5 UNIVERSITEIT #
“% VAN AMSTERDAM o

Master Thesis

Standardizing Workflow Execution:
CWL Integration in Brane for Distributed Scientific
Computing

Author: Hamza Hadda (2612591)

Ist supervisor: ~ Adam Belloum
2nd supervisor: Natallia Kokash

A thesis submitted in fulfilment of the requirements for the joint UvA-VU Master

of Science degree in Computer Science

June 29, 2025

ii

VRIJE UNIVERSITEIT VAN AMSTERDAM

Abstract

Msc Computer Science

Standardizing Workflow Execution: CWL Integration in Brane for
Distributed Scientific Computing

by Hamza HADDA

Modern scientific and data-intensive applications increasingly rely on work-
flow management systems to ensure the reproducibility, portability, and scal-
ability of computational pipelines. The Common Workflow Language (CWL)
has emerged as a community-driven standard for describing such workflows
in a platform-independent and declarative manner. In contrast, the Brane
framework offers an imperative, multi-site orchestration system designed for
dynamic execution and programmability across distributed environments.
This thesis investigates the feasibility and design of integrating CWL into the
Brane ecosystem. The goal is to enhance Brane’s compatibility with standard-
ized workflow descriptions while preserving its core strengths in flexible or-
chestration and distributed deployment. The system implemented a transla-
tion mechanism to parse CWL CommandLineTool definitions and generate
Brane-compatible packages, including support for Docker-based execution
and metadata encapsulation. This work contributes a foundation for future
interoperability between CWL and distributed workflow engines, opening
up new possibilities for reproducible, scalable, and context-aware scientific

computing.

Keywords: Workflow orchestration, Common Workflow Language (CWL),
Brane framework, distributed computing, containerization, scientific work-

flows, interoperability

HTTP://WWW.VU.NL

iii

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my su-
pervisor, Dr. Adam Belloum, for his invaluable guidance, constructive feed-

back, and continuous support throughout this project.

I am especially thankful for the freedom he provided me to explore and de-
sign the technical solution independently, while still offering clear direction

when needed. His mentorship helped me grow as a researcher and engineer.

I would also like to thank the Brane development team and contributors
to the Common Workflow Language (CWL) community for their inspiring
work, which laid the foundation for this project.

Finally, I am grateful to my family, friends, and colleagues for their support

and encouragement during the course of this Master’s program.

iv

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

Motivation

Problem statement

Research questions

Thesis structure

2 Background Methodology

2.1 Workflow orchestration overview . . .

2.2

2.3
24
2.5

211
2.1.2
2.1.3
214

Challenges in workflow orchestration

Keyusecases

Popular Workflow Orchestration Tools

International Research status .

Architecture of the Brane Framework

221

Modular Design.

Explanation of the Brane Workflow . .

CWL

Differences Between CWL and BraneCode

3 CWL integration

3.1
3.2
3.3
34

Implementation

CWL v1.1 Specification and Scope of Implementation

Challenges and Engineering Decisions

Validation and Testing

Parser Validation

Generated Package Verification

Tested Workflows and Output Comparison

4 Related work & Methodology
41 Workflow Management Systems . . .

4.2 Standardization of Workflow Descriptions

4.3 Containerization in Workflow Execution

S s WO W R

o O O &

10
11
12
12
15
15
20

23
23
24
26
29
29
30
30

4.4 Security, Privacy, and Policy Management in Distributed Work-
flows e e 33
45 Inclusion and Exclusion Criteria 33
46 Summaryo e 34
47 Methodology L oL 34
48 ResearchMethods 35
481 TypeofStudy 35
482 Analysis Approach 35
483 DataSources. e 36
49 Experimentation: CWL Integration into Brane 36
5 Future work 37
51 FutureWork 37
6 Discussion 39
6.1 Design Trade-offs and Technical Decisions 39
6.2 Challenges in Bridging Declarative and Imperative Models . . 40
6.3 Reproducibility vs. Adaptability 40
6.4 Limitations of the Current Integration 40
6.5 Generalization and Future Potential 41
6.6 LessonsLearned. 41
7 Conclusion 42
A Appendix 43

Bibliography 47

vi

List of Figures

2.1 Structure of a typical scientific workflow system in clouds[13]
2.2 Separation of concerns (SoC)[1]

4.1 Overview of the research methodology used in this study.

9

34

vii

List of Tables

2.1

3.1
3.2

51

Comparison of CWL and Brane Frameworks 22
CWL v1.1 Support MatrixinBrane 25
Current Status of CWL Integration into Brane 29

Overview of Proposed Future Work 38

Chapter 1

Introduction

1.1 Context

The rapidly increasing complexity of computational applications across var-
ious domains has necessitated advanced methods for managing and exe-
cuting workflows. These workflows, composed of interconnected tasks and
processes, are particularly critical in scientific research, data-intensive indus-
tries, and high-performance computing. Workflow orchestration—managing
and automating the execution of workflows across distributed and heteroge-
neous environments—has emerged as a cornerstone for achieving scalability,
reproducibility, and efficiency. This paper investigates the integration of the
Common Workflow Language (CWL) standard into the Brane framework, a
programmable orchestration platform, to enhance its compatibility and us-

ability in diverse application domains.

Workflow Orchestration

Workflow orchestration involves coordinating multiple interdependent tasks,
ensuring they are executed in the correct sequence, with appropriate resource
allocation and data flow. In the context of scientific research and data-driven
applications, the demand for scalable and portable workflow solutions has
grown significantly. The challenges in orchestrating workflows are multi-
faceted:

Heterogeneous Infrastructure: Workflows often need to operate across di-
verse computational resources, including local clusters, cloud platforms, and
edge devices. Managing compatibility and performance in such heteroge-

neous environments is non-trivial.

Reproducibility and Portability: Ensuring that workflows can be replicated

2 Chapter 1. Introduction

across different systems with identical outcomes is a critical requirement,
particularly in scientific domains where reproducibility underpins research
validity.

Ease of Use: Many workflow orchestration tools are targeted at domain ex-
perts who may lack advanced programming skills, necessitating intuitive in-
terfaces and abstractions. Modern orchestration frameworks address these
challenges by leveraging containerization, declarative specifications, and dy-
namic resource management. However, gaps remain in ensuring interoper-
ability between different workflow standards and tools, limiting their adop-

tion across diverse use cases.

The Brane Framework

The Brane framework is a container-based platform designed to facilitate
the orchestration of multi-site applications. It addresses the complexities of
distributed workflow execution by providing a programmable environment
with a high degree of flexibility and abstraction.

Brane’s architecture is highly modular, integrating tools and workflows into
a unified runtime system. The use of containerization ensures that workflows
and their dependencies are encapsulated, portable, and deployable across
different environments. Brane also includes a package registry for managing
pre-defined functionalities and provides interfaces for integrating external

standards and systems|[1].

Despite its strengths, Brane’s adoption has been somewhat limited by the
need for seamless integration with established workflow standards, such as
the Common Workflow Language. Bridging this gap could significantly en-
hance Brane’s versatility, enabling users to import existing workflows, lever-

age community-supported tools, and expand its applicability across domains.

The Common Workflow Language

The Common Workflow Language (CWL) is an open standard for describing
workflows in a platform-independent and reproducible manner. Designed to
address the needs of scientific and data-intensive workflows, CWL empha-

sizes the portability and reusability of workflow definitions. CWL separates

1.2. Motivation 3

the description of tools and workflows into two key components:

Command-Line Tool Descriptions: Define the inputs, outputs, and command-

line operations for individual tasks.

Workflow Descriptions: Specify the sequence and dependencies of tasks,

enabling complex multi-step processes to be represented declaratively.

CWL is implemented in a human-readable format, typically using YAML or
JSON, and is supported by a broad ecosystem of tools, including CWL run-
ners such as cwltool and Toil. The CWL standard is widely adopted in fields
such as genomics, bioinformatics, and data analysis, making it a key enabler

for sharing and replicating workflows across diverse environments[2].

1.2 Motivation

The increasing reliance on computational workflows across scientific and in-
dustrial domains necessitates platforms that are both versatile and interop-
erable. While existing workflow orchestration frameworks provide tools to
manage complex workflows, they often lack the flexibility to seamlessly in-
tegrate with emerging standards and technologies. The Brane framework of-
fers a promising solution by leveraging containerization and programmable
orchestration to support multi-site applications. However, its current limita-
tions in supporting widely adopted workflow standards, such as the Com-
mon Workflow Language (CWL), restrict its applicability in diverse environ-
ments. CWL, as an open standard, is extensively used in fields such as ge-
nomics, data science, and high-performance computing due to its emphasis
on reproducibility and portability[3].

1.3 Problem statement

The absence of CWL compatibility in Brane restricts its utility for users re-
lying on these standards, creating a barrier to adoption in domains where
interoperability is essential. Without this integration, Brane is unable to fully
leverage the extensive ecosystem of CWL-compliant workflows and tools,
hindering its potential as a versatile and widely applicable orchestration frame-
work. This project aims to address this gap by enabling Brane to parse, ex-
ecute, and manage CWL workflows, thereby bridging the divide between

4 Chapter 1. Introduction

Brane’s orchestration strengths and the interoperability demands of modern

workflow ecosystems.

1.4 Research questions

The following research questions were established in order to address the
state-of-the-art of Workflow Languages:

¢ RQ1: How can the integration of Common Workflow Language (CWL)
into the Brane framework enhance its compatibility and adaptability

across diverse computational infrastructures?

* RQ2: What are the key challenges and opportunities in aligning Brane’s
current architecture with emerging standards in workflow and API
technologies?

¢ RQ3: What impact does the integration of CWL have on the scalabil-

ity of Brane for exascale computing workflows?

* RQ4: What are the practical implications of integrating CWL specifi-

cations into Brane for real-world scientific use cases?

Research Method

This research follows a design science methodology, which is particularly
suitable for addressing technical challenges through iterative development
and evaluation of artifacts. The study began with a literature review to un-
derstand existing standards and tools in workflow orchestration and identify
gaps in interoperability between declarative and imperative systems. Subse-
quently, the system implements a prototype integration layer between CWL
and the Brane framework. We tested this layer using real-world CWL exam-
ples to evaluate feasibility, compatibility, and performance. Emphasis was
placed on practical experimentation, code evaluation, and usability valida-

tion in line with software engineering research best practices.

1.5 Thesis structure

To guide the reader through the complexities of workflow orchestration and
the integration of CWL into the Brane framework, this thesis is structured as

a gradual exploration, starting from the foundations and progressing toward

1.5. Thesis structure 5

concrete implementation and reflection.

We begin in Chapter 1, where the context, motivation, and challenges that
prompted this research are introduced. This sets the stage for understanding
why interoperability between workflow languages and orchestration plat-

forms is both timely and necessary.

In Chapter 2, we dive into the technical background, unraveling the work-
ings of the Brane framework and the principles behind CWL. This chapter
equips the reader with the knowledge needed to grasp the rest of the thesis.
Next, Chapter 3 tells the story of the integration itself. It details how we im-
plemented CWL support within Brane—from parsing CWL files to building
Docker images and packaging them for Brane execution. This is where the
theoretical becomes practical. With the core contribution established, Chap-
ter 4 turns outward, comparing our approach with related systems and prior
work in the field. It situates the project within the broader landscape of work-
flow engines and container orchestration tools. Chapter 5 then outlines the
research methods that guided this work. It discusses how the implementa-
tion was approached, which criteria were used for evaluation, and what tools
and datasets supported the process. Looking ahead, Chapter 6 reflects on
the many possibilities for extending this integration—supporting full CWL
workflows, handling imports, and improving user experience. It acts as a

roadmap for future contributions.

To compile the strategic and technical choices made during the project, Chap-
ter 7 offers a broader discussion of the challenges encountered and the design
trade-offs involved in bringing two different paradigms together. Finally,
Chapter 8 brings the journey full circle by summarizing the main findings,
highlighting the contributions, and reflecting on the implications for scien-
tific computing and beyond.

Chapter 2

Background Methodology

2.1 Workflow orchestration overview

Workflow orchestration is the automated coordination, management, and
execution of interdependent tasks within complex processes. This concept
is critical in scientific, data-intensive, and high-performance computing ap-
plications because it ensures efficient management of resources, scalability,
and seamless execution of intricate workflows. For instance, scientific work-
flows often involve computationally intensive tasks, such as simulations or
data analyses, which require precise coordination to process large datasets
effectively. Workflow orchestration abstracts the complexity of task depen-
dencies, allowing researchers to focus on problem-solving rather than tech-
nical execution details[4]. It facilitates dynamic resource allocation, espe-
cially in distributed environments like cloud or high-performance comput-
ing systems, optimizing computational and storage resources while reducing
overhead. As data volumes and computational demands grow, orchestrated
workflows enable scalable solutions, ensuring that large-scale experiments,
such as climate modeling or gravitational wave detection, can be executed
efficiently[5]. Furthermore, the integration of diverse computational plat-
forms, such as local clusters, HPC systems, and cloud environments, under-
scores its significance in unifying and streamlining processes across hetero-
geneous infrastructures. These capabilities make workflow orchestration a

cornerstone of modern scientific and computational advancements[6].

2.1.1 Challenges in workflow orchestration

While workflow standards provide robust frameworks for managing compu-
tational processes, several challenges persist in their orchestration[7][8][9]:

2.1. Workflow orchestration overview 7

Heterogeneous Environments: Scientific workflows often operate across het-
erogeneous platforms, from cloud services to high-performance computing
(HPC) clusters. Ensuring compatibility between diverse computational re-

sources remains a significant challenge.

Scalability of Workflows: Scaling workflows to handle increasing data vol-
umes and computational tasks requires efficient resource management. As
systems grow, the complexity of coordinating distributed components in-

creases.

Data Dependency Management: Many workflows involve intricate depen-
dencies between data inputs and outputs. Managing these dependencies ef-
ticiently is critical to avoid bottlenecks, particularly in domains like bioinfor-

matics and climate modeling.

Error Recovery and Fault Tolerance: Workflows running across distributed
systems are prone to failures due to network issues, resource unavailability,
or software bugs. Ensuring workflows can recover gracefully and maintain
progress is a critical orchestration challenge.

User Accessibility and Complexity: Many workflow systems, despite their
powerful capabilities, present steep learning curves for end-users. Bridging
the gap between high-level abstractions and low-level execution details re-

mains an area of active research.

Integration with Modern Technologies: Integrating workflows with emerg-
ing technologies such as containerization (e.g., Docker, Singularity) and or-
chestration tools (e.g., Kubernetes) requires constant adaptation to evolving
standards.

8 Chapter 2. Background Methodology

2.1.2 Key use cases

Workflow orchestration has emerged as a critical enabler of complex compu-
tational tasks across diverse domains. Its ability to streamline and manage
intricate processes has revolutionized fields ranging from scientific research
to industrial applications. Figure 2.1 illustrates the general structure of a sci-
entific workflow system deployed in cloud environments, highlighting the
various components that collaborate to support scalable, distributed execu-

tion.

In the realm of bioinformatics, researchers are often tasked with analyzing
massive genomic datasets to uncover insights about diseases or genetic traits.
Imagine a scientist embarking on a project to identify gene mutations linked
to a rare disorder. By leveraging workflow orchestration frameworks such as
CWL or Pegasus[10], the scientist can define a pipeline that automates each
step of the analysis—data preprocessing, sequence alignment, and mutation
detection. These tools ensure that dependencies are correctly managed and
results remain reproducible, even as datasets and computational environ-

ments evolve[11].

Astronomy provides another striking example of the power of workflows.
Consider the international team behind the Laser Interferometer Gravitational-
Wave Observatory (LIGO), which detects ripples in spacetime caused by
massive cosmic events. The workflow begins with raw data collection from
sensitive detectors and extends to filtering noise, processing gravitational
wave signals, and validating results. Such a pipeline demands immense scal-
ability and precision.

In the world of drug discovery, orchestration frameworks are accelerating the
search for life-saving treatments. Picture a pharmaceutical company racing
against time to find a compound that could halt a viral outbreak. Workflow
systems like Clara guide researchers through the intricate steps of virtual
screening, molecular docking, and chemical analysis. These tools not only
save time but also ensure that researchers can test thousands of compounds

without worrying about computational failures derailing their efforts[12].

Meanwhile, climate scientists face an equally daunting challenge: predicting
the future of our planet. In projects like global climate modeling, workflows

orchestrate data from satellites, sensors, and simulations, allowing scientists

2.1. Workflow orchestration overview 9

to piece together a coherent picture of environmental change. These work-
flows must account for dependencies between datasets while providing ro-
bust error recovery mechanisms to ensure that crucial predictions, such as

those about hurricanes or rising sea levels, are delivered on time[11].

Even in the fast-paced world of financial risk analysis, workflows play a
crucial role. Picture a financial analyst monitoring global markets for po-
tential risks. Behind the scenes, workflows coordinate streams of real-time
data, automate calculations, and generate predictive models. Orchestration
frameworks ensure that even the slightest anomaly—such as a sudden mar-

ket dip—is detected and analyzed without delay.

Finally, platforms like Brane epitomize how workflow orchestration empow-
ers multi-site applications. For example, a group of scientists working on a
federated healthcare project may need to run complex analytics on patient
data while adhering to strict privacy regulations. Brane simplifies this pro-
cess by encapsulating the technical details and allowing the scientists to focus
on their domain-specific tasks. This ensures both compliance and efficiency,

enabling meaningful collaboration across institutions.

Workflow Presentatio
Design and Visualization Layer

Workflow

Strategy Pool

]

I

! Scheduling Strategy 1 Workflow
EScheduling. Strategy 2E \SV-;dcﬂow Workflow Workﬂow e
] i cheduler Translator Monitor

i , Layer

\S_chcduling' Strategy n) STy,
——————— PN T 2

ks
A
[
[

LT
-
e,

S S S Operational
2 =2 - Layer

FIGURE 2.1: Structure of a typical scientific workflow system in
clouds[13]

10 Chapter 2. Background Methodology

2.1.3 Popular Workflow Orchestration Tools

Apache Airflow

Apache Airflow is an open-source platform for programmatically authoring,
scheduling, and monitoring workflows. Its Directed Acyclic Graph (DAG)-
based[14] approach allows users to define workflows as code, providing flex-
ibility and version control. Airflow’s extensible architecture supports custom
plugins and integrations with cloud services like AWS, Google Cloud, and
Azure, making it a popular choice for data engineering and machine learn-
ing pipelines[11].

Kubernetes native tools

Argo Workflows, designed for Kubernetes environments, specializes in con-
tainer native workflows. It provides high scalability and efficiency, leverag-
ing Kubernetes’ inherent features like dynamic resource provisioning. Argo’s
ability to manage workflows through YAML manifests aligns well with De-
vOps practices, making it a preferred tool for cloud-native applications and
CI/CD pipelines[11].

Nextflow

Nextflow is widely used in bioinformatics and life sciences due to its strong

focus on reproducibility and scalability. It supports running workflows across
various platforms, including local systems, clusters, and cloud environments.

Nextflow’s compatibility with Docker and Singularity containers ensures con-
sistent execution, regardless of the environment, and its DSL (domain-specific

language) simplifies the definition of complex workflows[15].

Snakemake

Snakemake, another tool popular in the scientific community, uses a Python-
based declarative language to define workflows. It excels in bioinformatics
and computational biology applications, where modular, reproducible work-
flows are critical. Snakemake’s ability to optimize resource allocation dy-

namically ensures efficient utilization of computational infrastructures[15].

Pegasus
Pegasus Workflow Management System is tailored for large-scale scientific
applications. It supports workflows across distributed systems, such as grids

and clouds, and integrates with monitoring tools to track performance and

2.1. Workflow orchestration overview 11

reliability. Pegasus excels in managing fault tolerance and providing prove-

nance tracking, which are crucial for reproducibility in scientific research[10].

Luigi

Developed by Spotify, Luigi focuses on long-running batch processes and
complex dependency management. Its Python-based configuration allows
developers to define intricate workflows easily. While commonly used in
data engineering tasks, Luigi’s ability to handle failures and retry steps makes
it versatile in other domains[11].

2.1.4 International Research status

In recent years, the adoption of standardized workflow languages and API
orchestration frameworks has gained momentum in computational platforms
across various domains. Research institutions and industries in countries like
the United States, Canada, and Europe have prioritized the use of Common
Workflow Language (CWL) and OpenAPI Workflows Specification for their
flexibility and adaptability.

Key projects in the domestic research landscape include the application of
CWL in bioinformatics pipelines. For instance, organizations such as the
Broad Institute have successfully integrated CWL into their platforms to en-
able portable and reproducible workflows in genomics research. Similarly,
OpenAPI specifications are widely employed in enterprise systems to man-
age API interactions, notably by companies developing API management
tools like Postman and SwaggerHub[16].

However, platforms like Brane, specifically tailored to personalized inter-
ventions, remain underrepresented in this integration effort. Research efforts
focus primarily on individual implementations rather than creating holistic
systems that address workflow portability and API orchestration simultane-
ously. This research seeks to bridge this gap by adapting CWL within the
Brane ecosystem.

Globally, the adoption of CWL has been even more pronounced, driven by

12 Chapter 2. Background Methodology

the demand for interoperability in multi-cloud environments and collabora-
tive research efforts. In Europe, initiatives like the ELIXIR platform have in-
corporated CWL to standardize workflows across distributed bioinformatics
resources. Similarly, in Asia, large-scale data platforms in Japan and South
Korea have embraced CWL to enhance scalability and efficiency in health-
care analytics and Al-driven research[17].

The OpenAPI Workflows Specification, though a relatively recent addition,
has been a focus of international organizations working on API ecosystems.
The OpenAPI Initiative, supported by tech giants such as Google and IBM,
has made significant strides in creating extensions like the OpenAPI Work-
flows, which allow the seamless chaining of API operations. For instance,
these frameworks are critical for orchestrating APIs in microservices archi-

tectures widely used in international cloud platforms[18].

Despite these advancements, challenges persist in implementing these stan-
dards into domain-specific platforms like Brane. This gap presents an oppor-
tunity to leverage international expertise while adapting these technologies

to meet the unique needs of personalized intervention platforms.

2.2 Architecture of the Brane Framework

The Brane framework is a container-based orchestration platform designed
to simplify the execution and management of workflows across multi-site,
heterogeneous computing environments. Its architecture emphasizes mod-
ularity, programmability, and flexibility to accommodate diverse computa-
tional tasks and resources. This section provides an in-depth description of
Brane’s architecture and its core components, showcasing its design to sup-

port multi-site orchestration and user-friendly programmability.

2.21 Modular Design

Brane employs a modular architecture to decouple various responsibilities,
enabling scalability and ease of maintenance. Its modular design ensures that
each component of the framework can evolve independently while interact-

ing seamlessly with others. Key components include:

2.2. Architecture of the Brane Framework 13

Package Management System: Facilitates the creation, storage, and retrieval
of reusable functionalities encapsulated as containerized packages. These
packages are stored in a package registry and serve as building blocks for

workflows.

Domain-Specific Languages (DSLs):
Brane provides two DSLs for workflow definition:

* BraneScript: A C-like language for users with programming expertise,
offering granular control over workflow orchestration.

¢ Bakery: A more human-readable DSL tailored for non-technical users,

simplifying workflow composition.

Containerization

The framework relies heavily on containerization technologies such as Docker
and Open Container Initiative (OCI)-compliant tools to achieve portability,
scalability, and isolation[19]. Each package or task in a workflow is encapsu-

lated in a container, ensuring that:

* Dependencies are bundled with the application, eliminating compati-

bility issues.

* Workflows can execute consistently across different environments, from

on-premise clusters to cloud platforms.

Multi-Site Orchestration

One of Brane’s defining features is its ability to orchestrate workflows across
multiple geographically dispersed sites. This is achieved through a clear Sep-
aration of Concerns (SoC) across different user roles, as depicted in Figure 2.2.

Brane divides responsibilities into distinct layers:

Brane divides responsibilities into distinct layers:

¢ System Engineers manage infrastructure configurations and network

setups.

* Software Engineers develop containerized packages and register them

in the system.

14 Chapter 2. Background Methodology

* Domain Experts compose workflows using Brane’s DSLs without need-

ing extensive technical knowledge.

A~
[= o‘

g L l High-level '—{ High-level \‘s_\e
e T
'§_- l Low-level | I Low-level | \ Low-level |?°

ml.

FIGURE 2.2: Separation of concerns (SoC)[1]

Tasks are dynamically allocated to the most suitable resources across mul-
tiple sites, considering factors like data locality, compute capacity, and net-

work performance.

Runtime system

The runtime system in Brane handles the execution of workflows and man-
ages dependencies, resource allocation, and task scheduling. It ensures:

Fault Tolerance: By isolating tasks in containers, the system minimizes the

impact of failures on other workflow components.

Efficient Resource Utilization: The runtime dynamically adjusts resource

allocation to optimize performance across heterogeneous environments.

Package registry

The package registry is a centralized component that stores containerized
packages with metadata describing their inputs, outputs, and computational
requirements.It also allows users to share and reuse packages, fostering col-

laboration and reducing duplication of effort.

Example Code:
This example(Listing 2.1) demonstrates how a workflow can be defined in
the Brane framework using BraneScript, a domain-specific language (DSL)

for composing and orchestrating workflows.

2.3. Explanation of the Brane Workflow 15

1 import grep

2 import wc

1+ # Define the workflow function

5 fn process_log(log: file) -> int {

6 # Step 1: Filter lines containing "error'

7 let filtered_output = grep::filter(log, "error");

8

9 # Step 2: Count the number of lines in the filtered output

10 let line_count = wc::count_lines(filtered_output);

12 return line_count;

15 # Define the input file
6 let log_file = "sample.log";

1s # Run the workflow and print the result
9 let error_lines = process_log(log_file);

20 print ("Number of error lines:", error_lines);

LISTING 2.1: Brane Workflow Definition (brane-workflow.bs)

2.3 Explanation of the Brane Workflow

¢ Imports: The script imports two predefined Brane packages: grep for

filtering and wc for counting lines.
¢ Workflow Function:

— Defines a function process_log that takes a log file and returns the

number of error lines.

— Calls the grep: :filter() function to extract lines containing "er-

"

Ior.

— Calls the wc: :count_lines () function to count the filtered lines.

¢ Execution: The script loads a log file, runs the workflow, and prints the

result.

24 CWL

The Common Workflow Language (CWL) is a standardized, platform in-
dependent specification designed to describe computational workflows and

16 Chapter 2. Background Methodology

tools. Established in 2014, CWL aims to enhance the portability and repro-
ducibility of data analyses across diverse computational environmentscite.
By providing a common framework, CWL enables researchers to define and
share workflows that can be executed on various platforms without modifi-
cation. This standardization facilitates collaboration and ensures consistent
results across different systems. CWL's declarative nature allows users to
specify the inputs, outputs, and execution requirements of each workflow
component, abstracting the underlying computational details. This abstrac-
tion promotes interoperability and simplifies the adaptation of workflows to

new environments.

One of the primary goals of CWL is to provide standardization in workflow
descriptions, ensuring that workflows can be executed consistently across
different computing environments, including high-performance computing
(HPC) clusters, cloud platforms, and local workstations. The CWL standard
achieves this by:

* Using a declarative syntax: CWL defines workflows in a structured
format, typically using YAML or JSON, specifying input and output
data, tool execution, and dependencies.

* Separating workflow logic from execution: Unlike many workflow
management systems (WMSs) that tightly integrate workflow defini-
tions with execution engines, CWL is independent of specific runtime

implementations.

¢ Facilitating interoperability: CWL supports execution on multiple plat-
forms through compatible workflow runners such as cwltool, Toil, and
Arvados[20].

Central to CWL are two primary components: Tool Definitions and Work-

flow Descriptions.

Tool Definitions: Inputs, Outputs, and Commands
CWL’s Tool Definitions specify how individual command-line tools are de-
scribed, focusing on their inputs, outputs, and execution commands. Key

elements include:

24. CWL 17

¢ Inputs: Define the parameters required by the tool, such as files, direc-
tories, or primitive data types. Each input is characterized by an iden-
tifier (id) and a data type, ensuring that the tool receives the necessary

information to operate correctly.

¢ Outputs: Specify the results produced by the tool upon execution. Out-
puts are also identified by an id and a data type, detailing what the tool

will generate, such as processed files or data structures.

¢ Base Command: Indicates the primary executable or command that the
tool runs. This field outlines the specific command-line instruction to
be executed, forming the core operation of the tool.

By clearly defining these components, CWL ensures that tools are described
in a consistent and platform-independent manner, facilitating their integra-

tion into larger workflows.

Workflow Descriptions: Dependency and Task Flow
Workflow Descriptions in CWL outline how individual tools (or steps) are
connected, detailing the sequence and dependencies between tasks. Essen-

tial aspects include:

¢ Steps: Represent individual tasks or tool executions within the work-
flow. Each step is defined by specifying the tool to be executed and its
associated inputs and outputs.

* Dependencies: Managed through the source field, which connects the
output of one step to the input of another. This linkage establishes the
execution order, ensuring that a step commences only after its prereq-
uisite steps have successfully completed and provided the necessary
data.

By structuring workflows with explicit steps and dependencies, CWL en-
ables the creation of complex, reproducible, and portable computational pro-

cesses.

Example Code:

1 cwlVersion: v1.2

> class: Workflow

18 Chapter 2. Background Methodology

. # Define workflow inputs
5 inputs:

6 log_file:

7 type: File

9o # Define steps (each calling a separate CWL tool)

10 steps:

11 filter_errors:

12 run: grep-tool.cwl
13 in:

14 input_file: log_file
15 pattern: { default: "error" } # Filters lines containing
"error"

16 out: [filtered_output]

18 count_lines:

19 run: count-lines.cwl

20 in:
21 input_file: filter_errors/filtered_output
2 out: [line_count]

22 # Define workflow outputs

25 outputs:

26 error_line_count:
27 type: int
28 outputSource: count_lines/line_count

LISTING 2.2: CWL Workflow Definition (count-workflow.cwl)

| cwlVersion: v1.2
2> class: CommandLineTool

5 baseCommand: ["grep"]

5 inputs:

6 pattern:

7 type: string
8 inputBinding:
9 position: 1
10 input_file:

11 type: File

12 inputBinding:

13 position: 2

5 outputs:

16 filtered_output:
17 type: File

18 outputBinding:

N

24. CWL 19

glob: "filtered.txt"

stdout: filtered.txt

LISTING 2.3: CWL Tool Definition (grep-tool.cwl)

cwlVersion: v1.2

class: CommandLineTool

Define the command to be executed

baseCommand: ["wc", "-1"]

Define inputs
inputs:
input_file:
type: File
inputBinding:
position: 1 # The input file appears as the first

argument in the command

Define outputs

5 outputs:

line_count:
type: int
outputBinding:
glob: "x" # Capture standard output

Runtime hints (optional)
hints:
DockerRequirement:
dockerPull: "ubuntu:latest"

LISTING 2.4: CWL Tool Definition (count-lines.cwl)

count-workflow.cwl(Listing 2.2):

The grep-tool.cwl extracts lines containing "error" from a log file.

The count-1lines.cwl then counts the number of lines in the filtered output.
The final workflow (count-workflow.cwl) ties everything together, ensuring

that the steps execute in the correct order.

grep-tool.cwl(Listing 2.3):
Tool that filters lines matching a given pattern.

count-lines.cwl(Listing 2.4):
Tool that takes a file as input and counts the number of lines using the Linux

wc -1 command.

20 Chapter 2. Background Methodology

¢ Inputs:

— input_file - A file whose lines need to be counted.
¢ Outputs:

— line_count - The number of lines in the input file.
* Execution:

— The tool runs inside a Docker container using the ubuntu:latest

image.

2.5 Differences Between CWL and Brane Code

While both CWL and Brane aim to define workflows in a structured and
reproducible manner, they differ in several key ways:

Programming Paradigm

* CWL: Uses a declarative approach, where users describe workflows in
YAML format without specifying execution logic explicitly.

* Brane: Uses an imperative approach through BraneScript, allowing
users to define execution logic programmatically.

Component Modularity

* CWL: Workflows are composed of standalone tool definitions (*.cwl’

tiles), each specifying inputs, outputs, and commands.

* Brane: Workflows leverage pre-packaged functions (e.g., grep: : filter,
wc: :count_lines) from the Brane registry, abstracting low-level execu-

tion details.

Execution Model

* CWL: Requires a workflow runner (e.g., ‘cwltool’) to interpret and exe-

cute workflows in a containerized environment.

* Brane: Directly executes workflows within the Brane runtime, manag-

ing tasks dynamically across multi-site infrastructure.

2.5. Differences Between CWL and Brane Code 21

Flexibility and Complexity

* CWL: Requires detailed YAML specifications but ensures strict repro-
ducibility and compatibility with external workflow engines.

* Brane: Provides a more flexible, script-like syntax that is closer to gen-
eral programming languages, making it easier for developers to inte-

grate logic dynamically.

Use Case Suitability

¢ CWL: Well-suited for scientific workflows requiring strict reproducibil-

ity and integration with bioinformatics tools.

* Brane: More appropriate for multi-site orchestration, distributed com-
puting, and scenarios where workflow logic needs to be dynamically

controlled.

Error Handling

* CWL: Relatively basic; workflows typically fail at the point of error un-

less wrapped in external error-handling constructs or extensions.

¢ Brane: Allows try-catch mechanisms and explicit error management in-
side workflows, improving robustness for long-running or distributed

workflows.

Ecosystem and Community Support

* CWL: Backed by a broad community across bioinformatics, genomics,
and medical research. Integrated into platforms like Galaxy, Seven
Bridges, and Dockstore.

* Brane: A newer, research-driven project with a growing but smaller
ecosystem primarily targeting distributed systems research, edge-cloud

computing, and scientific computing applications.

22

Chapter 2. Background Methodology

Both CWL and Brane serve critical roles in workflow orchestration but cater

to different audiences and use cases. CWL is ideal for scientific reproducibil-

ity, while Brane offers a more flexible and programmable approach suitable

for distributed computing environments.

Feature CWL Brane

Approach Declarative (YAML) Imperative (BraneScript)

Execution Workflow runner (cwltool) | Direct execution in Brane
runtime

Modularity Separate tool definitions Pre-packaged functions

Flexibility Strict structure Dynamic and programmable

Error Handling | Basic (fail on error) Try-catch error management
inside workflows

Ecosystem and | Broad, mature (bioinfor- | Emerging, research-focused

Community matics, genomics) (distributed computing)

Support

Use Case Bioinformatics, research re- | Multi-site orchestration, dy-

producibility namic workflows

TABLE 2.1: Comparison of CWL and Brane Frameworks

23

Chapter 3

CWL integration

Brane is a platform designed to facilitate the seamless execution of distributed
workflows across heterogeneous infrastructures. Originally, Brane focused
primarily on supporting its native domain-specific languages such as Brane-
Script and Bakery. However, as scientific workflows became increasingly
standardized around the Common Workflow Language (CWL), it became
essential to extend Brane’s capabilities to also handle CWL workflows.

This chapter discusses the implementation process, challenges faced, and
current results of integrating CWL support into Brane. Additionally, it out-

lines areas of potential future development.

3.1 Implementation

Initial Goal

The primary objective was to allow users to build and run CWL workflows
on Brane as first-class citizens, similar to how BraneScript and Bakery work-

flows are supported. This involves:

¢ CWL Parsing: Implement a parser capable of reading CWL v1.1 Com-

mandLineTool documents.

¢ Docker Image Creation: Build a Docker image from the generated files
to encapsulate the CWL tool, ensuring reproducibility.

¢ Package Generation: Translate a CWL document into a Brane package,
including automatically generating: Package.toml (for legacy support
and information structuring), package.yml (for full runtime integra-

tion), Dockerfile and execution scripts necessary to run the workflow.

* Supporting brane package build and brane cwl commands

24 Chapter 3. CWL integration

CWL parsing

The cwl Rust crate is used to parse CWL v1.1 files. A new module cwl.rs
was introduced inside the brane-cli crate, with a function: pub async fn
handle(path: PathBuf) -> Result<()>

This function is responsible for:
¢ Reading the CWL file into memory
¢ Parsing it into a CwlDocument
* Extracting workflow metadata (name, version, description)
¢ Building an output structure in target/generated /

Initially, the focus was on CommandLineTool-type CWL documents to es-
tablish a solid foundation.

Package Generation

For each parsed CWL workflow:

* A Dockerfile is created, installing cwltool inside a Debian-based con-

tainer.
* An entry.sh script is generated, defining the container’s entry point.
* The CWL file itself is copied into the image’s working directory.

* A Brane Package.toml and package.yml are generated, registering the

tool in a Brane-compatible way.

The Brane CLI (brane-cli) was extended with a new pathway: brane package
build -kind cwl: Allows users to package CWL files manually.

3.2 CWLv1l.1 Specification and Scope of Implemen-

tation

The Common Workflow Language (CWL) is a widely adopted, declarative lan-
guage designed to describe analysis workflows and command-line tools in a
portable and platform-agnostic manner. CWL version 1.1 introduces a rich
feature set that enables reproducibility and scalability in data-intensive re-

search environments.

3.2. CWL v1.1 Specification and Scope of Implementation 25

Key Components of CWL v1.1

¢ CommandLineTool: Specifies a single command-line tool, detailing in-

puts, outputs, arguments, and environment variables.

* Workflow: Defines a pipeline of steps where each step may be a CommandLineTool

or another Workflow, enabling modular composition.

¢ Inputs and Outputs: Declarative parameter definitions for tools or work-
flows, often tied to specific types such as File, int, or string.

* Expressions: Support for dynamic evaluation of values using JavaScript,

particularly useful in deriving outputs or transforming inputs.

¢ Requirements and Hints: Mechanisms for specifying constraints and
execution environments, such as Docker containers or hardware re-

sources.

Subset Implemented in Brane

Given the prototypical nature of the integration, only a limited subset of the
CWL v1.1 specification has been implemented. The table below summarizes
the supported and unsupported components.

TABLE 3.1: CWL v1.1 Support Matrix in Brane

Feature CWLv1.1 | Brane Implementation
CommandLineTool v v (fully supported)
Workflow v X (not yet supported)
Inputs and Outputs v v (basic types only)
DockerRequirement v v (via Dockerfile injection)
Expressions v X (not yet supported)
ResourceRequirement v X (not implemented)
JavaScript Expressions v X (not implemented)

This initial implementation focuses on supporting CommandLineTool defini-
tions with static input/output mappings and containerized execution. The
aim was to achieve a functional baseline that demonstrates feasibility, with
a modular design allowing future support for additional CWL features such
as nested workflows and dynamic expressions.

26 Chapter 3. CWL integration

Justification of Scope

The decision to focus on a subset of CWL was driven by several factors:

1. Time Constraints: Implementing full CWL v1.1 compliance would re-
quire significantly more time and architectural changes to Brane’s run-
time and CLI logic.

2. Proof of Concept: The goal of the thesis was to demonstrate feasibil-
ity—i.e., that CWL tools can be parsed, dockerized, and run via Brane’s

ecosystem.

3. Incremental Complexity: By limiting support to CommandLineTool, we
avoided complications like DAG(directed acyclic graph) resolution, step

dependencies, and expression evaluation.

4. Alignment with Brane’s Design: Brane’s package model naturally maps
to CWL tools as containerized units, making CommandLineTool a perfect
initial candidate for integration.

Planned Extensions

While the current scope proves CWL integration is possible, future work can
extend support to full workflows, complex types, and runtime expressions.
A roadmap for this work is discussed in the Future Work section.

3.3 Challenges and Engineering Decisions

During the development of CWL integration into Brane, several technical
and architectural challenges emerged. This section outlines the most signifi-
cant obstacles and explains the rationale behind key design decisions.

YAML Parsing

CWL documents are authored in YAML and often include advanced features
such as anchors, references, and schema extensions. We utilized the cwl-rs
crate to parse CWL v1.1 files into a Rust-friendly AST(Abstract Syntax Tree).
However, this introduced two difficulties:

* Incomplete Rust Bindings: The cwl-rs library had partial support for
the full CWL spec, requiring manual extensions or fallbacks for certain

constructs.

3.3. Challenges and Engineering Decisions 27

* Error Diagnosis: YAML parsing errors were cryptic, especially with

complex CWL files, which slowed down debugging and testing.

To mitigate these issues, we constrained the scope of accepted CWL inputs to
well-formed CommandLineTool definitions and introduced descriptive error

messages during parsing.

Mapping Declarative to Imperative Execution

CWL is inherently declarative, while Brane packages expect imperative logic
encoded in entrypoint scripts. Bridging this gap required:

* Generating a custom entry . sh script that serves as the executable com-
mand for the Brane container. This script invokes cwltool within the

Docker container.

¢ Treating the CWL file as a static asset and wrapping it within a consis-

tent shell entrypoint.

This design trades flexibility for simplicity, enabling fast integration at the
cost of not leveraging CWL'’s full dynamic capabilities (e.g., parameter ex-
pressions).

Dockerization

CWL's support for containerized execution (via DockerRequirement) aligned
well with Brane’s own Docker-based runtime. However, dynamic Docker

image resolution was not implemented. Instead:
¢ A static Dockerfile was generated for each CWL tool.

* This file installs cwltool and bundles the relevant CWL file and entry
script.

This allowed us to build deterministic and reproducible Docker images for
each CWL package but required additional storage and build time for each
tool, even if identical.

CLI Integration with Brane

Integrating CWL support into the Brane CLI required modification of the

main entrypoint logic to:

28 Chapter 3. CWL integration

* Add anew subcommand: brane cwl <file>, which triggers CWL pars-

ing and package generation.

* Maintain compatibility with existing brane package build and brane
package load workflows, which initially assumed only ECU/Bakery-
based packages.

Since PackageKind: :Cwl was not originally supported in Brane’s CLI archi-
tecture, temporary patches were applied to skip type-based dispatch where
necessary. Future improvements should refactor CLI logic to treat CWL as a
first-class citizen.

Trade-offs

The overarching trade-off throughout the project was between generality and
deliverability. Instead of attempting full CWL 1.1 coverage—which would
have demanded significant time and architectural changes—we focused on
a stable subset that proved feasibility and aligned with Brane’s container-
based paradigm. This decision allowed us to implement end-to-end CWL-to-
Brane translation, test Docker execution, and demonstrate integration with

Brane’s runtime, all within the thesis timeline.

Technical chanllenges

Several challenges arose during the integration:

¢ Error Type Mismatch: CWL parsing used anyhow::Error, while Brane
expected specific custom error types (BuildError, CliError). This re-

quired careful wrapping of errors.

* Future vs Result Mismatch: Since handle() was an async fn, calls to it
needed explicit .await handling, and initial attempts forgot this, caus-

ing map_err issues.

* Docker Build Failures: Misconfigured Dockerfiles or missing CWL de-

pendencies (e.g., cwltool) initially caused build problems.

Despite these hurdles, a minimally viable integration was achieved.

3.4. Validation and Testing

29

Current Status

Feature

Status

CWL CommandLineTool parsing

Successfully parses CWL v1.1 CommandLineTool files

Brane package generation

Generates valid ‘Package.toml’ and “package.yml’ for
CWL workflows

Docker image building Builds and loads Docker images automatically for
CWL workflows

CLI integration Available via both brane package build -kind cwl
and brane cwl commands

Error handling Integrated into Brane’s error system using CliError

and BuildError

Architecture compatibility

Follows existing Brane CLI modular structure and
practices

TABLE 3.2: Current Status of CWL Integration into Brane

3.4 Validation and Testing

To ensure the correctness and reliability of the CWL-to-Brane translation pro-

cess, several validation and testing strategies were employed. These ad-

dressed both the syntactic accuracy of the parser and the functional integrity

of the generated Brane packages.

Parser Validation

The parser’s primary responsibility is to accurately interpret CWL v1.1 doc-

uments, specifically ‘CommandLineTool” definitions. To verify correctness:

* Schema compliance: Each parsed CWL file was validated against the
CWL v1.1 schema using the cwltool utility. This ensured that the files

being parsed were syntactically valid according to the CWL standard.

* Round-trip inspection: After parsing, the extracted fields (e.g., name,

version, inputs, baseCommand) were printed in human-readable format

during development to manually verify their values.

* Error handling: The parser was tested with malformed CWL files to en-

sure that appropriate error messages were shown, e.g., missing fields,

invalid types, or unsupported classes.

30 Chapter 3. CWL integration

Generated Package Verification

The correctness of the generated Brane package was evaluated through the
following steps:

* Package structure checks: The output directory (target/generated/)
was inspected for the presence of required files, such as Dockerfile,
entry.sh, package.yml, and the original CWL file.

* Docker image build test: The docker build process was invoked and
monitored for successful completion. Any errors (e.g., missing base

image, permissions) were logged and addressed.

* Brane integration test: The resulting package was loaded into Brane
using brane package load, after which it became visible via brane package
list. The package could then be invoked within a workflow for end-

to-end testing.

Tested Workflows and Output Comparison

The implementation was evaluated using a minimal CWL example: the canon-
ical hello_world.cwl, which executes a basic echo command. This example

was selected for its simplicity and clarity.

* The workflow was first executed using cwltool to observe the expected
output: "Hello World".

* The same CWL file was then translated into a Brane package using the
CLI: brane cwl hello_world.cwl.

* After loading the package into Brane, a BraneScript workflow was con-
structed to invoke the hello_world package.

* The output produced by Brane was compared against the original cwltool

output and matched exactly.

This comparative testing ensured semantic fidelity of the translated work-
flow. Although only a minimal case was tested in-depth, the modular design

supports gradual extension to more complex workflows in the future.

31

Chapter 4

Related work & Methodology

The execution of computational workflows has been a vital topic in distributed
computing, bioinformatics, and cloud systems. Over the years, multiple
workflow management frameworks and standards have been developed to
address challenges of portability, scalability, and reproducibility. This chap-
ter presents an overview of relevant works that have influenced or relate to
the objectives of this study, which focuses on integrating the Common Work-
flow Language (CWL) into the Brane orchestration framework.

4.1 Workflow Management Systems

Several early workflow management systems laid the foundation for mod-
ern orchestration approaches. For instance, Pegasus was introduced as a
scientific workflow management system to automate large-scale data anal-
ysis tasks, especially in the context of distributed and grid computing en-
vironments [10]. Pegasus emphasized abstraction, enabling users to define
workflows at a high level, while the system managed resource mapping and

execution.

Similarly, the Taverna Workbench allowed scientists without deep technical
expertise to create complex bioinformatics workflows Taverna. Taverna’s fo-
cus on user accessibility, however, came at the cost of flexibility and fine-

grained execution control.

In contrast, newer frameworks such as Nextflow [21] and Snakemake [22]
offer more programmable workflow descriptions, leveraging technologies
like Docker and cloud-native infrastructures to ensure reproducibility and

scalability. These systems support parallel execution, dynamic scheduling,

32 Chapter 4. Related work & Methodology

and compatibility with heterogeneous resources, pushing workflow manage-

ment closer to the needs of modern distributed systems.

Brane emerges from this lineage, designed to address orchestration across
multiple sites, where concerns such as data locality, resource distribution,

and cross-infrastructure deployment become critical [1].

4.2 Standardization of Workflow Descriptions

The growing complexity of scientific workflows, combined with the need for
reproducibility across different environments, has driven efforts toward stan-
dardization. The Common Workflow Language (CWL) [2] was developed to
offer a declarative, portable, and platform-independent specification for de-

scribing command-line tool usage and workflow structures.

Crusoe et al. [23] proposed CWL with the goal of enabling workflows to be
defined once and executed consistently across diverse backends. CWL sep-
arates tool descriptions from workflow descriptions, emphasizing modular-
ity and clear definition of inputs, outputs, and computational requirements.
This approach promotes interoperability among institutions and platforms,
as workflows can be shared without binding to specific infrastructure as-

sumptions.

Frameworks such as Toil [24] and Rabix [25] support CWL execution, fos-
tering a rich ecosystem. However, CWL's strict declarative design may limit
dynamic adaptation during execution, which is increasingly necessary in dis-
tributed, heterogeneous environments—a gap this project aims to bridge by
integrating CWL workflows into the dynamic, multi-site Brane system.

4.3 Containerization in Workflow Execution

Containerization technologies have played a transformative role in workflow
execution, ensuring that tools can run reproducibly across systems without
dependency conflicts. Docker [4] and Singularity [26] are prominent solu-
tions that encapsulate application binaries and environments into portable

containers.

4.4. Security, Privacy, and Policy Management in Distributed Workflows 33

Scientific workflow systems, including those compliant with CWL, heavily
rely on containerization to guarantee execution fidelity. Brane also leverages
container technology, allowing tasks to be executed consistently across dis-

tributed sites while minimizing configuration overhead [1].

However, Brane extends the concept by dynamically allocating tasks based
on site capabilities, bandwidth constraints, and compute availability, an exe-

cution flexibility that pure container-based CWL runners traditionally lack.

4.4 Security, Privacy, and Policy Management in
Distributed Workflows

As workflows increasingly operate across organizational and national bound-
aries, concerns over data security and privacy become paramount. Research
efforts such as “Exploring the Enforcement of Private Dynamic Policies on
Medical Workflow Execution” [27] have highlighted the need for policy-aware
orchestration, where workflows must adapt dynamically to security require-

ments.

While CWL focuses primarily on execution portability and reproducibility,
frameworks like Brane are positioned to incorporate dynamic policies re-
garding data movement, compute location, and compliance constraints. Un-
derstanding these complementary strengths forms a crucial motivation for
extending Brane’s capabilities through CWL integration.

4.5 Inclusion and Exclusion Criteria

In assembling this related work chapter, priority was given to peer-reviewed
papers, journal articles, and conference proceedings indexed in databases
such as IEEE Xplore, ACM Digital Library, ScienceDirect, SpringerLink, and
Google Scholar. Grey literature such as blogs, Wikipedia articles, or non-
peer-reviewed reports were excluded to ensure academic rigor and reliability

of referenced material.

34 Chapter 4. Related work & Methodology

4.6 Summary

This review of existing workflow management systems, workflow standard-
ization initiatives, containerization technologies, and policy-enforcement ap-
proaches provides context for this research. While CWL offers a robust stan-
dard for tool and workflow description, its static design contrasts with Brane’s
dynamic, distributed execution model. The integration of CWL into Brane
aims to combine the strengths of both worlds: achieving platform-independent
workflow definitions while supporting scalable, adaptable orchestration across

heterogeneous computing sites.

4.7 Methodology

This chapter describes the research methods used to investigate the integra-
tion of the Common Workflow Language (CWL) into the Brane framework.
It outlines the type of research conducted, data sources consulted, selection
criteria for relevant literature, and the experimental steps followed during

the development and analysis phases.

Literature Review
(CWL, Brane, Workflow Systems)
¥
Experimental Design
(Integration Planning)
¥
Implementation
(Extending Brane CLI)
i
Testing
(Workflow Execution & Validation)
¥
Analysis
(Evaluate Usability and Scalability)

FIGURE 4.1: Overview of the research methodology used in this
study.

4.8. Research Methods 35

4.8 Research Methods

The methodology section presents the approach followed to collect, analyze,
and synthesize information to address the research questions.

4.8.1 Type of Study

Two main types of research methodologies exist: qualitative and quantita-
tive.

Qualitative research seeks to understand complex phenomena through non-
numerical data such as literature reviews, observations, and interviews.
Quantitative research focuses on measurable data, applying statistical or
computational methods to derive conclusions.

Since this study focuses on understanding the technological gaps between
current workflow management solutions and proposing an integration de-
sign between CWL and Brane, a qualitative research approach is the most
appropriate. Through qualitative methods, a deep understanding of sys-
tem architectures, workflow specifications, and interoperability challenges
is achieved by reviewing existing literature, analyzing technical standards,

and evaluating real-world implementations.

4.8.2 Analysis Approach

This research adopts a literature-driven analysis combined with system-level
experimentation. Relevant academic publications, technical specifications,

and software documentation were reviewed to:
¢ Map the features, strengths, and limitations of CWL and Brane.

¢ Identify challenges in achieving workflow portability and dynamic ex-

ecution.

* Investigate best practices in orchestrating multi-site computational work-

flows.

Subsequently, experimental implementation activities involved extending the
Brane CLI and runtime to support CWL workflows. Findings from these ex-

periments were cross-referenced against the literature review results.

36 Chapter 4. Related work & Methodology

4.8.3 Data Sources

Data was collected from:

* Peer-reviewed conference and journal papers published in venues like
ACM, IEEE, Springer, and Elsevier.

e Official documentation of CWL, Brane, Docker, and related technolo-

gies.

* Open-source repositories and technical white papers when official doc-

umentation was not sufficient.

Non-academic sources such as blogs, forums, and Wikipedia articles were

excluded to ensure scientific rigor.

4.9 Experimentation: CWL Integration into Brane

The experimental phase involved the design, implementation, and testing of
an integration layer between CWL and Brane. The methodology followed
included:

1. Parsing CWL files: Extending Brane’s CLI to accept .cwl workflows

and interpret their structure.

2. Translating workflows: Mapping CWL workflows into Brane’s inter-
nal package and workflow formats, ensuring compatibility with Brane-

Script’s execution model.

3. Executing workflows: Deploying and running CWL-defined workflows

across distributed Brane environments.

4. Testing and validation: Executing a range of workflows (simple, multi-
step, conditional) to verify correctness, error handling, and scalability.

This methodology ensured that the developed integration was systematically
evaluated for functional correctness, usability, and performance characteris-

tics.

37

Chapter 5

Future work

5.1 Future Work

While the current implementation successfully integrates CommandLineTool
support from the Common Workflow Language (CWL) into the Brane ecosys-
tem, there are several opportunities for future work that would significantly

enhance the system’s capabilities.

First and foremost, supporting full CWL Workflow documents is a logical
next step. These workflows define complex, multi-step pipelines that chain
together multiple tools with clearly defined input/output relationships and
control flow. Implementing support for them would require recursive pars-
ing of CWL documents and the generation of composite Brane packages that

reflect these pipelines.

Another area for improvement involves type inference and metadata enrich-
ment. Currently, the mapping between CWL types and Brane’s internal type
system is minimal. Introducing a more sophisticated translation layer would
improve validation, enable richer tooling, and increase compatibility with

the Brane runtime.

Additionally, enabling the use of remote CWL documents through HTTP(S)
imports would support distributed and cloud-native scenarios. This requires

implementing network-safe fetching and dependency resolution mechanisms.

Finally, user-facing improvements are also desirable. These include intro-
ducing pre-build validation for CWL files, verbose or dry-run modes for
the build process, and better feedback for malformed or unsupported doc-

uments.

38

Chapter 5. Future work

TABLE 5.1: Overview of Proposed Future Work

Feature

Description

Full Workflow Sup-
port

Parse and compile CWL Workflow documents into

composite Brane packages.

Type Mapping

Improve mapping from CWL types/formats to
Brane’s type system for stronger typing and valida-

tion.

Remote Imports

Allow importing CWL files and their dependencies
via remote URLs (e.g., GitHub or HTTP).

CLI UX Improve-

ments

Add validation steps, dry-run options, and verbose
logging to the build CLI.

New CWL Features

Support additional CWL constructs such as Hints,

Requirements, and Scatter.

39

Chapter 6

Discussion

This chapter reflects on the design and implementation of integrating the
Common Workflow Language (CWL) into the Brane framework. It addresses
the challenges encountered during the development process, the trade-offs
made in architectural choices, the implications for future workflow systems,
and how the integration contributes to the broader goals of scientific repro-
ducibility and distributed computing.

6.1 Design Trade-offs and Technical Decisions

One of the key decisions in this project was to implement CWL support as
a separate translation layer within the Brane CLI, rather than embedding it
directly into the core BraneScript runtime. This decision follows the prin-
ciple of separation of concerns, allowing CWL workflows to be interpreted
and converted into Brane-compatible packages without modifying the core

execution engine.

While this modular approach improves maintainability and extensibility, it
also introduces an intermediate translation step that can become complex, es-
pecially for deeply nested workflows. As such, the current implementation

supports a substantial subset of CWL but does not yet achieve full feature

parity.

Furthermore, the reliance on YAML parsing and mapping to Brane’s ‘pack-
age.yml’ structure required careful attention to type compatibility and data
binding semantics. Decisions had to be made regarding how CWL command-
line tools would map onto Brane package actions and how to handle multiple

input/output artifacts in a way that preserves reproducibility.

40 Chapter 6. Discussion

6.2 Challenges in Bridging Declarative and Imper-

ative Models

A central challenge in this project was reconciling the declarative nature of
CWL with the imperative design of BraneScript. CWL assumes a static, data-
driven workflow definition in which the execution order is inferred from data
dependencies. Brane, on the other hand, supports explicit control flow, func-
tion definitions, and dynamic branching.

This mismatch required the development of a mapping strategy where CWL
steps are treated as isolated Brane actions, with BraneScript-generated code
organizing these steps in a semantically equivalent execution order. How-
ever, complex control constructs in CWL (e.g., conditionals or dynamic sub-
workflows) do not always have a direct analogue in Brane, which required
compromises in how expressive the translated workflows could be.

Future improvements could involve extending BraneScript with declarative
constructs or hybrid parsing capabilities that can natively understand CWL

structures.

6.3 Reproducibility vs. Adaptability

CWL is designed for strict reproducibility: given the same inputs and envi-
ronment, it should always produce the same outputs. Brane, however, in-
troduces dynamic elements—such as site-aware execution and runtime opti-
mization—which prioritize adaptability and performance over deterministic

execution paths.

The integration effort highlights an important tension in workflow design:
the need to balance reproducibility (critical for scientific research) with adapt-
ability (crucial for performance in distributed and resource-constrained en-
vironments). By enabling CWL workflows to run within Brane, this project
contributes to a new paradigm where workflows can be portable and repro-

ducible by design, but also optimized dynamically based on context.

6.4 Limitations of the Current Integration

While functional, the current CWL-to-Brane integration has several limita-

tions:

6.5. Generalization and Future Potential 41

* Notall CWL features are supported (e.g., expressions, conditionals, and

custom JavaScript blocks).

* There is limited support for runtime resource hints (e.g., CPU, mem-
ory), which are currently ignored by Brane’s scheduler.

¢ Error reporting during workflow translation could be more informative

and developer-friendly.

These limitations are known and provide a roadmap for future development.

6.5 Generalization and Future Potential

Although this project focused specifically on CWL, the underlying archi-
tectural principles can be reused for supporting other workflow standards.
Brane’s modular CLI and runtime make it a promising platform for hosting

multi-standard workflow execution capabilities.

Moreover, the project demonstrates that bridging formal workflow specifi-
cations with flexible, programmable orchestration is not only feasible but
advantageous. It empowers users to reuse standardized workflows while

gaining the benefits of Brane’s dynamic, multi-site execution model.

6.6 Lessons Learned

Several key lessons emerged during this project:

o Workflow standardization alone is not sufficient—execution semantics

must also align to ensure meaningful interoperability.

¢ Imperative and declarative paradigms can be reconciled, but doing so

requires deliberate architectural abstraction.

¢ Simplicity and clarity in translation logic often outperform feature com-

pleteness, especially in early-stage prototypes.

¢ Containerization remains the cornerstone of reproducibility, and any

orchestration framework must treat it as a first-class concern.

42

Chapter 7
Conclusion

This thesis explored the integration of the Common Workflow Language
(CWL) into the Brane framework to bridge the gap between standardized,
declarative workflow descriptions and dynamic, multi-site orchestration. The
work demonstrates that it is technically feasible to parse CWL Command-
LineTool files, encapsulate them into Brane packages, and enable execution

using Brane’s existing CLI and Docker infrastructure.

The integration successfully supports packaging, Docker image generation,
and CLI interaction, contributing a minimally viable interface between CWL
and Brane. Although the scope is currently limited to simple tools, this foun-
dational work paves the way for broader support, including complex CWL

workflows and dynamic execution patterns.

From a practical standpoint, the project enhances Brane’s usability in scien-
tific domains that have adopted CWL, thereby increasing its interoperability
and adoption potential. From a theoretical perspective, it exemplifies how
declarative and imperative paradigms can coexist in hybrid workflow sys-
tems. Future work will involve recursive workflow compilation, improved
type mapping, remote imports, and user-centric enhancements. The lessons
learned here contribute to the broader discourse on reproducible and adapt-
able computing in distributed environments.

N

43

Appendix A

Appendix

This appendix provides the source code for the Rust implementation that

parses a CWL file and generates a Brane-compatible Docker package.

use

use

use

use

use

use

use

) use

use

use

use

use

s /1]

std::collections::HashMap;

std::fs::{self, create_dir_all, File, writel};
std::io::BufReader;

std::path::PathBuf;

std::process::Command;

std::fmt::Write as _;

anyhow::{Context, Resultl};

cwl::vll::CwlDocument;
specifications::version::Version;
specifications::package::{PackageInfo, PackageKind};
specifications::common::{Function, Typel;

brane_cli::errors::BuildError;

Parses a CWL file and generates a Brane-compatible package

directory & Docker image.
» pub async fn handle(path: PathBuf) -> Result<()> {

// Open and parse CWL

let file = File::open(&path).context (" Failed to open CWL
file") ?7;

let reader = BufReader::new(file);

let document = CwlDocument::from_reader (reader).context ("

Failed to parse CWL document")?;

match &document {
CwlDocument :: CommandLineTool (tool) => {

println! (" Parsed CWL CommandLineTool");

// Extract fields
let name = tool.schema.name.clone().unwrap_or_else

(Il "unknown".into ());

29

64

44 Appendix A. Appendix

let version_str = tool.schema.version.clone().
unwrap_or_else (|| "0.1.0".into());

let description = tool.label.clone().unwrap_or_else
(Il "No description provided".into());

// Fallback hardcoded version

let version = Version::new(1l, 0, 0);

// Prepare output

let out_dir = PathBuf::from(format!("target/
generated/{}", name));

create_dir_all (&out_dir) .context (" Failed to

create output directory")?;

// --- Package.toml ---

let mut toml = String::new();

writeln!(toml, "name = {:?}", name)?;
writeln!(toml, "version = {:?}", version_str)?;

writeln!(toml, "kind = \"cwl\"")?7;

writeln! (toml, "description = {:7}", description)?;

write (out_dir.join ("Package.toml"), toml).context ("

Failed to write Package.toml")?;

// --- entry.sh ---

let entry = "#!/bin/bash\ncwltool hello_world.cwl\n

write (out_dir.join("entry.sh"), entry).context ("

Failed to write entry.sh")?;

// --- Dockerfile ---
let dockerfile = r#"
FROM debian:bullseye-slim

55 RUN apt-get update && apt-get install -y cwltool

COPY hello_world.cwl /app/hello_world.cwl
COPY entry.sh /app/entry.sh
WORKDIR /app
RUN chmod +x entry.sh
CMD ["./entry.sh"]
"
write (out_dir.join("Dockerfile"), dockerfile).

context (" Failed to write Dockerfile")?;

// --- Copy CWL ---
fs::copy(&path, out_dir.join("hello_world.cwl")).
context (" Failed to copy CWL file")?7;

Appendix A. Appendix 45

context ("

{3\,

// --- Docker build ---

println! (" Building Docker image...");

let image_name = format!("brane-cwl-{}:latest", name
let status = Command::new("docker")

.arg ("build")

.arg("--load")

.arg("-t")

.arg (&image_name)

.arg (&out_dir)

.status ()

.context (" Failed to invoke docker build")?;

if !status.success () {

anyhow::bail! (" Docker build failed");
}
println! (" Docker image built: {image_namel}");
// --- Create PackageInfo ---
let package_info = PackageInfo::new(
name.clone (),
version,
PackageKind::Cwl,
vec![],
description.clone (),
true,
HashMap::new (),
HashMap::new (),
)
// --- Write package.yml ---

package_info.to_path(out_dir.join("package.yml")).
Failed to write package.yml")?;

println! (" Brane CWL package available at:

out_dir.display());

=> {

println! (" Unsupported CWL class: {:7}",

document) ;

0k ()

46 Appendix A. Appendix

7 /// ‘brane package build ¢ calls this entry point for CWL

packages.
pub fn build(_workdir: PathBuf, file: PathBuf) -> Result<(),
BuildError> {
println! (" Building Brane CWL package...");
futures::executor::block_on(handle(file))
.map_err (|e| BuildError::PackageInfoFromOpenAPIError {

source: e })

LISTING A.1: CWL to Brane package builder in
Rust(https:/ / github.com /Hamza0320/brane_cwl)

47

Bibliography

[1] O. Valkering, R. Cushing, and A. Belloum, “Brane: A framework for
programmable orchestration of multi-site applications,” in 2021 IEEE
17th International Conference on eScience (eScience), IEEE, 2021, pp. 277-
282.

[2] P A. et al, “Common workflow language, v1.0,” Common Workflow
Language Specification, 2016. [Online]. Available: https://www.commonwl.
org/.

[3] M. R. Crusoe, J. Chilton, S. Abeln, and et al., “Common workflow lan-
guage v1.2,” F1000Research, vol. 9, p. 295,2022. DOI: https://doi.org/
10.1177/1094342017704893.

[4] D.Merkel, “Docker: Lightweight linux containers for consistent devel-
opment and deployment,” IEEE Cloud Computing, 2014. DOI: 10.1109/
MCC.2014.51.

[5] E.Deelman and et al., “The future of scientific workflows,” The Interna-
tional Journal of High Performance Computing Applications, vol. 32, no. 1,
pp. 159-175, 2018,

[6] D.Bernstein, “Containers and cloud: From Ixc to docker to kubernetes,”
IEEE Cloud Computing, 2014. DOI: 10.1109/MCC.2014.63.

[7] P.B.C.P. R. G. Kousalya, “Managing scientific workflows across het-
erogeneous environments,” in Advances in Workflow Management, Springer,
2020, pp. 152-165. [Online]. Available: https://link.springer.com/
chapter/10.1007/978-3-319-56982-6_8.

[8] T. Imkin, How modern workflow orchestration solves scalability challenges,
2021. [Online]. Available: https://temporal . io/blog/how-modern-

workflow-orchestration-solves-scalability-challenges.

[9] R. E d. Silva, L. Pottier, T. Coleman, E. Deelman, and H. Casanova,
“Workflowhub: Community framework for enabling scientific work-
flow research and development,” in 2020 IEEE/ACM Workflows in Sup-
port of Large-Scale Science (WORKS), 2020, pp. 49-56. DOI: 10 . 1109/
WORKS51914.2020.00012.

https://www.commonwl.org/
https://www.commonwl.org/
https://doi.org/https://doi.org/10.1177/1094342017704893
https://doi.org/https://doi.org/10.1177/1094342017704893
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MCC.2014.63
https://link.springer.com/chapter/10.1007/978-3-319-56982-6_8
https://link.springer.com/chapter/10.1007/978-3-319-56982-6_8
https://temporal.io/blog/how-modern-workflow-orchestration-solves-scalability-challenges
https://temporal.io/blog/how-modern-workflow-orchestration-solves-scalability-challenges
https://doi.org/10.1109/WORKS51914.2020.00012
https://doi.org/10.1109/WORKS51914.2020.00012

48

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

E. D. et al., “The evolution of the pegasus workflow management soft-
ware,” Computing in Science Engineering, 2019. DOI: 10 . 1109 /MCSE .
2019.2919690.

M. Barika, S. Garg, A. Y. Zomaya, L. Wang, A. van Moorsel, and R. Ran-
jan, “Orchestrating big data analysis workflows in the cloud: Research
challenges, survey, and future directions,” ACM Computing Surveys,
vol. 52, no. 5, Article 95, 41 pages, Sep. 2019. DOI: 10.1145/3332301.

NVIDIA Corporation, Clara for biopharma: Drug discovery with generative
ai, https://www.nvidia.com/en-us/clara/biopharma/, Accessed:
2025-01-07, 2024.

Y. Wang, Y. Guo, Z. Guo, W. Liu, and C. Yang, “Protecting scientific
workflows in clouds with an intrusion tolerant system,” IET Informa-
tion Security, vol. 14, Mar. 2020. DOI: 10.1049/iet-ifs.2018.5279.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,” in
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems, ACM, 2007, pp. 59-72.

S. Pohl, N. Elfaramawy, A. Miling, K. Cao, B. Kehr, and M. Weidlich,
“How do users design scientific workflows? the case of snakemake and
nextflow,” in Proceedings of the 36th International Conference on Scientific
and Statistical Database Management (SSDBM), Rennes, France: Associ-
ation for Computing Machinery, Jul. 2024, Article 95, 12 pages, ISBN:
979-8-4007-1020-9. DOI: 10.1145/3676288.3676290.

D. Westerveld, API Testing and Development with Postman: A practical
quide to creating, testing, and managing APIs for automated software testing.
Packt Publishing Ltd, 2021.

ELIXIR Europe, Elixir: Uniting europe’s biological data, https://elixir-
europe.org/, Accessed: 2025-01-07, 2025.

J. Ponelat and L. Rosenstock, Designing APIs with Swagger and OpenAPI.
Simon and Schuster, 2022.

C. Boettiger, “An introduction to docker for reproducible research,”
ACM SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71-79, 2015.

E. Deelman, Y. Gil, M. Livny, K. Kate, B. Berriman, and R. F. da Silva,
“Towards a new paradigm for programming scientific workflows,” Fu-
ture Generation Computer Systems, vol. 138, pp. 46-62, 2023. DOI: 10 .
1016/ j.future.2022.09.012.

https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.1145/3332301
https://www.nvidia.com/en-us/clara/biopharma/
https://doi.org/10.1049/iet-ifs.2018.5279
https://doi.org/10.1145/3676288.3676290
https://elixir-europe.org/
https://elixir-europe.org/
https://doi.org/10.1016/j.future.2022.09.012
https://doi.org/10.1016/j.future.2022.09.012

Bibliography 49

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. D. Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, C. Palumbo, and
C. Notredame, “Nextflow enables reproducible computational work-
flows,” Nature Biotechnology, vol. 35, no. 4, pp. 316-319, 2017. DOTI: 10.
1038/nbt . 3820.

J. Kdster and S. Rahmann, “Snakemake—a scalable bioinformatics work-
flow engine,” Bioinformatics, vol. 28, no. 19, pp. 2520-2522, 2012. DOTI:
10.1093/bioinformatics/bts480.

M. R. Crusoe et al., “Methods included: Standardizing computational
reuse and portability with the common workflow language,” Proceed-
ings of the 2015 IEEE International Conference on e-Science, pp. 370-377,
2015. DOI: 10.1109/eScience.2015. 40.

J. Vivian, A. A. Rao, F. A. Nothaft, et al., “Toil enables reproducible,
open source, big biomedical data analyses,” Nature Biotechnology, vol. 35,
no. 4, pp. 314-316, 2017. DOI: 10.1038/nbt .3772.

G. C. Carrasco et al., “Rabix: An open-source workflow executor sup-
porting recomputability and interoperability of workflow descriptions,”
Pacific Symposium on Biocomputing 2016, pp. 154-165, 2016.

D. Gannon and V. Sochat, “Singularity: A container system for hpc ap-
plications,” Cloud Computing for Science and Engineering, 2017. [Online].
Available: https://www.researchgate.net/publication/317905090.

C. Basescu, P. Druschel, M. Wihlisch, and R. Kapitza, “Exploring the
enforcement of private dynamic policies on medical workflow execu-
tion,” in Proceedings of the 2015 IEEE 35th International Conference on
Distributed Computing Systems Workshops, 1IEEE, 2015, pp. 27-32. DOI:
10.1109/ICDCSW.2015.14.

https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1109/eScience.2015.40
https://doi.org/10.1038/nbt.3772
https://www.researchgate.net/publication/317905090
https://doi.org/10.1109/ICDCSW.2015.14

	Introduction
	Context
	Motivation
	Problem statement
	Research questions
	Thesis structure

	Background Methodology
	Workflow orchestration overview
	Challenges in workflow orchestration
	Key use cases
	Popular Workflow Orchestration Tools
	International Research status

	Architecture of the Brane Framework
	Modular Design

	Explanation of the Brane Workflow
	CWL
	Differences Between CWL and Brane Code

	CWL integration
	Implementation
	CWL v1.1 Specification and Scope of Implementation
	Challenges and Engineering Decisions
	Validation and Testing
	Parser Validation
	Generated Package Verification
	Tested Workflows and Output Comparison

	Related work & Methodology
	Workflow Management Systems
	Standardization of Workflow Descriptions
	Containerization in Workflow Execution
	Security, Privacy, and Policy Management in Distributed Workflows
	Inclusion and Exclusion Criteria
	Summary
	Methodology
	Research Methods
	Type of Study
	Analysis Approach
	Data Sources

	Experimentation: CWL Integration into Brane

	Future work
	Future Work

	Discussion
	Design Trade-offs and Technical Decisions
	Challenges in Bridging Declarative and Imperative Models
	Reproducibility vs. Adaptability
	Limitations of the Current Integration
	Generalization and Future Potential
	Lessons Learned

	Conclusion
	Appendix
	Bibliography

