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Abstract

The proliferation of web-browsers coupled with emergence of HTML5 and recent

advances in Javascript engine from major browser vendors have opened the door to

distributed computing on web-browsers. This paper describes an enhancement to

WeevilScout, a new volunteer computing-based, scientific workflow management

system that allows for execution of jobs on an ensemble of browsers in parallel.

WeevilScout utilizes two core technologies that have yet to see mainstream adop-

tion, the WebWorker which allows for Javascript execution in the background

and WebCL which provides direct hardware access from within the browser. A

workflow coordination engine that we have developed allows for defining inter-job

dependencies by function-level paralellism. The result showed that we were able

to gain considerable amount of computing power when there were enough users

connected to the system.
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Chapter 1

Introduction

The abundance of data produced during a scientific experiment underlines the need

for a fast and effective means of data processing. In practice this often means

performing experiments on a distributed system, where scientific data that are

often concurrent by nature can be processed by an array of computing resources.

In grid computing, scientific experiments are carried by multiple collaborating

organizations on an array of possibly heterogeneous computing resources that span

across multiple administration domains.

In another scenario where there is not enough available computing resources,

one can resort to volunteer computing[44], where anyone with some CPU cycles to

spare can participate in the experiment by letting their CPU be used to perform

the experiment.

1.1 Motivation

While distributed computing allows for harnessing a large amount of comput-

ing power, the complexities that are involved in building and maintaining it are

notorious. As a response, various middlewares have been developed with the aim

of abstracting away the technical details. While these middlewares have generally

been successful to some extent, they are often riddled with various configuration

settings that again requires a degree of technical know-how.

This thesis report describes an enhancement to the new volunteer computing-

based, scientific workflow management system that allows for execution of jobs on

an ensemble of browsers in parallel. Dubbed the WeevilScout, our main motivation

is to provide a platform that is very quick to set-up and deploy while lowering the

entry point barrier, achieved via the use of high-level language as well as intuitive

dataflow-oriented workflow model.

A feature unique in WeevilScout that differentiates it from most conventional

scientific workflow management systems is that jobs are written in Javascript and

are meant to be executed on the web-browser running on volunteers’ machine.
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With 2 billion users online, browser computing has the potential of amassing

immense resources necessary for scientific experiments.

Also, in web-browsers we have come to recognize a powerful yet unexplored

feature, that is, their ability to provide a uniform execution environment that

hides the heterogeneity of the underlying platforms.

Volunteers can participate in a project by following a single step that consist

of accessing the project URL in their browser. We believe such ease of access will

be a major virtue that will accelerate the adoption rate of our platform by online

users.

Finally, there have indeed been many platforms that aim to extract computing

powers from complex, distributed environment for scientific purposes. However as

elaborated above, we believe that WeevilScout has the potential to fill in the gap

left open by the existing platforms.
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Chapter 2

Background

This chapter elaborates a few closely related concepts relevant to our work in

WeevilScout. Most importantly, it elaborates important concepts such as the actor

model, dataflow execution model, WebWorkers, and WebCL. The last section in

this chapter elaborates some of the most prominent works in the field of web-based

distributed systems and scientific workflow management systems.

2.1 Concurrent Systems

A system is said to be concurrent if it allows for the execution of more than one

activity simultaneously. Concurrency can happen at many levels in a computer

system. For example, in a multi-processor system concurrency is achieved by the

means of threads and processes. In a distributed system such as BOINC[4] or

WeevilScout, concurrency refers to how activities are performed in more than a

single machine simultaneously.

2.1.1 Models Of Concurrency

In describing a certain phenomenon, formalizing important behaviors are often

beneficial in order to gain a better understanding of it. As such there have been

ongoing efforts in formalizing concurrent systems using a variety of models.

Process Algebra and PetriNet are two approaches in modeling concurrency

which had been considered for the dataflow-based scheduler in WeevilScout. How-

ever, we decided that it should be implemented with the actor model. The moti-

vation for such a choice is described in the next subsection.

Process Algebra refers to a family of approaches of modeling concurrent systems

using a rigorous mathematical framework[14], and some of the most prominent

works includes Calculus of Communicating Systems[35], Algebra of Communicat-

ing Processes[9], and Communicating Sequential Processes[28]. A process is an

entity which runs sequentially and concurrency is achieved by the execution of
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several processes. Process algebra focuses on processes and their communication,

which are commonly represented with well-known mathematical symbols.

Petri Net[39] is a graphical notation that models state and transition of some

systems. Mathematically, a Petri Net N can be described as a 3-tuple, (P, T, F)

where P denotes the set of possible states, T the set of transitions and F the arcs

that defines the relation between a place p and a transition t. A Petri Net is also

a bi-partite graph with set (P, T) connected by F [1], meaning that an arc can

only connect two nodes of differing types, such as a node p from set P to a node

t from set T, and vice versa.

Petri Net has seen wide range of usage in various fields such as business process

management[51], manufacturing[20] and computer science[53] and the original con-

cept has been modified and extended[34] many times to fit into domain-specific

use-cases. Not limited to the aforementioned, Petri Net has also been used for

workflow coordination in grid computing, such as in GWorkflowDL[3].

Actor Model

Process Algebra and PetriNet both provide sensible ways of modeling con-

currency. However we feel that the actor model is best suited for modeling our

dataflow-based scheduler. The main reason is that actor model puts emphasis in

modeling a set of independent, concurrent objects, each with its own set of behav-

iors. For example, we did not see the merit of modeling our problem as a set of

states and transitions in PetriNet. Moreover, the environment we used to program

WeevilScout already provides a mature implementation of the actor model.

Actor model represents a system in terms of actors. Actors are autonomous ;

they should be able to operate based on local information, make local decisions

and change their local states accordingly[2]. Communication between actors are

done via messages [27].

There have been an effort to provide synchronization in actor models[6], but in

the context of this project, the ordering of arriving messages is non-deterministic

and thus should never be allowed to affect how an actor changes its local state[21]

[15].
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Figure 2.1: Activities and communications between actors

Figure 2.1 shows the typical activities between actors such as sending messages

and changing internal states. Also, an actor can spawn new actors and remove

them[15]. Thus during a system’s lifetime, new actors can be created and those

who no longer serves any purpose destroyed.

Actor model can be used to model various kind of systems. In a system that

runs on a multi-core processor, an actor might represent an entity that performs

and manages a concurrent computation where it might send the result to some

other actors afterwards. While waiting for this result, these actors might also

perform other computations in parallel to the activities performed by the first

actor.

In another scenario involving a distributed system that runs on machines

spread across remote areas, an actor might represent a single machine and does

things such as managing how it should exchange information across the network

with the others.

A few programming languages which are designed for creating concurrent ap-

plications such as Erlang and Scala supports the actor model through it’s standard

library.

During the thesis project, we found that actor model allowed us to describe

our dataflow-based workflow naturally. In our approach, a workflow structure is

represented as a DAG graph and during workflow execution, each vertex will
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be represented by an actor, and edges between vertices are the only allowed

communication-channels between actors1.

2.1.2 Concurrency In Computer Systems

The previous section described the different approaches to reason about con-

currency at a certain abstract level. In practice however, concurrent execution

in computer systems usually happen at one of the three levels: instruction level,

thread level or process level.

At the time of writing, current machines and compilers are generally very bad

at inferring concurrency in a program, and so programmers must use means such

as threads or message passing to explicitly define the concurrent behavior of the

said program.

There have been effort to raise the abstraction level in some languages. For

example, actor model concurrency is supported in Smalltalk, Erlang and Scala

language, amongst others. In Scala’s actor model, concurrency is achieved by

assigning an actor instance a thread from a thread pool that is implicitly managed

by the Scala runtime. Another example is the Single Assignment C (SAC)[45], a

functional-programming language with a focus on array processing which allows

for implicit parallelism to a certain extent.

Threads & Processes

In WeevilScout, multiple threads will be spawned when actor instances are

created upon the execution of a workflow. Threads are created and managed

using a thread pool, and each actor will be assigned to a thread at the time of

execution. The thread pool is generally managed by the Scala runtime, but various

parameters can be inserted to guide its behavior. This section is meant to refresh

the readers of the basic concept of threads and processes.

A thread is an independent execution point within a process that can be exe-

cuted concurrently. Generally multithreading has been used to allowing for con-

current execution which will benefit performance in two ways. First, execution

will be done in parallel if the host contains a multi-core processor. If this is the

case, performance will increase by the factor of n, which is the number of avail-

able cores assigned to the said threads. Second, even if the system only has a

single-core processor, performance can still benefit from multi-threading, as it can

mitigate the effect of I/O blocking that often happen when a program reads from

1See Section 3.3 and 3.6
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the memory or disk. This is possible since in a single-core processor, threads are

still scheduled using means such as time-division multiplexing. In that case, a

thread can be blocked temporarily when it access memory or disk, thus allowing

other threads to execute in the meantime.

Processes, like threads, allows for concurrent execution. This behavior is com-

monly exhibited in most modern operating system, which allows multiple processes

(or program instances) to be opened at the same time. Process communicates us-

ing various Inter-process Communication methods defined in the host operating

systems. They allow process to read from and write to a shared space (shared

memory), exchange message (message passing) or call subroutine that exist in

foreign address space (RPC).

2.2 Distributed Systems

As an application where tasks are offloaded to many machines, WeevilScout can

be classified as a distributed system. However, in contrast to typical distributed

systems where a software component must be present on all machines that are

part of the system, execution of tasks are done within the web-browser running

on those machines.

A distributed system refers to an architecture where programs are running on

multiple machines, connected via low-speed communication channels such as the

Local Area Networks. In distributed systems, the machines are often heteroge-

neous, faulty, and typically do not have complete information of the global system

state.

In practice, practical constraints such as machine heterogeneity, reliability and

even locations often dictates the structure of a particular distributed systems. For

example, a system running through machines that are connected via high latency

networks will have to be structured to mitigate its negative effect. A system that

runs on machines with a high failure rate have to be designed to tolerate these

failures.

2.2.1 Types of Distributed Systems

There are several scenarios of which a distributed systems can be arranged.

For example, volunteer computing is a distributed computing scenario where com-

puting resources are donated voluntarily by willing participants with available
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computing resources. WeevilScout, for example, is an example of this type of dis-

tributed system, since execution of tasks are offloaded to the browsers running on

the machine of volunteers.

Volunteer computing are often compared with grid computing. In grid comput-

ing, the collaborating organization will be benefitted directly when the goal is ful-

filled while in volunteer computing, volunteers donate computing power mostly for

altruistic reason (although a reward mechanism does exist in some middlewares[4]).

Like in grid computing, volunteer computing utilizes a middleware to manage

the available resources, which in this case are machines owned by the volunteers.

The middleware usually consist of two main part. The central part which coordi-

nates activities that usually resides in the host of the project owner and the client

part which must reside in all of the volunteers’ machine. In addition, a volunteer

computing project usually provides a spot for the community, such as a forum or

mailing list for keeping contact and maintaining the enthusiasm of volunteers.

In cluster computing, a cluster is made up by a set of computing nodes which

communicate via a dedicated network interconnect. The nodes in a cluster are

often made up from a set of fully operational computing machines, each consisting

of an independent CPU, memory, and storage devices[7, Ch. 1 p. 6]. Cluster

computing paradigm has been used by many, from financial, manufacturing and

scientific institutions as a means of powering high-performance computation at

the fraction of cost of building a dedicated supercomputer[7, Ch. 1 p. 3]. The

advent of various programming tools such as the message passing interface (MPI)

as well as various message-queueing library (RabbitMQ, JMS, ActiveMQ, and so

on) have long aided the creation of software systems that run on a cluster setting.

Service-Oriented Architecture (SOA) is another approach towards building a

highly scalable distributed system. As have been made apparent in grid com-

puting, the heterogeneity of computing resources have complicated the process of

building a distributed system. The driving motivation behind SOA is to hide the

details of implementation by encapsulating them into a service. A service may

represent a process, a database access, or an output from a sensor, amongst other

things. The goal of SOA is to relieve the burden of dealing with low-level intrica-

cies from the service consumer, which is someone who makes use of a particular

service. A service should be loosely-coupled to allow for system reconfiguration

by exchanging bits and parts within the system.
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2.3 Scientific Workflow Management Systems

Task coordination in WeevilScout is realized using workflow approach. How-

ever, the concept itself is not new. The workflow approach that is facilitated by

the use of workflow management systems such as BPMN[57] have had its practical

use in the business field, where it is commonly used to automate various business

processes[58].

Recently, the workflow approach have been adopted by scientists for coordinat-

ing scientific experiments. However, it was plagued with plethora of proprietary

systems that failed to provide benefits for the scientific community. Fortunately

there have been a significant amount of work in bringing open platforms for the

scientific community[33][59]. These platforms, dubbed the Scientific Workflow

Management System (SWMS) are meant to be open, interoperable and highly

configurable while allowing coordination of scientific activities.

As a distributed application where coordination of scientific tasks are done

using workflow, WeevilScout could be classified as another instance of SWMS.

2.3.1 The Grid Workflow System

In [59] the author argues that most scientific workflow system that runs on the

grid comprises of components as will elaborated in the next few sub-sections.

Workflow Design

Workflow design refers to the rules and constraints that concerns about how

components of a workflow might be defined and composed[59].

Workflow Structure

A workflow structure defines the inter-relation of tasks. It might allow for struc-

tural constructs such as choice, sequential or parallel execution. In general, a

workflow structure might be based on directed acyclic graph. a DAG-based work-

flow does not allow iterations or loops which are, in contrast, supported in a non

DAG-based workflow.
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Figure 2.2: A DAG-based workflow structure

Figure 2.2 depicts a workflow consisting of 5 tasks. The arrow denotes depen-

dencies between task, imposing sequential execution constraints. Parallel execu-

tion is inferred, not explicit. In that instance, task a, task b, and task d might

be executed in parallel as they do not depend on other task(s). task c and task d

may also be executed in parallel, provided that task a and task b have sent their

results to task c.

Workflow Model

A workflow model is made of both structural definition as well as the tasks that

it contains, or more formally, a set of tasks T and a set of edges E which defines

the dependencies between each task {t1, t2, t3, ..., tn} ∈ T. Again [59] argues that

there are two types of workflow model. In the abstract model, details of how tasks

should be executed is abstracted away while in the concrete model, these details

are fully-exposed.

Abstract model have the advantage of delaying the assignment of tasks to

resources as late as possible, and potentially make use of run-time information

for optimal assignment of tasks. This is not the case for concrete model, since

resource assignment is decided before execution. Often, a combination of abstract

and concrete model can be used, meaning that partial information about resource

mapping is written as part of the description, where the rest can be determined

during an execution.

2.3.2 Models of Computation

If a workflow model is a definition that consists of a set of tasks T and a set

of edges E which defines the dependencies between each task {t1, t2, t3, ..., tn} ∈

13



T, then a model of computation (MoC) M of that particular workflow defines

a formal abstraction of how it should be executed by a particular SWMS in a

computer system.

Different MoCs offer different ways of expressing a scientific workflow, and

some types of MoCs might fit a particular scientific experiment better than the

other. In addition, composing a workflow which are executed under a combination

of several MoCs can also prove to be useful, e.g integrating devices such as sensor

networks or electron microscopes with continuous dynamics, into a dataflow-based

workflow model[22]. Kepler, for instance, supports multiple MoCs.

The following sub-sections elaborates some of the most commonly used MoCs.

Process Networks

In process networks (PN), tasks are described as actors which can be executed

concurrently. An actor have input and output ports, which are places for it to

receive data from, and send results to. The number of available ports are defined

in the workflow definition. During its lifetime, an actor will read tokens containing

input data arriving at one of its input ports. It will perform computation when it

receives enough input and writes the result to its output ports.

Dataflow

In dataflow, an actor is brought to life when all of its input are available. More

specifically, in dynamic dataflow (DDF) various run time parameters are consid-

ered when scheduling an actor while in static dataflow (SDF), only static infor-

mation which are available from the start are considered.

The execution model of WeevilScout itself falls under static dataflow; it sched-

ules an actor when all of its required input are available. Moreover, it does not

(yet) consider any run time information for selecting which actors to be scheduled

for execution.

Discrete Events

In discrete events (DE), actors communicate using tokens that contains data. Each

token is associated with a timestamp of when communication occurred i.e. when

an output is sent by a producer to its consumer. An actor is fired when one or

more of its input ports contain the oldest token out of all unconsumed tokens,

or when it specifically requests to fire at a timestamp less than the timestamp

present in all of the unconsumed tokens and the timestamp of request to fire from

other actors[23].
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Synchronous/Reactive

In synchronous/reactive (SR), a global clock is maintained and every actor is

fired at each tick. When an actor is fired, it observes input values and asserts

output values. An important property to maintain is that even when an actor is

repeatedly fired, if the all inputs remain identical to how they were on the previous

firing, then the asserted output must also remain the same.

Workflow Scheduling

Before a scientific task can be scheduled and executed, an SWMS will need

to decide on task priority. Some factors must be considered, such as task depen-

dency and the required resource for executing a particular task. Scheduling can

either be centralized, decentralized or hierarchical and the choice of which strat-

egy to implement need to be carefully assessed as it will impact scalability and

performance[26].

Centralized

A centralized scheduler makes the decision for all tasks. As such, it will always

be able to calculate the most optimal scheduling since having access to all tasks

enables it to collect all the necessary information. However it is not scalable, as a

large number of tasks at hand might overwhelm the scheduler.

Decentralized

In a decentralized strategy, a number of local scheduler makes decision only for

the tasks of which they are assigned to. As they have limited access to informa-

tion, they may never calculate the most optimal scheduling for a particular case.

However this mechanism is scalable, as an increase in the number of tasks can be

dealt by increasing the number of schedulers.

Hierarchical

Hierarchical scheduling somewhat provides a middle ground for centralized and

decentralized scheduling. With this approach, a hierarchy of schedulers are main-

tained and different types of schedulers can be employed at different positions in

the hierarchy. The downside of this structure is that it takes some effort in main-

taining the hierarchy structure. Also, a failure in one scheduler instance might

affect others which depend on it.
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Fault Tolerance

As distributed systems are faulty by nature, a measure of dealing with fault

is always critical. Typical failure in a distributed system are crashes and loss

of connections. During a failure, part of the system must be able to decide if

connections are lost, or if a particular node crashes or simply busy for a short

amount of time. Then, an appropriate response can be formulated and executed,

such as whether to kill, restart, or even to leave it as it is (which can be desirable

at times).

Various strategies can be employed to mitigate failure. For example, state

checkpointing can be performed periodically on critical nodes so that if it crashes,

computation does not have to be restarted from zero.

Part of the system might be faulty and produces incorrect results. This kind of

errors are subtle and therefore difficult to detect. Results will need to be checked

for correctness, and if there is an indication that a particular result is erroneous,

the task which produces it can be in multiple nodes. Then, the results are gathered

and the correct result decided by various means, such as voting.

Data Movement

In a grid infrastructure, the execution of scientific tasks are often scheduled to

happen at various resources in different locations, and so there will be a need for

a strategy of moving data the producer to consumer efficiently. Again, in [59], it

is argued that there are three main approaches for data movement strategies.

In the centralized approach, a single point of transfer acts as the mediator,

or in other words the transit point for every data that needs to be moved. In

the mediated approach, data transfers are managed by some distributed data

management system that decides the most optimal way for moving data from the

source to destination. In the peer to peer approach, data is transferred directly

between the requesting and serving tasks.

As usual, the principal of distributed systems apply here: centralized approach

will be the simplest to develop and maintain but is not very scalable, while me-

diated and peer-to-peer approach offers better scalability but makes the system

more complex to develop and maintain.

2.3.3 Service Orchestration & Service Choreography

Service orchestration[38] refers to workflow systems that are coordinated cen-

trally by some kind of a head controller. The lower service which does the actual
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work does not have the whole picture of which it is being a part of. BPEL[19]

and YAWL[52] are some implementations of this approach. Acting as the head

controller, the description controls the flow of data and when to execute processes.

Meanwhile, service choreography[38][13] refers to a system that utilizes decen-

tralized coordination approach. Every component is considered equal, which is in

contrast to service orchestration where there is a clear distinction between a coor-

dinator and those who work for it. The WS-Choreography specification developed

by the W3C is an example of service choreography for web-services.

2.4 Web Technologies

Over the past decade, the web have moved at such a blistering pace. What used

to be a simple medium for serving static contents is now capable of various rich

media contents as well as interactive real-time applications. This section describes

some of the technologies that are key to WeevilScout.

2.4.1 Browsers

Browser have arguably been at the forefront, a major contributor to the web’s

growth over the past years and in the post browser-wars era[12] of today, have

become much better at adhering to standards. As one of the most ubiquitous

applications, people have tried to break the barrier of what it can do. What started

as a simple application to display static contents have now evolved significantly,

even supporting its own scripting environment as well as being able to support

various kind of rich media contents. It has been shown that there is a growing

motivation of enabling even more serious class of applications in browsers shown

by works such as in SpiderMonkey[37], V8[24], WebGL[32], and WebCL[29].

2.4.2 ECMA Script / Javascript

Javascript allows for dynamic interaction within a web-page and has seen much

wider adoption than it was a decade ago. Long ago, its use was limited to adding

a layer of interactiveness over a mostly static web-page, mostly due to the speed

limit in both interpreter that executes it and most consumer-grade CPU meant

to run it. However CPU have gotten much faster and have allowed a higher

degree of parallelism with the advent of multi-core chips. Browser vendors, too,

have put emphasis on the speed of execution to allow much richer experiences

than in the past. The advent of dedicated Javascript engines such as Google
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Chrome’s V8, Mozilla Firefox’s SpiderMonkey and Internet Explorer’s Chakra

provided significant speed boost in Javascript by implementing various techniques

such as just-in-time compilation, code transformation and optimization, and inline

caching, amongst others.

The latest addition to Javascript is the WebWorker (explained in the following

sub-section) which allows for true parallelism in web-browsers.

2.4.3 WebWorker

WebWorker allows for parallel execution of Javascript. It is implemented as a

thread, but does not allow the shared memory model and instead relies on message-

passing which in Javascript is implemented using its event listeners model.

Figure 2.3: Communication model in dedicated workers (left) and shared workers

(right)

Figure 2.3 shows the difference in communication model between dedicated and

shared workers. Dedicated workers only allow for communications between the

main page and the workers it spawns, while shared workers allow communication

between an arbitrary worker to another. WeevilScout, for instance, utilizes the

former for executing Javascript jobs.

Moreover, communications can only happen if they all come from the same

origin[18]. Furthermore, access to the DOM elements of the web page are re-

stricted, although read-only accesses to some of the window.* properties are al-

lowed.

At the time of writing, the WebWorker are still in CR[54] status, meaning that

it is not yet part of the standard[55], however it does show promising signs of

activity.
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2.4.4 WebCL

WebCL, an emerging standard developed within the Khronos Group, is a

Javascript binding to OpenCL[47], providing web applications direct access to

heterogeneous parallel computing resources such as the CPU or GPU available in

the client machine[29]. Direct hardware access means that execution can achieve

significantly higher throughput than a normal Javascript program does. However

this does come at the cost of significantly higher code complexity. A WebCL

code is essentially OpenCL code embedded within Javascript, thus burdening the

programmer of having to program in two completely separate environment. The

only interface between a WebCL code and Javascript is a range of functions for

inputting parameters and queries the kernel for result. Furthermore, OpenCL, un-

like Javascript, is a static-typed language that more resembles C in its rigidness,

which might not be received very well by the Javascript community that are used

to the flexibility of Javascript syntax.

Last, WebCL is still in its infancy and currently only supported via experi-

mental, 3rd party plugins that is available only on a handful of browsers[49][43].

2.4.5 Browser Security

As one of the most used application on desktop and mobile computers, the

browsers have become one of the most targeted applications by attackers. It is an

inherently complex application which requires significant efforts in order to keep

it secure.

3rd party plugins such as Adobe Flash and Java have contributed to a large

amount of security problems. Often, a successful attack comes from tricking the

user into thinking that he/she is visiting a safe place, such as by disguising an

attack site to look identical to a safe and credible ones. Another common scenario

is attacking an outdated browser software with a known security hole.

The lesson learnt is that there are no bullet-proof ways of making the browser

completely secure from any kind of attacks. However, there are various techniques

that can and should be employed by vendors in order to make their browser more

secure. For example, the same-origin policy prevents web-sites from different

domains to interact with each other by restricting scripts from running on pages

that do not come from the same origin[42][8]. Moreover, the process of updating

the software must be made as pain-free as possible, as security hole are often

introduced in user who is reluctant to perform updates frequently.
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Last, a sandbox environment is often introduced as a shield that limits po-

tential damages from vulnerabilities in a component that interacts with outside

world. A particular example of such component is the rendering engine, which

converts a textual representation (that might be infiltrated by malicious code)

of a web-page into its graphical representation. In Google Chrome, the render-

ing engine is placed within a low-privilege sandboxes consisting of three layers,

Javascript sandbox, OS/runtime exploit barriers and OS-level sandbox, severely

limiting communications to external modules[41].

2.5 Related Works

This sections describe some of the most popular scientific workflow manage-

ment systems. However, aside from a few discussions[25], there have been little

actual activity in the field of web-based distributed systems. However the works

on Ravan and MapRejuice are worth mentioning.

2.5.1 Ravan

Ravan[30] is a web-based, distributed hash-cracking application. The Ravan

server will take a hash code along with salt, hashing algorithm and character-

encoding used as inputs. After they are received, it will return an URL of a

web-page that contains a piece of Javascript code that, when executed by clients,

will perform the actual brute-force algorithm on the hash that was part of the

input. The algorithm is executed in the background thread using WebWorker.

Aside from generating code and page links, the Ravan server also checks for the

validity of input received from the client where actual brute-forcing operation is

performed at.
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Figure 2.4: High-level Architecture of the Ravan tool

Figure 2.4 describes the lifecycle of a typical distributed hash-cracking activi-

ties using Ravan. The worker farm, which refers to computing resource on which

the hash-cracking operation will be performed on consist of a set of client machines

a.k.a the workers, that loads the Ravan web-page. In 1) an administrator submits

a new hash along with various parameters such as salt and the algorithm used to

the web-based front end. 2) Upon receiving these data, the Ravan master will cre-

ate an array of slots and pass them to the web-based front end. A slot represents

a part of the key space of 1 million combinations that can be ran concurrently

by the workers. In 3) worker(s) access the URL of a specific hash that was sub-

mitted and will be allocated an existing slot. After this slot has been processed,

the worker submits the result back and the slot will be marked as complete. 4)

Ravan master continually checks if all slots have been processed and will keep on

allocating a new set until the hash is cracked.
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Figure 2.5: Data movement in Ravan

Figure 2.5 describes in more detail how hash is being distributed to the work-

ers. The box with dashed line depicted the actual data where the box with solid

lines represents the Ravan system which is depicted as a black box. The circles

represented external entities, the administrator and the workers. In 1) an admin-

istrator submitted a hash code with parameters such as the algorithm and salt.

In 2) The data was splitted into slots where 3) each one would be processed in a

worker.

2.5.2 MapRejuice

Another work in this field is MapRejuice[31]. MapRejuice is a web-based ap-

plication which allows execution of an arbitrary algorithm on data input with an

execution model that takes inspiration from Google’s MapReduce[60]. This is in

contrast with Ravan which is specific to hash cracking with algorithm already

embedded in it. However it also utilizes WebWorker to execute Javascript code in

the client-side just as Ravan does.
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Figure 2.6: Data movement in MapReduce

The original MapReduce design puts emphasis on the ability to process large

number of data items on a collection of computing resources, or nodes with the

goal of exploiting parallelism in the algorithm. Upon execution, the master node

maps the input and 2) divides them into an array of smaller chunks and send them

to other nodes, or the children. The children, in turn, could divide them further

into an even smaller chunks and deliver them to more nodes, in essence creating a

tree-like structure of nodes. During the reduction operation, a node collects and

reduces the result from its children and deliver the result to its parent until it

reach the top of the tree.

2.5.3 BOINC

BOINC is one of the most popular volunteer computing platform that was

developed at the University of California in 2002. It is used in various scien-

tific projects such as SETI@home, Einstein@home, Climate@home, Climatepre-

diction.net, and Predictor@home amongst others, with aggregated performance

close to 8 petaFLOPS[10] from volunteers around the world.

A project owner can create a BOINC project which can be made of one or

more applications, and during a project lifetime new applications can be added

or existing ones removed. The BOINC server stores project details such as ap-

plication description, version, work units, results, and so on. Scheduling servers

issues works and receives report of completed results and data servers handles file

uploads[5].
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Volunteers can join a BOINC project by visiting the web-site to register. In

contrast with our WeevilScout which does computation within a web-browser, a

client application that queries and executes work will need to be installed on the

volunteer’s machine. The client software can be used for joining multiple project

i.e. there is no need to install a client for separate projects.

2.5.4 Traditional SWMS Platforms

Established SWMS platforms have greatly influenced the design of WeevilScout

by demonstrating that the workflow approach is suited for coordinating of a large

number of activities to be performed on a complex environment such as the grid.

This section contains some of the most prominent SWMS platforms that have

been used widely by scientists.

Discovery Net

Discovery Net is one of the earliest SWMS and many of its concept have been

adopted by other leading SWMS. The main function of Discovery Net is to or-

chestrate execution of tasks on various remote resources based on the OGSA or

Web-service standard. An interesting feature of Discovery Net is its ability to

infer dependencies and execute only the subset of a workflow description which is

required for producing the requested output.

Kepler

Kepler is a feature-rich SWMS built on top of Ptolemy II coordination engine.

Kepler uses dataflow approach and supports Non-DAG workflow description. A

unique feature of Kepler is that it separates models of computation from the

workflow model. A system called directors allows a workflow to be executed under

one of the available MoC, such as the Process Networks, Synchronous Dataflow,

Continuous Time, Dynamic Dataflow and Discrete Events.

Kepler uses the MoML-format that is based on XML to store its workflow

description. Some of the most notable features includes GUI-based and command

line-based workflow composition, user-defined workflow scheduling strategy, and

all three (centralized, mediated, peer-to-peer) data movement strategy (as ex-

plained in Section 2.3.2). Currently, Kepler is amongst the most feature-rich and

extensible open-source SWMS available.
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Taverna

Taverna is an SWMS that supports DAG-based workflow description, described

using its own XML-based format called SCUFL. In contract to Kepler which sup-

ports multitude of MoC, Taverna supports a hybrid model that is a combination

of dataflow and functional based on the lambda-calculus theory for what is known

as a collection-oriented processing[36].

Triana

Triana supports Non DAG-based workflow description that is described using its

own format similar to WSFL[50]. In addition, it also supports workflow descrip-

tion in the WSRF language from OASIS. Triana, as opposed to both Kepler and

Taverna supports decentralized workflow scheduling architecture. It uses peer-to-

peer as its sole data movement strategy.

BPEL

BPEL is a non-scientific workflow management systems centered around the use

of web-services as components. In BPEL, a workflow description is written in the

BPEL4WS-format which is based on XML.

BPEL was designed for use in the business domain and have yet to see any

major adoption in the scientific domain. In [16] it was argued that this is partly

due to the lack of abstraction present in BPEL4WS, as service-composition are

being dealt with at the level of web service ports. However, there are some ongoing

efforts to adapt BPEL by raising the level of abstraction to suit scientific needs,

such as the work on OMII-BPEL or GPEL4SW[46].
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Chapter 3

WeevilScout Architecture

This chapter describes the architecture of WeevilScout, our approach to enabling

distributed computing on an ensemble of web-browsers. WeevilScout is composed

of two major parts, the WeevilScout server and thecremote workers. Both com-

ponents will be carefully explained in the next few sections.

3.1 High Level Architecture

WeevilScout is a distributed, web-based scientific workflow management sys-

tems (SWMS). The first prototype allowed for the execution of Javascript jobs in

remote worker machines[40]. Since then, new features such as a workflow coordi-

nation engine and WebCL job type have been developed.

As an SWMS, WeevilScout coordinates the execution jobs using workflows. A

job is defined as something that produces a value. A job is implemented as a

Javascript function that can also contain OpenCL kernels, in the case of a WebCL

job. During its lifetime, a job can receive input and send output to another with

the help of the coordination engine that we have developed.

As defined in Section 2.3.1, a workflow is a collection of jobs and how the

dependencies are structured. WeevilScout uses dataflow models of computation

to define these dependencies; that is, a job is scheduled for execution if and only

if all of its input requirements have been met.

As a web-application, WeevilScout is composed of two major parts, the Wee-

vilScout server and remote workers. A WeevilScout server consists of five major

components: a web-based front end, a workflow parser, a dataflow scheduler, a

job-queue, and last a performance monitor and visualization.
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Figure 3.1: Major WeevilScout server components

The main components of the WeevilScout server resides within the dotted box

in Figure 3.1. External entities such as the administrator and remote workers are

denoted as circles with an A and W, respectively.

The numbers in Figure 3.1 is used to show the typical lifecycle of the system

which can be described as the following: (1) an administrator responsible for

managing WeevilScout will submit an XML-based workflow description to the

WeevilScout server via its web-based front end. (2) The workflow description

will be parsed and (3) an actual dataflow graph will be built according to this

description. (4) The graph will then be passed down to the scheduler which

is responsible for managing the (5) queueing of jobs. (6) One or more remote

workers will send periodical request in XML format, asking for available jobs. (7)

This message will be parsed and (8) interpreted by the application logic that will

contact the job queue. (9) Upon being contacted, the job queue will return an

available job if any. (10) The job description will be serialized into XML before

being sent to the requesting browser.

For executing jobs, WeevilScout relies on the existence of remote workers.

Generally, a remote worker is defined as any kind of computing resources with a

web-browser application that supports Javascript, WebWorker, and (optionally)

WebCL. Some example of such resources are consumer-grade CPUs that might or

might not be equipped with a GPU. A mobile device could also be fitted into this

27



category, although power-consumption issue might prove it as being less ideal for

this application.

Characterizing The Environment

Figure 3.2: Centralized resource gathering and communications

In WeevilScout, communication is centralized (i.e. Figure 3.2) with the Wee-

vilScout server acting as the central hub of communication between remote work-

ers, and computer networks the main channel that connects them. Computer net-

works are inherently unreliable and often provide limited QoS. Even more, jobs

will be delivered to remote workers, which are essentially a collection of anonymous

machines on various locations around the globe which cannot be held accountable.

It must always be assumed that remote workers are faulty, meaning that there is

a high chance for them to produce incorrect result. For example, it might happen

if a remote worker uses a certain beta version of a web-browser.

Joining WeevilScout is as easy as pointing the browser to the URL of the

machine that hosts a WeevilScout server. This is one of the main motivation of

WeevilScout, to allow remote workers to easily join in the computation. However,

for the very same reason they are also able to leave at any time, simply by closing

the browser window. As the time when a worker might join and leave cannot

be predicted, it is always encouraged to program jobs with small workload that

will not take too much time to complete. The application of highly-granular jobs

minimizes the amount of work loss in the event of failure such as a worker that

crashes. In addition, it means that more parallelism can be exploited by allowing

these jobs to be distributed to more remote workers.

3.2 Work Unit

A work unit is the smallest entity that can be defined. In WeevilScout it is

a Javascript function, which from now will be referred to an a job. WeevilScout

supports two types of job: WebWorker job and WebCL job. A WebWorker job is a
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normal Javascript program that is executed in the background with a WebWorker

instance. A WebCL job is written in both OpenCL and Javascript, with the later

acting as the coordinator of the OpenCL kernels.

A special function weevil main must always exist in any job description and

serves as the entry point of execution. weevil main can be defined with an arbi-

trary number of parameters.

3.2.1 WebWorker Job Description

1 function weevil_main(a, b) {

2 return a+b;

3 }

Figure 3.3: A WebWorker job Description

A WebWorker job consists of one or more Javascript functions, and each can

contain an arbitrary number of parameters. While all Javascript language con-

structs are supported, a few built-in Javascript objects are not available. For

example, the Document Object Model (DOM) and most properties in the window

object of the WeevilScout page are not available.

Source Code Transformation

A necessary transformation step will be performed to transform the code rep-

resentation (see fig. 3.3) into a representation which can be properly accepted by

the Worker constructor.
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1 self.addEventListener(’message ’, function(e) {

2 var data = e.data;

3 switch (data.cmd) {

4 case ’start’:

5 weevil_main ();

6 break;

7 case ’stop’:

8 self.close();

9 break;

10 }

11 function weevil_main (){

12 var a = e.data.a;var b = e.data.b;

13 self.postMessage( a+b);

14 }

15 }, false);

Figure 3.4: The code from Figure 3.3, after transformation steps

Figure 3.4 shows the typical result of applying code transformation. Transfor-

mation steps are as follows: It can be seen in lines 11-14 that the original func-

tion is kept with some modifications, such as the removal of function parameters.

Parameters are now received via message, contained within the e.data object.

return statement in the original function are replaced by a postMessage invo-

cation, which instead sends a message to the parent thread i.e. the WeevilScout

main page.

After performing the steps above, the modified function will be wrapped within

an anonymous function (see line 1). This anonymous function is registered as an

event listener that will be triggered whenever there is a postMessage invocation

from the WeevilScout main page. Aside from parameter data to be passed to the

original function, the object e also contained a parameter cmd, which is used to

start or stop the worker. The main page will tell the worker to stop when it has

received the result.

3.2.2 WebCL Job

WebCL jobs (see Appendix for an example) are different than WebWorker

jobs, as they have direct access to the hardware. A WebCL job is designed to

harness the power of OpenCL compute devices available in remote workers, such

as a multi-core CPU or GPU to allow for a faster and more efficient execution.
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A WebCL job consists of one or more OpenCL kernels. A kernel is a unit

of OpenCL code that will be distributed and executed in one or more available

OpenCL compute devices. A certain function within the WebCL API called

createProgramWithSource takes a string of OpenCL code that will be com-

piled into a kernel object that can be immediately executed. Another function

setKernelArg is used to set various arguments of the kernel. Finally,

enqueueNDRangeKernel will enqueue the kernel object for execution. The function

takes a number of arguments such as pointer to the kernel object, local and global

work unit, and ND-range. An ND-range parameter is specified to tell OpenCL

whether to treat the data as a 1, 2, or 3 dimensional data mainly for convenience

such as when working with images or 3D meshes.

It is important to mention that the WebCL API provides the sole interface

between the OpenCL and Javascript environment. The programming model dic-

tates that these two environments are separate; Javascript knows nothing about

the kernel code and does no attempt to check the validity of input on either syn-

tactic or semantic level. On the positive side, as these environment are separate,

a crash in an OpenCL kernel, such as when accessing bad memory address, will

not propagate to the browser environment.

3.3 Workflow

A single job is very limited in its usefulness. In order to allow coordination of

multiple job instances, a coordination scheme must be devised. In WeevilScout,

this is achieved via workflow mechanism which is described by using our own XML-

based workflow description format. It supports the static dataflow MoC that is

realized by sending a job for execution only when all of its input requirements are

available.

After considering both Dataflow and Process Networks, the two models of com-

putation we feel most suitable for WeevilScout, there are two reasons of choosing

the former. The main reason is when the environment of which WeevilScout is

designed for - the internet - is considered. As it is explained in Section 3.1, the

environment consists of anonymous workers connected through a possibly faulty

computer network, and thus unreliable in general. To mitigate the risk of losing

work due to various conditions, jobs must be made as short as possible. This rules

out Process Networks MoC which are better suited for job that is designed to run

asynchronously for a long time, for example. The other reason is that dataflow

concept is very intuitive and easy to understand, resulting in a shallow learning

curve.
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A workflow is described in terms of the set of nodes and edges it contains. The

description follows our own XML-based workflow description format, as will be

described in Section 3.4.

When a workflow is executed, a new instance of that particular workflow will

be created, implying that it is possible to spawn multiple instances of a certain

workflow description. This could be useful for running an experiment multiple

times using different data sets, for example.

3.3.1 Workflow Structure

WeevilScout implements a DAG-based workflow structure. Each node (or ver-

tex, in graph term) could represent a WebWorker or WebCL job instance, or a

simple value amongst others that will be described in more details in Section

3.3.2. edge represent dependencies between nodes i.e. which output from a node

goes to other nodes. Control flow features such as loops and conditionals are not

implemented to stay true to the spirit of dataflow execution model.

A workflow can start with any number of starting nodes, but must have exactly

one final node. A final node will represent the final result of a particular workflow

instance based on same particular input.

Figure 3.5: A workflow description

Figure 3.5 shows a simple workflow description consisting of two value nodes,

val a and val b, and four job nodes, task a through task d. A node represents

an instance of a certain value or job. This implies that there can be multiple

instances of an identical value or job description. For example, both task a and
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task c can be an instance of a job description add.js, while task b and task d

from roundValue.js and convertToString.js, respectively. val a and val b

are the starting nodes of that particular workflow description, as they are the

only nodes which does not have incoming edge(s) and thus can be scheduled for

execution right from the start. Finally, task d is the final node.

Edges

An edge implies an input-output dependency between two nodes, that is, which

output from a certain node will be sent to which other node as an input. For

example, in Figure 3.5, there is a such dependency between val a and task a,

val b and task a, val b and task b, and so on.

Ports

Ports allow for incoming data from other nodes to become arguments of the

weevil main function. For that to happen, a port must be named with the same

name as the parameter name of the function. A port is in the OPEN state if it

is still waiting for input. Upon receiving the necessary input data, state will be

updated to CLOSED.

3.3.2 Workflow Model

Nodes in WeevilScout borrow the concept of functions in most programming

languages: just as a function that is implemented as an entity that can receive

multiple arguments and return a single value, a node can have an arbitrary number

of input ports (or none at all), but exactly one output port. This model is chosen

since jobs, which are arguably the most important elements in a workflow, are

basically Javascript functions which only allows exactly one return value.
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However, having only one output port does not imply that a node can only

have one outgoing edge. On the contrary, it is possible to have multiple outgoing

edges to send a result to multiple nodes (as in Figure 3.5).

Figure 3.6: Representing a job as a node within a worklow

To motivate the readers with an example, Figure 3.6 shows a node contain-

ing a WebWorker job description with three parameters contained within a node

instance. Each parameter is represented as a port in the node that contains it

(shown by the small circles). Therefore, the node contains three input ports and

one output port.

As briefly mentioned previously, a node can also represent a number of other

things besides a single WebWorker or WebCL job description:

Simple Nodes

Value node

A value node is the simplest kind of node: it simply contains a value. A value

can be of any valid Javascript data types, which are Number, String, Boolean,

Object, or Array, null, and undefined. Value nodes are often the first nodes to

be defined in a workflow, to act as initial input to other nodes (such as in Figure

3.5).

In a workflow instance, a value node is not special, that is, there are no par-

ticularly interesting steps done to accommodate it, such as a special scheduling

steps, conversion, et cetera. When a job that depends on a particular value is

scheduled for execution, that value will simply be retrieved and sent to the input

port of that job node.
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Job node

A job node consists of either a WebWorker or WebCL job description. The node

will contain the same number of ports as the number of parameters that the job

description accepts. Moreover, a job node will always have an output port, just

as how the job description will always have a return value (which is undefined if

it does not contain any return statement.

Upon encountering a job node during a particular workflow execution, the

scheduler will check if all of its input ports already contain the data they need. A

node will be put into the job-queue if all of its input ports are in the CLOSED state

(they have received the required data). It goes without saying that if all ports in a

particular job node happen to be the receiving end of some value nodes, execution

will begin almost immediately, since the required data are instantly available.

Complex / Meta Nodes

Pool collection node

A pool collection is designed to model the SIMD[17] concept. It takes a set of

values and distributes each of them into an array of processors. Each processor in-

stances contains identical code and will allow parallel processing of value. Finally,

the results are aggregated in a reducer node where reduction operation can be

performed. The reducer is guaranteed to execute only when all of the processors

have finished executing.
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Figure 3.7: Structure of a pool collection

The actual structure of the pool collection node can be seen in Figure 3.7. A

special function called mapper of the pool collection will map each element in the

input collection into an instance of a processor.

Both processor and reducer are a specialization of the job node, in that they

can only have one input port. Moreover, the reducer’s port can only accept a

single data of Array type. This restriction is by design, with the reason that a

reducer will need to receive input from an array of processor nodes.

Figure 3.7 shows the structure of a pool collection node, which consists of the

following elements:

1. A set of n value node: Each of these value nodes represents an element

from the array input and serves the purpose of passing each element into the

subsequent job node.

2. A set of n job node: A job node receives and process input coming from

its associated value node. This is not a regular job node, but rather, a

specialization version as it only allows exactly one input port.

3. A reducer node: A reducer node is also a specialization of the regular job

node where it only allows for an array parameter input. This parameter will

be filled in when all jobs have finished executing and is meant for a reduce

operation (which is a common operation in parallel programming).
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4. A container node: A container node is the outer node and does the com-

munication with other nodes in a workflow description. These nodes never

knows about the existence of internal value, job and reducer nodes that exist

within the pool collection node.

3.4 Workflow Description Language

A workflow is described in our own XML-based, simple workflow description

language. We looked at common graph description language such as GraphML[11],

but we feel that it would be too complex and require too much time to integrate it

into our framework. The Scala language provides an extensive support for XML

processing, which makes it easy for us to create a simple parser to support our

own description language for WeevilScout.

The workflow description will be stored in a plain-text file i.e. Workflow1.xml,

referred to as the workflow document. An administrator can choose to execute a

workflow from the workflow document that must be accessible by the WeevilScout

server, or by typing the workflow description directly into the parser from the

web-based front end.
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3.4.1 Elements

As an XML document, the workflow document contains tags that is written

and structured according to the typical XML convention. For example, a tag can

be enclosed within another tag. Also, a tag can have multiple attributes to alter

its properties.

Structure

A proper workflow document must be structured according to the following

structure:

Figure 3.8: Tree Structure of The Workflow Description Language

In this diagram, the box represents an element, also known as tag. An element

can contain other elements: in the diagram this relation is described by a line that

connects two elements, e.g. final must be nested within workflow, parameter

within parameters, and so on.
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Another property of a relation is its cardinality. A 1..1 cardinality indicates

that a particular element can only occur once within its direct parent, e.g., there

can only be one occurrence of parameters within a job. In contrast, a 0..n

cardinality indicates that there can be an arbitrary number (or none at all) of

elements within its direct parent, e.g., there can be as many parameter occurrence

within a parameters.

Element Descriptions

This section contains the list of all elements that are allowed within a workflow

document. Each element can have various attributes, as will be describe shortly.

workflow

The workflow tag must only occur once and be the root element in a workflow

document. It marks the start and end of a workflow description. The workflow

tag does not have any attribute.

nodes

The nodes tag must only occur once within a workflow tag. It encloses the list

of nodes in a workflow. The nodes tag does not have any attribute.

edges

The edges tag must only occur once within a workflow tag. It encloses the list

of edges in a workflow. The edges tag does not have any attribute.

finalnode

The finalnode tag must only occur once within a workflow tag. It contains a

single attribute, with values that must match an id of an element to mark it as

the final node. The element it points to must be an element of type value, job,

or pool, i.e., processor or reducer is not allowed.

Attribute Description

id Must contain the id of the node that will be destined as final

value

The value tag is the direct representation of the value node. It contains a single

value, and can have the following attributes:
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Attribute Description

id Identifier of the node

value Value that the node will contain (is mutually exclusive with

src)

src Loads a value from the specified source file (is mutually exclu-

sive with value)

returntype The data type of the value it holds

job

The job tag is the direct representation of the job node. It contains a job descrip-

tion, and can have the following attributes:

Attribute Description

id Identifier of the node

jobtype Must be set to either javascript (a WebWorker job) or webcl

(a WebCL job)

src Loads the job description from the specified path

returntype The data type of the value that will be returned by the job

description

pool

The pool tag is the direct representation of the pool node. It contains the processor

node and reducer node, and can have the following attributes:

Attribute Description

id Identifier of the node

returntype The data type of the value it holds

processor

The processor tag is the direct representation of the processor node that can

only exist within a pool node. It contains a processor description and can have

the following attributes:

Attribute Description

id Identifier of the node

jobtype Must be set to either javascript (a WebWorker job) or webcl

(a WebCL job)

src Loads the job description from the specified path

returntype The data type of the value that will be returned by the proces-

sor description

To comply with the restriction defined in Section 3.3.2, a check will be performed
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to ensure that there is only one instance of parameter within the parameters of

a particular processor.

reducer

The reducer tag is the direct representation of the reducer node that can only

exist within a pool node. It contains a reducer description and can have the

following attributes:

Attribute Description

id Identifier of the node

jobtype Must be set to either javascript (a WebWorker job) or webcl

(a WebCL job)

src Loads the job description from the specified path

returntype The data type of the value that will be returned by the reducer

description

To comply with the restriction defined in Section 3.3.2, a check will be performed

to ensure that there is only one instance of parameter within the parameters of

a particular reducer. Moreover, that sole instance of parameter must have its

paramtype attribute set to Array.

edge

The edge tag represents a connection between a port in two different nodes, i.e.

their dependencies. It can have the following attributes:

Attribute Description

id Identifier of the edge

source The id of the node that acts as the sender of result

dest The id of the node that acts as the receiver of result

paramdest Port destination of the receiving node

parameters

The parameters tag encloses a list of parameter that a job, reducer, processr,

or pool accepts. The parameters tag does not have any attribute.

parameter

The parameter tag represents a port that belongs to a node. It can have the

following attributes:

Attribute Description

id Identifier of the port

paramtype Datatype that is accepted by this port
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3.4.2 Parsing Steps

When a workflow description is received from a workflow document or string

input from the administrator, it must be parsed; a step that consist of converting

textual descriptions into a DAG object that can be understood by the dataflow

scheduler. At the most abstract level, the DAG object is constructed from the

elements defined in the workflow description. After the DAG object has been con-

structed, it will further be augmented with various informations that are needed

for execution. As will be described shortly, the process of fully constructing a

workflow instance follows these four steps.

Building A DAG Object

The XML-parser will collect all elements within the nodes and edges element,

i.e., value, job and edge, with the following algorithm.

1 Set[Element] nodeset = getXmlElements("workflow \\ nodes \ _")

2 Set[Element] edgeset = getXmlElements("workflow \\ edges \ _")

3 Node finalnode = getXmlElements("workflow \ finalnodes")

4 Graph g = build(nodeset , edgeset)

5 g.setFinalNode(finalNode)

Figure 3.9: Parsing a workflow description

Scala language features an easy to use XML selector mechanism that can be

used to retrieve elements and attributes easily, and getElements was implemented

based on it. Furthermore, the Graph4Scala1 library was used as the basis for our

DAG data structure.

The build function takes the set of nodes and edges to construct a DAG

object.

1 def build(Set[Element] nodes , Set[Element] edges):

2 Graph g

3 foreach n in nodes:

4 Vertex v = createVertex(n)

5 g.addVertex(v)

6 foreach e in edges:

7 Vertex src = find(e.source.id , g.vertices)

8 Vertex dst = find(e.dest.id , g.vertices)

9 Edge edge = createEdge(src , dst)

10 g.addEdge(edge)

11 return g

1https://www.assembla.com/spaces/scala-graph/documents
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After executing the steps in Figure 3.4.2, we will end up with a DAG object

g where its vertices represent nodes in a workflow instance, e.g, a job, value, pool

node, et cetera and its edges the dependencies between the nodes.

Preparing For Execution

Type Checking

We feel that enforcing types on both input and output ports of a node is beneficial

in our workflow system. A type-checking mechanism will check if an input data

of a particular type will be sent to an input port with compatible type. Sending

data from a String port to a Number port would fail, for example.

Our simple type-checking mechanism is achieved with the existence of the

paramtype and returntype attributes that must be present for all nodes and

ports definition.

1 <job id="add0" src="Add" returntype="Number">

2 <parameters >

3 <parameter paramtype="Number" id="a" />

4 <parameter paramtype="Number" id="b" />

5 </parameters >

6 </job>

Figure 3.10: The paramtype and returntype attribute in action

Figure 3.10 shows how to apply the type checking attributes to a job descrip-

tion. The paramtype attribute must be attached to each port definition, i.e, the

parameter tag. It defines what kind of data should be expected by that particular

input port. On the other hand, the returntype attribute defines the type of the

output port and should be attached to the job element in the description.

Since both WebWorker and WebCL jobs use Javascript as the interfacing

language2, all valid Javascript data types are allowed as port types. The valid

Javascript data types are Number, String, Array, Object, undefined, and null.

Preventing Race Conditions

In most workflow structures, there will come a situation where there exists a

vertex with multiple incoming edges from two or more vertices. Conceptually, this

indicates a node with two or more incoming ports that will accept data from other

2See Section 3.2
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nodes. However, dataflow scheduler executes each node concurrently3, causing race

conditions should two or more nodes writes to the same vertex.

Figure 3.11: A vertex with two incoming edges

In the face of such a problematic and potentially dangerous situation, we aug-

mented each node with a copy of a partial information of the destination node,

preventing race conditions from happening since each node will only write to its

own local copy of data.

1 function visit(Vertex v) {

2 Node n = v.getAssociatedNode ()

3 foreach e in v.getEdges ():

4 Vertex destVertex = e.dest

5 n.addDestinationNode(destVertex.getAssociatedNode ())

6 }

7 g = DepthFirstTraversal(visit)

Figure 3.12: Copying informations within a vertex to its associated node

Figure 3.12 shows a depth-first traversal done to a DAG object, augmenting

its associated node with information about all of its outgoing vertices.

Assigning Supervisor Nodes

A supervisor node is the node responsible for starting up its children4. In the

case of a node with only one parent node, making the decision is trivial. However,

in a more complex case such as in Figure 3.14, a question is raised whether it is

task a or task b that should start task d.

Our solution to this problem is to pre-assign the supervisor node for each

children and is done before the execution begins by examining the DAG object. In

case where there are more than one potential supervisor candidate for a particular

child, as in Figure 3.14, the node that appears first within the list of parents will

be appointed as its supervisor.

3Described in Section 3.6.2
4In practice, this is the job of the executor associated with the said node, as will be described

in Section 3.6.2
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Calculating Node Paths

Furthermore, each node is augmented with its path. A path is a pre-assigned string

stored in each node that consists of the node ID, its parents up to the root node

IDs, the workflow ID, and finally a predefined sequence of strings (according to

Scala’s actor path convention) in a hierarchical fashion that follows the structure

of the DAG object. This path is used to refer to a node without having to do

a search on the DAG object, particularly useful when passing down results from

remote workers to the appropriate node.

For example, the path to task d in Figure 3.14 will be the string

/user/rootSupervisor/<workflow id>/task a/task d where <workflow id> refers

to the pre-assigned ID of a specific workflow instance.

The following algorithm traverses and pre-calculates node path for all nodes

in a DAG object.

1 precalculateNodePath(node):

2 if (!node.traversed):

3 node.traversed = true

4 node.path = node.id + "/"

5 for (s in node.successors):

6 if (s in node.assignedSupervisorCollection):

7 s.path += node.path.clone ()

8 precalculateNodePath(s)

9

10 rootNodePath = ["/", "user/", "rootSupervisor/", workflowId+"/"]

11 for (n in startNodeCollection):

12 n.actorPath = rootActorPath.clone ()

13 precalculateActorPath(n)

Figure 3.13: Algorithm to pre-calculate node path

The algorithm works by doing a recursive depth-first traversal into a DAG

object. Each node contains a flag that indicates if it has been traversed, and if

it has, the algorithm can skip it. Upon visiting a node, it will append the ID

of that particular node into the path. In addition, as shown in the algorithm, a

path must always start with the string /user/rootSupervisor/<workflow id>,

where again, <workflow id> refers to the pre-assigned ID of a specific workflow

instance.
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A Properly-Augmented DAG object

Figure 3.14 shows a properly-augmented DAG object that results from executing

the steps as enlisted above. For the purpose of demonstration, it is assumed that

the workflow is pre-assigned an ID wf0.

Figure 3.14: A properly augmented DAG object

In Figure 3.14, the structure contains four nodes that are connected by some

edges. The red circle indicates a supervisor node and the black circle a normal

node. Each node stores its own node path, which will be used by the web-based

front end component to identify the right node to send the result to. Although

not shown, each node contains partial information about its direct children, e.g.,

val a stores partial information of task a, and task b, and so on.

3.5 Scheduling and Execution

In the previous section we have described components of a workflow. In or-

der for these workflow components to execute in a coordinated, meaningful way,

there must be a coordinator of some sort to manage them. This is the job of our

dataflow scheduler. The scheduler is at the core of our dataflow-based workflow

management and does various important things: it decides when to mark a partic-

ular node for execution, where to send result data based on a particular workflow

structure, retrying a failed request, and other things that will shortly be described

in depth.

During the project, we have tried various approach of modeling dataflow ex-

ecution, and we have deemed the actor model to be more preferable than others

as they offered the right level of abstraction - it would be a waste of time and

effort to start writing dataflow scheduler logic using low-level approaches such as
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threads and locks, for example. Neverthless, some of the approach we tried have

also been documented here.

3.5.1 Alternatives

This section contains two approaches that we have considered before we decided

on the implementation using the actor model.

BFS-Based Traversal With Traceback

When we first consider the problem at hand we viewed the problem as a graph

problem that can be solved using combinations or variations of traversal algorithm.

The BFS-based traversal with traceback is exactly so - it does a graph traversal

similar to a BFS algorithm, and performs a traceback to start traversing into a

different node when an execution cannot continue from a certain node.

We start with an empty queue q and fill it with a set of start nodes, and as

we visit each node we add all outgoing nodes in the queue. The pseudo-code is as

follows:

1 w = parseWorkflowDescription ()

2 q = new Queue ()

3 for each node in w.getStartNodes ():

4 q.add(node)

5

6 for each node in q:

7 visit(node)

8 for each outnode in node.getNodeFromOutgoingEdges ():

9 q.add(outnode)

10

11 function visit(n):

12 scheduleForExecution(n)

Figure 3.15: Algorithm for the breadth-first execution

Figure 3.15 shows how the algorithm of breadth-first execution is implemented.

Since traversal is done in a breadth-first fashion, the order of elements that will

be inserted into the queue guarantees that the order of execution is preserved.

However, deadlock can occur when executing a workflow that follows a specific

structure as described below:
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Figure 3.16: Structure that leads to deadlock during an execution

The numbers in Figure 3.16, shows the order of element being traversed. Specif-

ically, when the point of execution reaches task d, the algorithm encounters a

deadlock since it needs the input from task c, which are not scheduled for execu-

tion.

To prevent this particular situation, a traceback mechanism can be introduced.

The pseudo code of the algorithm is as follows:

1 function visit(n):

2 foreach p in parent(n):

3 if (p is not scheduled):

4 visit(p):

5 else:

6 scheduleForExecution(n)

Figure 3.17: Adding traceback behavior in function visit

Function visit is modified with the following behavior: when it visits a certain

node, it will not immediately schedule that particular node for execution. Instead,

first check if one or more of its parents have all been scheduled. If not, visit that

parent instead. Visiting a parent will perform the same check on its parent (which

is the grandparent of the original node), and the traceback step will continue until

it encounters a node of which all of its parents have been marked for execution.

When the algorithm finishes, it will find an order of execution that will be safe

from deadlocks.

We decided that this algorithm could work, but will require a significant effort

to implement even for the simplest case. Moreover, handling unexpected condi-

tions that could happen during execution (e.g. rescheduling a node whose job is
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being handled by a worker that crashed) will require additions that would signifi-

cantly complicate the basic logic. The main reason is because this algorithm only

works at the static level; it does not take into consideration any dynamic infor-

mation from runtime. For example, it will be hard to schedule a pool collection

node properly since the number of processors that will be scheduled depends on

the number of elements in the input.

Threaded BFS Based Traversal

Traceback is necessary to get the algorithm to work but introduces unwanted

complication to the otherwise simple algorithm to accommodate for the surpris-

ingly common pitfalls. As we have observed, the only case where traceback will

be needed is when there a diamond-shaped structure where one of it’s side have

more nodes than the other:

Figure 3.18: The diamond-shaped structure with uneven levels

In Figure 3.18, the right side of the diamond structure contains 1 more node

than the left side (indicated by the red circle), which causes deadlock when a

traceback step is not introduced. An alternative to the traceback mechanism is

to introduce concurrent traversal mechanism. Since the structure is traversed

from different directions, a traversal that reach a dead-end can wait for the other

traversals to finish, fulfilling the unmet dependencies that causes the first traversal

to deadlock. The main problem is determining how many concurrent traversal

instances n are needed. Based on our experiment, we have observed that the

amount will need to be at least equal to the number of incoming edges at the
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merging node, (indicated with an M in Figure 3.18). Since it has two incoming

edges, n ≥ 2.

This approach provides a different alternative for solving the deadlock problem.

However it will still introduce significant complexity when the logic for handling

unexpected conditions during runtime is to be introduced.

3.6 Dataflow Scheduling Using Actor Model

After considering the other alternatives, we decided that scheduling should be

implemented using the actor model.

This section will describe how our dataflow scheduling mechanism is simply

made up of a collection of actors. By modeling all kinds of entities, e.g., jobs, val-

ues, workflows, as an independent, communicating agent we were able to achieve

the goal of a fully functional dataflow-style execution while maintaining the sim-

plicity of design.

3.6.1 Root Supervisor

A root supervisor sits at the top-most level of the actor hierarchy. Its primary

role within the scheduler is to manage a collection of workflows by actions such as

spawning a new instance and terminating those that have finished.

3.6.2 Executors

During an execution of a particular workflow, each node will be associated with

an actor instance. Actors, as described in Section 2.1.1, are concurrent agents

that can communicate with other actors. For the context of the paper, these actor

instances are referred to as executors. An executor keeps track of the state of

execution of the node associated with it. If a node have received all the required

input, the associated executor will schedule it for execution. If it has not, the

executor waits for messages from the other executors that contains the required

input. Just as importantly, executors are the entities that send and receive input

data on-behalf of the node associated with it. An executor takes care of setting

the port state of a node to CLOSED when it receives an input message for one of

the port.

Just as there are many types of nodes e.g. value, job and pool nodes, there are

also many types of executors: a value executor, job executor and pool executor.
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Different executor types behave differently and will be elaborated in more details

in Section 3.6.4.

Figure 3.19: Two job executors (value executors not shown) in different states

Figure 3.19 shows how a workflow instance is being executed within Wee-

vilScout dataflow scheduler. A circle indicates a value node while a box indicates

a job node. Each node is associated with a single instance of executor. Every time

a job executor receives new input, it send them to the node and set the receiving

port state to CLOSED.

Executors have internal states, are concurrent, and communicate with other

executors via message-passing. When an executor receives a message, it may send

any data that is contained to the node it is associated with. In addition, it may

also change its internal state accordingly, depending on the message content.

3.6.3 Messages

A message is an immutable object containing one or more values that are as-

signed during object creation. Executors communicate with each other by sending

and receiving messages, i.e., they never modify the internal states of others directly

and nor they have to. This makes it easy to understand the emergent behavior

that results from communication between executors. Moreover, dealing with im-

mutable objects reduces the likeliness of race conditions. The design principle of

actor models encourages side-effect free communications, limiting operations with

side-effect within an actor instances boundary. We have adopted this model for

programming our executors to ensure robustness in their behavior.

Sending a message from an executor to another can either be a blocking or

non-blocking operation. The former implies synchronous execution, waiting for

the other end to have received the message before execution in the sender can
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continue. The later implies asynchronous execution, where the sender does not

wait for the message to arrive before continuing.

3.6.4 Executor Types

Workflow Executor

Upon receiving a DAG object, the root supervisor will spawn an associated

workflow executor. Termination happens when the final node has finished exe-

cuting. The workflow executor has the following state transitions that define the

behavior:

1. STARTED An executor will reach the STARTED state when it has just been

started by the root supervisor. Afterwards it will start all executors of

nodes that do not have any input port, i.e., the starting nodes.

2. FINISHED After the final node receives its result, its executor will send a no-

tification telling the workflow executor to transition to the FINISHED state,

does a clean-up procedure, and terminates after notifying the root supervi-

sor.

Value Executor

A value executor is always associated with a value node. It can be spawned

by either the workflow executor (if it is one of the starting nodes) or by another

executor, e.g., a job or value executor. The value executor has the following state

transitions that define the behavior:

1. STARTED A value executor will reach the STARTED state when it has just

been started by another executor. First, it will start and send the value of

its associated value node to all executor of the node that it supervises5, if

any. Then it waits for value request message coming from its non-supervised

children, if any. Upon receiving such message, it will send the value of its

associated value node as a response until all of its children have received the

result. If all of its children have received the value of its associated value

node, or if it does not have any non-supervised children, it will transition to

the FINISHED state.

5See Section 3.4.2 about assigning supervisor node
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2. FINISHED The value executor will perform a clean-up procedure, notify the

root supervisor that it has finished, and terminates shortly.

Job Executor

A job executor is always associated with either a job or a processor node.

The job executor has, together with the reducer executor, the most complex state

transitions amongst all executors, as will be described below.

1. STARTED

A job executor is in the STARTED state when it has been started successfully.

From this state it can transition into the PARAM NOT FULFILLED state if there

are one or more ports that are still OPEN. If the node that it is associated

with does not define any ports, it will go directly to the PARAM FULFILLED

state.

2. PARAM NOT FULFILLED

A job executor is in the PARAM NOT FULFILLED state if the associated node

still have one or more OPEN ports. Every time it receives a message that

contains data belonging to one of these ports, it will set the receiving port

state to CLOSED. Then it checks if there are still one or more OPEN port, and

if there aren’t it will transition into PARAM FULFILLED.

3. PARAM FULFILLED

When a job executor reach the PARAM FULFILLED state, an immediate tran-

sition to the ENQUEUED message will be performed. This state is provided for

performing various checks before the actual enqueueing process can begin,

such as checking for data correctness or monitoring executor performance.

4. ENQUEUED

A job executor is in ENQUEUED state when the associated node has been

scheduled for execution. When the job is actually executed by a remote

worker, the state will be updated to RUNNING.

5. RUNNING

A RUNNING state indicates that a job is being processed at a remote worker.

6. FINISHED
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Upon receiving a result from a remote worker, the Web-based front end

will locate to which executor it should send the result to by looking at the

workflow and node ID that is sent along with the result. The Web-based

front-end will wrap the result into a message and send it to the appropriate

executor, where the said executor, upon receiving it, will update its state to

FINISHED.

A job executor in FINISHED state will terminate shortly after notifying the

root supervisor and performing the necessary clean-up procedure.

Pool Executor

A pool executor is always associated with a pool node. A pool executor does

not contain a job to execute on its own, but rather acts as the container of a

collection of processor nodes, along with a reducer node. It has the following state

transitions that define the behavior:

1. STARTED

A pool executor is in STARTED state when it has been started successfully.

Since the associated pool node always has exactly one open port, it will

immediately transition into the PARAM NOT FULFILLED state.

2. PARAM NOT FULFILLED

A pool executor is in this state if the only port that belongs to the associated

node is still in the OPEN state. After an input collection is received, it will

set the receiving port state to CLOSED and transition into PARAM FULFILLED.

3. PARAM FULFILLED

In this state, the pool executor will divide the input collection it has received

into individual elements and spawns as many value nodes as the number of

elements within the collection. Each of this value node will be pre-assigned

a processor node as its only child. Out of these processor nodes, a single

node will be chosen as supervisor of the reducer node, which acts as the

destination of results from them.

Immediately after the creation of all of the value, processor, and reducer

nodes, the pool collection will start a value executor for each value node that

is present. These executors, in turn, will trigger the creation of processor

and reducer executors associated with the processor and reducer nodes.
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The reducer node is treated like the final node of a workflow: it will notify

the pool executor if it has finished executing so that the pool executor can

transition into the FINISHED state.

4. FINISHED

A pool executor in FINISHED state will shortly terminate after notifying the

root supervisor and performing the necessary clean-up procedure.

55



Reducer Executor

A reducer executor within a pool node is only started when all processor nodes

have finished executing. This means that input data will always be immediately

available and as such will directly transition to the PARAM FULFILLED state.

1. PARAM FULFILLED

When a reducer executor reach this state, an immediate transition to the

ENQUEUED message will be performed. This state is provided for perform-

ing various checks before the actual enqueueing process can begin, such as

checking for data correctness or monitoring executor performance.

2. ENQUEUED

A reducer executor is in ENQUEUED state when the associated node has been

scheduled for execution. When the job is actually executed by a remote

worker, the state will be updated to RUNNING.

3. RUNNING

A RUNNING state indicates that a job is being processed at a remote worker.

4. FINISHED

Upon receiving a result from a remote worker, the Web-based front end

will locate to which executor it should send the result to by looking at the

workflow and node ID that is sent along with the result. The Web-based

front-end will wrap the result into a message and send it to the appropriate

executor, where the said executor, upon receiving it, will update its state to

FINISHED.

A reducer executor in FINISHED state will termination shortly after notifying

the root supervisor and performing the necessary clean-up procedure.

3.7 Job Queueing

If all ports belonging to a job, processor, or reducer node are in CLOSED state,

meaning that have received the required input data, the scheduler will insert a

new record containing that particular job into the job queue, waiting for execution

in a remote worker. WeevilScout uses a single job queue that is shared between

all workflow that are being executed.
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The most important operations in the job queue are enqueue and dequeue. An

enqueue operation inserts a new record and is done when, as mentioned above,

a node is ready for execution. A dequeue operation takes the oldest record from

the queue, which happens when a remote worker contacts the job queue (via the

web-based front end) requesting for a job to execute. When this happens, we use

the term that a remote worker dequeues a job.

3.7.1 Implementation

A job queue can be implemented using various means as long as it displays

queue-like behavior. In our case, we implemented the job queue using MySQL

with the reasoning that a queue needs to be persistent even if the server crashes

at one point during execution.

Queue Element

Figure 3.20: Content of a record

A record contains the associated workflow identifier, job identifier, job descrip-

tion, execution status, and job type (Javascript or WebCL). Workflow and job

identifier will be sent along with the job description to the requesting remote

worker so that upon receiving the result, the correct executor can be identified.

The job description contains the code to be executed on the remote worker.

A remote worker will send a bit field to let the queue knows if it supports

WebCL and WebCL jobs will only be distributed to worker capable of executing

it.

Execution Status

The execution status field belonging to a record can be one of the following:

1. QUEUED: indicates that it is in the queue and ready for execution.

2. RUNNING: indicates that it has been dequeued by a remote worker.
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3. EXECUTED: indicates that it has been executed and result returned.

4. ERROR: indicates that the execution was not successful.

Accessing an Element

As the queue is shared by multiple workflows, care must be taken when accessing

and modifying an element within it. Otherwise simultaneous access could cause

race conditions and other unwanted consequences. In this case, we have protected

such destructive access with table locking mechanism supported by MySQL.

3.8 Execution In Remote Workers

At the heart of WeevilScout lies the existence of remote workers. Whereas

the server coordinates, remote workers are entities that perform the actual com-

putations. A remote worker must be equipped with a browser that can execute

Javascript. In addition, it must also support the WebWorker and (optionally)

WebCL.

Figure 3.21: High-level architecture of a remote worker

Remote workers are assumed to be unreliable all the time. It can stop working

at any time or calculates incorrect result either by deliberate act such as closing

their browser or shutting down, or by unexpected events such as crash.

With this assumption we encourage highly granular workflows that consist of

many small-sized jobs with the purpose of reducing the amount of work lost in

the case where a worker stops responding.
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Communication Protocols

Two protocols, the HTTP and WebSockets have been considered. HTTP is the

de-facto standard but suffer from a relatively large overhead while WebSockets are

very new, more efficient but needs additional component to be configured in both

the browser and the server.

We have decided to only implement HTTP communication mostly due to its

inherent simplicity and that our application does not do real-time communication.

Joining

A remote workers is said to be connected when it opens the URL a WeevilScout

server. When it does so, it first supplies details such as browser type, WebCL

capabilities, and location so that the server can recognize its capacities.

Dequeue

During the lifetime, a worker periodically asks for a job to be executed. This

operation is called dequeueing. The server responds with a message that can be

either empty if there are no jobs, or a triplet that contains the workflow ID, job

ID, and the job itself.

A dequeue operation is performed periodically at either a fixed rate, or be

made to depend on factors such as the worker’s speed and the amount of work

that has been done by that particular worker. In one case, dequeue frequency

can be raised when the worker’s machine is powerful enough to do more jobs. In

another case, dequeue frequency can be lowered when a worker have done some

amount of work as not to cause overloading, for example.

Submitting Result

Once a job has been executed by a remote worker, result will be sent back to the

server.

Heartbeat

A worker must report back to the server periodically to indicate that it is still

alive. When the server stops receiving heartbeat messages from a worker after a

specified amount of time, the job that it currently process will be rescheduled.
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Chapter 4

Evaluations

In this Chapter we describe the experiments that we did in order to evaluate

the framework explained in Chapter 3. For this purpose, we have created two

experiments, namely the Attained Performance Test (See Section 4.5.1) and the

Pi-Approximation Test (See Section 4.5.1).

We ran the tests on two platforms, the SARA HPC Cloud and the Intel Core2

Duo PC. As a shared infrastructure, the attained performance on the SARA HPC

Cloud suffers from fluctuations and might not reflect the maximum potential that

can be achieved. Therefore for this reason, the Intel Core2 Duo PC is used to

represent a stable platform with dedicated resources.

4.1 Metrics

FLOPS or Floating Point Operation Per Second was the main metric used in

the experiment. As what constitutes one FLOP differs between one architecture

to another, the results that we have gathered should be treated as a relative

approximation rather than absolute figures.

Each experiment consisted of performing a fixed number of FLOP (Floating

Point Operations) and the number of FLOPS can be estimated using the following

formula,

FLOPS = FLOP count / elapsed time

Figure 4.1: FLOPS estimations

4.2 Profiling Framework

The profiling framework consists of two main components, one located in the

remote workers, and another in the server. The component in the remote workers

measures execution time compared to FLOP being performed by the use of a high-

performance, accurate timer1. From these numbers we calculated the FLOPS from

1See window.performance.now (http://www.w3.org/TR/hr-time/)
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the remote workers. These profile data are sent to the server and accumulated

together with data from other remote workers. Each of these data is timestamped

twice, once when a job is dequeued and once when it is submitted back to the

server.

During the experiments, these collections of data with its timestamp was used

for generating the visualization of a particular workflow execution.

4.3 Platforms

Below we describe the environment under which experiments were performed.

4.3.1 SARA HPC Cloud

The SARA HPC facility is provided for the Dutch academic community. At

the time of writing it consisted of 19 nodes of Intel Xeon-E7 ”Westmere-EX”.

Each node consisted of 32 cores processor running at 2.13GHz[48]. Access to

these resources were provided via the use of virtual machines that runs on top of

the KVM hypervisor.

The remote workers were configured in virtual machines, each with Ubuntu

Linux (64 bit) and Mozilla Firefox 17.0. WebCL execution was not supported and

therefore not tested on this platform.

4.3.2 Intel Core2 Duo PC

A personal computer was used to represent a somewhat more predictable en-

vironment. The machine consisted of an Intel Core2 Duo running at 2.26GHz.

The machine supported WebCL execution through the use of AMD APP SDK

and Nokia WebCL extension installed on Mozilla Firefox 17.0. There were two

OpenCL compute devices that comes from the two CPU cores.

We performed the tests on two browsers, Mozilla Firefox 17.0 and Google

Chrome 26.0 in order to compare the performances between different browsers.

Mozilla Firefox 17.0 was used to perform both WebWorker and WebCL tests where

Google Chrome 26.0 was used to perform WebWorker tests only, as it did not

support WebCL.
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4.4 Initial Benchmarks

We ran the following set of benchmarks on the Intel Core2 Duo PC platform

in order to estimate performance of Javascript execution. The C programming

language was used as the baseline. The benchmark set consists of four tests; The

arithmetic, regular expression, and random number generation tests compare the

speed of execution between Javascript and C, while the fourth test compares the

speed of execution between WebCL and OpenCL.

Arithmetic Test

Test Type Avg. FLOPS (JS) Avg. FLOPS (C) Factor

Arithmetic 3.5M 73.2M 0.04x

Table 4.1: Comparison of attained FLOPS of Javascript and C executions in

arithmetic operations (larger is better)

The arithmetic test consisted of performing a large number of arithmetic oper-

ations over a certain period of time. The result indicated in Table 4.1 shows that

Javascript execution is typically slower than C by a factor of 20.9, signifying that

Javascript engines have yet to catch up with the speed of arithmetic operation ex-

ecution achievable by native programs. Interestingly, the result from Section 4.5.4

indicates that we were able to attain much better performances when WebWorker

was utilized.

Regular Expression Test

Search pattern Searched text Op per sec. (JS) Op per sec. (C) Factor

xx* (xo)*xx 17302 1946 8.8x

this|that (thad)*this 9127 2101 4.3x

[1-5][1-5] (17)*14 9198 1766 5.2x

a plain match (a plain matc)* 14212 1533 9.2x

a plain match

Table 4.2: Comparison of attained FLOPS of Javascript and C regular expressions

(larger is better)
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On the contrary, Javascript performed much better than C when it comes to

regular expressions. We performed four tests, each with different search terms as

indicated in Table 4.2. Interestingly, Javascript performed faster than C in all tests

by a factor of 4.3 up to 9.2, depending on the search terms used. For example,

Javascript was only 4.3 times faster when the pattern contained alternations (Table

4.2, 2nd row). However, when performing a plain match (Table 4.2, 4th row)

Javascript was 9.2x faster.

Random Number Generation Test

Test Type Generation per sec. (JS) Generation per sec. (C) Factor

RNG 408,948 7,740,400 0.05

Table 4.3: The speed of random number generation in Javascript and C (larger is

better)

The result in Figure 4.3 shows that Javascript was much slower than C when it

comes to generating random numbers. In our test, Javascript could only generate

roughly 400 thousand per second, compared to 7 million in C. In other words,

Javascript was slower by a factor of 19 when it comes to generating random num-

bers.

WebCL versus OpenCL Performance Test

Test Type Avg. FLOPS (WebCL) Avg. FLOPS (OpenCL) Factor

WebCL vs. OpenCL 65.1M 68.3M 0.95

Table 4.4: Performance comparison between OpenCL and WebCL (larger is bet-

ter)

In order to compare the performance of WebCL and OpenCL, we created a

test that consisted of performing a series of independent arithmetic operations

in parallel. Execution of these operations were performed on the 2 instances

of OpenCL compute devices on the Intel Core2 Duo PC platform. The result

in Figure 4.4 indeed shows that the performance of OpenCL and WebCL was

comparable, with WebCL only slightly slower than OpenCL by a slim margin.
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This is to be expected as WebCL is only a wrapper that exposes OpenCL kernels

to the browser environment2.

4.5 WeevilScout Performance Evaluation

The following subsections describe the tests that we performed to measure Wee-

vilScout capabilities, namely the Attained Performance Test and the Pi-Approximation

Test. Each test consists of two versions, one used WebWorker jobs were used where

the other used WebCL jobs instead.

4.5.1 Attained Performance Test

The Attained Performance Test is designed to measure the number of at-

tainable Floating Point Operation per Second (FLOPS). The test is written in

Javascript and WebCL. The goal of each test is to give impression of computing

powers in the remote workers that can be harnessed by our system. Another goal

is to show the difference in speed when WebCL is mixed in Javascript to allow

hardware accelerated computation.

Pseudo-Code

1 function estimate_flops(n):

2 var sample_size = n

3 var flop_count = 0

4 var op = 0

5 for (i from 0 to n):

6 op = op + 13 - 10 * 14 * 2

7 * 15 * 2 * 4 * 2 * 3.6 * 1.2

8 flop_count += 10

Figure 4.2: Pseudo-code of the Attained Performance Test

The code in 4.2 consist of a loop that contains a series of arithmetic operations.

The loop is executed n times, depending on the input.

2See Section 3.1
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Workflow Coordination

The workflow structure consist of 1000 independent job node instances containing

estimate flops description. These jobs will be offloaded to remote workers and

our monitoring framework will capture and aggregate the attained FLOPS on all

participating workers.

4.5.2 Pi-Approximation Test

The distributed Pi-Approximation Test is used to show a somewhat more re-

alistic application that does something meaningful and uses some features of the

WeevilScout workflow engine.

It is an easily parallelizable algorithm that estimates the area under a circle.

The algorithm works by generating dot at random point (x,y) ‖ 0 ≤ x ≤ 1, 0 ≤ y ≤
1 repeatedly. This step is repeated many times until the number of point is large

enough to produce an accurate estimation of the area under the circle. In our case,

sample size as small as 10,000 gives an accuracy of two digits. However, for the

sake of accurately measuring performance and minimizing the relative overhead,

we opted for a much larger sample size of 1,000,000,000.

Pseudo-Code

The algorithm consists of two phases. The first phase is the generation of random

numbers in parallel, where the second phase, which is the reduction phase, consists

of gathering the results from the first phase.

1 function pi_approx(n):

2 var sample_size = n

3 var flop_count = 0

4 var count_point_inside = 0

5 for (i from 0 to n):

6 var x = random ()

7 var y = random ()

8 var z = x*x+y*y

9 if (z <= 1) count_point_inside ++

10 flop_count += 4

11 return count_point_inside

Figure 4.3: Pseudo-code of pi approx

The algorithm consist of pi approx function which generates a series of random

numbers. This function will be instantiated in large number for a concurrent

execution.
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1 function pi_reduce(points_arr [], total_sample_size):

2 result = 0

3 for (elem in points_arr):

4 result += i/total_sample_size *4

5 return result

Figure 4.4: Pseudo-code of pi reduce

pi reduce works by aggregating all the points gathered from an array of

pi approx instances. The result returned from this algorithm will be the actual

approximation of pi.

Workflow Coordination

Figure 4.5: The workflow structure of Pi-Approximation Test

Figure 4.5 shows the workflow coordination employed for the Pi-Approximation

Test. It is done using our Pool collection node which works as follows. First, an

array of 1000 values will be used to start 1000 value nodes. Each of these value

nodes contains the number of sample size that determines how many random

points will be generated by the each job node. In total, there will be 1000 job nodes

delivered to remote workers, each calculating random points for approximating the

Pi value independently. After all jobs have finished executing, the result will be

gathered and processed by a single reducer node instance.

4.5.3 Probing For The Optimal Sample Size

In WeevilScout, jobs are meant to run on a remote worker. However, both

WebWorkers and WebCL imposes a significant overhead during start up. And
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so, it is necessary for a job to execute long enough such that the overhead is

comparatively low to the actual amount of work being done.

To determine this, we ran the Pi-Approximation Test several times with dif-

fering sample sizes, and compiled the result in Table 4.5.

Sample Size MFLOPS (WebWorker) MFLOPS(WebCL)

100000 2.66 1.20

500000 12.12 5.73

1000000 19.24 10.14

5000000 35.62 54.9

10000000 39.53 73.33

50000000 43.23 166.12

100000000 44.68 186.76

500000000 46.15 209.71

1000000000 46.49 211.36

Table 4.5: Probing for the optimal sample size where overhead is relatively minimal

We performed Pi-Approximation Test with sample size ranging from 100,000

to 1,000,000,000 with attained FLOPS which can be seen in Table 4.5. In the Pi-

Approximation Test, sample size refers to the amount of iteration done which in

turns affects the quality of the approximation. In other words the approximation

should yield a more accurate result when the sample size is large.

Investigating the impact on performance when sample size changes was the

main concern in this test; we were interested in determining how large should a

sample size be so that the start-up overhead can be considered negligible. Note

that the overhead from random number generations were not considered in this

test. This is because the random number generators in WebCL have a very dif-

ferent characteristic and performances than the implementation available in Web-

Worker.

Tests were done using both WebWorker and WebCL jobs. Results indicates

that when sample size is larger than 100 million, the attained FLOPS becomes

large enough (44 MFLOPS for WebWorker jobs and 186 MFLOPS for WebCL

jobs) that start-up overhead becomes relatively small. In effect, this translates to

a job that runs approximately for 40 seconds in our Intel Core2 Duo machine.
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4.5.4 Results From Intel Core2 Duo PC

This section comprises of results gathered from the Intel Core2 Duo machine

which consists of running WebWorker and WebCL jobs.

Attained Performance Test (WebWorker)

Figure 4.6: Google Chrome 24 (left) and Firefox 17 (right)

We ran Attained Performance Test with both Google Chrome and Mozilla

Firefox to compare how these two browsers compare to each other in terms of

performance, with the results shown in Figure 4.6. The results showed that Firefox

was about 3 times slower than Chrome at 45 MFLOPS, compared to Chrome’s

125 MFLOPS. It indicates that at the time of writing Chrome’s implementation

of WebWorker is more mature.

Pi-Approximation Test (WebWorker)

We ran another test to see how if the browser can exploit the available multi-

core processors. The test that was executed on Firefox 17 compared the attain-

able FLOPS when opening WeevilScout in 1 tab compared to 2 tabs. By opening

WeevilScout in two tabs, it was hoped that the worker can process two jobs si-

multaneously at a time, utilizing the two cores available in the Intel Core2 Duo

PC.
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Figure 4.7: Execution in Firefox 17 with 1 tab (left) and 2 tabs (right)

Figure 4.7 shows that the results were positive - Firefox was again able to attain

45 MFLOPS when 1 tab was opened and 80 MFLOPS when two tabs were opened,

indicating that Firefox were indeed able to exploit multi-core processors. There

was a considerable overhead from these, as can be seen by the slightly diminishing

FLOPS over time when opening WeevilScout in 2 tabs shown in Figure 4.7 (right).

Attained Performance Test (WebCL)

Figure 4.8: Achieved FLOPS of 1 worker in the Intel Core2 Duo PC platform

Figure 4.8 shows the result from Attained Performance Test in Firefox 17. We

were able to gain a considerable amount of speedup, roughly 3 times faster at 145

MFLOPS, compared to the WebWorker job which averaged at 45 MFLOPS. It

was partly due to OpenCL’s ability to utilize every compute device available in

the platform. In other words, unlike a WebWorker job which can only run on 1

core, a WebCL job can utilize all available cores.
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Pi-Approximation Test (WebCL)

Again, this test was done in Firefox 17 as Nokia’s WebCL plugin is not yet

available on any other browsers. The test comprised of generating random points

(with the use of a RNG) and a series of arithmetic operations. For this test, we

used the MWC64X random number generator, which might perform much better

when executed on a proper OpenCL compute device such as graphics card. In

this platform we did not have a graphic card that is supported, relying on the 2

core processors as the only compute device.

Figure 4.9: Execution in Firefox 17 with 1 tab

The result depicted in Figure 4.9 shows that with WebCL, we were able to

achieve roughly 75 MFLOPS in average. This is less than what we were able

to achieve in the Attained Performance Test. Nevertheless, the result we gained

yielded some insights about the performance of the execution of RNG in the

WebCL platform.

4.5.5 Results From SARA HPC Cloud

This section comprises of results gathered from the Sara HPC Cloud. The test

consist only of WebWorker jobs, as WebCL was not supported in the 64 bit OS

that were present.

70



Attained Performance Test (WebWorker)

Figure 4.10: Attained Performance Test in SARA HPC Cloud with 1 worker

In Figure 4.10 we presented the attained FLOPS when only one worker was

connected. This test serves as a guideline about the rough performance of each

worker that was present in the HPC Cloud. A short job ensures that job execution

finished faster than 5 seconds so that job execution would not overlap. We were

able to achieve about 170 MFLOPS when all fluctuations, peaks and lows were

considered. It is shown that attained FLOPS fluctuated between 170 and 190

MFLOPS.

However, it is also shown that the performance decreased dramatically for a

very short amount of time every 40 seconds. This was most likely due to per-

forming a refresh on the result page which consist of retrieving an XML string

which contains details such as the status of each job in the job queue, link to job

result should it be finished and time of execution. The XML would then have

to be parsed and displayed as a table (using YUI’s DataTable widget). We sus-

pected that these processes caused a significant overhead that interfered with the

performance of jobs.
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Figure 4.11: Attained Performance Test in SARA HPC Cloud with 72 workers

Result from heavy-usage scenario in which there were 72 workers is shown

in Figure 4.11. At the start, there was a very high peak that reached up to

15 GFLOPS. The reason was that in the first 3-5 seconds most workers started

and finished at almost the exact same time. After the peak, what followed was

a rather significant dip as most of the workers that are finished by then were

waiting for a new job to execute. Finally, the dip was followed by a relatively

normal fluctuations which saw attained FLOPS averaged at around 7 GFLOPS.

Pi-Approximation Test (WebWorker)

Figure 4.12: Execution of Pi-Approximation Test with 72 workers
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Figure 4.12 shows the result of Pi-Approximation Test on the SARA HPC

Cloud. Again, due to random number generation, attained FLOPS were not as

high as in the Attained Performance Test. The dequeue time is set to 5 seconds,

as it normally was but in this test each job takes as long as 47 seconds to finish on

average. The worker would not dequeue a new job before the current one finishes

as not to overload it. In this test we were able to attain around 4.5 GFLOPS.

The pattern was much more recognizable, most probably due to the fact that jobs

takes a while to finish.

The peaks and lows did not always happen at the time when a job was started

or finished, so we would conclude that again updating the display of the result

page seemed to take considerable amount of CPU resources. Another observation

that we have made was that attained FLOPS per worker decreases when there

are more connected workers. Our result showed that a worker should be able

to attain roughly 130 MFLOPS. However, when we spawned 72 workers (each

wrapped in its own virtual machine instances) the attained FLOPS in each of

them dipped to about 80 MFLOPS. Seeing that there was no way for a worker

to influence another (since there was no communication between them at all) it

might be due to external factors such as how the hypervisor handles each virtual

machine instances.

During this test, each browser averaged at about 80 MFLOPS. If each worker

executes one job and another non-stop, theoretically the maximum attained FLOPS

would roughly be 5.6 GFLOPS. With 5 seconds dequeue time, we were able to

achieve 4.5 GLOPS in practice, meaning that we were able to utilize 80% of max-

imum attainable FLOPS for this particular scenario.
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Chapter 5

Conclusions And Future Works

5.1 Conclusions

The performance of Javascript execution have definitely seen major improve-

ment in recent years. Together with the emergence of hardware-accelerated com-

puting enabled by WebCL, performing computation-intensive jobs on web-browsers

have finally become a possibility.

However, simply distributing an arbitrarily large number of jobs to web-browsers

would not produce any meaningful result. In this thesis project, we have developed

a mechanism to coordinate the execution of jobs using the workflow approach. Our

workflow implementation supports the dataflow models of computation where a

node is activated upon receiving all of its required input. In practice, this is real-

ized with our dataflow-based scheduler that schedules a job if and only if all of its

required input has been met, allowing an output from one job to act as input to

another.

Hardware-accelerated computation is supported with WebCL jobs. WebCL

jobs enable true high-performance computation in WeevilScout, and are naturally

suited for problems that are highly parallel by nature. As WebCL jobs can only

be executed on OpenCL-capable devices, the WeevilScout server will determine if

a worker supports WebCL and will only deliver them to workers that are capable

of executing it.

Results that we have collected indicates that we were able to amass as large as

4.5 to 7 GFLOPS of computing powers when the tests that utilizes WebWorker

jobs were executed on 72 workers in the SARA HPC Cloud. Although not per-

formed on the said platform, theoretically even more powers could be harnessed

should WebCL jobs were utilized, as the result from tests in the Intel Core2 Duo

PC platform have indicated. Also, the result have indicated that our workflow

implementation were able to coordinate the execution of a large number of jobs

on an ensemble of remote workers successfully.
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While browser-based computations have yet to achieve the efficiency of native

programs, the advantage lies in the social aspect. Participating in a computation is

only a matter of opening the project’s URL, no matter what browser or operating

systems they use. The fact that it is very easy for workers to participate makes it

very easy to socialize projects built using WeevilScout, especially when combined

with the power of social networking platforms that have seen widespread use in

recent years.

5.2 Future Works

Obviously, as WeevilScout has yet to reach maturity there are many aspects

open for improvements. Areas such as result checking, redundancy and fault-

tolerance are crucial for ensuring the correctness of results. Communication mech-

anism will also have to be fine-tuned and made more efficient in order to accom-

modate for a large scale coordination of workers.

Increasing Communication Efficiency

In the current implementation of WeevilScout, workers communicate with Wee-

vilScout server periodically, either to dequeue jobs or to inform the server that

they are still responding. As the amount of messages that are communicated in-

creases linearly with the number of connected workers, the performance of the

server can be impacted negatively.

Our solution is to decrease the communication frequency between the workers

and the server by an amount proportional to the number of connected workers.

A constant default sets the default communication frequency, e.g. once every 10

seconds. The variable threshold governs how many workers are connected before

the reduction can take effect. Another variable rate governs how much reduction

should be applied.

The biggest impact of decreasing communication frequency is that workers

would dequeue job less frequently, and in order to compensate, we propose a batch

dequeueing mechanism. When reduced communication frequency is in effect, batch

dequeueing mode will be activated, where workers will be allowed to dequeue and

process many jobs at once.

It is important to consider whether to employ a job overlapping scheme where

a job can be dequeued to more than one worker. When a worker communicates

less frequently with the server, there is a bigger chance of it failing long before

the server notices it. With this scheme, risk can be mitigated such that when a
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worker failed to complete a job it is assigned to (due to crashing or other reasons),

other workers that are executing the same job can serve as backups.

Fault Tolerance

Areas of improvement that needs to be considered includes the implementation

of fault detection and tolerance mechanism. The WeevilScout server should employ

techniques that detect incorrect results and deal with them, in some way. For

example, most volunteer computing middlewares use voting based algorithm in

which they send identical jobs to three or more workers, and if they return differing

results the server choose to pick the majority as the winner.

Decentralized Communication

In the current design, the WeevilScout server acts as the centralized commu-

nication hub that coordinates the activities of all workers. As have been stated in

the previous subsection, this approach bears the consequence of saturating com-

munication channel to the server. Another approach that could be taken is the

decentralized browser-to-browser communication in a peer-to-peer fashion. In this

approach, a worker can contact the WeevilScout server to retrieve a list of existing

cluster networks, of which it could opt to join. When a worker finishes comput-

ing a job, it could send the result directly to the worker within the cluster that

requires the result.

Currently, peer-to-peer communication is not possible without depending on

proprietary plugins such as Adobe Cirrus. However, with the advent of the

WebRTC[56] standard it is hoped that peer-to-peer communication will be made

possible in all browsers.

Parallel Job-Queues

The design of the job queue is limited in that it does not allow concurrent

access. To circumvent this limitation, it is possible to create multiple queue in-

stances where each instance can be accessed concurrently. This scheme will be

most beneficial when the WeevilScout server is running on a multi-core machine.

With this scheme, the optimal number of queue instances will depend on the

number of hardware threads that are available on the said machine.
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Chapter 6

Appendix

6.1 Job Examples

1 function weevil_main(a, b){

2 return a+b;

3 }

Figure 6.1: A WebWorker job that adds two values

1 function weevil_main(a){

2 a = eval(a)

3 var sum = 0

4 for (var i = 0; i < a.length; ++i) {

5 sum += a[i]

6 }

7 return sum;

8 }

Figure 6.2: A WebWorker job for summing all elements in an array
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1 function weevil_main(a, b) {

2 var platform_id = WebCL.getPlatformIDs ();

3 var context = WebCL.createContextFromType ([ WebCL.

CL_CONTEXT_PLATFORM ,

4 platform_id [0]], WebCL.CL_DEVICE_TYPE_CPU);

5 var device_id = context.getContextInfo(WebCL.

CL_CONTEXT_DEVICES);

6 var command_queue = context.createCommandQueue(device_id [0],

7 WebCL.CL_QUEUE_PROFILING_ENABLE);

8

9 var intSize = 4;

10 var elem = 1

11 var a_tarray = Uint32Array(elem);

12 var b_tarray = Uint32Array(elem);

13 var ret_tarray = Uint32Array(elem);

14 a_tarray [0] = a;

15 b_tarray [0] = b;

16

17 var a_mem_obj = context.createBuffer(WebCL.CL_MEM_READ_ONLY ,

intSize * elem);

18 var b_mem_obj = context.createBuffer(WebCL.CL_MEM_READ_ONLY ,

intSize * elem);

19 var ret_mem_obj = context.createBuffer(WebCL.CL_MEM_WRITE_ONLY

, intSize * elem);

20

21 command_queue.enqueueWriteBuffer(a_mem_obj , true , 0, intSize *

elem , a_tarray , []);

22 command_queue.enqueueWriteBuffer(b_mem_obj , true , 0, intSize *

elem , b_tarray , []);

23 command_queue.enqueueReadBuffer(ret_mem_obj , true , 0, intSize

* elem , ret_tarray , []);

24

25 clKernelStr = loadWebCLKernel("Add");

26 var program = context.createProgramWithSource(clKernelStr);

27 program.buildProgram ([ device_id [0]], "");

28 var kernel = program.createKernel("Add");

29

30 kernel.setKernelArg (0, a_mem_obj);

31 kernel.setKernelArg (1, b_mem_obj);

32 kernel.setKernelArg (2, ret_mem_obj);

33

34 command_queue.enqueueNDRangeKernel(kernel , 1, [], [elem], [

elem], []);

35 command_queue.enqueueReadBuffer(ret_mem_obj , true , 0, intSize

* elem , ret_tarray , []);

36

37 command_queue.flush ();

38 command_queue.finish (); // Finish all the operations

39 kernel.releaseCLResources ();

40 program.releaseCLResources ();

41 a_mem_obj.releaseCLResources ();

42 b_mem_obj.releaseCLResources ();

43 ret_mem_obj.releaseCLResources ();

44 command_queue.releaseCLResources ();

45 context.releaseCLResources ();

46 return ret_tarray [0];

47 }

Figure 6.3: A WebCL job for adding elements in two arrays in parallel
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6.2 Workflow Examples

1 <workflow >

2 <nodes>

3 <value id="val1" value="44" returntype="Number" />

4 <value id="val2" value="13" returntype="Number" />

5 <job id="val3" src="Add" returntype="Number">

6 <parameters >

7 <parameter paramtype="Number" id="a" />

8 <parameter paramtype="Number" id="b" />

9 </parameters >

10 </job>

11 <job id="val4" src="Add" returntype="Number">

12 <parameters >

13 <parameter paramtype="Number" id="a" />

14 <parameter paramtype="Number" id="b" />

15 </parameters >

16 </job>

17 <value id="val5" value="100" returntype="Number" />

18 </nodes>

19 <edges>

20 <edge id="first" source="val1" dest="val3" paramdest="a" /

> <!-- 44 -->

21 <edge id="second" source="val2" dest="val3" paramdest="b"

/> <!-- 13 -->

22 <edge id="third" source="val5" dest="val4" paramdest="a" /

> <!-- 100 -->

23 <edge id="fourth" source="val3" dest="val4" paramdest="b"

/> <!-- 57 -->

24 </edges>

25 <finalnode id="val4" />

26 </workflow >

Figure 6.4: A workflow description consisting of values and WebWorker jobs
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1 <workflow >

2 <nodes>

3 <value id="val0" src="flop_test_sample_size" returntype="

Array" />

4 <pool id="pool0" returntype="Number">

5 <parameters >

6 <parameter paramtype="Array" id="a" />

7 </parameters >

8 <processor id="pool0_processor0" src="FLOPS"

returntype="Number">

9 <parameters >

10 <parameter paramtype="Number" id="a" />

11 </parameters >

12

13 </processor >

14 <reducer id="pool0_reducer" src="FLOPS_SumReduce"

returntype="Number">

15 <parameters >

16 <parameter paramtype="Array" id="a" />

17 </parameters >

18 </reducer >

19 </pool>

20 </nodes>

21 <edges>

22 <edge id="edge0" source="val0" dest="pool0" />

23 </edges>

24 <finalnode id="pool0" />

25 </workflow >

Figure 6.5: A workflow description consisting of a value and a pool node
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