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Abstract

In previous work, Vega et Al[1] studied the effectiveness of various machine
learning models to see how well they qualify video quality compared to the Video
Quality Model (VQM). Their focus was to find if any No-Reference (NR) Video
Quality Assessment (VQA) model could perform as well as a Full-Reference
(FR) model such as VQM, and if so, how strongly it would correlate. They
demonstrated that an LS-boosted Ensemble Regression Tree model was capable
of reaching a Pearson Correlation Coefficient (PCC) of 0.91. The segment length
used by Vega et Al was 10 seconds, for all of their video samples. In this paper,
we show that VQA with shorter segments is also possible, reaching a correlation
of over 90% with the Full-Reference (FR) model VMAF.
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Chapter 1

Introduction

Video Quality Assessment (VQA) is the practice of assessing the quality of
a video sample, most often in a streaming context. Original high-definition
material is compressed and sent to a user over an internet connection. During
this compression and consequent decoding process, some of the quality of the
video is lost. A VQA algorithm then attempts to quantify how much quality-loss
the compression has caused.

VQA has gained more attention over the past years. Older models such as
the Video Quality Model (VQM)[2] are quickly followed by newer, commercial
methods such as Video Multi-method Assessment Fusion (VMAF)[3]. These
models are both Full-Reference (FR) algorithms, meaning they compare the
original video against the compressed, sent, and decoded result. These models
have reached very high accuracy to the Difference Mean Opinion Score (DMOS)
[4] set by human subjects, and been used to determine live-streaming video
quality[5]. However, VMAF is too computationally costly to be applied in
real-time situations. Furthermore, in practical applications, the original and
compressed video material is not always available. Where Netflix has the luxury
of being a Video on Demand (VoD) service, allowing for pre-processing of the
video material, live-streaming has gained an ever larger foothold in the industry.

There have been successful attempts to develop real-time VQA models, for
example by Vega et Al[1]. Their solution makes use of a No-Reference (NR)
model, which only analyses the decoded video through a selection of metrics.
The incoming video is decoded, analysed in real-time, and a video quality esti-
mation is computed. While this is a great step forward in VQA for live-streaming
services, there is a niche lacking research.

Live-streams always have a certain screen-to-screen latency. In this paper,
the latency shall be defined as the time it takes for an image to be recorded,
encoded, sent, decoded, and displayed on the end-user’s screen. In the live-
streaming context, some applications have a focus on minimising this latency.
In order to improve interactivity, a short latency can be a great difference. A
latency of ten seconds can be detrimental to a live-streamed game show with
crowd participation. To minimise the latency in their platforms, the Ex Machina
Group (or more specifically, their Livery team) has developed a streaming service
that reduces the latency to 2 seconds, and aims to reduce this even further.

When dealing with these kinds of latency’s, the aforementioned solution
provided by Vega et Al. is not sufficient. This is because their model uses 10-
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second segments to make their quality assessment. In a Livery-hosted stream,
the high interactivity does not allow for 10 seconds of quality analysis. The
subject of this research is to determine whether it is viable to adapt the existing
solution to make a comparably accurate quality assessment using shorter video
segments as input.

To this end, the work by Vega et Al[1] is used as the mould in which I will
work. The first step will be to reproduce their work, i.e. to develop a model
that uses ten second video samples to determine their quality. From this point,
I will shorten these video segments, and determine whether a model can still
reach competitive accuracy using less data to go on.

In Chapter 2, I will give an overview of relevant previous work. In Chapter
3, I describe the aforementioned niche in more detail, and give some context to
the objective. Research questions will also be presented in this chapter. The
method by which I hope to accomplish my goals is presented in chapter 4, and
their results are presented in chapter 5. The results and their implication are
discussed in the Discussion, chapter 6. In chapter 7 I give some recommenda-
tions as to what I feel would be valuable avenues of further research. And finally
in chapter 8, I acknowledge all those around me who helped make this thesis a
reality.
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Chapter 2

Previous Work

In this chapter, a selection of previous work in the field is presented. Each work
has some overlay with this research, whether that be as a benchmark, a work
to build upon, or a side study that provides some insight into the edge cases of
Video Quality Assessment (VQA).

Where various articles use the Video Quality Model (VQM) as their bench-
mark, Netflix made waves in the industry with the introduction of their Full-
Reference (FR) VQA model, named Video Multi-method Assessment Fusion
(VMAF). Originally presented in their Techblog[3], Li et Al explain the posi-
tion of Netflix in the industry. The nature of their Video on Demand (VoD)
service requires a more precise model than is currently on the market. Where
most models also analyse the material for frame freezing, Li et Al argue that be-
cause of the robust Transmission Control Protocol (TCP) these artefacts never
present themselves, since packet loss is no longer a source of quality degradation.

The approach of Netflix is unique in that they generate their own training
set by taking a selection of video material from their servers, and constructing a
user-based scoring for each of them. The participants are asked to view both the
original and the compressed versions of the material, and scoring each. Taking
all of this data, Netflix constructed a Difference Mean Opinion Score (DMOS)
scale to compare VMAF with other quality models. Specifically, PSNR SSIM
FastSSIM and PSNR-HVS[6]. The various graphs show that these models do
not correlate perfectly with their self-constructed DMOS.

Finally, VMAF itself is presented. It is described that it consists of three
major components, namely the Visual Information Fidelity (VIF)[7], the De-
tail Loss Metric (DLM)[8], and a motion measure achieved by comparing pixel
differences between frames. Combined using Support Vector Machine (SVM) re-
gression, the model proved to be even more accurate than Video Quality Model
with Variable Frame Delay (VQM-VFD), which is reportedly ”state of the art in
the field”. VMAF was for this reason selected as the benchmark of my research.

Vega et Al[1] have preceded this research in the endeavour towards real-
time VQA. Their article describes a proposed Machine-Learning (ML)-based
algorithm that reaches over 90% correlation with VQM. They achieve this by
analysing the Live Video Database (LiveVD) using a selection of No-Reference
(NR) metrics, and using these as input for a variety of ML models, benchmarked
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by VQM.
The research describes the usefulness of LiveVD by showing the complimen-

tary nature of the different set of metrics they selected. Some metrics perform
very well under certain conditions, but fall off in others. This is covered by the
other metrics, complementing each other in hypothesised complete coverage.
They continue to describe the selection of different ML models, finally decid-
ing that an LS-Boosted Ensemble Regression Tree (ERT-LSB) has the greatest
correlation with their benchmark.

As mentioned in the introduction, this work by Vega is used as inspiration
and a diving board for this thesis. The way in which Vega et Al differ from
my research is twofold. First, their artefact generation is done through both
compression and packet loss. By the logic of the last article and the method
of most modern live-streams, I chose to limit myself to only compression-based
artefacts. Second and more importantly, Vega et Al have a focus on RT appli-
cations, but not on low latency.

Another work by Vega et Al[9] proposes an unsupervised deep learning
model, that unifies the added accuracy of reduced reference with the perfor-
mance of no reference metrics. They achieve this by performing metric analysis
on the server side, and sending a data vector to the client side where inexpensive
NR metrics are applied to construct the same vector. The difference in quality
is then calculated by an unsupervised model on the client side using those two
data vectors.

The training data is provided by the LIMP Video Quality Database, made
by Vega and Liotta themselves. The database contains a large set of packet-
loss impaired videos. The client side model, a Restricted Boltzmann Machine
(RBM), reaches a correlation between 78 and 91% to VQM. The differences
with this research are slightly larger than the last article by Vega et Al. Not
only are the compression and low-latency focus missing, the proposed model is
highly optimised for adaptability and scalability. Neither of which is prioritised
in the following sections.

Barman et Al[10] pose that the passive gaming stream industry has been
largely ignored by the scientific community, and that consequently there is a
need for real-time Quality of Experience (QoE) algorithms to ensure the in-
dustry’s growth. To this end they propose two ML-based models that make
use of the specificality of their niche. They trade generality for precision by
focusing solely on passive gaming streams, capitalising on the fact that gaming
streams typically only contain computer generated graphics, resulting in a type
of material that could theoretically more easily be assessed by an algorithm.

They go on to discuss their choice of video source material, a self made
database called the Kingston Gaming Video SET[11]. This database contains
footage from twelve different games, compressed in a multitude1 of ways to cre-
ate 576 distorted videos. These videos are benchmarked by VMAF, and the
models are Neural Network and Support Vector Regression based. Their corre-
lation with VMAF is brought as high as 97%.

1Specifically, the techniques applied are rescaling to other resolutions, and compression
by certain bitrates.
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Xue et Al[12] specialise in another department. Like Barman they trade
generality for accuracy, but instead of the type of video they specialise in a
type of artefact. In their research, they present a method capable of detecting
temporal artefacts, such as jerkiness or frame freezing. They do this by analysing
the video for any freezes, and then applying a set of metrics to these freeze
sections. These include the number of freezes in the video segment, the average
duration of a freeze, the average distance between freezes, and so on. The list
of features reaches a length of thirteen, and can theoretically be applied in a
real-time no-reference contsxt.

While the proposed list of metrics is quite extensive, their number of testing
material is quite limited. With the combined material of both the VGEQ and
LiveVD, the total number of test videos becomes 52. They overcome this lim-
itation by calculating the number of hidden nodes their neural network should
have, and how many input parameters this network can handle. They limit
themselves to six metrics, and decide upon which should be included by ex-
perimental analysis. With these parameters decided upon, the network reaches
a correlation of 90% and 80% with DMOS on the train and test sets, respec-
tively. With these numbers they outperform a full-reference metric, namely
VQM-VFD.

7



Chapter 3

Low Latency Video Quality
Assessment

Where Video on Demand (VoD) services have no real time constraints for Video
Quality Assessment (VQA), the opposite is the case for live streaming platforms.
A service such as Netflix knows in advance what their content will look like, and
can take all the time they need to assess their image quality after compressing
and decoding the original. In a live streaming setting however, this is not the
case. The content is created every second, and this content is not predictable. If
quality assessment is a requirement, it will have to be done in real-time. There
is the possibility of recording the entire stream and assessing its overall quality
after it has ended, but there exist many scenario’s where real-time assessment
holds a strong advantage.

An example might be a live streamed quiz, where the host asks the crowd
the questions. If with every correct answer the host launches a firework effect
over the stream to celebrate a correct answer, this might cause an issue for the
encoder, resulting in a drop in quality. If the producer only notices this after the
entire stream has already ended, the show has shown poor quality throughout
the stream. If the issue had shown itself in real-time, the producer could have
chosen not to use the particle effect again, or chosen a less impactful alternative.

Making sure the VQA is performed in real-time is a good start, but not a
complete solution to this problem. All of the existing solutions described in
section 2 use video segments of around ten seconds or longer, even those with
real-time being part of their requirements. If the aforementioned particle effect
lasts no more than a second, and the quality is assessed by a sliding window of
ten seconds, then the average quality might reveal nothing more than a vague
dip in a window much larger than the cause itself. To solve this issue, the sliding
window has to be made more narrow.

A real-time VQA model that uses shorter than ten second segments to make
its assessment does not yet exist. The aim of this research is to provide a proof of
concept for the proposed technology. By taking an existing RT VQA algorithm
and adapting it to also work for shorter video segments, it will be possible to
assess whether or not the models lose accuracy when assessing the quality of
their ever shorter video segments.

Framed as a research question, this endeavour can be summarised as:
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RQ1: ”What is the effect of shorter video samples as training data
on the accuracy of existing VQA algorithms?”

The remainder of this section explores the different facets and challenges of this
question, and how they will be handled.

3.1 Data Format

The objective of this research is to improve the state of the art of Video Quality
Assessment (VQA). The assessment of Quality is often done by analysing each
frame in a video, possibly their relation to each other and the pixels in following
frames. Therefore, it makes sense to choose a video format that allows for this
kind of analysis. Hence, the first Sub Research Question becomes:

SQ1: ”What format should the test/train data be in?”

While an mp4 is more common and takes up less storage space, the chosen
format here is the .yuv format. This is because of its availability, and its proven
effectiveness in comparable studies1. Specifically, the LIVE Video Database[13]
has been selected as the main source of test and train video material. The
database offers a range of video samples of different material, for example a
panning shot in a park or a standing shot of a busy street. The variance in
video type allows for an effective training environment that allows the model to
anticipate many kinds of video material.

While the LIVE Video Database is a logical choice in both a format and
precedent2 sense, it is less ideal in other aspects. For one, the videos are in a low
resolution of 768 by 432 pixels. This may have been state of the art streaming
material back when the database was published, but improvements in internet
technology have made for a jarringly different landscape. For another, while the
database provides a good spread of video material to properly prepare a model
for anything that is recorded by a real-world camera, many streams nowadays
consist largely of computer animated material. Whether it is a game show host
who has an animated background pasted over their green screen, or the entire
stream being a live cast of a game full of computer generated graphics. These
kinds of video material are wholly absent from the LIVE Video Database’s
videos.

These issues are taken for granted in the interest of time, and because that
despite them it is very likely the research will yield a conclusive result. By
the same logic, the choice was made to only analyse the luma component of
each frame, effectively rendering the frames to 2D arrays containing a greyscale
image. This allows for faster analysis and more efficient storage, since every
video is stripped of half of its data.

3.2 Artefact Generation

At this stage, a video library consisting of ten videos are gathered. These videos
are in pristine quality, with no quality degrading artefacts present. These need to

1Vega et Al[1] achieved a Pearson Correlation of over 90% using .yuv videos.
2As will become clear shortly, the model chosen to test our research question on is based

on the work by Vega et Al[1], who used this same database.
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be generated, preferably in a fashion that is comparable to their natural origin.
Remember here that the research focuses on live-streamed content, hence the
question becomes, how is quality typically lost in live streaming environments?

Vega et Al[1] posed that there are two main sources for quality degradation:
Data Compression, and Packet Loss. Consequently, the paper describes how the
original videos are processed by a video encoder, and sent over an artificially
lossy internet connection. The encoder was given a bitrate ranging from 64 to
5120 kbps, and the internet connection ranged from 0% to 10% packet loss.

While this is a good beginning, the second sub question arises:

SQ2: ”How should the quality lessening artefacts be generated?”

For the purposes of this research, Vega’s example is partially followed. The
modern streaming service has to compress data with varying bitrates, so the
quality loss of this dimension is worth generating. However, the modern TCP-
protocol[14] and general improvements to the stability of internet connections
make packet loss a negligible source[3] of artefacts. Hence, this research focuses
its efforts solely on the artefacts generated by video compression. For the sake of
consistency with and comparability to earlier research, using the same bitrates
that were used by Vega et Al. Specifically, the bitrates 64, 640, 768, 1024, 2048,
3072, 4096, and 5120 kilobits per second.

3.3 Machine Learning Model Selection

After having gathered both reference material and their compressed equivalents,
the next step is to choose a method to tell one from the other. Or more specif-
ically, a model will be needed that is able to assess the quality of a video. In
accordance with much of the previous research, this method will be a Machine-
Learning (ML) model. While this does give us a certain frame to work with,
a choice in model allows us to focus more on a specific type of training data.
Hence, the next sub question becomes:

SQ3: ”Which ML model(s) are most likely to yield useful results?”

Once again, Vega et Al provide part of the answer to this question. Their
research into the applicability of ML models in real-time VQA comes with an
assessment of the possible accuracy of a wide selection of models. Eventually,
they settle on an LS-Boosted Ensemble Regression Tree (ERT-LSB) model[1].
This research attempts to recreate that model with as much accuracy as possible,
within the available timeframe. Hence, the aim is to create an ERT-LSB using
our own compressed video material.

Such a model could conceivably be trained using the raw video data, but
the amount of samples required to properly train a model with an input vector
of 768x4321 elements (one for each pixel) far exceeds the availability of video
material. For this reason, and for the sake of remaining close to the original
research by Vega et Al[1], the video material is to be pre-processed and analysed
before being fed to the model. This is done according to a selection of metrics.

1This is the data carried by just one frame, if an entire video were to be analysed by
a model, this number should be multiplied by the amount of frames in the video. For an
optimistic scenario, a one second video at 25 frames per second would carry 8.3 ∗ 106 data
points as an input vector.
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3.4 Choice of Metric and Video Analysis

Vega et Al[1] motivated their choice of metrics by doing a correlation analysis
for each one they considered. Upon performing this analysis and plotting their
correlation with the Video Quality Model (VQM), their benchmark, they found
that the metrics they decided on complemented each other in terms of corre-
lation. No one metric showed complete correlation over the range of compres-
sion bitrates, packet loss, and video category, but combined the metrics hold a
broader range of predictability which a model could use to achieve higher overall
correlation with the benchmark.

Of course, the approach of this research slightly differs from that of Vega et
Al, so it stands to reason that the optimal selection of metrics might be slightly
different. The next sub question then becomes:

SQ4: ”Which of the metrics proposed by Vega et Al are most ap-
plicable to a Low-Latency environment?”

The first step towards answering this question is to categorise the eight metrics
that Vega originally used. These are Scene Complexity, Motion Intensity, Block-
iness, Jerkiness, average Blur, Blur ratio, average Noise, and Noise ratio. These
metrics are all No-Reference (NR) and pixel-based. In the following, they shall
each be described shortly and it shall be argued why they are or have not been
included in the model produced by this research. Their more formal definitions
and implementations can be found in my public Git repository[15].

• Scene Complexity and Motion Intensity are computed by the method
proposed by Hu and Wildfeuer[16], and are based on the compression pro-
cess of a video using a certain bitrate. When encoding a .yuv video, the
scene is encoded using I-frames and P/B-frames. The I-frames represent
a full image, and each consequent P- or B-frame encodes the changes that
bring the previous frame to the next. When trying to ascertain whether
a scene is complex or has a lot of motion, we can look at the relative
size of the I-frames and P/B-frames. If the compression process spends a
relatively large part of its data on the construction of I-frames, this means
each frame contains a lot of complexity that requires more data to encode,
indicating a complex scene. Consequentially, a large expenditure of data
on P/B-frames indicates that there is a large change of pixels between
each frame, probably caused by relatively high motion intensity.

The relativity is ascertained by dividing the amount of bits by a factor
containing the quantization parameter. By the words of Hu and Wildfeuer:
”the coded I-frame and P-frame bits are good indicators only if the impact
of QP on them is removed.”[16] For more details, please refer to the original
article. The precise method of application of this, and all the following
metrics, will be discussed in the next chapter.

• Blockiness arises when a video is compressed using an algorithm based
on the Block Discrete Cosine Transform (BDCT)[17]. The compression
method I used, JPEG H.264[18], is one of these algorithms. Using this
method of compression has been shown to produce images that appear
blocky, or having rough edges that are not in the original image. The
lower the bitrate used during compression, the higher the likelihood of
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the compression algorithm cutting a corner and deciding to colour a block
of pixels all one colour. Blockiness is detected by dividing the picture
into blocks of 8x8 pixels, and analysing them for blockiness. The aver-
age blockiness over the 8x8 blocks is the blockiness of the frame, and the
average per frame becomes the blockiness of the entire video. This ap-
proach is more specifically defined in the paper by Perra[19], which has
been followed in the implementation for this research.

• Jerkiness can be described as the jittery motion that occurs when either
an internet connection or the video encoder can’t keep up with the data
stream, and decides to skip a frame in order to catch up. This skipping of
frames is a perceptible artefact, commonly referred to as a freeze-frame.
The loss in quality caused by freeze-frames is called jerkiness.

Vega[20] describe a method they used to compute the jerkiness of their
videos, and used it as part of their model. However, their artefact genera-
tion is partially based on packet loss, which this research chose to omit (as
described in the above). Hence, without packet loss and with the introduc-
tion of the TCP-prootocol[14], the loss of frames and thereby the freezing
of frames is something that should not occur in the training set used by
this research. The implementation of a jerkiness metric has consequently
been omitted.

• Blur mean and ratio are two metrics used by Vega et Al[1], the defini-
tion of which originated in an article by Choi et Al[21]. Blur is perhaps
the most well-known artefact, since everyone has encountered a blurry im-
age. In video compression, blur is caused by compression using too low a
bitrate for the encoder to properly store each pixel. Instead, the encoder
decides to store the data of multiple pixels in one memory address, caus-
ing the pixels in question to become an averaged colour. This results in a
blurry image, the effects of which are akin to the upscaling of an image.

The definition provided by Choi et Al[21] and implemented by Vega et
Al[1], provide a method to compare edge pixels in the image, and decide
which of these edge pixels are blurry. this allows for the calculation of both
a measure of blurriness, and a measure of how many of the potentially
blurry edges are actually blurry, resulting in a blurriness ratio. For this
research, an attempt was made to implement the same method. Sadly
however, the implementation proved to be quite difficult to implement, and
was eventually abandoned in favour of a simpler method. To substitute
this metric, a method was selected from an article by Pertuz et Al[22].
This metric is the variance of the laplacian over each frame. This method
allows us a strong substitute for the method used by Vega, but does have
the drawback of not being able to supply the model with a blur ratio.
Hence, the average blur has been implemented as one of the metrics, while
the blur ratio has been omitted.

• Noise mean and ratio have the same origin as Blur mean and ratio, as
they are originally proposed in the same article by Choi et Al[21]. The
method proposed has a comparable approach to that of the blur method,
and hence provides both a measure of how noisy an image is, and analyses
the amount of possibly noisy edges divided by the amount of actually noisy
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edges, providing us with both a noise mean and ratio. While the method
and implementation of the noise metric is highly comparable to the blur
method, the noise gave substantially less issues during implementation.
Hence, both Noise mean and Noise ratio have been included in the model
of this research.

3.5 Labelling and Benchmarking

Now that a method has been defined by which the video material shall be
assessed and vectors can be constructed, the question becomes how to label
these vectors. As has been mentioned in the above, the benchmark that will be
used for this research is the Video Multi-method Assessment Fusion (VMAF)[3]
algorithm by Netflix. This algorithm is perfectly capable of assessing the quality
of any video it is supplied with. However, it was originally designed to work with
longer video segments, which means there is no guarantee that the analysis of a
shorter video (with a duration of one second for example) provides an accurate
assessment. Given this challenge, the following question requires an answer:

SQ4: ”How can the labelling be done such that the comparison to
the benchmark is most scientifically valid?”

The challenge that needs to be overcome is the labelling of shorter videos. Sim-
ply passing them to VMAF and asking for an assessment is inherently risky.
While the algorithm provides an assessment of both the video as a whole and
each frame in the video, a case can be made that the assessment of shorter
videos should provide no issue. However, the methods used to assess singular
frames are inherently inferior to those assessing longer segments of video be-
cause they lack the ability to compare consecutive frames. This comparison is
what provides the ability to analyse jerkiness, to give only one example.

Another option is available, and that is to make the assumption that the
assessment of the whole is a strong representation for the parts. If this as-
sumption is correct, the shorter segments can simply copy the labels of their
complete counterparts. To support this assumption, an analysis has been made
of the uniformity of the individual frame assessment. The rationale here is that
if the assessment of single-frame quality is uniform across the entire length of
the video, then the quality will not change much throughout its length, and
therefore the assessment of the whole strongly represents the hypothetical as-
sessment of the parts. The analysis of the uniformity that this method hinges
on, will be discussed in the Method section.
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Chapter 4

Method

In the previous chapter, the challenges of answering the research questions are
discussed, and preliminary solutions have been put forward. In this chapter,
I will present the actual work that went into facing the challenges, and how I
came to decide which approach I would take to tackle each.

4.1 Data Used

The first step was to collect the video material that would be analysed. As
discussed in the last chapter, the video database I decided to use was the Live
Video Database (LiveVD)[13]. This database provides 10 categories of video,
each with a reference video, and a set of pre-distorted files. The LiveVD is
meant to be used to train a Video Quality Assessment (VQA) model, where the
pre-distorted files serve as a good spread of artefacts that a model could learn
from. For my research, I decided to forego the pre-distorted images, choosing
instead to perform the artefact generation by compression myself. This ensures
accurate reproduction of the results by Vega et Al[1].

The LiveVD is available to all researchers that get permission from the orig-
inal authors of the article[13] that it was first presented in, as described in
the same article. The article also includes the exact specifications of the video
material in the database.

Category Abbr Fps Length (s)

BlueSky bs 25 8.68
Mobile Calendar mc 50 10.00
Park Run pr 50 10.00
Pedestrian Area pa 25 10.00
Riverbed rb 25 10.00
Rush Hour rh 25 10.00
SunFlower sf 25 10.00
Shields sh 50 10.00
Station st 25 10.00
Tractor tr 25 10.00

Table 4.1: Live Video Database Specifications
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The videos are separated into ten categories, each with their own abbrevia-
tion to make clear which is which. Most of the categories have a framerate of
25fps, some have an increased rate of 50fps. This can be seen in more detail in
table 4.1. In this table, the length of each video is also included. The reason
for the somewhat strange length of the Blue Sky video is unclear. For a more
detailed description of the content of each video, please refer to the original
LiveVD article[13].

After acquiring the raw material from the database, each video had to be
compressed, and later in the process be segmented in various pieces. There are
many tools to perform these kinds of task, but I chose to use FFmpeg[23]. Partly
because of the many builtin functions that will provide me with all the necessary
functionality, but also because of the large amount of experience and expertise
of my host company. I used FFmpeg for two aspects of the video processing: To
compress the videos using a certain bitrate, and to cut the videos into shorter
segments.

The compression of a video can be done through a multitude of methods,
but among the most commonly used is the MPEG/H.264[18] standard. It is also
used by Vega et Al[1], meaning it is also a logical choice in the reproduction
department. Using this standard, each reference video was converted using a
certain bitrate to generate a full-length compressed version of each category
video. The bitrates used were the same as in Vega’s research, namely 64, 640,
768, 1024, 2048, 3072, 4096, and 5120 bits per second. With ten categories and
eight compression bitrates, this leaves us with eighty compressed videos. These
videos are however in the .mp4 format, so before processing these would have
to be converted back into .yuv. Both of these operations were performed using
built-in FFmpeg functions.

After having generated the eighty full-length videos, the material was also
split into segments of various lengths. The choice of how long to make these
segments exactly, I based on the amount of frames in each video. Since the
videos are (almost) all ten seconds long, the 25fps and 50fps material consists
of 250 and 500 frames per video, respectively. When cutting these videos into
segments, I would most ideally want to avoid any cutting that tampers with the
quality. If a video is cut in between frames, the encoder will have to decide on
an in-between frame to fill up space. These in-betweens are generated, and are
therefore inherently of less quality than the pristine original. With this in mind,
the most preservative method of cutting the material into segments is to cut in
between frames. Adding the further requirement that each segment has to have
the exact same length, the resulting segment lengths that the original will be
cut into, are five, two, and one second. These will respectively result in videos
consisting of 125, 50, and 25 frames, or double that if the original happens to
be shot in 50fps.

FFmpeg also carries a built-in function to achieve this, the only special case
is the video in the Blue Sky category. Since this video is 8.6 seconds long, it
cannot be cut into 10 segments of 1 second each. Instead it has been cut into
nine segments, the last of which only lasts 0.6 seconds. It is worth mentioning
that the same approach was applied to the five and two second long segments,
resulting in one segment of 3.6 seconds, and another of 0.6 seconds. Given that
these are singular items in a list of 160, 400, and 792 items for the respectively
five, two, and one second video array, I deemed this harmless and allowed the
video into the training data to maintain the spread over the categories.
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4.2 Labelling and Benchmarking

After having generated the compressed versions of the video, in both the full
length and the segmented versions, the next step is to get our benchmark to
label each. As discussed in the previous chapter, the benchmark I will be using
is the Video Multi-method Assessment Fusion (VMAF)[3] algorithm by Netflix.
VMAF was installed on an Ubuntu 18.04, the VMAF version is 2.1.1. For each
compressed video, the compressed version was compared to the reference to
reach a score. This number between zero and a hundred indicates how much
of the quality is lost. These scores are used as the labels that the model will
train with. As previously indicated, the labels generated by VMAF are only
completely reliable on the full length videos. Any shorter than ten seconds is
not what VMAF was built for. Hence, I had to implement some sort of method
to extrapolate a label for the shorter segments from the label of the full-length
videos.

4.2.1 Uniformity of VMAF Classification

The method I implemented to achieve this has already been described in the
previous chapter. I simply assume the videos from the Live Video Database
(LiveVD) are of the same quality in every segment. If this is the case, we can
stick the label of the full-length version on each segment that splits off from it.
To support this assumption, I look to one of VMAF’s features. It does not only
supply the user with an aggregate score for the entire video, it also generates an
assessment of the quality per frame. This is not as strong an assessment, since
the comparison of frames holds information towards the quality of a video, but
it can be used as an indication of how uniform the assessment of the video is.

To get an idea of the uniformity of the assessments, I had Video Multi-
method Assessment Fusion analyse each compressed video, and analysed the
concurrent frame-by-frame analysis. The results can be seen in figure 4.1. Each
plotted line represents the aggregate score given by VMAF for the video of that
category, compressed by that bitrate. The categories used in the legends are
abbreviations, their explanations can be found in table 4.1. Each point with an
error bar represents a compressed video. The error bars represent the standard
deviation of the frame-by-frame score.

Looking at this graph, one can see that in most cases the error bars are
small enough that there is hardly any doubt that the quality of the video is
consistent across frames. The only places where this isn’t the case is in the
lowest bitrates, and in the River Bed category. The higher variance in the
lower bitrates is somewhat expected, video compression is randomly more or
less efficient depending on the exact image. If the objects moving through an
image happen to line up in such a way that they are easier or harder to be
compressed, we perceive a momentary rise or fall in quality at the frame level.
The higher the quality, the less likely it is that any such fluctuation fall out of
the bounds of the higher bitrates capacity.

This also directly clarifies the outlier in the subplots, namely the River Bed
deviations. This video pictures a shallow streaming river, which is clearly harder
to compress even with higher bitrates. In the lower regions, the same high
standard deviations are found. This is a threat to the validity of assuming
the VMAF score of the whole is representative of the shorter segments’ scores.
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Figure 4.1: Standard deviations of VMAF frame scores, plotted over the aggre-
gate assessment of that category, per bitrate.

However, the fact that they are in the lower quality region somewhat makes up
for it. If our model mislabels a video as having a score of 30, but should have
given a score of 40, this reflects poorly on our correlation. In practical purposes
however, the difference between 100 and 90 is much more important than the
difference between 40 and 20. A video with bad quality or worse quality is still
bad quality. No problems arise so long as we don’t mislabel something with
flawed quality as having perfect quality.

4.3 Metrics

After having acquired the different videos, their compressed versions, and a label
for each of these, the next step is to analyse this material. The metrics and their
motivation have already been discussed at length in the previous chapter. As
mentioned in that section, the metrics were largely based on the choices made
by Vega et Al in their research[1]. The implementation of these metrics was
done completely by hand.

The full code can be found on this research its Github[15]. There one can
go over the implementation line by line if required. Note here that the focus
of the implementation was one of clarity over performance. I chose to keep the
implementation as simple as possible to prevent any mistakes. The implemen-
tation is not meant to be fast. The metrics offer the possibility of much parallel
programming, since most of the metrics analyse the file frame by frame. A
fast solution would make use of this fact by having only one file reader, and
offering each frame to a set of analytic engines. I chose another method, one in
which I provide each metric with its own file reader, in an attempt to keep the
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implementation as contained as possible.
This approach does come with a downside. The implementations have barely

been optimised. The combination of nested for-loops, heavily duplicated code,
and lack of parallel programming make for a very slow analysis process. This
issue was circumvented by having the metric analysis functions run on a remote
server with high amounts of computation power.

4.4 Model Setup and Calibration

In their research, Vega et Al analysed a range of Machine-Learning (ML) models
to determine which is best suited for the task of Real-Time (RT) VQA. Of the
nine models that were experimented with, one was deemed the most accurate:
an LS-Boosted Ensemble Regression Tree (ERT-LSB). Since this research aims
for reproducibility, the original aim was to implement this same model.

However, the model proved somewhat elusive in its implementation, and in
order to not lose too much time I chose to implement a more simple substitute.
From the sklearn[24] modules, I implemented the RandomForestRegressor class.
This model is as close to the ERT-LSB as I could find in reasonable time, the
only aspect that is missing is the LS-boost. Both models function on the ba-
sis that a large set1 of models is constructed, each of which are then analysed
and combined in such a way that the combined model’s accuracy is optimised.
This process is inherently well-suited to biased datasets[25] and not prone to
overfitting. Because the data gathered by VMAF on the video dataset is very
skewed, this model is perfect for my purposes. It is however not the model I
set out to implement. While I did consider to invest some extra time into the
development and implementation of an LS-Boosted Ensemble Regression Tree,
The first results of the Random Forest Regressor will show that there is really
no need, especially considering the time restraints. More on this will follow in
the results and discussion chapters.

Figure 4.2: VMAF Scores Histogram over the 10s video dataset

The analysis of each compressed video showed that most of the videos have
fairly good quality. Even at a glance, it is clear to see that many of the videos
received a VMAF score between 95 and a 100. The exact histogram can be

1500 in this case
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Figure 4.3: VMAF Scores Histogram over the equalised 10s video dataset, note
that compared to figure 4.2, 40 samples in the 95-100 range have been removed.

seen in figure 4.2. Exactly 49 out of the 80 videos received a score in the top
5th percentile. The first set of tests was done with this dataset, just to see
what would happen and whether or not the results would be as skewed as the
dataset. The results of this experiment are discussed in the next chapter. The
exact configuration of the model and its parameters can be found in the project’s
public repository[15].

While the choice of model is an adequate answer to the issue of skewed data,
I still wanted to see if the model could improve by doing something about the
issue directly. I did so by developing a second data gathering function that filters
50% of the top percentile data. In doing so, it balances the data out more, which
could lead to a decrease in overfitting. The selection of which datapoints are
filtered before training is randomised completely, but I did plot out a histogram
for the VMAF scores after filtering. This can be seen in figure 4.3.

Note that the histogram in both figure 4.2 and 4.3 are concerning the ten
second database. Hence, 50% of the data comes down to 40 datapoints being
stripped from the list. In the larger datasets, this same 50% is scaled up to
reflect the higher number of data points.

With all this set up, I ended up performing eight experiments. I trained
and evaluated four Random Forest Regressors for the original skewed dataset,
one model for each segment length1. I calculated their Pearson Correlation
Coefficient (PCC) with the original VMAF labels, and plotted each predicted
value against its original label. These are the first four experiments, the second
four are identical, but use the randomly equalised dataset. In all, this results in
two images each containing four graphs, which will be presented in the Results
chapter. The precise implementation of the model and the different tests can
be found on the project’s github[15].

1These lengths are 10, 5, 2, and 1 seconds
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Chapter 5

Results

In this chapter, I will present the results of the experiments described in the
method.

5.1 Sklearn RandomForestRegressor

This section will present the predictions made by the Random Forest Regressor
models, trained on the labels gathered by VMAF and the metric data calculated
by myself. First I will present the results of using the complete dataset, followed
by the equalised1 dataset.

5.1.1 Complete Dataset

As discussed in the method chapter, I conducted four experiments with the
complete dataset. One for each video segment length, namely 10, 5, 2, and 1
second videos. I trained a model on each set of labels and metric data, performed
a tenfold cross validation, and asked the model for predictions of the data after
training. These predictions have been plotted into a scatterplot, and can be
seen in figure 5.1. Each graph in the figure denotes the video length in the
top-left corner, and displays the Pearson Correlation Coefficient (PCC) in the
top-right.

In the bottom-right graph we see the results of the ten second segment
predictions. It is quite clear that the bulk of the data has a high label, with a
large cluster of points in the [95−100] region. Also notable is the accurate cluster
in the lower and higher regions, but there are some points that are misclassified
as either having too low or too high a score. These outliers are most likely to
blame on the small size of the dataset, especially since these outliers become
rarer and less pronounced in the shorter segment graphs, which are substantially
larger. The larger datasets allow for the model to train itself more completely,
becoming ever more likely to catch the outliers and improve its accuracy.

While the correlation is strong and the linear relationship is clear, the remark
must be made that the model can score an easy 90% accuracy by blindly guessing
at a score between 95 and a 100, no matter the metrics. This can be observed by
seeing the large cluster in the top-right corner of each graph in the figure. This

1as discussed in the method chapter
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Figure 5.1: Random Forest Regression graphs, using the full dataset

is no surprise, the effect was anticipated and charted in figure 4.2. As discussed
in the method chapter, I have tried to do something about this by culling some
of the datapoints and conducting another experiment with this ’equalised’ data.

5.1.2 Equalised Dataset

For the equalised dataset, the approach is almost exactly identical. The only
difference is that the dataset is equalised before being fed to the models in
question. This is done by calculating the length of the dataset, finding how many
need to be filtered out, randomly taking that many from the labels between 95
and 100, leaving us with a more balanced dataset.

The results can be seen in figure 5.2, the layout is exactly the same as in
figure 5.1. Especially in the ten second segment graph, the effects of the data
filtering can clearly be seen. The cluster in the top-right is less dense, and some
patterns can be recognised.

The outliers are still present, apparently the filter has not done much about
the elusive nature of these few points. As we decrease the segment length
however, we see that the data filter has helped create a more linear relation,
especially in the top-right corners. Where in figure 5.1 the top-right corners of
the graph have cornered clusters, the dots in 5.2 are more angled and in line
with the expected correlations. This makes the claim that the high PCC values
are due to a precise model more substantial. Before the test it was very possible
that the correlation got an unfair boost because of the high-density cluster in
the 95 to 100 range.
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Figure 5.2: Random Forest Regression graphs, using the equalised dataset.

5.2 Correlation over Segment Length

To properly compare the effects of video segment length over correlation with
the benchmark, the Pearson Correlations from figures 4.2 and 4.3 have been
plotted in figure 5.3. While the lines in between the dots really don’t represent
anything, they do illustrate that the correlation only decreases when the metrics
are calculated using more data. I would also like to point out that the equalised
data has a consistently lower correlation with the benchmark. The explanation
for this will be discussed in the following chapters.
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Figure 5.3: Correlation with the VMAF benchmark over video segment length
used to calculate the metric data
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Chapter 6

Discussion

The purpose of this chapter is threefold. First, I will evaluate the results in the
last chapter, and discuss whether or not they provide an adequate answer to the
research questions posed at the beginning of this thesis. After this the validity of
the research is discussed by exploring what threats may still be present. Finally,
I will discuss any lingering plans or issues I had planned to explore and describe,
but did not have the time to bring to fruition.

6.1 Conclusions Drawn

The original goal of this paper was to answer the research question posed in
chapter 3: ”What is the effect of shorter video samples as training data on
the accuracy of existing VQA algorithms?” From the results presented in the
last chapter, I pose that the answer can be summarised as ’hardly any’. While
there is a clear downward trend visible in the correlation over segment length
in figure 5.3, this is most likely caused by the size of the dataset used to derive
these correlations. We see that if we filter some of the datapoints from the set,
a slight decrease is also visible. This clearly indicates that the model suffers
from being denied its data.

Another scenario that would provide the same outcome is if the model does
suffer from the shortening of the segment length, but this effect is more than
compensated for by the increase in data to train from. I deem this possibility
unlikely, since that would require the predictability of the metric labels to dive
significantly in the shorter video samples. However, when comparing1 the metric
assessments of the shorter videos with the labels for the same longer segment,
the values are not all that different. This is not surprising, since we already know
the Live Video Database (LiveVD) video quality is quite consistent from our
analysis presented in figure 4.1. Given this consistency, it can only be expected
that the temporally independent metrics result in a score that is at least in
the same range as the verdict of the longer videos. With all this in mind, the
alternative scenario seems far too unlikely to be taken seriously.

In conclusion, the combination of the uniformity of VMAF frame-by-frame
scores, and the steady decline of correlation when increasing the length of the
analysed video, can only point in the direction that the industry was hoping for.

1admittedly, on a glance level
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Shorter video segments, up to but possibly not limited to one-second segments,
can perfectly well be used to make a valid assessment of the quality. For the
experiments described in this thesis, the correlation does not decrease when
the video segment is shortened. If anything, the increase in number of video
samples caused by the splitting of the longer reference videos, only improves the
accuracy of the proposed model.

6.2 Threats to Validity

In this section I discuss what might have gone wrong or why the experiments
may not have been conclusive. While most of these points do carry some weight,
I would like to preface them with my conviction that none of them form a solid
threat to the answer I provided to the research question.

A possible threat is the size of the database used to obtain the metrics and
train the model. While Vega et Al used the same database in their research[1],
the size of their training set was multiplied by a factor of twelve by having the
material not only passed through compression, but also through an artificially
lossy network connection. This approach broadened the original set of ten videos
to 960 samples in total.

The dataset used by this research is not necessarily that small by comparison,
even though I chose to forego the packet loss angle in favour of shortening the
samples. The sample cuts make for an even larger set than the one used by Vega
et Al, totalling to 14321 samples. The problem lies in the fact that none of these
samples are labelled individually, inheriting their samples from the original they
were cut from instead. This results in quite a large dataset, but in reality this
dataset only consists of 80 unique labels, over half of which are in the top fifth
percentile.

The effect of this imbalance can most clearly be seen in figure 5.1, more
specifically the top-left graph depicting the results for the one second segment
experiment. There, many of the over 700 samples generated predictions end
up in a discrete set of vertical lines. This is an example of not necessarily
overfitting, but the model realising that more accuracy can be reached by only
guessing from a set of numbers. This most likely elevates the correlation to a
higher level than can reasonably be expected. However, while this is possibly a
light boost, the absence of any loss of correlation or accuracy still points to the
validity of the premise. The shortened video samples’ metrics still hold sufficient
predictability to obtain a valid quality assessment.

Apart from a difference in number of samples, my approach also differs in
the selection of metrics. As has been described in the method chapter, one
metric was omitted in the interest of time, namely Blur Ratio. This metric
was originally chosen for its predictive qualities, but seeing that the same kind
of accuracy can be reached eve while not implementing the complete proposed
set shows that Blur Ratio is not vital to the prediction. Perhaps an arbitrarily

1The original dataset is 10 times 8 compression rates, making for 80 samples. These videos
are then halved, creating two halves each, making 160 new samples. The videos are also cut
into fifths, and finally tenths, making for 400 and 792 (the Blue Sky category does not have
a tenth part, removing 8 samples) respectively. These together total 1432 samples.
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higher accuracy could have been reached had these metrics been implemented.
But for the purposes of this research there really is no point in spending days
of development on something that will not help prove or disprove the premise.
When applying this method in a practical context however, it would most likely
be worth the time to implement all of the metrics, provided that the real-time
application can handle the workload.

Blur Ratio is not the only omitted metric, jerkiness was in the end also left
unimplemented. The reasoning can be found in the method section. It is here
included as a mere reference to note that it is another deviation from the path
laid out by Vega et Al, but as discussed in the above, I do not believe it should
or could have had any effect on the outcome.

A metric that could have had an impact that was also omitted, is the bitrate
the video was compressed with. This metric is included Vega et Al, and when
looking at the numbers it is clear to see that there is a strong correlation between
bitrate and quality. Which is no surprise, the bitrate compression is literally the
device with which the quality degradation is forced upon the material. Then
why would I have omitted the metric, if it is so easily obtained and trained for?
Out of fear of overfitting. There is such a strong linear relationship between
bitrate and quality, that I feared the model would train itself to look at nothing
else, the rest of the metric becoming nothing more than a nuance to this one
all-deciding factor. Feeling this would be a terrible waste and most probably
more a negative impact on the correlation than anything else, I chose to omit
it from the training data. When this decision was made, I had the option in
mind that if the data turned out to have a disappointing predictive quality, I
could always include it later. Once the initial results were in and it became
clear that the rest of the metrics had more than enough merit on their own, I
never included it. Future implementations of this model that are more focused
towards optimal accuracy and less on scientific viability might be more inclined
to include bitrate as a computationally cheap accuracy boost.

Finally, the choice of video database is somewhat of a threat. While it
has a grand advantage in that it represents a connection to earlier work, it is
not exactly representative for common live-streamed material. This category of
material is mostly suffused with talking heads, green screen effects, and gaming
images. These are not at all represented by the Live Video Database (LiveVD).
While there is no sign that this same method should not work in other categories
of video, it is worth mentioning that the proposed model has not been tested
with the material most appropriate for its practical application.

6.3 Work Left Undone

In this section I will discuss what work I would have liked to do had I had more
time in the project. I think these items are not exactly Future Work, since they
are most likely not subject enough for an entire new study, but could have shed
some extra light on the findings presented in this thesis.

• Outlier and Category Analysis:
One of the recommendations of my daily supervisor was to analyse where
the outliers originate. In his own company research[5], he encountered
a large difference in quality depending on the category of video material
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used. By the same logic, my model might have problems identifying cer-
tain types of video material. It has already been shown in figure 4.1 that
VMAF has this kind of trouble with a specific video category. Determin-
ing whether this has caused the outliers apparent in figures 4.2 and 4.3
might improve the confidence one can realistically place in the proposed
model.

• Expansion of Video Sample Database:
As discussed in the previous section, the choice to use LiveVD was primar-
ily motivated by the fact that Vega et Al[1] based their research on the
same database. This ensures a measure of reproduction of earlier results
that grants a strong basis for this thesis to be built on. However, slow shots
of various kinds of scenery are not at all representative of the kind of video
material that is typically streamed. Had I been able to spend more time
on the thesis, I would have expanded my video database to see whether
or not the model would also perform on higher resolution material from
different sources, preferably the kind of material that is most popular in
interactive streaming environments. While the original research question
has been answered, therefore an inference along the lines of ”If real-time
VQA based on ten second segments is effective, and VQA accuracy doesn’t
suffer from shortening of training samples, then short sample-based VQA
must be effective in interactive streaming environments” can be made.
Still, there is no guarantee that the Live Video Database (LiveVD) has
some unintelligible quality that allows for short segment analysis, a quality
common streaming material may not possess.

• Real World Application:
While a theoretically positive results is really all I set out to accomplish,
and an actual working prototype is more than a little beyond the scope,
I would have liked to see theory become practice. While I had never had
performance in mind while developing the metrics, I was completely taken
by surprise when the analysis took multiple orders of magnitude longer
than they should have. I had not expected real-time, but neither had
I anticipated the necessity to have remote multiple cores work away for
literal days to get me my data. Finding out what is the root cause is of
this, and improving the solution by such a large margin to remove days of
computing time, seems to me like a very valuable experience.
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Chapter 7

Future Work

In this chapter I will present some avenues of further research I consider worth
pursuing, based on my findings so far and what questions still linger after my re-
search question has been answered. These recommendations are in no particular
order.

• Reconfiguration of Metrics:
In their work, Vega et Al[1] motivated their choice of metrics by attempt-
ing to make predictions based on each metric individually, and noticing
that none of them predict every category/impairment completely. The
thought is that combining them would make for more coverage, and there-
fore improve prediction accuracy.
In my work, I left out a selection of metrics for various reasons. Yet, my
accuracy is comparable to that of Vega and Al. This is most likely partly
due to the fact that my material is impaired in only one dimension (com-
pression) while Vega also generated artefacts through packet loss. Another
explanation could be that I used a different benchmark, VMAF may for
some reason be easier for a model to train with. Despite all this, the fact
that I cut 30% of the metrics and still have a very strong correlation, at
least implies that not all of them may be necessary. An improvement in
performance may be possible if it turns out that only a selection of metrics
is sufficient to achieve the same accuracy.

• Ever Shorter Segments:
In the above, I described that my motivation for the choice of sample
length was a mathematical one. I wanted each segment to have the same
amount of frames, in order to make each sample as similar to the rest as
possible. This meant that the length I wanted to cut my samples into had
to account for the prime factorisation of 250, resulting in the four lengths
I ended up with.
While I still do believe that a video analysis will give more insight into
the quality than picture analysis, meaning frame-by-frame Video Quality
Assessment (VQA) is unlikely to provide real insight, I am curious to see
where the point of diminishing returns is. If we disregard my attention to
detail and simply cut the videos into any number of frames and disregard
any leftover bits, we could analyse the effect of ever shorter video lengths
on VQA models. This could provide some insight as to what the minimal
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length of a video has to be in order to make a valid assessment. I can make
a prediction based on which metrics should work at that video length, but
a definitive answer can only be reached through experimentation. This
work has shown that the limit is at least lower than one second of material.

• Adaptability over Time:
In another work by Vega et Al[9], they explored the applicability of a
reduced-reference VQA model with not only real-time, but adaptability
over time in mind. This model would be trained on the server, applied on
the client side, and continuously trained afterwards. Every so often, the
server would send an update to the clients to keep the model up-to-date.
This is a great asset in a world that is continuously and unprecedentedly
quickly changing. This model is somewhat different than the one used
in this research, namely a Restricted Boltzmann Machine (RBM). This
model has never before been trained on shorter video segments, I for one
would be more than curious to find out if the effect described in this
thesis extends beyond a choice of model, and would be as effective in that
scenario.
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tini, and Sebastian Möller. Gamingvideoset: a dataset for gaming video
streaming applications. In 2018 16th Annual Workshop on Network and
Systems Support for Games (NetGames), pages 1–6. IEEE, 2018.

31



[12] Yuanyi Xue, Beril Erkin, and Yao Wang. A novel no-reference video qual-
ity metric for evaluating temporal jerkiness due to frame freezing. IEEE
Transactions on Multimedia, 17(1):134–139, 2014.

[13] Kalpana Seshadrinathan, Rajiv Soundararajan, Alan Conrad Bovik, and
Lawrence K Cormack. Study of subjective and objective quality assessment
of video. IEEE transactions on Image Processing, 19(6):1427–1441, 2010.

[14] Vinton Cerf, Yogen Dalal, and Carl Sunshine. Specification of internet
transmission control protocol. Internet History [6]. Ronda Hauben. From
the ARPANET to the Internet. TCP Digest (UUCP), 1974.

[15] Jelle Manders. Msc software engineering thesis. https://github.com/

JelleManders/MSc_SE-Thesis, 2021.

[16] Jing Hu and Herb Wildfeuer. Use of content complexity factors in video
over ip quality monitoring. pages 216–221, 2009.

[17] Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Discrete cosine trans-
form. IEEE transactions on Computers, 100(1):90–93, 1974.

[18] Chung-Jr Lian, Yu-Wen Huang, Hung-Chi Fang, Yung-Chi Chang, and
Liang-Gee Chen. Jpeg, mpeg-4, and h.264 codec ip development. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe -
Volume 2, DATE ’05, page 1118–1119, USA, 2005. IEEE Computer Soci-
ety.

[19] Cristian Perra. A low computational complexity blockiness estimation
based on spatial analysis. pages 1130–1133, 2014.

[20] M Torres Vega. Cognitive management and control of high speed indoor
optical wireless networks. 2017.

[21] Min Goo Choi, Jung Hoon Jung, and Jae Wook Jeon. No-reference image
quality assessment using blur and noise. International Journal of Computer
Science and Engineering, 3(2):76–80, 2009.

[22] Said Pertuz, Domenec Puig, and Miguel Angel Garcia. Analysis of focus
measure operators for shape-from-focus. Pattern Recognition, 46(5):1415–
1432, 2013.

[23] Suramya Tomar. Converting video formats with ffmpeg. Linux Journal,
2006(146):10, 2006.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[25] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized
trees. Machine learning, 63(1):3–42, 2006.

32

https://github.com/JelleManders/MSc_SE-Thesis
https://github.com/JelleManders/MSc_SE-Thesis

	Introduction
	Previous Work
	Low Latency Video Quality Assessment
	Data Format
	Artefact Generation
	Machine Learning Model Selection
	Choice of Metric and Video Analysis
	Labelling and Benchmarking

	Method
	Data Used
	Labelling and Benchmarking
	Uniformity of VMAF Classification

	Metrics
	Model Setup and Calibration

	Results
	Sklearn RandomForestRegressor
	Complete Dataset
	Equalised Dataset

	Correlation over Segment Length

	Discussion
	Conclusions Drawn
	Threats to Validity
	Work Left Undone

	Future Work
	Acknowledgements



