
Evaluating Energy Consumption of Distributed
and Non-Distributed File Systems

Comparative Study

Huseyin Ediz Yildirim

supervised by

Dhr. Dr. Adam Belloum

August 27, 2019

Contact Information :

Author :
Huseyin Ediz Yildirim
e-mail : edzyldrm@gmail.com

Supervisors :
Dhr. Dr. A.S.Z. (Adam) Belloum
Faculty of Science
Informatics Institute
e-mail : A.S.Z.Belloum@uva.nl

Dr. A.M. (Ana) Oprescu
Faculty of Science
Informatics Institute
e-mail : A.M.Oprescu@uva.nl

Universiteit van Amsterdam
Faculty of Science
Science Park 904
1098 XH Amsterdam
Tel. Reception: +31 (0)20525 8626

Vrije Universiteit Amsterdam
Faculty of Science
De Boelelaan 1085

1081 HV Amsterdam
Tel. Board: +31 (0)20598 7500

Abstract

Big Data and Cloud Computing technologies are spread over all of the corpo-
rate fields and also daily life with health care, social media, tv services and so on.
The energy consumption of those services, with the hosts, data centers, com-
puters in the network and all peripherals is even above a large country’s annual
consumption. Since data centres are all around the world with similar hardware
and software, with this volume of consumption and variety of structural elements
they are considered with their potential at energy saving because a small change
of code may have a huge result in energy consumption. Until recent studies,
there were not a challenge of making distributed file systems energy efficient or
using them efficiently. The most of the journey of a file happens inside the same
rack in which it is used and this is a challenge to overcome in the field since a dis-
tributed file stays distributed through all of the journey. To open up this challenge
and see the opportunities we evaluated energy consumption and execution time
of some types of work loads in Distributed and Host file systems using PowerAPI,
a software monitoring tool and derived some ideas around the results.
Objectives are to investigate and evaluate different file systems on same hard-
ware and under similar work loads with different types measurements and re-
ports.
Methods for this thesis are to use a power monitoring tool Power API for mea-
surements and to use natural work loads with common libraries and computer
jobs to trace the changes in systems and their effects on execution time and en-
ergy consumption.
Results show that some configurational choices and some work loads with differ-
ent file sizes show remarkable efficiency possibilities (from 11% to 64% for some
cases) with high loss on execution time to consider for future work.
Conclusions can be made considering the factors of the experiments. File sizes,
work load density and block size of distributed file system are both related to en-
ergy consumption and under some test cases, there are possibilities to achieve a
better energy management for the same work loads.

Key words: Review Study, Energy Efficiency, Distributed File Systems, Cloud,
Hadoop, ext4, Data Storage, Hybrid, Comparative, Green IT.

i

0.1 Acknowledgements

First of all, I would like to thank my parents for their endless support and encouragement
for whatever I do in my life. I also want to express my love to my best friend Can, who was the
most exclusive roommate, friend and listener ever. You will always be missed and remem-
bered.

I must thank to Dr. Adam Belloum for his patience, support and guidance through the
whole process. And I want to thank Dr. Ana Oprescu for insights, comments and guidance
through the results of the thesis.

I would like to express my gratitude to the Republic of Turkey - Ministry of National Edu-
cation for making this Master’s and further studies possible with the financial support they
exhibit with the scholarship, without which the whole study was not possible for me.

And finally I want to thank my dear friend Emilios Voma for his support from beginning to
the end and all of my friends who helped me directly or indirectly for my master studies.

ii

0.1.1 List of Abbreviations

Table 0.1

US United States
UNCCC United Nations Framework Convention on Climate Change
IT Information Technology
SaaS Software as a Service
PaaS Platform as a Service
IaaS Infrastructure as a Service
AWS EC2 Amazon Web Services Elastic Compute Cloud
GCE Google Compute Engine
IoT Internet of Things
DFS Distributed File System
OS Operating System
HDFS Hadoop Distributed File System
CPU Central Processing Unit
API Application Programming Interface
I/O Input / Output
VM Virtual Machine
PM Physical Machine
POSIX Portable Operating System Interface for Unix
CLI Command Line Interface
GUI Graphical User Interface
DHT Distributed Hash Table
P2P Peer to Peer
EMRSA Energy-Aware MapReduce Scheduling Algorithm
OPT Optimal
MSPAN Minimized Makespan
M2M Machine to Machine
E-EON Energy Efficiently Optimized Network
EEE Energy Efficient Ethernet
AQM Active Queue Management
ECN Explicit Congestion Notification
SPEC sfs Standard Performance Evaluation Corporation Server File Suite
SRC Source
TAR Target
MB MegaByte
GB GigaByte
TB TeraByte
HDD Hard Drive Disk
GPU Graphical Processing Unit

iii

Contents

0.1 Acknowledgements . ii
0.1.1 List of Abbreviations . iii

1 Introduction 1
1.1 Background . 1

1.1.1 Cloud . 2
Software as a Service (SaaS) . 3
Platform as a Service(PaaS) . 3
Infrastructure as a Service(IaaS) . 3

1.1.2 Distributed File Systems . 3
1.1.3 Apache Hadoop . 4

NameNode . 5
DataNode . 5
Secondary NameNode . 5
Job Tracker . 5
Task Tracker . 5

1.1.4 Ext4 FileSystem . 5
1.1.5 Energy Consumption Measurements . 6

1.2 Motivation and Objectives . 6
1.3 Research Questions - Hypotheses . 7

2 Related Work 8

3 Procedure 14
3.1 Methods Used . 14

3.1.1 PowerAPI . 16
3.2 Test Environment . 17
3.3 Test Structure . 17
3.4 Energy Consumption . 20
3.5 Pre-Test Procedure . 21

3.5.1 Hadoop Installation . 21
3.5.2 PowerAPI Setup . 27
3.5.3 Test Generation . 27

4 Analysis and Results 29
4.1 Energy Consumption of HDFS and Host File System 29

4.1.1 Mean Values . 29
4.1.2 Median Values . 30
4.1.3 Standard Deviation of Values . 31
4.1.4 Total Energy Consumption and Execution Time 31

Total Energy Consumption . 31
Execution Time . 32

4.2 Energy Consumption and Execution Time of Migration Between File Systems . 33

iv

4.3 Energy Consumption and Execution Time for Test Scenarios 34

5 Conclusion and Future Work 35
5.1 Analysis of Graphical Data . 35
5.2 Analysis of Test Runs . 36
5.3 Conclusions and Analysis of TestBed . 36
5.4 Future Work . 37

References 38

6 Appendix & Notes 42

v

List of Figures

1.1 Evolution of Cloud . 2
1.2 Hadoop Architecture . 5
1.3 Cisco - Global data center traffic estimation by destination in 2021 7
2.1 a) Mirrored Data Block Replication b) Covering Subset Method 9
2.2 CPU Utilization - Power Usage . 10
2.3 Energy Consumption . 11
2.4 Fraction of Green Energy Cost and Grid Electric Cost of Prioritized Jobs 11
2.5 Global devices and connections growth . 12
3.1 Non-Live VM Migration . 15
3.2 wordCount Process Flow Diagram . 16
3.3 PowerAPI Architecture . 16
3.4 Test 1 Activity Diagram . 18
3.5 Distribution of VM sizes based on AutoSupport Data 18
3.6 Test 2 Activity Diagram . 19
3.7 Java Version Check . 22
3.8 SSH to localhost on Ubuntu . 23
3.9 Hadoop Web Interface . 26
4.1 Mean Values of Energy Consumption(mW) . 29
4.2 Median Values of Energy Consumption(mW) . 30
4.3 Total Energy Consumption of Tests . 32
4.4 Total Execution Time of Test Cases . 33

vi

1 Introduction

This document is a thesis report of a comparative study over energy consumption of a dis-
tributed file system and a non-distributed file system under similar workloads. Within the
document we will question the firmness of using distributed file system in a cluster environ-
ment and evaluate the effects of using the host file system instead, with gains and losts. In
general the thesis aims to insight researchers to consider host file system as an existing al-
ternative for some cases and be knowing of the relationship between file sizes, application
types and Distributed File System’s configuration. Chapter 1 is giving background and ratio-
nale of the study with preface explanations and definitions with motivation and purpose of
the thesis, it is followed by related work in the field in Chapter 2. Chapter 3 explains about
the test phase, structure of environment, methods and procedure. Chapter 4 explains the re-
sults of the tests and analyses those results with justifying information. Chapter 5 gives the
conclusions of the thesis and some proposals of future work.

1.1 Background

The cloud computing field has grown over the years and the whole concept of cloud com-
puting has been consolidated with numerous studies, researches and applications. Cloud
computing paradigm also evolved through years and widened the perspective of the field
from a computer network to a general enterprise value. Starting with simple secure backup
purposes, it arrived to grid computing and cloud has evolved to mailing apps, stock handling
jobs, text messaging applications and now it is used worldwide to handle country-sized eco-
nomics, stock market transactions, huge social media platforms, broad scientific researches
from space explorations to genetic simulations and it can be controlled by almost any device
with an internet connection(Figure 1.1) [1]. With the overgrowing demand on this way of pro-
cessing power, other methodologies were also involved to achieve the ability to use more of
the power. One of the paradigms arose with the linked computing is big data concept, which
enables the processing power to reach more data sources at the same time through networks
and overcome the bottleneck which occurs with lots of computing power but less of data to
be able to handle and process. Big data brings Distributed Storage to life, which makes the
processing unit and the user independent from the locality of data source and enables im-
plementation of higher skills on analysing, processing, storing and securing the data.

1

Figure 1.1: Evolution of Cloud

Corporation business, social media, healthcare, science, space explorations, television ser-
vices, mobile networks; in less words everything is running or being kept in data centers now.
Although a small partition of them are powered by Green energy sources such as wind or sun,
these sources are not fully available and not enough to power all the infrastructure. Parallel
to the progress in the field, usage of computer infrastructure in data centers and demand on
energy have a major growth. Power usage of data centers in the United States (US) was esti-
mated as 1.8% of all consumption in 2014 and it is 7% of global energy consumption in 2017,
yet it is forecasted that it will be around 13% in 2030. [2] Danilak from Forbes reported that
US data centers needs 34 big coal-power plants and global usage of data centers is more than
the United Kingdom’s entire consumption. [3] According to the United Nations Framework
Convention on Climate Change (UNCCC) CO2 emission rates of information and communi-
cations technology (ICT) devices are arising and now it is 2%, equal to the aviation sector. [4]
Next to its generalized potential as a problem, there is more to see in the details. While all this
energy seems to be going for computation or storage, IT equipment needs cooling, lighting,
monitoring and power distribution. With the most efficient scenario, those supportive and
complementary equipment take 24% of the total consumption and in average it is 40% . [2]

1.1.1 Cloud

Cloud computing is a technological model for enabling usage of large and shared computing
resources over a computer network. It allows users to access a big, flexible, scalable hard-
ware resource with advanced security. It can be accessed, monitored, scaled and managed
through the Internet, can be asked and reshaped on users’ demand or by user-provided soft-
ware. Nowadays a big part of the cloud resources are casted by automated software consider-
ing estimation of probable need of the cloud software. There have been different approaches

2

to provide usage of cloud through years, which are Software as a Service (SaaS), Platform as a
Service (PaaS) and Infrastructure as a Service (IaaS).

Software as a Service (SaaS) Software as a Service is a computer technology to de-
liver software as a service through an online distribution. SaaS capacitates users to pay for
software subscription and pay for what they use instead of buying the software with a license.
[5] Some examples of SaaS are Google Apps, ZenDesk, BigCommerce and Dropbox.

Platform as a Service(PaaS) Platform as a Service (PaaS) is defined by Boniface et al.
as the provision of a development platform and environment providing services and storage,
hosted in the cloud.[6] PaaS providers provide an environment with all necessary infrastruc-
ture to enable developing web applications for developers, saving them from the trouble of
knowing the hardware and software behind it. PaaS developers construct and deploy their
application on the platform without installing tools, frameworks to run the web application.
By this approach, different developers use the same development platform and toolkits to
deliver the application to users. Some examples of PaaS are Apprenda, Pivotal, and Red Hat
Openshift.

Infrastructure as a Service(IaaS) Infrastructure as a Service is a computer solu-
tion in which providers bring usage of configured and virtualized hardware to enable users
to setup their virtual machines on a user-defined hardware without any server and hardware
management. Developers get a subscription for hardware such as memory, processor, stor-
age and pay as much as they use. Some of the examples of Iaas are Amazon Web Services
Elastic Compute Cloud (AWS EC2), Digital Ocean and Google Compute Engine (GCE).

1.1.2 Distributed File Systems

Distributed File System (DFS) as a concept of technology refers to a set of data unit scattered
over a network and acts to users as it is kept in a single data storage unit. Data can be accessed
and used by multiple users from different locations and with different privileges. DFSs have a
broad domain range to be used, such as weather forecasting, scientific purposes, researches
in medicine, machine learning, IoT applications, statistical jobs and more. [7]
There are different approaches to achieve the yields of distributed storage and applications.
These are architectural choices to ensure better scalability, security, flexibility, maintainabil-
ity, sustainability, and transparency. A distributed file system can run on a separate Operating
System (OS) or there can be a layer of code to manage interaction with other systems. DFS
can have a centralized form in which the system is managed by a central node with metadata
but the data itself is still distributed over a network. On the other hand DFS can have a fully
distributed form in which system is ran by different servers with metadata and other servers
just to keep the data or it can be a parallel system in which there are parallelized servers with
mirrored data that run synchronously. [7] [8]

3

1.1.3 Apache Hadoop

Hadoop Distributed File System (HDFS) is a software project licensed under Apache License
2.0 by Apache Software Foundation. It is a software framework for storing data in its dis-
tributed file system and for running applications on the data using its own frameworks and
services. It is built to run on commodity hardware and it provides thousands of nodes that
work together. First released in 01-April-2006 with version 0.1.0 and the most current version
by April 2019 is 3.2.0. [9] Hadoop is used by many companies and one of the biggest users,
Yahoo!, runs more than 100.000 CPUs in more than 40.000 computers with 4500 nodes in a
single cluster[10]. Yahoo! keeps doing scaling tests and development of Hadoop at the same
time. As Shvachko et al. expressed, the details of Hadoop architecture and its fundamentals
are shown in the Table 1.1 [11]

HDFS
Hadoop Distributed File
System

MapReduce Computation Framework
HBase Table Service

Pig
Dataflow Language and
Parallel Execution Frame-
work

Hive
Data Warehouse Infras-
tructure

ZooKeeper
Distributed Coordination
Service

Chukwa
Management Data Collec-
tion System

Avro Data Serialization System

Table 1.1: Hadoop Constituents

Hadoop is usually considered as two parts, HDFS and MapReduce. HDFS stores the data
while MapReduce runs processes on it. Some components of HDFS and their mechanisms
within the HDFS architecture (Figure 1.2) were defined below [12]. Most of them are concep-
tually common in also other big data frameworks; hence some of them are unique to Hadoop.

4

Figure 1.2: Hadoop Architecture

NameNode is a master service of HDFS, which is responsible for the management of the
file system and the data. Management services differ from tracking replication and location
of blocks to stashing I/O logs of the entire system and to keeping the metadata of the entire
data in the cluster. Blocks are fragments of the data (by default the block size is 128 MB)[13],
that NameNode utilizes in order to create copies and replicas on the Data Nodes.

DataNode is a slave service of HDFS, which is responsible for keeping the data stored,
writing and reading data controlled by a client through the NameNode. DataNodes send
notifications (heartbeats) every 3 seconds (by default) to the NameNode to announce that it
is up and running. If NameNode doesn’t receive heartbeats from a DataNode for 2 minutes
(by default) it is then considered as dead and NameNode takes another possible replica of the
data from another DataNode.

Secondary NameNode is a master service of HDFS, which carries out the chechkpoints
of the metadata of HDFS to present it to NameNode when asked.

Job Tracker is a master service of HDFS. It collects the requests from the client and
informs the NameNode about the needed metadata for MapReduce jobs.

Task Tracker is a slave service of HDFS, which gets orders of tasks from the Job Tracker
and apply them on the file on DataNodes. It is also known as the Mapper. [11] [14]

1.1.4 Ext4 FileSystem

Ext4 (Extended)is file system which was built as a development of Minix FileSystem to over-
come some sizing and verification issues. Minix has been released as the file system of Minix
Operating System in 1987 and Ext was released 5 years later with one of the first releases of
Linux in 1992. The first improvements were on metadata system, and it was upgraed to Ext2
in a short time.

5

Ext2 was an update to deal with file size problem of that times and its data loss issues in
abnormal shutdowns. Small voltage problems were solved with Ext3’s journal function, a
pre-log of files which records the changes that will be made to the file in advance. Ext4 is
the latest version of Ext file system which was primarily made for an improved performance,
reliability and capacity. It also has a new way of putting time stamps, including nanoseconds
and two high-order bits to overcome the Year 2038 problem, until 2446. Ext4 as it is named,
uses real extends instead of blocks which define a start point and an end point on the hard
drive, in order to make it possible to reserve a bigger space for a single file by using the same
amount of space in mapping [15] [16].

1.1.5 Energy Consumption Measurements

Energy consumption measurements can be done using external hardware such as volt-
meters or other measurement tools or using software with formulas using the output of sen-
sors on hardware. PowerAPI is an operating system (OS) level system monitoring toolkit
which uses hardware sensors to build software-related power measurements. PowerAPI sup-
ports multiple types of sensors and by standing between OS and applications, it has a wide
range of usage from unit testing to runtime app-specific research. It has also been used as
a tool to standardize power monitoring and control at exascale computing [17] [18] [19] [20]
[21] [22].

1.2 Motivation and Objectives

Cisco Global Cloud Index 2016 report depicts, above 70% of the data traffic goes inside
the same cluster and when the racks are considered, above 90% of the traffic goes inside the
same rack, mostly in the same hard drive[23](Figure 1.3). Generally those drives are hard-
connected to each other via a serial bus or direct network attachments. Distributed file sys-
tems, naturally, built to let multiple users to have multiple access on files and they are built
on top of non-distributed, conventional (host) file systems. Some parts of workloads that
include only a simple process inside the rack don’t have to be executed in a distributed envi-
ronment. These apply for migration of data and metadata, applications and Virtual Machines
and replication of data in which data is replicated inside the same cluster as a mirror of the
original file for further usage. (Figure 3.1) Moreover, most of the analyses for scheduling,
task and hardware allocation and built-in trackers of DFSs (job trackers and task trackers in
Hadoop) are executed by the server admin itself and the results are bound over network to
have a central analysis. These analyses are made by sorting and defining on different sizes of
files using text (or downgraded to text) data [24]. Distributed file systems in general, spend
most of the CPU power and electricity to handle heavy Input/Output loads, which makes
them less efficient when it works with lots of small volume of data instead of singular big
files [25]. For Hadoop and other Distributed File Systems which use blocked data structure,
it means more than usual since big files are also divided into small blocks. Considering most
of the distributed file systems are not built-in at the OS level and need to have a handful of
services to keep running; the unnecessary use of distributed file systems in this sense might
result in leakage in energy consumption and execution time for some types of computer jobs.

6

We gave the priority to two pinpoints in this motivation, first migration of files inside and be-
tween those file systems, second analyse type of cpu loads inside the same rack therefore we
set our experiments to simulate such scenarios.

Figure 1.3: Cisco - Global data center traffic estimation by destination in 2021

As another potential of energy misusage, we included I/O related computer jobs such as
wordCount, which includes reading, sorting and comparing different numbers of text data.
(Figure 3.2) We also ran our experiments on physical machines instead of VMs, to achieve bet-
ter measurements of energy consumption and not to have a leakage in performance, since it’s
found that physical machines have significantly better performance than virtual machines[26]
[27] and energy measurements on VMs are not as feasible as it is on PMs. [28]

Objectives in this thesis are;

1. Detailed study on a commonly used, open-source Distributed File Systems Architec-
ture (Hadoop Distributed File System)

2. Evaluating the energy consumption of Hadoop Distributed File System and an ext4
non-distributed file system under migration and analysis type of workloads

3. Examining the relationship between energy consumption, execution time, processed
file size, and file count.

1.3 Research Questions - Hypotheses

Considering the motivational factors above, our research question mainly focuses on the
evaluation of Hadoop Distributed File System against non-distributed ext4 host file system.
So, we came up with;

"Does architectural type of the file system affect the execution time and the energy consump-
tion of data replication and data analysis processes inside the cluster?"
Furthermore, We formed our hypotheses as follows;

H1 = The architectural type of file system (Distributed - Non Distributed) has an effect on

7

energy consumption of the data replication and wordCount processes inside the cluster.

H2 = The architectural type of file system (Distributed - Non Distributed) has an effect on
executing time of data migration and wordCount processes inside the cluster.

H01 = The architectural type of file system has no effect on energy consumption of the data
migration and wordCount processes inside the cluster.

H02 = The architectural type of file system has no effect on execution time of data migration
and wordCount processes inside the cluster.

2 Related Work

In this section, we have discussed previous research studies related to energy consumption
on cloud-related systems and some comparative studies on distributed file systems. Earlier
studies were usually focused on different important aspects of distributed storage such as
performance, throughput, security, and reliability.

Bai et al. studied several distributed file systems conceptually and compared them to each
other considering some core features [29]. They compared Hadoop v0.21.0, Moose FS v1.6.19
and Lustre v1.8.4. Their study showed that Hadoop and MooseFS are easier to install than
Lustre FS. Lustre doesn’t support automatic data balance and it has no data replication factor
in it while Hadoop has a default of 2 (configurable) and MooseFS also has 1 replica of a file
by default hence they all achieve data redundancy by their own specifications. All three DFSs
don’t support single point of failure. MooseFS and Lustre support snapshots to be used for
safety or migrational purposes. All three DFSs support scaling out and configurable data
blocks. Hadoop, MooseFS, and Lustre can be accessed via a Command Line Interface (CLI)
and Portable Operating System Interface for Unix (POSIX) while Hadoop and MooseFS also
support Web Graphical User Interface (GUI).

Shirinbab et al. evaluated different distributed storage systems considering read/write/delete
performances and the recovery time of the system when a node goes down [30]. They picked
two unstructured storage systems, Compuverde Unstructured and Openstack’s Swift and two
structured storage systems, Compuverde Structured, and Gluster FS. Two of them use Dis-
tributed Hash Tables (DHT) to keep track of how data is distributed and the other two use
multicasting to access the stored data. They installed those systems on the same hardware
setup. The authors also observed that the architectural decision of using DHT or multicas-
ting has different negative factors. DHT causes processing load while multicasting causes
network overload. As performance, the authors achieved that Compuverde outperforms the
other two when the number of client requests increases. For replication and recovering also,
Compuverde acts faster than the other two systems. It is also observed that during the self-
healing tests of systems, Gluster didn’t exceed 50% even for high workloads, which may refer
to a domestic bottleneck in it.

Zhou et al. proposed a Virtualized Hybrid Distributed File System for large scale data stor-
age solutions. It combines the fault tolerance ability of Google File System and manageabil-

8

ity, scalability and throughput advantages of Peer to Peer (P2P) network. [31] They aimed to
attenuate required space and infrastructure for a cloud system that uses distributed file sys-
tems and lower the cost of data transfer using P2P network method. For security, they used
layered virtualization between file owner and storage service provider. Their results show
that a distributed file system combined with a generic P2P network can help enterprises and
individuals to save energy, storage space, and cost during file transfers.

Yazd et al. proposed a new method for data replication in Hadoop systems, aiming to have
a better energy efficiency[32]. Their study is called Mirrored Data Block Replication Policy,
is based on Covering Subset method, in which storage nodes with active/necessary data in
a cluster is kept active, while the nodes that includes replicas of that data are passive but
Covering Subset method doesn’t include a policy for data replication method and they are
randomly replicated in nodes. Hence authors proposed mirrored replication model, in which
passive nodes of replicas will be created as mirrored copies of active nodes (Figure 2.1). Thus
when new similar tasks arrive and a new data node is necessary, data demand can be fulfilled
with a minimum number of re-activated data nodes. They simulated both Covering Subset
and Mirrored Data Replication methods on Matlab, with a number of data blocks between
3000 to 5000 and no common data block between tasks. The simulation showed that while
the number of nodes increases, efficiency of the proposed method also follows the increasing
trend. Because the likeliness of sharing data blocks on similar tasks is less in Covering Subset
than Mirrored Data Block Replication. With a higher number of resources it is expected to
have better results with the method.

Figure 2.1: a) Mirrored Data Block Replication b) Covering Subset Method

Cloud providers apply various methods of Load Balancing to achieve better distribution of
work, in order to avoid overloading of some of the resources. The rest of the resources that
reside in low level of utilization may consume a noteworthy amount of power without doing
any intensive tasks. Task scheduling and load balancing can be done either dynamically or

9

statically. Both contribute to better resource utilization, lower response time or less energy
consumption. Wirtz et al. experimented MapReduce workloads under different scenarios
with different benchmarking tools; a Matrix Multiplication app, CloudBurst and Integer Sort
with varying numbers of CPU cores and processor frequencies[33]. To be able to measure the
direct cost of an execution, they used induced power instead of overall system usage, which
also considers the idle power as 0; the contrary of which has been shown with different stud-
ies and reports. Duan et al. [34] and Barroso et al. [35] concluded that energy usage of a CPU
is not proportional to its utilization level. They also observed that the most energy-efficient
way for the CPUs to work, is to use the highest level of utilization(Figure 2.2). Duan et al.
have also showed that having a CPU in the sleeping state for a shorter time than its wake up
latency, causes a negative energy efficiency, because the energy consumption for waking up
is higher than the sum of its idle status. Although the results of Wirtz’ s experiments are not
directly proportional to the workloads and cores, they show that with an astute scheduling
it is highly possible to achieve better energy efficiency. They also excluded the energy con-
sumption of Name Node, which has a potential to have a difference in energy consumption
of such infrastructure under the tests.

Figure 2.2: CPU Utilization - Power Usage

Mashayekhy et al. proposed an algorithm named Energy-Aware MapReduce Scheduling
Algorithm (EMRSA) on Hadoop, declaring it is the first task placement algorithm designed
to minimize the energy consumption. Authors modeled the problem of task scheduling on
MapReduce jobs to come up with a greedy algorithm. Then they compared their results to
two different algorithms, OPT as an optimal solution with minimized energy consumption
algorithm and an MSPAN as optimal solution with minimized makespan of the job. [36] Their
results show that EMRSA has 40% and OPT has 49% less energy usage than MSPAN for small-
scale workloads between 20 to 30 Map and Reduce jobs. They claim that OPT has a lower
energy usage but it also has a slow execution time, and for big data jobs it is not practical
because of its long runtimes. For large-scale workloads with between 160-200 Map tasks and
200-500 Reduce tasks, EMRSA compared to greedy MSPAN has an average of 32% less en-
ergy usage with an opportunity to achieve better results when Reduce tasks are less than Map
tasks. (See Figure 2.3 and Table 2.1)

10

Workload
Map
Count

Reduce
Count

I 160 200
II 300 200
III 250 400
IV 200 500

Table 2.1: Workloads Figure 2.3: Energy Consumption

Goiri et al. presented GreenHadoop [37], a new bargain to be used in cloud environments
working with fully or partially renewable energy sources. Their study aims to make the cloud
infrastructure work with renewable energy as much as possible and to do so the authors
developed a new framework for Hadoop clusters which predicts upcoming energy usage of
workload and the amount of solar energy which will be available, then distributes the tasks
based on those predictions. They also prioritize jobs and set low priority jobs to run in "green
hours" with renewable energy sources. When the data center needs to run with electrical grid
power, their framework selects the times when grid energy is cheap. Their results show that
up to %31 of GreenHadoop systems’ can be obtained from renewable sources and it can save
up to %39 of the energy cost compared to base Hadoop systems. (Figure 2.4

Figure 2.4: Fraction of Green Energy Cost and Grid Electric Cost of Prioritized Jobs

Next to the opportunities to achieve better energy-aware distributed storage system by im-
proving task scheduling, VM allocation, data replication, etc. for large clusters there is an-
other bottleneck, network energy consumption. Cisco depicts that global IP traffic is already
doubled in the last 2 years and it will be increasing with the same speed within the near fu-
ture [23]. While overall network usage is increasing, machine-to-machine (M2M) connection
is also having a bigger proportion, the estimated percentage of M2M connections will go from
34% in 2017 to 51% in 2022(Figure 2.5). Over 3/4 of the global network usage is between Data
Centers, which points out where to look for the solutions for a global effect. Network usage

11

in Hadoop, for example, is 12 % of overall consumption on a full load and it is not propor-
tional to network utilization level, meaning that its proportion on a low-utilization system
is higher than this. Fischer e Silva proposed a set of techniques for energy-efficiently opti-
mized networks for Hadoop systems and similar distributed storage solutions, called E-EON
[38]. The author experimented different usages of Energy Efficient Ethernet (EEE) and Packet
Coalescing and combining them with existing technologies on most network devices such
as Active Queue Management (AQM) and Explicit Congestion Notification (ECN) to achieve
less on/off overheads on ethernet equipment. The author obtained promising results on real
experiments and simulations, with combined techniques it is possible to achieve 70% less
energy consumption on network devices with better cluster throughput and lower latency,
with no loss of performance. Hence this research also depends on special hardware, the au-
thor also suggests network equipment vendors to implement configurable Packet Coalescing
and network administrators to implement suggested techniques based on their own system’s
latency requirements.

Figure 2.5: Global devices and connections growth

To evaluate different installation conditions of distributed file systems and their effects to
performance and energy consumption, Feller et al. evaluated different Hadoop models; tra-
ditional centralized computing and data services and a separated model in which data and
computing services were separated [26]. They obtained that virtualized and separated forms
of the cluster could be useful for flexibility hence the impact is not considerably big. Data
locality doesn’t also have a large impact on such environments with high-level virtualization
and with advanced networks. They achieved in their experiments that performance on phys-
ical cluster is significantly better than it is on virtualized clusters and overall power consump-
tion is heaviliy related to application type and characteristics.

Malik et al. studied the characterization of Hadoop Map/Reduce workloads and their im-
pact on energy efficiency and performance. They also analysed configuration parameters of
Hadoop and experimented them with different settings on similar infrastructure and work-
loads besides including the role of the processing unit type. They did their experiments with
both high-frequency/high-performance processors and low-frequency/energy-efficient pro-
cessors for similar workloads and examined the results [39]. Their results show that the in-
creasing the number of mapping jobs with an increasing number of cores cause a better en-

12

ergy efficiency hence this efficiency of Hadoop is also highly dependent on its initial con-
figuration, especially on block size, which was realized that it is not optimal for most of the
cases. Their study also showed that with the increasing number of mapper jobs, CPU fre-
quency gets less important, since mappers can run simultaneously on the same cores, so
using low-frequency processors for mappers increases energy efficiency. Another result from
their study is that input data size for computing related jobs is not as important as it is for I/O
related jobs. Shortly, this study showed that Hadoop needs a special configuration for each
workload. Intense mapping workloads can be run by low-frequency processors and even
in the case when the number of processors is limited, Hadoop can still be configured to be
energy-efficient by fine-tuning the processors and Hadoop’s block size.

Other than those, there are studies which aim to evaluate and compare different distributed
file systems considering energy consumption to help to have a more energy-aware choice in
certain jobs. Kolli et al. evaluated different distributed storage systems, namely GlusterFS and
Compuverde FS, and compared them considering execution time and energy consumption
on several workloads. PowerAPI [22] was used for energy evaluation and SPECsfs 2014 was
used for generating synthetic workload on Gluster and Compuverde distributed file systems.
It was observed that Compuverde consumes more energy than Gluster on a similar workload.
With the increasing workloads Compuverde kept consuming more energy than Gluster. Au-
thors assumed that it is caused by the extra features and a higher number of process count of
Compuverde, which don’t exist in Gluster FS.

Bourdon et al. compared energy consumption of different programming languages for the
same algorithms and their impact on the overall system and achieved that interpreted lan-
guages consume more energy than compiled ones[40]. They also experimented further in
a different study, to achieve the effects of the choice of programming language, algorithm
and platform on the energy consumption, since most of the cloud providers use interpreted
languages in the server side. They used PowerAPI [22] tool for the measurements of CPU,
network, etc.

Besides these studies on the field, there are more to achieve better energy management on
cloud base systems. Jalali et al. studied Fog Computing and came up with some scenarios [41]
with Internet of Things (IoT) applications in which Fog Computing can be energy-efficient.
Duan et al. [34] used dynamic prediction algorithms to foresee idle intervals and achieve en-
ergy consumption. Colmant et al. studied power estimation algorithms on VMs and came
up with a middleware called BitWatts, an extensive development of PowerAPI. Their experi-
ments showed that BitWatts can make consistent predictions with convenient power models
of hardware[42]. Hai Zhu et al. proposed a new algorithm to dynamically optimize a cloud-
based system to meet the SLA. They derived two new optimizations, one is on VM deploy-
ment considering idle intervals and one dynamic voltage power adjustment to reduce the
energy usage of an application. They achieved promising results in some of the experiments,
comparing their system to the generic ones[43]. Cheng et al. proposed an energy efficiency
task assignment algorithm using previous work on Dynamic Voltage and Frequency Scaling
on heterogeneous Hadoop Clusters. They run experiments on a Hadoop Cluster with a differ-
ent type of hardware. They compared their results to different scheduler algorithms, named
Fair Scheduler[44] and Tarazu with an energy saving of 23 % and 17% [45] respectively.

13

3 Procedure

To simulate an in-cluster work of data replication and analysis jobs, we designed our ex-
periments to run on two identical Hadoop clusters. To make it closer to real life scenarios,
instead of using benchmark tools to create a synthetic workload, our tasks are to copy vari-
ous sizes and numbers of files to and from both file systems, create various numbers of direc-
tories and doing analyses on various sizes of text files both on host file system and Hadoop
Distributed File System. During the experiments, we measured energy consumption of each
task. We also examined some scenarios to cover a whole process, such as comparing the
energy consumption and execution time of a process on distributed file system against it’s
equivalent by adding up energy consumption and execution time of locating the files to host
file system, executing the job and relocating them back to the distributed file system.

3.1 Methods Used

Migration of a Virtual Machine can be handled in quite a few ways, hence all consist of
copying of many files; creating a mirror of the VM image and then transferring that image file
to another cluster. A non-live migration, referred also as static, cold or dead is the relocation
of a VM while it is off. Firstly, files are mirrored inside the same disk and then copied to the
target location(Figure 3.1). Live migration is relocating the VM while it is up and running. In
this procedure, states and memory pages are also mirrored inside the disk and then copied
to the target location[46]. These states are saved in chunks of small files for each stateful
variable. Relocation of a VM is a migration with consideration of local files, this time various
numbers of small and big files are first mirrored inside the cluster and then, that mirror is
sent to another storage area. For migration in general, the control of the task (application),
data to process or both can be moved to a target location[47]. [48]

14

Figure 3.1: Non-Live VM Migration

We aimed to evaluate the in-cluster jobs considering their energy consumption and execu-
tion time values, to decide if some of the jobs with distributed file structures can be executed
in a non-distributed environment to save energy. These include pre-migration phase of data
and VM images, preparation and migration of HDFS snapshots which are mostly small files
transferred in a distributed environment, migration of the cluster to a new rack, etc. To simu-
late real life alike workloads, we created two test structures, a data migration process and an
analysis process. We ran our experiments with data migration on the host file system using
Apache Commons IO, a Java I/O library capsulation created by Apache Software Foundation
including the most common functionality in an easy to use library [49], which has been devel-
oped since 2013. And for the analysis phase of our tests, we used wordCount which has also
categorized to be one of the most common jobs which run on Hadoop configurations [39]
and other distributed file systems, in which input files are taken in to memory by line, each
line is sent to individual mapper instances, mapped with key / value pairs, sorted consider-
ing their identicalities, reduced into key / value pairs and printed the output with numbers of
instances. (Figure 3.2) We executed our experiments on different sizes and numbers of files,
from 5 MB to 48 GB singular files for migration and from 5 MB to 1 GB of unstructured text
files for analysis. We used the same file size and count on host file system to not to discard
the effects of the blocked structure of Hadoop DFS.

15

Figure 3.2: wordCount Process Flow Diagram

3.1.1 PowerAPI

For energy measurements, we used Power Application Programming Interface (PowerAPI),
an OS level system monitoring toolkit to build software-related power measurements. Pow-
erAPI supports a wide range of sensors including physical meters, processor interfaces, hard-
ware counters, and OS counters and stands between OS and Applications(Figure 3.3). [22] It
is also used in a wide range of tools and researches; mostly for unit testing, monitoring, creat-
ing estimations for dynamic scheduling. [18] [19] [20] [21] [22] PowerAPI takes the raw sensor
data of hardware below OS and formulates that raw data using OS-free equations for utiliza-
tion and configuration of CPU and other components (HDD, GPU, Network Cards, etc). It
follows the applications to see what type of utilizations they are activating and formulates an
output energy measurement for a given frequency in milliseconds.

Figure 3.3: PowerAPI Architecture

16

3.2 Test Environment

We prepared an environment of two Hadoop Clusters (Hadoop v2.9.2) on Linux Ubuntu
18.04 with two data nodes each and run the experiments on a single node and also on both of
them to achieve closer results to real-life scenarios. Since Hadoop promises to run smoothly
on commodity hardware, we used a commodity high-performance CPU for the experiments.
Our cluster runs on ;

I Intel I7 6th Generation CPU
II 8 x 4 GB DDR4 RAM
III 4 x 1 TB 7200 RPM Western Digital Sata HDD (Sata III)
IV MSI x99A Workstation Motherboard
V Killer Network E2400 High-Performance Network Card
VI Dell RAID Controller H700

Table 3.1: Experimental Setup

3.3 Test Structure

Our tests were structured to achieve a close scenario to daily jobs on a cluster with a dis-
tributed file system and focused on two phases; copying files (Test 1) and analysing files (Test
2) to be able to analyse the necessity of using distributed file system architecture consider-
ing execution time and overall energy consumption. We ran our experiments to migrate files
inside both HDFS and host file system and also between file systems to take switching file
systems for some workloads or file sizes in action and also to consider executing some of the
workloads on the non-distributed structure and carry it back to its place. We used Python 3.6
and Java 11 for scripting the mirroring behaviour and Java 11 for analysing behaviour. For
reading files we used wordCount with MapReduce job to simulate an exclusive analysis of a
file with I/O for every word and we ran copying jobs both inside and between file systems,
to simulate copying phases of inside cluster jobs. During the experiments, we recorded en-
ergy consumption measurements of each task, starting-finishing timestamps, and process
ids. Since Hadoop runs it’s own services independent from the OS it is running on, idle status
and ready-to-go status of Hadoop were subtracted from related sums of the results. For both
wordCount and Copying jobs, we ran it on different file sizes to cover more possible scenar-
ios. To be able to cover the most of possible scenarios with less tolerance, we ran the test
multiple times for small, medium and large-sized files. (Table : 3.2, Table : 3.3)Test 1 takes a
file, creates a new folder in target directory copies to that folder while PowerAPI measures the
energy consumption of the whole process with its own arguments(Figure 3.4).

17

Figure 3.4: Test 1 Activity Diagram

The largest file size we used was a VM image of 48 GB, which is one of the most common
sizes for a VM migration based on collected data over 400,000 different virtual machines. (Fig-
ure 3.5 [50]).

Figure 3.5: Distribution of VM sizes based on AutoSupport Data

Test 2 is covering an analysis of a file, which covers most of the in-cluster jobs of a Hadoop
server, including arranging of memory pages, most of the in-cluster data loads, analysing the

18

data before and during migration. Hadoop runs on a MapReduce framework and it’s one of
the most common types of workloads on a Hadoop Cluster and also common for different
cloud systems. We ran Test 2 also on different text files with various sizes, from 5 MB to 1
GB on both HDFS and Host file system. During the experiments, we measured the energy
consumption using PowerAPI. (Figure 3.6)

Figure 3.6: Test 2 Activity Diagram

PowerAPI is not triggered inside the test software but from outside. Pseudo codes for the

19

test software and PowerAPI script are as follows(Code 1, Code 2).

Algorithm 1: Test Case 1 & 2 Pseudo Code

Load config (I/O, directories, files, repetition count, Task);
Load tasks [Copy, Move, Delete, Create, Rename, wordCount];
Load definitions;
Load Task.Select;
for i = 0; i < r epeat .count ; i = i+1 do

print start messages;
print initial commands;
run Task.Select
if Error then

Quit job;
Print Error Message;

end
Print completion message for repetition i

end
Print complete message for test with total count.

Algorithm 2: PowerAPI Script Pseudo Code

Load config (Frequency, Duration, Appid, Formula, Output.File,);
Load libraries;
for i = Dur ; i > 0 ; Countdown i = i−Freq do

print app id;
print cpu id ;
print epoch timestamp;
if Error then

Quit job;
Print Error Message;

end
Print energy consumption (mW);

end
Print complete message;
Shut Down PowerAPI

3.4 Energy Consumption

• Mean of Energy Consumption The mean of energy consumption here is the power used
by the process during its execution time. It is calculated by adding up the power con-
sumption values and dividing them by the number of measurements.

The mathematical formula for the mean of energy consumption is;

Mean, x = x1 +x2 + ...+xn

n
=

∑xn
x1

n

20

where x1, x2, xn are the energy consumption measurements and n is the total number
of measurements.

• Median of Energy Consumption The median of energy consumption values here is the
value in the middle of the array of measurements. In our experiments, it shows the
middle point energy consumption of an application with repetitions and depicts the
general behaviour of the file system but it needs to be analysed with standard devi-
ation to make real conclusions. During the measurements, PowerAPI follows for the
Linux kernel for the active cores, microprocessors and the triggering process on the OS
side. If the process is not active when PowerAPI gets the value, it basically gets a value
of 0 mW, so median value is very important for the measurements with PowerAPI be-
cause those 0 mW measurements reduce the obtained mean value.

The mathematical formula for the median value is;
If the total number of the measurements are odd :

Medi an = (
n +1

2
)th ter m

If the total number of the measurements are even :

Medi an = (n
2)th ter m + (n

2 +1)th ter m

2

• Standard Deviation of Energy Consumption Standard deviation is a measure which
shows the spread of the data from the mean value. The standard deviation of energy
consumption shows how much the samples differ from the mean value of all the mea-
surement gathered for each process/test case. This shows the fluctuation of power used
by CPU and can be useful for the measurements of utilization levels.

The mathematical formula for the standard deviation is:

St and ar dDevai ati ons =
√∑

(xi − x̃)

n −1

Where xi is each power measurement gathered, x̃ is the mean of power measurements
and n is the total number of measurements in the dataset. Standard deviation tells
us about the energy-consuming behaviour of an application on file systems and the
effects of other factors.

3.5 Pre-Test Procedure

3.5.1 Hadoop Installation

Hadoop needs to run on an OS, like most of the other distributed file system frameworks.
We used Ubuntu 18.04 for the installation. Hadoop follows a through installation for each

21

cluster. Numbers, IPs, Ports can be configured in Hadoop’s configuration files. Because of the
nature of Hadoop’s commodity hardware and usage, a new cluster can be added to a network
anytime by editing and sourcing the files.
From now on, most of the commands will be run in the terminal and codes with % will be run
with admin rights and codes with $ will be run without.
To be able to install Hadoop, we need to have Java installed in our machine. First we remove
existing java installation, to have a fresh start for our cluster. (This step is not a must.)

1 apt purge openjdk*

We install java from the existing library with

1 % add -apt -repository -y ppa:webupd8team/java
2 % apt update
3 % apt install -y oracle -java8 -installer

After installation occurs, we can check our java installation with

1 $ java -version

If we see our Java distribution version, we have installed Java perfectly (Figure : 3.7)

Figure 3.7: Java Version Check

After Java installation, we should create a JAVA_HOME variable to make Hadoop be able to
find Java executables. To do this, we should edit /etc/profile and then update the file with

1 % echo "export JAVA_HOME =/usr" >> /etc/profile
2 % source /etc/profile

After this step we need to disable IPv6, since Hadoop only supports IPv4. It’s done by editing
the file /etc/sysctl.conf in Ubuntu. We need to append the following part to the file and re-
boot the system for it to take effect.
Open the file with

1 % nano /etc/sysctl.conf

Append this to the file

1 net.ipv6.conf.all.disable_ipv6 = 1
2 net.ipv6.conf.default.disable_ipv6 = 1
3 net.ipv6.conf.lo.disable_ipv6 = 1

Then reboot the system. To use hadoop with a privileged profile, we’ll create a new user with
a new usergroup. Users from other clusters will share the same group. To create a usergroup
named hadoopgroup with a user in it,

1 % addgroup hadoopgroup
2 % adduser -ingroup hadoopgroup hadoopuser

22

Now we will install SSH and configure it to enable accessing the machine without a prompt.

1 % apt install ssh
2 % systemctl enable ssh
3 % systemctl start ssh

To configure the new user with the SSH, we will switch to that user with

1 % su - hadoopuser

Now we will create a SSH key and authorize the user.

1 $ ssh -keygen -t rsa -P ""
2 $ cat ~/. ssh/id_rsa.pub >> ~/.ssh/authorized_keys
3 $ chmod 600 ~/.ssh/authorized_keys
4 $ ssh -copy -id -i ~/.ssh/id_rsa.pub localhost

To check connection, this command should work without a prompt for a password and show
an output of OS (Figure : 3.8)

1 $ssh localhost

Figure 3.8: SSH to localhost on Ubuntu

Now we can proceed to installation of Hadoop. After switching back to the administrator
account we will download the version from Hadoop’s website and locate to the encapsulating
folder and extract the compressed files.

1 %su - administrator
2 % wget http ://it.apache.contactlab.it/hadoop/common/hadoop -2.9.2/ hadoop

-2.9.2. tar.gz
3 % tar xzf hadoop -2.9.2. tar.gz
4 /usr/local/hadoop

Then we will move the extracted files to /usr/local/ directory of Ubuntu and then link the
directory to /usr/local/hadoop for cleaner installation and management.

1 % mv hadoop -2.9.2 /usr/local
2 % ln -sf /usr/local/hadoop -2.9.2/

23

We need to set chown variables for hadoopuser user while we are in the administrator ac-
count.

1 % chown -R hadoopuser:hadoopgroup /usr/local/hadoop -2.9.2/

Now we will configure new environment variables for Hadoop by appending Hadoop config-
uration to some files. First, to /.bashrc file append these.

1 # Hadoop config
2 export HADOOP_PREFIX =/usr/local/hadoop
3 export HADOOP_HOME =/usr/local/hadoop
4 export HADOOP_MAPRED_HOME=${HADOOP_HOME}
5 export HADOOP_COMMON_HOME=${HADOOP_HOME}
6 export HADOOP_HDFS_HOME=${HADOOP_HOME}
7 export YARN_HOME=${HADOOP_HOME}
8 export HADOOP_CONF_DIR=${HADOOP_HOME }/etc/hadoop
9 # Native path

10 export HADOOP_COMMON_LIB_NATIVE_DIR=${HADOOP_PREFIX }/lib/native
11 export HADOOP_OPTS ="-Djava.library.path=$HADOOP_PREFIX/lib/native"
12 # Java path
13 export JAVA_HOME ="/ usr"
14 # OS path
15 export PATH=$PATH:$HADOOP

And then to the hadoop-env.sh file in /usr/local/hadoop/etc/hadoop/ we need to append
JAVA variable for Hadoop.

1 export JAVA_HOME ="/ usr"

Now we can proceed to edit Hadoop’ s configuration files located in the /usr/local/hadoop/etc/hadoop
folder. Files are

• core-site.xml

• hdfs-site.xml

• mapred-site.xml (mapred-site.xml.template in some versions)

• yarn-site.xml

Fore core-site.xml we need to append

1 <configuration >
2 <property >
3 <name >fs.default.name </name >
4 <value >hdfs :// localhost :9000 </value >
5 </property >
6 </configuration >

For hdfs-site.xml we need to append

1 <configuration >
2 <property >
3 <name >dfs.replication </name >
4 <value >1</value >
5 </property >
6

7 <property >

24

8 <name >dfs.name.dir </name >
9 <value >file:/usr/local/hadoop/hadoopdata/hdfs/namenode </value >

10 </property >
11

12 <property >
13 <name >dfs.data.dir </name >
14 <value >file:/usr/local/hadoop/hadoopdata/hdfs/datanode </value >
15 </property >
16 </configuration >

For mapred-site.xml we need to append

1 <configuration >
2 <property >
3 <name >mapreduce.framework.name </name >
4 <value >yarn </value >
5 </property >
6 </configuration >

For yarn-site.xml we need to append

1 <configuration >
2 <property >
3 <name >yarn.nodemanager.aux -services </name >
4 <value >mapreduce_shuffle </value >
5 </property >
6 </configuration >

After these steps, Hadoop should be accesible via terminal. We will start with formatting our
first namenode, which is responsible for file system, tracking, replication and formation of
blocks with the following command. 1

1 $ hdfs namenode -format

This command should give a crowded output and we should check for this line to make sure
it successfully formatted the namenode.

1 INFO common.Storage: Storage directory /usr/local/hadoop/hadoopdata/hdfs/
namenode has been successfully formatted.

After this, we can start hadoop services by running

1 $ start -dfs.sh
2 $ start -yarn.sh

To check the situation of the Hadoop services anytime, we can use the following command
followed by an output like follows.

1 $jps

1 hadoopuser@farlands ~ $ jps
2 26899 Jps
3 26216 SecondaryNameNode

1Command for Hadoop DFS is hdfs in version 2.9.2, it may change for newer or older versions. Please check
documentation for your release on Apache Hadoop’s website. [9]

25

4 25912 NameNode
5 26041 DataNode
6 26378 ResourceManager
7 26494 NodeManager

To stop hadoop services for further configuration, we can use the following commands.

1 $ stop -dfs.sh
2 $ stop -yarn.sh

After starting Hadoop services, we can use Hadoop’s web interface via the link "http://localhost:50070/"in
a web browser(Figure 3.9. It shows the number of alive and dead nodes with data consump-
tion of each, individual Http addresses of nodes, the whole filesystem and folder architecture,
full log for services and situations of snapshots, maintenance, migration, etc.

Figure 3.9: Hadoop Web Interface

An example of a full log from Hadoop Web UI is,

1 /**
2 STARTUP_MSG: Starting DataNode
3 STARTUP_MSG: host = ediz -GT62VR -6RD /127.0.1.1
4 STARTUP_MSG: args = []
5 STARTUP_MSG: version = 2.9.2
6 STARTUP_MSG: classpath = /usr/local/hadoop/etc/hadoop :/usr/local/hadoop

-2.9.2/ share/hadoop/common/lib/jettison -1.1. jar:/usr/local/hadoop
-2.9.2/ share/hadoop/common/lib/jetty -util -6.1.26. jar:/usr/local/hadoop
-2.9.2/ share/hadoop/common/lib/apacheds -i18n -2.0.0 - M15.jar:/usr/local/
hadoop -2.9.2/ share/hadoop/common/lib/jcip -annotations -1.0 -1. jar:/usr/
local/hadoop -2.9.2/ share/hadoop/common/lib/log4j -1.2.17. jar:/usr/local
/hadoop -2.9.2/ share/hadoop/common/lib/jsr305 -3.0.0. jar:/usr/local/
hadoop -2.9.2/ share/hadoop/common/lib/commons -io -2.4. jar:/usr/local/
hadoop -2.9.2/ share/hadoop/common/lib/netty -3.6.2. Final.jar ...

26

3.5.2 PowerAPI Setup

PowerAPI can be downloaded from the links on GitHub, the compiling method may differ
on different platforms. You can find links and basics on the website [22]. For example, to
compile PowerAPI using Maven, following command should be used in it’s parent folder.

1 cd $powerapi_directory
2 mvn install

By default it comes with all modules installed, pom.xml file is for further configuration. After
compiling the code, we can run PowerAPI from it’s parent folder which includes build files
and bin folder with the following example command.

1 ./bin/powerapi modules procfs -cpu -simple monitor --frequency 1000 --apps
java --agg max --console duration 30

Basic arguments are;

• –profcfs-cpu-simple monitor : formulated sensor monitor of cpus

• –frequency is frequency of measurements in milliseconds

• –apps (or –pids) is the apps we focus on

• –agg is the measurements we are having (Min, Max, Average, Standard Deviation, Co-
efficient of Variation)

• –console duration : duration of measurements in seconds

An example output for measuring the power consumption of Java apps looks like follows.

1 muid =284 af255 -0cea -47a8-a36b -7 e2208843d86;timestamp =1557316594148; targets
=java;devices=cpu;power =462.26415094339626 mW

2 muid =284 af255 -0cea -47a8-a36b -7 e2208843d86;timestamp =1557316595155; targets
=java;devices=cpu;power =0.0 mW

3 muid =284 af255 -0cea -47a8-a36b -7 e2208843d86;timestamp =1557316596165; targets
=java;devices=cpu;power =9464.547677261613 mW

4 muid =284 af255 -0cea -47a8-a36b -7 e2208843d86;timestamp =1557316597155; targets
=java;devices=cpu;power =18611.182519280206 mW

5 muid =284 af255 -0cea -47a8-a36b -7 e2208843d86;timestamp =1557316598166; targets
=java;devices=cpu;power =9430.188679245284 mW

6 muid =284 af255 -0cea -47a8-a36b -7 e2208843d86;timestamp =1557316599165; targets
=java;devices=cpu;power =3244.010088272383 mW

7 muid =284 af255 -0cea -47a8-a36b -7 e2208843d86;timestamp =1557316600166; targets
=java;devices=cpu;power =1484.8484848484848 mW

8 muid =284 af255 -0cea -47a8-a36b -7 e2208843d86;timestamp =1557316601165; targets
=java;devices=cpu;power =3074.144486692015 mW

9 muid =284 af255 -0cea -47a8-a36b -7 e2208843d86;timestamp =1557316602165; targets
=java;devices=cpu;power =0.0 mW

10 muid =284 af255 -0cea -47a8-a36b -7 e2208843d86;timestamp =1557316603165; targets
=java;devices=cpu;power =4881.693648816937 mW

11 PowerAPI is shutting down ...

3.5.3 Test Generation

Our test scenarios were made to cover a set of scenarios, mainly to examine if some in-
cluster workloads could be done outside the distributed file structure, if distributed structure

27

is not necessary or it’s not a time restricted job. This covers the prediction algorithms, most
of built-in and 3rd party tasks which somehow involve data multiplication, pre-migration
mirrors of large and small files, replication of data and metadata, snapshot migrations for
scheduling and monitoring the clusters, other data transfers inside the rack without a need
of a distributed file structure to prepare the data to be used distributively by relocating it to
the related cluster. We stopped all of the background services to prevent from having CPU or
applications busy by exterior factors.

File Size (Cat) Count
5 MB (Small) 100

20 MB (Small) 100
100 MB (Small) 100

512 MB (Medium) 50
1 GB (Medium) 50
2 GB (Medium) 30
48 GB (Large) 1

Table 3.2: Test 1 Cases

File Size (Cat) Count
5 MB (Small) 100

20 MB (Small) 100
100 MB (Small) 100

512 MB (Medium) 50
1 GB (Medium) 50
2 GB (Medium) 30

Table 3.3: Test 2 Cases

28

4 Analysis and Results

4.1 Energy Consumption of HDFS and Host File System

4.1.1 Mean Values

(a) Test 1 Mean Values for Small Files (b) Test 1 Mean Values for Medium Files

(c) Test 1 Mean Values for Big Files (d) Test 2 Mean Values

Figure 4.1: Mean Values of Energy Consumption(mW)

Figure 4.1 shows the mean values for Test 1 (4.1a, 4.1b 4.1c) and Test 2 (4.1d). It is expected
to have an apparent difference as we see in the means of energy consumption since HDFS
uses distributed file structure with additional services and utilities and Host FS does not. By
looking at the mean values and the changes depending on file sizes, we can conclude that
the difference between mean values decrease when the file size gets bigger than Hadoop’s
block size(128MB). Mean values of HDFS also decreases when the file size is bigger hence
the difference of host file system between small and big files are smaller. When we consider
the CPU load, too (4.1d), on the contrary of Test 1, we see that when the file size is bigger
than Hadoop’s block size, the mean of energy consumption increases. Since PowerAPI pro-
vides measurements based on formulations and some of the values are lower than exact but
summed to the next value, we need to check Medians, Standard Deviations and Total Con-
sumption values, too.

29

4.1.2 Median Values

(a) Test 1 Median Values for Small Files (b) Test 1 Median Values for Medium Files

(c) Test 1 Median Values for Big Files (d) Test 2 Median Values

Figure 4.2: Median Values of Energy Consumption(mW)

Figure 4.2 shows the Median values of Test 1 (4.2a, 4.2b 4.2c) and Test 2 (4.2d) Here also we
see similar patterns with mean values, meaning that values are regularly distributed. Since
PowerAPI doesn’t do a rounding but it adds the irregular measurement to the next one, this
is still a good distribution of values. It should have been affected by that we turned off all of
the system processes during the tests and our test structure were assigned to the tests, only.
Still, by looking at the values we don’t see the decrease at the power consumption of Hadoop
depending on the block size and file sizes. So the difference in mean values could be caused
by total execution time.

30

4.1.3 Standard Deviation of Values

Test Case
St-Dev in

Host FS Test 1
St-Dev in

HDFS Test 1

5 MB (x100) 315.3 3166.0
20 MB (x100) 297.3 3179.4

100 MB (x100) 300.0 3792.5
512 MB (x50) 200.0 2680.7

1 GB (x50) 140.4 2322.5
2 GB (x30) 128.8 1778.6
48 GB (x1) 307.8 1162.6

Table 4.1: Standard Deviation Values of Test 1 (mW)

Test Case
St-Dev in

Host FS Test 2
St-Dev in

HDFS Test 2

5 MB (x100) 2543.0 3274.6
25 MB (x100) 1157.7 2994.6
125 MB (x10) 726.2 2105.2

1 GB (x1) 450.3 8124.5

Table 4.2: Standard Deviation Values of Test 2 (mW)

As we see in the standard deviations, they almost show the maximum values of each mea-
surement, since PowerAPI doesn’t provide any roundings and only uses sensor values for the
measurements and formulations and a measure a using PowerAPI includes very low values
for utilization moments of processes and 0.0w values for pre-utilization moments of CPU,
which is expected as it is and makes it harder to have conclusions using only standard de-
viations. Nevertheless, we can conclude that HDFS triggers new processes for each file and
stops the process when the migration is done even if there are more files to migrate which
also coincides with previous work about Hadoop I/O management [26], while it’s apparently
not the case for Host FS.

4.1.4 Total Energy Consumption and Execution Time

Total Energy Consumption
Figures below (4.3) show the total energy consumption of an executed task. These values
show that difference between distributed and non-distributed file systems and the potential
of leakage in energy is high. To be able to make a comment about the energy consumption
of each system, we also have to consider the migration of such files between distributed and
non-distributed file systems and also the overall execution times for certain jobs.

31

(a) Test 1 :Total Energy Consumption for Small
Files (W)

(b) Test 1 :Total Energy Consumption for Medium
Files (W)

(c) Test 1 :Total Energy Consumption for Big Files
(W) (d) Test 2 :Total Energy Consumption

Figure 4.3: Total Energy Consumption of Tests

Execution Time
Figures below(4.4) show the total execution time of test tasks. As it is in the energy consump-
tion, some tasks take more time to execute on HDFS than Host FS, except the wordCount on
1 GB text file. Even if HDFS consumes more energy than Host FS, it takes less time to process
the same file under the distributed structure. This shows as a nature of Hadoop Distributed
File System is faster when running MapReduce jobs on large files. As we also have seen in the
energy consumptions, when it gets above the block size of Hadoop, it consumes more energy
but it takes relatively less time to execute.

32

(a) Test 1 : Execution Time for Small Files (W) (b) Test 1 : Execution Time for Medium Files (W)

(c) Test 1 : Execution Time for Big Files (W) (d) Test 2 :Execution Time

Figure 4.4: Total Execution Time of Test Cases

4.2 Energy Consumption and Execution Time of Migration
Between File Systems

To be able to compare whole scenarios to each other, we measured the energy consumption
of migrating files from HDFS to Host FS and from Host FS to HDFS. Table 4.3 shows the ex-
ecution times for migration of file from Host FS to HDFS and from HDFS to Host FS. Using
these and the total execution time and energy consumption values, we can now come up with
a table of whole scenarios including overall energy consumption and execution time so we
can decide which cases are more energy-efficient than its alternative.

33

Test Case Host FS to HDFS HDFS to Host FS

5 MB (x100) 663 W (317s) 758 W (325s)
20 MB (x100) 828 W (351s) 793 W (334s)

100 MB (x100) 1072 W (399s) 1046 W (386s)
512 MB (x50) 2061 W (359s) 1774 W (380s)

1 GB (x50) 3722 W (592s) 1556 W (592s)
2 GB (x30) 6339 W (730s) 4072 W (783s)
48 GB (x1) 1671 W (1081s) 992 W (1197s)

Table 4.3: Energy Consumption and Execution Time of Migration Between Filesystems

4.3 Energy Consumption and Execution Time for Test Scenarios

Now by adding up the values measured from tests, it is possible to form scenarios with real
measurements. Those scenarios are formed to compare if using non-distributed infrastruc-
ture is an energy efficiency alternative for some tasks which don’t have to be run under dis-
tributed structure and don’t have a strict time to be executed, such as workflow analysis on
HDFS, evaluating load balancers, estimation processes and any kind of file migration be-
tween hard drives. Tables 4.4 and 4.5 show the total execution time of a task only inside HDFS
and routed via a Host FS. For copying files to another location inside the rack, we pulled the
files from HDFS, relocated the files and pushed them back to HDFS. For analysing type loads,
we pulled the files from HDFS, ran the jobs and pushed the files back to HDFS.

Test 1 Case
Energy Difference

(=(HDFS - Routed))(W)
Time Difference

(=(HDFS - Routed))(sec)

5 MB (x100) 986 W -323 s
20 MB (x100) 863 W -415 s

100 MB (x100) 802 W -474 s
512 MB (x50) -952 W -569 s

1 GB (x50) -1350 W -832 s
2 GB (x30) -1398 W -1242 s
48 GB (x1) -965 W -2054 s

Table 4.4: Test 1 Scenarios’ Energy and Time Differences

Test 2 Case
Energy Difference

(=(HDFS - Routed))(W)
Time Difference

(=(HDFS - Routed))(sec)

5 MB (x100) 7053 W 1228 s
25 MB (x100) 7545 W 1241 s
125 MB (x10) -1435 W -628 s

1 GB (x1) –500 W -845 s

Table 4.5: Test 2 Scenarios Energy Consumption and Time Differences

34

5 Conclusion and Future Work

As expected, Hadoop Distributed File System’s functionality, security and extra services
cause consuming more energy than the non-distributed ext4 formatted file system under the
same circumstances, for most of the cases. For some types of copying and analysing jobs, it
was observed that routing the files to Host FS and migrating them over Host FS can be energy
saving. It is also dependent on file count for some test cases, meaning that the larger number
and closer to real-life scenarios can save a better proportion of energy.

Test 1 showed that when the file sizes are smaller than Hadoop’s block size (Test 1 case 1,2
and 3) there is a possibility to save energy using a route via the Host FS. The most efficient
scenario was when the file size is just under the Hadoop’s configured block size (128mb vs
125mb) with 27% energy saving. When the file sizes get bigger than the block size, HDFS starts
to operate more efficiently than Host FS. This, by the way, doesn’t apply for the execution time
for Test 1 cases. When the file sizes get bigger, the differences in execution times don’t change
behaivour, continues to accumulate depending on file size and file count.

Test 2 also showed similarly to Test 1 that when the file sizes are smaller than Hadoop’s block
size (Test case 1 and 2), a routing over Host FS can cause energy savings on analyse type of
jobs. The difference here is when the file size gets close to Hadoop’s block size, Hadoop starts
to become more energy-efficient than other cases. Even if we process more data, it takes less
time and less energy on Hadoop (Test 2:3 vs Test 2:4). Differences in execution times are also
similar to Test 1 with almost the same behaviour in cases where file size is close to Hadoop’s
block size (125mb to 128mb). Hadoop performs faster when the block size meets the file size.
Quite different than its behaviour in energy consumption and similar to the behaviour in Test
1, Hadoop executed the tasks much faster when the file sizes was bigger.

The experiments shows that if there is not a necessity for the distributed environment for
a data migration job, for volumes under or equal to the block size and different numbers of
files and process types, it is suggested to use a non-distributed file structure if the execution
time is not a concern. While these are the tests inside the same rack, this can apply for mostly
data analysis for dynamic scaling of hardware and software, pre-migration mirroring of files
and conjugated file verification types of workloads most of which don’t have a strict deadline.

The hardware we used in our tests are testing environment and even Hadoop promises to
work smoothly on commodity hardware, the results may be different from the production
environment. We used all the configuration as default, including block size of 128 MB.

5.1 Analysis of Graphical Data

In the Analysis and Results section, we visualized a number of graphs and tables of certain
measurements, such as Means (Figure : 4.1), Medians (Figure : 4.2), Standard Deviations (Ta-
ble : 4.1, 4.2) and aggregated values of those certain measurements (Figure 4.3, 4.4). Firstly,
from the graphical representation of mean and median values, we see that HDFS’s energy
consumption trend is higher than Host FS. This obviously is caused by Hadoop’s additional
functionalities and services since Host FS is an embedded system of an OS and it runs inside
the OS kernel, so it is already there when you have an OS running. By analysing the mean

35

and median values, we can come up with the similar conclusion about file sizes and its ef-
fects to the energy consumption and execution time; in the mean and median values of Test
2:4, we see that Hadoop is consuming more energy than it usually does with other file sizes.
Having high median values in HDFS measurements instead of moderate values shows that
PowerAPI’s measurements are not far from sensor values but have some low measurements
of low utilization levels of CPUs and they are recovered by PowerAPI within its formulations.
Standard Deviation values show less information about the test cases but more about the
testbed. PowerAPI gets low values and high values in a row to correct the formulisation of
sensor values, it causes to have a larger interval in measurements and a larger standard devi-
ation. Different than other measurements, the standard deviation is higher than usual inside
Test 2; when the file size is small on Host FS. Every iteration in Host FS is started by a new
readFile operation and continued by a wordCount analysis process. This difference in stan-
dard deviation can be caused by low consumption of readFile operation on small files and a
higher consumption analysing job as it is similar to larger file sizes.

5.2 Analysis of Test Runs

We formed our test runs to cover a large diameter of common scenarios in real life. To be
able to achieve this, we used different file sizes with different repetitions for each workload.
This helped us to see the effects of file sizes, configurations and repetition counts and the
effects on execution time and energy consumption. Working with different numbers of test
runs also helped us to separate focus points from others for a better analysis, furthermore,
we lowered the error margin by having a large pool of observations.

5.3 Conclusions and Analysis of TestBed

We used one of the most common and up to date CPUs for the time of the test with a inte-
grated hub energy sensors on. We ran everything inside the same set of hard drives, mother-
boards, and CPUs to achieve a better measurement with less external factors. We didn’t use
any Virtual Machines but Physical Machines to have less leakage at the performance([26])and
to have more accurate measurements ([28]). We used a relatively moderate and default val-
ues for Hadoop’s configuration, 128 MB of block size as the most important factor for our
tests. PowerAPI has been set to have a frequency of 1000 ms during the tests with a margin
of error from 0.5% up to 3%. We didn’t design our tests to go through a network protocol, ex-
cept for cluster communication and it is also known that under some circumstances network
peripherals are also important factors in energy consumption. We also didn’t load the CPUs
with other jobs, which is good for testing but not good for real-life scenarios since most of
the clusters will be running with high utilization under virtualized environments. Moreover,
we didn’t push the workloads at once to fully utilize the CPU’s and since they are known to be
more efficient under full utilization, test results may differ with weaker processors or higher
utilization levels.

36

5.4 Future Work

For the future work using the knowledge we achieved from this thesis, we can suggest work-
ing on hybrid file system protocols of file system allocation for cloud usage inside the rack,
which takes also Host File Systems into consideration with a suggestion of a condition of
turning the Distributed File System off or to a low utilization state during the phase. Hybrid
file systems are already under consideration for researchers and some companies hence most
of the time, energy consumption is not one of the concerns and Host FS is not considered as
an alternative for such workloads. For analysis type of jobs in which chunks of small volume
data are processed such as prediction algorithms, task prioritizing for scheduling and for mi-
gration of lots of types such as images with layers, snapshots of file/folder structures, data in
multiple pieces, backup migration and data replication type of jobs in which big volumes of
data are migrated inside the cluster, our test results can be used as a guide to decide on the
route of the files.

As we see in the relationship between the file size and HDFS block size, further research
can be made for investigating the effects of the configuration of a Distributed File System to
the execution time and energy consumption. A hybrid configuration or hybrid Data Nodes
with varying configuration settings can be experimented to have better insight for making
decisions for cloud managers.

Since we didn’t include a migration over a network in our experiments, a potential future
work can be done by using a network and comparing DFS’s behaviour to a Host FS, since
DFSs are all dependent on a Host File System even if they are different DFSs. Moreover, as we
mentioned earlier, P2P systems are known by their relevance to the nature of non-distributed
file systems and their potential of energy efficiency in the networks. Thus a route allocation of
files considering P2P networks for migration of files may have a potential of energy saving in
this matter. PowerAPI has other metrics, which are used to measure and compare the effects
of other factors such as parallel CPUs and some are better in results with fractions, some of
them can also be used to measure behaviour under similar tests and can be compared to the
results we achieved.

37

References

[1] J. M. B, “The Evolution To Cloud Computing (How Did We Get Here?),” The Enterprise
Cloud Blog, 2015.

[2] M. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre energy consumption
under the european code of conduct for data centre energy efficiency,” Energies, vol. 10,
p. 1470, 09 2017.

[3] R. Danilak, “Why energy is a big and rapidly growing problem for data centers,” 2017.
Forbes Technology Council Community Voice.

[4] U. United Nations Framework Convention on Climate Change, “Ict sector helping to
tackle climate change,” 2016.

[5] A. B. Nassif and M. A. M. Capretz, “Moving from saas applications towards soa services,”
in 2010 6th World Congress on Services, pp. 187–188, July 2010.

[6] M. Boniface, B. Nasser, J. Papay, S. C. Phillips, A. Servin, X. Yang, Z. Zlatev, S. V. Gogouvi-
tis, G. Katsaros, K. Konstanteli, G. Kousiouris, A. Menychtas, and D. Kyriazis, “Platform-
as-a-service architecture for real-time quality of service management in clouds,” in 2010
Fifth International Conference on Internet and Web Applications and Services, pp. 155–
160, May 2010.

[7] B. Depardon, G. Le Mahec, and C. Séguin, “Analysis of Six Distributed File Systems,”
research report, UniversitÂt’e de Picardie Jules Verne, Feb. 2013.

[8] E. Levy and A. Silberschatz, “Distributed file systems: Concepts and examples,” ACM
Comput. Surv., vol. 22, pp. 321–374, Dec. 1990.

[9] A. S. Foundation, “Hadoop releases,” 2006.

[10] A. H. Community, “Powered by apache hadoop,” 2007.

[11] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,”
in 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–
10, May 2010.

[12] A. Ben Ayed, M. Ben Halima, and A. Alimi, “Mapreduce based text detection in big data
natural scene videos,” vol. 53, 08 2015.

[13] Apache Software Foundation, “Apache Hadoop - Default Configura-
tion File,” 2019. Version 3.0, [Online; accessed on 04.05.2019 via
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/hdfs-
default.xml].

[14] Wikipedia, “Apache hadoop — Wikipedia, the free encyclopedia,” 2008-2019. [Online;
accessed 03.05.2019].

[15] David Both, “An introduction to Linux’s EXT4 filesystem,” 2017. [Online, accessed on
02.04.2019] via https://opensource.com/article/17/5/introduction-ext4-filesystem.

[16] David Both, “An introduction to Linux filesystems,” 2016.
https://opensource.com/life/16/10/introduction-linux-filesystems,[Online accessed
on 02.04.2019].

[17] R. E. Grant, M. Levenhagen, S. L. Olivier, D. DeBonis, K. T. Pedretti, and J. H. Laros III,

38

“Standardizing power monitoring and control at exascale,” Computer, vol. 49, pp. 38–46,
Oct 2016.

[18] A. Noureddine, R. Rouvoy, and L. Seinturier, “Unit Testing of Energy Consumption of
Software Libraries,” in Symposium On Applied Computing, (Gyeongju, South Korea),
pp. 1200–1205, Mar. 2014.

[19] A. Noureddine, R. Rouvoy, and L. Seinturier, “Monitoring Energy Hotspots in Software,”
Journal of Automated Software Engineering, vol. 22, pp. 291–332, Sept. 2015.

[20] M. Colmant, P. Felber, R. Rouvoy, and L. Seinturier, “WattsKit: Software-Defined Power
Monitoring of Distributed Systems,” in 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid) (F. Capello, G. Fox, and J. Garcia-Blas, eds.),
Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), (Madrid, Spain), p. 10, IEEE, May 2017.

[21] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “Runtime Monitoring of Soft-
ware Energy Hotspots,” in ASE - The 27th IEEE/ACM International Conference on Auto-
mated Software Engineering - 2012, (Essen, Germany), pp. 160–169, Sept. 2012.

[22] U. o. L. Institut national de recherche en informatique et en automatique (INRIA), “Pow-
erapi,” 2018. [Online; accessed on 02.05.2019 via http://powerapi.org].

[23] CISCO, “Cisco visual networking index: Forecast and trends, 2017 - 2022 white paper,”
tech. rep., 2018(upadated February 27, 2019).

[24] R. Abu Khurma, H. Harahsheh, and A. Sharieh, “Task scheduling algorithm in cloud
computing based on modified round robin algorithm,” Journal of Theoretical and Ap-
plied Information Technology, vol. 96, pp. 5869–5888, 09 2018.

[25] C. Kaewkasi and W. Srisuruk, “A study of big data processing constraints on a low-power
hadoop cluster,” in 2014 International Computer Science and Engineering Conference
(ICSEC), pp. 267–272, July 2014.

[26] E. Feller, L. Ramakrishnan, and C. Morin, “On the performance and energy efficiency
of hadoop deployment models,” in 2013 IEEE International Conference on Big Data,
pp. 131–136, Oct 2013.

[27] E. Feller, L. Ramakrishnan, and C. Morin, “Performance and energy efficiency of big data
applications in cloud environments: A hadoop case study,” Journal of Parallel and Dis-
tributed Computing, vol. 79-80, pp. 80 – 89, 2015. Special Issue on Scalable Systems for
Big Data Management and Analytics.

[28] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual machine power
metering and provisioning,” in Proceedings of the 1st ACM Symposium on Cloud Com-
puting, SoCC ’10, (New York, NY, USA), pp. 39–50, ACM, 2010.

[29] S. Bai and H. Wu, “The performance study on several distributed file systems,” in 2011
International Conference on Cyber-Enabled Distributed Computing and Knowledge Dis-
covery, pp. 226–229, Oct 2011.

[30] S. Shirinbab, L. Lundberg, and D. Erman, “Performance evaluation of distributed storage
systems for cloud computing,” I. J. Comput. Appl., vol. 20, pp. 195–207, 2013.

[31] X. Zhou and L. He, “A virtualized hybrid distributed file system,” in 2013 International

39

Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 202–
205, Oct 2013.

[32] S. A. Yazd, S. Venkatesan, and N. Mittal, “Energy efficient hadoop using mirrored data
block replication policy,” in 2012 IEEE 31st Symposium on Reliable Distributed Systems,
pp. 457–462, Oct 2012.

[33] T. Wirtz and R. Ge, “Improving mapreduce energy efficiency for computation intensive
workloads,” in 2011 International Green Computing Conference and Workshops, pp. 1–8,
July 2011.

[34] L. Duan, D. Zhan, and J. Hohnerlein, “Optimizing cloud data center energy efficiency via
dynamic prediction of cpu idle intervals,” in 2015 IEEE 8th International Conference on
Cloud Computing, pp. 985–988, June 2015.

[35] L. A. Barroso and U. Holzle, “The case for energy-proportional computing,” Computer,
vol. 40, pp. 33–37, Dec 2007.

[36] L. Mashayekhy, M. M. Nejad, D. Grosu, D. Lu, and W. Shi, “Energy-aware scheduling of
mapreduce jobs,” in 2014 IEEE International Congress on Big Data, pp. 32–39, June 2014.

[37] I. n. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bianchini, “Greenhadoop:
Leveraging green energy in data-processing frameworks,” in Proceedings of the 7th ACM
European Conference on Computer Systems, EuroSys ’12, (New York, NY, USA), pp. 57–70,
ACM, 2012.

[38] R. Fischer e Silva and P. Carpenter, E-EON: Energy-Efficient and Optimized Networks for
Hadoop. PhD thesis, 05 2018.

[39] M. Malik, K. Neshatpour, S. Rafatirad, and H. Homayoun, “Hadoop workloads charac-
terization for performance and energy efficiency optimizations on microservers,” IEEE
Transactions on Multi-Scale Computing Systems, vol. 4, pp. 355–368, July 2018.

[40] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “A preliminary study of the im-
pact of software engineering on greenit,” in 2012 First International Workshop on Green
and Sustainable Software (GREENS), pp. 21–27, June 2012.

[41] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, “Fog computing may help to save
energy in cloud computing,” IEEE Journal on Selected Areas in Communications, vol. 34,
pp. 1728–1739, May 2016.

[42] M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, and A. Sobe, “Process-level
power estimation in vm-based systems,” in EuroSys, 2015.

[43] H. Zhu, X. Wang, and H. Wang, “A new model for energy consumption optimization un-
der cloud computing and its genetic algorithm,” in 2014 Tenth International Conference
on Computational Intelligence and Security, pp. 7–11, Nov 2014.

[44] Apache Software Foundation, “Hadoop: Fair scheduler (v2.7.4),” 2017. [Online; accessed
on 05.05.2019] via https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-
site/FairScheduler.html.

[45] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar, “Tarazu: Optimizing
mapreduce on heterogeneous clusters,” SIGARCH Comput. Archit. News, vol. 40, pp. 61–
74, Mar. 2012.

40

[46] R. Ahmad, A. Gani, S. h. Ab hamid, M. Shiraz, F. Xia, and S. Madani, “Virtual machine
migration in cloud data centers: A review, taxonomy, and open research issues,” The
Journal of Supercomputing, vol. 71, 07 2015.

[47] P. Kaur and A. Rani, “Virtual machine migration in cloud computing,” International Jour-
nal of Grid and Distributed Computing, vol. 8, pp. 337–342, 10 2015.

[48] L. Zhu, J. Chen, Q. He, D. Huang, and S. Wu, “Itc-lm: A smart iteration-termination cri-
terion based live virtual machine migration,” in Network and Parallel Computing (C.-H.
Hsu, X. Li, X. Shi, and R. Zheng, eds.), (Berlin, Heidelberg), pp. 118–129, Springer Berlin
Heidelberg, 2013.

[49] Apache Commons IO, “Apache Software Foundation,” 2012-2019. [Online; accessed on
15.05.2019] via https://commons.apache.org/proper/commons-io/index.html.

[50] Tintri by DataDirect Networks, “Data Dive: VM Sizes in the Real World,” 2016. [Online;
accessed on 08.05.2019] via https://www.tintri.com/blog/2016/05/data-dive-vm-sizes-
real-world.

41

6 Appendix & Notes

We used R Studio(V1.1.453) for statistical jobs, Plotly Python Library for graphical presen-
tation, Microsft Excel (V16.28 (19081202)) and Microsoft Power Query (V2.59.5135.201) for
clustering and structuring raw outputs, Draw.io for UMLs and other figures, Gitlab for Git
service, Google Drive for cloud service and Overleaf for creating the report with Latex.

Since we used a simplified type (IEEE Tran) of references for a clearer visual representation,
printed format may not be as satisfying as raw format for researchers. A raw format of bibli-
ography file and full version of code used in this thesis with working example can be found
at:
GitLab LinkW

1 https :// gitlab.com/edzyldrm/ms -thesis/

Here are some snippets from the code and the procedure :

1 ### Definitions
2

3 def __init__(self , repeat_count):
4 self.hdfs = None
5 self.host_fs = None
6 self.repeat_count = repeat_count
7 self.hdfs_source_base = hdfs_source_dir
8 self.hdfs_dest_base = hdfs_dest_dir
9 self.fs_source_base = fs_source_dir

10 self.fs_dest_base = fs_dest_dir
11 self.output_dir = ’/output_ ’ + random_string (8)
12 self.tasks = []

1 ### Test Case 1 Function
2

3 def copy_command(self):
4 if self.source_fs == ’hdfs’ or self.destination_fs == ’hdfs’:
5 cmd_list = [’hdfs’, ’dfs’]
6 if self.source_fs == ’hdfs’ and self.destination_fs == ’hdfs’

:
7 cmd_list.extend ([’-cp’, ’-f’])
8 cmd_list.append(self.hdfs_source_name)
9 elif self.source_fs == ’host’ and self.destination_fs == ’

hdfs’:
10 cmd_list.extend ([’-put’, ’-f’])
11 cmd_list.append(self.fs_source_name)
12 cmd_list.append(self.hdfs_destination_name)
13 else:
14 cmd_list = [’cp’, ’-r’, self.fs_source_name , self.

fs_destination_name]
15

16 return [], cmd_list

42

https://gitlab.com/edzyldrm/ms-thesis/

1 ## Test Case 2 Function
2

3 def wordcount_command(self):
4 cmd_list = [’hadoop ’, ’jar’, ’libs/wc.jar’, ’WordCount ’,
5 self.hdfs_source_name , self.hdfs_destination_name]
6 return [], cmd_list
7

8 def wordcount_file_command(self):
9 cmd_list = [’java’, ’-jar’, ’libs/wordcountfile.jar’,

10 self.fs_source_name]
11 return [], cmd_list

43

1 ### Run Tasks
2 for i in range(self.repeat_count):
3 print("**************************")
4 print("## Round ({}/{})".format(i + 1, self.repeat_count))
5 print("Preparing for tasks")
6 init_commands = [[’hdfs’, ’dfs’, ’-mkdir’, self.hdfs_dest_base +

self.output_dir],
7 [’mkdir’, self.fs_dest_base + self.output_dir]]
8 for cmd in init_commands:
9 (ret , out , err) = self.run_cmd(’init’, cmd)

10 if out:
11 print(out.decode(’utf -8’))
12 if err:
13 print(err.decode(’utf -8’))
14 print("**************************")
15 for task in self.tasks:
16 fs_task = FsTask(task , self.hdfs_source_base , self.

hdfs_dest_base , self.fs_source_base ,
17 self.fs_dest_base , self.output_dir)
18 print("\tTask: {}".format(fs_task.name))
19 init_commands , task_commands = fs_task.commands ()
20 if init_commands:
21 (ret , out , err) = self.run_cmd(’init’, init_commands)
22 if out:
23 print(out.decode(’utf -8’))
24 if err:
25 print(err.decode(’utf -8’))
26 if task_commands:
27 try:
28 (ret , out , err) = self.run_cmd(’task’, task_commands)
29 if out:
30 print(out.decode(’utf -8’))
31 if err:
32 print(err.decode(’utf -8’))
33 except FileNotFoundError as e:
34 print(e)
35 print("**************************")
36 print("*** Finishing for tasks")
37 init_commands = [[’hdfs’, ’dfs’, ’-rm’, ’-R’, self.hdfs_dest_base

+ self.output_dir],
38 [’rm’, ’-rf’, self.fs_dest_base + self.

output_dir]]
39 for cmd in init_commands:
40 (ret , out , err) = self.run_cmd(’clean’, cmd)
41 if out:
42 print(out.decode(’utf -8’))
43 if err:
44 print(err.decode(’utf -8’))
45 print("**************************")

44

1 ## example json file
2

3 [
4 {
5 "name": "Do Map/Reduce job on the selected text file on hdfs .",
6 "command": "mapReduce",
7 "source": "hdfs:filea.txt",
8 "destination": "hdfs:output",
9 "regex": "’property ’"

10 }
11]

45

	Acknowledgements
	List of Abbreviations

	Introduction
	Background
	Cloud
	Software as a Service (SaaS)
	Platform as a Service(PaaS)
	Infrastructure as a Service(IaaS)

	Distributed File Systems
	Apache Hadoop
	NameNode
	DataNode
	Secondary NameNode
	Job Tracker
	Task Tracker

	Ext4 FileSystem
	Energy Consumption Measurements

	Motivation and Objectives
	Research Questions - Hypotheses

	Related Work
	Procedure
	Methods Used
	PowerAPI

	Test Environment
	Test Structure
	Energy Consumption
	Pre-Test Procedure
	Hadoop Installation
	PowerAPI Setup
	Test Generation

	Analysis and Results
	Energy Consumption of HDFS and Host File System
	Mean Values
	Median Values
	Standard Deviation of Values
	Total Energy Consumption and Execution Time
	Total Energy Consumption
	Execution Time

	Energy Consumption and Execution Time of Migration Between File Systems
	Energy Consumption and Execution Time for Test Scenarios

	Conclusion and Future Work
	Analysis of Graphical Data
	Analysis of Test Runs
	Conclusions and Analysis of TestBed
	Future Work

	References
	Appendix & Notes

