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Abstract 
 

A Web Service can be discovered by clients and applications in a network, by 
what it does and how it does it. For that purpose, well-defined analytic 
descriptions of Services and Requests must be available together with a 
corresponding matching algorithm, incorporated preferably in a totally 
decentralized communication protocol. A system providing all these features 
requires some verifications and evaluation. In this thesis we propose a simulation 
framework which can be used to achieve this goal based on GnutellaSim, we also 
extend one of the most commonly used semantic matching algorithms using 
elements from the OWL-s description language, allowing a wider range of 
matching possibilities. 
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Web Services have the dynamic to transform the internet from a file and information 
sharing platform to a full-application remote-execution environment. But to search for a 
web service is much more difficult than searching for a file, because it is also much 
more complicated to describe services, making descriptions of similar services (or even 
the same one) semantically different. Also, web services are not necessarily known by 
their name to the users, as (e.g.) music files do. Thus, the following requirements must 
be satisfied in order to ease the Web Services dynamic discovery: a) finding a precise 
and as complete as possible way for describing web services, b) designing a specific 
network protocol that eases their discovery from other computer nodes in the same 
network. 
 

 

1.1 Motivation 
 

It is insufficient to search for Web Services through generic engines: they do not ensure 
that the results will be services and not merely static web sites. Instead, a dedicated 
environment, where only services would be offered, is required. But such an 
environment would need some extra attention on how to interact with the user: He/she 
is by now accustomed with the file sharing/searching concept, where only a keyword or 
a short description is enough to characterize a song, a movie, an image or a book. The 
title of the offered/requested object, its main subject or its classification could quite 
successfully return some search hits with just a lexicographical matching of meta-data. 
On the other hand, a Web Service (W.S.) is an “action”, an “activity”, therefore it does 
not refer to one static object but to a collection of objects that change “state” (e.g. a 
selling service causes change of ownership for the sold product). And with such a 
complex nature, no title and no short description can be objective enough.  

CHAPTER 1 Introduction 
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As an example, songs have only one title and they mostly belong to only one big music 
style. But an internet-based department shop (which can have any name-title) sells 
products of many (hundreds of?) genres, so we must not expect all of them to fit 
somehow in the short meta-data description and, in a second phase, to be found with a 
simple lexicographical check. Adding to that, how can someone spot immediately a web 
service which sells Station Wagons when the service is only described as a Vehicle 
Selling Service?  
 
Moreover, especially in most commercial cases, the web service provider needs to ensure 
that his service can be reached by a maximum number of clients. In other words, anyone 
who wants to use it should be able to reach it easily and quick. This is also the desire of 
the client himself, plus the fact that he probably wants to have a range of hit answers on 
his search in order to choose the most appropriate or in case some of them don’t work. 
If we translate these to the physical level, the dedicated environment we mentioned 
above should be supported by a network (protocol) that allows large popularities of 
nodes, both of web service providers and clients.  
 
The difficulty with allowing big number of nodes in a network is the complexity of 
managing them and serving the enormous message-handling load that is produced. This 
means that we would need a large number of server nodes, a wide distribution of 
control. 
 

 

1.2 Research Questions 
 

a) Is there a way to describe Web Services in a more conceptual manner which 
would allow their searching and matching using methods beyond the typical 
lexicographical method? 

 
The step beyond the lexicographical idea is to give an objective meaning to the terms 
that describe the W.S. 
 
Terms start having a meaning when they are related to other terms. One can find several 
attempts to create a web service semantics description language. The most popular 
(used in works [2], [3], [5], [6], [11], [12] and [20]) is the XML-type DARPA Agent 
Markup Language for Services (DAML-S, [4]) based on the DARPA Agent Markup 
Language with Ontology Inference Layer (DAML+OIL, [7]). This works on top of 
the so common Web Services Description Language    (WSDL, [28]) for empowering its 
description with semantic terms, which WSDL is lacking in (I/O, pre-conditions, post-
conditions, effects of execution, etc. of the service). It organizes these terms in semantic 
hierarchies called ontologies, where (e.g.) a “parent” node of the output type named 
“vehicle” has as “children” cars and motorbikes. Recently, DAML+OIL upgraded to 
the Web Ontology Language    ((((OWL, [9]) and so DAML-S to Web Ontology 
Language    for Services (OWL-S, [10]). 
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A step beyond that is the research in [5], where we read about how we can use DAML-
S to implement an algorithm for searching web services. They use the input and output 
entities of each service to match requests and advertisements. If those entities have some 
close relation in some ontology a hit is considered with gradual ranking: first rank for 
output and input full match, second for output match and input parent-child relation, 
then for input match and output parent-child relation etc.  
 
b) Is there a type of network that can host lots of nodes reliably and at the same 

time perform a satisfactory control on the flow of the messages?  
 
The last 5 years we notice a considerable effort in research, on how to combine web 
services discovery and peer-to-peer networks. This effort is characterized by two main 
trends: the use of structured-centralized p2p protocols, or the use of unstructured-
decentralized protocols. There are arguments for supporting both cases.  
 
Centralized p2p networks include servers (brokers) that advertise web services with a 
description and a way to invoke them. The service providers have to register to the 
network. Their advantage is that it is very easy to perform exact matching with stored 
keywords, while searching for a web service. On the other hand, such networks are 
condemned to have limited population of nodes and a low performance on partial 
matching queries [1]. They also suffer from single-point failure [2]. 
 
Decentralized p2p networks have no need of registries and each node has each own 
index of services on other nodes (the ones it knows) [2]. Thus, they can include a big 
population of nodes. But, they don’t ensure a hit because the distribution of a query is 
always limited (by lack of time or lack of links to other nodes) [1].  
 
From these two approaches, the second is the newer and appears as more suitable for 
wide public use of web services. Such public accessibility becomes rather suppressed by 
“formal” procedures as registering and non-fully-dynamic network structures.  
 
From the few p2p protocols that have an actual absence of any central controllers and 
brokers is the Gnutella [8]. The only network entities in it are the “servent” nodes 
(server-clients). Those exchange only ping-pong messages for finding neighbors, query 
messages for searching information, and queryhit messages to respond to successful 
queries. These queries “die” after some defined Time-To-Live (TTL).  
 

 

1.3 Goals 
 

The design and implementation in paper [2], is based on the algorithm described by 
paper [5], and considers the use of DAML-S for P2P discovery of Web Services on 
Gnutella. It requires a DAML-S description coder-reader and a discovery module 
present on each node. Our research aims to follow the main concept of paper [2], plus 
using the up-to-date OWL-S instead of the old DAML-S. 
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We will present the ways to express the partial activities of the services through OWL-
S. We will also see how to describe preconditions & effects of the execution of the 
services, as well as service categories. Up to now we saw that OWL-S is more 
“compact” than its predecessor DAML-S and allows the extraction of such information 
easier and more precisely ([12]). This opens the way to extend the matching algorithm 
presented in [5]. 
 
In order to observe the behavior of such a system, we implemented this algorithm and 
embedded it in a network simulator. The peer-to-peer networks research has provided 
models ([36], [37]) and architecture designs ([38]), in which the value of simulations, 
as a validation tool for such systems, is highly pointed. GnutellaSim [17] is a file-
sharing gnutella simulator on top of the very popular ns-2 [21]. We modified the core 
code of GnutellaSim as was appropriate for hosting web services. We chose sample 
ontologies (including the Kepler Workflow Components ontology [22]) to test the 
correctness and measure the performance of our new simulator, with advertised web 
services and service requests whose descriptions use terms that belong to these 
ontologies. 
 

 

1.4 Outline 
 

Chapter 2 provides all the necessary background for the achievement of the above goals. 
What technologies were used and why. Chapter 3 describes the design of a system that 
fulfills these goals, in a theoretical and partially in an implementation manner. The 
testing and simulation results of the implemented part are described in Chapter 4. We 
conclude and compare our work to similar ones and finally propose future directions in 
Chapter 5.  
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In this chapter, we begin with presenting the appropriate background for the first 
research questions in section 1.2. Thus, we examine the progress done in describing 
Web Services non-semantically (briefly WSDL and the Simple Object Access Protocol-
SOAP) and the first step towards semantics enhancement on the web, with the 
Resource Description Framework    ((((RDF). Then, we introduce the Ontologies and the 
Ontology Web Language (OWL) which provide the necessary prior knowledge in 
order to present after them OWL-S for describing Semantic Web Services. This 
section (2.1) ends referring to the whole semantic matching concept as presented in 
paper [5].  
 
In the second section we give the background for the second research question of 1.2, 
the network matter; what is a centralized and a decentralized (especially Gnutella) p2p 
network and how they can host Web Services. We review also the combination of W.S. 
Discovery with the Gnutella Protocol ([2]).  
 
Section 2.3 involves with the simulation part of our project. We describe some network 
simulators of different kinds that could be used or not, briefly, and then we move our 
attention to Network Simulator v.2 (ns-2) and GnutellaSim.  
 

 

CHAPTER 2 State of the Art 
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2.1 Web Services Description, Semantics & Matching 
 

 

2.1.1 2.1.1 2.1.1 2.1.1 Web Services Description Language Web Services Description Language Web Services Description Language Web Services Description Language ((((WSDLWSDLWSDLWSDL))))        
    
WSDL describes W.S.s as sets of endpoints (ports) that communicate through 
messages, using XML as a basis, and allows interaction with these services. The 
endpoints are defined with abstract descriptions of operations (portTypes)))) and 
messages of some format, which follow some network protocol. The mechanism works 
for all protocols and encodings. It has two main parts: the abstract definition of the 
service and the messages, and the binding to the protocol and the message format. The 
elements of a WSDL document are: 
 

• Types: a set of data types to be used in the exchanged messages, mainly in 
XML-Schema Datatypes (XSD), but extensible to other types also, 
including OWL classes 

• Message: an abstract definition of the exchanged data consisting of logical 
parts. Each part has a message-typing attribute linking to some type (in 
XSD an element (for the name) and a type). The message name gives a 
unique name among all messages, while the part name, a unique name 
among all the parts of the particular message. 

• Operation: an abstract description of an action executed by the service. It 
can be a One-way (the endpoint receives a message), Request-response 
(the endpoint receives a message and sends a correlated message), Solicit-
response (the endpoint sends a message and receives a correlated message), 
Notification (the endpoint sends a message).  

• PortType: an abstract set of operations corresponding to one or more 
endpoints, including the used messages.  

• Binding: a network protocol and data format specification aimed for a 
particular port type  

• Port: an endpoint as a combination of a binding and a network address 

• Service: a collection of related endpoints [28]. 
 
 
2.1.2 2.1.2 2.1.2 2.1.2 Simple Object Access ProtocolSimple Object Access ProtocolSimple Object Access ProtocolSimple Object Access Protocol ( ( ( (SOAPSOAPSOAPSOAP))))    
    
SOAP is an XML-based message exchange mechanism for Web Services. The W.S.s 
are considered as endpoints and a one-way communication is the simplest case covered 
by SOAP. Multiple communication and the actions to be executed from the endpoint 
when receiving a message can also be defined with more complex structures. SOAP has 
been adopted by many W.S. standards and is being used by WSDL for binding the 
abstract descriptions with concrete network protocols [29]. 
    
It operates on HTTP and can be also characterized as a protocol for accessing Web 
Services. It is platform and language independent, extensible, firewall “breaking” and a 
W3C standard since 2000 (proposed by UserLand, Ariba, Commerce One, Compaq, 
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Developmentor, HP, IBM, IONA, Lotus, Microsoft, and SAP). SOAP methods are 
HTTP request/responses written in SOAP rules. The elements in a SOAP message 
are: 
 

• Envelope, which declares that the XML document is a SOAP message 
• Header, for application specific information (e.g. authentication)  
• Body, which includes the call and response information, the actual 

message content 
• Fault, for describing errors that may occur during the message transfer 

[45] 
 
 
2.1.3 2.1.3 2.1.3 2.1.3 Resource Description FrameworkResource Description FrameworkResource Description FrameworkResource Description Framework ( ( ( (RDFRDFRDFRDF))))    
 

RDF was written to describe resources that are available among the internet by 
modelling abstract concepts in a data format. It is a part of the W3C Semantic Web 
project (www.w3.org/2001/sw/) for the automation of use and exchange of machine-
readable information.  
 
There is an XML syntax available for RDF which enables the creation of RDF graph 
triples. Those triples define the resources in a subject-predicate-object scheme (e.g. “the 
input”–“has datatype”–“integer”). The predicates are a resource’s features and express a 
relation between the subject and the object (which are classes). The resources may be 
divided into groups called Classes, which can be identified using Uniform Resource 
Identifiers (URIs) and described with properties. RDF properties are attributes of 
resources and correspond to traditional attribute-value pairs, or represent relationships 
between resources. Resource is the superclass of all the objects in RDF. Literals and 
datatypes are also used.  
 
All RDF objects are expressed in RDF Vocabularies which can be defined with the 
RDF Schema. This Schema allows the instantiation of classes and properties that may 
be further used in order to describe classes, properties and other resources. This is what 
actually enables RDF with semantics, providing (e.g.) properties with a domain and a 
range attribute. Classes can have subclasses and properties subproperties [46, 47].  
 

 
2.1.4 2.1.4 2.1.4 2.1.4 OntologiesOntologiesOntologiesOntologies    
 
Ontologies define the terms that describe a specific domain of knowledge and the 
hierarchical relations that exist between them (see fig.1). In an IT sense, they encode 
this information in a computer-usable manner, so that it can be also extended to other 
domains (re-usability) [23].  
 
They can be simple unstructured hierarchies or more complicated ones. For the 
semantic web, because of the given complexity of the domain, they should include 3 
concepts: Classes (entities), Relationships and Properties (of the entities). Logic 
languages exist for expressing ontologies precisely and thus can be used to create an 
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artificial intelligence basis for executing semantic search and retrieval, decision support, 
speech and natural language understanding, knowledge management, intelligent 
databases, and electronic commerce. 
 

  
Fig.1 A Sample Ontology [3] 

 

Ontologies give meaning to the meta-data and so go beyond XML and XML Schemas 
that just contain them without any semantic concept and where “The same term may be 
used with (sometimes subtle) different meaning in different contexts, and different 
terms may be used for items that have the same meaning” [23].  RDF and RDF 
Schemas define a class hierarchy with class properties but lack deeper ontology 
relationships, like class disjointness, cardinality, equality and enumeration of classes, 
staying at a more abstract approach of the semantics [9].  
 
 

2.1.5 2.1.5 2.1.5 2.1.5 WeWeWeWeb b b b Ontology Ontology Ontology Ontology Language (OWL)Language (OWL)Language (OWL)Language (OWL)    
 
“OWL is a semantic markup language for publishing and sharing ontologies on the 
World Wide Web [26]”. “The OWL Web Ontology Language is designed for use by 
applications that need to process the content of information instead of just presenting 
information to humans [9]”. It allows distributed collection of information, providing 
relations between ontologies and explicit importing of ontologies from other ontologies 
[25]. It extends the vocabulary of XML, RDF and RDF-S with semantic concepts and 
contains also the additional class relations we mentioned at the end of 2.1.4, plus extra 
property types [9]. An OWL ontology is an RDF graph, a set of RDF triples [26].  
 
Initial components of the ontology are XML declarations in RDF tags to define the 
namespaces with URIs, where also the XML, RDF, RDF-S and XSD datatypes are 
being referred [25]. The rest of an OWL document parts from class axioms, property 
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axioms and facts about individuals. Ontology version information is also kept, for the 
discrimination and reusability of older versions. Classes can be defined with: 
 
 

1. a class identifier (a URI reference)  
2. an enumeration of individuals that together form the class instances  
3. a property restriction  
4. the intersection of two or more class descriptions  
5. the union of two or more class descriptions  
6. the complement of a class description  
 

Properties can be Object or Datatype properties [26]. Three versions of OWL are 
supplied, which with an increasing level of functionality are: 
 

• OWL Lite supports only cardinality of up to first degree between 
classes and is considered enough for simple taxonomies. More precisely, 
it contains the RDF Schema Features for classes, subclasses,  properties, 
subproperties, domains and ranges, enriched with OWL features for : 
equivalence, similarity, distinction and intersection of classes, and 
equivalence, inversion, transition, symmetry and enumeration of 
properties.  

• OWL DL acquires all the language constructs with some case 
restrictions, but is compatible with description logics (see [24]) and 
thus can be supported by reasoning software. Analytically it extends 
OWL Lite with the axioms for selection, disjointness, union, 
complement and data range of classes. 

• OWL Full supports all RDF structures (being more “open”), but for 
this reason cannot guarantee reasoning, so it remains at a theoretical- 
representational level [9].  

 
Important features were added to OWL, which were missing from its predecessor 
DAML+OIL, fact that persuaded us to prefer the new version. These features include 
symmetry and data range for the present properties, while Ontology Properties are 
defined as well. Also, a significant number of functionally redundant components were 
removed, resulting to a more compact scheme [26]. 
 
OWL also allows the deleting of inconsistencies between ontologies and instances of 
classes. Moreover, supports ontology interoperability, by providing ways to relate 
concepts from different terminologies [23].  
 
 
2.1.6 2.1.6 2.1.6 2.1.6 OWLOWLOWLOWL----SSSS: : : : Semantic Markup for Web ServicesSemantic Markup for Web ServicesSemantic Markup for Web ServicesSemantic Markup for Web Services    
 
OWL, as mentioned above, acquires the web content with very flexible semantic 
XML/RDF-based descriptions. However, as we concluded in the introduction, the 
complex nature of Web Services demands “special treatment”, meaning apparently the 
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b) The process model describes the actual data transformation and state change 
produced by the service. Inputs and outputs are subclasses of the class Parameter whose 
types are defined with a URI, together with Local variables which are bound in 
preconditions and then used in the specifying result conditions. Preconditions and 
effects are represented as logical formulas, using Expressions as strings or XML literals 
in an expression language (DRS, KIF [27]), which the RDF parser will ignore.  
 
Fig. 4 shows the Process model, as in the top of the image we see the attributes of an 
OWL-S process and at the rest of the image the categorization of the process as simple, 
atomic or/and composite. We also see the different types of composite processes.  
 

 
Fig.4 Top level of the process ontology [12] 

 

The processes of the service are linked to the IOPE’s with properties that define their 
participants (client/server), inputs, outputs, local variables, precondition and results. 
Instances of the class Result couple an output with an effect. We can then declare 
conditional outputs and effects by denoting the condition under which this result (and 
not another) occurs, what follows when the condition is true, and the variables that are 
bound in the Condition, the ResultVars.  
 
The processes can be (just like as services): atomic, composite or simple. The 
corresponding details follow: 
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• Atomic processes are executed with one message interaction, receive some 
input and return some output. They always have to participants, 
TheClient and TheServer.  

 

• Simple processes correspond to one message interaction, but are not 
executed. They are abstractions that give aliases to (are realizedBy) atomic 
processes or semantically combine (expandsTo) composite processes (for 
purposes of planning and reasoning). 

 

• Composite processes are executed with multiple message interactions and 
can be decomposed to intermediate composite processes and finally to 
atomic processes. Their composedOf property presents their structure by 
using the class ControlConstruct. This class is instantiated with the 
components property witch contains the subprocesses as instances of the 
Perform class. The members of the ControlConstruct class, thus the 
different structures for Composite processes can be a sequence of 
processes, a set of concurrent, synchronized or non-concurrent processes, 
one selected process from a set, or process executed under the conditional 
schemes: If-Then-Else, Repeat-While and Repeat-Until.   

 
Processes and inputs/outputs are connected through bindings. A binding denotes to 
witch parameter it refers, and its own value. The value can be defined with a variable 
coming from a process, a URI referring to an OWL class, an XML constant literal or a 
functional XML literal.  
 
c) The service grounding is the concrete specification of the inputs/outputs in 
messages. These messages are defined in WSDL, which is widely adopted by the 
industry, without that being the only possible format. OWL-S’ grounding corresponds 
to the extended form of the WSDL binding. This association gives the advantage for 
reusing the work done in WSDL and SOAP, which support various protocols and 
message formats. WSDL defines inputs/outputs as abstract XSD types with no 
semantic content, but gives to them the actual grounding, binds them to messages. On 
the other hand, OWL-S can define them as OWL classes, thus supplying them with 
semantics (see also Fig.5).  

 
Fig.5 Mapping between OWL-S and WSDL [12] 
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More specifically, the OWL-S/WSDL correspondence has 3 branches: 
 

• OWL-S atomic processes to WSDL operations  

• OWL-S inputs and outputs to WSDL messages 

• OWL types of inputs and outputs to WSDL abstract types 
 
These facts ease the use of the SOAP message binding with WSDL, as extended for 
OWL-S, and through HTTP. In such a case, we must include all the basic WSDL 
definitions in our service description, thus: types, message, operation, port type, 
binding, and service constructs. The above mention OWL types can be embedded in 
the WSDL document or “imported” in it (with owl-s-parameter) while being in their 
own document. Analytically, the OWL-S extensions for the SOAP binding are 
contained in: 
 

• The WSDL message definition with the owl-s-parameter attribute 
• The WSDL binding definition with the encodingStyle attribute 
• The WSDL operation definition with the owl-s-process attribute 

 
The OWL-S WsdlGrounding class connects the WSDL elements to the OWL-S 
description. A WsdlGrounding instance is a list of WsdlAtomicProcessGrounding class 
members, which refer to the WSDL constructs with URIs using the wsdlVersion, 
wsdlDocument, wsdlOperation, wsdlService, wsdlPort, wsdlInputMessage, wsdlInput, 
wsdlOutputMessage, wsdlOutput properties [12]. 
 
OWL-S is also related to a big number of other Web Service and Semantic Web 
technologies. It was issued in 2001 and since then it has been incorporated in a 
remarkable number of research projects and systems, and OWL-S extensions have been 
proposed together with OWL-S tools. A list of some of these applications can be 
found in http://www.daml.org/services/owl-s [29].  
 
All the above information about the functionality and adoptability of OWL-S not only 
ensures us that OWL-s is enough for using it when performing W.S. discovery, but 
that it opens the way for a numerous of possible future extensions of our work.  
 
 
2.1.7 2.1.7 2.1.7 2.1.7 Semantic MatchingSemantic MatchingSemantic MatchingSemantic Matching    
 
A significant amount of recent research on semantic discovering-matching of web 
services is based on the research performed in [5], which proposes a matching algorithm 
based on the old version of OWL-S, the DAML-S, and specifically on the service 
capabilities as presented in the service profile. DAML-S is less well-defined than 
OWL-S and less flexible, but it doesn’t lack the basic service profile characteristics as 
we mentioned them in the previous section, on which the algorithm is constructed (only 
inputs and outputs). So, the algorithm states how to compare W.S. advertisements with 
W.S. requests, both written in (, or converted to) DAML-S, and how to conclude, out 
of this, various degrees of matching between them. The research here points to be used 



 - 19 - 

in W.S. registries network schemes, such as UDDI (as this was the main trend till 
2002), but that still doesn’t modify the core functionality of the algorithm and its 
extensibility or network protocol independence. Anyway, paper [2] already proposes a 
use of the algorithm in Gnutella.    
 
The matching operates on the relations of terms which belong to DAML ontologies. 
Then its results are being ranked according to the “strength” of these hierarchical 
relations. The algorithm, as coded, discards early those advertisements that are 
definitely not due to match in any manner, improving, this way, its total efficiency.  
 
A match is accomplished when the advertisement can be of some use for the requester, 
meaning that the advertised service will at least partially satisfy the client. A full match 
is considered when all the outputs of the request match with outputs of the 
advertisement, and all the inputs of the advertisement match with inputs of the request, 
so that the resulted service returns what the client seeks while the client acquires to it all 
the necessary input.  
 
Example parts of the DAML-S service profiles for an advertisement and a request are 
shown in figures 6 and 7, respectively, and contain the declarations of the 
corresponding inputs and outputs (requested or advertised). These declarations can be 
parsed with a dedicated tool, which will store their identifying names (provided after 
the rdf:ID labels, e.g. “Price_Input”) to be used during the matching process. 

 
Fig.6 W.S. Advertisement [5] 

                        
Fig.7 W.S. Request [5] 

 

In detail, the algorithm performs on these term “names” as follows: 
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• The request description is compared with the all the advertisement 
descriptions contained in the serving node (registry or not). When a 
match is found it is kept in memory and is ranked, so that it can be sorted 
with the other ones that will probably come up. (see Fig.8 which shows 
this with pseudo-code) 

 

 
Fig.8 Main matching loop [5] 

 

• The accomplishment of the above step proceeds as the request is 
compared with each one of the advertisements. Then, the output and the 
input matching are executed independently (see Fig.9 which describes in 
pseudo-code the output matching) and, through these, the overall match 
is examined. We get an output match, if all the requested outputs show 
some degree of match with the advertised outputs. The other way around, 
we get an input match, if all the advertised inputs show some degree of 
match with the requested inputs.  

 

 
Fig.9 Output matching loop [5] 

 

• The “degree of matching” concept from the previous loop recognizes four 
cases of “hits”, corresponding to different types of relations in the OWL 
ontology. These, with decreasing “strength”, are:  

 
1. The terms are equivalent, the match is exact. 
2. The requested output (or advertised input) is a first degree 

subclass of the advertised output (or requested input) (e.g. 
with the ontology in Fig.1, someone asks for a W.S. 
providing apartments and finds one that provides houses), 
the match is exact. 

3. The requested output (or advertised input) is a bigger 
degree subclass of the advertised output (or requested 
input) (e.g. with the ontology in Fig.1, someone asks for a 
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W.S. providing 1-room apartments and finds one that 
provides houses), the matching is called plugIn.  

4. The advertised output (or requested input) is a subclass of 
the requested output (or advertised input), the request 
subsumes the advertisement. Here there is a very small 
guarantee that the client will be really satisfied, because e.g. 
(Fig. 1) we can’t fairly assume that someone that asks for a 
house will find use in a 1-room-apartments selling service. 
(see Fig.10 for the degree of output matching) 

 

 
Fig.10 Degree of output-match loop [5] 

 

• The results are sorted concerning, firstly, the achievement of the output 
matching and, secondary, of the input matching (see Fig.11 where a 
sorting between two matches is represented) [5].  

 

 
Fig.11 Result sort loop [5] 

 

 

2.2 Peer-to-Peer Networks, Gnutella and W.S. Discovery 

 

Peer-to-peer networks are based mostly on the resources and characteristics of the client 
nodes that compose them rather than those of a (or set of) server(s). They use ad-hoc 
connections to link these nodes. In a pure peer-to-peer network (decentralized) there is 
no separation between clients and servers, and both functionalities are accomplished by 
peers. In the contrary, in a client-server model (e.g. FTP Server) all communication and 
data transfer is bypassed through the central server.  
 
There is a type of networks (e.g. Napster, OpenNAP) whose operations are partially 
relied on a client-server structure (e.g. searching) and partially on a peer-to-peer 
structure (e.g. file transfer). But, for example, Gnutella and Freenet rely completely on 
peer-to-peer structures [48]. 
 
Peer-to-Peer networks are mainly used for sharing resources, like files ([8], [39]) and 
computing cycles ([40]), or as a platform for collaborative tasks. The central functions 
perform by a peer are: 
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• share and search for resources  

• use a specific protocol to implement the resource sharing: establish and 
maintain connections with peers, accept user input and initiate protocol 
messages, process and route protocol messages [43] 

 
 
2.2.1 2.2.1 2.2.1 2.2.1 Centralized P2P networks & Web Services DiscoveryCentralized P2P networks & Web Services DiscoveryCentralized P2P networks & Web Services DiscoveryCentralized P2P networks & Web Services Discovery    
    
The Web Services Discovery on P2P networks was mostly up to now, realized on 
centralized protocols. Such networks include a registry (e.g. UDDI) for maintaining all 
the information for available W.S.s at any time. The providers should advertise their 
W.S.s to the registry accompanied with a short description of the service (usually in 
WSDL), and the clients should contact the registry to search and find the way to 
contact and use the services they desire (see Fig.12). Thus, the discovery of the 
registered services is guaranteed.  
 
The disadvantages in that case are that the existence of registries influences the overall 
performance very negatively and that any failure on the function of the registry would 
lead to a system failure (single point failure). There is also the problem of keeping a 
large number of advertised descriptions up-to-date when W.S.s are being modified at 
their sources. It is proposed to solve the first two problems by replicating the servers, 
and the last one by using leasing mechanisms, which obligate the providers to renew 
their advertisements [2]. Both these solsutions not only can be characterized partial, but 
increase the complexity of the network as well as the maintenance effort needed. Plus 
the fact that registries can become full.  

 

 
 

Fig.12 W.S. discovery on Centralized P2P [18] 

 
 
2.2.2 2.2.2 2.2.2 2.2.2 DecDecDecDecentraentraentraentralized P2P networks & Web Services Discoverylized P2P networks & Web Services Discoverylized P2P networks & Web Services Discoverylized P2P networks & Web Services Discovery    
 
Contradicting the static (or relatively static) discovery of W.S.s that can be achieved 
with centralized P2P networks, dynamic discovery of W.S.s from each other and from 
client nodes can be implemented with decentralized P2P networks. In a decentralized 
P2P network the services are simple nodes just as requesters and no registry servers 
exist. A requesting peer first queries its neighbours, which then forward the query to 
their own neighbours. When a match is found by some peer, a response is send back to 
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the query generator. The requester can then apply to the responder to get the service 
invocation technical details. As long as this happens the requester can ask for the service 
to begin executing, and a connection immediately with the provider is established for 
this purpose (see Fig.13).  
 

 
Fig.13 W.S. discovery on Decentralized P2P [2] 

 

Not only there is no matter of single point failure here, but the high connectivity easies 
the transmission of the messages. Moreover, each node maintains its own index of 
services, fact that overcomes the registry size overflow problem. On the counterpart, the 
path of the propagation of the messages cannot be predicted, plus that all the peers are 
demanded to dedicate some bandwidth for message forwarding. The later can produce 
big overhead traffic, while also the distribution of the queries to all the potential 
responders is not ensured [2].   
    
    
2.2.3 2.2.3 2.2.3 2.2.3 The Gnutella ProtocolThe Gnutella ProtocolThe Gnutella ProtocolThe Gnutella Protocol    vvvv0.40.40.40.4    
 
In a Gnutella network, every client is server and each server is a client, too. Thus, each 
node is named a servent and accomplishes both types of required operations. It can 
perform queries and invoke the results, as long as respond to queries comparing them to 
its own repository. This way, the centralized networks’ main problem of single-point 
failure on the central server-broker or indexer node(s), is bypassed.  
The servents communicate with the following 5 descriptors (types of messages): 
 

• Ping, for discovering other host servents 
• Pong, for responding to Pings with the address and the data sharing 

information of the sender servent  
• Query, for searching shared information among other servents 
• QueryHit, for responding to Queries upon a successful match 
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• Push, for allowing firewalled servents to share 
 
They are inserted initially to the network using host cache services to discover the first 
host and then establish with it a TCP/IP connection. Afterwards they sent a 
connection request string, which, in case of its acceptance (if e.g. there are available 
slots), is responded with a connection acceptance string.  
 
The descriptors’ messages begin with a header, which contains the Descriptor ID (a 
unique 16-bit string), the Payload Descriptor (for 1 of the 5 above mentioned types), 
the TTL (Time To Live-number of remaining times it can be forwarded to other 
servents), the Hops (the present number of times it has been forwarded) and the 
Payload Length (length of the data following the header). The correct pick up of the 
initial TTL can play important role on the matter of managing the traffic on the 
network, as it is the only way the messages can be terminated. The next descriptor to be 
read is found Payload Length bytes after the end of the current header, thus simplifying 
the whole process of synchronizing and validating the input stream of messages on the 
servent.  
 
A Ping has no payload and zero length. A Pong includes the Port for incoming 
connections, the IP address and the number and total size of shared files of the 
responder. A Query transmits the desired minimum transfer speed for responding 
servents and the search criteria string. A QueryHit carries the number of hits on the 
specific node, the Port for incoming connections, the IP address, the transfer speed and 
the Identifier of the servent, and the result set. This set contains the resulted files listed 
with their File Index (unique identifier in the responder’s shared files index), their size 
and their name.  

 

 
Fig.14 Propagation of Ping and Pong messages [2] 

 

The Descriptor ID’s of associated Queries and QueryHits must be the same. Pongs 
travel back on the same route that the corresponding Pings came from (see Fig.14) and 
the same happens for Queries and QueryHits (see Fig.15). Pings and Queries are 
forwarded to all direct neighbouring nodes, except the sender. Upon receiving a 
message, a servent decreases the TTL and increases the Hops by one, so when TTL 
becomes 0, the descriptor seizes to be retransmitted. The same descriptor is forwarded 
only once from the same servent, fact that results in lowering the overall message traffic, 
and thus to a system performance benefit. The files from the result set can be 
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downloaded from the requester with a direct connection to the source using HTTP. 
Interrupted downloads can be resumed from where they stopped [8].  

 

 
Fig.15 Propagation of Query and QueryHit messages [19] 

 

 

2.2.4 2.2.4 2.2.4 2.2.4 W.S. Discovery with DAMLW.S. Discovery with DAMLW.S. Discovery with DAMLW.S. Discovery with DAML----S on GnutellaS on GnutellaS on GnutellaS on Gnutella    
    
A W.S. semantic description language (DAML-S/OWL-S) and a decentralized P2P 
network (Gnutella), plus the semantic matching algorithm, are all together used to 
implement the prototype presented in paper [2]. There, they designed the combination 
of the DAML-S matching with the gnutella messages. According to that, a node sends 
a Gnutella Query to spot a service provider, and this request is forwarded between 
neighbouring peers as a file request would. When the request is matched to a service 
provided by a receiver peer, a QueryHit massage is send back to the requester, 
containing the address of the W.S. Every peer should therefore provide DAML-S 
descriptions of its hosted services, a DAML ontology parser (for performing the 
matching) and a Gnutella discovery application. 
 
Specifically, as we see in fig.16, the first layer is the DAML-S parser, whose input is 
DAML ontologies and DAML-S descriptions (DAML files) and output a set of 
arguments. This set is the input for the DAML-S processor of the second layer, which 
separates the terms according to their type in: Profile and Matchmaking Rules to be 
used in the discovery process, and Process Model and Grounding Rules to be used in 
the service invocation. It also communicates with the front application which provides 
the input for the querying and the interaction with other services. The third layer 
declares the discovery and invocation ports for the W.S., respectively with the second 
layer separation.  
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Fig.16 Architecture of a Peer [2] 

 

The application initiates a W.S. request which is formalized and transmitted through 
the processor. The receivers compare the query to their service description repository 
using their Matchmaking rules and answer with a hit message. The hit(s) are returned 
to the application which chooses to invoke (one of) them, following the provider’s 
Process Model and Grounding rules.  
 

 

2.3 Network / P2P / Gnutella Simulation 

 

In order to simulate a P2P network, one can choose between generic P2P simulators, 
which use hierarchical structures and specific routing algorithms (e.g. [13]) and 
unstructured P2P network simulators (e.g. [14], [15]). For our project the second case 
is more preferable in order to avoid the unnecessary complexity of the simulators of the 
first case, complexity that doesn’t characterize the gnutella protocol. Fortunately, even 
pure Gnutella simulators exist and therefore we focused our research specifically on 
those (e.g. [17] and [16]), before we decided to use GnutellaSim.  
 
 
2.3.2.3.2.3.2.3.1111    The Network Simulator nsThe Network Simulator nsThe Network Simulator nsThe Network Simulator ns----2222    
 
Ns-2 is the newer version of ns, a discrete event simulator whose development started 
in 1989 and it can mimic the behavior of TCP, routing, and multicasting over wired 
and wireless (local and satellite) networks [21]. It is more flexible than ns, as it uses 
simpler and better-defined constructs [30]. Since 1995 it is sponsored by DARPA 
(which also developed DAML, DAML-S, OWL and OWL-S) with LBL, Xerox 
PARC, UCB, and USC/ISI [21].  
 
Its core is written in C++, because this language is appropriate for expressing analytic 
network protocol attributes (datasizes, packets, routing algorithms). But an OTcl 
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(object-Tcl [31]) interpreter is its user interface for the control and configuration, 
making it at the top level a more interactive object oriented simulator. It includes a 
C++ (compiled) and an OTcl (interpreted) class hierarchy, whose root element is the 
TclObject. Simulator objects are defined by the user in OTcl and then associated 
automatically to related C++ objects.  
 
The Tcl class is used to invoke OTcl functions, transfer results and report errors to the 
interpreter, and manage (insert, read or erase) TclObjects. When creating a TclObject, 
a unique handler is instantiated for it and the variables it defines are bound to compiled 
C++ variables. Then, a corresponding interpreted shadow object is created, so that the 
command() method can be defined for it. Operations that are executed through this 
method are used like OTcl instance procedures.  
 
The configuration of the simulation and the selection of the type of the event scheduler 
are defined with the Simulator class. Using its methods one can instantiate the nodes 
and the topology. For each simulator object, a packet format, a scheduler and a “null” 
agent (for discarded unwanted packets) are automatically initialized. The scheduler can 
be a linked-list, a heap, a calendar queue or “real-time”, and performs by executing each 
time the earliest upcoming event. An event defines packets and “at-event” procedures, 
which procedures are used for setting execution times for the events. A Simulator 
instance can cancel, run and halt events.  
 
Nodes are created with attributes, an address and a port for the incoming packets, a list 
of neighbours, a list of agents, a type and a routing module.  Routes to destination 
nodes are defined with the procedures add-route and add-routes. Unicast, multicast, 
dynamic or hierarchical routing can be used. Agents are assigned to nodes with the 
attach procedure by declaring a port and an address for them. The management and 
validation of the incoming packets is implemented with the use of a Classifier object. 
Unicast nodes possess one Classifier and multicast nodes more.  
 
Links connect the nodes to create the whole network topology and consist of a 
sequence of connectors. A one-way link is defined with the procedure simplex-link by 
declaring its bandwidth and delay, and a two-way link with the procedure duplex-link. 
The Connectors generate the data for one particular target. Queues represent locations 
for holding or dropping packets and are defined with a limit. When a packet is being 
transferred between neighbours, the queue becomes blocked and unblocks when it 
empties. The actual socket-level management of the queue is performed by a 
PacketQueue class object, which stores a linked list of packets. Drop-tail (FIFO) and 
Fair-Queuing objects, among others, can be derived from the Queue class.  
 
Packets are constructed and consumed in endpoints called Agents, which define packet 
attributes as source address, destination, size, type, and TTL. 18 TCP agent types are 
supported, together with UDP, RTP, IVS and other ones. Packet requests are sent by 
the timeout method. All different types of packet headers can be implemented, 
according to every desired protocol. The PacketHeaderManager operates on and 
indexes the active headers.  
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Ns-2 is also applicable for simulating LANs, mobile and satellite networks, radio 
propagation and other network structures. We don’t describe these applications on ns-
2 further because they are too case-specific. On the other hand, mathematical support is 
also provided, like Random Number Generation and Random Variables, as well as 
tracing and monitoring (on the queue or the flow). Finally, there is a visualization 
module with the distribution, Nam–The Network Animator based on Tcl/TK with 
detailed representations for nodes, links, queues, packets and agents [30].  
 
    
2.3.2.3.2.3.2.3.2222    GnutelGnutelGnutelGnutellaSimlaSimlaSimlaSim  
 
It is proved ([41], [42]) that the performance of p2p networks relay on the underlying 
low-level network attributes. So, a simple simulation of that kind, without concerning 
such details, would be bound to fail in giving an exact image of the real process. 
GnutellaSim is a packet-level dedicated, and detailed in all network layers, Gnutella 
simulator. Its framework allows extensions in its design and works on top of various 
core network simulators (ns-2, GTNets, pdns). It allows different initializations, peer 
relationship politics and message routings. It also supports the Gnutella Protocol 0.6 
(with the use of Ultrapeers [34]), bootstrapping methods but not a file downloading 
procedure.   
 
The authors of GnutellaSim considered that the TCP implementation included in the 
distribution of ns-2 was not detailed enough to cover the representations needed for 
the packet-level simulation of a P2P network, thus they added the following features to 
it: receiver advertised window, sender buffer, Socket-like APIs, dynamic connection 
establishment of TCP and real payload transfer.  
 
Fig.17 shows the architecture of the GnutellaSim system:  
 

 
Fig.17 Architecture of GnutellaSim [17] 

 

On the first layer is the user interface PeerApp, the application, which creates the peers 
(or Ultrapeers and leafs as well, in case of the 0.6 protocol) and also maintains the peer 
relationships through the GnutellaApp class. A GnutellaApp is empowered with 
methods for changing the peer state, like join, leave and search, as well as others for 
triggering protocol messages, including PingRequest, PongReply, QueryRequest, 
QueryHitReply, BootstrapRequest. Attached to that is a time-based ActivityController 
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that forces the peer to generate user actions following a specific behavioural model. It 
actually is a timer, which, when it expires, stimulates a peer-state change and schedules 
the next one. PeerSys defines the general application level characteristics, like the 
number of files and the distribution of file popularities. The BootstrapControl is 
responsible for the bootstrapping process and the SmpBootServer is a server used for 
this purpose, with the PDNSBootServer applicable for pdns.  
 
The second layer (core protocol) includes the PeerAgent, which actually transfers and 
operates on the Gnutella messages, using the GnutellaAgent class (and UltraAgent/ 
LeafAgent for protocol 0.6). The GnutellaAgent is employed with methods including 
Ping, Pong, Query, QueryHit and Bootstrap. Specifically, the messages are being 
encoded and decoded with the MsgParser, while GnutellaMsg provides the message 
formats. An incoming packet is first handled by the MsgParser, which decides, 
according to the content of the packet, to drop it, transmit it to its own PeerApp or 
forward it to its neighbours.  
 
Finally, the third (socket) layer binds the GnutellaSim socket interface to the 
underlying network simulator (e.g. ns-2). The socket operations that are executed are: 
bind, listen, connect, send, recv and poll. The socket-state changes are reported to the 
agent layer with upcalls: upcall_recv, upcall_connected, upcall_closing, upcall_send and 
upcall_accept. Specifically for ns-2, the connection with its TCP transport service is 
achieved by using the NSSocket, while PrioSocket does that with priority queuing. The 
class AdvwTcp is installed as a subclass of the ns-2 FullTcpAgent for deploying it with 
the receiver advertised window we mentioned above, thus being able to listen to a 
particular port and accept an incoming connection request by creating a new TCP 
connection. Meanwhile, SocketTcp performs the actual data transfer. Using the 
NullSocket interface, one can ignore the packet-level details of GnutellaSim, as then the 
connections are bypassed to the underlying network.  
  
An input file defines the ClassSpec, which contains different classes of peers according 
to the length of time they stay idle (not searching) and offline, and whether they are 
freeloaders (don’t share anything) or not. The Bootstrapping process can be realized in 
two ways. The first method is through the GWebCache protocol, where every peer 
maintains a list of bootstrap servers, from which it gets a list of servents when it 
connects to the system. The servents are added to this list when they use it and when it 
becomes full, older ones are removed gradually. The second method just uses a central 
server that keeps the index of the online peers.  
 
The communication between the PeerAgent and the PeerApp is implemented through 
downcalls and upcalls that correspond to the Gnutella protocol messages: Connect, 
Ping, Pong, Query, QueryHit and Push. A main point to underline here is that a 
servent responds to a Query with a Queryhit given a random probability, which 
depends on the popularity of the requested file (as defined in PeerSys).  
 
For the execution of a GnutellaSim simulation, one has to write a TCL file in which 
he/she has to proceed as follows: 
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1. Set up the network topology, e.g. by attaching physical leaf nodes to the 
stub router nodes that GT-ITM ([35]) creates, which leafs can host the 
Gnutella peers.    

2. Instantiate a PeerSys with the attributes for the files distribution and peer 
classes we mentioned above. 

3. Initialize the bootstrap (giving network addresses) process with one of the 
two available methods.  

4. Create each peer (by address), set its bootstrapping, attach it to the 
PeerSys by defining its peer class, and start it.  

5. Optionally, for each peer, set the number and size of the shared files, its 
speed and rate-limit, and its maximum degree of connectivity.  

 
GnutellaSim provides a set of statistical results of the simulation, which can be used for 
performance evaluation. Fig.18 below, presents them (the last 3 are per Peer): 

 

Query Success Rate the probability for a Query to succeed 

QueryHit throughput number of QueryHits per second 

Query Response 
Time 

the time it takes for the first QueryHit to get to the Query 
initiator 

Available Peers number of online peers 

Connectivity degree of connectivity 

Message Losses message losses in Gnutella happens during the forwarding 
process on peers 

Receive Rate number of messages received per second while online 

Fig.18 Statistics - Performance evaluation in GnutellaSim [17] 

 

The simulator can be extended by adding subclasses and overriding methods. 
Researchers of the network protocol area should focus their attention in modifying the 
structures of the PeerAgent layer, while other of the application level area, should 
mainly be involved with the PeerApp layer [17, 33]. 
 
The last section in paper [33] includes a performance evaluation of the packet-level 
simulation of gnutella (on ns-2), and compares it with analytic peer-to-peer models like 
[37] and even flow-level models like [44]. The peers join the system following a 
Poisson sequence and the system throughput is defined, as the number of query hits per 
second.  
 
For measuring the system throughput, 3 experiments were executed, with varying 
distribution of the access bandwidth and the link delay on the backbone (for 
representing different degrees of proximity among peers). This showed to be affecting 
the average throughput of the TCP tunnels (low speed gives low throughput). For the 
query response time, it was showed that higher access bandwidth or smaller link delay 
achieves a shorter average hit time. Analytic models would fail to distinguish such 
changes. Adding to that, the flow model in [44] for throughput of end-to-end flows 
cannot be mapped directly to that of p2p networks, because the later may include 
packet losses during the forwarding between peers.  
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Finally, there is a scaling experiment with the use of pdns. Through this experiment it 
was observed that the highest amount of messages per second corresponds to four 
processors, and that the average number of QueryHits per second of simulated time 
expectedly increases analogous to the number of processors [33]. 
 
 
2.3.3 Other Simulators2.3.3 Other Simulators2.3.3 Other Simulators2.3.3 Other Simulators    
    
The Overly Weaver ([13]) provides the tools for the implementation and testing of 
structured overlay algorithms. These algorithms can be created from scratch or can 
extend existing algorithms which are supplied (Chord, Kademlia, Pastry and Tapestry). 
At the lowest level there is the routing layer which consists of the Routing Driver, the 
Routing Algorithm and the Messaging Service. The other two layers describe the 
higher-level services (Group Manager and Distributed Hashtable) and upon them the 
Applications which initiate the commands for the lower level. A visualization tool is 
also supplied with the testing (emulation) module. Gnutella lacks of any structured 
routing algorithm, fact that, together with the lack of an actual socket-level simulation 
part here, rejects the use of the Overlay Weaver.  
 
3LS ([15]) is a discrete-time simulator with three distinct levels: Network, Protocol 
and User. It is pointed, in the paper that describes 3LS, that the overall modelling of a 
P2P network is extremely difficult, because of the heterogeneity and communication 
complexity that characterize it. Thus, the above layer separation eases this task by 
splitting it in simulating each of the layers individually. This idea enables the 
extensibility and generality of the simulator. The protocol level is the interface between 
the user and the network, translating user input to network communication. The 
components for this level are defined with Java libraries. Visualization is also available. 
3LS could be a valuable choice to use in our simulation if, the more specialized, 
GnutellaSim didn’t exist. Nevertheless, the 3LS architecture is proposed to be the same 
with the GnutellaSim one, fact that justifies further the use of the later.  
 
GnuSim ([16]) has both a general unstructured P2P and a specific Gnutella simulation 
capacity. It is implemented with a set of details like number of peers, network topology, 
content distribution and replication, free riding (no share), time-to-live value, query 
pattern and query generation rate. It models the Gnutella protocol with a C++ library. 
This library includes metrics for measuring the performance and scalability. Protocol 
parameters can also be defined. This simulator is highly detailed on the top levels but 
still doesn’t supply the packet-level details of GnutellaSim with ns-2. Besides, and most 
important, we failed to find any shared distribution of this prototype.  
 
 
2.3.4 2.3.4 2.3.4 2.3.4 PDNSPDNSPDNSPDNS ---- Parallel/Distributed NS Parallel/Distributed NS Parallel/Distributed NS Parallel/Distributed NS    
 
The PDNS was created for large simulations, to allow use of memory and CPU power 
that exceeds the capabilities of one computer. PDNS operates by running different sub-
network structures, as defined by ns, on different processors. This is achieved by: 
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• replacing the typical event-handler of ns in order to support distribution 

• adding the entity of the remote link, assigned with an IP address, in the 
TCL syntax 

• defining remote routes, remote queues and remote connections [32] 
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In this chapter, we present the framework in which the goals discussed in section 1.3 
are achieved. For a part of this framework our research remains at a designing level. 
While for the core of the framework (the main outcomes from papers [2] and [5]) is 
implemented in a simulator environment.  
 
In section 3.1 we describe, in terms of the whole framework, how to use the OWL-S 
descriptions in order to extract more useful information for a service than only the 
inputs and outputs. Then we provide the way to combine all these characteristics in a 
theoretical extension of the matching algorithm (as presented in [5]).  
 
In the other sections, we get involved in the simulation of the main part of the 
framework. This means that we examine how to incorporate the original semantic 
matching algorithm (for only input/output) into a Gnutella network simulator 
(GnutellaSim) following the general architecture principles from the research described 
in [2], and observe its operation.  
 

 

3.1 Extended Framework Design 
 

We provide, in this section, a design for future use and implementation of an extended 
services description matching process, beyond what is implied in paper [5]. Specifically, 
we identify the extra information we want to use from an OWL-S description and how 
to insert it in the matching process. 

CHAPTER 3 Design 
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3.1.1 3.1.1 3.1.1 3.1.1 Extra Service Attributes to use for DiscoveryExtra Service Attributes to use for DiscoveryExtra Service Attributes to use for DiscoveryExtra Service Attributes to use for Discovery    
 
In order to achieve a further matching of service requests and advertisements, we must 
include more service characteristics in the procedure. Such characteristics can be the 
Pre-conditions for, and the Effects of, the execution of the service, and the service 
category. The partial processes, from which the service is composed, can be also used. 
All these are contained in different parts of the Service Profile or the Process Model of 
the OWL-S description. They are also defined in different manners, so the names of 
the objects that describe these attributes, and as terms can belong to ontologies, must be 
extracted in different ways.  
 
So, inputs and outputs are declared in a scheme like: 
 

   <process:hasInput> 

      <process:Input rdf:ID="CreditCard"/> 

   </process:hasInput> 

 

Their “names” are contained after the rdf:id label, so that "CreditCard" can be a term 
in some ontology and be extracted and used in the matching as described in papers [2] 
and [5]. But, for other attributes, the situation varies. 
 
Particularly, the Service Profile contains the serviceCategory attribute. This takes the 
argument categoryName, whose content can refer to an ontology which includes service 
categories and can be used for matching. But this is not the only opportunity we have to 
classify each service. There is also the serviceClassification    property which links to an 
OWL ontology of services (e.g. an OWL specification of NAICS [12]), and the 
serviceProduct property that maps to some OWL ontology of products, (e.g. an OWL 
specification of UNSPSC [12]). The target terms on these ontologies can be enhanced 
in the matching process as well. So, when a request specifies some desired category in 
which the found service should belong to, this category should be semantically matched 
against all three of the above service classification properties values.  
 
If we want to use the Pre-conditions and Effects of the service for matching, we should 
use their complete definitions as they are in the Process Model of the OWL-S 
description, rather than the abstract references for them that can be found in the Service 
Profile. As Pre-conditions and Effects have no name-sub-attributes, because they are 
logical formulas containing a series of expressions, they must be identified by name 
somehow differently. The hasResult property contains a parameter for the variable that 
connects a precondition with an effect and an output. This parameter is called 
hasResultVar. The name of that variable is declared in an expression after an rdf:ID 
label as: 
 

<process:hasResultVar> 

<process:ResultVar rdf:ID="CreditLimH"> 

 

This variable is the object on which both the particular precondition and effect operate, 
and so it describes them together at once. To make this more understood we give the 
example of a product purchase. Where a precondition is “the product price should not 
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exceed the credit card limit” in order for the electronic purchase to succeed, and the 
effect is that “the credit card will be charged equally to the price”. The variable that is 
used in that case to determine the Result is the “Credit Card Limit”, and this can be a 
term in some ontology and be included in the matching process. 
 
When a service is defined as a composite OWL-S process, then we can use the names 
of the single processes that construct it for comparing semantically requests and 
advertised services. These single processes can be combined in different ways through 
the Process Model, where each single process is a component of a composite one. The 
names of these components are also given in rdf declarations and thus can be extracted 
and used in the matching. 
 
 
3.1.2 Extending the Matching Algorithm3.1.2 Extending the Matching Algorithm3.1.2 Extending the Matching Algorithm3.1.2 Extending the Matching Algorithm    
 
The matching algorithm should now be appropriately enriched in order to include the 
above attributes and determine new types of “hits” based on them. There is nothing to 
change from the main loop as it is presented in Fig.8 (subsection 2.1.7). But then we 
have to add modules that will perform the individual matchings for each attribute, just 
like there is already one for the inputs and one for the outputs.  
 
So, we define, that in order to consider a Precondition&Effect match, a match of Result 
Variables must occur (as explained in section 3.1.1). And that occurs when all the 
advertised ResultVariables show some degree of match with the requested 
ResultVariables. This follows the input matching concept, because the client should be 
able to provide all the variables that are used in the conditions that hold for the 
successful execution of the service. 
 
A Service Category match is considered when at least one of the requested category 
terms matches with one of the advertised category terms. The advertised terms can be 
derived from all three service properties:  serviceCategory, serviceClassification and 
serviceProduct. This way we don’t expect from the client to know all the classifications 
of the W.S. he/she searches for, but just one is enough. 
 
For the matching of simple (partial) processes of the service, we don’t have to demand 
an all-to-all matching between requested and advertised terms that describe them. It is 
enough if some of the requested simple processes match some of the advertised ones, 
and this degree of match to be indicated in the returned result. This is justifiable if we 
think that the average client will not be totally dissatisfied if the service operates 
differently than he expected, internally, but provides the same (or semantically similar) 
desired output, externally.  
 
What also has to be added, now, in the algorithm, is the way the new individual (per-
attribute) matching results are sorted are ranked according to their similarity to the 
query (the original module in Fig.11, subsection 2.1.7). We give to the ResultVariable 
matching the third priority after the input matching. So, if the input/output matching 
gives the same result for two advertisements, the degrees of the variable matching will 
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determine their ranking. To the category matching we assign a forth priority, because is 
the “category” is the most abstract entity of all, up to now. Proof of this abstraction is 
the existence of three OWL-S attributes to describe it. Thus, this type of matching 
should determine the ranking when the ResultVariable matching cannot. Finally, the 
simple processes similarity can be used for deepening the comparison a bit more. 
 

 

3.2 Simulated Network’s Structure & Content 

 

In order to use GnutellaSim it is required to set the underlying network topology, 
which we accomplished using ns-2. Based on the sample GnutellaSim code found in 
http://www-static.cc.gatech.edu/computing/compass/gnutella/ns.tcl we created a set 
of physical nodes and attached one leaf node to each one of them. On every leaf we 
created a Gnutella servent and initiated a number of contained Web Services.  
 
 
3.2.1 3.2.1 3.2.1 3.2.1 NNNNssss----2 2 2 2 SSSStructuretructuretructuretructure    
 
We created two topologies that differ in size and connectivity. The fist one was small 
and served the purposes of debugging and testing, containing 10 nodes and 12 existing 
network links between them (see Fig.19). The second is larger, as a proof of concept 
and scaling indicator, and used in the actual simulation, with 100 nodes and 187 links 
(same like in the ns.tcl sample).  

 
Fig.19 Small ns-2 topology 

 

In both cases, a loop creates the nodes and attaches one leaf to each. A leaf node is 
assigned a bandwidth capacity uniformly, with 10% possibility for 100Mb, 20% for 
10 Mb, 50% for 1.5Mb and 20% for 55Kb (following the sample’s indication). An 
also uniform variable with value between 10 and 80 defines the average delay of the link 
between the physical node and its leaf node.  
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Afterwards, the 2-way links between the physical nodes are instantiated, declaring their 
delay as well. All the rest of the network settings are left upon GnutellaSim.  
 
 

3.2.2 3.2.2 3.2.2 3.2.2 GnutellaSim Peers StructureGnutellaSim Peers StructureGnutellaSim Peers StructureGnutellaSim Peers Structure    
 
The procedure run of the Tcl script that configures the simulation, contains the 
GnutellaSim peer network settings, as these were modified and enriched in order to 
serve our purposes for W.S. discovery. We create a PeerSys object whose file 
distribution attributes, as defined in chapter 2; require no setting any more, because 
they were stripped off any functionality. The concept of freeloader/non-freeloader 
peers has a straightforward specific meaning for a W.S.s sharing network. Meaning that 
we define two classes of peers: sharing peers which represent service providers (they can 
still be service requesters), and freeloader peers which are clients (only requesters). For 
declaring the attributes of these classes we keep the sample settings from the 
GnutellaSim webpage ([17]):  
 

freeloader avg offline(sec) avg idle(sec) 
prob. going offline after 

a successful query 

no 4320 300 0.2 
yes 4320 30 0.1 

 

We chose to use the simplified GWebCache protocol for the bootstrapping of the 
peers, complying with the notice in [17] that this method approximates the real-world 
behavior more closely than the SmpBootServer method. In the simplest case, we set one 
of the servents to be the bootstrap server. Then we state the address of the GnutellaSim 
peers to be that of the leaf nodes of the ns-2 topology, instantiate the corresponding 
GnutellaApp objects and set them to use one (or the) bootserver from before.  
 
Following that, a uniform variable decides whether a servent is a freeloader or not, on a 
probability 50-50%, as in the sample script. We attach the peer to the PeerSys with 
this attribute. The start-time of the servents is defined uniformly, in a range from 0 till 
the total end-time of the simulation. An exception to that we make, when we use only 
one bootserver, which we set to start only between 0 and 3 uniformly, in order to 
ensure that the servents will be able to connect to the system.  
 
 
3.2.3 3.2.3 3.2.3 3.2.3 Web Services distribution among PeersWeb Services distribution among PeersWeb Services distribution among PeersWeb Services distribution among Peers    
 
On each peer that was not initiated as a freeloader, we define the presence of web 
services ready to be discovered. The number of services per peer is a rounded uniform 
variable ranging from 1 to 3. Which these services are, is also defined by a rounded 
uniform variable (for “how”, see paragraph 3.3, as this is not included in the original 
GnutellaSim); we also excluded the possibility of the same service being assigned twice 
on one servent. This variable takes its values from an enumeration of the W.S.s that are 
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possible to be contained in the P2P network. The amount of these services we set to be 
8. The fact that we predefine such a number cannot influence negatively the desired 
“generality” of the simulation, because each time we run it we don’t know beforehand: 
 

• which of these services will exist in the system  

• on which peer(s) they will belong 

• when each peer will attempt to connect to the system, concerning that 
before this time its services are not available and relevant queries will fail. 

 
 

3.3 GnutellaSim modifications for W.S. Discovery 

 

In the GnutellaSim distribution we find the C++ libraries that create the corresponding 
simulator objects. Objects that communicate with the low-level network (here ns-2) or 
represent the higher level entities and functions of the Gnutella protocol. The library 
files nssocket, nssocket_prio, tcp-advw and tcp-sock describe the four classes of the 
Socket Adaptation Layer of GnutellaSim as these were referred in section 2.3. Both the 
application and protocol layer are being described in the peer_agent files (.cc and .h). In 
order to adapt the simulator for W.S. discovery, we needed to change the parts of the 
library that describe and create the content of the messages exchanged between the 
servents, and not the very form and binding of these messages. Thus, it was enough to 
modify only the peer_agent files.  
 
 
3.3.1 3.3.1 3.3.1 3.3.1 Operation of the Original Probabilistic File Discovery SimulatorOperation of the Original Probabilistic File Discovery SimulatorOperation of the Original Probabilistic File Discovery SimulatorOperation of the Original Probabilistic File Discovery Simulator    
 
We already gave some descriptive image of what is contained in the 2 upper layers of 
the GnutellaSim architecture in chapter 2. Here, we don’t aim to analyze everything 
contained in the source code. For example, the whole operation that defines the 
ping/pong process has to remain the same as in the gnutella file protocol, the 
GnutellaSim specification, and what is therefore mentioned in sections 2.2 and 2.3. The 
bootstrapping process also remains unchanged. We will mainly observe the functions 
that participate at the higher level of the message exchanging, during the discovery. 
Deeper details will be given when necessary.   
 
In order to create some concept during our description, we will first follow the 
execution flow of the Tcl sample script we mentioned in section 3.2 corresponding to 
the network setup, and see where it reflects inside the source code. Afterwards, 
involving with the run time of the simulation, which is not handled by the Tcl script, 
we will take the track that initiates from the generation of a query from one servent and 
ends with the receiving of the queryhit. We split these two procedures in steps: 
 
Step A1.Step A1.Step A1.Step A1.  The GnutellaSim part of the Tcl sample begins with the initialization of the 
PeerSys object. This instantiates the PeerSys class in the source code with the total 
number of shared files, the number of peer classes and the parameter “alpha” that 
defines the popularity of the files among the peers.  
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Step A2.Step A2.Step A2.Step A2.  Inside the above process, the init_file() function is called, which creates the 
file popularity structure. For each file, a mathematical function calculates the 
corresponding popularity value which increases with the file index, and stores it in a 
table.  
 
Step A3.Step A3.Step A3.Step A3.  The Tcl script uses the command method for the PeerSys, and calls the core 
function PeerSys::init_class(). This function reads the classinfo.txt with the peer classes 
and constructs the ClassSpec. 
 
Step A4.Step A4.Step A4.Step A4.  The script initiates the bootstrapping, reading the bootserver’s id from the 
srv.info file.  
 
Step A5.Step A5.Step A5.Step A5.  The peers are being configured and instantiated. We exclude the creation of 
Ultrapeers and Gnutella Leafs that belong to the Gnutella Protocol 0.6, and refer only 
to “legacy” simple peers. To set a peer we declare new PeerApp/GnutellaApp which 
automatically calls the creation of the corresponding new GnutellaAgent, new 
GnutellaMsg and new PingTimer objects for its controlling.  
 
Step A6.Step A6.Step A6.Step A6.  The Tcl command use-bootserver assigns the bootserver to the peers, using 
the GnutellaApp::setBootServer function. This function creates a new BootServerRec 
object to be used in run-time. 
 
Step A7.Step A7.Step A7.Step A7.  The command attach-peer joints the peers with the PeerSys and instantiates a 
new ActivityController for them.  
 
Step A8.Step A8.Step A8.Step A8.  Start-times are set for each peer and the simulation begins running.  
 
The following diagram shows steps A1-8 schematically: 

 
     Fig.20 Steps A1-8 
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Step B1.Step B1.Step B1.Step B1.  When the start-time of a peer arrives, the BootServerRec object invokes the 
GnutellaApp::bootstrap() method to attempt the bootstrapping through the 
GnutellaAgent::Bootstrap function of the second layer. The message sent is being 
received from the GnutellaAgent::Bootstrap_Reply method of the bootserver, which 
answers back using the GnutellaAgent::upcall_connected if the connection is feasible. 
When the peer receives the upcall, it tries to connect (with another set of functions) 
and when that happens, it uses the GnutellaApp::SetState function to declare itself as 
“active”. 
 
Step B2.Step B2.Step B2.Step B2.  The PingTimer invokes the GnutellaApp::ping() method which then passes 
the control to the lower protocol layer calling the GnutellaAgent::Ping method. A 
similar process takes place during the receiving of a ping and during the sending and 
receiving of the ping response, the pong message.  
 
Step B3.Step B3.Step B3.Step B3.  After these, the ActivityController is ready to generate the first query. It does 
so by comparing a random variable with the, in increasing order, popularity values of 
the shared files from their stored table. When the variable is found for the first time 
smaller than a value, the index of the corresponding file becomes the search criteria.  
 
Step B4.Step B4.Step B4.Step B4.  This invokes the GnutellaApp::search method which connects to the second 
layer calling the GnutellaAgent::Query for sending the request to all the connected 
peers.  
 
Step B5.Step B5.Step B5.Step B5.  When another servent receives the query it handles it with the 
GnutellaApp::QueryRequest procedure. This one exits if the peer is a freeloader. 
Otherwise, it first calculates a random number of hits that can be found on the peer 
(up to 5). Then it constructs a variable out of the index of the file which is under 
search, by scaling it down from 0 to 1. Now, this variable can be compared with 
another, random variable, and if it is found bigger than it, a “hit” is considered.  
 
Step B6.Step B6.Step B6.Step B6.  This forces the GnutellaAgent to send a QueryHit using the homonym 
method including the number of hits and the characteristics of its servent. This is 
received by the requester servent and its GnutellaApp::QueryHitReply function and the 
process terminates.  
 
And the following diagram shows steps B1-6 schematically: 
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Fig.21 Steps B1-6 

 

 

 

3.3.2 3.3.2 3.3.2 3.3.2 Design of Design of Design of Design of Changes towards W.S. Discovery EnhancementChanges towards W.S. Discovery EnhancementChanges towards W.S. Discovery EnhancementChanges towards W.S. Discovery Enhancement    
  
The original simulator model is quite satisfactory for file sharing (as is also proved in 
[33]). Unfortunately, the matter of semantics, that W.S. Discovery introduces, makes 
the file popularity concept totally useless to us for 2 reasons: 
 

1. We cannot assume that one service can have a significant number of 
replicas among the network, neither, moreover, extract any theoretical 
popularity distribution out of this. Alternatives like e.g. assuming 
popularities for each term that describes the service should also be 
considered as “shallow”, and condemned to be inaccurate, solutions. 

 
2. We cannot adopt the random hit idea, because the W.S. semantic 

matching algorithm has various types of hits that refe
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ontology through the common notion of a URI in the real world. 
Moreover, OWL supplies ways to combine ontologies in reality, fact that 
makes this idea, of having just one ontology in the simulation, still 
reasonable. 

 
2. Actually provide this set of services with descriptions, thus the terms that 

are contained in them.  
 

3. Provide a set of queries descriptions, also by supplying individual terms. 
 

4. Implement actual comparison of the query and service terms and the rest 
of the matching algorithm of [5]. Hits will be returned for every different 
matching case with an indicator of their type. 

 
For only the simulation, and not for actual on-line implementation, we can assume that 
the ontology and the W.S./query descriptions are already transformed from 
OWL/OWL-S to a text form readable from C++, before the simulation starts. Thus, 
we store the descriptions’ terms in tables in PeerSys during the network initialization 
time. Resulting from this, the ActivityController can generate queries by randomly 
selecting of one of their ids, and put the query id in the sent criteria of the message.   
 
The insertion of the advertised and requested services can be modelled in various 
manners. Though, particular methods were appropriate for different stages of the new 
simulator’s development: 
 

i. At the beginning of the testing sessions, and in order to validate the 
basic functions, we used, for each of the sets of services and queries, 
input files where we filled the corresponding input/output terms 
manually. The choice of these terms was done in such way so to cover 
most of the different types of hierarchical relations between the terms, 
when the query matchings would be performed (see chapter 4 for 
details). 

 
ii. The large number of possible variations of matching and non-matching, 

that the algorithm provides, make it rather difficult to formalize all these 
situations theoretically (because different services are picked up 
randomly for each peer, random different number of services is attached 
to the peers every time, and different numbers of advertised terms (per 
service) are being compared with different numbers of requested terms; 
but the algorithm needs e.g. all advertised inputs to match the requested 
ones). So, we needed another more generic way of providing this set of 
queries that would allow us to examine all situations. What we did was 
that for every read, from the services file, advertised term we generated 
five distinguished corresponding (e.g. input term gives input terms) 
query terms, which are close to it in the ontology hierarchy (see next 
subsection for details).  
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iii. In order to proceed in more realistic simulation scenarios, including 
more peers, existing services and queries, we faced the following 
problem: Despite it was easy to retrieve from the internet an ontology, 
even in OWL format, and transfer it in some C++ readable text-form, 
we wouldn’t be able either to write the services descriptions manually 
from it, or to find any such large real-world benchmark of services 
(especially not in OWL-S). Thus, we generated the service description 
terms by picking up terms from the ontology automatically (see next 
subsection for details). 

 
 
3.3.3 3.3.3 3.3.3 3.3.3 Operation of the Semantic W.S. Discovery SimulatorOperation of the Semantic W.S. Discovery SimulatorOperation of the Semantic W.S. Discovery SimulatorOperation of the Semantic W.S. Discovery Simulator    
 
Now, following the remarks of  subsection 3.3.2, we will describe which of the steps in 
the original simulator’s operation, as presented in subsection 3.3.1, needed to be 
partially transformed or totally replaced, and with what, in order to implement the 
intermediate and final prototypes of the W.S. Discovery Gnutella Simulator.  
 
NewNewNewNew    Step A1:Step A1:Step A1:Step A1:    The commands involved with the 3 attributes that define the file 
popularity distribution are meaningless and can be removed. On the other hand, here is 
the appropriate place to invoke the functions that: read the ontology from a file and 
store it, read and store or generate the services descriptions and the queries. All these 
should be executed after the new init_file function that is described right after. 
 
NewNewNewNew Step A2:  Step A2:  Step A2:  Step A2: The init_file function must initialize totally different structures than the 
file popularity table. And these should be tables that store: which services belong to 
each peer (taking input from the Tcl script), the input and output terms that describe 
each service and each query, the terms of the ontology and the parent-child node 
relationships of the ontology.  
 
In the previous subsection we introduced the 3 different implementations we used for 
the service and request descriptions enhancement. After the execution of the new Step 
A2, the other functions that new Step A1 calls (and perform this enhancement) are 
employed with the data structures they require. For each different implementation, the 
number, raw of execution and form of these functions varies as follows: 
 

i. For the simple test prototype, Step A1 invokes firstly the init_desc 
function for advertisements. This one opens the file with the service 
descriptions, recognizes the terms by type (input/output) and stores them 
in the corresponding stored tables in a way that the service they belong to 
is distinguished. Then Step A1 invokes the same function for requests this 
time, which reads the query descriptions file and does a similar thing as 
before for the terms found there. Finally, the init_ont function is called. 
This opens the ontology file, extracts the terms and puts them in one 
table. The terms are stored in increasing row number of the table 
according to the sequence in which they can be visited first-in-depth. This 
means that a term becomes the next to be indexed only if all the children 
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of the previous one, to the left, have been already indexed from left to 
right. In the same time, the function also creates another table where it 
stores which is the ontology parent of each term.  

 
ii. In the advanced test prototype, the first function called by New Step A1 

is the init_ont which operates in the exactly same manner as before. 
Afterwards, the init_desc function is called, but is partially different than 
in case i. It is invoked only once now and still does the same for the 
services descriptions. But each time it stores an advertised term it then 
generates 5 query terms of the same type (input or output). A query term 
is produced by calling the function query_term_gen. This one defines a 
random variable len (0...4) which represents a walk of length len on the 
ontology tree. For every step of the walk, another random “boolean” 
variable determines its direction. When the direction is “up” the walk 
proceeds to the parent term, and when it is “down” it moves to the term 
with the next (bigger) id (that would be a term with which they own the 
same parent or a term in the next branch to the right).  
With this method we can get a variation of requested terms that covers an 
appropriately sized (neither too big nor too small) ratio around the 
advertised term. This can give all the hierarchical relations the matching 
algorithm requires for considering the hits, while also ensures us that we 
are going to observe those hits happening by keeping the requests 
semantically not totally irrelevant to the available advertisements. 

 
iii. For the large scale simulation, the init_ont is also doing the same as 

before, at the beginning. Then the gen_terms function is invoked. This 
one first generates a random number (shouldn’t be more than 5) of input 
and output terms to describe each service. Each term is picked up 
randomly by id from the ontology table. Selecting the services description 
terms randomly is useful for simulating a big population of peers carrying 
a big number of available W.S., because it provides the necessary 
generality. For each advertised term, 5 query terms are generated with the 
query_term_gen, just like before.  

 
The network initialization process for the W.S. Discovery simulator can continue by 
copying the Steps A3 till, and including, A7 of the original GnutellaSim process (from 
the sample Tcl script). But after that point, and as we have attached the peers to the 
PeerSys, we must perform an operation which is, expectedly, missing from the sample. 
As we mentioned in section 3.2, we want to uniformly distribute the services to the 
peers. In our Tcl script we use an operation named ws_adv with attribute the random 
service id that was computed. This reflects in invoking the command method of the 
GnutellaApp inside the C++ source in a way that calls for the execution of the 
GnutellaApp::ws_adv function with that service id for argument. This function stores 
the id as a service available from the corresponding peer, in the table that was initialized 
from the new Step A2 for this purpose.  
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New Step A8:New Step A8:New Step A8:New Step A8:    This can stay unchanged except, as we said in 3.2, for the bootserver 
which is forced to start quite early.  
 
The diagram that follows represents the steps A1-8, with the “new” ones indicated 
with bold letters: 
 

 
Fig.22 New steps A1-8 

 

Steps B1 and B2 remain unmodified. 
 
New Step B3: New Step B3: New Step B3: New Step B3: The ActivityController still uses a random variable to generate queries, 
but in a different manner. As we mentioned in the previous subsection, this variable 
becomes one the queries ids as those are stored in the corresponding table. Then it is 
transformed to a string and sent to the GnutellaApp as the search criteria.   
 
Step B4 should be held as in the file-based simulator, but B5 consists of the Matching Matching Matching Matching 
AlgorithmAlgorithmAlgorithmAlgorithm and needs a much larger and more detailed handling in our case.  
 
New Step B5: New Step B5: New Step B5: New Step B5: Again, the GnutellaApp::QueryRequest procedure is used and still exits 
if the peer is a freeloader. But the Matching Algorithm is implemented now as 
indicated from the pseudo-code presented in figures 8-11 of paragraph 2.1. The main 
procedure invokes the execution of the output and input matching and then reads the 
results, for each Web Service available on the present peer. If both the returned degrees 
of matching represent anything else than “Fail”, a hit is considered. We use a variable 
to declare the degree of matching to which the hit corresponds to and return it to the 
requester inside the QueryHit message. Now the requester can use this information in 
order to sort all the relevant to this query, distributed hit results.  
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TTTThe output matching is performed by a new, inserted by us, function, the 
GnutellaApp::outputMatch. This one enforces the comparison of all the requested 
output terms with the corresponding advertised ones. As one query term is being 
compared to all the advertised others, when a match is found with a higher degree than 
all the previous ones, its degree is stored as the final match-degree for this query term. 
If one of these final degrees is “Fail”, the global degree of output match will become 
“fail” too. Otherwise it will get the next smaller value. The function 
GnutellaApp::inputMatch does the opposite for the input terms as we described in 
section 2.2.  
The individual terms matching is executed by the function that took the name 
degreeOfMatch because of the data it returns to the outputMatch and inputMatch 
functions. It first refers to the ontology table to get back the ids of the two terms. If 
these are the same, the degree of match is considered as “Exact”. Otherwise, the second 
term is compared with the parent of the first, and if it matches, the degree is also 
“Exact”. If not, it is compared with the parent’s parent of the first term and so on. In 
case it matches any of those terms, the match is a “plugIn” one. In case it still doesn’t, 
we compare its own parent with the first term, and then its parent’s parent and so on. 
Such a degree of match is called “Subsumes” ([5]). If all the above fail, the degree 
returns as “Fail”.  
 
New Step B6: New Step B6: New Step B6: New Step B6: The queryhit message doesn’t have to send the number of hits on the 
peer, because individual messages were sent for each hit. It includes, instead, the degree 
of match indicator we mentioned right above. This indicator is a three digit number. 
The first digit corresponds to the degree of the output matching, the second to the 
degree of the input matching, and the last one to which of the services contained in the 
responder peer the match was found. 
 
The following diagram depicts the Steps B1-6 with the “new” ones indicated with bold 
letters: 

 
      Fig.23 New Steps B1-6 
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We firstly test our simulator with a small set of peers (10) attached to the 10-node 
(with 12 links) topology we created in ns-2 (section 3.2.1) and a small sample 
ontology. As we described in sections 3.3.2 and 3.3.3, we supply, in a manually written 
file, the input/outputs of 8 indicative Web Services out of the ontology. The query 
insertion was implemented in two ways. For the first, 20 indicative queries are inserted 
with a file, just as the services. For the other, a query generation module is being used 
(described in 3.3.3). Section 4.1 gives details and explanations on the testing session. 
 
For the actual simulation scenario, we use 100 nodes and peers (see 3.2.1) with 187 
links and a much larger ontology. Both services and queries are generated automatically 
from the ontology as we described in section 3.3.3. The performance evaluation metrics 
that GnutellaSim provides (section 2.3.4 and Fig.18) deploy us with the ability to 
compare our GnutellaSim with the original one, and specifically with the experimental 
results of the research presented in [33]. The simulation set up is described in section 
4.2.1, while the results and the comparison of the evaluation, can be found in 4.2.2. 
 
 

4.1 Testing 

 
As explained in section 3.3, the manual sets of indicative services and queries that were 
inserted with files were enough, for us, to roughly validate our simulator’s operation; 
but only after a big number of executions. The variations in the distribution of the 

CHAPTER 4 Simulation 
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services and in the succession of the queries’ initiation, which the system may produce 
at each different running, force us to imply also a random automated query generator. 
This implication aims to increase the possibility of observing all the matching 
variations that the algorithm accepts, in every single running. Only this version of 
testing can be recommended for future users of the simulator. 
 
This quite big set of “hit” types we describe in section 4.1.2., where we will see, 
partially with examples, how they are handled by the simulator’s processes. But first we 
present the test ontology and the manual sets of services that were used, in section 
4.1.1. These will provide the proof examples of 4.1.2 with content. 
 
    
4.1.4.1.4.1.4.1.1111 The  The  The  The Test Test Test Test OntologyOntologyOntologyOntology & Test & Test & Test & Test----set of Advertisementsset of Advertisementsset of Advertisementsset of Advertisements 
 
The ontology we used during the testing sessions is a combination of the sample 
ontology of Fig.1 (section 2.1.4) with 3 more classes which don’t refer to output 
products of renting services, but to characteristics of the offered products. The terms 
contained under the classes Price, Color and Movie_Style were used as input 
description terms. The Renting class items described the output. Fig.20 shows this 
ontology.  

 
Fig.20 The Test Ontology 

 

The set of input/output terms that describe the advertised services that was used during 
the testing is shown in the next table. These terms cover the biggest part of the above 
ontology, so that the services that they describe range widely among all the possible 
renting services that could be using such ontology. Appropriate queries can then reveal 
and test all the algorithm’s matching capabilities. 
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W.S. id Inputs Outputs 

0 color price Sedan SUV 

1 Price  moto  

2 Color  1-room ap. villa 

3 moviestyle  movie  

4 red  4wheels  

5 low  apartment  

6 thriller  DVD  

7 high Color 2wheels  
 

The Test Set of Advertised Services 

 
 
4.1.4.1.4.1.4.1.2222 Testing for all Query Hit types Testing for all Query Hit types Testing for all Query Hit types Testing for all Query Hit types    
 
There are 3 defined degrees of matching for two terms (“exact”, “plugIn”, 
“subsumes”), as we described in sections 2.1.7 and 3.3.3. But actually there are two 
definitions for “exact” match which are calculated differently, fact that forces us to 
examine them in separate. So, we have 4 cases of output matching and other 4 of input 
matching, resulting in 16 queryhit types. For the most indicative of them, and for some 
non-matching cases, we give examples in the rest of the section. 
 
We can have a “pure” total (for both inputs & outputs) “exact” match if we compare, 
for example, a query with inputs: “low” (price) and “red”, and output: “apartment”, 
with the advertisement no. 5 from the above table. The term “red” does not match any 
advertised input, but this is not needed (all the advertised inputs should match the 
requested ones and not the opposite), because we assume that someone that doesn’t put 
any restriction in “colors”, supplies them all. Besides that, the compared outputs are 
identical. 
 
An “exact” match on terms is also considered (besides pure lexicographical exact 
match) when an advertised input (or a requested output) is a first degree ontology 
“child” of a requested input (or advertised output, respectively). For example, if we 
request a “red” “car”, we will get a hit from the advertisement no.4 from the above 
table indicated as “exact” match: the input term “red” matched lexicographically and 
the output “car” has the advertised term “vehicle” as parent in the ontology.  
 
Moreover, a query for “thriller” “DVD” will match both advertisements no. 3 and 6, 
but the match with 6 is higher ranked than the match with no.3, as the first one is 
purely “exact”. If we request a “low” “house” and the query is forwarded to a peer that 
hosts the advertisement no.5, we will get a “subsumes” output match and an “exact” 
input match. Such a match is ranked lower than one that is the other way around 
(“subsumes” input and “exact” output match).  
 
On the other hand, a query for a “low” “car” will not match the advertisement no. 4, 
despite the fact that an exact output match occurs, because the requested input of class 
color is not provided by the requester. Respectively, a query for a service with outputs 
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“2-room apartment” and “villa” will not match the advertisement no.2, not mattering 
the input, because the first query term is not provided by the advertised service. 
 
Another big issue in the testing session was that every peer can host up to 3 services (see 
section 3.2.3). This implies even more test cases, because the algorithm should keep 
track of some information while it passes from the one hosted service to the other. 
Moreover, if more than one matchings are being found on the same peer. Only after 
examining all these situations could we safely proceed in a bigger simulation, import a 
larger ontology, distribute more services and initiate more queries. 
 

 

4.2 Simulation 

 

 

4.2.1 Setup4.2.1 Setup4.2.1 Setup4.2.1 Setup    
 
The Kepler Workflow Components ontology (see Appendix A) that we use includes a 
big variety of entities, whose nature is very close to the nature of web services, their 
products and the data types they include for simple inputs/outputs. In order to make 
the experiment as generic as possible we didn’t force some of these ontology terms to be 
only input terms and some others only output terms. Rather, the service and query 
generators we use and describe in section 3.3.3 can choose any term for both 
functionalities.  
 
 
4.2.2 Performance 4.2.2 Performance 4.2.2 Performance 4.2.2 Performance Evaluation Evaluation Evaluation Evaluation and Comparison to original GnutellaSimand Comparison to original GnutellaSimand Comparison to original GnutellaSimand Comparison to original GnutellaSim    
 
There are objective reasons according to which it is expected that the performance of 
our system will be lower than the original simulator’s. These reasons are: 
 

1. The semantic matching process that we use has a much bigger 
computational complexity than the probabilistic matching process 
originally used. It uses at about 15 times more variable castings and value 
settings, 12 times more conditions and 4 times more floating-point 
operations, for one single query checking, in the particular following 
experiments. Thus, it takes longer for one query to be matched at each 
receiver peer. Consequently, fewer QueryHits will be found with our 
system than with a file-discovery simulation that runs for the same time 
duration. 

 
2. The average possibility of a hit in our system is eventually lower, 

concerning how the two systems have been initialized. In the original 
GnutellaSim every query has some possibility to be matched at any time 
and disregarding how many peers are reachable, because this depends 
only on the overall predefined population of the requested file which is 
never zero. So the query may reach fewer receivers at the beginning of the 
experiment, but on each receiver the hit possibility always exists (as the 
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popularity distribution states). In our own system, though, 
advertisements and requests contain controllably random terms extracted 
from the given shared ontology. So it is not necessary that for all the 
constructed during the initialization process requested service 
descriptions, some “match-able” by that advertised description has been 
constructed as well. This results to the fact that some queries may have, 
from the initialization already, zero possibility to ever be matched 
especially for small peer popularity, while this never happens for the file 
requests in the original GnutellaSim. 

 
We performed 3 types of measurements and plotted the appropriate graphs. First, we 
measured the System Throughput for 3 different levels of average Peer Bandwidth and 
then for 2 different average values of the delay of the link that connects the physical 
(ns-2) node with the Gnutella peer. Afterwards, we measured the Average Hit Time for 
2 levels of average Peer Bandwidth. The results are compared with the corresponding 
evaluation results of the file-discovery original GnutellaSim, as the later were presented 
in the last section of reference [33]. All experiments, ours or theirs, were executed for 
3000 seconds of simulated time. 
 
But before we present any of these measurements we must make a major remark. The 
connectivity of our experiments and the connectivity in the original GnutellaSim 
experiments differ significantly. This is expected to distinct the temporal performance 
results for the two systems. A proof for this connectivity difference is derived from the 
following diagrams. The first presents our measurements of connectivity vs. peer 
bandwidth and the second the corresponding one from paper [3]: 
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What we can clearly see from the above plots is that while in the file-discovery 
GnutellaSim the connectivity, disregarding the average bandwidth level, increases 
gradually, in our system it remains below 10 peers for the first 1700 seconds and then 
begins increasing till its highest value.  
 
The limited physical (ns-2) connections that exist initially in our network and the 
limited allowed number of Gnutella connections for each peer lead to the rejection of 
many connection requests till about the 1700th second of the execution. But when 
some earlier connected peers go offline or stay idle, connection requests from other 
peers start being accepted and so the population and connectivity increase afterwards.  
 
System Throughput vs. Peer Bandwidth 
 
The system throughput is defined by the number of QueryHits per second ([33]). For 
our measurements it was averaged every 60 seconds. The average value of the peer 
bandwidth is normally expected to influence largely the queryhit rate. The first of the 
following plots shows our results in measuring the hit rate against the peer bandwidth, 
while the other plot shows the original GnutellaSim’s corresponding measurements: 
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The conclusion in paper [33] from the above graph is that their system successfully 
depictures the expectation that the throughput increases with increasing peer 
bandwidth. Exactly the same observation we can make from our own corresponding 
graph. This assures us that the enhancement of the W.S. discovery in GnutellaSim did 
not modify this relationship between queryhit rate and bandwidth, and that the new 
extra workload, expectedly produced from the semantic matching process, was 
distributed among the peers according to their capacity.  
 
But if that extra workload didn’t pose any “quality” impacts on the throughput 
performance, it caused “quantity” impacts. This is obvious from the scale of our graph, 
and the maximum value it represents, which both are almost 7 times smaller than the 
original graph’s. Also all our curves show a smaller average value than the corresponding 
original curves. These observations comply with the two reasons for the low expected 
performance of our system that we stated at the beginning of this section. The 
enhancement of the semantic algorithm and the way the queries are produced (without 
popularity distribution influence) do decrease the average hit rate, and thus the 
throughput. 
 
Moreover, all our curves approach the x-axis (zero value) for about all first 2000 
seconds of the execution. This means that there are only a few queries successfully 
matched during that time, fact that is partially explained from the second reason we 
gave for the performance expectation in combination with the connectivity subject we 
discussed. Thus, when a query is being sent at the early moments of the execution it has 
much less (or even none according to the second reason) possibilities to discover one 
suitable advertisement available, and it is even more difficult to discover more than one. 
So, usually only a one-digit numbers of hits are found per query, or zero.   
 
Another factor that pushes further in making the difference of the average hit rates so 
big, and our hit rate being close to zero for the first 2000 seconds, is that in the original 
experiments they used peers that have zero possibility of going offline after a successful 
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query, while we defined values (see section 3.2.2) for this parameter, leaving this case 
open, and so, we “endangered” the population of peers and the performance even more. 
We should have, though, defined these values because such an approach is closer to 
reality. 
 
At some time point closely after these 2000 seconds, the 3 curves, suddenly (in a time 
space of 200 seconds) extend to an average higher value at around which they fluctuate 
until the end of the experiments. The sudden increase in the connectivity, as we showed 
previously, increases the availability of services and, thus, the possibilities for a queryhit 
also. At about after the middle of the execution, all the newly joined peers are ready to 
send and match queries. And they will not only match queries that were first sent from 
the requester after their own activation, but also queries that were sent long ago but 
their time-to-live allows them in still being transmitted between peers. So, a 
significantly amount of both “old” and “new” queries will be examined and quite 
possibly, now, successfully matched in a short time space. After this sudden increase for 
200 seconds the curves start balancing around different average values and show similar 
behavior to the original GnutellaSim evaluation curves.  
 
Analytically, the overall average throughput for the low bandwidth in our graph is 
about 14 QueryHits/sec, while in the original graph it is about 120 QueryHits/sec. 
For the medium bandwidth measurement our average is 16 QueryHits/sec and the 
original is 230 QueryHits/sec. Finally, for the high bandwidth our average throughput 
is at 34 QueryHits/sec, while theirs is nearly 650. This would mean that the 
enhancement of the semantic matching makes the hit rate from 8.6 till 19.1 times 
smaller. But these numbers are not indicated for a safe one-to-one comparison, because 
the GnutellaSim evaluation ([33]) makes no reference on which are the 3 different 
levels of average bandwidth. We still get an approximation of the magnitude. If we now 
consider the difference in the complexity as stated in reason 1 above, we see that the 
complexity increase is very close in size to the hit rate decrease, and this makes this 
decrease explainable and expected. 
 
 
System Throughput vs. Link Delay 
 
The delay of the link between the physical network node and the Gnutella peer should 
affect the hit rate also, because it influences the communication time. In the file-
discovery GnutellaSim there is no particular plotting for this measurement, but only 
textual reference. So we present only one graph which depicts our results again sampled 
and averaged every 60 seconds: 
 



 - 55 - 

System Throughput vs. Link Delay
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What we mainly observe from the above plot is in agreement with what is mentioned in 
the original evaluation. A small average link delay increases the system throughput. This 
happens as the smaller requirement for communication time results in a bigger number 
of queries being handled in the same time duration.  
 
The curves in the graph are in the same scale as the ones from our other plot about 
“System Throughput vs. Peer Bandwidth”. This means that the quantity impact on the 
hit rate when varying the bandwidth is approximately close to the impact of varying the 
delay. And that is also the reason why paper [33] includes no graph for this 
measurement.  
 
We can still though observe some difference in the behavior of our two system 
throughput measurement graphs which we explain right after. The effect of the non-
gradual connectivity increase, we mentioned previously, is less obvious in the case of the 
small delay measurement than in all the other cases (it is still big for the large delay). 
There is an extra reason here for this. The bandwidth is distributed to the peers from 
the simulator (in the Tcl script) randomly but for distinct values (50K, 1.5, 10 or 
100M) and for different possibility for each value to be chosen. When we lowered the 
average bandwidth in the previous experiment, we didn’t totally remove the possibility 
to have high bandwidth peers; we just reduced it and induced the possibility for slow 
peers. And respectively, when we measured the hit rate for high average bandwidth we 
didn’t exclude the slow peers’ population, but we decreased it, increasing the fast ones’, 
so the average speed of the system was not the largest possible.  
 
But the link delay value is distributed by simply and non-discretely ranging between the 
values of 10 till 80. So we did exclude all the small delays when we measured the 
throughput for the high average delay, and the opposite. Thus, for the small average 
delay measurement, all the links were relatively too fast and the system was faster than 
in any other case, so much that the throughput already starts increasing from the 
1200th second an after. Most of the peers’ start time is mostly around that time but the 
peers operate now very fast and they soon cover the “lost ground” examining the old 
queries that are still in the system and gradually the new ones also. This does not 
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happen for the large delay case, as the system remains averagely slow and the effect of 
the low connectivity is still great. 
 
Analytically, the overall average throughput for the large delay was measured at 13.6 
QueryHits/sec and for the small delay at 38.2 QueryHits/sec. These values are very 
close to our overall averages for small and large bandwidth, respectively. So, the small 
delay curve did increase more smoothly than the large bandwidth curve, but it this 
didn’t differentiate their average values that much.  
 
Average Hit Time vs. Peer Bandwidth 
 
The Hit Time is defined to begin when a peer sends a query and to end when the first 
queryhit is received back ([33]). In our experiment the average hit time is measured as 
the number of such first individual queryhit messages received every 60 seconds. It is 
definite that the peer bandwidth affects the hit time, as it represents the peer speed.  In 
order to picture this, the first of the following plots shows our results, while we right 
after include the corresponding plot for the original simulator:  
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We can again make the same general observation with the original evaluation for this 
measurement. Higher average access bandwidth results in smaller average hit time. The 
time needed for a query to be checked is the same disregarding the bandwidth, but the 
time needed for a query or queryhit to be transmitted increases when the bandwidth 
decreases. So the hit time increases, too. 
 
On the other hand, the scale and the average values in our plots are quite smaller than in 
the file-discovery simulator plots. And the two reasons stated at the beginning of the 
section have, expectedly, the opposite impact on the hit time than they have on the hit 
rate. Specifically, the average value of the hit time for the high bandwidth measurement 
in our graph is 34.8 sec, and for the low bandwidth 59.2 sec. While in the original 
graphs these values are at around 3.5 sec and 11.5 sec, respectively. This means that our 
system increase the average hit time from 5 till 10 times. The size of this increase is 
near to the size of decrease of the hit rate that we provided in the “System Throughput 
vs. Peer Bandwidth” measurement and also to the size of the increase of the complexity 
of the calculations we provided in reason 1 initially.  
 
The way the connectivity increases in our system affects the way the average hit time 
varies as follows: Until about the 2000th second when the connectivity is too low, the 
average hit time is too high and above the average value. Especially for the time space 0-
1000 seconds, when the total number of “living” queries in the system is also too low, 
the quantity differences with the original graph are great. Between the 1000th and the 
2000th second, the ratio between our average and theirs is becoming smaller, but only 
after the 2000th it is actually close to the average ratio.  
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In this last chapter we begin by giving some conclusions about our work. We do this by 
examining how the questions of Section 1.2 were answered, and how the goals of 
Section 1.3 were accomplished. Afterwards, we shortly compare the methodologies we 
used with those used by other similar work, which also extends the research proposed in 
papers [2] and [5]. We finish the chapter proposing future directions inspired by our 
conclusions and the related work. 
 
 

5.1 Conclusions 
 

The complex nature of Web Services requires them to be advertised on the web by 
using structured and semantically enabled descriptions. The structuring of the 
descriptions can be achieved by expressing, in them, the capabilities of the service (what 
inputs and conditions it requires in order to be executed and what outputs and side-
effects the execution produces), the partial activities performed by the service and some 
service classification. All these attributes can be expressed with OWL-S in a well-
defined and machine-usable XML-based style. The semantic enhancement of the 
descriptions can be achieved if the terms they contain belong to ontologies. Ontologies 
organize and relate term entities in class hierarchies. OWL is a powerful framework for 
the creation and manipulation of ontologies.  
 

CHAPTER 5 Conclusions, Similar & Future Work 
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Searching for Web Services with such descriptions requires the designing of algorithms 
that can discover services by their “meaning” and not by keywords. Such an algorithm 
compares the descriptions of the requested services and those of the available advertised 
services. This comparison is based on the relations between the terms composing the 
ontology. The terms can be easily extracted by parsing OWL-S files. The work 
described in [5] has provided an algorithm that uses only the input and output 
description terms to perform the matching. We propose an extension of the algorithm 
for all the characteristics of a service mentioned in the previous paragraph and how 
these terms can be extracted from the OWL-S descriptions.  
 
We follow the concept to enable Web Services Discovery in an unstructured pure P2P 
network. The most popular protocol that defines the operation of such a network is the 
Gnutella protocol 0.4. It ensures high popularity of nodes and high availability of 
services. The matching algorithm such as the one described here can be combined with 
the Gnutella protocol and thus provide every participant node in the network with the 
ability to advertise its own services and semantically discover services on other nodes 
[5].  
 
We test this combination of OWL-S, the algorithm as it was first defined ([2]) and 
Gnutella in a network Simulator. This simulator uses ns-2 for the physical layer of 
communication and the basis of GnutellaSim for the higher layers. We extended 
GnutellaSim, as it was defined just for probabilistic file-discovery simulation, and 
enriched it with initialization of a shared ontology, a set of advertised services, a set of 
service requests and the semantic matching algorithm. We measured the performance of 
the system (queryhit rate and average hit response time) and compared it with the 
performance of the original GnutellaSim. The results showed that the insertion of the 
algorithm does not break the proven ([33]) relation between node speed (bandwidth or 
link delay) and performance. It does, though, lower the system throughput and increase 
the hit time, if it is compared with the original simulator and for similar node speeds.  
 

 

5.2 Comparison with Similar Work 

 

“A Scalable Peer-to-Peer Approach to Service Discovery Using Ontology” is presented 
in paper [3]. This project extends the ideas described in paper [2] by adding a concept 
encoding for the descriptions and “location” servers in a p2p network to ease rerouting 
of query messages. The encoding corresponds to the appropriate location server which 
is different for every concept and also represents the concepts themselves to be used in 
the matching procedure. This solution accelerates the discovery and hit time, but we 
must notice that it adopts network centralization and hierarchy, which we explained 
that is undesired in order to have a fully dynamic Web Service discovery without the 
“single-point” failure phenomenon. On the other hand the project incorporates the 
simple input/output matching algorithm proposed in paper [5] and plans to extend it 
further in the future by using also the partial activities of the service for the matching. 
We already saw that our work explicitly provides an extension of this algorithm 
including the partial activities enhancement. We must observe also that in this work 
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they still relay on the old DAML-S, which proved to be less flexible than the new 
OWL-S.  
 
The “Service-Oriented Semantic Peer-to-Peer Systems” ([50]) perform the matching of 
advertised services and requests in 2 stages. They first apply the algorithm proposed in 
paper [5] for a capability matching from which they derive a set of semantically similar 
results. Then the expertises (classifications) of each result service and the query’s are 
compared in order to further sort the results. Such a system uses OWL-S descriptions 
to extract the inputs/outputs and a similarity function to perform the expertise sorting. 
A complete (all-layer) architecture example case for a bibliographic semantic service 
discovery system is provided. Enhancement of partial service activities in the matching 
process is also proposed as future work, which we already covered. 
 
“A Framework for Semantic Web Services Discovery” is presented in paper [20]. It 
again uses the algorithm proposed in paper [5] to match inputs/outputs and then 
calculates “Quality Vectors” for the advertisements and the requests for further 
comparison. These vectors are produced from the Quality of Service ranking that the 
OWL-S descriptions provide, with the vector parameters (constants) valued manually 
by the user. The architecture for these operations is explained in enough detail, but on 
the other hand, the paper mentions that they also incorporated the service category and 
the preconditions and effects of the service profiles in the algorithm without giving any 
further specifications for this. A corresponding prototype implementation is being 
described. 
 
For all these 3 similar works, we must finally observe that to the best of our knowledge 
no validation of the used matching methods or verification of the out coming results is 
provided. What we tried to accomplish in this thesis is to provide a simulation 
framework where semantic matching algorithms can be tested and evaluated as shown in 
Chapter 4. 
 

 

5.3 Future Work 

 

In a future prospect we can simulate the whole extended algorithm proposed in section 
3.1 in order to validate and evaluate it. This would also mean further complication not 
only inside the algorithm but in the initialization of the service/query descriptions in 
the network also.  
 
Our semantically enabled version of GnutellaSim and the performance evaluation we 
provide can be used for testing and analyzing of other ontologies and other sets of 
services and queries by any interested designer of semantic service matching 
unstructured p2p systems. The extension of the algorithm alone can be also 
incorporated in more complicated communication protocols, different than Gnutella, if 
the future researcher desires it, especially if a large node population is not required (e.g. 
static closed corporation networks).  
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The Virtual Laboratory for e-Science (VL-e, [51]) which enables the creation of 
research prototypes of advanced scientific applications uses web services for its 
operation. A future incorporation of p2p structure in VL-e is in progress and could be 
combined with an actual implementation of our extended semantic matching algorithm. 
Of course, such a system can be firstly tested and evaluated using the simulator.  
 
The VL-e is a step towards the Grid technology adaptation for the scientific 
community. And thus it would be a useful study case for the real implementation as it 
will lead us closer to the notion of Grid Services rather than simple Web Services.  
 
A last remark is that the time needed to complete our simulation experiments was 
sometimes much larger than the simulated time, besides that the occupancy of the CPU 
was at 98% preventing the concurrent (independent) running of other simulator 
instances. It is likely that in the future the simulation will have to be executed on 
clusters and Grid enabled computational resources. So we could run independently 
experiments on different machines of a cluster, or we could use the PDNS as a lower 
network simulation and distribute/parallelize the semantic GnutellaSim’s operations, 
with sets of peers simulated by different computers.  
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Appendix A: The Kepler Workflow Components Ontology 
 

Workflow Components 
  Actors 
    Griddles 
       A:GriddlesExec                                 
       A:GriddlesRemoteExec                           
       A:JGridletCreater                              
       A:JGridletRemoteCreater                        
       A:GriddlesRemoteFile                           
    Constants 
       A:Const                                         
       A:StringConst                                   
       A:ConstOnce                                     
    Filters 
       A:FilterUI  
    File System 
       A:FileCopy  
    Outputs 
       Graphical Displays 
         A:NextDiagram                                 
         A:Diagrams                                    
         A:DiagramsTransitions                         
       Graphers 
         A:BarGraph                                  
       Plotters 
         A:XYPlotter                                 
         A:TimedPlotter                              
         A:ArrayPlotter                              
         A:HistogramPlotter                          
         A:SequencePlotter                           
       Scopes 
         A:XYScope                                   
         A:TimedScope                                
         A:SequenceScope            
       External 
         A:BrowserDisplay                            
         A:BrowserUI         
       Textual 
         A:Display                                     
         A:MonitorValue                                
         A:DirectoryListing   
         A:Email                                       
       Writers 
         A:LineWriter           
         A:BinaryFileWriter                            
         A:FileWrite                                   
         A:SRBWriter                                   
       FileSystem 
         A:DirectoryListing                             
         A:FileLocator                                  
       GIS 
         A:GrassExport 
    Inputs 
       Internal 
         A:CurrentTime                               
       External 
         A:EML200DataSource                            
         A:FTPClient                                   
         A:OrbImageSource                              
         A:OrbWaveformSource                    
         A:OrbPacketObjectSou.                       
         A:FileFetcher                                 
         A:FileStager                                  
      Storage-resource broker 
         A:SRBConnect                               
         A:SRBDisconnect                             
         A:SRBReader                                 
         A:SRBWriter                                 
       Readers 
         A:ExpressionReader                          
         A:FileReader                                
         A:LineReader                                
         A:ImageReader                               
         A:BinaryFileReader                          
         A:SRBReader                                 
         A:TextFileReader                      
         A:SegmentFileReader                         
       Database 
        A:DatabaseQuery                             
        A:Dataset                                   
        A:OpenDBConnection               
      Globus 
        A:GridFTPUpdated                            
        A:GridFTP                                           

   GIS 
     A:GetPoint                                  
     A:GrassImport                               
Converters 
   A:FileToArray                                   
   A:ArrayToElements                               
   A:ArrayToSequence                               
   A:ElementToArray                                
   A:SequencetoArray                           
   A:BooleanToAnything                             
   A:CartesianToComplex                            
   A:CartesianToPolar                              
   A:ComplexToCartesian                            
   A:ComplexToPolar                        
   A:ExpressionToToken                             
   A:InUnitsOf                                     
   A:LongToDouble                                  
   A:PolarToCartesian                              
   A:PolartoComplex                                
   A:StringToXML                                   
   A:TokenToExpression                             
   A:ImageToString                                 
   A:ADNTToHTML                                    
   A:FileToString                                  
   A:InputsToXML                                   
   A:MoMLToRelational                              
   A:StringToPolygon                               
   A:SVGToPolygon                                  
   A:TokenToString                                 
   A:XMLToADN                                      
   A:XMLToOutputs                                  
   A:ObjectToRecord                                
   A:ImageConverter                                
   A:StringToImage          
Complex Structures 
    Arrays 
      A:ArrayAppend                                 
      A:ArrayAverage                                
      A:ArrayElement                                
      A:ArrayExtract                                
      A:ArrayLength                                 
      A:ArrayLevelCrossing                          
      A:ArrayMaximum                                
      A:ArrayMinimum                                
      A:ArrayPeakSearch                             
      A:ArraySort                                   
      A:ArrayToElements                             
      A:ArrayToSequence                             
      A:ElementToArray                              
      A:SequencetoArray                     
      A:MatrixViewer                                
    Records 
      A:RecordAssembler                             
      A:RecordDisassembler                          
      A:RecordUpdater                               
    Vectors 
      A:VectorAssembler                             
      A:VectorDisassembler                          
    Tables 
      A:LookupTable                                 
    Models 
      A:CompositeActor                              
    Control 
      A:Select                                        
      A:Switch                                        
      A:Pause                                         
      A:Stop                                          
      A:Comparator                                    
      A:LogicFunction                                 
      A:Sleep                                         
    Exceptions 
      A:ThrowException                              
      A:ThrowModelError                             
    Boolean 
      A:BooleanSwitch                         
      A:Equals                                      
      A:IsPresent                                   
    Unit Testing 
      A:NonStrictTest                               
      A:Test                                        
      A:TypeTest 
  

Mathematical Operators 
  A:Expression                                 
  Unit Systems 
    A:BasicUnits                                  
    A:CGSUnitBase                                 
    A:ElectronicUnitBase                          
    A:SI                                          
  Random Numbers 
    A:Bernoulli                                   
    A:DiscreteRandomSource                       
    A:Gaussian                                    
    A:Rician                                      
    A:Uniform                                     
  Trig 
    A:Sinewave                                    
    A:TrigFunction                             
  Arithmetic 
    A:Round                                       
    A:AbsoluteValue                               
    A:AddSubtract                                 
    A:MultiplyDivide                              
    A:Average                                     
    A:Minimum                                     
    A:Maximum                                     
    A:Remainder                                   
    A:Scale                                       
  Statistics 
    A:Interpolator                                
    A:Interpolate (geon)                          
    A:Quantizer                                   
  Iterative Operators 
    A:Ramp                                        
    A:Accumulator                                 
    A:Counter                                    
    A:Limiter                                     
  Calculus 
    A:Differential                                
    A:Integrator                                  
    A:DifferentialSystem                          
  Discrete 
    A:DotProduct   
GIS Functions 
  A:GridOverlay                                   
  A:PointInPolygon                                
  A:PointInPolygonXY                              
  A:GrassExport                                   
  A:GetPoint                                      
  A:GrassImport                            
  A:Rescaler                                      
Image Manipulation 
  A:ImageDisplay                                  
  A:ImageReader 
  A:ImageRotate                                   
  A:ImageToString                                 
  A:URLToImage                                    
  A:ImageContrast                                 
  A:ImagePartition                                
  A:ImageSequence                                 
  A:ImageUnpartition                              
  A:MonitorImage                                  
  A:ImageJActor                                   
  A:ImageConverter                                
External Execution 
Environments 
  A:Exec                                          
  A:PythonActor                                   
  A:MatlabExpression                              
  A:InteractiveShell                              
  A:UserInteractiveShell                          
  A:PythonScript                                  
  A:InvokeService                                 
  A:ServerExecute                                 
  A:WMSDActor                                     
  A:GlobusJob                                     
  A:CommandLine                                   
  A:WebService                                    
  A:InteractiveExec                               
Datamining 
  A:Trainer                                       
Web Services 
  A:WebService                                    
  A:WSHarvester                     
 

Database 
    A:DatabaseQuery                                 
    A:Dataset                                       
    A:OpenDBConnection  
String Functions 
    A:StringCompare                                 
    A:StringFunction                                
    A:StringIndexOf                                 
    A:StringLength                                  
    A:StringMatches                                 
    A:StringReplace                                 
    A:StringSubstring                               
    A:StringConcat                                  
    A:StringConst                                   
    A:DelimitedParser                               
 XML 
    A:XPath                                       
    A:XSLTActor  
 Grid Functions 
    A:GlobusProxy                                   
    A:GlobusJob                                     
    A:GridFTP                                       
    A:GridFTPUpdated                                
    A:RunJobGridClient                              
    A:ParameterizedGlobusJob                        
 Decorative 
    A:Ellipse                                      
    A:Image                                        
    A:Line                                         
    A:Polygon                                   
    A:Rectangle                                    
 Documentation 
    A:ModelID                                      
    A:Annotation                                   
    A:Documentation                      
 Domain Specific 
   Niche Modeling 
     A:GarpPresampleLayers                         
     A:GarpAlgorithm                               
     A:GarpPrediction                              
   Orb 
     A:OrbPacketObjectSource                       
     A:OrbImageSource                        
     A:OrbWaveformSink                             
     A:OrbWaveformSource                           
   GenBank 
     A:BlastOne                                    
     A:BlastTwo                                    
     A:Clasfavor                                   
     A:ClustalW                                    
     A:ClustalW_Local                              
     A:CreateExpressionFQuery                   
     A:CreateRequestFResult                     
     A:ClustalW_Remote                             
     A:Genbank                                     
     A:LocalBlastOne                               
     A:Transfac                                    
   Promoter Identification (PIW) 
     A:EnumHomolog                             
     A:EnumItem                                  
     A:EnumItemTriggered                         
     A:ExtractItem                               
     A:FastaFormat                               
     A:GISequence                                
     A:GISequencePromRegion 
 Variables                       
   A:Recorder                                        
   A:SetVariable                                     
   A:LoggingActor                                    
 Parameters 
   A:Parameter                                     
   A:StringParameter                               
   A:FileParameter                                 
   A:ColorAttribute                                
   A:IntRangeParameter                             
   A:PortParameter                                 
   A:RequireVersion                                
   A:ScopeExtendingAttribute                       
Directors 
  D:SDFDirector                                     
  D:DEDirector                                      
  D:PNDirector                                      
  D:CTDirector 

 


