
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Investigating the Application of Small
Language Models for Educational Data

Storytelling

Author: Junming Ye (2803441)

1st supervisor: Dr. A.S.Z. (Adam) Belloum
daily supervisor: Dr. A.S.Z. (Adam) Belloum
2nd reader: Ana Oprescu

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

August 11, 2025

"Esto quod audes"

ii

Abstract

Data storytelling can improve student engagement, but is often limited by the

high cost of large language models. Small language models offer a cheaper op-

tion, yet their ability to create accurate and engaging educational content is

unclear. This thesis studies whether SLMs can generate story-based learning

materials from existing curriculum content. We designed a modular retrieval-

augmented generation system with two stages: knowledge extraction and story

generation. Seven Retrieval-Augmented Generation-based SLMs and 49 model

combinations were tested on a custom dataset. Results show that SLMs can

create high-quality educational materials when tasks are divided by model

strengths. Knowledge extraction models like Phi4-14B ensured factual accu-

racy, while models like Qwen2.5-7B performed better in narrative generation.

Pipelines using different models for each stage outperformed single-model sys-

tems. These findings confirm that, with thoughtful design, SLMs are a practical

and accessible tool for educational data storytelling.

iv

Contents

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Research Questions . 2

1.2 Contributions . 2

1.3 Thesis Structure . 2

2 Background 5

2.1 Retrieval-Augmented Generation . 5

2.1.1 Architectures and Developments . 5

2.1.2 Optimization . 6

2.1.3 Evaluation . 7

2.2 Small Language Models . 7

2.3 Data Storytelling . 8

3 Related Work 11

3.1 Applications of LLMs in Education . 11

3.2 Prompt Engineering Strategies for Educational Tasks 12

3.3 Storytelling and Narrative Generation in Education 12

3.4 RAG in Educational Systems . 13

3.5 Summary and Research Gaps . 13

4 Design 15

4.1 Top-level Design . 15

4.2 Knowledge Extraction . 16

4.2.1 Document Processing and Chunking 16

4.2.2 Hybrid Information Retrieval . 17

i

CONTENTS

4.2.3 Re-ranking via Cross Encoder . 17

4.3 Story Generation and Narration . 18

4.3.1 Story Generation . 18

4.3.2 Narration and Interaction Design . 20

4.3.3 Lesson Guide and Classroom Use . 20

4.4 Dataset Construction . 21

4.5 Evaluation . 23

4.5.1 Knowledge Extraction Evaluation . 23

4.5.2 Story Generation Evaluation . 24

5 Results 27

5.1 Knowledge Extraction Results . 27

5.2 Story Generation Results . 42

6 Discussion 59

6.1 Limitation of SLMs . 59

6.2 Gap between SLMs and LLMs . 61

6.3 Generalization and Guidelines . 62

6.3.1 Overview of the Pipeline . 62

6.3.2 Step-by-Step Implementation Guide 63

6.3.3 Summary Checklist . 64

6.4 Future Directions . 64

6.4.1 Integration of Multimodal SLMs . 64

6.4.2 Platform Development . 65

7 Conclusion 67

References 69

A Examples of Story Generation with Model Combinations 75

A.1 Competitive Middle-Tier . 75

A.2 Underperformers . 82

ii

List of Figures

4.1 The Top-level Design of RAG-based Data Storytelling System 15

4.2 Knowledge Extraction in Detail . 16

4.3 Flowchart of Story Generation and Narration Design 19

5.1 RAG Model Evaluation Results with All Metrics 28

5.2 Story Generation Evaluation Results Across 49 Combinations of Extraction

Models and Generation Models . 43

iii

LIST OF FIGURES

iv

List of Tables

2.1 Basic information of several open-source SLMs 8

2.2 Comparison of Data Storytelling Methods Across Different Applications . . 9

4.1 Schema of a QA Pair in the Dataset . 22

6.1 Evaluation of Knowledge Extraction by Notebooklm 61

6.2 Evaluation of Story Generation by ChatGPT-4o 62

6.3 Checklist for Building an Educational Data Storytelling System 64

v

LIST OF TABLES

vi

1

Introduction

In today’s era of big data, the ability to turn raw information into clear and meaningful

stories has become a key skill in many fields. This practice is called data storytelling (1).

It goes beyond static charts and reports by linking data points into a structured narrative.

Such a narrative provides context, explains meaning, and captures the audience’s attention.

In education, data storytelling has great potential (2). It can simplify complex ideas,

make abstract concepts easier to understand, and help students learn more effectively.

By presenting knowledge as a story, teachers can improve both knowledge retention and

classroom engagement.

While LLMs dominate AI-driven content generation, their computational cost limits ed-

ucational applications—a gap where Small Language Models (SLMs) may offer a practical

alternative. However, LLMs also have clear drawbacks: they are very large, require heavy

computation, and cost a lot to run. These problems make them difficult to use in many

schools and universities (3). To overcome these limitations, researchers have started to

focus on Small Language Models (SLMs). These models have fewer than 15 billion param-

eters and are much lighter and cheaper to run. They can still generate high-quality text

while using far fewer resources.

Although LLMs have been widely studied, there is little research on using SLMs for edu-

cational data storytelling. This task demands three key elements: factual precision, logical

coherence, and pedagogical intuition. The goal of this thesis is to explore whether SLMs

can be used to create structured, story-based learning materials from existing educational

content.

This study investigates the problem in a systematic way, guided by the following research

questions.

1

1. INTRODUCTION

1.1 Research Questions

This study addresses the following research questions:

1. RQ1: To what extent can Small Language Models be used to generate coherent and

useful educational data stories from structured materials?

2. RQ2: How do different Small Language Models, and their combinations in a multi-

step pipeline, compare in performance, factual accuracy, and narrative quality?

RQ1 examines whether SLMs can follow instructions, stay factually correct, and produce

narratives suitable for the classroom. And RQ2 aims to find the strengths and weaknesses

of different SLMs and combinations, and to see which setups work best for knowledge

extraction and story generation.

1.2 Contributions

To answer these questions, this thesis makes the following contributions:

1. We design and implement a modular end-to-end system for educational data story-

telling using Small Language Models. The pipeline uses Retrieval-Augmented Gen-

eration (RAG) and a chained-prompting strategy optimized for SLMs.

2. Our system performs a large-scale evaluation of seven SLMs within the system, and

shows how the knowledge extraction and story generation stages affect each other

and provide clear guidance for choosing the best models.

The source code for this project is available at the GitHub repository1

1.3 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 introduces key concepts such as

Retrieval-Augmented Generation, Small Language Models, and Data Storytelling. Chapter

3 reviews related research on Large Language Models in education, prompt engineering,

storytelling, and RAG applications, highlighting research gaps. Chapter 4 describes the

design of the RAG-based data storytelling system, including knowledge extraction and

story generation modules. Chapter 5 presents evaluation results comparing different Small
1https://github.com/yip-jm/eduDS

2

https://github.com/yip-jm/eduDS

1.3 Thesis Structure

Language Models and their combinations. Chapter 6 discusses the findings, limitations,

and future research directions. Chapter 7 concludes by summarizing the contributions and

key insights.

3

1. INTRODUCTION

4

2

Background

2.1 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) is a technique that combines information retrieval

with generative models (4), enabling large language models (LLMs) to incorporate au-

thoritative external knowledge before generating responses. By leveraging this external

information, RAG significantly improves the relevance, accuracy, and utility of generated

content—especially in specialized or knowledge-intensive tasks—while effectively mitigat-

ing hallucination issues without requiring model retraining (5, 6). This approach not only

maximizes the potential of LLMs but also broadens their applicability across a wide range

of professional domains.

2.1.1 Architectures and Developments

The RAG architecture primarily consists of three key components: indexing, retrieval,

and generation. In the indexing stage, documents are divided into chunks, which are

then transformed into vectors using an embedding model and stored in a vector database.

During retrieval, the user’s query is compared against the vector database to find the top-K

most relevant chunks based on similarity. In the generation stage, the retrieved content is

combined with the query and input into LLMs to produce the final answer.

According to its development, Gao et al. categorize RAG into three stages: Naive

RAG, Advanced RAG, and Modular RAG(6). Naive RAG follows the traditional pipeline,

consisting of indexing, retrieval, and generation. Advanced RAG enhances the retrieval

process by introducing pre-retrieval and post-retrieval process(7, 8, 9), aiming to improve

retrieval efficiency and increase the utilization of retrieved chunks. Modular RAG decouples

components such as retrieval and generation, with each module responsible for a specific

5

2. BACKGROUND

function. In the Modular RAG designed by Gao et al., an orchestration mechanism is

introduced to dynamically select the subsequent steps in the RAG workflow(10).

2.1.2 Optimization

The optimization of RAG can be divided into three key stages based on indexing, re-

trieval, and generation, specifically involving input enhancement, retriever enhancement,

and generator enhancement.

Input enhancement primarily includes two methods: query transformation and data

augmentation. Query transformation involves generating pseudo-documents based on the

original query and using them as new inputs for retrieval, thereby improving retrieval

accuracy (8). Data augmentation preprocesses the data before retrieval, where structured

representations enhance the precision and usability of the information (11).

For retriever enhancement, multiple approaches can be employed to improve the quality

of retrieved content and to better utilize in-context learning capabilities, including Re-

cursive Retrieval, Chunk Optimization, Finetuning the Retriever, Hybrid Retrieval, and

Reranking. Recursive retrieval performs multiple rounds of search to obtain richer and

higher-quality content. Chain-of-Thought (CoT) reasoning in ReACT enables multi-step

retrieval through query decomposition, allowing access to more comprehensive informa-

tion (12). Chunk optimization techniques improve retrieval results by adjusting the size

of text chunks. Sliding window is an effective method that captures contexts to enhance

retrieval relevance, while LlamaIndex organizes documents into a tree structure and per-

forms hierarchical retrieval, automatically merging results layer by layer (13). As the core

component of a RAG system, the retriever can further enhance its representation capa-

bilities in specialized domains by using high-quality embedding models such as BGE and

AngIE (14, 15). Hybrid retrieval integrates sparse and dense retrievers to handle diverse

query types better, while reranking the retrieved results increases the visibility and utility

of critical information (16).

In the generation stage, prompt engineering can guide large language models to produce

more relevant and higher-quality outputs. Specifically, this includes zero-shot, few-shot,

role prompt, instruction prompt, and chain-of-thought (CoT) prompting methods. Zero-

shot prompting refers to using a prompt without providing any examples, allowing the large

language model to perform the task directly (17). This approach is also considered one of

the key settings for evaluating the inherent capabilities of large language models. In Few-

shot prompting, few-shot examples provide large language models with in-context learning,

guiding them in both the format and content of the desired output (18). Role prompting

6

2.2 Small Language Models

assigns the model a specific role, which helps enhance its performance on targeted tasks by

aligning its responses with the expectations of that role (19). Compared to a basic prompt,

instruction prompting provides the model with a comprehensive description of the task,

enabling it to generate outputs that are more precise and relevant (20). CoT prompting

encourages the model to generate intermediate reasoning steps or a “chain of thought,”

simulating the human problem-solving process to enhance its ability to perform complex

reasoning tasks (21).

2.1.3 Evaluation

For the evaluation of the RAG system, it can be primarily divided into two aspects: re-

trieval, generation. The retrieval component is assessed based on how effectively it identi-

fies and ranks relevant documents from a large corpus, which is crucial for grounding the

generated content in factual evidence. Metrics such as Recall, Effective Information Rate

(EIR), and normalized discounted cumulative gain (nDCG) are commonly used to evaluate

retrieval quality. On the other hand, the generation component is evaluated by examining

the quality, relevance, coherence, and factual consistency of the final output(22, 23).

2.2 Small Language Models

Large Language Models (LLMs) have demonstrated impressive performance across a wide

range of tasks. However, their massive parameter sizes and high computational demands

present significant challenges in terms of time and computational cost. To address these

challenges, Small Language Models (SLMs), which typically have fewer than one billion

parameters, have emerged as lightweight alternatives. With lower computational overhead

and strong practicality, SLMs are becoming an increasingly important choice for real-world

applications.

The development of SLMs relies on a variety of technical methods to reduce model

size while maintaining strong performance. Knowledge distillation allows smaller models

to learn from the outputs or internal representations of larger models, enabling effective

domain-specific enhancement (24). Weight pruning reduces computational overhead by re-

moving redundant parameters without significantly sacrificing accuracy (25). Quantization

uses low-precision numerical formats to lower memory consumption (26). Efficient network

architectures such as DistilBERT (27) and MobileBERT (28) achieve reduced model size

and improved computational efficiency through techniques like parameter sharing and bot-

tleneck layers, while preserving model depth.

7

2. BACKGROUND

As shown in Table 2.1, in the open-source community, several well-optimized models

have emerged, including DeepSeek-LLM, Gemma, Qwen2.5, OpenChat, Llama3.1, OLMo2,

and Phi-4. DeepSeek-LLM is known for its strong capabilities in code generation and

mathematical reasoning, making it well-suited for complex tasks (29). Gemma performs

exceptionally well in academic benchmark tests for language understanding, reasoning,

and safety (30). Llama3.1 enhances long-context retention and multilingual generalization

while aligning better with safety benchmarks (31). Olmo2 is a fully open and transparent

research model designed for reproducible scientific evaluation (32). Openchat is a conver-

sational AI model designed to enhance open-source language models using mixed-quality

data, with optimizations for instruction following and multi-turn dialogue (33). Qwen2.5,

trained on high-quality bilingual data with an advanced tokenizer, excels in multilingual

and instruction-following tasks (34). and Phi-4, developed by Microsoft, achieves a balance

between performance and efficiency through architectural optimizations and high-quality

training data, demonstrating strong capabilities in reasoning and mathematics (35).

SLMs Deepseek-llm Gemma Llama3.1 Olmo2 Openchat Qwen2.5 Phi-4
Size 7B 7B 8B 7B 7B 7B 14B

Provider Deepseek Google Meta Allenai Tsinghua Alibaba Microsoft

Table 2.1: Basic information of several open-source SLMs

2.3 Data Storytelling

In the era of abundant data, the ability to extract meaningful narratives from complex

datasets has become a crucial interdisciplinary skill. Traditional methods of data presen-

tation, which focus on static visualizations and numerical reports, have now evolved into

a more dynamic and context-sensitive practice known as data storytelling. This approach

integrates data analysis, narrative construction, and visual presentation, which not only

aids understanding but also enhances engagement, persuasion, and decision-making.

Based on my previous research (36), data storytelling is typically conceptualized as a

three-stage process comprising data exploration, story construction, and story narration.

The exploration phase involves descriptive, diagnostic, predictive, and prescriptive analyt-

ics, enhanced by exploratory data analysis. Story construction entails two key components:

narrative modeling and visual representation. A variety of narrative frameworks, such as

Freytag’s Pyramid, Aristotle’s three-act structure, and Campbell’s Hero’s Journey, are

used to shape coherent, emotionally resonant stories. Visual representation must balance

8

2.3 Data Storytelling

clarity, salience, and audience engagement, often guided by design heuristics rooted in

human visual perception. The final stage, narration, focuses on the delivery of the story,

ranging from linear, author-driven formats to interactive, reader-driven designs. AI is in-

creasingly integrated into this stage, enabling adaptive storytelling, personalized content,

and immersive environments through AR/VR technologies.

Applications of data storytelling are notably domain-specific, with significant method-

ological and strategic variations observed across journalism, education, finance, and medicine,

as shown in Table 2.2. In journalism, data storytelling is used to communicate complex

societal issues to the general public, employing structures like the 5W-1H model and in-

tegrating interactive visualizations to enhance comprehension and engagement. In educa-

tion, digital storytelling serves as a pedagogical tool, emphasizing emotional connection

and student co-creation through multimedia narratives. In finance, storytelling frame-

works are designed to support decision-making, with curated dashboards and structured

reports aimed at different stakeholders. In medicine, narrative and visual techniques are

applied to communicate clinical data and treatment information effectively to both profes-

sionals and patients, often employing 2D/3D interactive tools to enhance accessibility and

comprehension.

Applications Journalism Education Finance Medicine

Data Exploration descriptive abstract concepts
descriptive,
diagnostic,
predictive

descriptive,
diagnostic

Story Construction
linear structure;

5W-1H framework

7 key elements,
4 key steps,

student participation

5 key attributes,
three-stage policy model

characters, plot, themes,
Freitag’s Pyramid,

Hero’s Journey

Visual Representation
annotated charts,

interactive graphics,
multimedia elements

multimedia integration
(images, audio, video)

line charts,
dynamic graphs,

dashboards

interactive 2D/3D
visualizations,

medical animations

Story Narration linear/hybrid structures
first-person perspective,

question-driven
problem-solution structure,

tailored to audience

patient-centered,
reader-driven model,

interactive slides

Table 2.2: Comparison of Data Storytelling Methods Across Different Applications

Recent advancements in artificial intelligence have profoundly reshaped the landscape of

data storytelling. AI technologies now contribute not only to automated data analysis but

also to the generation of narrative content, visualization recommendations, and delivery

customization. Despite these innovations, scholars emphasize that human oversight re-

mains indispensable to ensure contextual appropriateness, narrative coherence, and ethical

integrity, particularly as AI systems may lack domain-specific understanding and trans-

parency. Therefore, the field is moving toward a paradigm of human–AI collaboration,

9

2. BACKGROUND

where automation enhances, rather than replaces, human interpretive and communicative

capacities.

The literature study consistently conceptualizes data storytelling as a three-stage process:

data exploration, story construction, and story narration, supported by both narrative the-

ory and visual design principles. While domain-specific adaptations exist, such as the par-

ticipatory and multimedia-rich approach in education, current research still shows several

gaps relevant to this thesis: (1) Most educational applications prioritize narrative engage-

ment but lack systematic frameworks to ensure factual accuracy and structured knowledge

delivery, particularly when transforming abstract curriculum concepts into coherent sto-

ries. (2) The integration of AI, especially Small Language Models, remains underutilized

for end-to-end educational storytelling pipelines. (3) Although human–AI collaboration

is widely acknowledged as necessary for contextual appropriateness and ethical integrity,

practical, scalable systems embedding retrieval-augmented generation into storytelling for

classroom use are scarce. This thesis aims to address these gaps by building a modular

RAG-based system that brings together factual accuracy, narrative coherence, and align-

ment with teaching goals, using SLMs to create accessible and high-quality educational

data stories.

10

3

Related Work

Large Language Models (LLMs) have demonstrated significant potential in various areas,

particularly in education. They can create content, provide personalized feedback, and as-

sist in building interactive learning environments. Due to these abilities, numerous studies

have been conducted in this field. In this chapter, we review previous research from four

main areas that are closely related to our topic: (1) how LLMs are used in education, (2)

prompt engineering methods for educational purposes, (3) using storytelling and narra-

tives in teaching, and (4) Retrieval-Augmented Generation (RAG) in smart educational

systems. At the end, we point out the research gaps that our study hopes to fill.

3.1 Applications of LLMs in Education

The integration of LLMs into educational settings has enabled novel teaching and learning

paradigms. George (37) outlined four key areas where generative AI can benefit postgrad-

uate education: personalized learning, automated feedback, intelligent research support,

and content creation. However, the study remains largely exploratory and lacks a concrete

system architecture for real-world deployment. In contrast, our work offers a fully modular

and deployable framework tailored for classroom integration, focusing on practical usability

rather than conceptual potential.

Similarly, Thüs et al. (38) developed a RAG-based system OwlMentor, which demon-

strates how AI can support metacognitive strategies (such as self-questioning, summariz-

ing, and self-explanation) and improve answer accuracy through semantic retrieval and

context generation. In contrast, our work investigates the use of small models for adap-

tive, instructor-driven teaching. We enable teachers to integrate their own course materials

11

3. RELATED WORK

and leverage data storytelling to interpret students’ learning trajectories and conceptual

understanding.

3.2 Prompt Engineering Strategies for Educational Tasks

Prompt engineering plays a critical role in adapting LLMs to educational goals. Chen et

al. (39) conducted a systematic review of prompt strategies used in K–12 STEM educa-

tion, categorizing techniques such as zero-shot learning, chain-of-thought prompting, and

retrieval-augmented prompting. These methods were evaluated across multiple tasks, in-

cluding tutoring, curriculum alignment, and concept explanation, with generally positive

outcomes.

Building on these findings, our system integrates prompt engineering as a core design

element. We develop tailored prompt templates aligned with instructional goals and apply

them systematically across stages of content generation, from factual retrieval to narrative

synthesis. This integration improves the factuality, fluency, and educational relevance of

outputs, even when using smaller, more efficient language models.

3.3 Storytelling and Narrative Generation in Education

Storytelling has long been recognized as an effective pedagogical method to improve stu-

dent engagement and conceptual understanding. Jiang et al. (40) applied narrative gen-

eration techniques in legal education, using LLMs to simplify complex legal concepts for

non-experts. Their results showed improved comprehension through narrative framing,

although their approach remained confined to a specific domain.

Our work generalizes this idea by introducing a storytelling pipeline adaptable to STEM

education. Through the use of guided prompts and model scaffolding, we transform struc-

tured knowledge into pedagogically effective teaching stories. Furthermore, we evaluate

several small-scale LLMs in terms of narrative fluency and factual accuracy to ensure that

the generated content aligns with instructional goals.

In addition, Eldan and Li (41) demonstrated that small LLMs, when guided with care-

fully designed prompts, are capable of producing coherent and fluent short stories. Inspired

by their findings, our system incorporates prompt templates, predefined structural cues,

and content constraints to support smaller models in generating instructional narratives

that are both imaginative and educationally meaningful.

12

3.4 RAG in Educational Systems

3.4 RAG in Educational Systems

RAG has emerged as a key mechanism for combining external knowledge retrieval with

generative outputs, enhancing both factual accuracy and contextual relevance. Its use in

education is growing, particularly for question answering and reading support. Wang et

al. (3) provided a comprehensive review of LLMs in education, examining use cases such

as intelligent tutoring, automated grading, question generation, and content summariza-

tion. Of particular relevance to our work is their identification of RAG as a promising

approach to enhance the factual reliability of LLM outputs in educational contexts. While

their study highlights the potential of such methods, our work advances this discourse by

operationalizing RAG within a structured lesson generation pipeline, with a specific focus

on the creation of story-based instructional content that aligns with pedagogical goals.

For instance, the AI-University platform (42) leverages LLMs and RAG to align gen-

erative content with instructional goals in scientific education, improving alignment with

learning standards and domain knowledge. While the system showcases the utility of

RAG for educational support, it primarily enhances isolated tasks rather than generating

structured content such as lesson plans or stories.

Our work expands the role of RAG from a supportive backend function to a central

design component. We use RAG not only to ensure factual accuracy but also to structure

content progression and guide the generation of coherent, multi-part teaching narratives.

Furthermore, Pan et al. (43) introduced a method to guide generative storytelling using

structured knowledge graphs. Their system improved coherence and topic relevance in

generated narratives, while it may be less suitable for introspective, emotion-driven stories,

particularly when using smaller LLMs.

3.5 Summary and Research Gaps

Across these thematic areas, prior research highlights the significant potential of LLMs in

education. However, several gaps remain:

• Lack of practical, scalable systems: Many studies stop at proof-of-concept sys-

tems or domain-specific tools, without addressing real-world classroom usability or

modularity.

• Underutilization of storytelling: Despite its pedagogical value, storytelling is

rarely treated as a central design component in educational AI systems.

13

3. RELATED WORK

• Prompt engineering fragmentation: Prompt design is often addressed in isola-

tion, without integration into full pipelines for educational content generation.

• Limited role of RAG: Although increasingly used for factual enhancement, RAG

is seldom embedded as a core mechanism driving structured educational outputs.

• Over-reliance on large models: Many systems rely on high-resource LLMs, lim-

iting accessibility and scalability.

Our work addresses these challenges through an end-to-end, modular system that in-

tegrates RAG, prompt engineering, and small language models to generate educational

stories grounded in curriculum-aligned knowledge. By embedding storytelling and factual

retrieval within a guided prompting framework, we offer a novel, lightweight solution for

real-world educational deployment.

14

4

Design

This chapter presents the design of the proposed RAG-based data storytelling system for

educational applications. It introduces the overall architecture and describes each major

component in detail, including the knowledge extraction module, the story generation

and narration module, the dataset construction process, and the evaluation methodology.

Additional details, including step-by-step implementation guidelines and recommendations

for adapting the system to different contexts, are provided in Section 6.3.

4.1 Top-level Design

The proposed system is designed as a complete pipeline for generating educational data

stories based on structured domain knowledge. It combines RAG with modular story gen-

eration and interactive narration, aiming to support teachers in preparing lesson content

that is both accurate and engaging. The system’s architecture, shown in Figure 4.1, is mod-

ular and interpretable, consisting of three main components: Knowledge Extraction,

Story Generation, and Story Narration.

Knowledge Extraction

sub.task 1: PDF Parser

sub.task 2: Knowledge
Extraction based on RAG

Story Generation

sub.task 3: Lesson Plan
Outline

sub.task 4: Story
Generation

Interactive Narration

sub.task 5: Generate
Activity & Discussion

Input

Figure 4.1: The Top-level Design of RAG-based Data Storytelling System

15

4. DESIGN

4.2 Knowledge Extraction

The knowledge extraction module is the first and foundational step in the overall system

architecture. Its objective is to convert raw learning materials, such as textbooks and

PDF documents, into semantically meaningful, structured chunks of information suitable

for downstream story generation and interactive narration. This section details the design

choices and workflow of the knowledge extraction process, as illustrated in Figure 4.2

Knowledge
base

Directory
Loader

Semantic
Chunker

Recursive
Character Text

Splitter

add metadata
(chunker_id,

content_type)

Knowledge Extraction in Detail

Hybrid Retriever

Keyword-based
retrieval using

BM25

Vector-based search with
Chroma and

HuggingFaceEmbedding

Ensemble
Retriever

Cross Encoder

Figure 4.2: Knowledge Extraction in Detail

4.2.1 Document Processing and Chunking

The process begins by collecting input documents into the system’s knowledge base. These

documents are loaded using a directory loader and processed through a two-stage chunking

pipeline, which is designed to maintain both semantic clarity and proper text length.

To deal with the complexity of educational documents—such as multi-column layouts,

tables, and figures—we use an open-source tool called minerU for PDF parsing. minerU

performs well in preserving the original document structure and ensures clear content

extraction.

16

4.2 Knowledge Extraction

After parsing, the documents go through a dual-stage segmentation process:

• Semantic Chunker: First, the documents are split into semantically meaningful

parts using embedding-based similarity. This ensures that each chunk focuses on one

main idea or concept.

• Recursive Character Text Splitter: Then, a second layer of segmentation is

applied. This uses a character-based recursive approach to keep chunks within a

length limit, making them suitable for downstream processing.

Each chunk is then tagged with metadata, including a unique chunker_id and an inferred

content_type, which helps in tracking and retrieving relevant information later.

4.2.2 Hybrid Information Retrieval

To support RAG, the system implements a hybrid retrieval strategy that integrates both

keyword-based and semantic search mechanisms. This design is motivated by the strengths

and limitations of each method:

• Keyword-based retrieval (BM25): This method is effective for finding exact

matches, especially when the query contains technical terms from the educational

domain.

• Vector-based retrieval (Chroma + HuggingFace Embedding): This allows

the system to retrieve semantically similar content, even when the query uses different

words or phrasing.

The results from these two retrieval methods are merged by a Hybrid Retriever, which

ranks them together to improve accuracy and coverage.

4.2.3 Re-ranking via Cross Encoder

After retrieval, all candidate chunks are passed into a Cross Encoder for re-ranking. Un-

like the individual scoring methods used in sparse or dense retrieval, the Cross Encoder

processes the query and chunks together, which improves the accuracy of relevance scoring.

Only the top-k documents with the highest relevance scores are retained for the genera-

tion phase. This step ensures that only contextually appropriate and high-quality content

is used during narrative construction.

17

4. DESIGN

4.3 Story Generation and Narration

The story generation and narration component is responsible for transforming structured

domain knowledge into engaging, pedagogically effective educational stories. Given the

token limitations of SLMs, our system does not generate the entire story in one prompt.

Instead, it adopts a modular pipeline approach using chained prompts as shown in Figure

4.3. This strategy allows complex tasks to be broken down into smaller, more manageable

steps, ensuring higher quality and coherence in the generated output. The overall design

follows four core principles:

• Decoupling: The system first builds a general lesson outline, and teachers can then

request detailed story modules as needed.

• Mapping & Transformation: Structured knowledge fields are carefully mapped

to story elements based on storytelling theory.

• Interactive Generation: Teachers are actively involved. They can review, select,

and adjust each generated output step by step.

• Focus & Brevity: Each prompt is task-specific, keeping the output clean, relevant,

and within the token limits of small models.

4.3.1 Story Generation

The system employs a chained, modular prompt strategy: each teaching module is cre-

ated through two separate prompts—one for storytelling and another for activity genera-

tion—both centered around a single concept. This strategy follows the design principle of

“divide and conquer”, reducing cognitive load for the model and ensuring focus and depth

at every step.

For each Core Concept in the knowledge base, the system first generates a micro-narrative

using a carefully designed storytelling prompt. The prompt explicitly follows a three-part

narrative structure: Problem → Solution → Impact, which aligns with Abrahamson’s(1)

narrative theory. In addition, elements from Alismail’s(2) digital storytelling framework—such

as Dramatic Question and Point of View—are embedded as storytelling hooks to increase

emotional resonance and student engagement.

The prompt only includes data from one Core Concept at a time (e.g., its definition,

significance, strengths, and weaknesses). This focused context allows the model to fully

18

4.3 Story Generation and Narration

Loop:
Core_Concepts

Yes

Complete?
No

Generate Lesson Plan Outline

LLM: Generate Outline

Generate Story Module

LLM: Generate Story

Generate Activity Module

Prompt: activity_discussion

LLM: Generate Activities

Return Markdown Doc

Use: knowledge_base core fields

Use: concept JSON

Use: Strengths, Weaknesses

Figure 4.3: Flowchart of Story Generation and Narration Design

19

4. DESIGN

explore the concept, ensuring that the generated story is both detailed and educational.

Each story is formatted in Markdown and labeled with a clear section title.

4.3.2 Narration and Interaction Design

Immediately after generating the story, the system proceeds to create interactive classroom

activities for the same Core Concept. These activities are designed to reinforce key ideas

and stimulate discussion, making the story more than just passive content.

The activity generation prompt asks the model to create:

• Debate questions based on strengths and weaknesses of the concept;

• Real-world scenarios where students must make decisions or solve problems.

This step operationalizes the concept’s educational potential through interactive narra-

tion, following the principles of learner-centered pedagogy. Activities are designed to be

adaptable for group discussions, in-class polls, or homework assignments.

Each activity section is generated separately and appended under its corresponding story

module, forming a complete mini-package.

4.3.3 Lesson Guide and Classroom Use

Once both the story and its corresponding activity are generated for a concept, they

are combined into one Markdown section. Over multiple iterations, this process builds a

complete, modular lesson package, with each concept turned into an independent teaching

module. These modules can be rearranged, removed, or reused depending on the teacher’s

needs.

This design brings three major benefits:

1. Instructional clarity: Each concept’s story and activity are paired, making the

material easy to teach and follow.

2. Token efficiency: Since each module is generated separately, there is no danger of

running out of model context.

3. Personalization potential: Teachers can manually adjust individual modules or

regenerate specific parts to suit different audiences.

20

4.4 Dataset Construction

Overall, the story generation and narration system bridges the gap between structured

knowledge and educational storytelling. By adopting a modular, controllable design, teach-

ers can flexibly guide the generation process while producing high-quality narrative outputs

that are engaging, informative, and classroom-ready. The modular structure and interac-

tion design further support meaningful learning experiences that extend beyond simple

content delivery.

4.4 Dataset Construction

To support the development of a RAG-based data storytelling system in the educational

domain, a high-quality dataset is essential. The goal of this dataset is to simulate real-

istic educational question-answer scenarios that align with actual teaching processes. We

designed and generated a custom dataset tailored to classroom teaching and curriculum

planning. The motivation for creating this dataset is threefold:

1. Educational Relevance: Existing datasets often lack structured teaching context

or fail to align with knowledge points taught in actual courses. Our dataset directly

reflects curriculum planning and instruction design around specific topics.

2. Structured Knowledge Extraction: Our system relies on the accurate identi-

fication of core concepts and their contextual importance. Therefore, our dataset

is annotated with rich concept-level metadata for downstream reasoning and story-

telling.

3. Realistic Simulated Data: Given the limited availability of labeled educational

data, we simulate a teacher’s thought process using GPT-4o to generate question-

answer pairs that reflect real-world use cases automatically.

The dataset consists of 100 structured question-answer (QA) pairs, each centered around

a specific knowledge topic, designed to simulate a teacher’s lesson preparation process.

To generate realistic and domain-relevant content, we designed a semi-automated pipeline

using GPT-4o. In this pipeline, the model was guided to act as a teacher preparing for

a class session on a selected topic. The model received detailed instructions to simu-

late a planning query—typically representing a teacher requesting a breakdown of specific

subtopics, conceptual comparisons, or instructional focus areas. These prompts closely

mirror real-world teaching needs in computer science education.

For example, one such prompt was:

21

4. DESIGN

{ "Question": "I need to prepare lessons on virtualization, with a focus on

full virtualization, para-virtualization, and hardware-supported virtualization.

Include how each method works, the role of hypervisors (Type 1 and Type 2), and

performance implications." }

From this input, the model generates a structured response that adheres to a strict

schema, including the high-level knowledge topic, core concepts with detailed meta-

data, and a concise summary, as shown in Table 4.1. This schema design ensures

consistency and completeness across all generated entries.

Field Name Description
Question The original user query simulating a teacher’s request

for preparing a lesson on a specific topic.
Knowledge_Topic A high-level subject area that the question falls un-

der, such as “Virtualization” or “Mutual Exclusion
Algorithms”

Core_Concepts A list of key concepts relevant to the question, each
annotated with detailed semantic metadata (see be-
low).

Concept The name of the concept involved in the topic.
Definition A concise explanation of the concept.
Key_Points A list of major facts or ideas that define the concept,

ideally three or more.
Significance_Detail Explanation of why the concept is important or rele-

vant in context.
Strengths One or more strengths or benefits of the concept.
Weaknesses One or more limitations or challenges associated with

the concept.
Source_Context Relevant background content supporting the ques-

tion.
Overall_Summary A one-to-two sentence summary that provides a di-

rect, concise answer to the question.

Table 4.1: Schema of a QA Pair in the Dataset

While the topics are grounded in foundational and commonly taught areas of computer

science, our focus is not on exhaustive topic coverage but rather on demonstrating the

feasibility and effectiveness of structured QA generation for downstream storytelling tasks.

Importantly, the dataset was constructed with a forward-looking objective: to serve as

22

4.5 Evaluation

a foundational layer for generating rich, accurate, and pedagogically grounded educational

stories. Each QA pair provides both the content and structure necessary for later stages of

narrative construction with small language models, such as identifying causal relationships,

sequencing ideas, and selecting relevant conceptual elements for data storytelling.

These datasets yield a total of 700 results in the RAG module (100 per language model)

and a total of 4900 results in the Story Generation module.

4.5 Evaluation

To evaluate the system’s generalizability and efficiency across different model scales and

capabilities, we conducted a series of comparative experiments involving seven leading small

language models: DeepSeek-LLM, Gemma, Qwen 2.5, OpenChat, LLaMA 3.1, OLMo 2,

and Phi-4. These models were tested on identical input knowledge bases, using the same

prompt templates and orchestration logic. We conducted a two-part evaluation focused on

its two main functional stages: (1) Knowledge Extraction and (2) Story Generation and

Narration.

4.5.1 Knowledge Extraction Evaluation

The goal of the Knowledge Extraction module is to convert educational PDF materials into

a structured and machine-readable knowledge base in JSON format. The quality of this

stage directly affects the reliability of all downstream story generation tasks. All evaluation

metrics are scored on a scale from 0 (worst) to 5 (best).

We designed two automatic metrics to evaluate the knowledge extraction results:

1. Retrieval Score: This score measures how well the retrieved chunks semantically

align with both the user’s question and the key information in a reference set. For

each reference sentence and the input question, we compute its maximum similarity

with the retrieved chunks, and take the average across all.

2. Generation Score: This score assesses the quality of the generated answer, includ-

ing faithfulness, accuracy, and completeness. We define three sub-criteria:

• Faithfulness: We check whether the generated content is strictly grounded in

the retrieved context.

• Accuracy: This measures whether all key facts, concepts, and definitions are

correct.

23

4. DESIGN

• Completeness: This evaluates whether all required aspects of the question

are addressed. For example, in our dataset, the output should cover definition,

significance, strengths, and weaknesses.

Generation Score =
Faithfulness + Accuracy + Completeness

3

Together, these two scores provide a comprehensive view of the RAG system’s perfor-

mance. The Retrieval Score ensures that the system is using the right evidence, while the

Generation Score evaluates whether the final output is both factually reliable and well-

written. To reflect their relative importance, we compute an overall score as a weighted

sum:

Overall Score = 0.4 ∗ Retrieval Score + 0.6 ∗ Generation Score

This weighting emphasizes the quality of the generated answer while still accounting for

the relevance of the retrieved evidence. In many real-world scenarios, users primarily care

about the final answer’s fluency and factual accuracy, which often depends on—but is not

solely determined by—the quality of retrieval.

4.5.2 Story Generation Evaluation

This stage is the most visible output of the system, where structured concepts are turned

into engaging teaching stories and class activities. The evaluation here aims to assess the

educational quality, logical consistency, and generation controllability across models.

We used two automatic evaluation metrics to score each generated module:

1. Story Quality Score: Each teaching story is evaluated by DeepSeek-V3 acting as

a scorer. We defined a scoring rubric with four criteria:

• Structure: Whether the story follows the required Problem → Solution →

Impact structure

• Factual Accuracy: Whether the story content stays consistent with the source

concept

• Narrative Coherence: Whether the story flows logically without contradic-

tions

24

4.5 Evaluation

• Educational Engagement: Whether it includes teaching hooks like questions

or analogies

• Fluency & Consistency: Whether the text contains grammar issues or hal-

lucinations

Story Quality Score =
Sum of 5 Metrics

5

2. Activity Quality Score: For each classroom activity (e.g., debate, roleplay, or

scenario-based discussion) generated from the concept’s strengths and weaknesses,

we evaluate:

• Narrative Grounding: Is the activity meaningfully embedded in the gen-

erated story context (e.g., characters, plot tension, or moral dilemma), rather

than being a generic or disconnected task?

• Classroom Applicability Usability: Can the activity be directly used in a

classroom setting to promote student engagement, critical thinking, or collabo-

rative exploration of the concept?

Activity Quality Score =
Sum of 2 Metrics

2

Then we have:

Overall Score =
Activity Quality Score + Story Quality Score

2

All evaluations are performed by prompting DeepSeek-V3 with carefully designed scoring

rubrics. For each task (e.g., story quality, activity engagement), we define 3–4 detailed sub-

criteria. Each sub-score ranges from 0 (worst) to 5 (best). All final scores are calculated

as the average of their respective criteria scores.

25

4. DESIGN

26

5

Results

This chapter presents a comprehensive evaluation of seven small language models in data

storytelling for educational applications. The evaluation consists of two main components:

the performance of the Knowledge Extraction, which is responsible for information retrieval

and factual integration, and the performance of the Story Generation, which transforms re-

trieved information into coherent narrative texts. The evaluation follows a set of predefined

criteria based on the proposed design in Section 4.5.

5.1 Knowledge Extraction Results

To better understand model behaviors in Knowledge Extraction tasks, we conducted a

comparative evaluation across multiple models. The experimental results revealed notable

differences in performance among the models. Their detailed evaluation scores are pre-

sented in the Figure 5.1, ranked in descending order by Overall RAG Score.

Key findings are summarized as follows:

1. Overall Performance tiers among Models

The model Phi4_14b (3.67) achieved the highest overall score and outperformed

others across all sub-metrics, establishing itself as the top performer. It was fol-

lowed closely by Qwen2.5_7b (3.60). Together, these two models formed the top-

performing group. In contrast, the remaining models belonged to a competitive mid-

dle tier, with minimal differences in their overall scores (only 0.07), indicating similar

levels of competence in RAG tasks. Olmo2_7b (2.78) performed significantly worse

than the others, with an overall score nearly 19% lower than that of the next-lowest

model.

27

5. RESULTS

Figure 5.1: RAG Model Evaluation Results with All Metrics

2. In-depth Dimension Analysis

• Retrieval Performance: Differences in retrieval scores were relatively small.

The top six models scored between 3.13 and 3.27, with minimal standard de-

viation. This suggests that the retrieval component of the RAG framework

was stable and provided similarly relevant contexts across models. Even the

worst-performing model, Olmo2_7b, achieved a score of 3.07, indicating that

generation ability is the key factor determining final performance rather than

retrieval quality.

• Generation Performance

– Faithfulness: This was the strongest dimension for most models. The top

six models all scored above 4.10, showing that SLMs can follow instruc-

tions and rely on retrieved content, effectively reducing hallucinated facts.

Phi4_14b (4.44) performed exceptionally well in this aspect.

– Accuracy: Performance differences became more apparent in this metric.

Phi4_14b (3.90) and Qwen2.5_7b (3.82) could extract and express factual

information more precisely, while Olmo2_7b (2.42) struggled significantly,

often producing incorrect or imprecise answers.

28

5.1 Knowledge Extraction Results

– Completeness: This was the lowest-scoring and most discriminative sub-

metric. Phi4_14b (3.47) again led in response comprehensiveness. How-

ever, models like Gemma_7b (3.16) and Openchat_7b (3.14) showed room

for improvement, occasionally failing to provide fully complete answers.

Below is a comparison analysis of the knowledge extraction outputs from the Phi4_14b

model (Output1) against the reference answers (Output2). While Output1 performs well

in both retrieval and generation, the following differences are observed when compared to

the reference output:

1. Completeness (score 4): Output1 covers the core concepts (Pods, Clusters, Master

components, kubelets) but does not mention the two important background concepts

of Container Orchestration and Orchestration Workflow. The standard answer pro-

vides a more comprehensive explanation of Kubernetes’ context and overall workflow.

2. Accuracy (score: 5) and Faithfulness (core: 5): Both outputs accurately define

the fundamental Kubernetes components and adhere closely to the source materials.

However, the Master Components section in Output1 contains some redundancy, re-

peatedly emphasizing the maintenance of cluster state, whereas Output2 presents this

information more succinctly using a tabular format to clearly delineate component

functions.

3. Retrieval (score: 4): Output1 does not directly reference details from the source

material about YAML/JSON configuration files and the orchestration workflow (e.g.,

"declarative deployment"), while Output2 clearly integrates these details, aligning

more closely with the actual orchestration process.

Phi4_14b Output (Output1):

{
"Question": "Create a

narrative-style lesson on
Kubernetes that introduces
orchestration concepts such as
Pods, Clusters, Master
components, and kubelets,
emphasizing how these elements
scale microservice-based
architectures.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Reference Output (Output2):

{
"Question": "Create a

narrative-style lesson on
Kubernetes that introduces
orchestration concepts such as
Pods, Clusters, Master
components, and kubelets,
emphasizing how these elements
scale microservice-based
architectures.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

29

5. RESULTS

"Knowledge_Topic": "Container
Orchestration",↪→

"Core_Concepts": [
{

"Concept": "Pods",
"Definition": "A Pod is the

smallest deployable unit in
Kubernetes that can contain
one or more containers
sharing storage and network
resources.",

↪→

↪→

↪→

↪→

↪→

"Key_Points": [
"Pods allow multiple

containers to be deployed
together, sharing
resources like networking
and storage.",

↪→

↪→

↪→

↪→

"They are managed by
Kubernetes as a single
entity.",

↪→

↪→

"Pods facilitate the
deployment of
microservices within a
containerized
environment."

↪→

↪→

↪→

↪→

],
"Significance_Detail": "Pods are

crucial for managing the
lifecycle of containers in
Kubernetes, enabling
efficient scaling and
management of
microservice-based
architectures.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Strengths": "Pods simplify the
deployment process by
grouping related containers
together, making it easier
to manage their lifecycle
and resources.",

↪→

↪→

↪→

↪→

↪→

"Weaknesses": null
},
{

"Knowledge_Topic": "Container
Orchestration",↪→

"Core_Concepts": [
{

"Concept": "Container
Orchestration",↪→

"Definition": "The
automation of the
deployment,
management, scaling,
and networking of
containers, providing
a framework for
managing containerized
applications at
scale.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Key_Points": [
"It automates the

entire lifecycle
of containers.",

↪→

↪→

"It is beneficial for
enterprises
managing hundreds
or thousands of
containers.",

↪→

↪→

↪→

↪→

"Orchestration tools
allow the
deployment of the
same application
across different
environments
without
redesign.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"It supports DevOps
teams by
integrating into
CI/CD workflows.",

↪→

↪→

↪→

"Enables running
multiple app parts
independently on
shared hardware.",

↪→

↪→

↪→

30

5.1 Knowledge Extraction Results

"Concept": "Clusters",
"Definition": "A Cluster in

Kubernetes is a group of
nodes that work together to
run containerized
applications.",

↪→

↪→

↪→

↪→

"Key_Points": [
"Clusters can span across

public, private, or hybrid
clouds.",

↪→

↪→

"They provide the
infrastructure necessary
for running and managing
containers at scale.",

↪→

↪→

↪→

"Kubernetes clusters
facilitate rapid scaling
and workload portability."

↪→

↪→

],
"Significance_Detail": "Clusters

are essential for hosting
cloud-native applications
that require scalability and
flexibility across different
environments.",

↪→

↪→

↪→

↪→

↪→

"Strengths": "Clusters enable
Kubernetes to manage
large-scale containerized
workloads efficiently,
supporting both on-premise
and cloud deployments.",

↪→

↪→

↪→

↪→

↪→

"Weaknesses": null
},
{

"Concept": "Master Components",
"Definition": "The Master

components in Kubernetes are
responsible for managing the
state of the cluster and
making global decisions
about the cluster.",

↪→

↪→

↪→

↪→

↪→

"Key_Points": [

"Uses YAML/JSON
configuration
files to define
application
setups."

↪→

↪→

↪→

↪→

],
"Significance_Detail":

"Container
orchestration solves
the complexity of
managing a large
number of containers
manually. It is the
foundation for running
scalable, resilient
microservice-based
applications in
production
environments.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Strengths": "Enables
automated scaling,
management, and
deployment of
containerized
applications,
supporting resilient
and portable
microservices
architectures.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Weaknesses": null
},
{

"Concept": "Kubernetes",
"Definition": "An

open-source container
orchestration tool,
originally developed
by Google, that
automates the
deployment, scaling,
and management of
containerized
applications.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

31

5. RESULTS

"The Master node controls the
scheduling, scaling, and
health management of
containers.",

↪→

↪→

↪→

"It includes components like
the API server, scheduler,
and controller manager.",

↪→

↪→

"These components ensure that
the desired state of the
cluster is maintained."

↪→

↪→

],
"Significance_Detail": "Master

components are vital for
orchestrating container
operations across the entire
Kubernetes cluster, ensuring
efficient resource
utilization and application
reliability.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Strengths": "They provide
centralized control over the
cluster, enabling consistent
management and
decision-making processes.",

↪→

↪→

↪→

↪→

"Weaknesses": null
},
{

"Concept": "Kubelets",
"Definition": "Kubelets are

agents that run on each node
in a Kubernetes cluster,
responsible for maintaining
the desired state of
containers.",

↪→

↪→

↪→

↪→

↪→

"Key_Points": [
"Kubelets communicate with the

Master components to
receive instructions.",

↪→

↪→

"They manage the lifecycle of
containers on their
respective nodes.",

↪→

↪→

"Key_Points": [
"It was donated by

Google to the
Cloud-Native
Computing
Foundation (CNCF)
in 2015.",

↪→

↪→

↪→

↪→

↪→

"It allows you to
build application
services that span
multiple
containers and
schedule them
across a
cluster.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Kubernetes eliminates
many manual
processes involved
in deploying and
scaling
applications.",

↪→

↪→

↪→

↪→

↪→

"Supports workload
portability and
load balancing
without
redesigning
applications.",

↪→

↪→

↪→

↪→

↪→

"It can manage
clusters spanning
public, private,
or hybrid clouds,
making it ideal
for cloud-native
apps."

↪→

↪→

↪→

↪→

↪→

↪→

],

32

5.1 Knowledge Extraction Results

"Kubelets ensure that
containers are running as
expected and report back
to the Master."

↪→

↪→

↪→

],
"Significance_Detail": "Kubelets

play a critical role in
executing container
orchestration tasks at the
node level, ensuring that
applications run smoothly
across the cluster.",

↪→

↪→

↪→

↪→

↪→

↪→

"Strengths": "They enable
decentralized management of
containers, allowing for
efficient scaling and
resource allocation.",

↪→

↪→

↪→

↪→

"Weaknesses": null
}

],
"Overall_Summary": "Kubernetes

orchestrates containerized
microservices through Pods,
Clusters, Master components, and
kubelets. These elements work
together to scale applications
efficiently across diverse
environments, providing robust
management of resources and
application lifecycles."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Source_Context": [
{

"source": ".../lecture.md",
"content_type": "normal",

"Significance_Detail":
"Kubernetes has become
the de facto standard
for container
orchestration,
providing a powerful
and flexible platform
to fully implement and
rely on a
container-based
infrastructure in
production.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Strengths": "Provides
workload portability,
load balancing, and
automated management,
helping to implement
resilient
container-based
infrastructure.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Weaknesses": null
},
{

"Concept": "Kubernetes
Components",↪→

"Definition": "The
fundamental building
blocks of a Kubernetes
system that work
together to manage a
containerized
application.",

↪→

↪→

↪→

↪→

↪→

↪→

"Key_Points": [
"Cluster: A group of

nodes, consisting
of at least one
master node and
several worker
nodes.",

↪→

↪→

↪→

↪→

↪→

33

5. RESULTS

"page_content": "Kubernetes is
an open source container
orchestration tool that was
originally developed and
designed by engineers at
Google. Google donated the
Kubernetes project to the
newly formed Cloud-Native
Computing Foundation in
2015. Kubernetes
orchestration allows you to
build application services
that span multiple
containers, schedule
containers across a cluster,
scale those containers, and
manage their health over
time. Kubernetes eliminates
many of the manual processes
involved in deploying and
scaling"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

},
{

"source": ".../lecture.md",
"content_type": "table",

"Master Node: The
machine that
controls the
Kubernetes nodes
and where all task
assignments
originate.",

↪→

↪→

↪→

↪→

↪→

↪→

"Kubelet: A service
that runs on each
worker node, reads
container
manifests, and
ensures the
defined containers
are started and
running.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Pod: The smallest
deployable unit in
Kubernetes,
representing a
group of one or
more containers
that are deployed
to a single node
and share
resources like an
IP address and
hostname."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

],

34

5.1 Knowledge Extraction Results

"page_content": "and rely on a
container-based
infrastructure in production
environments. These clusters
can span hosts across
public, private, or hybrid
Clouds. For this reason,
Kubernetes is an ideal
platform for hosting
Cloud-native apps that
require rapid scaling.
Kubernetes also assists with
workload portability and
load balancing by letting
you move applications
without redesigning them.
<html><body><table><tr><td>
Kubernetes components
</td><td> Description
</td></tr><tr><td> Cluster
</td><td> A group of nodes,
with at"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

},
{

"source": ".../lecture.md",
"content_type": "normal",
"page_content": "Container

orchestration tools provide
a framework for managing
containers and microservices
architecture at scale. Many
container orchestration
tools that can be used for
container lifecycle
management. Some popular
options are Kubernetes,
Docker Swarm, and Apache
Mesos. # 5.1 Kubernetes"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

},
{

"source": ".../lecture.md",
"content_type": "normal",

"Significance_Detail":
"Understanding these
components is
essential for
operating a Kubernetes
cluster. The master
node acts as the
brain, the worker
nodes provide the
brawn (compute
resources), the
kubelet is the agent
on each node, and the
pod is the basic unit
that encapsulates the
application
containers.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Strengths": "Provides
robust management of
containerized
workloads.",

↪→

↪→

↪→

"Weaknesses": null
},
{

"Concept": "Orchestration
Workflow",↪→

"Definition": "The process
by which a container
orchestration tool
like Kubernetes
deploys and manages an
application.",

↪→

↪→

↪→

↪→

↪→

"Key_Points": [
"A user describes the

desired
application
configuration in a
YAML or JSON
file.",

↪→

↪→

↪→

↪→

↪→

35

5. RESULTS

"page_content": "were determined
in the compose file. You can
use Kubernetes patterns53 to
manage the configuration,
lifecyle, and scale of
containerbased applications
and services. These
repeatable patterns are the
tools needed by a Kubernetes
developer to build complete
systems. Container
orchestration can be used in
any environment that runs
containers, including
onpremise servers and
public"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

},
{

"source": ".../lecture.md",
"content_type": "normal",
"page_content": "“Container

orchestration automates the
deployment, management,
scaling, and networking of
containers. Enterprises that
need to deploy and manage
hundreds or thousands of
containers can benefit from
container orchestration.
Containers orchestration can
help you to deploy the same
application across different
environments without needing
to redesign it. And
microservices in containers
make it easier to
orchestrate services,
including storage,
networking, and security.
Containers give your
microservice-based"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

}
]

"This file specifies
container images,
networking rules,
and log storage
locations.",

↪→

↪→

↪→

↪→

"The orchestration
tool automatically
schedules the
deployment to a
cluster, finding a
suitable host.",

↪→

↪→

↪→

↪→

↪→

"It then manages the
container's
lifecycle based on
the specifications
in the
configuration
file."

↪→

↪→

↪→

↪→

↪→

↪→

],
"Significance_Detail":

"This declarative
approach allows
developers to define
the 'what' (the
desired state of the
application) and lets
the orchestration tool
handle the 'how' (the
steps to achieve and
maintain that state),
simplifying complex
deployments and
ensuring
consistency.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Strengths": null,
"Weaknesses": null

}
],

36

5.1 Knowledge Extraction Results

} "Overall_Summary": "Imagine you
have an application made of
many small microservices, each
in its own container. Managing
hundreds of these manually is
impossible. This is where
Kubernetes, the conductor of
our container orchestra, comes
in. You start by creating a
'Cluster,' which is your
orchestra pit—a group of
computers (nodes). The 'Master
Node' is the conductor; it
decides which instrument
(container) plays where. On
each musician's stand (a
worker node), there's a
'Kubelet,' an agent that makes
sure the right containers are
running. Your application's
containers don't just run
loose; they are grouped into
'Pods,' the smallest unit in
Kubernetes, like a section of
the orchestra (e.g., the
strings). You, the composer,
write a score (a YAML file)
describing how your
application should run.
Kubernetes reads this score
and automatically handles
deploying, scaling, and
managing the pods, ensuring
your microservices application
runs smoothly and resiliently
at any scale."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"Source_Context": [
{

"source":
".../lecture.md",↪→

"content_type": "normal",

37

5. RESULTS

"page_content":
"“Container
orchestration
automates the
deployment,
management, scaling,
and networking of
containers.
Enterprises that need
to deploy and manage
hundreds or thousands
of containers can
benefit from container
orchestration.
Containers
orchestration can help
you to deploy the same
application across
different environments
without needing to
redesign it. And
microservices in
containers make it
easier to orchestrate
services, including
storage, networking,
and security."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

},
{

"source":
".../lecture.md",↪→

"content_type": "normal",

38

5.1 Knowledge Extraction Results

"page_content":
"Kubernetes is an open
source container
orchestration tool
that was originally
developed and designed
by engineers at
Google. Google donated
the Kubernetes project
to the newly formed
Cloud-Native Computing
Foundation in
2015.\n\nKubernetes
orchestration allows
you to build
application services
that span multiple
containers, schedule
containers across a
cluster, scale those
containers, and manage
their health over
time."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

},
{

"source":
".../lecture.md",↪→

"content_type": "normal",

39

5. RESULTS

"page_content":
"<html><body><table><tr><td>
Kubernetes components
</td><td> Description
</td></tr><tr><td>
Cluster </td><td> A
group of nodes, with
at least one master
node and several
worker
nodes.</td></tr><tr><td>
Master </td><td> The
machine that controls
Kubernetes nodes. This
is where all task
assignments
originate.</td></tr><tr><td>
Kubelet </td><td> This
service runs on nodes
and reads the
container manifests
and ensures the
defined containers are
started and
running.</td></tr><tr><td>
Pod </td><td>. A group
of one or more
containers deployed to
a single node. All
containers in a pod
share an IP address,
IPC, hostname,and
other resources.
</td></tr></table></body></html>"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

},
{

"source":
".../lecture.md",↪→

"content_type": "normal",

40

5.1 Knowledge Extraction Results

"page_content": "When you
use a container
orchestration tool,
such as Kubernetes,
you will describe the
configuration of an
application using
either a YAML or JSON
file. The
configuration file
tells the
configuration
management tool where
to find the container
images, how to
establish a network,
and where to store
logs.\n\nWhen
deploying a new
container, the
container management
tool automatically
schedules the
deployment to a
cluster and finds the
right host,
considering any
defined requirements
or restrictions. The
orchestration tool
then manages the
container’s lifecycle
based on the
specifications that
were determined in the
compose file."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

}
]

}

41

5. RESULTS

5.2 Story Generation Results

This section evaluates the overall performance of different language model combinations

on two tasks: story generation and the generation of corresponding interactive narration.

A total of 49 unique model combinations were tested. Detailed evaluation scores are shown

in the Figure 5.2, ranked in descending order by Overall Score.

Key findings are summarized as follows:

1. Performance Tiers Analysis

• Top-Tier Performers (Score: 3.70 - 3.83): This tier is dominated by

model combinations that use Phi4_14b as the RAG model. The top three

combinations, Phi4_14b + Qwen2.5_7b (3.83), Phi4_14b + Olmo2_7b (3.79),

and Phi4_14b + Llama3.1_8b (3.77), demonstrate the crucial role of high-

quality context in generating top-level educational content. Qwen2.5_7b also

showed strong performance as a story generator, appearing in four of the top

six combinations, indicating its outstanding narrative capabilities. An example

is analysed below.

• Competitive Middle-Tier (Score: 3.40 - 3.70): Combinations in this

tier generally perform well across all metrics but lack exceptional strengths.

A clear trend is observed: when Qwen2.5_7b, Llama3.1_8b, or Olmo2_7b

serve as story generators, the combinations tend to fall in the upper range of

this tier. In contrast, combinations with Openchat_7b or Deepseek-llm_7b as

story generators tend to score in the lower part of this range. The example

(Phi4_14b + Openchat_7b) is provided in Appendix A.1.

• Underperformers (Score: below 3.40): Model combinations in this tier

show noticeable weaknesses across multiple dimensions. Surprisingly, most com-

binations using Phi4_14b or Gemma_7b as story generators fall into this cat-

egory. For example, Phi4_14b + Phi4_14b scored only 3.28 overall, with a

particularly low score of 1.86 in “Educational Engagement”, revealing major de-

ficiencies in creativity and emotional connection. The example (Phi4_14b +

Phi4_14b) is provided in Appendix A.2.

• Lagging Performers (Score: below 2.0): All combinations where Olmo2_7b

was used as the RAG model fell into this lowest tier, with the worst score be-

ing 1.28. This suggests that Olmo2_7b provides poor-quality context or lacks

42

5.2 Story Generation Results

Figure 5.2: Story Generation Evaluation Results Across 49 Combinations of Extraction
Models and Generation Models

43

5. RESULTS

alignment with the downstream task, which severely impacts the final content

quality, regardless of the strength of the story generator.

2. In-depth Dimension Analysis

• Story Quality

– Structure & Narrative Coherence: These two closely related dimen-

sions are primarily influenced by the story generator. Qwen2.5_7b performs

strongly here, producing well-structured and coherent stories. In contrast,

when Phi4_14b or Gemma_7b is used as the generator, their outputs of-

ten lack clear logic and flow, which contributes significantly to their lower

overall scores.

– Factual Accuracy: Combinations with Phi4_14b as the RAG model con-

sistently score the highest in factual accuracy (mostly above 3.9), showing

that high-quality source content is essential for producing faithful output.

On the other hand, when Olmo2_7b serves as the RAG model, all its com-

binations perform poorly in this dimension (often below 1.8), proving that

the quality of its source concepts is the key bottleneck in the whole pipeline.

– Educational Engagement: The ability to embed teaching hooks (such

as questions or analogies) varies greatly across different story generators.

Models like Qwen2.5_7b, Llama3.1_8b, and Olmo2_7b show strong capa-

bilities in this area, frequently scoring above 4.1. One of the most critical

findings in this evaluation is that Phi4_14b, when used as a story generator,

consistently fails on this task, scoring below 2.0. This suggests a significant

weakness in executing instructions that involve embedding educational ele-

ments.

– Fluency & Consistency: Qwen2.5_7b stands out, regularly generating

logically consistent and grammatically fluent stories (both scores above 3.4),

except the combination with Olmo_7b.

• Activity Quality

– Narrative Grounding: This metric reveals an interesting pattern. Al-

though Phi4_14b tends to generate less engaging stories when used as a

story generator, the activities it designs are often highly aligned with the

story content (Combinations: Phi4_14b + Phi4_14b (3.76), Llama3.1_8b

+ Phi4_14b (3.67) and Phi4_14b + Olmo2_7b (3.61)). This suggests that

44

5.2 Story Generation Results

simpler, more structured stories might actually make it easier to create log-

ically consistent follow-up tasks.

– Classroom Applicability: This metric is contributed by strong con-

tent quality (ensured by the Knowledge Extraction) and effective instruc-

tional design (realized by the story generator). Phi4_14b, as the RAG

model, provided accurate and reliable conceptual foundations. Meanwhile,

Llama3.1_8b and Qwen2.5_7b, serving as story generators, contributed

creative and practical instructional designs that were engaging, actionable,

and pedagogically meaningful.

Below is the analysis of the story generation outputs from the Qwen2.5_7b model (based

on the knowledge extraction output from Phi4_14b):

1. Story Quality Score

• Structure Integrity (score: 4)

– Strengths: Each module (Pods, Clusters, Master Components, Kubelets)

follows a three-part structure: Problem → Solution → Impact, making the

logic clear.

– Improvements: Some modules (e.g., Clusters) could have more specific

Impact sections, such as adding real-world cases to enhance persuasiveness.

• Factual Accuracy (score: 5) All technical definitions align perfectly with

the knowledge extraction result, with no errors.

• Narrative Coherence (score: 4)

– Strengths: The analogies like “city management” and “orchestra conduc-

tor” are consistently used, keeping the theme unified.

– Improvements: The connection between Master Components and Kubelets

could be emphasized more to avoid a fragmented feel between modules.

• Educational Engagement (score: 4)

– Highlights: Scenario-based questions (e.g., “How to handle millions of

users?”) and analogies (e.g., “Pods are families sharing resources”) effectively

stimulate interest.

– Suggestions: Adding more interactive questions (e.g., “What happens if a

container in a Pod crashes?”) could increase student participation.

45

5. RESULTS

• Fluency and Consistency (score: 5) The language is smooth, balancing

technical terms and plain explanations well, suitable for beginners.

2. Activity Quality Score

• Narrative Grounding (score: 4)

– Strengths: The debates and scenario questions closely align with the mod-

ule themes.

– Improvements: Activities could more directly reference the analogies from

the story (e.g., having students use the “orchestra conductor” analogy to

explain the role of the Master components).

• Classroom Applicability (score: 5) The debate design is actionable, with

clear pro and con arguments. Scenario questions are close to real development

scenarios.

Story Generation from Qwen2.5_7b:

```markdown
# Lesson Title: Scaling Microservices with Kubernetes: An Introduction to

Container Orchestration↪→

## Introduction (Hook)
Objective: To grab students' attention by posing a real-world problem about

managing containerized microservices at scale.↪→

**Scenario**: Imagine you are developing an e-commerce platform that needs to
handle millions of users simultaneously. How would you ensure your
application remains robust and performs well under such demands? Today, we
will explore how Kubernetes can help solve this challenge through its
powerful orchestration capabilities.

↪→

↪→

↪→

↪→

## Core Content Delivery
1. **Understanding Pods**

Objective: To define what a Pod is in the context of Kubernetes and explain
why it's crucial for microservice management.↪→

2. **Introduction to Clusters**
Objective: To introduce students to the concept of Kubernetes clusters and how

they form the backbone of container orchestration.↪→

3. **Master Components Overview**
Objective: To provide an overview of key master components in a Kubernetes

cluster, their roles, and why they are essential.↪→

46



5.2 Story Generation Results

4. **Role of Kubelets**
Objective: To explain the role and responsibilities of kubelets within a

Kubernetes cluster.↪→

## Key Activity/Discussion
Objective: An interactive segment to reinforce learning through real-world

examples or case studies.↪→

**Activity**: Divide students into small groups and provide them with scenarios
where they need to design a microservice-based application using Kubernetes.
Each group will present their solution, focusing on the role of Pods,
Clusters, Master Components, and Kubelets in managing their services.

↪→

↪→

↪→

## Conclusion & Synthesis
Objective: To wrap up the lesson by revisiting the original question and

connecting back to the Overall Summary.↪→

**Summary**: By understanding how Pods, Clusters, Master Components, and Kubelets
work together, you can effectively scale microservice-based architectures.
This knowledge is crucial for managing complex applications that require
robust resource management and lifecycle control.

↪→

↪→

↪→

```

Teaching Module: Pods
The Story (Problem -> Solution -> Impact)

The Problem (Event)
In the world of software development and deployment, managing multiple services

that work together can be incredibly complex. Imagine you're an engineer
tasked with deploying a web application where different parts of the system
need to communicate seamlessly. You have databases, web servers, and various
microservices all running in separate containers. Without a cohesive
approach, ensuring these components work together smoothly becomes a daunting
task.

↪→

↪→

↪→

↪→

↪→

↪→

The 'Aha!' Moment (Experience)

47

5. RESULTS

Enter Pods! Kubernetes, the popular open-source platform for automating container
operations, introduces Pods as a solution to this problem. A Pod is like a
cozy little house where multiple containers live together, sharing resources
and working in harmony. Think of it as a family home where siblings share a
kitchen, bathroom, and living room but still have their own rooms.

↪→

↪→

↪→

↪→

- **Pods allow multiple containers to be deployed together, sharing resources
like networking and storage**.↪→

- **They are managed by Kubernetes as a single entity**, making sure everything
works smoothly even when one part of the household (container) needs
attention.

↪→

↪→

- **Pods facilitate the deployment of microservices within a containerized
environment**, ensuring that all components work cohesively.↪→

The Impact (Meaning)
The introduction of Pods into the world of Kubernetes has revolutionized how we

manage and deploy complex applications. By grouping related containers
together, Pods simplify the deployment process and make it easier to manage
their lifecycle and resources. This means you can focus more on writing great
code rather than worrying about the nitty-gritty details of container
management.

↪→

↪→

↪→

↪→

↪→

Storytelling Hooks

Dramatic Question
Could making a computer dumber actually make it smarter? In the case of Pods,

it’s true—by creating a simpler system to manage containers, Kubernetes makes
the overall process much more efficient and manageable.

↪→

↪→

Point of View
From the perspective of an engineer facing the challenge of deploying a complex

application with multiple microservices, Pods provide a powerful tool for
managing these components effectively. Imagine having a set of keys that can
unlock a world where your containers work together seamlessly—Pods are like
those keys.

↪→

↪→

↪→

↪→

Classroom Delivery Tips

Pacing
- **Pause after explaining what Pods are** to give students time to absorb the

concept.↪→

- **Ask a question**: "Can you think of any situations where grouping related
containers together would be beneficial?"↪→

48

5.2 Story Generation Results

Analogy
To help students understand the idea, use an analogy: "Imagine you're planning a

party and need to set up a table with multiple dishes. Instead of setting
each dish on separate tables (containers), why not place them all on one
large table (Pod)? This way, everything is neatly organized, and guests can
access all the food easily."

↪→

↪→

↪→

↪→

By weaving these elements together, the concept of Pods becomes engaging and easy
to understand for students, helping them grasp its importance in managing
microservices effectively.

↪→

↪→

Interactive Activities for Pods
Debate Topic:
**Resolved: The benefits of using Pods in container orchestration outweigh any

potential drawbacks.**↪→

Proponents (Affirmative):
- Pods simplify the deployment process by grouping related containers, making it

easier for administrators to manage a set of containers as a single entity.↪→

- They streamline resource allocation and lifecycle management, ensuring that
containers within a pod share network namespaces and security contexts.↪→

Opponents (Negative):
- There are no significant weaknesses mentioned in the strengths provided.

Therefore, this side would argue that the debate is based solely on
theoretical constructs without concrete evidence of drawbacks.

↪→

↪→

- The absence of identified weaknesses makes it challenging to present valid
counterarguments against the use of Pods.↪→

What If Scenario Question:
**What if a software development team at your university decided to migrate their

application from traditional server deployment to container orchestration
using Kubernetes, but they are debating whether or not to use Pods for
grouping their containers?**

↪→

↪→

↪→

Scenario:
Your team is developing a new web application that consists of multiple services

such as the front-end interface, back-end logic, and database. The team has
decided to containerize these components and deploy them in a Kubernetes
cluster. However, they are divided on whether or not to use Pods for grouping
their containers.

↪→

↪→

↪→

↪→

49

5. RESULTS

Question:
Given the strengths of Pods mentioned (simplifying deployment, easier lifecycle

management), as well as the absence of any weaknesses, how would you advise
the team to proceed with their containerization strategy? Justify your
recommendation by explaining why using Pods could be beneficial in this
scenario and what trade-offs they should consider.

↪→

↪→

↪→

↪→

Expected Student Response:
- Advise the use of Pods due to their simplifying nature for deployment and

management.↪→

- Highlight that pods can help manage network resources more efficiently,
ensuring better performance.↪→

- Suggest considering the complexity introduced by managing multiple pods if
there are a large number of related containers.↪→

- Recommend using pods where necessary but also planning for scenarios where
single containers might be deployed without them to maintain flexibility.↪→

Teaching Module: Clusters
The Story (Problem -> Solution -> Impact)

The Problem (Event)
Imagine you're an engineer tasked with managing a fleet of microservices

applications that your company has recently developed. These services are
complex and require high availability, scalability, and reliability. Each
service is built using containerized applications, but manually deploying and
managing these containers across multiple servers in different
environments—both on-premise and public clouds—is becoming increasingly
cumbersome. The challenge lies not just in the manual effort required to
manage so many containers but also ensuring that your applications can
seamlessly scale up or down based on demand.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

The 'Aha!' Moment (Experience)

50

5.2 Story Generation Results

One day, you stumble upon a platform called Kubernetes, which promises a solution
for these challenges. As you dive deeper into its documentation and community
forums, you realize that the key to this problem lies in something called
"Clusters." A Cluster, as defined by Kubernetes, is a group of nodes that
work together to run containerized applications. You learn that these
clusters can span across public, private, or hybrid clouds, providing a
flexible infrastructure for running containers at scale.

↪→

↪→

↪→

↪→

↪→

↪→

To understand how it works, you start with the three key points:
1. Clusters can indeed be spread across different cloud environments, offering

flexibility.↪→

2. They provide necessary infrastructure for managing large-scale containerized
workloads efficiently.↪→

3. Kubernetes clusters facilitate rapid scaling and workload portability,
ensuring that your applications can dynamically adjust to changing loads.↪→

You experiment by setting up a small cluster on a virtual machine in the cloud,
deploying some of your microservices, and observing how they automatically
scale based on CPU usage or other metrics. The "Aha!" moment comes when you
see not only how seamlessly these services operate but also how easy it is to
manage them using Kubernetes commands.

↪→

↪→

↪→

↪→

The Impact (Meaning)
The impact of this solution is profound. Clusters enable Kubernetes to manage

large-scale containerized workloads efficiently, supporting both on-premise
and cloud deployments. This means that your applications can now be deployed
with ease across different environments, ensuring high availability and
reliability. Moreover, the ability to quickly scale up or down based on
demand significantly reduces costs while maintaining optimal performance.

↪→

↪→

↪→

↪→

↪→

From a technical standpoint, clusters provide the infrastructure necessary for
running and managing containers at scale, which is essential for hosting
cloud-native applications that require scalability and flexibility. This not
only makes your job as an engineer easier but also allows the company to
focus more on developing new features rather than worrying about
infrastructure management.

↪→

↪→

↪→

↪→

↪→

Storytelling Hooks

Dramatic Question

51

5. RESULTS

Could making a computer dumber actually make it smarter? In this case, by
centralizing management with Kubernetes clusters, you're not reducing the
intelligence of your systems; instead, you're providing a smarter way to
manage and scale them.

↪→

↪→

↪→

Point of View
From the perspective of an engineer facing the challenge of managing complex

microservices applications across multiple environments, the story reveals
how Kubernetes clusters offer a powerful solution that simplifies deployment,
scaling, and management.

↪→

↪→

↪→

Classroom Delivery Tips

Pacing
- Pause after explaining each key point to ensure students understand before

moving on.↪→

- Ask questions like: "Can you think of a situation where having a cluster would
be beneficial?"↪→

- Summarize the impact at the end to reinforce its importance.

Analogy
Imagine you have a team of workers building houses. Each worker is like a

container, and they need to be managed effectively to ensure all houses are
built correctly and on time. Clusters in Kubernetes act like a project
manager who coordinates these workers efficiently, ensuring that resources
are used optimally and the workload can scale up or down based on demand.
This analogy helps students grasp how clusters streamline the management of
containerized applications.

↪→

↪→

↪→

↪→

↪→

↪→

Interactive Activities for Clusters
1. Debate Topic

Proposition: "Clusters should be the default deployment method for all
containerized applications due to their unparalleled efficiency in managing
large-scale workloads."

↪→

↪→

Opposition: "Clusters are not always the best solution, as they come with
significant overhead and complexity that can outweigh their benefits for
smaller or less demanding applications."

↪→

↪→

2. What If Scenario Question

52

5.2 Story Generation Results

Scenario:
Imagine you are a DevOps engineer tasked with setting up a new containerized

application environment for your organization. Your company has recently
decided to migrate from traditional virtual machines (VMs) to Kubernetes
clusters due to the promise of improved efficiency and scalability.

↪→

↪→

↪→

The project manager has given you two options:
- **Option A:** Deploy all applications using a Kubernetes cluster, leveraging

its advanced features like automatic scaling, load balancing, and resource
management.

↪→

↪→

- **Option B:** Continue with VM-based deployments for simplicity and ease of
use, while still benefiting from container technology where necessary.↪→

Question:
Given the strengths and weaknesses (or in this case, the absence of weaknesses)

of Kubernetes clusters as described, which option would you choose? Justify
your decision by considering factors such as application scale, resource
requirements, team expertise, and long-term maintenance costs.

↪→

↪→

↪→

Teaching Module: Master Components
The Story

The Problem (Event)
Imagine you are managing a vast city with millions of people, vehicles, and

buildings. Every day, resources need to be allocated efficiently to ensure
everyone's needs are met. Without any central planning or coordination, chaos
would reign—people might not get the services they need, resources could be
wasted, and overall quality of life would suffer.

↪→

↪→

↪→

↪→

In the world of Kubernetes clusters, managing such a large number of containers
is no different. Before the introduction of Master components, each container
or pod was managed individually without any overarching strategy. This led to
inefficient resource utilization, inconsistent application performance, and
high maintenance costs for operators.

↪→

↪→

↪→

↪→

The 'Aha!' Moment (Experience)

53

5. RESULTS

One day, a brilliant engineer at Google had an "aha!" moment. They realized that
instead of treating every container as a separate entity, they could
centralize the management processes. Thus, the concept of Master components
was born! These master nodes act like the city's central control center,
overseeing everything from scheduling and scaling to health checks.

↪→

↪→

↪→

↪→

The Master node has several key components:
- **API Server**: Acts as the front door for all interactions with the cluster.
- **Scheduler**: Decides which container should run on which node based on

resource availability and other factors.↪→

- **Controller Manager**: Monitors and maintains the desired state of the
cluster, ensuring everything is running smoothly.↪→

Together, these components ensure that the cluster operates at peak efficiency,
maintaining a consistent and reliable environment for applications to run.↪→

The Impact (Meaning)
The introduction of Master components has transformed how Kubernetes clusters are

managed. They provide centralized control over the entire system, enabling
operators to make informed decisions about resource allocation, application
scaling, and health management. This centralization brings several
advantages:

↪→

↪→

↪→

↪→

- **Efficiency**: Resources are used more effectively as the scheduler makes
optimal placement decisions.↪→

- **Reliability**: Applications run smoothly with minimal downtime due to
automated monitoring and recovery mechanisms.↪→

However, it's worth noting that while Master components offer significant
benefits, they also come with potential drawbacks. For example, a single
point of failure could disrupt the entire cluster if not properly managed.
Nonetheless, their strengths far outweigh these weaknesses, making them
indispensable for orchestrating container operations in Kubernetes clusters.

↪→

↪→

↪→

↪→

Storytelling Hooks

Dramatic Question
Could making a computer dumber actually make it smarter? By centralizing control

and decision-making processes, we can manage complex systems more
efficiently.

↪→

↪→

Point of View
From the perspective of an engineer facing a challenge with resource allocation

and application performance in a large-scale Kubernetes cluster.↪→

54

5.2 Story Generation Results

Classroom Delivery Tips

- **Pacing**: Pause after explaining each component to ensure students understand
their roles.↪→

- "Let's take a moment to absorb what the API Server does. How is it like the
front door for all interactions?"↪→

- **Analogy**:
- "Imagine you are organizing a huge party in your city. You can either have

everyone making individual decisions about where to put tables and chairs,
or you can have one central planner who decides everything. The Master
components act like that central planner, ensuring the entire event runs
smoothly."

↪→

↪→

↪→

↪→

By weaving these elements together, teachers can create an engaging narrative
that helps students grasp the importance of Master components in Kubernetes
clusters.

↪→

↪→

Interactive Activities for Master Components
1. Debate Topic

Topic:
"Is the centralized control provided by Master Components a net positive or

negative for cluster management?"↪→

Arguments For Centralized Control:
- Enables consistent policies and processes across the entire cluster.
- Simplifies decision-making and reduces complexity.
- Facilitates easier monitoring, maintenance, and security measures.

Counterarguments Against Centralized Control:
- Potential bottleneck if the central point of control fails or experiences high

latency.↪→

- May limit flexibility in local adaptations to specific environments or
workloads.↪→

2. What If Scenario Question

Scenario:

55

5. RESULTS

Imagine your class is tasked with setting up a new distributed system for
managing a school's library resources, which includes tracking book
checkouts, inventory management, and user access permissions. The system
needs to be scalable, secure, and maintainable by a team of students.

↪→

↪→

↪→

Question:
"Considering the strengths and weaknesses of Master Components, should your group

adopt a centralized control approach or opt for a distributed model? Justify
your choice based on potential trade-offs in terms of flexibility, security,
and ease of management."

↪→

↪→

↪→

This scenario forces students to consider the practical implications of using
Master Components in a real-world context, applying their understanding of
the strengths and weaknesses to make an informed decision.

↪→

↪→

Teaching Module: Kubelets
The Story (Problem -> Solution -> Impact)

The Problem (Event)
Imagine a vast network of computers working together in harmony, like an

orchestra playing a symphony. Each instrument (or node) needs to be perfectly
tuned and ready at any moment to perform its part. But how do you ensure that
every instrument is ready, playing the right notes, and reporting back about
its performance? This is where the challenge lies—especially when there are
countless nodes scattered across different locations.

↪→

↪→

↪→

↪→

↪→

The 'Aha!' Moment (Experience)
Enter Kubelets, the unsung heroes of this digital orchestra. Picture these agents

as the maestros of each node in our Kubernetes cluster. They receive
instructions from the master components and ensure that the containers
running on their respective nodes are functioning correctly. Think of it like
a conductor who checks each musician's instrument to make sure it’s tuned,
listens for any issues, and ensures everyone is playing the right notes.

↪→

↪→

↪→

↪→

↪→

- **Kubelets communicate with the Master components to receive instructions.**
Just as the maestro gets his score from the composer, Kubelets get their
tasks from the Kubernetes controller.

↪→

↪→

- **They manage the lifecycle of containers on their respective nodes.** Kubelets
can start up new containers when needed, just like a conductor might call for
more instruments to join in.

↪→

↪→

56

5.2 Story Generation Results

- **Kubelets ensure that containers are running as expected and report back to
the Master.** They keep an eye on everything, ensuring nothing goes awry, and
they provide regular reports so the maestro (the Kubernetes controller) knows
what's happening.

↪→

↪→

↪→

The Impact (Meaning)
Kubelets play a critical role in executing container orchestration tasks at the

node level, ensuring that applications run smoothly across the cluster. This
decentralized management allows for efficient scaling and resource
allocation—like having a flexible seating arrangement where instruments can
move around to create different harmonies as needed. By enabling this kind of
adaptive and resilient system, Kubelets make sure our digital symphony is
always in tune.

↪→

↪→

↪→

↪→

↪→

↪→

Storytelling Hooks

Dramatic Question
Could making a computer dumber actually make it smarter? How does an agent that

appears to have less intelligence enable the orchestration of complex tasks
across multiple nodes?

↪→

↪→

Point of View
From the perspective of an engineer facing the challenge of managing a

large-scale distributed system, how would they feel about having these
intelligent agents working behind the scenes?

↪→

↪→

Classroom Delivery Tips

- **Pacing**: Start by painting the picture of a large network needing
coordination. Pause here to ask students if they can think of any examples
where coordination is crucial.

↪→

↪→

- **Analogy**: After introducing Kubelets as maestros, pause and ask, "Can you
imagine how hard it would be to manage an orchestra without a conductor? How
does having a conductor make the process easier?"

↪→

↪→

- **Relatable Analogy**: Compare Kubelets to housekeepers in a large hotel. Each
housekeeper is responsible for their floor (node), making sure everything is
clean and tidy, reporting any issues, and ensuring guests have what they
need. This can help students understand that just like housekeepers keep the
rooms ready, Kubelets maintain the containers.

↪→

↪→

↪→

↪→

- **Engagement**: Encourage students to think about how they might feel if they
were in charge of managing a system with hundreds or thousands of nodes
without tools like Kubelets.

↪→

↪→

57

5. RESULTS

Interactive Activities for Kubelets
1. Debate Topic

Statement for Debate:
"Kubelets are indispensable in modern container orchestration due to their

unparalleled efficiency in decentralized management of containers."↪→

Teams:
- **Affirmative Team:** Argues that Kubelets' strengths, particularly their

ability to enable efficient scaling and resource allocation, make them
essential tools in contemporary cloud computing environments.

↪→

↪→

- **Opposition Team:** Challenges the necessity by questioning if there are
alternative methods or technologies that could achieve similar results
without the specific benefits of Kubelets.

↪→

↪→

2. What If Scenario Question

Scenario:
Imagine your class is participating in a hypothetical hackathon where teams must

design and deploy a scalable microservices application using Kubernetes. Your
team has decided to utilize Kubelets for container management. However, you
notice that another group is skeptical about the necessity of Kubelets given
their concerns over potential complexity.

↪→

↪→

↪→

↪→

Question:
Given the scenario above, how would you justify the use of Kubelets in your

project? Consider discussing at least two key strengths of Kubelets and
explain why these benefits outweigh any perceived complexities or challenges.

↪→

↪→

58

6

Discussion

This chapter This study aims to explore the potential application of SLMs in educational

data narratives. The experimental results demonstrate the feasibility of the system design.

During the experiment, we found the following points worthy of discussion.

6.1 Limitation of SLMs

We proposed a scalable pipeline that decomposes the storytelling process into manageable,

semantically coherent tasks. This allowed even small models with limited context windows

to generate rich, pedagogically aligned content. Despite the promising results, several

limitations of SLMs were identified, particularly in how they respond to varying levels of

prompt structure.

During zero-shot prompting with informal or unstructured queries, all evaluated SLMs

failed to produce uniformly structured outputs. Responses were often vague, disorganized,

or incomplete, lacking the expected JSON format. As shown below, even when the intent

was to generate a structured response in JSON, the model failed to follow formatting

conventions:

{
Q19: Help me develop a lesson on cloud standards and compliance, including

NIST guidelines, ISO standards, CSA STAR certifications, and the
importance of interoperability and secure multi-cloud operations.

↪→

↪→

Raw answer: {
"question": {

"topic": "Cloud Standards & Compliance",
"summary": "This lesson will cover NIST guidelines, ISO

standards, CSA STAR certifications, and the importance of
interoperability and secure multi-cloud operations."

↪→

↪→

59

6. DISCUSSION

}

[JSON Parser error] Expecting ',' delimiter: line 5 column 2 (char 227)
Attempting fallback with ast.literal_eval...
[AST Parser fallback error] '{' was never closed (<unknown>, line 1)

This response is incomplete and fails basic JSON syntax validation due to a missing

closing brace. The resulting error, as shown below, reflects an inability to produce even

syntactically valid output. Such formatting failures illustrate that SLMs exhibit poor

generalization when prompts lack explicit instructional scaffolding.

Only after introducing highly structured zero-shot prompts—designed to include narra-

tive templates, input fields (e.g., Strengths, Weaknesses), and clear formatting rules—did

most models demonstrate reliable behavior, as the output from Phi4_14b shown in 5.1. In

the new zero-shot settings, output stability varied significantly across models. Olmo2_7b,

for instance, showed residual instability: occasional lapses into inconsistent formatting or

ignoring instruction tokens altogether, as shown below:

{
"Question": "Prepare a class on modern containerization tools, comparing

Docker, Singularity, and Linux Containers, focusing on their unique
features, HPC scenarios, and differences from traditional virtualization
methods.",

↪→

↪→

↪→

"Knowledge_Topic": "Containerization",
"Core_Concepts": [
{

"Concept": "Docker",
"Definition": "An open-source platform that automates the deployment,

scaling, and management of applications,"↪→

[Parser error] Got invalid return object.
For troubleshooting, visit:
https://python.langchain.com/docs/troubleshooting/errors/OUTPUT_PARSING_FAILURE
Error: '{' was never closed (<unknown>, line 5)

The output is structurally flawed: the "Key_Points", "Significance_Detail", etc, fields

were expected to be present. This is also one of the reasons why Olmo underperforms in

knowledge extraction tasks.

In contrast to larger LLMs, which often exhibit robust adherence to instruction even with

minimal prompting, SLMs remain brittle and require heavy prompt tuning to maintain

alignment with task objectives.

60

6.2 Gap between SLMs and LLMs

6.2 Gap between SLMs and LLMs

To better understand the performance gap between Small Language Models (SLMs) and

Large Language Models (LLMs), we conducted a targeted comparative study using a se-

lected subset of the dataset. Specifically, ten questions were randomly selected from the

QA dataset introduced in Section 4.4.

For the Knowledge Extraction stage, we used NotebookLM as the LLM-based base-

line. NotebookLM is a Google experimental tool designed for grounded, document-based

question answering. It offers high transparency, document alignment, and supports struc-

tured outputs, making it well-suited for knowledge-intensive educational tasks. Compared

to general-purpose models, NotebookLM is optimized for reading multi-source documents

and extracting concept-level summaries with high factual consistency.

For the Story Generation stage, we used GPT-4o to generate stories and classroom

activities. ChatGPT-4o was selected due to its superior instruction-following ability, nar-

rative fluency, and support for markdown-based output formatting. It also showed strong

performance in educational content generation in previous studies.

All outputs were evaluated using the same metrics described in Section 4.5. These

included knowledge extraction evaluation and story generation evaluation. The evaluation

was conducted using DeepSeek-V3, the same automatic scorer used for SLMs, to ensure

consistency and comparability.

The Knowledge Extraction evaluation result is shown in Table 6.1. Notebooklm (3.88)

performs better than Phi4_14b (3.67) in overall performance, mainly because of its advan-

tage in the generation stage, especially in answer completeness. Their retrieval scores are

almost the same (3.30 vs. 3.27). In the generation stage, its average score (4.27) is 0.33

points higher than Phi4_14b (3.94). It is also more accurate (+0.17) and far more com-

plete (+0.76), though both models perform similarly well in faithfulness (+0.06). Overall,

Phi4_14b can still be considered to have capabilities close to larger LLMs when processing

text data, especially in retrieval and faithfulness, even though its generation quality is

slightly weaker.

Model Retrieval Gen Avg Faithfulness Accuracy Completeness Overall

Notebooklm 3.30 4.27 4.5 4.07 4.23 3.88

Table 6.1: Evaluation of Knowledge Extraction by Notebooklm

61

6. DISCUSSION

The Story Generation evaluation result is shown in Table 6.2. The overall weighted

scores of the two systems are very close, with ChatGPT-4o scoring 3.86 and the Phi4_14b

+ Qwen2.5_7b combination scoring 3.83. However, ChatGPT-4o clearly leads in story

generation, with a story score of 3.82 compared to 3.74. It shows large advantages in

fluency and consistency (4.0 vs. 3.57) and narrative coherence (3.7 vs. 3.48), making its

stories more readable and engaging. In contrast, the Phi4_14b + Qwen2.5_7b combination

performs better in factual accuracy (4.07 vs. 3.8) and narrative grounding for activity

design (3.48 vs. 3.40), showing it is more reliable in knowledge-related tasks.

The activity scores from both models are comparable, with the Phi4_14b + Qwen2.5_7b

(3.48) scoring slightly higher in narrative grounding, indicating better integration of activ-

ities within the story context. Meanwhile, the GPT-4o (4.40) achieves a higher classroom

applicability score then Phi4_14b + Qwen2.5_7b (4.35), reflecting stronger practical us-

ability in educational settings. This suggests the SLM combination at contextual relevance,

while the GPT-4o better supports classroom implementation.

These differences indicate that ChatGPT-4o is more suitable when narrative quality is

critical, while the Phi4_14b + Qwen2.5_7b combination demonstrates that SLMs can be

a feasible choice in scenarios that require strict factual accuracy, even if narrative quality

is partially sacrificed.

Model Structure
Factual

Accuracy
Narrative
Coherence

Educational
Engagement

Fluency &
Consistency

Narrative
Grounding

Classroom
Applicability

Overall

ChatGPT-4o 3.50 3.80 3.70 4.10 4.00 3.41 4.40 3.86

Table 6.2: Evaluation of Story Generation by ChatGPT-4o

6.3 Generalization and Guidelines

To help educators and researchers apply the methodology introduced in this thesis, this

appendix presents a step-by-step guide to building educational data storytelling systems

using RAG and SLMs. This guide supports generalization across subjects and educational

contexts.

6.3.1 Overview of the Pipeline

The proposed pipeline consists of three modular components:

1. Knowledge Extraction using hybrid retrieval and chunking techniques.

62

6.3 Generalization and Guidelines

2. Story Generation based on structured prompts and narrative scaffolds.

3. Interactive Narration through classroom activities and discussion design.

Each component can be adapted independently to different curricula, domains, and

language models.

6.3.2 Step-by-Step Implementation Guide

1. Data Preparation

• Gather source materials (e.g., textbooks, PDFs)

• Parse documents using PDF parsers (e.g., minerU) to retain structure

• Apply a two-stage chunking process:

– Semantic Chunking : split by conceptual boundaries

– Recursive Chunking : further broken down into smaller, hierarchical chunks

• Annotate each chunk with metadata (ID, type, topic)

2. RAG Setup

• Implement a hybrid retrieval system:

– Sparse: BM25 for exact matches

– Dense: ChromaDB with HuggingFace embeddings for semantic search

• Use a cross-encoder (e.g., BAAI/bge-reranker-v2-m3) to re-rank retrieved chunks

• Store top-k contextually relevant chunks for generation

• Output the extraction results in a structured format

3. Selecting Appropriate SLMs

Use different models for each stage in a modular pipeline

• Knowledge Extraction: Phi4_14b or Qwen2.5_7b (for factual accuracy)

• Story Generation: Qwen2.5_7b or Llama3.1_8b (for narrative quality)

4. Prompt Engineering Strategy

• Pass the Knowledge Extraction Results

• Use modular and chained prompts

63

6. DISCUSSION

• Structure story prompts using Problem → Solution → Impact, embed hooks

such as analogies, questions, and character perspectives

• Create classroom activities from concept strengths/weaknesses

5. Customization

• Teachers can review, edit, or regenerate each module

• Export outputs in Markdown, PDF formats

6.3.3 Summary Checklist

Step Task Tool/Model
1 Data Parsing & Chunking minerU, semantic + token-based splitter
2 RAG Setup BM25, ChromaDB, Cross-Encoder
3 SLM Selection Phi4_14b, Qwen2.5_7b
4 Prompt Engineering Modular, role-based, CoT prompts

Table 6.3: Checklist for Building an Educational Data Storytelling System

6.4 Future Directions

This research provides a foundation for using SLMs in educational content generation.

However, several directions can be explored to improve the system’s capabilities and

broaden its application in future work.

6.4.1 Integration of Multimodal SLMs

The current system only supports text-based inputs and outputs. Educational materials

such as textbooks, slides, and handouts often contain diagrams, tables, and other visual

elements. In the present implementation, PDF files must be converted into Markdown

format through preprocessing. This conversion process is computationally expensive and

may lose layout or contextual information during parsing when facing complex inputs.

Future versions of the system can integrate multimodal SLMs that accept both text and

visual data. These models can directly process images, scanned documents, and charts

without conversion. This would reduce the need for manual formatting and improve the

system’s ability to extract information from diverse sources. Multimodal support can also

enhance storytelling by generating content that includes both narrative and visual aids,

such as timelines, concept maps, or annotated diagrams.

64

6.4 Future Directions

6.4.2 Platform Development

At present, the system has only been tested in a controlled research environment. It

operates through scripts and local interfaces, which are not accessible to general users

such as teachers or curriculum designers. For future development, building a user-friendly

platform is essential to support real-world classroom integration.

A web-based platform can provide graphical interfaces for uploading course materials,

reviewing generated stories, and editing activities. This would allow non-technical users

to operate the system without needing knowledge of prompts or model orchestration. In

addition, user authentication, session history, and cloud-based model serving could be

added to support long-term use and scalability. These enhancements would transform the

current prototype into a practical educational tool suitable for daily classroom use.

65

6. DISCUSSION

66

7

Conclusion

This thesis explored the potential of Small Language Models as an efficient and practical

tool for educational data storytelling. By dividing the process into knowledge extraction

and story generation, the system allowed different models to focus on tasks that matched

their strengths. The knowledge extraction module ensured factual accuracy and relevance,

while the story generation module produced coherent and engaging narratives through a

chained-prompting strategy. An extensive evaluation of 49 model combinations demon-

strated that SLMs can generate classroom-ready materials with high accuracy and strong

narrative quality, confirming their feasibility for educational applications.

The system’s performance was further validated through comparisons with larger lan-

guage models. Although large models still have advantages in narrative fluency and stylis-

tic consistency, the optimized SLM pipeline achieved competitive results, particularly in

factual reliability and contextual grounding. These findings indicate that SLMs can be

a cost-effective and accessible alternative for educational settings, even when some cre-

ative flexibility is sacrificed. The modular architecture proved essential for overcoming

the inherent limitations of smaller models, highlighting the importance of strategic system

design.

Future work will focus on integrating multimodal SLMs and developing user-friendly

tools to increase adoption among educators. With further optimization, SLM-based sys-

tems can help the creation of AI-generated educational materials, reduce barriers to high-

quality content production, and enrich the learning experience for students. This research

shows that, with reasonable design, SLMs are not just scaled-down versions of larger mod-

els. They can be a powerful and practical solution for bringing generative AI into educa-

tion.

67

7. CONCLUSION

68

References

[1] Craig Eilert Abrahamson. Storytelling as a pedagogical tool in higher

education. Education, 118(3):440–452, 1998. 1, 18

[2] Halah Ahmed Alismail. Integrate digital storytelling in education. Journal

of Education and Practice, 6(9):126–129, 2015. 1, 18

[3] Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang

Tang, Philip S Yu, and Qingsong Wen. Large language models for educa-

tion: A survey and outlook. arXiv preprint arXiv:2403.18105, 2024. 1, 13

[4] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni,

Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-

tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for

knowledge-intensive nlp tasks. Advances in neural information processing sys-

tems, 33:9459–9474, 2020. 5

[5] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu,

Xinting Huang, Enbo Zhao, Yu Zhang, Yulong Chen, et al. Siren’s song

in the AI ocean: a survey on hallucination in large language models. arXiv

preprint arXiv:2309.01219, 2023. 5

[6] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi

Bi, Yixin Dai, Jiawei Sun, Haofen Wang, and Haofen Wang. Retrieval-

augmented generation for large language models: A survey. arXiv preprint

arXiv:2312.10997, 2(1), 2023. 5

[7] Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. Precise zero-

shot dense retrieval without relevance labels. In Proceedings of the 61st Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 1762–1777, 2023. 5

69

REFERENCES

[8] Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query

rewriting in retrieval-augmented large language models. In Proceedings of

the 2023 Conference on Empirical Methods in Natural Language Processing, pages

5303–5315, 2023. 5, 6

[9] Vladimir Blagojevi. Enhancing rag pipelines in haystack: Introducing

diversityranker and lostinthemiddleranker, 2023. 5

[10] Yunfan Gao, Yun Xiong, Meng Wang, and Haofen Wang. Modular rag:

Transforming rag systems into lego-like reconfigurable frameworks. arXiv

preprint arXiv:2407.21059, 2024. 6

[11] Xue Wu and Kostas Tsioutsiouliklis. Thinking with Knowledge Graphs:

Enhancing LLM Reasoning Through Structured Data. arXiv preprint

arXiv:2412.10654, 2024. 6

[12] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish

Sabharwal. Interleaving retrieval with chain-of-thought reasoning for

knowledge-intensive multi-step questions. arXiv preprint arXiv:2212.10509,

2022. 6

[13] Jerry Liu. LlamaIndex, 11 2022. 6

[14] Xianming Li and Jing Li. AnglE-optimized Text Embeddings. arXiv preprint

arXiv:2309.12871, 2023. 6

[15] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-Pack:

Packaged Resources To Advance General Chinese Embedding, 2023. 6

[16] Yunjia Xi, Jianghao Lin, Weiwen Liu, Xinyi Dai, Weinan Zhang, Rui

Zhang, Ruiming Tang, and Yong Yu. A bird’s-eye view of reranking: from

list level to page level. In Proceedings of the Sixteenth ACM International Confer-

ence on Web Search and Data Mining, pages 1075–1083, 2023. 6

[17] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,

Ilya Sutskever, et al. Language models are unsupervised multitask learn-

ers. OpenAI blog, 1(8):9, 2019. 6

70

https://github.com/jerryjliu/llama_index

REFERENCES

[18] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat

Mondal, and Aman Chadha. A systematic survey of prompt engineer-

ing in large language models: Techniques and applications. arXiv preprint

arXiv:2402.07927, 2024. 6

[19] David Van Buren. Guided scenarios with simulated expert personae: a re-

markable strategy to perform cognitive work. arXiv preprint arXiv:2306.03104,

2023. 7

[20] Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu.

Unleashing the potential of prompt engineering for large language models.

Patterns, 2025. 7

[21] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia,

Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits

reasoning in large language models. Advances in neural information processing

systems, 35:24824–24837, 2022. 7

[22] Kunlun Zhu, Yifan Luo, Dingling Xu, Yukun Yan, Zhenghao Liu, Shi

Yu, Ruobing Wang, Shuo Wang, Yishan Li, Nan Zhang, et al. Rageval:

Scenario specific rag evaluation dataset generation framework. arXiv preprint

arXiv:2408.01262, 2024. 7

[23] Hao Yu, Aoran Gan, Kai Zhang, Shiwei Tong, Qi Liu, and Zhaofeng Liu.

Evaluation of retrieval-augmented generation: A survey. In CCF Conference

on Big Data, pages 102–120. Springer, 2024. 7

[24] Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Special-

izing smaller language models towards multi-step reasoning. In International

Conference on Machine Learning, pages 10421–10430. PMLR, 2023. 7

[25] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models

can be accurately pruned in one-shot. In International Conference on Machine

Learning, pages 10323–10337. PMLR, 2023. 7

[26] Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan

Zhuang. Qllm: Accurate and efficient low-bitwidth quantization for large

language models. arXiv preprint arXiv:2310.08041, 2023. 7

71

REFERENCES

[27] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Dis-

tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.

arXiv preprint arXiv:1910.01108, 2019. 7

[28] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and

Denny Zhou. Mobilebert: a compact task-agnostic bert for resource-limited

devices. arXiv preprint arXiv:2004.02984, 2020. 7

[29] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai,

Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, et al.

Deepseek llm: Scaling open-source language models with longtermism.

arXiv preprint arXiv:2401.02954, 2024. 8

[30] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya

Bhupatiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mi-

hir Sanjay Kale, Juliette Love, et al. Gemma: Open models based

on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024. 8

[31] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,

Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan

Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv preprint

arXiv:2407.21783, 2024. 8

[32] Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo,

Shane Arora, Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan,

Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira Anderson,

David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi,

Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng

Liu, Saumya Malik, William Merrill, Lester James V. Miranda, Jacob

Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Ran-

gapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher

Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A.

Smith, and Hannaneh Hajishirzi. 2 OLMo 2 Furious, 2024. 8

[33] Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and

Yang Liu. OpenChat: Advancing Open-source Language Models with

Mixed-Quality Data. arXiv preprint arXiv:2309.11235, 2023. 8

72

https://arxiv.org/abs/2501.00656

REFERENCES

[34] Qwen Team. Qwen2.5: A Party of Foundation Models, September 2024. 8

[35] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen

Eldan, Suriya Gunasekar, Michael Harrison, Russell J Hewett, Mojan

Javaheripi, Piero Kauffmann, et al. Phi-4 technical report. arXiv preprint

arXiv:2412.08905, 2024. 8

[36] Adam S.Z. Belloum Junming Ye. Data Storytelling: A Systematic Review

Across Domains, 08 2025. 8

[37] A Shaji George. The potential of generative AI to reform graduate edu-

cation. Partners Universal International Research Journal, 2(4):36–50, 2023. 11

[38] Dominik Thüs, Sarah Malone, and Roland Brünken. Exploring generative

AI in higher education: a RAG system to enhance student engagement

with scientific literature. Frontiers in Psychology, 15:1474892, 2024. 11

[39] Eason Chen, Danyang Wang, Luyi Xu, Chen Cao, Xiao Fang, and Jiong-

hao Lin. A Systematic Review on Prompt Engineering in Large Language

Models for K-12 STEM Education. arXiv preprint arXiv:2410.11123, 2024. 12

[40] Hang Jiang, Xiajie Zhang, Robert Mahari, Daniel Kessler, Eric Ma,

Tal August, Irene Li, Alex’Sandy’ Pentland, Yoon Kim, Deb Roy, et al.

Leveraging large language models for learning complex legal concepts

through storytelling. arXiv preprint arXiv:2402.17019, 2024. 12

[41] Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models

be and still speak coherent english? arXiv preprint arXiv:2305.07759, 2023. 12

[42] Mostafa Faghih Shojaei, Rahul Gulati, Benjamin A Jasperson, Shang-

shang Wang, Simone Cimolato, Dangli Cao, Willie Neiswanger, and Kr-

ishna Garikipati. AI-University: An LLM-based platform for instructional

alignment to scientific classrooms. arXiv preprint arXiv:2504.08846, 2025. 13

[43] Zhijun Pan, Antonios Andronis, Eva Hayek, Oscar AP Wilkinson, Ilya

Lasy, Annette Parry, Guy Gadney, Tim J Smith, and Mick Grierson.

Guiding Generative Storytelling with Knowledge Graphs. arXiv preprint

arXiv:2505.24803, 2025. 13

73

https://qwenlm.github.io/blog/qwen2.5/
https://www.researchgate.net/publication/394379005_Data_Storytelling_A_Systematic_Review_Across_Domains
https://www.researchgate.net/publication/394379005_Data_Storytelling_A_Systematic_Review_Across_Domains

REFERENCES

74

Appendix A

Examples of Story Generation with
Model Combinations

This appendix presents detailed examples of story generation experiments using different

model combinations. These examples are drawn from both the competitive middle-tier

and underperforming groups described in the main results section. They are intended to

illustrate the qualitative differences in output across tiers.

A.1 Competitive Middle-Tier

Story Generation from Phi4_14b + Openchat_7b (score: 3.50)

```markdown
# Lesson Title: Kubernetes: Orchestrating Microservices with Containers

1. **Introduction (Hook)**: Discover how Kubernetes revolutionizes
container-based microservice architectures by tackling a real-world scenario
where efficient scaling and resource management are crucial.

↪→

↪→

2. **Core Content Delivery**:
1. Pods: Understand the role of Pods as the smallest deployable units in

Kubernetes, housing one or more containers that share resources and
network connectivity.

↪→

↪→

2. Clusters: Learn how Clusters consist of multiple nodes running
containerized applications, managed by a Master component to ensure high
availability and fault tolerance.

↪→

↪→

3. Master Components: Explore the key Master components such as the API
server, etcd, controller manager, and scheduler that maintain the desired
state of the cluster and manage Pods.

↪→

↪→

75



A. EXAMPLES OF STORY GENERATION WITH MODEL
COMBINATIONS

4. Kubelets: Investigate how each node in a Cluster runs a kubelet responsible
for communicating with the Master components and maintaining container
lifecycles.

↪→

↪→

3. **Key Activity/Discussion**: Participate in a group activity where students
simulate the process of creating a Pod, deploying it to a Cluster, and
managing its lifecycle using Kubernetes commands.

↪→

↪→

4. **Conclusion & Synthesis**: Reflect on how Kubernetes efficiently orchestrates
containerized microservices through Pods, Clusters, Master components, and
kubelets, enabling scalability and robust management across diverse
environments.

↪→

↪→

↪→

```

Teaching Module: Pods
1. The Story (Problem -> Solution -> Impact)

The Problem (Event):
_Once upon a time in a faraway land called Kubernetes, there was a big problem.

Developers were struggling to manage their applications and services
efficiently. They needed a way to deploy, scale, and manage their containers
without much hassle._

↪→

↪→

↪→

The 'Aha!' Moment (Experience):
_One day, the wise developers stumbled upon the concept of "Pods". A Pod was like

a tiny magical box that could contain one or more containers. These
containers shared resources like networking and storage, which made it easier
for them to work together and cooperate._

↪→

↪→

↪→

_Within this magical box, the containers could communicate with each other as if
they were part of the same team. They were managed by Kubernetes as a single
entity, making the lifecycle and resource management of these containers much
simpler._

↪→

↪→

↪→

The Impact (Meaning):
_The introduction of Pods in Kubernetes changed everything. It made deploying

microservices within a containerized environment a breeze, and it facilitated
efficient scaling and management of those services. This concept became
crucial for managing the lifecycle of containers, and it helped developers to
focus on their core tasks while leaving the heavy lifting to Kubernetes._

↪→

↪→

↪→

↪→

76

A.1 Competitive Middle-Tier

_Pods were like superheroes that simplified the deployment process by grouping
related containers together. They made it easier to manage their lifecycle
and resources, which in turn empowered developers to create more efficient
applications and services._

↪→

↪→

↪→

2. Storytelling Hooks
- **Dramatic Question**: _What if we could create a unified entity that would

simplify the deployment of multiple containers while sharing resources among
them?_

↪→

↪→

- **Point of View**: _From the perspective of an overworked developer in need of
a more efficient way to manage their microservices._↪→

3. Classroom Delivery Tips
- **Pacing**: _Introduce the concept of Pods, pause for a moment to let the

students absorb the information. Then, continue explaining how they work and
their significance. Ask questions along the way to keep the students
engaged._

↪→

↪→

↪→

- **Analogy**: _Think of a Pod as a small, efficient team of superheroes working
together, each with its own unique powers, but sharing resources like a
common base of operations. They are managed by Kubernetes, which is their
wise and powerful leader that ensures they work efficiently and in harmony._

↪→

↪→

↪→

Interactive Activities for Pods
1. Debate Topic: "While Pods simplify the deployment process by grouping related

containers together for easier management of lifecycle and resources, they
may also limit flexibility in certain scenarios. Is it beneficial to
prioritize ease of management over potential limitations in resource
allocation?"

↪→

↪→

↪→

↪→

2. What If Scenario Question: "Imagine you are a developer tasked with deploying
a large-scale application that requires the efficient use of resources across
multiple containers. If you were to use Pods, how would this affect your
ability to optimize resource usage, and what alternative approaches might be
considered?"

↪→

↪→

↪→

↪→

Teaching Module: Clusters
1. The Story (Problem -> Solution -> Impact)

The Problem (Event):

77

A. EXAMPLES OF STORY GENERATION WITH MODEL
COMBINATIONS

Once upon a time in a bustling city of cloud-native applications, there was a
growing need for efficient and flexible infrastructure to run and manage
large-scale containerized workloads. Applications were spread across public,
private, and hybrid clouds, and they all had their unique challenges.

↪→

↪→

↪→

The 'Aha!' Moment (Experience):
One day, a group of brilliant engineers discovered a magical solution -

Kubernetes Clusters! These clusters were like a team of powerful superheroes
working together to run containerized applications. They were made up of
nodes that collaborated and shared resources, providing the necessary
infrastructure for running containers at scale. The teams could quickly scale
their workloads when needed, making it easy to add or remove nodes from the
cluster.

↪→

↪→

↪→

↪→

↪→

↪→

The Impact (Meaning):
The introduction of Kubernetes Clusters brought about a revolution in the way

applications were managed. They provided a powerful platform that enabled
cloud-native applications to grow and adapt, ensuring they remained scalable
and flexible across different environments. By supporting both on-premise and
cloud deployments, these clusters became essential for hosting large-scale
containerized workloads efficiently.

↪→

↪→

↪→

↪→

↪→

2. Storytelling Hooks
Dramatic Question:
Imagine a world where applications can scale up or down instantly, adapting to

their needs without any hiccups. How would that transform the way we build
and manage software?

↪→

↪→

Point of View:
View the story from the perspective of an engineer struggling with managing

containerized workloads across multiple environments, who stumbles upon
Kubernetes Clusters and discovers a solution that changes everything.

↪→

↪→

3. Classroom Delivery Tips
Pacing:
- Introduce the problem faced by engineers and the growing need for efficient

infrastructure to manage large-scale containerized workloads.↪→

- As you explain what clusters are, pause to let students grasp the concept. Ask
a question like, "What do you think is the main advantage of having nodes
working together in a cluster?"

↪→

↪→

- When discussing the strengths of clusters, ask students to identify which
aspect they find most beneficial.↪→

78

A.1 Competitive Middle-Tier

Analogy:
Think of a Kubernetes Cluster as a team of superheroes, where each node is like a

member of the team. They all have unique abilities and work together to
protect the city (containerized applications) from challenges like growing
demand or shrinking resources. The cluster ensures that no single member is
overwhelmed, and they can all adapt quickly to changing situations.

↪→

↪→

↪→

↪→

Interactive Activities for Clusters
1. Debate Topic: "Kubernetes Clusters, while enabling efficient management of

large-scale containerized workloads, may not be suitable for smaller scale
deployments due to its complexity. Is it worth the investment in learning
and implementing Kubernetes for small-scale projects?"

↪→

↪→

↪→

2. What If Scenario Question: "What if a company decided to switch from using
individual virtual machines to a Kubernetes cluster for managing their
containerized applications? How would this decision impact the efficiency,
scalability, and cost of their operations, considering the complexity
involved in managing Kubernetes clusters?"

↪→

↪→

↪→

↪→

Teaching Module: Master Components
1. The Story

The Problem (Event): In the world of containerized applications, there was
once a company facing significant challenges in managing their growing fleet
of containers. They struggled to ensure that resources were efficiently
utilized and that their applications remained reliable across their sprawling
infrastructure.

↪→

↪→

↪→

↪→

The 'Aha!' Moment (Experience): One day, they discovered Kubernetes, an
open-source platform designed to automate deployment, scaling, and management
of containerized applications. At the heart of this powerful system lay the
Master Components. These components controlled the scheduling, scaling, and
health management of containers within the cluster. The API server acted as
the central control point for all interactions with Kubernetes, while the
Scheduler decided where to place new containers based on available resources
and requirements. Finally, the Controller Manager ensured that the desired
state of the cluster was maintained at all times.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

79

A. EXAMPLES OF STORY GENERATION WITH MODEL
COMBINATIONS

The Impact (Meaning): With these Master Components in place, the company
could effectively orchestrate their container operations across the entire
Kubernetes cluster. This centralized control allowed them to maintain
consistent management and decision-making processes, leading to more
efficient resource utilization and increased application reliability. Despite
its importance, it's worth noting that over-reliance on a single point of
control could potentially lead to vulnerabilities if not managed carefully.

↪→

↪→

↪→

↪→

↪→

↪→

2. Storytelling Hooks
Dramatic Question: What if you could manage your entire containerized

infrastructure with just one set of components?↪→

Point of View: From the perspective of an engineer tasked with managing a
complex, multi-container environment.↪→

3. Classroom Delivery Tips
Pacing: Pause after describing the challenges faced by the company to

emphasize the need for a solution like Kubernetes. When explaining the Master
Components, pause after each key point to ensure understanding and ask
questions to keep students engaged.

↪→

↪→

↪→

Analogy: Imagine you're running a bakery with many different types of cakes
and pastries. The Master Components are like the head chef who decides which
desserts to bake, where they should be placed in the display case, and
whether more ingredients need to be ordered or not. They ensure that all the
other chefs (containers) have what they need to create delicious treats
without overcrowding the kitchen (cluster).

↪→

↪→

↪→

↪→

↪→

Interactive Activities for Master Components
1. Debate Topic: "Master Components provide centralized control over a cluster,

enabling consistent management and decision-making processes, but they may
also lead to reliance on a single point of failure. Should organizations
prioritize the benefits of Master Components or focus on building redundancy
and resilience into their systems?"

↪→

↪→

↪→

↪→

2. What If Scenario Question: "Imagine a company has just adopted the Master
Component model for their server cluster, which has significantly improved
their efficiency and decision-making processes. Suddenly, a major malfunction
occurs in the central Master Component. Given this scenario, should the
company invest more resources into repairing the Master Component or focus on
developing a distributed system that can function independently of any single
component?"

↪→

↪→

↪→

↪→

↪→

↪→

80

A.1 Competitive Middle-Tier

Teaching Module: Kubelets
The Story

The Problem (Event)
Once upon a time in a vast, bustling city of computers, there was a growing

challenge. With more and more applications requiring efficient and reliable
execution across multiple nodes, the need to manage these containers became
increasingly complex and difficult to handle.

↪→

↪→

↪→

The 'Aha!' Moment (Experience)
As the story goes, one day, an ingenious group of developers stumbled upon a

concept called Kubelets. Kubelets were agents that run on each node in a
Kubernetes cluster. They were responsible for maintaining the desired state
of containers. You see, Kubelets communicate with the Master components to
receive instructions. They manage the lifecycle of containers on their
respective nodes. Most importantly, they ensure that containers are running
as expected and report back to the Master.

↪→

↪→

↪→

↪→

↪→

↪→

The Impact (Meaning)
This discovery was a game-changer for the city of computers. Kubelets played a

critical role in executing container orchestration tasks at the node level,
ensuring that applications ran smoothly across the cluster. They enabled
decentralized management of containers, allowing for efficient scaling and
resource allocation. The benefits were clear - improved efficiency, better
reliability, and increased scalability. However, it also came with
trade-offs, as no solution is perfect. But overall, Kubelets made managing
container orchestration a little less daunting and a lot more effective.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Storytelling Hooks
- **Dramatic Question**: Can you imagine a world where every computer in a

cluster works together seamlessly, like a well-oiled machine?↪→

- **Point of View**: Let's explore this concept from the perspective of an
overworked system administrator trying to maintain order amidst chaos.↪→

Classroom Delivery Tips
- **Pacing**: Start by introducing the challenge faced in managing containers

across multiple nodes. Pause for a moment and ask students if they can relate
to this problem. Then, introduce the concept of Kubelets and their role.
Pause again after discussing each Key Point to allow students to absorb the
information.

↪→

↪→

↪→

↪→

81

A. EXAMPLES OF STORY GENERATION WITH MODEL
COMBINATIONS

- **Analogy**: To help students understand the concept of Kubelets, imagine a
team of chefs (nodes) in a busy kitchen (cluster), responsible for preparing
dishes (containers). The head chef (Master component) instructs the team on
what to prepare and how, while each chef reports back on their progress. This
analogy helps to illustrate the communication and coordination involved in
Kubelets' operations.

↪→

↪→

↪→

↪→

↪→

Interactive Activities for Kubelets
1. Debate Topic: "Kubelets enable decentralized management of containers,

allowing for efficient scaling and resource allocation; however, some argue
that this comes at the cost of increased complexity in container
orchestration. In a world where simplicity and ease of use are highly
valued, is it worth adopting Kubelets for their management capabilities?"

↪→

↪→

↪→

↪→

2. What If Scenario Question: "Imagine you are tasked with managing a large-scale
containerized application that requires high availability and efficient
resource utilization. Your team has been considering using Kubelets to manage
the containers. However, your team is divided between those who believe in
the benefits of decentralized management, scalability, and resource
allocation provided by Kubelets, and those who are concerned about the added
complexity this might introduce. What if a sudden surge in traffic occurs,
and you have to decide whether to use Kubelets or stick with traditional
container management? Justify your choice based on the trade-offs between the
strengths and weaknesses of Kubelets."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

A.2 Underperformers

Story Generation from Phi4_14b + Phi4_14b (score: 3.28)

Lesson Plan Outline

1. **Lesson Title**
- "Mastering Kubernetes: Orchestrating Microservices with Ease"

2. Introduction (Hook)
- **Objective:** Engage students by presenting a real-world scenario where

scaling microservice-based architectures efficiently is critical, prompting
them to consider how orchestration can solve such challenges.

↪→

↪→

3. Core Content Delivery
- **Objective:** Sequentially introduce the core concepts of Kubernetes and their

roles in orchestrating containerized applications.↪→

1. **Pods**

82

A.2 Underperformers

- Objective: Explain that Pods are the smallest deployable units in
Kubernetes, encapsulating one or more containers to ensure they run
together.

↪→

↪→

2. **Clusters**
- Objective: Describe how Clusters provide a pool of resources, including

multiple nodes where Pods can be scheduled and executed.↪→

3. **Master Components**
- Objective: Outline the role of Master components (now known as Control

Plane) in managing the state of the cluster, scheduling workloads, and
maintaining desired states.

↪→

↪→

4. **Kubelets**
- Objective: Illustrate how Kubelets are agents running on each node that

ensure containers within Pods are healthy and operational.↪→

4. Key Activity/Discussion
- **Objective:** Conduct an interactive simulation or group discussion where

students apply the concepts to a hypothetical deployment scenario,
identifying which Kubernetes components would be involved in scaling their
solution.

↪→

↪→

↪→

5. Conclusion & Synthesis
- **Objective:** Summarize how Pods, Clusters, Master Components, and Kubelets

collaborate within Kubernetes to efficiently scale microservice-based
architectures, reinforcing their understanding of orchestration principles.

↪→

↪→

Teaching Module: Pods
1. The Story (Problem -> Solution -> Impact)

The Problem (Event)
In a bustling tech company named "TechCrafters," teams were struggling with

deploying and managing applications efficiently. Each application consisted
of multiple components that needed to work together seamlessly, yet each
component was packaged in separate containers. These containers had to share
resources such as storage and networking but faced challenges due to their
isolated nature. Deploying updates became a complex task, often leading to
downtime or inconsistent states between components.

↪→

↪→

↪→

↪→

↪→

↪→

83

A. EXAMPLES OF STORY GENERATION WITH MODEL
COMBINATIONS

The 'Aha!' Moment (Experience)
One day, Emma, an innovative software engineer at TechCrafters, stumbled upon the

concept of "Pods" while exploring Kubernetes—a powerful system for managing
containerized applications. She learned that a Pod is the smallest deployable
unit in Kubernetes capable of containing one or more containers that share
storage and network resources. This discovery was transformative: Pods
allowed these containers to be deployed together as a single entity, managed
by Kubernetes.

↪→

↪→

↪→

↪→

↪→

↪→

Emma realized that with Pods, she could group related containers into cohesive
units, making it easier to ensure they were always synchronized and
efficiently using shared resources. These Pods facilitated the deployment of
microservices within their containerized environment, addressing many of
TechCrafters' deployment challenges.

↪→

↪→

↪→

↪→

The Impact (Meaning)
The adoption of Pods at TechCrafters revolutionized their deployment processes.

With Pods, managing the lifecycle of containers became streamlined, enabling
efficient scaling and management of their microservice-based architectures.
This innovation significantly reduced downtime during updates and improved
resource utilization. While Pods simplified deployments by grouping related
containers, there were no significant weaknesses that overshadowed these
strengths.

↪→

↪→

↪→

↪→

↪→

↪→

Pods became crucial for TechCrafters, allowing them to maintain a robust and
agile application infrastructure, ultimately leading to happier customers and
a more innovative company culture.

↪→

↪→

2. Storytelling Hooks

- **Dramatic Question**: "How can the smallest unit in a containerized world
transform how applications are deployed and managed?"↪→

- **Point of View**: From the perspective of an engineer like Emma, who faces
daily challenges in managing complex application deployments.↪→

3. Classroom Delivery Tips

- **Pacing**:
- Pause after introducing the problem to allow students to reflect on similar

experiences they might have encountered with resource sharing or isolated
components.

↪→

↪→

84

A.2 Underperformers

- After explaining what a Pod is and how it works, ask students if anyone can
think of another scenario where grouping related items could simplify
management.

↪→

↪→

- **Analogy**:
- Imagine Pods as a team bus in a relay race. Each container is like an

individual runner who needs to pass the baton smoothly to the next. The Pod
is the bus that carries all runners, ensuring they start together and have
access to shared resources (like water stations), making the entire process
more efficient. Without the bus, each runner would need their own vehicle,
complicating coordination and resource sharing.

↪→

↪→

↪→

↪→

↪→

This approach helps students visualize how Pods streamline container management
by grouping related components into a single deployable unit, much like
runners on a team bus in a relay race.

↪→

↪→

Interactive Activities for Pods
Debate Topic

Statement: "Given that pods simplify deployment by grouping related
containers together and have no notable weaknesses, they are an essential
component of any container orchestration strategy."

↪→

↪→

Arguments For:
- Simplifies the management process for developers by bundling related

components.↪→

- Enhances resource allocation efficiency through shared namespaces.

Arguments Against:
- Lacks explicit weakness may overlook potential limitations or challenges that

could arise in specific use cases.↪→

- May lead to over-reliance on a single abstraction, possibly neglecting other
beneficial orchestration tools or methods.↪→

What If Scenario Question

Imagine you are part of a development team tasked with deploying a complex
microservices-based application. The application consists of multiple
interdependent services that need to communicate seamlessly and share certain
resources like volumes and network configurations. You decide to use
Kubernetes for orchestrating the containers.

↪→

↪→

↪→

↪→

85

A. EXAMPLES OF STORY GENERATION WITH MODEL
COMBINATIONS

Scenario: Your project manager suggests using pods extensively due to their
ability to group related containers together, thereby simplifying deployment
processes.

↪→

↪→

Question:
- How would you justify the decision to rely heavily on pods given their

strengths? Consider any potential indirect challenges that could arise
despite the absence of explicit weaknesses.

↪→

↪→

Considerations for Justification:
- Discuss how grouping services in pods could streamline deployment and resource

management.↪→

- Reflect on any possible limitations or unforeseen issues, such as scalability
concerns or complexities in managing inter-pod communication.↪→

This scenario encourages students to think critically about the implications of
using pods extensively and explore potential trade-offs that may not be
immediately apparent.

↪→

↪→

Teaching Module: Clusters
1. The Story (Problem -> Solution -> Impact)

The Problem (Event)
In the fast-paced world of technology, businesses are constantly seeking ways to

enhance their application deployment and management capabilities. Before the
advent of Kubernetes clusters, companies faced significant challenges in
scaling applications efficiently across diverse environments. Managing
containerized applications manually was cumbersome, error-prone, and limited
scalability. Businesses required a solution that could offer both flexibility
and reliability for deploying applications at scale.

↪→

↪→

↪→

↪→

↪→

↪→

The 'Aha!' Moment (Experience)
One day, an innovative group of engineers encountered this daunting challenge:

how to streamline the management of numerous containers across different
environments effectively? Their breakthrough came when they discovered
Kubernetes clusters—a concept that fundamentally changed their approach. A
Cluster in Kubernetes is a group of nodes that work together to run
containerized applications.

↪→

↪→

↪→

↪→

↪→

86

A.2 Underperformers

These clusters can span public, private, or hybrid clouds, offering unparalleled
flexibility. They provide the necessary infrastructure for running and
managing containers at scale, facilitating rapid scaling and workload
portability. By organizing resources into clusters, engineers could manage
large-scale workloads efficiently, ensuring applications were resilient,
scalable, and portable across various environments.

↪→

↪→

↪→

↪→

↪→

The Impact (Meaning)
The introduction of Kubernetes clusters marked a transformative moment in

cloud-native application deployment. Their strengths lie in enabling
efficient management of containerized workloads at scale, supporting both
on-premise and cloud deployments seamlessly. Clusters are essential for
hosting applications that demand scalability and flexibility, allowing
businesses to adapt quickly to changing demands without compromising
performance.

↪→

↪→

↪→

↪→

↪→

↪→

The significance of Kubernetes clusters extends beyond just technical efficiency;
they empower organizations to innovate and grow by providing a robust
foundation for their digital infrastructure. While there might be
complexities in setting up and managing these clusters initially, the
benefits far outweigh any initial hurdles.

↪→

↪→

↪→

↪→

2. Storytelling Hooks

Dramatic Question
"Can a group of interconnected nodes transform how businesses deploy applications

across diverse environments?"↪→

Point of View
From the perspective of an engineer facing the challenge of scaling containerized

applications efficiently.↪→

3. Classroom Delivery Tips

Pacing
- **Pause** after introducing the problem to let students reflect on the

challenges faced before Kubernetes clusters.↪→

- **Ask a question**: "What do you think are some potential issues with manually
managing large-scale containerized applications?"↪→

- **Pause** again after explaining the 'Aha!' moment, allowing students to
consider how clusters change the game for application deployment.↪→

Analogy

87

A. EXAMPLES OF STORY GENERATION WITH MODEL
COMBINATIONS

Imagine a cluster as a team of superheroes (nodes), each with unique skills and
abilities. Individually, they can perform well, but together, they form an
unstoppable force capable of handling any challenge thrown their way—whether
it's battling villains in public spaces, protecting private sanctuaries, or
operating across both worlds seamlessly. Just like this superhero team,
Kubernetes clusters work collectively to manage complex tasks efficiently and
effectively, ensuring that applications run smoothly no matter where they're
deployed.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Interactive Activities for Clusters
1. Debate Topic

Statement: "Clusters are indispensable for Kubernetes in managing large-scale
containerized workloads efficiently, given their ability to support both
on-premise and cloud deployments; however, the absence of any identified
weaknesses raises concerns about potential oversight or unexplored
limitations."

↪→

↪→

↪→

↪→

This topic invites debate by highlighting the undeniable strengths of clusters
while encouraging participants to critically assess whether a lack of
identified weaknesses is a genuine indication of perfection or an area that
requires deeper investigation.

↪→

↪→

↪→

2. What If Scenario Question

Scenario: Imagine you are the lead architect at a tech company planning to
deploy a new microservices-based application. Your team can choose between
using Kubernetes clusters for this deployment, which promises efficient
management of large-scale containerized workloads and flexibility across both
on-premise and cloud environments, or opting for an alternative orchestration
tool that has been recently updated with enhanced security features but lacks
the robust scalability support provided by Kubernetes clusters.

↪→

↪→

↪→

↪→

↪→

↪→

Question: If you were to choose between deploying your application using
Kubernetes clusters or the alternative orchestration tool, how would you
justify your decision? Consider both the strengths of using clusters and the
implications of choosing an option with no identified weaknesses. How might
potential unknown limitations affect your choice?

↪→

↪→

↪→

↪→

This scenario encourages students to apply their understanding of the concept by
weighing the trade-offs between efficiency and scalability against security
enhancements and the unknown risks associated with a system perceived as
flawless.

↪→

↪→

↪→

88

A.2 Underperformers

Teaching Module: Master Components
1. The Story (Problem -> Solution -> Impact)

The Problem (Event)
In a bustling city of containerized applications called Clusteropolis, chaos

reigned. Without any centralized control, containers were like unruly
citizens—some wandered aimlessly without resources, while others crowded
specific areas, causing system strain and inefficiencies. Applications would
sporadically fail because there was no one to ensure they had what they
needed or to manage their health. The city's infrastructure was in disarray,
struggling under the weight of uncoordinated operations.

↪→

↪→

↪→

↪→

↪→

↪→

The 'Aha!' Moment (Experience)
Amidst this chaos, a visionary engineer named Alex discovered a set of guidelines

that could bring order to Clusteropolis: the Master Components. These were
akin to the mayor and city council of the Kubernetes cluster—a team
responsible for overseeing everything from resource allocation to health
monitoring.

↪→

↪→

↪→

↪→

The Master node emerged as the central hub of control, equipped with key
components:↪→

- **API Server**: Acting like a communication center, it received requests and
ensured that every decision was properly logged.↪→

- **Scheduler**: This component was akin to an urban planner, determining where
each container should reside for optimal performance.↪→

- **Controller Manager**: Like a diligent city manager, it maintained the desired
state of operations by monitoring and rectifying any discrepancies.↪→

Together, these components worked in harmony to enforce laws and policies across
Clusteropolis, ensuring resources were used efficiently and applications ran
smoothly.

↪→

↪→

The Impact (Meaning)
With Master Components at the helm, Clusteropolis transformed. Applications

flourished with consistent performance, and resource utilization became
optimized. This centralized control allowed for uniform decision-making
processes that ensured stability and reliability across the entire city.

↪→

↪→

↪→

89

A. EXAMPLES OF STORY GENERATION WITH MODEL
COMBINATIONS

The strengths of these components lay in their ability to provide a cohesive
management system, making them indispensable for orchestrating complex
container operations efficiently. While there were no notable weaknesses
presented by Alex's discovery, the trade-off was clear: relinquishing some
autonomy at individual container levels for the greater good of cluster-wide
harmony and efficiency.

↪→

↪→

↪→

↪→

↪→

2. Storytelling Hooks

- **Dramatic Question**: "How can a single central authority bring order to a
chaotic city of containers?"↪→

- **Point of View**: "From the perspective of Alex, an engineer tasked with
revitalizing Clusteropolis, a city of containerized applications."↪→

3. Classroom Delivery Tips

- **Pacing**:
- Pause after describing the initial chaos in Clusteropolis to let students

visualize the problem.↪→

- Ask, "What do you think happens when there's no central control?" before
introducing Master Components.↪→

- After explaining each component (API Server, Scheduler, Controller Manager),
pause for a moment of reflection on their specific roles.↪→

- **Analogy**:
- Compare Kubernetes Master Components to a city government. The API Server is

like the main communication office receiving all requests and dispatching
information. The Scheduler acts as the urban planner deciding where new
buildings (containers) should go, while the Controller Manager ensures that
everything runs according to plan, much like a city manager overseeing
daily operations and ensuring compliance with policies.

↪→

↪→

↪→

↪→

↪→

This storytelling approach will help students understand the importance of Master
Components in Kubernetes by relating them to real-world organizational
structures.

↪→

↪→

Interactive Activities for Master Components
1. Debate Topic

Debate Statement:
"Centralized control in Master Components is essential for effective cluster

management despite having no identified weaknesses."↪→

90

A.2 Underperformers

Discussion Points:

- **For**: Centralized decision-making ensures uniformity, reduces configuration
errors, and simplifies administrative tasks.↪→

- **Against**: The absence of recognized weaknesses might suggest a lack of
critical scrutiny or potential oversights that have not yet been encountered.↪→

2. 'What If' Scenario Question

Scenario:
Imagine you are the IT manager for a rapidly growing tech company. Your team is

considering implementing Master Components to manage your expanding data
cluster, which will handle sensitive customer information and
mission-critical applications. You know that Master Components offer
centralized control over management tasks. However, during discussions, some
team members express concerns about potential unknown weaknesses.

↪→

↪→

↪→

↪→

↪→

Question:
If you were to implement Master Components in this scenario, how would you

justify your decision given their strength of providing centralized control,
yet acknowledging the lack of identified weaknesses? What precautions or
additional strategies might you employ to mitigate any unforeseen issues that
could arise from undiscovered vulnerabilities?

↪→

↪→

↪→

↪→

Considerations for Discussion:

- The importance of centralized management for consistency and reliability.
- Strategies to monitor and identify potential weaknesses as they emerge.
- Balancing reliance on Master Components with contingency planning.

Teaching Module: Kubelets
1. The Story (Problem -> Solution -> Impact)

The Problem (Event)

91

A. EXAMPLES OF STORY GENERATION WITH MODEL
COMBINATIONS

In the bustling city of Techville, applications needed to run seamlessly across
numerous servers in a sprawling data center. However, managing these
containers manually was becoming chaotic and inefficient. Servers were
overloaded, some remained underutilized, and ensuring every application ran
as expected required constant human intervention. This led to frequent
downtimes, frustrating both users and administrators.

↪→

↪→

↪→

↪→

↪→

The 'Aha!' Moment (Experience)
One day, a brilliant engineer named Alex stumbled upon an ingenious idea while

observing ants in the park. Just like how each ant knows its role in
maintaining the colony's efficiency, what if each server had an agent that
could manage itself? This inspired Alex to create "Kubelets"—agents that
would run on every node (server) within the Kubernetes cluster.

↪→

↪→

↪→

↪→

These Kubelets were designed to communicate with the Master components of the
cluster. They received instructions and managed the lifecycle of containers
on their respective nodes, ensuring each container ran smoothly as intended.
By doing so, they maintained the desired state of applications without
requiring constant oversight from human administrators.

↪→

↪→

↪→

↪→

The Impact (Meaning)
The introduction of Kubelets revolutionized how Techville's data center operated.

Applications began running more reliably and efficiently across all servers.
With decentralized management, resources were allocated effectively, allowing
for effortless scaling as demand fluctuated. This meant less downtime and
happier users!

↪→

↪→

↪→

↪→

Kubelets empowered the cluster to self-manage, freeing engineers from mundane
tasks and enabling them to focus on innovation. While there were no
significant weaknesses identified, this approach marked a pivotal shift in
container orchestration, highlighting the significance of efficient resource
management at the node level.

↪→

↪→

↪→

↪→

2. Storytelling Hooks

- **Dramatic Question**: "How can we make our data center smarter without adding
more human oversight?"↪→

- **Point of View**: Narrate from Alex's perspective as an engineer who is both
challenged by and inspired to solve Techville’s server management issues.↪→

3. Classroom Delivery Tips

92

A.2 Underperformers

- **Pacing**:
- Pause after introducing the problem in Techville to allow students to ponder

the challenges faced without Kubelets.↪→

- Ask a question: "What do you think would happen if we could automate managing
these servers?"↪→

- Slow down during the explanation of how Kubelets work, using simple language
and reinforcing key points.↪→

- Reflect on the impact after describing it, encouraging students to consider
its implications in real-world scenarios.↪→

- **Analogy**:
- Compare Kubelets to a diligent manager in an office. Just as a manager

ensures each employee is productive, has their tasks completed, and
resources are used efficiently without needing constant reminders from
higher-ups, Kubelets ensure containers on their nodes run smoothly and
report back to the central system for oversight.

↪→

↪→

↪→

↪→

This storytelling module helps convey the concept of Kubelets in a relatable and
engaging manner, making it easier for students to grasp its significance and
functionality.

↪→

↪→

Interactive Activities for Kubelets
Debate Topic:

Statement: "Kubelets are essential for efficient scaling and resource
allocation in containerized environments due to their decentralized
management capabilities; however, this strength is moot without any
identified weaknesses."

↪→

↪→

↪→

Debate Directions:

- **Affirmative Position:** Argue that the strengths of Kubelets—specifically
their ability to enable decentralized management, which leads to efficient
scaling and resource allocation—are significant enough to overshadow any
hypothetical or latent weaknesses. Emphasize how these strengths can
transform container orchestration by enhancing performance, reducing
bottlenecks, and improving system resilience.

↪→

↪→

↪→

↪→

↪→

93

A. EXAMPLES OF STORY GENERATION WITH MODEL
COMBINATIONS

- **Negative Position:** Challenge the idea that the absence of current
identified weaknesses makes Kubelets' strengths unequivocally beneficial.
Discuss potential hidden drawbacks such as complexity in configuration,
potential for mismanagement at scale, or security concerns that might arise
with decentralized systems. Argue that without acknowledging possible future
weaknesses, reliance on their current strengths could lead to unforeseen
challenges.

↪→

↪→

↪→

↪→

↪→

↪→

What If Scenario Question:

Scenario: Imagine you are the CTO of a rapidly growing tech startup. Your
company is scaling its services globally and has decided to adopt Kubernetes
for container orchestration. You have two options: use Kubelets for
decentralized management or rely on a centralized management system that
offers similar functionalities but with slightly higher latency in resource
allocation.

↪→

↪→

↪→

↪→

↪→

Question:

If you choose to implement Kubelets, what potential benefits can your
organization expect from their decentralized management capabilities?
Conversely, how would you address any unspoken concerns about
decentralization, considering no explicit weaknesses are currently
identified?

↪→

↪→

↪→

↪→

Guidelines for Discussion:

- **Benefits Analysis:** Discuss the advantages of using Kubelets in terms of
scalability, resource efficiency, and fault tolerance. Consider how these
strengths can support your company's growth and improve service delivery.

↪→

↪→

- **Unspoken Concerns:** Explore potential challenges that might arise from
decentralization, such as complexity in managing multiple nodes, potential
security vulnerabilities due to distributed control, or issues with
consistency across different environments.

↪→

↪→

↪→

- **Justification:** Justify your choice by weighing these trade-offs. Consider
factors like the company's current infrastructure, team expertise, and
long-term strategic goals. Discuss how you would mitigate any risks
associated with decentralization while maximizing the benefits of Kubelets.

↪→

↪→

↪→

94

	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Questions
	1.2 Contributions
	1.3 Thesis Structure

	2 Background
	2.1 Retrieval-Augmented Generation
	2.1.1 Architectures and Developments
	2.1.2 Optimization
	2.1.3 Evaluation

	2.2 Small Language Models
	2.3 Data Storytelling

	3 Related Work
	3.1 Applications of LLMs in Education
	3.2 Prompt Engineering Strategies for Educational Tasks
	3.3 Storytelling and Narrative Generation in Education
	3.4 RAG in Educational Systems
	3.5 Summary and Research Gaps

	4 Design
	4.1 Top-level Design
	4.2 Knowledge Extraction
	4.2.1 Document Processing and Chunking
	4.2.2 Hybrid Information Retrieval
	4.2.3 Re-ranking via Cross Encoder

	4.3 Story Generation and Narration
	4.3.1 Story Generation
	4.3.2 Narration and Interaction Design
	4.3.3 Lesson Guide and Classroom Use

	4.4 Dataset Construction
	4.5 Evaluation
	4.5.1 Knowledge Extraction Evaluation
	4.5.2 Story Generation Evaluation

	5 Results
	5.1 Knowledge Extraction Results
	5.2 Story Generation Results

	6 Discussion
	6.1 Limitation of SLMs
	6.2 Gap between SLMs and LLMs
	6.3 Generalization and Guidelines
	6.3.1 Overview of the Pipeline
	6.3.2 Step-by-Step Implementation Guide
	6.3.3 Summary Checklist

	6.4 Future Directions
	6.4.1 Integration of Multimodal SLMs
	6.4.2 Platform Development

	7 Conclusion
	References
	A Examples of Story Generation with Model Combinations
	A.1 Competitive Middle-Tier
	A.2 Underperformers

