performance measurements using the STREAM bench-

mark comparing KVMs versus containers, exploiting a lower throughput for KVMs up

to 5 %. The complete result for the memory throughput of Li et al. is shown in Figure

3.2, depicting both the throughput overhead and its variability.

Figure 3.2: The overhead of containers and Virtual Machines during the memory
intensive STREAM benchmark. Showing both values and variability percentages.[21]

1https://www.cs.virginia.edu/stream/
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Mazahari et al. [25] supports these findings using the same benchmarking techniques,

with a more significant decrease in memory throughput of 15 % for KVMs compared

to bare metal. In all cases, no virtualization overhead was found for containers with

respect to memory throughput.

In the same paper, also with STREAM, random memory access has been benchmarked.

In this benchmark type, random 8-byte words are read from memory, modified, and

written back. In this case, the memory locations are randomly generated, to ensure

there is no dependency between successive operations. The results again show a similar

performance; however, containerized and bare metal execution outperform KVMs by 13

%. In the case of random memory access on a multi-core CPU, each access typically

results in a miss for both the core caches and the translation lookaside buffer (TLB).

The latter is a table managed by the OS that functions as a memory address cache.

These introduced latencies cannot be hidden, and therefore performance is dependent

on the latency of the hardware page table walks and the effective latency of loading main

memory. This explains the slower performance of KVMs for those cases, as it performs

two hardware page table walks for both the host and the guest system. Mazahari et

al. also points out that memory throughput for KVMs is heavily affected by performing

random access operations, resulting in a decrease of 14 % of the measured Giga updates

per second.

Source Sequential access Random access Remark

- Container VMs Container VMs

Mazaheri et al. (2016) [25] ±0% 15 % ±0% 14 % Points out variability overhead of 250 % to 500 % (VMs).

Li et al. (2017) [21] ±0% 5 % ±0% 15 %

Felter et al. (2015) [14] ±0% ±0% ±0% 5 % Benchmark is again heavily optimized for VMs.

Kozhirbayev et al. (2016) [19] 4 % NA NA NA Docker was slightly better than Linux containers.

Table 3.2: Numeric comparison of the research papers on memory performance in
virtualized environments discussed. This figure depicts the percentual overhead.

From Table 3.2 it can be concluded that KVMs suffer from some virtualization overhead

during memory operations. Containers do not show these issues when also focusing on

KVMs, or are at least not being discussed. The following note is made on containers

by Mazahari et al. [25]. For sequential memory access, the results showed a variability

overhead for containers of 250 to 500 %. In other words, the memory performance

loss incurred by both virtualization techniques is mainly embodied with the increase in

performance variability. Kozhirbayev et al. [19] draws the same conclusion, focusing

only on containers versus bare metal. They state that no differences were found in the

memory performance of containers versus bare metal. However, in the figure of their

STREAM benchmark, it is visible that containers perform slightly worse regarding their

throughput, but not more than a few percent.
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Disk IO

I/O performance can be affected more easily by virtualization as discussed in Chap-

ter 2, where it is known to introduce quite significant overhead for specific cases. In

Mazahari et al. [25] the IOR (Interleaved or Random) benchmark is performed in the

three different environments. IOR is an IO benchmark with parallel capabilities that is

commonly used to test the performance of parallel storage systems using a variety of in-

terfaces and access patterns. Slowdown/speedup from both Random IO operations per

second (IOPS) and bandwidth are presented in its results, where a few findings stand

out. First, in relation to virtual machines, it shows that reads can have up to 30 %

slowdown for both bandwidth and latency for KVMs. For write operations, the virtual-

ization overhead with KVMs becomes less, but still varies from 3 % to 7 % depending

on the specific write pattern. The lower read latency for KVMs is supported by Felter

et al. [15]. For random read throughput of IO, shown in Figure 3.3a, it decreases by

approximately 50 % for VMs. This is because all IO goes through QEMU (the hardware

emulator), resulting in a significant decrease in performance. Furthermore, there is a

clear distinction between blocks/bytes and read/writes. Translating this to the context

of real life workloads, for instance logging, writing small byte-ranges to a file, could be

severely affected by those virtualization techniques.

(a) Comparison of random access IO through-
put for containers (Docker) and KVMs [15].

Shown in operation per second (IOPS).

(b) Comparison of sequential access IO
throughput for containers (Docker) and KVMs

[15]. Shown in MB/s.

Figure 3.3: Two visualizations of Felter et al. showing disk IO benchmarks for
different virtualization techniques.

For containers, Mazahari et al. also presents some performance decrease, albeit less sig-

nificant. Again, depending on the access pattern, read operations are up to 4 % slower

for VMs. Furthermore, for MPI parallel write IO, Docker shows a slowdown of approxi-

mately 10 %. However, for random IOPS containers shows a speed-up of parallel direct

IO operations of 3.3 %. This is at least remarkable, as theoretically bare metal would be

the baseline with the highest performance. Therefore, the reading slowdown mentioned
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above of the same magnitude of 4% for VMs could also be considered inaccurate, as any

speedup is unexpected when an extra layer of abstraction is added by virtualization.

However, Li et al. [21] supports these measurements, as shown in Figure 3.4. They

present a data throughput overhead of approximately 5% for block data reads and more

than 50% overhead for byte-sized disk reads.

Regarding containers, Felter et al. [14] did not observe any difference in performance

between Docker and bare metal for IO throughput. Note that in this case, a volume is

mounted as a Docker volume, bypassing the special layered file system that comes with

Docker by default. Bhimani et al. [5] confirms this by stating that in the case where

Docker volumes are being used, IO operations through that path are independent of the

choice of storage driver, and should be able to operate at the IO capabilities of the host.

This is also confirmed by Felter et al. as shown in Figure 3.3a and 3.3b.

Nevertheless, this performance penalty due to the filesystem is specific to Docker and

not necessarily containers. In Kozhirbayev et al. [19], the focus lies on IO throughput

for containers only, where a decrease in throughput of approximately 30% for Docker

is pointed out. For LXC containers (Flockport), a decrease of approximately 11% is

observed. For Docker this measurement does not give us a fair comparison, as in this

case Docker’s own multi-layered unification file system (AUFS) was used. Still, for LXC

containers the same filesystem as bare metal is used, implying that there are actual

performance implications even for throughput.

Li et al. [21] performs IO performance tests with Bonnie++2, while focusing on reading

and writing, and on byte and block size data. A clear observation is that for block read

& writes containers impose no significant overhead. This shows the difference between

using Docker its own overlay filesystem, as used in Li et al., and mounting volumes for IO

like in Felter et al. However, both reading and writing byte-size data is approximately

45% slower compared to bare metal performance. This is shown in their Figure 3.4.

2https://linux.die.net/man/8/bonnie++
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Figure 3.4: Storage data throughput and its variability overhead of a Docker container
vs. VM [21].

Now again this is due to Docker its own file system, which comes with a well-known

performance implication. However, it is remarkable that byte-sized reads/writes are

so significantly worse for containers that even VMs outperform them by almost 40 %.

This still implies a clear distinction between blocks/bytes and read/writes, where further

clarification is desired. Again, consider an application that regularly logs small entries to

one or more files. In this case, running the application in a container could cause severe

performance issues. These performance issues would not arise during a block-sized IO

benchmark while measuring throughput.

Read Write

Source Container Virtual Machines Container Virtual Machines Remark

Li et al. (2017) [21] byte-size & block-size resp. ±42% 5 % ±0% 3% Byte size significantly slower for containers. However this uses Docker’s overlay filesystem.

0 % 30 % 2 % ±27%

Felter et al. (2015) [14] ±0% ±55% ±0% 55 % Percentage is for random reads/writes. Sequential showed only a minor difference for writing ±2%/

Mazahari et al. (2016) [25] ±0% 20 - 30 % ±0/% 3 - 7 %

Table 3.3: Overview of relevant overhead from other research on the performance
implications of virtualization.

From the existing research studies discussed above, it can be concluded that disk IO

is often heavily affected by running in a VM. For containers, this performance penalty

cannot be considered negligilbe, only if volumes are mounted for the IO operations.

Depending on the type of application, this could be a suitable solution. Nevertheless,

we conclude that applications revolving around heavy disk IO should be treated carefully

when running in a virtualized environment.
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Networking

As mentioned before, VMs always mimic a set of hardware interfaces for the guest

OS, for instance a network adapter. Additionally, most container setups have a virtual

network interface assigned. This means that every call to a network outside of the virtu-

alized environment would have an extra hop to take, when reaching the outside network.

Again, in this case, containers have the benefit of not requiring another virtual Network

Interface Card (NIC), meaning that one would expect better networking performance

compared to VMs. Felter et al. [15] shows that for TCP troughput measurements, the

differences between VMs, containers, and bare metal are negligible. They do show TCP

transmission efficiency, by measuring the number of CPU cycles per transferred byte.

They show containers, using Network Address Translation (NAT) suffer more, approxi-

mately 25 % from efficency than VMs. However, it should be noted that a very specific

hypervisor bypass setting was used here. As stated above, when Xen and KVMs were

being used in applications right after their launch, they have been struggling to provide

IO performance close to native, having every packet passing through the hypervisor.

This led to considerable research on network acceleration technologies, such as polling

drivers and hypervisor bypass [22]. The latter is used for the measurements by Felter et

al., allowing the VM to communicate directly with the host kernel. Although this signif-

icantly improves performance, it might not always be the feasible or chosen solution for

organizations due to security/networking restrictions. Again, it should be noted that this

is considered the best-case scenario. In a real-life production environment, where VMs

are often preferred to increase portability and efficient resource usage, things like hyper-

visor bypass and CPU pinning might not be maintainable. This is often only applied to

very specific applications, for instance with load balancers, where network performance

is critical. However, for those applications, it might be more straightforward to not use

virtualization at all.

Li. et al [21] shows an overhead of approximately 55% overhead in networking data

throughput using iperf, also TCP connections. Containers only showed 2% overhead of

data throughput, but showed a significant increase in variability of 55 %. The numerical

values of throughput and variability are shown in Figure 3.5a. They point out that they

have concerns about hypervisor-related configurations that might affect their results and

aim to inspire further investigation. However, from Felter et al. [15] and Li et al. [21], it

can be concluded that VMs suffer from virtualization overhead for network performance

in absence of hypervisor bypass. As discussed above, it commonly not feasible to run

all VMs in a cloud-native environment using hypervisor bypass.
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(a) A table of measured network throughput
for KVMs (no hypervisor bypass) Docker con-

tainers, and bare metal machines [21].

(b) Network round-trip latency comparison for
Docker containers and KVMs. Both TCP and

UDP RTT is tested, [15].

Due to the extra hops made intrinsic to virtualized environments, especially in the

context of a distributed system that has more communication, the round-trip response

time (RTT) might be more of interest. These hops (extra layers) might introduce more

latency that might not be directly measurable at the network layer. IBM research report

[15] shows that the RTT of the network, read latency, is significantly worse for VMs,

measuring both TCP and UTP RTT. As shown in Figure 3.5b, KVMs add 30 of overhead

to each transaction compared to the non-virtualized network stack, an increase of 80%

for their setup. For containers, the RTT also increases significantly up to approximately

35 µs. Unfortunately, Felter et al. does not discuss this more in detail; however, the

effects of Dockers Network Address Translation (NAT) are clearly visible. The latter

can be viewed as a sort of “userland-proxy”, which is created for every forwarded port.

There is only a small difference between UDP and TCP, since Felter et al. only uses a

transaction of a single packet for this test. Contrary to a throughput test, the advantages

of UDP are not brought to practice.

Furthermore, for containers networking performance, refer again to Kozhirbayev et al.

[19]. They perform an IO networking benchmark with the Netperf3 benchmarking tool.

This test is performed by running on two different hosts and measuring throughput

for UPD and TCP, for bare-metal, LXC and Docker containers. For both TCP and

UDP, Docker containers show a decrease in transfer rate (per second) of approximately

8.5 % compared to native (bare metal). Kozhirbayev et al. [19] also points out that

the impact of Network Address Translation (NAT) can be mitigated by using the host

network (nethost), similar to the hypervisor bypass vhost that was previously mentioned

for VMs. However, as discussed, this removes some of the virtualization advantages; for

containers, this would negate the advantages of network isolation by namespaces.

From the existing work discussed here, it can be concluded that networking is heavily

affected by running applications on a virtual machine, where RTT can get worse by

3https://linux.die.net/man/1/netperf
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up to 30 µs. Additionally, throughput can be reduced by 50 % or less. Both cases

do not consider hypervisor bypass. Containers show no significant decrease in network

throughput. However, they also show a significant increase in latency RTT of 35 µs. This

is due to Docker its NAT and could have been improved since the time of publication due

to technical advances. We do not present a table here, as there are too many differences

in the way network performance is measured among these studies. Additionally, the

specific optimizations used in Felter et al. might give a biased view on what is feasible

in a production environment.

Finally, we list an overview of the metrics that are used by existing works discussed

above. These metrics can function as a guideline for our work, deciding which metrics

to take into account and how.

• CPU

Different benchmarks exist, where often three units of measurement are being used.

– Total exeuction time The most straightforward way is to measure the total

execution of a deterministic set of operations. Although this is easy to grasp,

it can be heavily affected by other performance penalties, e.g. IO workloads or

interactions with RAM. Nevertheless it represents better how an application

its performance is affected.

– FLOPs Floating point operations per second is an appropriate way to mea-

sure how much CPU is being used by an application. More specifically this

is a very exact way of measuring how much ’work’ is performed by the CPU

in a second.

– CPU usage (percentage) The most common way we see CPU usage is by

the percentage of CPU that is being used. It represents the percentage of the

amount of time a CPU spends processing non-idle tasks.

• Memory

Memory is a bit more straightforward, where commonly two types of metrics are

being used.

– Throughput (maximum) As shown in existing work, there are benchmarks

available that measure what is the maximum bandwidth that can be achieved

by the Random Access Memory (RAM). Often a combination of small/large

memory blocks and sequential / random access is taken into account.

– Memory usage (bytes) Another way to measure this is measuring the

number of bytes being used. This approach focuses more on the application

side of measuring performance.
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• Disk IO

Existing work shows that Disk IO is heavily affected by virtualization layers. The

following metrics are common ways of measuring this delay.

– Throughput The amount of bytes that can be written to the disk is rep-

resentative for processing large files, but often depicts an optimal scenario.

Also for disk IO, often random / sequential read and writes are measured sep-

arately. Futhermore, smaller and larger file segments are taken into account.

– Latency The time it takes to actually access a file (and thus open a file

handle) might be more useful for the context of this research. Opening the

file, meaning obtaining a file handle, is affected more by the virtualization

layer than actual throughput.

• Networking

Lastly we consider networking, which is often most heavily affected by virtualiza-

tion layers. Two common ways of measuring networking performance are listed

below.

– Throughput (maximum) The maximum throughput that can be achieved

is a common way of measuring networking performance. However, in the

context of distributed web applications, little bottlenecks are expected here.

As (synchronous) applications are often not bounded by network throughput.

Nevertheless, the networking throughput can suffer from severe performance

penalties for VMs.

– Latency We have seen in the existing work of this section, that also la-

tency can be heavily affected for both scenarios. Specifically in distributed

web applications, on average containing more networking calls, might suffer

from these penalties. Therefore network latency is considered an increasingly

important metric.

3.3 Research context

As described in the previous sections, there is already a lot of existing work on the per-

formance implications of different virtualization techniques. These provide information

on the performance metrics of the system affected by virtualization. This gives us a

good overview of what can be expected as possible bottlenecks, also within distributed

systems. However, most of these studies perform common benchmarks in an isolated

single instance. These benchmarks have existed and evolved over decades. These studies
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have proven that these benchmarks provide valuable insights. However, the trend nowa-

days to move to cloud-native applications results in a rise of distributed systems like the

microservice architecture. In our view, this calls for a different approach to measuring

performance, where we should take into account the properties of the distributed system

itself when measuring performance in different environments. Here, this research tries

to fill the gap by aiming to find a more suitable way to measure performance within dis-

tributed systems. This is done to provide better insight into how distributed systems are

truly affected by virtualization. One of these approaches is to use distributed tracing. A

detailed description of how this works will follow in the following subsections. In doing

so, it can become harder to generalize for any system as the benchmarks become less

reproducible; however, it might open up new insights on the performance of distributed

systems in virtualized environments.

3.3.1 Workload generation

Curiel et al. [10] discusses workload generators for web-based systems, describing their

characteristics, current status, and challenges. Their aim is to compile the most impor-

tant research contributions in the area in recent years and to structure those for a better

understanding of the current challenges when generating representative workload.

Curiel et al. states that, in general, generating workloads can be challenging for two main

reasons. First, the workload must be representative for the system under test (SUT).

This SUT can be in any domain such as e-commerce, scientific computing, or databases,

making it difficult to create a general-purpose workload. Second, the workload space

is changing at a fast pace because technologies change rapidly and new applications

appear constantly. Finally, the workload is often a partial reflection of human behaviour,

introducing an additional level of variability.

For this research, we are basically ‘measuring behind the load-balancer’, directly at a

group of load-balanced web services. This means we assume a fixed workload. Although

this might not represent a real-life scenario, including dynamic workloads would affect

the consistency of our measurements across different environments. An illustration of

this setup is shown in Figure 3.6. This means that user behaviour, for instance access

patterns, is not taken into account, with the aim to scope the measurements of our

research. The range of interest is a group of web services that interact in a synchronous

flow.
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Figure 3.6: Overview of a simple distributed system, where the red square indicates
the region of interest.

Maintaining steady throughput for these benchmarks is against what follows from the

existing literature on benchmarking. For instance, Casazza et al. [7] from Intel charac-

terizes server performance for virtualization benchmarking. They state “It is simplest to

measure performance when all measurements are conducted in a time window after all

workloads are in a steady state. Although this may be well suited as a benchmark, it fails

to represent many real-world usage models.” Although a fair point is made, our research

considers a specific scenario where user behaviour has less variance and a more constant

throughput. The focus lies more on redundant services, running behind a load-balancer.

Take Adyen as an example, a big leader in the payment industry. They process payments

globally, and thus experience less effects of, for instance, timezones differences. The

throughput of requests per second is relatively constant, with some peaks and gradual

increases/decreases throughout the day. In addition, most user interactions constitute a

single HTTP request. Therefore, services are less affected by user-interaction patterns

and busier time periods throughout the day.

One might wonder why we do not consider redundant services when this is the scope

of this research. As mentioned in Section 1, we do focus on representative distributed

systems that often include redundancy. However, in order to scope this research and

exclude more factors that can affect the accuracy and variability of the measurements,

such as the addition of load balancers, it has been chosen not to do so.
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3.3.2 Comparing request flows

While taking a different approach from existing work [15] [25] [21] [17] in determining

virtualization overhead, the goal is to measure performance based on response time mu-

tations by distributed tracing. There are frameworks out there to compare request flows

by code instrumentation. Examples are Google its own DAPPER [41] and Facebook its

Canopy [18]. Both use similar techniques to extract information from the request flow

by comparing traces, but are unfortunately not publicly available. Nevertheless, these

in-house built frameworks are expected to be too specialized for the organizations needs

and are built for real-time monitoring. This makes existing frameworks bad candidates

to be applied within this research, whereas we want to compare past events extracted

from persisted storage while considering different runtime environments.

A different approach was taken for similar purposes (to ours) by Sambasivan et al.

(2011) [36]. They describe and implement a technique to gain insight into the perfor-

mance changes of a distributed system. They do so by comparing request flows from

two executions, using code instrumentation data. They refer to new request flows, for

instance, containing a code change, as mutations. Request flows that come from the

original state of the system are referred to as precursors. In the context of this research,

the change can be considered as moving to a virtualized environment. Consequently, the

mutation is to run an application in, for instance, a container, and the precursor is our

baseline bare-metal environment. Furthermore, Sambasivan et al. focuses on response-

time mutations and structural mutations. The former is self-evident, while the latter

corresponds to requests that take different paths through the system. This research

will focus solely on response-time mutations of individual traces. However, structural

mutations can still occur, for instance, with multithreaded applications due to their

non-deterministic nature. Due to context switching and the internal OS scheduler, some

request flows can have different orders of internal concurrent operations.

Typical latency distributions do not follow a known distribution [31] [36]. Latency

distributions often have a long right-sided tail, as shown in the example in Figure 3.7.
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Figure 3.7: Example plot of a latency distribution [44].

This tail is essential for latencies and should not be arbitrarily discarded, especially in the

context of distributed systems. A simple example is the Service Level Objective (SLO)

of a company that wants their latency for a single web service to be below a specific

value (e.g. 20 ms) in the 99 % percentile. Now, this is a common case where outliers

in the last 1 % percentile are discarded. In this case, 99 out of 100 calls lie within this

percentile. However, for instance this SLO could apply to hundreds of web services of a

company. A simple end-user request flow, such as loading a modern webpage, depends

on at least 150 requests. In this case, it means that (1− 99150) ∗ 100% = 77.85% of the

time, the webpage would experience the upper 1% of the latency distribution. Table 3.4

shows a number of public webpages with the number of requests that occur to load all

the resources on the website.

Website # of requests % of page loads experiencing 1% percentile

google.com - Homepage 36 30.35

google.com - Search ’I’m a teapot’ 64 47.44

amazon.com - Homepage 291 94.63

linkedin.com - News feed 195 85.91

Table 3.4: Several examples of web pages with the number of requests made on a
single page load, including the chance of being in the upper 1% percentile.

The analogy above is for webpages; however, this analogy also holds for APIs consisting

of numerous smaller microservices. This shows that the tail of the latency distribution

can be considered more important than the actual mean value [4]. The end user might

not notice the loading of a webpage taking a bit longer on average, but would notice that

one fragment takes significantly longer. However, it is important to note that the user
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does not notice all requests made when opening a page. Slowly loading images might

be visible, however, slow retrieval of marketing analytics scripts might be negligible.

3.3.2.1 Statistical testing

There are numerous statistical procedures to choose from when comparing two sets of

samples with an unknown underlying distribution. The latter means that this research

requires non-parametric tests, which do not rely on assumptions about the existence of

distribution parameters. The outcome is whether two sets of samples come from the

same distribution, also called goodness-of-fit. Additionally, for this research, it is of

interest to know how significant any detected difference is. We consider a few possible

options based on additional sources [9] and similar research [36]. Unfortunately, existing

frameworks such as Google its DAPPER [41] and Facebook its Canopy [18] do not

expose what kinds of statistical tests are being used. Therefore, most alternatives are

listed from research papers solely testing different capabilities of two-sampled two-sided

nonparametric tests:

For this research, we consider a few different types of statistical test, all having a variant

that is nonparametric and two-sided. Using either a parametric or one-sided test would

not be possible, as for the former, we need to know the underlying distribution. To use a

single-sided test, the underlying distribution parameters of one of the data sets would be

required. The statistical tests listed below seem suitable for the purpose of this research.

The Shapiro-Wilk test and Chi-square test are left out of scope, as the literature proves,

they are less powerful for the use case of this research. The Shapiro-Wilk test is more

suitable for sample sizes below 50. There are some alternatives to this test for larger

sample sizes, however, still up to n < 5000. Furthermore, the chi-square test considers

binned data by simply comparing histograms. This introduces the risk of leaving out

important information about the tail of a distribution [28] [42].

• Kolmogorov-Smirnov test (KS-test)

The two-sample KS-test quantifies the distance between the empirical distribution

functions (eCDF) of the sampled data sets. The resulting statistic value is rep-

resentative of the maximum distance between the two CDFs. Sambasivan et al.

[36] also uses the KS-test to compare request flows, and this proves successful for

differences in request flow timing up to 2ms. For this research, its most important

property is that the test is particularly sensitive to changes around the median

[39] [24].

• Cramér–von Mises test (CVM-test)

The two-sample CVM-test also is a criterion to quantify the goodness-of-fit of
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two eCDFs. It is considered an alternative to the KS-test, using the summed

squared differences of the two functions. Compared to the KS-test it is slightly

more sensitive to changes in the shape of the distribution. [3]

• Anderson-Darling test (AD-test)

A modification to the KS-test is the AD-test. It has some modification in its

methodology, not using the maximum difference but calculating the averaged log-

arithmic distance between the two eCDFs. This makes the test more sensitive

to differences in the distribution its tails for two datasets. Furthermore, it has

been shown that, compared to other tests, the AD-test is more sensitive to smaller

changes, specifically at larger sample sizes [12] [39].

• Mann-Whitney (Wilcoxon) test (MW-test)

The MW-test, also known as the Wilcoxon rank sum test, first ranks (sorts) all

values in both data sets. Subsequently, a P-value is calculated that is dependent

on the differences between the mean ranks of the two data sets. The MW-test is

generally known as a less powerful statistical test and takes the shape of the dis-

tribution even less into account. Nevertheless, as it makes few assumptions about

the data, it is applicable in cases where it would be incorrect to use other more

powerful tests (KS-test). An example would be if the data set is not continuous,

where the KS-test would then falsely assume that it is [40] [9].

In Table 3.5, we describe a high-level comparison of the properties of each test related

to what is needed for this research. This comparison is based on the earlier referenced

research studies considering these statistical tests, and is based on our own interpretation

of their conclusions.

Statistical test Sensitivity median Sensitivity variance/shape

Mann-Whitney +- -

Kolmogorov-Smirnov ++ +

Anderson-Darling + ++

Cramer-von Misses + +

Table 3.5: Comparison of well-known statistical tests when comparing distributions

As mentioned before, it is important to compare the means of our sample distributions

and also to take the tails into account. As described before, even samples outside the 99

percentile can have significant effect on the total (distributed) system its performance.

Considering the comparison above, it seems that both the Kolmogorov-Smirnov test (KS-

test) and Anderson-Darling (AD-test) test are good candidates for comparing request
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flows. Sambasivan et al, 2011 [36] compares request flows using the KS test, and prove

to detect time differences of 2 ms for a trace span.

From the analysis of the existing literature on statistical tests, we expect the KS-test

and AD-test to be most valuable for the purpose of our research. The following sub-

sections describe the two tests more in-depth. Both tests are based on the cumulative

distribution function (CDF) of the sample data. In simple terms, they calculate the

distance between the distributions. This research focuses on performance comparisons

of virtualized environments. As we are not implementing the statistic tests ourselves

and neither focusing on their internals, we use existing implementations of the SciPy4

Python library. Therefore, no derivations are presented in this section. Only a brief in-

troduction to the mathematical approximation of both tests will be given in the following

subsections.

3.3.2.2 Kolmogorov-Smirnov test [24] [12]

As discussed, the purpose of the research will not necessarily be to look at the mean

value of latency, but rather at the distribution of values as a whole. Therefore, the

Kolmogorv-Smirnov test is a well-fitted choice here, to be able to detect the request

flows with the largest differences between different environments. This corresponds to

the approach taken by Sambasivan et al.

The Kolmogorov-Smirnov test was originally a test to measure the deviation of empirical

distributions from a known theoretical distribution. This means comparing a set of data

samples to a known distribution (e.g. normal distribution) F (x). The KS statistic for a

set of samples and a known CDF is described by Formula 3.1 below.

KSn =
√
nmax

x
|Fn(x)− F (x)| (3.1)

In this equation, Fn(x) is the empirical cumulative distribution function (eCDF) with

a sample size n. For this test, the null hypothesis H0 is that Fn(x) comes from the

underlying distribution F (x). It is rejected if KSn is larger than the critical value KSα

at a given α. A table with critical values for different sample sizes is not included here

but can be found in the original article (Massey et al. [24]). A simplistic view of this

test is to think of a band with a thickness of 2 ∗KSα that is drawn around the center

of the known CDF. If the eCDF falls out of this band, the null hypothesis is rejected.

4https://scipy.org/
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As discussed before, this research requires a two-sample version of the statistical test,

since latency (traces) generally does not follow a known distribution. This means that

we do not have parameters to characterize the distribution. The two-sample version of

the KS-test is described by Formula 3.2 below.

KSnn′ =

√
nn′

n+ n′ max
x

|Fn(x)− Fn′(x)| (3.2)

In this equation, Fn(x) and Fn′(x) are the eCDFs of two sample sets, based on sample

sets of size n and n′ respectively. The same analogy follows, where the null hypothesis is

H0 that Fn(x) and Fn′(x) are from the same underlying distribution. It is again rejected

if KSn is greater than the critical value KSα at a given α.

3.3.2.3 Anderson-Darling test [39] [12]

As discussed above, one of the other most viable options for statistical tests is the

Anderson-Darling test (AD-test). At the beginning of this chapter, it was concluded

from existing research that the AD-test is expected to be more sensitive to changes

in the shape between two distributions. Other research has shown that it commonly

outperforms the KS-test [28] [12].

The AD-test is originally simply an alternative to other statistical tests for detecting

difference between a sample data set and a known normal distribution. The one-sample

AD-test its statistic can be calculated by Formula 3.3 below.

AD = −n− 1

n

n∑
i=1

(2i− 1)
(
ln
(
x(i)

)
+ ln

(
1−

(
x(n+1−i)

)))
(3.3)

In this formula, {x1 < ... < x(n)} is the ordered sample set of size n. The null hypothesis

H0 of this test is that this set of samples comes from the underlying distribution F (x)

of Formula 3.3, and is normally rejected if the statistic is greater than the critical value

ADα which can be calculated using the corresponding tables provided by the original

article, in which case α is the specific critical value (e.g., 0.25).

For a two-sample test, the equation transforms to an extended equation defined by

Formula 3.4 below.

AD =
1

mn

n+m∑
i=1

(
NiZ(n+m−ni)

)2 1

iZ(n+m−i)
(3.4)
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In this equation, Z(n+m) represents the combined data sets of ordered samples Xn and

Ym of sizes n and m, respectively. Furthermore, Ni is the number of observations in Xn

that are smaller than or equal to the number of observations i in Z(n+m). Again, H0

stating that Xn and Ym come from the same distribution is accepted if the test statistic

turns out to be smaller than the critical value corresponding to the sample size.

Lastly, both the AD-test and KS-test seem good candidates for the purpose of this

research. However, we should take into account that with large sample sizes (n > 1000),

p-values tend to drop to zero if the variability is relatively high. Both tests are not

very suitable for larger sample sizes. However, as we know from existing literature, time

measurements within virtualized environments often have a high variability which in

turn asks for large sample sizes to capture all system properties. Therefore it could

appear that the best test for comparing cumulative distribution functions wihtin this

research might be simple percentiles or even an eyeball test.
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Methodology

This chapter will discuss the methods applied to gain insight into the performance of

virtualized web applications in a distributed environment. First, the system under test

(SUT) will be discussed, including the different virtualization setups. This is followed by

a detailed description of the complete measurement setup, including workload generation

and data collection/storage. Finally, this chapter will describe the steps in which data

are collected and processed, leading to the final results.

This research considers four different virtualization setups, including a bare-metal server

setup, which seem typical for a subset of enterprise applications moving to the cloud

or simply virtualized environments. The applications will run in the following environ-

ments:

• Bare-metal dedicated servers

• Containers running on top of bare-metal servers.

• KVMs

• Containers running on top of KVMs

More detailed descriptions per environment and specific to the SUT will be discussed in

the following subsections.

4.1 Systems under test

The SUT for this research is a simple e-commerce Java Spring Boot application consisting

of the following three microservices, which can be found on Github1:

1https://github.com/daanvinken/microservice-example-tracing

36
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• Order service

• Payment service

• User service

The application has been adapted to represent a common enterprise application. This

includes calling other services, databases, and performing some heavy IO / CPU work-

loads. This resembles typical workloads for companies with high-performance web end-

points, where API calls involve multiple services. As mentioned before, this research

is performed at Adyen, where typical services/jobs perform many IO operations, like

logging or remote service calls. With respect to the complexity of the application, this

research chooses to restrict the Java implementation from complicated code patterns.

Therfore, we consider at the De Capo benchmark research paper [6], a report and bench-

marking guideline for Java applications (Blackburn et al., 2006 [6]). They state that

complexity in Java code flow produces more variety and more complex behaviour at

runtime. This research prefers to be as close to a real-life production environment as

practically feasible. However, this quickly results in a trade-off between reproducibility

and consistency and the system representing a real-life production scenario.

For the upcoming benchmarks, the focus lies on an arbitrarily designed and chosen

request flow, which is depicted in Figure 4.1. Later in this section the complete workload

on those services will be set out step by step, however, for now the request flows on a

server-to-server level will suffice for discussing the different environments. As mentioned

in Section1, this system should be imagined to function behind a load balancer, which

in our case is replaced by a load generator.

Figure 4.1: Graphical representation of our SUT, with servers (purple), applications
(green) and databases (red).
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In all cases, the servers are connected via a Virtual Local Area Network (VLAN). Figure

4.3 shows the four different setups to which the upcoming benchmarks will be applied.

For convenience, the default Postgres database container from Docker Hub 2 is used

as a database instance. Running the database in a container can have performance

implications. However, due to having the same setup in all four scenarios, no difference

in performance impact is expected.

Initially, one might expect disk IO to be slower as well; however, within the container

image definition volumes are defined to overcome the performance penalty for disk IO.

We have seen in existing research, set out in Chapter 3, that this makes any performance

difference insignificant.

Hardware

The servers in practice are from a UK-based Fasthosts3 data center. The chosen servers

have an AMD Ryzen 5 PRO 3600 CPU with six hyperthreaded cores with 3.6 Ghz clock

speed frequency. The caches are L1: 384KB, L2: 3MB, and L3: 32MB on a single

socket. This CPU is supported by 32 GB of DDR4 memory and 2 SSDs of 480 GB.

To increase performance and avoid extra hops in routing, a private network (VLAN)

is established between these servers. This is a direct layer 2 connection between these

servers, configured via an additional NIC. In practice, this should result in lower latency

and higher bandwidth (claimed up to 10 Gbit/s) compared to the public IP network.

Furthermore, the Network Time Protocol (NTP) is set up on these servers to minimize

the clock drift between the servers. One of the servers is configured to sync with three

public NTP servers. Additionally, all other servers sync with this single server through

their configured VLAN. In this configured setup, we have not measured an estimated

error higher than 80 µs. NTP calculates this value itself, which also becomes available

to the node exporter, which will follow later. An example of the estimated time error

can be seen in Figure 4.2 below. As can be seen in this figure, around 11:24 a small

correction on the drifted time occurs, performed by NTP.

2https://hub.docker.com/layers/library/postgres/14.5
3https://www.fasthosts.co.uk/cloud-servers/bare-metal
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Figure 4.2: The Time Synchronized drift measured on one of the servers.

The following sections provide some context and considerations on the test setups in

practice, which are depicted in Figure 4.3.

Figure 4.3: Overview of the four different (virtualized) environments that are bench-
marked within this research.

4.1.1 Bare-metal

The bare-metal setup, commonly named a dedicated server, is the baseline for the up-

coming measurements. It should technically not be possible to outperform this scenario,
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as it always has the lowest number of abstractions. In this context, an abstraction,

like virtual IO interfaces, could imply for instance extra CPU cycles or network hops.

As indicated in Figure 4.3 the database container is attached to localhost and is then

connected to the application.

In this research, we try to mimic a real-life production environment within the bound-

aries of available resources and time. By these boundaries, it is not possible to have a

remote database. Therefore, databases are run locally on the same host, in a container.

This is another common setup for enterprises, letting the database reside ’closer’ to the

application. Note that running a database in a container is not a typical setup. However,

we prefer consistency within our database setups. The other scenarios involve services

running in a container. Later on, it will become clear why running the database in a

container is a more representative setup. Typically, databases run remotely or just as a

daemon on the same server. But for those reasons, we maintain consistency and apply

the same database setup in the bare metal scenario.

4.1.2 Container on bare-metal

With the ongoing trend of containerizing (web)applications, mentioned in Section 1,

this setup seems to be a common case for companies. Running their applications in

containers allows them to take advantage of the scalability and isolation that containers

offer.

Chapter 3 shows that performance differences can arise between different container run-

times. Kozhirbayev et al. [19], for example, found that Flockport (LXC) can outperform

Docker during benchmarks. However, as mentioned before, from a survey of Enlyft it

is known that from 50 000 software companies, 97 % uses Docker. With this market

share, it seemed more representative for this research to use Docker. It is important to

take best practices into account, for instance, not using Docker its overleaf filesystem

(AUFS) when performing many disk IO operations.

As can be seen in Figure 4.3, in the case of a containerized web service, the container

is connected to the database over a Docker network (bridge). Initially, this may seem

like an unfair comparison. Nevertheless, having an isolated (virtual) network for intra-

container communication is very common. Especially with the rise of container or-

chestration systems. A well-known example of this would be intra-pod communication

within a Kubernetes cluster. On the contrary, imagine that the database and web ser-

vice container would both run on the host network. In that case, we would not take

into account the additional network hops to the virtual network interfaces. Following
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the above, we certify that using a bridge network for containerised scenarios is more

representative for real-life production environments.

4.1.3 KVM

With an increasing number of companies running their applications in a cloud environ-

ment, virtual machines are becoming the common case for most systems. Some cloud

providers do not even offer dedicated (bare-metal) servers. If a cloud provider does,

they often have a small separate section for dedicated servers, while most if not all other

offered services run in some kind of virtualization layer. This also implies the need to

see how (distributed) web applications perform in this type of virtualization.

As discussed in Section 3 there are different types of hypervisors available. However,

KVMs seem to be the most common option that also has the best overall performance.

Additionally, some of the biggest cloud providers like Google Cloud Platform (GCP)and

Amazon Web Services (AWS) use KVM-based hypervisors.

To have a fair comparison with our bare-metal baseline, the applications will be con-

nected via the guest OS its localhost. This is a virtualized ’local’ network interface

within the VM.

4.1.4 Container on KVM

Due to the combination of both trends in the software industry, moving to containerized

applications and more systems running in the cloud, this setup is becoming the most

common case. Good examples are any container running on AWS, GCP or Azure. Some

of the most used cloud products for containers services, respectively Elastic Kubernetes

Service (AWS), Elastic Container Service (AWS) or Google Kubernetes Engine (GKE),

all run in virtual machines. Again, with this setup, we use a bridge network between

containers on the same virtual host. However, now this virtual network resides on top

of the virtualized ’local’ network interface within the VM.

4.1.5 Request flow breakdown

One of the ways to measure the performance of our SUT is distributed tracing. For the

upcoming analysis of these measurements, it is good to be aware of the request flow a bit

more in-depth. The application has been designed in a way that it emphasizes different

types of system properties, like CPU, disk IO and networking. Here, we shall shortly go
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over the specific operations that are being traced in the complete request flow and are

included in our measurements.

Figure 4.4: An overview of the recorded traces of the complete request flow, shown
in Jaeger.

Some trace spans depicted in Figure 4.4 above are considered for our measurements and

are set out below. Within this research, the wording latency, trace spans, and traces

will be used interchangably.

• /Orders/create/id/{id}

This is the order service call, which is the entrypoint of our API. As can be seen

in Figure 4.4 this task contains a set of operations, which will be discussed below.

The service performs some disk IO tasks, after which it calls other services. Finally

it stores an ’order’ to its own database.

• LargeFileTask.write

This task writes a large text file, which content is stored in memory, to a location

on the disk. The file is approximately 5 MB. The choice to include some file

operations into our request flow is made, as disk IO seems to be heavily affected

by virtualization. Therefore we prefer to include such operations into our SUT.
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• LargeFileTask.read

The same file is read from the disk again within this task.

• SmallFileTask.run

This task, also contained within the order service, consecutively switches between

reading and writing a small file from the disk, with a size of 140 bytes. It does

this 10 times before returning.

• /put_users/{id}

This PUT HTTP request to the user service where a simple SELECT and UP-

DATE operation on the user database is executed.

• /users/{id}

This trace span represents the GET HTTP request to the user service, which finds

a user based on its ID in its database. Afterwards, a small Linpack benchmark if

executed called LinpackBenchmark1.

• LinpackBenchmark1

This task runs a small Linpack benchmark implemented in Java4. This in order

to mimic some CPU intensive worload.

• /payment/transfer/id/{id}/amount/{amount}

This is the call to our payment service. The service itself contains the SleepTask,

and its duration is set to 0 µs by default. Furthermore, it also executes a slightly

longer Linpack benchmark called LinpackBenchmark2. Finally, it calls the user

service (/put users/{id}) which updates some properties in its attached database.

• LinpackBenchmark2

This task runs a slightly larger Linpack benchmark also implemented in Java.

4.2 Test setup

Benchmarking computer systems comes with its caveats, especially in a distributed

environment. Getting closer to a real-life representation of a distributed production

system under test requires a different approach to performance measurements. This

real-life representation involves running with a concurrent user load of an enterprise

application, while not exhausting resources. This exhaustion of resources is unacceptable

for enterprise applications. It exposes businesses to the risk of failing to meet their SLAs

due to unaccounted latency spikes, and doing so enables them to take account of resource

utilization peaks.

4https://netlib.org/linalg/linpack.b
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This contradicts how most benchmarks are performed, as mentioned in Section 3. In

those cases, resources are exhausted for a long time, trying to achieve the highest possible

throughput on a single isolated instance. This merely depicts an optimal scenario. This

research attempts to measure the performance of virtualized environments in a more

representative setting. Instead of looking at narrowly scoped tests for instance specific

to CPU bound or IO bound standard benchmarks, this research looks at the system as

a whole, taking more common properties of distributed web applications into account.

For example, we include calls to other services into our measurements. Hereby we

investigate what could be the effects for large enterprises when moving their applications

to virtualized environments.

This research will use the following methods of measurement.

• Distributed tracing

This research uses Opentelemetry distributed tracing 5. A Trace records the paths

taken by requests (made by an application or end-user), from the moment the

request is made, propagated through multi-service architectures, all the way to

the final response. This technique is often applied with microservice and serverless

applications. With this technique the aim is to gain deeper, more fine-grained,

insights in which parts of applications experience performance bottlenecks due to

virtualization.

• System level metrics

Aditionally, a number of system-level metrics among CPU load, memory usage, or

number of context switches will be monitored. The outcome of these measurements

could, for instance, indicate whether more resources are needed, while running the

same application in a different virtualized environment.

4.2.1 Workload generation

For this research, Apache Jmeter6 will be used as a workload generator and load tester.

This is a well-known tool from Apache, used to measure and analyze the performance

of different services, with a focus on web applications. Some features important for this

research are its headless mode, multithreading support, reporting/analysis capabilities,

and extensibility. The latter means that it supports a constant-throughput timer. This

is important for our research, as in order to compare different virtualized environments,

throughput should be kept constant. In Section 3 it has already been discussed why we

choose not to simulate user behaviour.
5https://opentelemetry.io/
6https://jmeter.apache.org/
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For constant throughput, there is one important side note. It is practically infeasible

to set the exact number of requests per second. Say, an application has an average

response time of 30 ms, but has outliers of 2000 ms, which is common when looking at

the 99th percentile of APIs. With load testing, often multiple threads spawn requests

at the same time. Therefore the exact next timing of a next request is variable and can

be different after every finished request. Therefore, some variability is expected in the

number of requests per second.

We have chosen to set the approximated number of requests per second to 20. Based on

our first measurements on the SUT, while not limiting throughput, it was found that

the system could process at least 25 requests per second. Choosing this value slightly

lower, at 20 requests per second, allows us to ensure that we are not overloading our

application.

4.2.2 Data collection

This subsection describes the complete test setup, including the essential parts for data

collection and analysis. A schematic overview of the entire test system can be seen in

Figure 4.5. The diagram contains five larger squares that represent the servers used in

our test setup. The hardware of these host machines is already elaborated in Section

4.1, which is identical for each server.

Figure 4.5: An overview of the benchmarking system architecture.
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Naturally, the servers that are not under test could be any machine, but the three

devices under test (DUTs) should preferably be identical. This is done in order to have

consistency in the test setup and, therefore, to exclude external factors affecting the

measurements. In Figure 4.5, green services correspond to those described in Section

4.1. All applications on the data collection host are deployed as a Docker container, all

at once via docker-compose7. We now elaborate on the element used in the test setup

above:

1. Jaeger-collector

Jaeger’s collector element is a stateles data collector, which means that many can

run in parallel to match the incoming throughput. However, to minimize the risk

of losing data and allowing for high throughput, this research uses Apache Kafka

as an intermediary buffer between the collector and our eventual storage.

2. Kafka

Kafka is a distributed event store and stream processing platform, which functions

as a buffer for our collected telemetry data. The application’s main properties are

high throughput and low latency while handling one or more real-time data feeds.

These real-time feeds can be (sub)divided into topics which are grouped sets of

real-time data feeds.

3. Jaeger-ingester

The Jaeger-ingester is a service that reads span data from a pre-onfigured Kafka

topic and writes them to Elasticsearch (or Cassandra).

4. Elasticsearch

Elasticsearch is a popular open source NoSQL database that offers distributed

storage and an analytics engine.

5. Kibana

It is a data visualization dashboard for the database, which allows easy visualiza-

tion and data exploration. Kibana is from the same organization as Elasticsearch

and offers seemless integration between the two.

6. Jaeger-query

The query service serves the API endpoints and a browser-based UI to easily

explore the tracing data, as can be seen in 2.4.

7. NTP

On all hosts, Network Time Protocol (NTP) is running as a daemon. NTP is a

protocol designed to synchronize computer clocks over a network. We configure

7https://gist.github.com/daanvinken/e6db746b064b41a290d19c70b0a9e108
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the data collection host to synchronize with external NTP servers (over the public

Web). The DUTs will synchronize with this cluster, resulting in a consistent

state across our VLAN. This improves the accuracy of our collected tracing data,

minimizing the effects of clock skew on each DUT.

8. Prometheus

Prometheus is an open source alerting system monitoring framework, originally

built at SoundCloud. It can record real-time metrics and store those in its time

series database. It uses an HTTP pull model, with flexible queries and real-time

alerting.

9. Node exporter

On each server runs node-exporter8, which is a metric exporter for hardware and

OS metrics exposed by UNIX kernels. This is the source of data for Prometheus

in this setup. It is written in Go and extends Prometheus by scraping differ-

ent locations on the filesystem for specific metrics. An example is the location

/proc/vmstart on most Linux systems, which contains regularly updated bits of

system information like memory, paging, processes, IO, CPU, and disk scheduling.

10. Grafana

Grafana is a tool for visualizing real-time data, with out-of-the-box support for

prometheus exporters like node exporter. This is useful for early-stage data explo-

ration.

4.3 Benchmarks

In this section the different measurement setups are being discussed. We set out the

workflows and ways of collecting and gathering data.

4.3.1 General workflow

Every benchmark below follows the same workflow, executed from a single host by a

shell script. The flow shown in Figure 4.6 is used for all tests, in a loop. This flow is

often executed 11 times to make sure we gather enough results.

8https://github.com/prometheus/node exporter
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Figure 4.6: A flowchart of the testflow used for our benchmarks. This is indicative,
if numbers vary this will be clearly indicated.

The host disk cleanup (or VM) is to clean up the files that have been written to the disk

during each run. This is to prevent the disk from becoming full. Furthermore, after the

data were collected, we clean up all the data in Elasticsearch (ES). The same cleanup

occurs after approximately 5000 requests are loaded, via Kafka, into Elasticsearch.

The warmup period was carefully chosen, where we’ve seen after multiple runs in different

environments an equilibrium was reached after 5000 requests. After this point, the

variability of response times did not increase nor decrease. For the measurements related

to trace spans, we used 10 000 requests for the actual measurements.

For measuring system-level metrics, it turns out the needed warm-up period, required

for a steady state, is slightly longer. We’ve set this to 8000 and measured system-level

metrics for the duration of 22 000 requests.

4.3.2 Distributed tracing

As mentioned in Section 3, existing research on measuring latency and trace data states

that sample response times are not governed by a well-known distribution. Therefore,

the non-parameterized statistical tests discussed will be used to determine whether there

is any performance difference.

Before running any benchmarks on different virtualization techniques, it is important to

determine which statistical tests are most suitable for the purpose of this research. To

do so, it has been chosen to first verify these tests using the same distributed web ap-

plication. These initial tests are run only on bare metal, introducing delayed operations

by putting sleeps in the source code and comparing the request flows. In this way, it is

possible to approximate the accuracy of our testing methodologies in advance.
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An important note with this approach, specifically for Java applications, is that the

well-known Thread.sleep() or its wrapper TimeUnit.MICROSECONDS.sleep(), are not

a good option. This method always pauses the current thread its execution. This means

that the actual time it sleeps before waking up and continues execution depends on the

OS timers and schedulers. With a low system load, the actual time can be close to the

specified sleep time, but with a higher workload on the OS, the actual time can vary

heavily. Another option is to keep the thread busy and, therefore, not letting the OS

its scheduler know that the thread is paused. In this way, the thread can keep checking

when the specified time has passed, which is expected to result in more accurate timings.

This method is often called a busy wait. The way to do this is simply to check the time

passed in a loop for a while, as shown in Listing 4.1. We have verified that this is code

is executed, as it might be negated by compiler opitmizations.

1 public static void busyWaitMicros(long micros){

2 long waitUntil = System.nanoTime () + (micros * 1_000);

3 while(waitUntil > System.nanoTime ()){

4 ;

5 }

Listing 4.1: Java code for busy wait

Two tests with the highest estimated chance of success, namely the Kolmogorov-Smirnov

and Anderson-Darling test, have been set out in chapter 3. To have a fair comparison

between different environments and the runs contained in them, we include both tests

in our final results. For the accuracy tests, we simply look at how the tests compare

to the baseline (bare metal) trace span durations for a chosen service. In this case, we

choose the payment service, which in turn calls the user service. We deliberately choose

for this service, as it does include some networking and CPU bounded workload while

excluding a possible increase in variability due to heavy disk IO.

In order to compare the actual different traces among our four test scenario, we propose

an algorithm for the best fit selection. Simply put, this algorithm finds the most rep-

resentative run for each of the four scenarios. It does so by finding the latency samples

distribution that is the closest to all other sample distributions within the same sce-

nario (e.g. container only). The high-level pseudo-code of this algorithm is presented in

Algorithm 1 below.



Methodology 50

Algorithm 1 The pseudo-code of the algorithm determining the run that best fits all
other runs, using the AD-test.

As presented, we look at a group of runs within a single scenario (e.g. container only)

and single trace span (e.g. payment service call). We know from Section 3 that the test

statistic is representative the distance between two CDFs. The algorithm tests all runs

within this same group, and sums up the test statistics. The run in a group with the

lowest accumulated test statistic is chosen as the best fit and thus most representative

trace span for that group. This setup is useful, as with high variability among different

runs in the same group, it can become hard to properly compare latency for different

scenarios. We propose this approach as a way to still analyze trace spans amongst

different scenarios, while having a one-to-one comparison.

Measurements The accuracy measurements are performed with sleeps ranging from

50 µs to 500 µs. For every sleep length (0, 50, 100, 200, 300, 400, 500), ten experiments

were performed containing approximately 10 000 requests. This number excludes the

5000 requests during the warm-up period. All other measurements follow the same test

flow as depicted in Figure 4.6
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4.3.3 System-level metrics

As an enterprise, it is not only interesting how the end-user is affected by the switch

to a virtualized environment. Additionally, it is good to be aware of any changes in

system-level metrics. Let us say that the memory footprint of the same service running

in a container is higher than that of the same service running on bare metal. In this

case, the enterprise might need to overprovision the same application.

To gather system-level metrics, Prometheus is the tool of choice. Prometheus is an

open-source event monitoring and alerting application. It records real-time metrics in a

time series database which is filled by using an HTTP pull model. It supports flexible

queries, real-time alerts and a wide range of extensions due to so-called exporters.

A well-known exporter for Prometheus is node-exporter9, which is a metric exporter for

hardware and OS metrics exposed by UNIX kernels. It is written in Golang and extends

Prometheus by scraping different locations on the filesystem for specific metrics. An

example is the location /proc/vmstart on most Linux systems, which contains regularly

updated system information on memory, paging, running processes, IO, CPU, and disk

scheduling.

Node exporter by default supports around 96 different metrics, so a selection is made on

which are relevant for our research purposes. We focus on the metrics also considered

in existing research, with additionally metrics regarding context switching / thread

interrupts. The latter seems interesting to us, as we’ve not seen these meeasurements

in other research. Regarding the outcome of these metrics, not all machines will be

considered. Based on the combination of workload (e.g. IO heavy) and metric type, a

sensible selection is made and explained later on in the results. Below a brief overview

of the considered metrics is listed.

• Memory user space apps

The amount of memory used by processes running in user space. This is calculated

by taking the total available memory subtracted by the effective free memory and

RAM claimed by the OS. Examples of the latter are caches or pagetables.

• Memory system total

The amount of memory used by the whole system. It is calculated by taking

the total available memory, subtracted by the effective free memory, RAM cache

memory, and any buffers stored in memory. Basically, reclaimable memory is

substracted.

9https://github.com/prometheus/nodeexporter
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• CPU system total

CPU metrics are extracted from /proc/stat, within the Linux file system. It

presents the time that is spent on different types of operations. For the CPU

system it considers the CPU time spent in the kernel, e.g. performing system

calls.

• CPU user space apps

Contrarily, this represents the time that the CPU spends on processes in the user

space.

• CPU IO wait

This is the time that the CPU spends waiting for the I/O devices. This can be an

interesting metric, as from the existing literature, we know that IO is often heavily

impacted by virtualization.

• Network received

The amount of data received on a network interface per given time interval.

• Network transmitted

The amount of data sent through a network interface per given time interval.

• Context switches

The number of context changes that occur during a given time interval.

• Thread interrupts

The number of times an OS scheduler interrupts a thread during a given time

interval.

Finally, we clarify the difference between context switches and thread interrupts. Ac-

tually, these are two types of interrupts. The difference lies in what happens after the

interrupt itself. In both cases, during an interrupt, the current state is stored in a tem-

porary area, which is commonly an OS-dedicated stack. Now, with a thread interrupt,

something else might be scheduled, but afterwards, the scheduler will make sure the

thread returns exactly where it left off. In contrast, for a context switch, the location

of that stack and any extra state information are stored elsewhere in the thread itself.

After the scheduler returns to its original operations, it returns to the point of execu-

tion where the newly switched thread was interrupted the last time a context switch

occurred.

This means that a context switch is more expensive. For instance, all its registers,

instruction pointers, and memory page tables can be totally different. Simply put, with

thread interrupts, the OS interrupt handler always makes sure it can quickly continue
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with the original thread after an interrupt. Therefore, as its state is maintained, there

is generally more trust in the interrupt handler to restore back all the initial registers.

Little research on comparing virtualization performance stresses the effect of context

switching and the effects on performance when adding virtualization layers. Therefore,

we prefer to include some measurements to see if this might explain any performance

penalties that might arise.

Measurements

The measurements are performed as follows. The test starts off with a warm up period

of 5 000 requests. As soon as this is finished the test continues, without any interrupt,

to perform another 22 000 requests. Jmeter is configured to maintain approximately

20 requests per second, using 3 threads concurrently. The UNIX timestamp right after

the warmup period and at the end of the test is stored. These timestamps are used

to retrieve the data, per metric, from the prometheus database. This whole test is

performed 3 times for each scenario (VM, container etc.) and checked for consistency

across the different runs. We mainly look at the second and third run, as the first run

might still show some more variability before reaching an equilibrium. If the second and

third run show similiar trends, we analyze the retrieved metrics stored during the third

run.
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Experiments and results

5.1 Distributed tracing

In this section, the performance measurements for distributed tracing will be discussed.

However, first the accuracy measurements described in Section 4.3.2 will be set out.

Finally, a detailed analysis of the measurements performed will be given.

5.1.1 Accuracy measurements

For the accuracy measurements, we consider the following two tests. This selection was

made based on existing literature described in Section 3:

• Kolmogorv-Smirnov Test

• Anderson-Darling test

We compare these tests by increasing the duration of a so-called SleepTask as discussed.

The request flow considered here is depicted in Figure 5.1.

54
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Figure 5.1: Request flow for payment-service, including the SleepTask

As can be seen, SleepTask is the third operation, from the code Listing 4.1 , where for

this case the sleep is configured as zero seconds. In this example there is still some

minor execution time recorded by our code instrumentation, which is measured as 36

µs. Two reasons can be given for this. First, the SleepTask that has been defined is

still executed, and the while loop simply immediately ends. Additionally, there might

be some inaccuracies here, for instance due to clock drift, which we try to isolate in the

upcoming measurements.

First, to compare statistical tests, p-values can be indicative. As discussed, in the

current context, they can be viewed as a measure of how sure we an be whether two

sample sets come from the same distribution. In this research, the focus lies on the

Kolmogorov-Smirnov (KS-test) and Anderson-Darling test (AD-test). These tests have

the best properties for our use case, according to existing research discussed in Chapter

3.

Looking at the calculated p-values for the baseline, we can see, for example, in Figure

5.2a, that the p-values are between 0.001 and 0.25. All sleeps are compared to the ten

baseline latency distributions. One thing to note on the implementation of the AD-test

used in this research, is its cap on p-values. The SciPy package implements this test

with a two-sided cap on the p-value. Its minimum and maximum value will always be

respectively 0.001 and 0.25. This means that the most left-hand line represents the

p-values of a baseline latency distribution compared to the nine other baseline latency

distributions from different runs.

The black dot is the average, while the line represents the range of values of ten runs.

This means that with this range, following the p-values, the AD-test does not in all cases

fall above any significance level (e.g. 0.01). As discussed in Section 3, the null hypothesis

H0 is that both CDFs come from the same underlying distribution. In this analysis, the

null hypothesis is at least rejected for one or more runs. Therefore, based on p-values,
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we cannot conclude that all runs come from the same distribution. Consequently, we

cannot use p-values to determine if other permuted traces, either by a SleepTask or

different environment, are coming from the same distribution. We conclude this a the

baseline runs, on bare-metal with no sleeps, sometimes result in a lower-bound p-value

of 0.001. Unfortunately the same analogy holds for the KS-test which does not always

result in a p-value obove our significance level of 0.01.

The result for both the KS-test and AD-test can be seen in 5.2a and Figure 5.2b, showing

the p-values. These values represent the probability that our null hypothesis is not true,

being whether two compared latency sample sets come from the same distribution.

(a) (b)

(c) (d)

Figure 5.2: The results of the accuracy tests for the larger request flow
(large payment). It shows the p-values for testing the hypothesis whether request flows
with a introduced delay in µs come from the same distribution as the baseline (0 µs).The

complete trace span measured is the call to the payment service.

It is important to be aware that, for these accuracy measurements, on bare-metal, two

cases are considered. For ease of wording, we call these large payment and small payment.

Both requests are similar to the one depicted in Figure 4.1. However, for large payment,

the Linpack benchmark is introduced, which trace takes on average approximately 25 ms.

The entire call to the payment service takes approximately 27 ms. Now small payment

does not include this Linpack benchmark and thus takes approximately 1.3 ms. This
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is done to see what granularity of operations (in terms of duration) will be possible to

detect any discrepancies with the appropriate statistical tests.

With the information from our accuracy measurements, it can be concluded that p-values

of the chosen statistical tests are not suitable for performing the planned measurements

on traces. Nevertheless, in Figure 5.2c and Figure 5.2d we can see that the test statistics

of both tests give us more insights in where a difference can be detected. For both tests

it shows that for sleep tasks with a duration of 200 µs and above, the null hypothesis is

rejected for all runs when comparing to the baseline with a sleep of 0 µs. This indicates

that the test statistic of both the AD-test and KS-test are able to detect shifts in trace

span duration of 200 µs and above.

However, these discussed accuracy measurements depict an optimal scenario. First of

all, these tests are ran on bare metal servers. From Section 3 we know that the variability

can increase as virtualization layers are added. Therefore, this accuracy could still get

worse for the actual virtualization measurements. For the second point, we look at

another scenario tested for accuracy; the small payment. The same tests are ran, but

then for the second scenario with only a very short Linpack benchmark. The same

results for the smaller request flow can be seen in Figure 5.3.
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(a) (b)

(c) (d)

Figure 5.3: The results of the accuracy tests for the smaller request flow
(small payment). It shows the p-values for testing the hypothesis whether request
flows with a introduced delay in µs come from the same distribution as the baseline (0

µs). The complete trace span measured is the call to the payment service.

As can be seen in these figures, the p-value seems to be more accurate and only shows

p-values above our significance level of 0.01 in the baseline comparison. This means that

for the introduced sleeps, on the x-axis 50 to 500, the tests claim that no run comes

from the same distribution as the baseline runs with 0 µs sleeps. Additionally, the test

statistics also turn out to be much higher, in the range of 103. As the static tests measure

the distance between the latency CDFs, this is intuitive. As an example we look at the

sleep of 50 µs. This delay becomes more visible in the CDF if the complete request flow

(of the payment service) only takes 1.3 ms instead of 27 ms on average. The relative

difference introduced by the sleep task is greater, and therefore the statistical test is

more sensitive to this change.

The latter proves our second point of why these accuracy measurements are merely

specific to these trace spans. There is no appropriate way to set a significance level

on the test statistic, as it is highly dependent on the operations contained in the trace

span. This means that if actual changes in trace span durations were to be measured,

the significance level of the test statistics should be determined dynamically, based on

the baseline measurements.
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5.1.2 Data exploration

Being more aware of the accuracy that distributed tracing can offer us, we now look

at the actual trace spans that were collected from our SUT. For the measurement of

the complete distributed system its performance, we take a similar approach as before.

Just like the benchmarks above on accuracy of the statistical tests, we again perform

10 runs of tests with 10000 requests each. The latter number excludes the 5000 warm-

up requests for each run. This flow is identical to the flow described earlier in the

methodology (Figure 4.6).

Before looking at the statistical tests and performance of different virtualized environ-

ments, some data exploration is done to see whether the visualizations correspond to

the set expectations. Latency distributions, for instance for calling a single service that

interacts with a database, are expected to look like Figure 3.7. This means looking simi-

lar to a log-normal distribution but with a clearer minimum and a heavily skewed shape

due to its long tail. The figure represents the duration of calling the user service, that

only interacts with a local database, obtained as approximately 10 000 tracing samples.

As discussed in Section 2, it is not useful to summarize a set of latency measurements by

commonly used characteristics for distributions. As a result of the skewness, the mean

and standard deviation are less meaningful. This also includes common histogram plots

of the latency values obtained, as shown in Figure 5.4. Although it clearly depicts the

shifted average value, it introduces the risk of discarding information about the data.

Specifically related to the longer tail, which is not properly visualized in this case. The

values between 25 and 30 ms are barely visible in this figure.

Figure 5.4: Example of a typical trace duration distribution plot for one run in a
virtual machine and one on bare metal.
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As it is more interesting to look at percentiles, we propose a different way of visualization,

where the x-axis is a logarithmic axis showing percentiles. For instance, all values

indicated on the left side of the 90th percentile fall within this percentile. The same two

runs shown in Figure 5.4 are shown as percentiles in Figure 5.5 below. So, these two

figures show the exact same data samples.

Figure 5.5: A plot representing the same data samples as Figure 5.4, focusing on
percentiles.

In both figures, it is visible that the bare metal run results in lower latency on average.

Furthermore, both figures do show that, between 20 and 25 ms, bare-metal has a heav-

ier tail. However, what Figure 5.5 clearly reveals, contrary to Figure 5.4, is that the

maximum outliers for VMs are higher than the maximum for bare metal. The highest

values are approximately 35 and 42 ms, for bare metal and VM respectively. For the

purpose of this research, to determine performance across all measured values (and not

a percentile), the plots showing percentiles are more relevant.

As mentioned above, the plots in Figure 5.4 and Figure 5.5 show the duration of a user-

service call, measured from the server where this service runs. This part only performs

a small Linpack benchmark, and a single local database transaction.

However, the first thing that came forward during data exploration is that distribution

shapes can be different when measuring operations that involve remote networking. This

can be seen in Figure 5.6a and Figure 5.6b. In Figure 5.6a, it can be seen that two clear

maxima appear in the distribution plot for the bare metal server. This is also visible in

the percentile plot in Figure 5.6b, but requires careful interpretation. Our assumption

is that these maxima represent two common latency averages affected by the Linpack
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benchmark and user service call, both contained in the request flow. On the contrary,

the data for the VMs did not show this behaviour. The expectation is that this is due

to the higher variability in VMs, as we have seen in Section 3, pointed out by existing

works. Therefore, the peaks might fade into each other.

(a) Distribution histogram. (b) Percentile distribution plot.

Figure 5.6: Two plots depicting how two peaks of sampled data occurences fade into
each other when running the same benchmark on virtual machines.

5.1.3 System benchmark

In this section, we will provide a deeper dive into the performance tests on the distributed

system. First, another validation on the consistency of the results will be established.

Afterwards, a broader view on the test statistics will be given. Finally, we look at the

actual analysis of the distributed systems, and the performance differences that have

been found, if any.

Consistency

We take a quick look on the consistency of our measurements, this to verify whether we

can establish some certainty of our results and draw meaningful conclusions. A percentile

distribution plot of 5 runs for both the bare metal and VM + container scenario can be

seen Figure 5.7 below.
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Figure 5.7: Example of 5 runs for both Bare metal and Containers for the payment
service. This figure shows the consistency in lower percentiles, but also the variability

in higher percentiles.

As can be seen, specifically in the 90th percentile, there is significant similarity between

runs. This implies that the results are reproducible and somewhat consistent. Stating

’somewhat consistent’, as generally latency measurements lack consistency and have

high veriability. However, taking a closer look between the 90th and 99th percentile,

it does look like out fourth scenario, a container running on top of a KVM, does have

more variability amongst different runs. This is supported by the statistical values of the

Anderson-Darling test and the Kolmogorov-Smirnov test in Figure 5.6a and Figure 5.6b.

These figures indicate the consistency of the measured environments for a call to the

payment service. Both statistical tests were performed against all other samples from

the same environment. So, every run is tested against 9 other runs for that environment

(e.g. KVM + container). The resulting test statistics are aggregated, representing the

minimum, maximum, and average values. Again for these results, we have found that
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(a) AD-test (b) KS-test

Figure 5.8: The test ranges of the test statistic value for the four scenarios. Each run
is tested against all other 9 runs in the same catagory, depicting the distance between

their CDFs.

Regarding the interpretation of these graphs, the higher the statistic for a given scenario,

the higher the variability between runs in the same environment. It is good to emphasize

that these graphs purely present variability for four scenarios and thus how consistent

their results are. In case the p-values of these tests were not too low to work with, the

higher the p-value would be, the lower the statistic. A simple analogy is that the higher

the test statistic, the more distance there is between percentile plots (CDFs), like the

ones shown in Figure 5.5.

In Figure 5.8a and Figure 5.8b the black dot shows that Bare Metal machines, on aver-

age, show the least variability between different runs. For the bare metal + container

scenario and KVMs, this gradually increases. Remarkably, for the dual virtualization

scenario the variability increases significantly. The maximum statistic is about twice the

number compared to other scenarios, relative to its own average. Both of these findings

correspond to the findings of Kozhirbayev et al. They show that variability in network-

ing/CPU increase significantly with the ”thickness” of virtualization layers added. This

implies that web applications running in containers on top of virtual machines suffer

from a significant increase in variability. Finally, another thing that stands out again

from the figures above is that it seems that the Anderson-Darling test is more sensitive

to differences between runs. Comparing the maximum statistic to the average statistic,

between the two tests, it shows that the AD-test is more sensitive to changes in the

trace span duration for this specific case.

These figures also confirm the conclusion drawn in the previous chapter. There is no

one-size-fits-all when it comes to selecting a significance level for the test statistic. This
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even differs amongst our four scenarios, measuring the same trace span.

SUT measurements

Now that the reader is more familiar with the statistical approach to detect systematic

differences in the measured trace durations, we look at the tests performed in the dis-

tributed system defined in Figure 4.1. The first way we compare all traces in different

environments is by looking at the average shift in latency on different percentiles. For

the SUT desribed in Section 4, we consider eight traces, also listed in Subsection 4.1.5.

We present the result of the trace analysis here, showing tabulated percentiles. This sec-

tion will discuss these traces step by step, presenting our interpretations and drawbacks

of the results.

First, we show the trace span data of the order service, which is the entry point of our

distributed web application. The duration of these spans represents the complete call

to the web services, from the server its point of view. Table 5.1 shows the duration of

this trace span, with values per percentile. The trace durations are from the best-fitted

run, determined by Algorithm 1. Additionally, the test statistics are included for both

the KS-test and AD-test. Note that the AD-test statistic goes to −1.31 due to the

implementation, if identical sample sets are compared.

P50 P75 P90 P95 P99 P100 AD statistic KS statistic

Bare metal 33206 33411 37499 107844 693440 1963993 -1.31 0.0

Container 34650 35161 40888 107906 837359 1904501 6284.89 0.8532

Virtual Machine 61989 68409 86429 120939 617645 2362824 8167.42 0.9386

VM + Container 64797 72265 126538 143088 638826 2328454 8189.18 0.9395

Table 5.1: Overview of percentiles and AD test for the order service span in µs.

First of all, we’d like to make an important note on the results shown here, which

affects most of the tracing data. There’s a significant difference between the scenarios

with and without a virtual machine, which is also depicted in the percentile plot in

Figure 5.9. It can be seen that in those cases, these scenarios result in almost twice

the latency, where the P50 latency for VM and VM + Container increase by 87 % and

96 % respectively. It is good to be aware that our SUT, in the order service, involves

heavy disk IO,. As discussed in Section 3, the disk IO performance is heavily effected by

the virtualization layer of a virtual machine. Therefore, it should be taken into account

that the absolute difference in latencies is expected to be mainly due to the heavy IO

operations in our system. These differences might not be a good representation of a

real-world web application having a synchronous flow.
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Figure 5.9: The percentile distribution plot of trace span durations for the order
service call.

Some other points that stand out from Table 5.1 and Figure 5.9, are listed below.

• As mentioned before, the P50 latency for VM and VM + Container increase by 87

% and 96 % respectively.

• Interestingly, the difference between the VM and VM + Container increases in the

higher percentile. While latency increase between VM and VM + Container at

P50 is only 4.5 %, at the P90 this is 46.4 %.

• Compared to bare metal, containers show slightly higher latency across the per-

centiles, although be it only 6.4 % (± 400 µs).

• Finally, the VM and VM + Container scenarios are significantly steeper in the

lower percentiles (Figure 5.9). This implies that, besides average latencies, VMs

severely increase the latency variability.

In order to break down these results, we look at more fine-grained trace spans, starting

with disk IO related traces. Unfortunately, as will be shown, the file interactions of our

SUT affect some other tracing measurements. It later follows that some measurements

are therefore not representative for actual performance implications.

First, we examine the small files task. As discussed above, within this task, the appli-

cation writes and reads small files of approximately 140 bytes to the disk. The results

of the trace spans are shown in Table 5.2 below.
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P50 P75 P90 P95 P99 P100 AD statistic KS statistic

Bare metal 1425 1457 1889 2268 4169 655078 -1.31 0.0

Container 1968 2395 2995 3897 114463 1177249 7309.67 0.8749

Virtual Machine 28179 34609 40023 71805 99185 638011 9819.9 0.9941

VM + Container 29577 36864 82472 99299 112708 452075 9816.43 0.9941

Table 5.2: Overview of percentiles and AD test for the SmallFileTask span in µs.

What can be noticed at first glance is the significant delay that is being introduced

when a VM is added to the virtualization layers. This delay here shows how heavily

the complete application’s latency is affected by disk IO operations. As can be seen in

Figure 5.10, the shape of both ’thicker’ virtualization layers (VM and VM + container)

follows the shape and relative difference of the same latency distributions at the order

service (Figure 5.9). This implies that this operation might be a good cause of the

severe virtualization overhead we have seen for the complete API call (order service).

The response time of our complete system increases by approximately 28 milliseconds,

where this task can mainly be accounted for. It should also be noted how the test

statistics increase with how different the percentiles maximum values are, indicating the

tests do function as intended.

Figure 5.10: The percentile distribution plot of trace span durations for the
SmallFileTask task.

Additionally, a minor difference can be seen between containers and bare metal, with a

higher variability for containers. The differences in the 90th percentile seem insignificant,

but is still an increase of more than 50 % for the highest values. Specifically in the 99th
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and 100th percentile (all values), we see that there are very high outliers within the

latency distribution for the container scenario.

We now consider the other two disk IO related tasks, namely for large files. Starting

with the task which reads a large file (approximately 2.4 MB) from the disk. The results

for this trace span can be seen in Table 5.3 below.

P50 P75 P90 P95 P99 P100 AD statistic KS statistic

Bare metal 3725 3748 3786 4074 5505 25987 -1.31 0.0

Container 3337 3352 3409 3671 5625 13700 8578.83 0.9478

Virtual Machine 3755 3780 3856 3997 4794 17131 2056.51 0.3845

VM + Container 3294 3322 3475 3640 5080 10974 8748.62 0.9521

Table 5.3: Overview of percentiles and AD test for the LargeFileTask.read span in
µs.

These results correspond with the conclusions drawn in existing literature. For larger

files, the overhead of virtualization is minimal. However, a remarkable result is that

even amongst 10 runs of 10 000 requests, the container setup seem to outperform bare-

metal. Even when running on top of a VM, the container + VM scenario outperforms

a VM interms of trace duration. Nevertheless, this difference is around 400 µs. In the

accuracy measurements for our current testing method, it shows that each test can have

an inaccuracy up to ±200µs. This means that the difference between bare metal and

containers for this trace span is within our error boundaries (200 for each test).

Figure 5.11: The percentile distribution plot of trace span durations for the
LargeFileTask.read task.
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Nevertheless, based on other measurements showing significant consistency and the way

we select the ”best fit” trace to analyze here, blaming this on measurement errors is

too blunt. Furthermore, in the latency distribution plot of this task, the 99.99 per-

centile shows very high outliers for the latency of bare metal. Within this research we

have rarely seen such discrepancies in our measurements, presumably due to the many

repetitions of experiments / requests. Some other factors might be present affecting

these measurements and therefore these discrepancies should not be treated as measure-

ment errors. As discussed before, based on theory, it is unexpected that any scenario

might outperform bare metal. Such phenomena should be treated with care, and a more

thorough analysis is recommended.

As the last IO heavy task considered, an operation writing a large file to disk is analyzed.

This task writes the same file content of approximately 2.4 MB to the disk. The trace

span durations and test statistics can be seen in Table 5.4.

P50 P75 P90 P95 P99 P100 AD statistic KS statistic

Bare metal 1741 1994 2242 2413 2736 424941 -1.31 0.0

Container 1955 2025 2145 2451 94399 534914 3474.07 0.6295

Virtual Machine 1508 1589 1733 1940 2273 478054 2824.52 0.5145

VM + Container 2084 2214 2551 2764 3046 231683 4570.9 0.656

Table 5.4: Overview of percentiles and AD test for the LargeFileTask.write task span
in µs.

The container scenario shows a remarkable increase of latency around and above their

99th percentile, being more significant for the container scenario. This is also depicted

in the latency distribution plot shown in 5.12. The container scenario show an increase

of respectively 4700 %, comparing P50 to P99. For bare-metal this is only 57 %. As

discussed in Section 3,
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Figure 5.12: The percentile distribution plot of trace span durations for the
LargeFileTask.write task.

Overall, looking at the lower percentiles (e.g. P50) no significant overhead can be seen.

Where a VM does not incur any overhead compared to bare metal, the VM + container

scenario does. However, we can not draw any conclusions from this given that we use

Docker its filesystem in that case. We have not found an explanation for the high

variability (P99 and above) for bare metal and containers. Even while checking older

measurements for verification the same discrepancy occured, which does not correspond

with existing research on these scenarios.

Other services

After the previous discussion on disk IO and how it affected the performance of our

system as a whole, we now set out the other service trace spans, not directly involving

disk IO. The percentile overview for the payment service call can be seen in Table 5.5

below. As discussed before, this complete operation only involves a (local) database call

and a call to the remote user service.

P50 P75 P90 P95 P99 P100 AD statistic KS statistic

Bare metal 6057 6114 6183 7444 9485 18140 -1.31 0.0

Container 6434 6498 6586 7702 9818 19774 7358.96 0.8428

Virtual Machine 6253 6331 6397 6462 7815 12773 4599.06 0.6116

VM + Container 6614 6702 6839 7835 10054 19489 7976.1 0.9248

Table 5.5: Overview of percentiles and AD test for the payment service span in µs.
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Here we directly see a remarkable result, the VM scenario appears to be slightly faster

than bare metal. This is unexpected, as we know from existing literature that VMs

commonly introduce a big performance penalty, due to the virtualized network interface

card.

Our expectation is that this result is also affected by the IO operations of another service,

slowing down the application. The workload generator tries to maintain a constant

number of requests per seconds entering the SUT. However, within this complete request

flow significantly more time is being spent within the order service, due to the heavy

disk IO. Therefore, we know that the payment service effectively receives less concurrent

requests per second within a VM compared to bare metal. Do recall that we saw before

that the complete response time of our system was almost doubled from approx 33 to

65 ms. Due to this shift in where time is effectively spent in our system, we know that

the host where the payment service is running has a lighter workload during our test.

Therefore, a call to the payment service might finish faster in a VM as effectively less

requests are received within the same time span. For the VM scenario, this would then

result in less CPU interrupts and thus a faster response at the level of the payment

service.

This is unfortunate as it negates the way we try to characterize the distributed system,

by distributed tracing. This research is bounded by time, which means we haven’t been

able to adjust the IO workload of the SUT. However, a quick test for solely VM and

bare metal was done, where only the payment service was called, which in turn calls the

user service. The latency distribution plot of this test can be seen in Figure 5.13 This

means the IO heavy order service was left out of the request flow.
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Figure 5.13: The percentile distribution plot of trace span durations for the
payment service call. In this scenario the order service was excluded and only the bare

metal and VM scenarios are considered.

The most important results of the tracing analysis have been discussed above. We now

quickly go over other operations that have been measured. In Table 5.6 the latency

percentiles of a PUT call to the user service are shown. At this point, these results

seem more intuitive and correspond to the findings in existing research on this topic.

For visualization purposes and consistency, the percentile distriubtion plot has been

included with Figure 5.14.

P50 P75 P90 P95 P99 P100 AD statistic KS statistic

Bare metal 438 467 486 496 542 791 -1.31 0.0

Container 479 501 522 538 582 1478 1895.91 0.3598

Virtual Machine 519 563 589 605 654 1069 3508.5 0.5489

VM + Container 551 604 638 657 725 2392 4715.23 0.6403

Table 5.6: Overview of percentiles and AD test for the (PUT) user service span in
µs.

These results show an outcome which was initially expected, also considering at the

statistic values for both the AD and KS test shown in the table. The statistical tests are

capable of detecting the minor differences between the four scenarios. Furthermore, the

(minor) latency increase, becomes higher with the ’thickness’ of the virtualization layer.

However, we should take into account that we’ve seen the performance of virtualized

services might look better for VMs due to the significant delay introduced at the order-

service level. Therefore the corresponding results, as depicted in Table 5.6, only show a
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’best case’ scenario, where with less IO affecting the same operation, a larger performance

penalty might occur. For this specific trace span, it is expected that these trace spancs

are less affected by those IO operations due to the short execution time, causing less

thread interrupts.

Figure 5.14: The percentile distribution plot of trace span durations for the
put user call.

Other trace spans mentioned in Section 4.3.2 will not be set out in this chapter, as they

would not provide more insights than already presented. The remaining distribution

plots and percentile tables can be found in Appendix A. We believe any relevant tracing

results have been set out, and leave further interpretation for our discussion in Section

6.

5.2 System-level metrics

In this section we go over the system-level metrics in Section 4.3.3. After presenting

all metrics with their average and standard deviation per tested scenario, we discuss

the outcomes one by one. An overview of the selected results can be seen in Table

5.7 below. For most metrics, we consider the payment service properly representing a

common application. It has some small CPU load by the Linpack benchmark, and a

call to the user service. The latter also performs a small database interaction. However,

for some metrics, we include order service as well. This serivce, with its heavy IO

operations, might be able to reveal different properties of the system.
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Metric Bare Metal Container KVM KVM + container Service

User space apps memory [GB] 6.48 ± 0.00 6.42 ± 0.00 8.06 ± 0.00 8.83 ± 0.01 Payment

Total used memory [GB] 6.57 ± 0.00 6.52 ± 0.00 8.16 ± 0.00 8.93 ± 0.01 Payment

CPU system [%]
0.96 ± 0.05 1.21 ± 0.06 2.41 ± 0.05 2.58 ± 0.08 Payment

14.94 ± 0.27 20.25 ± 0.88 42.31 ± 2.51 47.83 ± 4.57 Order

CPU user apps [%]
23.20 ± 1.17 21.07 ± 1.03 24.26 ± 0.55 26.18 ± 0.79 Payment

19.31 ± 0.86 21.74 ± 1.31 114.09 ± 26.13 145.05 ± 34.24 Order

CPU IO wait [%]
0.04 ± 0.03 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.03 Payment

36.38 ± 5.82 51.4 ± 10.92 23.23 ± 1.08 24.38 ± 1.96 Order

Network received [MB] 0.29 ± 0.02 0.27 ± 0.02 0.30 ± 0.00 0.3 ± 0.01 Payment

Network transmitted [MB] 1.04 ± 0.04 0.98 ± 0.06 1.11 ± 0.02 1.09 ± 0.03 Payment

Context switches [-]
1197.81 ± 80.60 1236.92 ± 61.3543 2504.1 ± 38.89 2730.44 ± 63.32 Payment

3741.95 ± 53.69 13429.65 ± 891.32 14288.95 ± 606.89 16957.93 ± 1025.38 Order

Thead interrupts [-]
1577.97 ± 88.51 1618.31 ± 71.96 2220.88 ± 29.94 2434.17 ± 67.22 Payment

6921.10 ± 356.46 12611.56 ± 584.8 12710.17 ± 1263.30 15634.66 ± 1585.25 Order

Table 5.7: Overview of the results from the system-level metrics analysis, exported
with Prometheus node exporter. All results are averaged or aggregated over a 1 minute

timespan.

The metrics are discussed and listed below one by one.

• User space apps memory

The memory used by applications in the user-space is approximately the same for

the bare metal and container scenario. Even so, bare metal shows a slightly higher

memory usage. However, this is only 60 MB and we expect other processes running

on the system to account for this. Naturally, although we have tried to minimize

this effect, background processes in Linux are always present. We should account

for this with other metrics as well, and discard minor differences. Nevertheless,

it can be concluded that the Docker runtime does not claim a significant amount

of memory. Contrarily, both VM scenarios show a significant increase in memory

usage of up to 2 GB of memory. This shows that the virtualization layer causes

more workload on the system for the same operations, leaving less room for the

actual applications running on it.

• Memory system total

In every scenario, approximately 100 MB of memory is in use by applications in

the kernel space. A very consistent difference can be seen across all four scenarios.

• CPU system

For this metric, two servers are considered. Where either the user service or order

service is running. This choice was made because the CPU is more challenged

during IO operations. For the payment service, we only see minor differences in

system CPU usage. We expect the higher percentage of CPU usage, and thus

the number of cycles, to simply come from processes managing the virtualized
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environments. However, we still have a maximum difference of approximately 1.5

%, which is negligible, especially considering possible inaccuracies. We conclude

that even if this indicated a minor number of extra CPU cycles, it would not have

a noticeable effect on the application’s performance.

For the heavier IO operations within the order service, this is different. Here it

is clearly visible that IO load heavily increases on a VM, which also holds for the

container scenario. For the VM and VM + container scenario, we see that the CPU

percentage increases from approximately 15 % to over 45 %. This clearly shows

the overhead of the virtualization layer when performing IO operations. Note that

this CPU usage only shows operations that are performed in the kernel space.

• CPU user space apps

We won’t go into more detail about the payment service host its CPU usage in

the user space. As can be seen, the results arq quite similar, with a slightly higher

trend of a few percents for the VM scenarios. However we consider this negligible.

However, again for the order service a very clear difference can be seen. The

CPU percentage in this space increases from approximately 20 % to 114 % for

KVM and even 145 $ for KVM + container. Now this clearly shows the CPU

experiences quite a number of extra CPU cycles to perform the same operations in

those scenarios as on a bare metal machine. We devote this to the fact that every

system call has to go through the hypervisor, resulting in far more CPU cycles

before the same operation of a file can finish up. On a final note, we point out

that the percentages above 100 % are due to multiple cores running within the

CPU, where every core can go up to 100 % in a given time span.

• CPU IO wait

We again do not consider the host running the payment service showing negligible

IO wait times for the CPU. For the order service, we notice that higher IO wait

times are present for bare metal and container scenarios. This corresponds to

our earlier findings, that effectively more disk IO operations occur in the same

timespan compared to VMs. This is due to the two scenarios actually performing

better.

• Network received / transmitted

We do not consider received nor transmitted network bytes, showing negligible

differences for all scenarios. This makes sense as adding a virtualization layer

would not incur extra network IO.

• Context switches

For the payment service see that the number of context switches per minute are
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approximately the same for containers and bare metal, taking their standard devi-

ation into account. However, the VM scenarios do result in apprximately two times

the number of context switches. We expect this is due to more switches between

calls living in user space / kernel space, coming from the hypervisor. Regarding

the order service, this follows approximately the same trend. However, containers

seem to suffer from a significant increase in context switches. We have not found

a specific reason for this, but it does correspond to the higher variability of the IO

tasks, which could be a direct cause of these context switches.

• Thread interrupts

We see that thread interrupts follow the same trends as context switching, with

no remarkable relative differences.



Chapter 6

Discussion

In this section the results observed from the benchmarks will be discussed, to try and

answer the research questions stated in the introduction. In addition, the measurement

methods are discussed, including their limitations, and potential for future research.

System under test

First, we discuss the limitations of our tested system. The initial idea was to use a small

set of microservices to mimic a lightweight distributed web application. The intention

was to apply measurement techniques that might be able to uncover performance bot-

tlenecks that arise within these types of application. This resulted in research on the

potential of using tracing for performance measurements of distributed systems.

During the design and extension of these microservices, it was decided to include some

typical workloads. This includes operations on different files, short CPU bursts and

interactions with a local database. Initially, we figured that this would be representative

of a typical web application. However, as realized during the analysis, the IO workloads

within a synchronous request flow heavily affect the overall response time of our system.

This is a limitation for this research as it negates some potential of our approach to

measuring performance.

Accuracy of statistical tests

First of all, this research has carried out measurements to gain insight into what precision

can be achieved using code instrumentation. We investigate how powerful the chosen

statistical tests can be in detecting differences between actual sets of recorded trace

durations.

The results of these measurements show that the calculated p-values cannot be used to

measure the extent to which the trace samples come from the same distribution. First,

it seems that the results contain too much variability, meaning that there will always
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be a slight difference between different runs and their CDF. This means the p-value

quickly drops to zero. Additionally, this is not the approach for which p-values are

meant. Generally, a p-value describes the probability of rejecting the null hypothesis

H0 that two sets of samples come from the same distribution. This is not a suitable

approach in this research. Therefore, it has been decided to use the test statistic of

the AD-test and KS-test to measure the distance between two CDFs of different runs.

With this approach, we show that the test statistic can be used as a measure of the

extent to which two sample distributions are different from each other. Therefore, we

conclude that this approach offers the potential to detect differences in the performance

of a distributed web application based on trace durations.

Furthermore, we show that the generalizability of the results is limited. The statistic

is heavily dependent on the trace span its operations considered and the environment

(scenario) in which it was executed. Further research on this could look into a way of

generalizing this, by dynamically determining a significance level for the test statistic.

This could be done by comparing the baseline bare metal measurements with each other

and choosing a safe significance level based on the consistency of the results within the

baseline measurements.

For our system, we have seen that in most cases the test statistic was able to detect

a difference by a sleep in the source code, with a duration between 200 and 300 µs.

However, it should be taken into account that this depicts an optimal scenario. First

of all, the benchmarks are conducted on a bare metal server. Adding virtualization

layers or IO heavy operations can introduce variability amongst runs within the same

test scenario. We have seen that this can make the test statistic less accurate.

Trace span consistency

Prior to diving into the analysis of our distributed web application, we explored some

data to establish a basis on how to interpret these results. Typically, latency is presented

as a histogram or a moving average. These approaches often leave out important data,

such as high latency peaks. We propose a different way by plotting the values of a

sample set as percentiles. We show that this reveals more about the actual latency in

higher percentiles and does not leave out any data.

Initially, we look at the consistency among the results for a specific call to the payment

service. In that analysis, we consider 10 runs per scenario. Hereby, we visualize for each

scenario the range of test statistics while comparing every run with its other 9 runs for

that scenario. In this comparison, we show that the differences between runs of the same

scenario increase with each layer of virtualization being added. This corresponds to the

findings of the existing literature. It shows that the four scenarios show comparable

consistency, although affected by the increase in variability. Furthermore, we confirm
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that the AD-test is slightly more sensitive to this increase, based on the average test

statistics.

Finally, we should note that these measurements are applied to one specific trace within

our SUT. Although it provides a good indication of the level of consistency, this could

still differ for other trace spans container other operations.

System under test

For the actual measurements on our SUT, we have presented some insightful percentile

tables and percentile distribution plots. During this analysis, the limitations of our

system became clear, whereas the measurements were heavily affected by disk IO. The

trace span duration of the order service, the entrypoint service, has an increased latency

at P50 of approximately 87 %. We have concluded that most of this increase is due to

the IO operations in our system.

Algorithm 1 proposes a way to select the best fitting run within the combination of

scenario (e.g. bare metal) and a trace span (e.g. GET call user-service). This gives us

an easy way of analyzing our results. The algorithm simply selects the run for which

the CDF is closest to all other runs, based on the AD-test statistic. We are aware of its

drawback, which is that if some runs for a given scenario are significantly off, it is not

taken into account. An avenue for future research includes improving this approach to

take into account all measurements for the final analysis.

In the following, we present our main reflections on the gathered tracing results.

• Due to the large influence of the IO operations, specifically for small files, not

all trace spans are actually useful for measuring performance. However, we can

conclude that interactions on small files are heavily affected by running applications

in a VM. At P50, the complete request flow takes 33 ms on bare metal and 62 ms

in a VM. The difference is approximately 29 ms, where the SmallFileTask can be

accounted for approximately 26.5 ms of this difference.

• Additionally, we have seen a significant increase in variability of the trace span du-

rations for containers. Specifically, in its higher percentiles. This implies running

IO heavy applications in containers, writing and reading small files, would have

less reliable performance.

• The credibility of the performance penalties we see in our results is negated by

these IO operations. We acknowledge that these types of operations are not rep-

resentative of a distributed web application that serves synchronous request flows.

• Trace spans that represent operations on large files are more consistent across

scenarios. Both reading and writing of large files show a minor difference in span
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duration. Remarkably, VMs seem to outperform containers and even bare metal

for the same operations in both cases. We’ve seen this in both the higher and

lower percentile ranges, indicating higher variability. In the next bullet point, we

discuss a plausible cause for this.

• If we look at other trace spans, we prefer the call to the payment service. Its trace

is a good representation of a common part within a distributed system, doing some

CPU intensive work and interacting with a database. While analyzing the trace

span duration, we have seen remarkable results in which the VMs again slightly

outperform the container scenario, by approximately 200 µs on a total of 6434

µs. Our conclusion here is that this is due to the limitations of the IO operations.

Because SmallFileTask takes significantly longer to perform the same operations

within a VM, the payment service is effectively called less per time unit. Therefore,

we reason that more resources are available to the process, per processed request at

the payment service. This results in a lower response time for a specific operation,

while, in fact, the overall response time of the system increases.

• In order to confirm our conclusion above, we ran a few tests on both VMs and bare

metal, excluding the order service. This means that we sent requests directly to the

payment service, excluding heavy disk IO operations. In that case, KVMs turned

out to have significantly longer trace spans for this service. This confirms our

statement that the disk IO affects the performance of other services. Unfortunately,

due to time limitations, we have not been able to expand these measurements to

other scenarios.

• Finally, we show that in other trace spans analyzed, the same phenomenon occurs.

Unfortunately, this invalidates the trace date collected from our SUT for drawing

further conclusions about performance. Nevertheless, we believe to have shown

that there is potential in using this way of measurement on a distributed system.
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Initially, round-trip response time (RTT), measured from the load generator, was also

taken into account. However, due to the heavy impact of disk IO on our system its

performance, it has been decided to leave this out of scope. These measurements did

not provide us with any new information. Comparisons of RTTs with the duration of

the complete order service calls have been considered. This could still have given us

insight into how virtualization layers affect RTT. However, Jmeter only measures the

response time in milliseconds, which would result in too many measurement errors.

System-level metrics

Finally we consider the system-level metrics, measured with Prometheus node exporter.

The tool is generally used for monitoring only; however, we use it by aggregating a

selection of metrics over time. We use the average value per minute and included the

standard deviation of the complete run. The latter is included to see if there is a

significant number of spikes.

In the following, we present our main reflections based on the system-level metrics of

our SUT.

• We have not seen containerized applications that use significantly more memory

within the user space. However, VMs result in a memory overhead of up to 2 GB,

related to the hypervisor.

• No significant differences were found in the usage of system memory, which con-

siders processes running in the kernel.

• For the payment service we did not see any significant differences in the CPU usage

of the system. However, for the order service, with heavy disk IO, the CPU usage

increases severely with ’thicker’ virtualization layers. For VM + container this

increases to up to 45 %. This corresponds to our tracing measurements, where

significantly more time is spent on the IO operations. The same analogy holds

for CPU usage in the user space, where this percentage can even go up to 145 %.

Again, we know from the existing literature that every call to the host system its

kernel, has to pass through the hypervisor. This includes accessing on-disk files.

• CPU IO wait times shows the same trend as above, except for containers. They

showed a significant increase for the host running heavy disk IO. This corresponded

to conclusions drawn from tracing measurements, where effectively more requests

are handled in the same time span. This means more IO operations and therefore

also more IO wait times, which increases per file that is being handled.

• Network bytes received and transmitted did not show any significant differences,

which is expected with the nature of our SUT. Only relatively request bodies are
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being sent over the network. These sizes should neither increase nor decrease in

different environments.

• It was shown that VMs cause about two times more context switches compared

to the service running on bare metal. This increased from approximately 2000 to

14000 context switches on average per minute. We expect that this is due to the

increased number of calls between the hypervisor and the OS, resulting in more

calls from the user space, where the hypervisor is running, to the kernel space.

Containers also showed a significant increase up to 13000 context switches per

minute. This could be a reason for why we have seen an increase in variability

with container scenarios.

Altogether, we have presented the main findings of this research, including its limitations

and drawbacks. Eventually, this study has not been able to clearly expose the overhead

of virutalization layers within a distributed sytem. Nevertheless, we believe our work

provides valuable insights for future research, showing that there is potential in measur-

ing performance by using distributed tracing. The system-level metrics have provided

us confirmation on earlier drawn conclusions from the tracing data. Additionally, it can

give an idea into what increase of resource usage can be expected by adding different

virtualization layer. The next chapter will summarize our conclusions and provide any

avenues for future work on these topics.



Chapter 7

Conclusion and future work

This section provides a final overview of the main findings of this study. This includes

any recommendations for further research required to establish answers to our research

questions. We also discuss whether and how we answer these questions in our study.

In the following, we reiterate our research question and discuss how these were ap-

proached.

• What is the effect on performance when moving web applications from

bare metal servers to containers in a highly distributed system? This

study aimed to describe how distributed web applications perform in different

virtualized environments compared to a bare metal baseline. The choice has been

made to approach this using system-level metrics and code instrumentation. For

these tests, four scenarios were considered. Bare-metal as a baseline, where the

other three scenarios included container on bare metal, KVMs and containers

on a KVM. Unfortunately, the setup of our tested application introduced some

complications that have exposed certain caveats when applying this method. We

will set out any drawbacks/findings within this chapter.

• What metrics can be a good indication of how the performance of a

distributed is being affected? Based on existing work on this topic (Section

3), we have listed a set of system metrics that are often considered for measuring

the performance in different virtualization scenarios. These have proven to pro-

vide valuable insights in what performance measurements can be expected while

transitioning towards a virtualized environments. Nevertheless, we reason that

conventional benchmarks are not suitable for the distributed manner in which

most applications are implemented with the rise of cloud native systems. This
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is where the next research question will provide a different angle on measuring

performance differences in a distributed system.

• Does code instrumentation (tracing) offer a suitable way to measure the

performance of distributed web applications? A non-conventional approach

was chosen and a distributed application was benchmarked, using distributed trac-

ing. We propose this different approach to allow companies to take into account

the properties that come with these types of application. We have been able to

demonstrate the potential in measuring the performance of these systems using

tracing. However, the results should be interpreted carefully due to certain ill-

suited properties of the tested system.

In the following, we recapitulate some of the conclusions described in the discussion

(Section 6) and summarize the possibilities for further research.

• This study shows that distributed tracing can offer an effective way to benchmark

distributed systems. However, as shown, the effectiveness of these benchmarks

is heavily dependent on the type of application. When the differences between

two scenarios become too significant, this can affect the outcome of other services

due to the nature of a distributed system. For further research, we recommend

reiterating this research on production-grade distributed web systems, to unlock

the full potential of our methodologies. Operations that contain a significant

amount of disk IO should be carefully considered.

• Unfortunately, the SUT tested in this research incurred some complications in the

effectiveness of our measurements. Although our review of the literature revealed

what to expect when moving these types of applications to virtualized environ-

ments, our own results were less insightful. From existing studies, we conclude

that it is advisory for any enterprise moving to virtualized environments to ver-

ify their system performance. Specifically, with ‘thicker’ virtualization layers (e.g.

VM + container), both network and disk IO might be heavily affected. For a sin-

gle instance the performance penalty of networking latency might seem negligible.

However, it should be noted that, in a microservices-like application, these effects

can stack up and become quite significant.

• This study shows that disk IO severely affected our SUT performance within a VM.

Due to the IO operations in one of our services, our application its response time

doubled. These differences have been largely attributed to the reading and writing

of small files. This corresponds to the literature review, as we know that system

calls to the host OS kernel are significantly more expensive in these scenarios.
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• As noted above, due to these severe differences in disk IO performance in a single

service, other services are affected. Therefore, it seemed some parts of the applica-

tion were performing worse, while in fact they simply had a higher throughput of

operations scheduled. We acknowledge that this heavy IO might not be represen-

tative of a production-grade synchronous request flow. We would like to inspire

further research, performing the same tests on services with fewer disk IO involved.

• This study proposed a way to analyze these traces, using different approaches, such

as percentile visualizations and statistical tests, to determine the goodness of fit.

We have shown that the AD-test and the KS-test are good potential candidates

for detecting small differences between the trace span durations, while proving

our results to be consistent. Although the tests seem a bit too sensitive to minor

alterations among runs, the AD-test shows to be slightly more sensitive to small

changes in our distributions. The fact that the tests are too sensitive indicates the

need for a different interpretation, not using p-values.

• An algorithm was proposed to select the best fit experiment to simplify the analy-

sis. However, we recognize that this approach may neglect important information

from other experiments. For future work, we would like to inspire for better ways

of including all experiments and dynamically estimating a cut-off (significance)

level for the test statistics we have used.

• Before accepting these measurement methods, it is important to gain more insight

into the effect of code instrumentation on performance of the application. Even

if the average latencies do not increase, it should be verified whether both the

averages and variability are not affected.

• Finally, we present results on system-level metrics within the four tested scenarios.

Again we can conclude that some metrics were heavily affected by IO operations,

and we should take into account that the same effect can occur as for traces. It

could be that a server appears to be less busy due to the lower effective throughput

of another service that excludes disk IO workloads.

• During the analysis of these metrics, it was concluded that the hypervisor itself

occupies almost 2 GBs of memory. Furthermore, the CPU turns out to be have

more cycles per minute on a VM than on bare metal / container, for the same

workload. However, this is simply due to waiting for the ‘longer’ traversed path to

open files on the host OS disk. This is confirmed by the number of thread interrupts

or context switches that we have seen for IO heavy workloads. Finally, we have

also seen the number of interrupts increase with each additional virtualization

layer added. We assume that this shows the performance penalty introduced by

the VM, which is not aware of all the underlying host CPU its properties.
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Altogether, we believe this research its contributions could be an inspiration for other

research. It would be interesting to apply the used methodologies to a more representa-

tive system. By benchmarking distributed web applications in this less conservative way,

more properties of the distributed system its nature are taken into account. Addition-

ally, this study can provide enterprises with a guideline of how to measure performance

implications in these systems. Traditional ways of benchmarking, like isolated CPU

benchmarks or measuring P90 response times could be too conservative to mitigate all

risks.



Appendix A

Remaining system traces

In this appendix we present the remaining measured trace spans durations, by depicting

their percentile distribution plots and percentile tables.

Please add the following required packages to your document preamble: booktabs graph-

icx

P50 P75 P90 P95 P99 P100 AD statistic KS statistic

Bare metal 20575 21564 22235 22370 28232 32963 -1.31 0.0

Container 19275 19389 19491 21515 23417 33624 4343.54 0.6991

Virtual Machine 19130 19229 19322 19426 23858 31236 6679.47 0.7552

VM + Container 19668 19773 20014 21076 26897 41642 3224.21 0.6289

Table A.1: Overview of percentiles and AD test for the user service call (GET) in
µs.
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Figure A.1: The percentile distribution plot of trace span durations for the user
service call (GET).

P50 P75 P90 P95 P99 P100 AD statistic KS statistic

Bare metal 20229 21212 21924 22072 27874 32400 -1.31 0.0

Container 18916 18949 19003 21471 23075 33360 4472.32 0.7157

Virtual Machine 18655 18709 18773 18891 23350 30577 8640.47 0.8686

VM + Container 19111 19161 19414 20471 26564 40723 3614.52 0.6398

Table A.2: Overview of percentiles and AD test for the LinpackBenchmark1 task in
µs.

Figure A.2: The percentile distribution plot of trace span durations for the linpack-
benchmark1 task (user service).
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P50 P75 P90 P95 P99 P100 AD statistic KS statistic

Bare metal 6366 7470 8090 8528 9983 19290 -1.31 0.0

Container 5207 5229 5260 6703 8575 15102 3297.35 0.6422

Virtual Machine 4993 5020 5050 5088 6682 18584 4434.88 0.7069

VM + Container 5202 5239 5319 6454 8720 19544 3441.96 0.624

Table A.3: Overview of percentiles and AD test for the LinpackBenchmark2 task in
µs.

Figure A.3: The percentile distribution plot of trace span durations for the linpack-
benchmark2 task (payment service).
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