
Performance Models for Virtual Laboratory

Modules

Sander Ketelaar
shketela@science.uva.nl

9921915
University of Amsterdam

May 20, 2005

2

Abstract

Large-scale distributed computing is becoming more and more popular after

the Internet revolution has made it possible to access computers all over the

world. Because network bandwidth and speed have rapidly increased in the last

decade, applications that require much computing power or storage can gain a

lot of performance by running distributed instead of on a single machine. By

connecting such resources, a distributed heterogeneous environment is created.

This environment is often referred to as “The Grid” [1, 7].

With the emergence of Grids better understanding on how applications per-

form in a distributed environment is needed. Especially this is the case, when

the software tools developed for Grids mature and are being used in for ex-

ample eScience projects [36], where people tend to have less knowledge of the

underlying infrastructure. This thesis describes techniques and proposes an ar-

chitecture for semi-automatically computing dynamic performance models for

modules, the components to build applications in the Virtual Laboratory Am-

sterdam [8]. Our approach succeeds at modelling the most important factors

(execution time and memory usage) that affect performance for the modules

and enables to explore the interactions between a target architecture and ap-

plication characteristics. The performance models built are parameterised by

problem size.

For a Cooley-Tukey FFT, an example of the application class of divide and

conquer algorithms, the performance modelling architecture builds an execu-

tion time model that predicts problem sizes with a mean error of 4,09% based

on only three small problem sizes as input. The memory usage model based on

5 samples makes accurate prediction for lare problem sizes with a mean error

of 1.38%. Both models are processor architecture independent.

Keywords

Grid computing, scheduling, resource management, performance modelling, per-

formance prediction

Contents

1 Introduction 9

1.1 Virtual Laboratory for e-Science . 9

1.1.1 Case Study . 10

1.2 Problem Statement . 11

1.3 Related Research . 12

1.3.1 GrADS . 12

1.3.2 Prophesy . 13

1.3.3 DynInst . 14

1.3.4 PACE . 14

1.3.5 Autopilot . 14

1.4 Outline . 15

2 Scheduling Grid Applications 17

2.1 Grid scheduling problem . 17

2.2 Scheduling in gVLAM . 19

2.2.1 gVLAM Modules . 19

2.2.2 Program model . 20

2.2.3 Scheduling policy . 21

2.2.4 gVLAM Runtime System . 22

2.3 Rescheduling . 23

3 Performance Modelling 25

3.1 Introduction . 25

3.2 Performance Prediction Techniques 26

3.2.1 Profiling . 26

3.2.2 Simulation based method 28

3.2.3 Handmade analytical models 28

3.3 Performance model requirements 28

3.3.1 Execution Time . 29

3.3.2 Memory Usage . 30

4 Architecture Design 31

4.1 Architecture . 31

4.1.1 Instrumentation component 31

4.1.2 Analyser component . 33

4.1.3 Storage component . 34

4.1.4 Post processing component 34

4.2 Case Study . 34

4.2.1 Fast Fourier Transform . 35

3

4 CONTENTS

5 Experiments 37

5.1 Experimental Methodology . 37

5.1.1 Testbed . 38

5.2 Execution Time . 38

5.2.1 Model Construction . 38

5.2.2 Model Validation . 38

5.3 Memory Usage . 41

5.3.1 Model Construction . 41

5.3.2 Model Validation . 45

5.4 Different architectures . 47

5.4.1 Execution time . 47

5.4.2 Memory Usage . 47

6 Conclusion 49

6.1 Discussion . 50

.1 Linear Least Squares Curve Fitting 54

.2 JWrapper . 55

List of Figures

1.1 gVLAM user interface . 11

2.1 Abstract representation for a module 20

2.2 Two topologies . 21

2.3 gVLAM Runtime System . 22

4.1 Architectural overview . 32

4.2 FFT computation . 36

5.1 “standalone FFT” . 39

5.2 Curve fits and prediction errors for “standalone FFT” 40

5.3 Curve fits and prediction errors for “vlmain” 42

5.4 Difference between “standaloneFFT” and “module FFT” b. also

including “vlmain” . 43

5.5 Memory traces for “standalone” and“module” 44

5.6 Curve fits and prediction errors for “module” 46

5.7 Maximum and minimum memory usage for “standalone” and “mod-

ule” . 47

5.8 Difference in instruction counts for “vlmain” between two archi-

tectures . 48

5.9 Model constructed on a Pentium 3 used for predicting “vlmain” on

AMD . 48

5.10 Model constructed on a Pentium 3 used for predicting ”vlmain” on

AMD . 48

1 JWrapper . 55

5

List of Tables

5.1 Function coefficients for “vlmain” 41

5.2 Differences between three instrumentations 41

5.3 Function coefficients for “standalone” 45

5.4 Function coefficients for “module” 45

5.5 Coefficients for fitting “vlmain” on AMD 47

7

INTRODUCTION, n. A social ceremony invented by the devil for the

gratification of his servants and the plaguing of his enemies.

Ambrose Bierce (1842 - 1914) US journalist, short-story writer

1
Introduction

The Grid [1, 6] will make it possible to share resources such as computing power,

data, networks, expensive instruments between people so that they will be able

to cooperate and collaborate. These resources are distributed according to geo-

graphical location and might be administrated by different organisations. Much

research is aimed at the creation, maintenance and usage of Grids. The Globus

Toolkit [5, 2] is an example of a middleware infrastructure that offers various

tools to implement a Grid test-bed.

This chapter provides a general introduction into the research domain of

this thesis, which is performance modelling in Grid-based environments. It

discusses the related research performed within this domain. Furthermore, a

motivation and problem description of the research performed is given.

1.1 Virtual Laboratory for e-Science

More and more research areas use computer technology to enhance and aid with

their experiments. The emergence of Grid infrastructures allow for data sharing

and global distributed collaboration between scientists. “e-Science” is the term

used for this new way of doing research [36]. With the advent of Grid technology

the e-Science vision can become reality. To realize the e-Science vision in the

Netherlands a large project started called Virtual Laboratory for e-Science [37].

The mission of the VL-E project is:

To boost e-Science by the creation of an e-Science environment and

doing research on methodologies.

Within this VL-e project several Problem Solving Environments (PSE) are de-

fined for applied scientific research areas. These PSE’s use one shared Grid-

based environment, namely the Virtual Laboratory Amsterdam (gVLAM) [8,

18]. The Virtual Laboratory Amsterdam provides scientists with a workflow

management system in which they collaborate and perform their scientific re-

search. In gVLAM, experiments are represented according to a generic experi-

9

10 Chapter 1. Introduction

ment model. This model consists of three components, a process flow template

(PFT), a study and a topology.

A PFT provides a definition for a serie of formalised steps that together com-

pose a scientific experiment. The PFT reveals the dependencies between the

processes. The advantage of defining PFT’s is that complex experiments become

accessible to users with less domain knowledge. Because the PFT is defined by

the scientist with the knowledge of a certain applied scientific field, his knowl-

edge is captured in a formal and easy to use way.

The specific solution for the scientific problem defined by a PFT is described

by a study. The study is an instantiation of the process flow template. In the

study, the different parameters for the processes in the experiment can be filled

in. The data gathered in an experiment need to be processed, analysed or visu-

alised in some kind of way with the aid of computer technology. This is repre-

sented as a data-flow graph called topology, where software components are con-

nected together. We define the topology as the gVLAM-application. In gVLAM,

these different components are called modules [14]. A module could be any kind

of software, ranging from a simple sequential program to parallel programs.

Also third party software can be wrapped to be used as a gVLAM module. In

section 2.2.1 a further explanation of a module will be given, as it forms the core

element of this thesis.

In figure 1.1 the user interface of the gVLAM environment is displayed. Four

windows can be distinguished. The upper-right window displays the study of

the experiment. The yellow rectangles in the study represent the abstraction

for a topology. It is possible to define multiple topologies within a PFT, as it is

possible in an experiment to process certain data differently than other data.

The details of one of the topologies (DCAnalysis) of the study is displayed in

the right-bottom window. Four modules form the DCAnalysis topology. The

upper-left window shows the repository of available modules that can be used

for constructing a topology. Each module in the topology has parameters that

can be adjusted by selecting the module in the right-bottom window (topology)

and by adjusting the parameters in the left-bottom window. Examples of real

life experiments that use the gVLAM environment are in the field of high energy

physics, bio-informatics and medical diagnosis and imaging.

1.1.1 Case Study

To give a concrete example for the usage of the Virtual Laboratory, a scientist

is interested in the analysis of the frequency spectrum of a signal coming from

an instrument as well as applying certain filters to that signal. He models his

experiment by defining it as a PFT. Next, he creates a study in which he sets

the right experimental parameters, for example the location of his input data.

Thereafter, he sets up a topology. He selects the modules needed for his exper-

iment from the module repository into the topology. Finally, he has to create

an environment to run his experiment. This includes choosing the appropriate

resource requirements for his application, determining whether he has access

to the resources, whether they are available, if the module’s binaries are for the

right machines and the whereabouts of the data to be processed. Unfortunately

this involves much knowledge for the scientist about the underlying infrastruc-

ture. The gVLAM environment aims at transparency for the scientist where his

experiment is run, as he is only concerned with the results of the experiment.

The Resource Manager in the Virtual Laboratory aims at automating this pro-

cess. It schedules the different modules and keeps track of these during the

runtime.

1.2. Problem Statement 11

Figure 1.1: gVLAM user interface

The experiment described here will serve as a case study throughout the the-

sis to verify the proposed architecture, motivate the decisions taken and show

the relevance of this research.

1.2 Problem Statement

Resource management and scheduling in Grid environments still is a challeng-

ing task [3, 4, 33, 25, 13]. In order to find an efficient schedule for the mapping

of the application on the available resources, information about the behaviour

of the application should be available prior to actual execution of the applica-

tion. This information can be described in the form of a program model and/or

performance model. Therefore most research [20, 21, 19, 39, 28] aims at the de-

velopment of program models and performance models, which can be done man-

ually, but will be quite time consuming and difficult if one is dealing with large

complex applications. Automatic model development is therefore preferred to

speed up this task.

The main subject of this thesis is to develop an architecture for semi-automatically

constructing performance models for gVLAM modules running in the Virtual

Laboratory. Currently, the gVLAM scheduler only uses little static information

specified by the user about the module for it’s scheduling decisions. This infor-

mation doesn’t scale at all for different datasets that can be an input for the

module. A method should be developed to construct a performance model that

is parameterised by both static and dynamic information of the application and

the system.

Another challenge is to use application metrics for constructing the models

as independent as possible from architecture specific characteristics. The ad-

vantage of this approach is reuse of the performance model for the different

architectures available in the heterogeneous environment. For instance, the

12 Chapter 1. Introduction

number of floating point operations is independent of the platform used for the

processing, but the wall-clock time will heavily depend on the platform used.

The number of instructions executed is semi-architecture dependent in the fact

that it depends on the compiler and compiler options used. Similarly, memory

access patterns will have a strong correlation with the application, while cache

hit/miss ratios will depend significantly on the memory system.

The application chosen to test the method developed in this thesis comes

from the case study described in section 1.1.1 a radix-2 Cooley-Tukey Fast Fourier

Transform [32], which is a representative of the divide and conquer applications

class. The Fast Fourier Transform is chosen as example application because it

is widely used in many areas of applied scientific research. Because there exist

much knowledge about FFT’s, validating the performance model can be done

easily.

1.3 Related Research

Quite a lot of research is done in the field of resource management and schedul-

ing of applications within a Grid environment. Also performance modelling

of applications to aid scheduling is used in several projects. This section will

shortly discuss some of the projects that are trying to achieve things closely

related to our work.

1.3.1 GrADS

The Grid Application Development Software (GrADS) project is one of the big

Grid projects currently running in the United States. It is a collaboration be-

tween several universities and laboratories [26]. The GrADS Project’s aim is

to develop a comprehensive programming environment that explicitly incorpo-

rates application characteristics and requirements in application development

decisions [25, 24, 23]. Activities such as compilation, scheduling, staging of

binaries and data application launch and monitoring of application progress

during execution are requirements necessary for successful fullfillment of the

project’s goal.

The core of the GrADS project is the program execution framework. A

GrADS application is represented as Configurable Object Program (COP). A

COP contains the actual program source code, a mapper, that determines how to

map the application’s tasks to a set of resources and a performance model, that

estimates the application’s performance on a set of resources. The construction

of a COP is done in the Program Preparation System (PPS). The mapper and

the performance model are closely tied together as the performance heavily de-

pends on the set of resources on which the COP is run. A performance model

is based on measurements of execution time for a trial run on a set of repre-

sentative resources or left to the application developer to deliver. However, a

lot of detail refrains to be given about the construction and structure of these

performance models.

Most focus lies in the execution of a COP by the Program Execution System

(PES). A modular scheduling approach is used that combines generic schedul-

ing strategies with application specific components to determine the best candi-

date set of resources for a COP. Experiments have shown that this approach for

building Grid applications and scheduling is the most promising one [25]. The

class of applications for which the GrADS scheduler is optimised, are tightly-

coupled parallel applications. Here lies a difference with gVLAM, as we deal

1.3. Related Research 13

with dataflow applications. Only recently the GrADS scheduler was extended

to be able to schedule this kind of applications [23]. Before executing the COP

on the Grid, a Binder configures and builds the application executable for the

selected resource set. The actual compilation for the application is therefore

done on the target resource. This enables for architecture specific optimisation.

The COP’s source code is also instrumented by the Binder to support perfor-

mance monitoring during runtime. When the application binary is ready, it is

sent to the Grid Runtime System.

Every GrADS application has a specific performance contract. The perfor-

mance contract is monitored during runtime using the Autopilot toolkit [33]

(this will be considered future work for our performance modelling architec-

ture. See also section 1.3.5). When the performance contract is violated, the

re-scheduler is activated and it tries to find a new resource set for which the ap-

plication’s performance contract is within bounds. Then parts of the application

are migrated to another resource.

The GrADS software evaluated on a macro grid, which consists of a set real

resources distributed over the different universities collaborating in the project

and in a controlled simulation grid called the micro-grid. In the micro-grid spe-

cial conditions can be simulated, while others remain constant in order to check

limitations of the software.

1.3.2 Prophesy

Prophesy [28] is a novel system that aims to automatically generate analyti-

cal performance models. Three ways are used for constructing the performance

models. Two well established methods are incorporated such as curve fitting

and the parameterisation method. But also a novel method called kernel cou-

pling [29, 27], developed in the Prophesy project. Kernel coupling is based on

correlation between kernels, where a kernel is defined as a small core function

within a program. Given the performance models of different kernels the cou-

pling parameter
���

represents the way two kernels � and � influence each other

in relation to running each kernel in isolation. A value of
��� � �

represents de-

structive interaction resulting in performance loss, whereas
��� � �

represents

constructive coupling resulting in performance gain. In [29] it is shown that
���

can be extended to a chain of kernels to construct total application performance

models by means of a composition algebra. The way to calculate
��� � 	
�	
�	�

is by first executing kernel � and � isolated in a loop to extract the runtime �
and � respectively and than by executing both kernels, where � immediately

precedes � , together in a loop to extract �� .
The Prophesy framework consists of a data collection component and a data

analysis component. The data collection component PAIDE (Prophesy Auto-

matic Instrumentation and Data Entry) uses source code instrumentation for

performance extraction. This information is then used for the data analysis to

generate a performance model through one of the three methods. All the mod-

els from the data analysis component and the performance information from

PAIDE are stored in databases. The databases store template information, run-

time information, application information, performance information.

The Prophesy framework is the closest to our approach. The work done on

coupling by Prophesy is very promising and might be useful in gVLAM environ-

ment when extending the methods of performance model building, but currently

we focus on curve fitting for the automatic model development. Our architec-

ture is set up in such a way for possibilities to incorporate kernel coupling in

the future.

14 Chapter 1. Introduction

1.3.3 DynInst

DynInst [39] aims at changing the program while it is executing, and not have

to re-compile, re-link, or even re-execute the program to change the binary. Run-

time instrumentation of the object code has advantages over traditional source-

based performance profiling systems. Most significant of which is the elimi-

nation of the interference of calls to the instrumentation with the compiler’s

optimisation passes. In section 3.2.1 instrumentation at different levels is fur-

ther explained. DynInst provides an API to create a program that can attach

to a running program, create a bit of code and insert it into the running appli-

cation. The next execution of the program executes the modified code instead

of the original code. There are two processes, the application and the mutator.

The mutator contains calls into the DynInst API and to routines to manipulate

the application process.

There are two abstractions defined for a program in execution. Points, the

place where the instrumentation can be inserted, and snippets, the bit of code

that is inserted to be executed at a point. In order to generate code, the snippet

is translated to machine language code in the mutator process and then copied

to the application’s address space. The insertion is done via trampolines. A base

trampoline replaces instructions at a specific instrumentation point. The base

trampoline branches to a mini-trampoline, which contains the snippet. At the

end of the base trampoline, the instructions that were replaced by the trampo-

line are executed before branching back to the main program.

Dynaprof [38] is a performance analysis tool based on DynInst and designed

to insert performance measurement instrumentation directly into a running

applications’ address space at run time. DynInst is also used in Paradyn [40],

which is a performance measurement tool like Dynaprof for parallel and dis-

tributed applications. The DynInst API is promising for the object instrumen-

tation part of our architecture described in section 4.1.

1.3.4 PACE

At the University of Warwick a Performance Analysis and Characterisation En-

vironment (PACE) [41] is used for performance evaluation and analysis for par-

allel applications in heterogeneous distributed environments. The methodology

of PACE is describing the application as a layered framework. This way, the

hardware layer is separated from the application layer. An application model is

constructed through static source code analysis which shows control flow, oper-

ation counts and communication structure. The central part is the evaluation

engine that combines the application model and the hardware characteristics

to predict the application runtime. The system aims to simultaneously provide

information regarding algorithmic choices, software implementation, hardware

configuration, mapping, execution time, bottlenecks and scaling.

1.3.5 Autopilot

Autopilot [33] is an architecture for dynamic performance tuning based on closed

loop adaptive control. This will help the application’s changing requirements of

resources and the resource availability. The application is instrumented by the

user specifying which parameters he wants to investigate or tune. The appli-

cation is connected with Autopilot sensors that extract qualitative and quanti-

tative performance data. Autopilot actuators are also connected with the appli-

cation and allow for modification of values of the applications variables. Both

sensors and actuators are registered with the Autopilot manager, that keeps

1.4. Outline 15

track of all sensors and actuators in the system. The sensors and actuators

have property lists to specify the metrics of the application that can be mea-

sured and changed dynamically. A client program can get information about

the running application through the sensors and dynamically steer via the ac-

tuators. The client doesn’t need to know where the application runs, as this

information is stored at the Autopilot Manager. The decisions to dynamically

steer the running application through the actuator(s) is based on a fuzzy logic

rule base at the client. Autodriver is a visualisation tool that graphically shows

the value of sensors connected to the client.

We consider performance monitoring and active steering in the gVLAM en-

vironment as future work.

1.4 Outline

This thesis is structured as follows. Chapter 2 will discuss problems and issues

around scheduling in Grid environments. In chapter 3 we will focus on methods

that can be useful for the construction of performance models. The description

of the architecture can be found in chapter 4 and the results and validation

of the performance model for the case study application in chapter 5. Finally,

chapter 6 will conclude and discuss some future work.

2
Scheduling Grid

Applications

In this chapter we will discuss the central issues facing scheduling applications

in Grid environments. We will show that in Grids application-level scheduling

is favoured over system-level scheduling. Scheduling dataflow applications is of

most importance, since these are the type of applications in the gVLAM envi-

ronment. Furthermore, the Runtime System of gVLAM is explained with the

scheduler in particular.

2.1 Grid scheduling problem

Scheduling applications on heterogeneous networks has proved to be a challeng-

ing task. It is much more complicated than scheduling in a multi-threaded en-

vironment or even in a homogeneous distributed environment. Having a global

generic scheduler for Grid applications appeared not possible due to a number of

important reasons. First, because each resource will have it’s own performance

characteristics that might not always be known. Second, because the resource

will have it’s own local scheduler and/or access rights. Third, because the total

set of applications running in the Grid environment is not known, resource con-

currency between applications cannot be taken into account. Finally, because of

the highly dynamic nature of the Grid environment, where network congestion

and network failure are likely to occur. Therefore, another approach towards

Grid scheduling has to be taken. All the problems encountered are referred to

as the Grid scheduling problem [3, 13].

The choices made in scheduling are based on optimising some kind of perfor-

mance metric represented as a cost function. On a single machine this metric

is often system-specific (maximum throughput of applications or data, network

latency and/or bandwidth, maximum memory usage, etc.) and will probably

promote the performance of the system beyond the performance of individual

applications. In a Grid environment this is practically impossible, since there

17

18 Chapter 2. Scheduling Grid Applications

is less or sometimes no knowledge about the state of the environment, because

of the Grid scheduling problem. Predicting future states of the environment is

even harder. Therefore, it is recommended that the performance metric that

is to be optimised is seen from an application centric point of view. It is called

application-level scheduling [22], where everything about the system is evalu-

ated in terms of the impact on the application. Often users consider application

execution time as the cost function to be used in application-level scheduling.

Within the AppLeS project [22] preliminary research on the application schedul-

ing paradigm was done. They proved that this technique is successful and now it

is a widely adopted paradigm in Grid scheduling and also used in this research.

For a few important application classes, scheduling agents (called AppLeS) were

implemented.

A problem with application-level scheduling is thrashing [22], because every

application can select the same set resources as the most optimal. If they all

seek to use these resources, they may find that the resources are not optimally

available anymore, and all find another optimal set, etc. A solution to address

this problem lies in the use of market economy or social models, such as bidding

or auction structures or via resource reservations.

The basis for good scheduling is prediction. By predicting how an application

behaves when executed on the system, more accurate and performance efficient

schedules can be computed. In Grid-based environments very accurate pre-

dictions cannot be made, because the parameters needed are most of the time

not available or too computationally intensive. Therefore evaluation of the cost

function needed for the scheduling choices made are as good as the accuracy

predictions that can be made.

As stated above, scheduling in Grids involves the need to have a Grid sched-

uler for every different application class. Every Grid scheduler has it’s own

scheduling model. A scheduling model consists of a policy, which is a set of rules

or an algorithm for producing schedules, a program model, which abstracts the

set of programs to be scheduled and a performance model, which abstracts the

behaviour of the program on the underlying system for the purpose of evalu-

ating the performance potential of candidate schedules. A scheduling model

should have the following functionality [3]:

� produce performance predictions that are within a certain time-frame

� use dynamic information to represent variations in performance that can

serve as feedback to the scheduler

� adapt to a wide spectrum of computational environments

In general, the necessary steps that should be performed to make a Grid ap-

plication run according to the chosen schedule and based on the program and

performance model are:

1. select a set of available resources

2. reduce this set for constraints like resource user authorisation and re-

source needs of the application

3. find a suitable mapping for the application components to the resources

based on some kind of cost function

4. distribute the data to the resources

5. monitor the executing application

2.2. Scheduling in gVLAM 19

The resource discovery fase finds the set of resources where the user has access

to and which comply to certain requirements (both static and dynamic) suitable

for the application to run. After that information about the current state of

availability of the resources is gathered and the scheduler tries to find the best

set of resources based on the program model and the performance model of the

application. This matching can be done in different ways [10, 11, 4]. After that

the job is executed, monitored and if necessary re-scheduled.

2.2 Scheduling in gVLAM

Applications in the gVLAM environment are dataflow applications [8]. The

main characteristics of a dataflow application are that they are composed of

different components that can produce and consume data. A common way to

represent such an application is via a directed acyclic graph (DAG). Dataflow-

style graphs are becoming a common way to describe and model Grid programs.

For example, Dome [20] and SPP(X) [19] provide a language abstraction as a

program model, which is compiled into a low-level program dependency graph.

MARS [21] assumes that programs are phased and builds a program depen-

dency graph as part of the scheduling process. From now on we will refer to the

total DAG based application in gVLAM as a topology.

The advantage of component-based application modelling is that it encour-

ages for code reuse. It provides the ability to build dynamic applications in a

natural way and it stimulates collaboration. The shift to dataflow applications

has been a large impact for the performance community. Performance impli-

cations will be very difficult to evaluate, since applications become distributed

and very decoupled.

The Resource Manager is the core component in the gVLAM Runtime Sys-

tem (RTS) [8]. It handles issues related to resource discovery, scheduling and

spawning the topology to the Grid. In the next sections we discuss the schedul-

ing model for the gVLAM scheduler, which consists as described in section 2 of a

scheduling policy, a program model and a performance model (this is described

in chapter 4). But first, we describe what gVLAM modules, the components that

build the topology, are.

2.2.1 gVLAM Modules

Modules in the Virtual Laboratory may be any kind of software, written in ei-

ther C++, Java or Python. They range from simple file processing programs, or

mathematical functions to parallel MPI programs. It is also possible that they

are a wrapping around third party software. A module is built by compiling and

linking it against a special developed dynamic library for gVLAM called
������

[14, 15]. For developing Java and Python modules a wrapper is available to

make use of the
������

library (see appendix B for a figure of the Java wrapper

for
������

). The
������

library is responsible for handling the communication

between modules, data-transfer and authentication to the Grid.

Figure 2.1 shows an abstract representation for a module. As can be seen,

the part that is linked by the
������

library contains a connection handler and

a GASS client. The connection handler is a CORBA 2 ORB compliant imple-

mentation called omniORB [16] and maintains the connection to it’s neighbour

module(s) in the topology and a reference so it can be located by the connec-

tion manager of the Resource Manager (shown in figure 2.3). All modules in a

topology run in the same CORBA environment. The GASS and GridFTP compo-

20 Chapter 2. Scheduling Grid Applications

Figure 2.1: Abstract representation for a module

nents from the Globus Toolkit [5] that are incorporated in the
������

library are

responsible for the data-transfer between modules. The data-transfer between

two modules is done via ports. A module can have one or more input ports to

receive all incoming data and it can sent data to other modules via one or more

of it’s output ports. The output port of a module can only connect to an input

port of another module provided that both ports share the same data type.

The module core is the actual application part where a module developer

implements the module’s functionality. The module’s core function is called��� ��� �� and a common implementation contains calls to read the input ports,

process the received data and write it to the output ports.

Modules are continuously active. Once they are initiated, they either wait

for the arrival of data on their input ports or enter a continuous processing loop.

They finish when the connection to other modules is closed.

Together with a module, meta-information stored in a module description

file (MDF) has to be specified. The MDF contains information such as developer

information, input and output port information and extra parameters that can

be set initially to the module. The module’s resource requirements (cpu, mem-

ory and storage) can optionally be specified and serve as a very simple static

performance model for the module, which is extended in this thesis, that is used

by the scheduler. Also system-specific preferences can be specified in the MDF.

2.2.2 Program model

The topology is an abstract representation for a gVLAM application. The user

constructs a topology in the bottom-right window of figure 1.1. The scheduler

uses an analytical program model to determine how a topology performs on a

candidate set of resources. We consider two possible types of topologies (see

figure 2.2.2). The first type is a topology where the modules operate in a con-

current fashion and the latter is a topology where modules exchange data in a

sequential manner. A hybrid form of the types is also possible. For each topology

type we define a different cost function to model the whole application.

We define a set of modules that build the whole application as
� � �	
 � 	� � � 	� �

and the set of available resources as � � ��
 � �� � � �� �
. Then

	���� �	� � �� �
is the computation time of module

	� �� � � �
when scheduled on resource�� �� � � �

. The communication link between two modules is described as	���� �	� � 	� � �� � � � �
, which represents the total amount of data sent from the

output port of the module to the input port of it’s neighbour module. If this is

combined with dynamic resource information from the Network Weather Sys-

tem [34] such as available bandwidth and network latency, a dynamic prediction

2.2. Scheduling in gVLAM 21

ModuleA

ModuleC

ModuleB

(a)

ModuleA ModuleCModuleB

(b)

Figure 2.2: Two topologies

will be possible. The total amount of data sent to the output ports can be mod-

elled as a function based on the input data size.

The function
	���� � �	� � �� �

defines the total communication of module
	�

,

summing over the different
	���� �	� � 	� � �� � � � �

for all links of
	�

to other mod-

ules.

	���� � �	� � �� � � �
�� �� � �� � 	���� �	� � �� � 	� � � � �

(2.1)

Here � � �� � is the set with modules
	�

scheduled on
��

that are connected to

the output port of
	�

.

To describe how well a module runs on a certain resource, we define:

���	 �	� � �� � �

 � 	���� �	� � �� � �
 � � 	���� � �	� � �� �
(2.2)

Here �

 � �
and �
 � � �

are scaling factors that can be optionally

set, for example to emphasise computation over communication. The lower the

rank, the better the mapping is. The resulting program model for a gVLAM

application written in terms of both types of topologies
� � for the concurrent

type and
� �

for the sequential type is:

� � � � �� �� �� ��	� ����	 �	� � �� �� (2.3)

� � � ��� �� �� ��	� ����	 �	� � �� �� (2.4)

The tuple
�� � 	 �� � describes the mapping for module

	�
run on resource

��
for a certain candidate schedule � , where � �� and

�
is the total set of can-

didate schedules calculated by the scheduler according to the scheduling policy

described in section 2.2.3.

Currently, the module’s parameters are static, but the framework proposed

in this thesis improves this by calculating a more accurate model based on dy-

namic parameters such as problem size. The way the cost-function for
	��� � �	� � �� �

looks like is further explained in section 3.3.1.

2.2.3 Scheduling policy

The scheduler present in gVLAM calculates an execution schedule for a given

topology. Currently, the scheduler is able to choose between two greedy algo-

rithms, one computation-network prioritised and one simulated annealing algo-

rithm [17].

22 Chapter 2. Scheduling Grid Applications

2.3. Rescheduling 23

in the gVLAM environment and everybody using gVLAM can have it’s own lo-

cal repository. The internal representation of the topology is a XML file that

describes the structure of the gVLAM application, thus the different modules

that compose the application and their mutual connection relationships. The

dotted arrows show the relation between the abstract description of a module

in the topology and the actual module in the repository. The scheduler uses

the performance models of the different modules and the retrieved dynamic re-

source information provided by the Monitoring and Discovery System (MDS-2)

[35] and network information through the Network Weather System [34]. Both

MDS-2 and NWS are services running on every resource in the Grid environ-

ment, which can be queried in order to retrieve dynamic resource information.

NWS gives a forecast for a small time-span about the network conditions.

After the schedule for the topology has been calculated, the modules can be

sent to the different resources, determined by the scheduler, in the Grid envi-

ronment. The authentication and resource management service [9] from the

Globus Toolkit activates and keeps track of the modules. The connection man-

ager [16] sets up and manages the connections between the modules in the way

described by the topology. Currently, there is no performance monitoring while

running the modules. This is considered future work.

2.3 Rescheduling

When an application is running in a Grid production environment it is pos-

sible that the performance of a resource degrades. Therefore, it is necessary

that monitoring tools are active to check whether the performance is decreas-

ing. In the GrADS project [24, 23] performance contracts are used to see if a

component needs rescheduling. A performance contract defines the boundaries

in which a performance metric is said to be valid. If the performance contract

is violated, a new schedule is computed and the component is migrated, if nec-

essary. In Mars [21], several checkpoints are inserted in the source code of the

application. When the checkpoint is reached, the schedule is re-computed and

the application is optionally migrated. In gVLAM the re-scheduler is currently

being developed but this is beyond the scope of this thesis.

All models are wrong, but some are useful

George E. P. Box

3
Performance Modelling

Accurate performance analysis and prediction is key to achieving optimum use

of modern information systems. In this chapter we will describe general tech-

niques and approaches that can be used for modelling application behaviour.

The aim is to find parameters to describe this behaviour as much as possible in

an architecture independent way. These parameters represent the performance

model for the application for various performance metrics, where execution time

and memory usage are considered the most important. However, predicting for

example the execution time under varying circumstances is one of the most dif-

ficult things in performance analysis research.

3.1 Introduction

Performance is an important issue with any application. Efficient execution of

applications requires insight into how system features impact the performance

of applications. This insight results from experimental analysis and the gener-

ation of performance models. The term performance modelling has been used

without a proper definition. We will now give a definition how performance mod-

elling is seen in the light of this research. The term can be split into two words,

which mean according to the dictionary (Compact Oxford English dictionary)

giving only the :

performance per-form-ance (plural per-form-ances) , noun

manner of functioning: the manner in which something or somebody func-

tions, operates, or behaves; working effectiveness: the effectiveness of the way

somebody does his or her job

model noun

a simplified mathematical description of a system or process, used to assist

calculations and predictions;

25

26 Chapter 3. Performance Modelling

Based on the above definitions from the dictionary, this is how we define

performance modelling:

Definition 1 The way to devise a simplified mathematical description for the

behaviour of an application rather architecture independent to assist calcula-

tions and predictions.

In this chapter we will mainly focus on the possible ways to develop performance

models for modules. The chosen method(s) is tested for a class of applications.

3.2 Performance Prediction Techniques

Performance estimation is a difficult task, because it involves reasoning about

complex architectures using incomplete information about the program and its

data-structures. In general, there are three well established techniques that can

be used for performance prediction: profiling, through simulation and by hand

constructed analytical models. It depends on the kind of performance thats

needs to be predicted, which one should be applied. In distributed computing,

profiling is the most used technique.

3.2.1 Profiling

Profiling is one of the most used techniques for performance prediction. In gen-

eral profiling consists of three steps that need to be done: code instrumentation,

performance data extraction and analysis. Profiling is not only used for perfor-

mance prediction, but also for performance analysis. It reveals the parts where

the program spends most time. With this information a program developer can

see which part of his application contains bottlenecks and is worth optimising

in order to achieve a performance increase. Most available tools only aim at per-

formance visualisation and were not useful for our approach, because we aim

at developing an architecture independent model for a module. When some-

one tries to determine a bottleneck in an application, the resource on which the

application is run will not be of much relevance.

Code instrumentation The application code is instrumented, which can be

at source code level or at object level. At source code level, instrumentation is

done mostly manually by inserting calls in the source code to instrumentation

library routines. At the object level a classification can be made between static

and dynamic binary instrumentation. The advantage of binary instrumentation

is the removal of the instrumentation’s dependency on the compilation process.

The type and format of the instrumentation can be changed without recompiling

the application. PACE [41] is an example for static binary instrumentation,

whereas DynInst [39] is an example for dynamic binary instrumentation. Both

projects are further explained in section 1.3.4 and 1.3.3 respectively.

Performance data extraction The instrumented application is executed on

resources on which the application is likely to run and the instrumentation li-

brary records the performance data.

Visualisation and analysis The performance data is visualised to deter-

mine bottlenecks. A common way to visualise the performance data is via a

call graph, that shows the hierarchy of calls between the functions, or via flat

profile, which is a table containing the function calls.

3.2. Performance Prediction Techniques 27

�� � ��

A profiling tool available on all unix-like operating systems is ����� [30]. With

����� the instrumentation is done at compiler level. The source code should be

compiled by the GNU C compiler with profiling enabled (option -pg). During the

compilation inline statements are added to the code to increase the counters.

After execution a file containing the performance data is available and can be

analysed with �����. ����� is able to generate two tables, the flat profile and the

call graph. The flat profile shows how much time is spent in the functions and

the call graph shows the function hierarchy. The standard sampling interval is

0.01 seconds. The overhead of ����� is low. However, the major disadvantage

of ����� is that is doesn’t interact well with threads and dynamic libraries.

Therefore, ����� was not suitable for using it to extract a module’s behaviour,

because the modules are multithreaded.

Counter-based profiles

There are two broad classes of profiles. Timing profiles, where the amount of

time spent in routines and statements is shown, for which����� is an example.

Another class is counter-based profiles, that show the number of times a spe-

cific event occurred. Such a counter can be implemented at software level or at

hardware level.

Processors nowadays are equipped with hardware performance counters.

These counters are special registers dedicated to events that occur at micro-

processor level or at the memory subsystem when the application is executed.

Events like instruction execution, branch prediction, cache hits/misses can all

be measured using these hardware counters. The Performance Application Pro-

gramming Interface (PAPI) [31] is a library that can access the performance

counters built in the processor for a lot of different processor architectures. Al-

though the number of available counters and the existence of some events are

architecture specific, it is still a useful tool to use in heterogeneous systems.

Statistical profiling

An alternative for gathering performance data through code instrumentation is

statistical profiling. Statistical profiling works by sampling the program counter

at some interval during execution. From the statistical distribution of the sam-

ples an execution time profile of program can be constructed. The sampling can

be done relatively independent of the program clock. This makes the samples

to appear “random” , as than they can be compiled into statistics to show the

programs execution patterns. This extra overhead will be around 3%-5% of the

execution time [30].

Statistical profiling does not evaluate the absolute coverage of a program

and therefore it can only predict performance with a certain accuracy. The ac-

curacy of a statistical profiler’s measurement is determined by the number of

samples the profiler collects. Given the desired accuracy we can calculate what

the number of samples (and thus the sampling interval) should be for the pro-

filer:

� � � �� 	 ��
�
 �����	
This function states that for a confidence coefficient of a confidence interval� you need at least � samples of a binary process.

�
is the probability of the

binary event and � � � � �
. � is the inverse of the Normal distribution integral

function. A binary event for instance is that a sample contains a routine in

28 Chapter 3. Performance Modelling

question. In other words, to be sure within an error of �, at least � samples

need to be collected.

It is also possible to do statistical profiling based on event counters (ex-

plained in section 3.2.1). A sampling event is then triggered when the counter

reaches a certain threshold. Subsequently, a histogram is constructed.

3.2.2 Simulation based method

Performance prediction on simulation is a very accurate way to get information

about execution times. First, the application instrumented to find out what

events occur and then it is executed to generate a trace file. The trace file is

fed to a simulator that simulates the event on the target architecture. The

disadvantage is that the simulation time increases with the granularity of the

accuracy of the prediction.

A simulation based engine for Linux is Valgrind [44] which simulates mem-

ory accesses and can be used for detecting memory leaks. Unfortunately Val-

grind has a large overhead. Programs profiled with Valgrind run 20-30 times

slower.

3.2.3 Handmade analytical models

Program and algorithm developers generally have a lot of knowledge about the

performance and complexity. Therefore, they can construct accurate analytical

performance models themselves and this is also the traditional way of build-

ing these. Because such a deep understanding is needed of the application and

while most applications are developed by teams of developers this technique is

not widely used in the industry. However, this doesn’t mean that they aren’t

used at all anymore. The performance models constructed by humans are still

the most accurate ones. In our architecture it is possible to use handmade ana-

lytical models as a performance model.

3.3 Performance model requirements

For performance models to become useful, they have to adhere to certain re-

quirements. In general, a performance model should be able to provide a cal-

culable explanation of why a program performs as it does, what factors affect

the performance and a prediction according to a quantifiable objective. It must

be able, given the accuracy of the model, to guide the application to the best

machine and adapt to different execution environments including performance

of future systems. The generated prediction made by the performance model is

only allowed to have an error below a certain threshold.

When we want to develop a dynamic performance model, we need to use dy-

namic resource information as well. Because the dynamic resource information

used is only valid for a certain timeframe, the prediction made by the model

is that as well. The performance model currently available for the gVLAM

scheduler is a static, user provided one. This doesn’t fullfill the stated require-

ments. The performance models that were generated semi-automatically from

the method developed in this thesis do fullfill these requirements.

The four parameters we consider most important to reflect the performance

of a module are:

� Execution time

3.3. Performance model requirements 29

� Memory usage

� Communication

� I/O

In this research we will only develop models for a module based on execution

time and memory usage, as they are the most important ones. If a module is

a parallel application, also the internal communication needs to be modelled.

For now we will only concentrate on modules that are sequential applications

and hence communication can be discarded. The I/O is defined as the amount of

storage needed for the files the module stores on the filesystem and will be also

considered beyond the scope of the thesis.

The exact character of the performance model will be equational based. It

describes the execution of module’s core: the ��� ��� �� function. The input pa-

rameter will be problem size for both execution time and memory usage and the

output is execution time and memory consumption respectively. In the next two

sub sections modelling execution time and memory usage for a module will be

further explained.

3.3.1 Execution Time

For the construction of a semi-architecture independent performance model that

predicts the execution time it not sufficient to calculate the wall-clock times or

CPU time, because these are affected by the hardware on which the module

runs. The most application specific parameters are based on the source code

at basic block level and use other parameters such as control flow and loop

and operation counts. Because these parameters mostly account for user based

instrumentation, we will choose an intermediate solution, namely the number

of instructions issued, which is compiler dependent.

A way to measure the number of instructions issued is by counter-based pro-

filing (see section 3.2.1). The PAPI library [31] will be the most suitable to use,

as it is able to count number of instructions executed. Another possibility that

is more architecture independent, is counting the number of floating point oper-

ations executed. Unfortunately, some architectures do not support a hardware

counter for this event.

We prefer to base the performance model on the problem size of the mod-

ule, then for problem sizes not measured a prediction can be made. An initial

amount of executions will be required to determine an initial model. For small

problem sizes � , the instructions counts are determined empirically. Then a re-

gression technique is used to fit a curve through the measured data points. Once

the coefficients for the function are determined we are able to predict instruc-

tion counts for data sizes we haven’t encountered before. If it is not possible to

fit a curve through the data points, we will use historical information to find

whether the module has run before with data size � .

Recall the formula
	���� �	� � �� �

for calculating execution time from section

2.2.2 for a module
	�

on a specific resource
��

. It combines dynamic resource

information with dynamic application information to predict the runtime, re-

sulting in the following equation:

	���� �	� � �� � � ����� �	� � � � � � � ����� � ���� � 		
��� ��� � �� (3.1)

30 Chapter 3. Performance Modelling

The dynamic resource information can be the amount of available CPU cy-

cles:
� � 		
��� ��� � �� � �� �	
��� ��� � �� � � ��		���� ��� �. MDS-2 [35] is able to sup-

ply the relative amount of available CPU time for a certain time-frame
�� �	
���

and the
� ��		���� for resource

��
. The dynamic application information is de-

termined by our proposed architecture and returns the number of instructions

that will be executed based on the input data size � of the module
	�

. The value� � ������ ��� is a both application and resource dependent measure and hard to de-

termine, because it depends on the instruction mix of the application and the

amount of cycles needed for a certain instruction. An average may be taken, but

we will assume this value is known and we will only concentrate on predicting

instruction counts.

3.3.2 Memory Usage

Modelling memory usage in a semi-architecture way is more difficult than mod-

elling execution time. As with the execution time model we prefer to base the

performance model on the problem size of the module, which for example can

be:

� ��� �� �	� � � � � � �� � � �� � � (3.2)

� �� � � �� depends on the size of one unit of the data structure that is stored

and � is the problem size. This model will only be accurate if the datastructure

based on the problem size is large and accounts for most of the required total

memory. If
� ��� �� is modelled according to 3.2, it can only define a minimum

bound on memory usage. We are also interested in the maximum bound on

memory usage. Therefore a different approach should be taken.

Counterbased profiling using the PAPI hardware counter library [31] as in

section 3.3.1 is not possible, because it can only measure cache hit/misses which

cannot be transformed to maximum amount of memory usage. We decided on

a modelling method based on statistical profiling of the program’s memory dur-

ing executing. Unfortunately this results in a more architecture and operating

system specific implementation, but the advantage is that minimum and max-

imum bounds now can be measured. We chose for an empirical approach and

sample the memory usage of the module every 10 microseconds. Hence the way

to determine
� ��� �� will become:

� ��� �� �	� � � � � � �� � �� � �� �
(3.3)

Where
� �� � �� � is the model constructed by the model builder (see section

4.1.2) and for the case study in chapter 5.
� ��� �� �	� � � �

is used by the sched-

uler to determine if a module maps to the resource for the requested amount of

memory that it needs.

4
Architecture Design

This chapter describes the proposed architecture for generation of performance

models for gVLAM modules. The architecture is evaluated through the case

study from section 1.1.1. The algorithm for computing a Cooley-Tukey radix-2

FFT is explained which is implemented as a module for the case study.

4.1 Architecture

The aim of this research is to develop a framework that can assist the gVLAM

scheduler [17] to improve the accuracy of it’s scheduling models, by providing

dynamic module information in the form of a performance model. The current

performance models used by the scheduler are very basic and should be provided

by the module developer. A balance needs to be found between the accuracy and

the time it takes to create such a model during run-time.

An overview of the performance modelling architecture is presented in fig-

ure 4.1. It consists of four main components visualised as dotted rectangles. The

following components can be distinguished: the instrumentation component, the

analyser component, the storage component and the post processing component.

Because the architecture is set up in a modular way, profiling tools developed in

other related research projects can be used. This is done because performance

modelling is a research area that has already quite some history and a most

tools have already proven their value. Therefore, a large part of this research

was spent on finding the most suitable tool(s) to be used in the gVLAM environ-

ment. Currently, PAPI [31] is the most promising and it also used in a number

of other projects.

4.1.1 Instrumentation component

The first component is the instrumentation component. It is required to mark

important events that could trigger a profiler to count the number of times those

events occur. At several places during the building phase of the module, instru-

31

32 Chapter 4. Architecture Design

Figure4.1:Architecturaloverview

4.1. Architecture 33

mentation can be inserted as described in section 3.2.1. In the architecture of

figure 4.1 instrumentation is either done before or after the compilation phase.

For object instrumentation PACE [41] and DynInst [40, 39, 38] provide suitable

libraries. Either source code or object instrumentation should be added when a

new module is added to the repository. The instrumented version of the module

is added to the module repository.

As we make use the PAPI library [31] to count the amount of instructions

executed for our execution time model, the current implementation of the archi-

tecture uses the source code instrumentation. The advantage of using PAPI is

that it is able to count this event on a wide variety of architectures with hardly

any overhead. Currently, the instrumentation should be done by hand. A call to

start the counters is done when the module enters the main function (��� ��� ��)
and a call to stop the counters is done when the module leaves the main func-

tion. Automation is possible when the calls to the library are integrated in the
������

library. Prior to the call to start the ��� ��� �� the event counters should

be initialised and started. When the module leaves the ��� ��� �� the counters

should be stopped and the results will be collected.

For the calculation of the memory usage model, there is no instrumenta-

tion needed in the source code or object, as it uses statistical profiling on the

memory usage. If the model is enhanced to become more accurate and applica-

tion specific, instrumentation might be necessary and it should be added to this

component of the architecture.

4.1.2 Analyser component

The Analyser component consists of two parts. The first part is the execute/profile

environment. This can be the Runtime System of the Virtual Laboratory (figure

2.3) when the module is used in an experiment or a profile environment that

is optimised for executing trial runs. It is important, that before a new module

is added to the module repository initial runs with small datasets in order to

gather initial meta-information are executed. The profile environment doesn’t

have the overhead of the total gVLAM Runtime System. The profile environ-

ment consists of a few scripts and an executable that has the functionality to

connect and activate modules. The extracted information from either the Run-

time System or profile environment will be in terms of computation, memory

and communication. When conducting our experiments of chapter 5, we only

used the profile environment to gather performance data.

The performance model builder is fed with this information and builds the

performance model, as architecture independent as possible. The performance

model builder tries to fit an analytical function through the information sup-

plied after the execution. In the current implementation a linear regression

technique for only one function class is used. The model builder can be extended

with other function classes and for modules with more difficult behaviour non-

linear regression techniques can be used. For more detailed information about

the least squares linear curve fitting technique we refer to appendix A.

Each time when the module is executed in the Runtime System, the per-

formance information is saved in the storage component. If the performance

model is later built again, after for example a real execution of the module, the

model builder first queries the historic information and the function template

of the performance model from the storage component. It fits a function com-

bining the old and new information and the performance function template’s

parameters are updated. Therefore, each time when the module is executed the

performance function can become more accurate.

34 Chapter 4. Architecture Design

Of course a different analysis method may also be used. The analyser can

use his profiling tool to construct a call graph (see section 3.2.1), which visu-

alises the dependencies between the different functions in the module.

4.1.3 Storage component

The storage component acts as a repository for all the meta-information gath-

ered from all the modules available in the gVLAM environment. We define

different levels of meta-information:

� Expert knowledge about the requirements and architectural restrictions

for a module

� Trial executions to determine run times, memory usage, etc of an individ-

ual module

� Run-time information during real execution of the application for the mod-

ules it uses

� Integrated trial executions and historical run-time information into an an-

alytical performance model with problem size as input parameter

First, expert knowledge delivered by the user that developed the module de-

fined as quantitative meta-information from the Module Description File (MDF)

about the module’s requirements and restrictions. This can be seen as the static

part of the performance model, as it doesn’t scale when the module is used for

different datasets. Another form of expert knowledge is described in section

3.2.3. This is a qualitative form of meta-information. Most of the time this

qualitative expert knowledge will not be available.

The trial executions and the historical information can be combined into

an analytical performance model generated by the Analyser component. The

performance model will be represented as a function template with the problem

size for the module as input parameter. The coefficients calculated by the model

builder are also stored in the function template. The historical information can

also be used for table lookup, if the module was executed for the same problem

size and the analytical performance model is not available or inaccurate.

The current implementation of the database consist of text files for the dif-

ferent levels of meta-information per module.

4.1.4 Post processing component

In this component the the performance model of the module, retrieved from the

database component, together with dynamic information about the candidate

resource, from NWS [34] and MDS-2 [35], are used to compute equations 3.1

and 3.3. These equations are able to make dynamic performance predictions for

the determination of a candidate schedule.

Although the post processing component is not a stand alone component in

the architecture, because it is actually available in the scheduler, it is placed in

figure 4.1 for completeness.

4.2 Case Study

The architecture described in figure 4.1 will be used to determine a performance

model for the case study described in section 1.1.1. Recall the case study, where

4.2. Case Study 35

the scientist wants to analyse the frequency spectrum that comes from an in-

strument. He sets up a topology containing a Fast Fourier Transform module.

The reason why FFT was chosen as example module is because it can be used in

a lot of scientific fields. The most common is signal analysis, where time domain

signals are transformed to frequency domain signals (or vice versa). Other ap-

plication fields are data compression, partial differential equation solving and

the multiplication of large integers.

The way the performance model will be constructed is via the architecture

described in section 4.1. The module is profiled by calls in the source code to the

PAPI library to count the number of instructions executed in the main part of

the module. For a few known small data sizes the average was taken from trial

runs. This was stored in the database in the storage component of the archi-

tecture. With the information available from the trial runs a function based on

the input data size was fit trough the datapoints. The module was run again,

but now for more realistic larger data sizes and compared with the prediction

made by the determined function. In the next chapter the results and the per-

formance model are presented. In the following subsection a brief explanation

will be given on the FFT algorithm.

4.2.1 Fast Fourier Transform

The FFT is the name for an algorithm for a very fast computation of a complex

Discrete Fourier Transform (DFT). A complex DFT transforms a complex �
point time signal into a complex frequency domain signal. The DFT has a syn-

thesis part 4.1, where the frequency domain signal is computed from the time

signal and an analysis part 4.2 that calculates the time domain signal from the

frequency domain signal.

� �	 � �
� �

�
���

� �� ���� 	�� ��
(4.1)

� �� � � �
�

� �

�
���

� �	 �� � 	�� ��
(4.2)

Computing a DFT as in formula 4.1 is slow and has a complexity of � ��
� �

,

but by using a FFT for computing a DFT, the complexity reduces to � �� �� � �� �
.

Another advantage is precision. Due to less calculations, there are less rounding

off errors. There is no such thing as the FFT, because numerous implementa-

tions exist for any kind of FFT. The most popular algorithm for the FFT is the

Cooley-Tukey algorithm [32]. The general idea behind the Cooley-Tukey FFT

is a divide and conquer approach. Cooley and Tukey proved that because of the

symmetry of the signal, it could be shown that the DFT of the signal is equal to

the sum of two � 	
 point signal, or in general � � �
� �
. Calculating the DFT

over a small signal is less complex. The radix for an FFT is defined by either

�

or ��

. If �

is the radix, it is called a decimation in time (DIT) algorithm,

whereas if ��
is the radix, it is decimation in frequency (DIF) algorithm. The al-

gorithm we use is a radix-2 DIT Cooley-Tukey FFT, thus �
 �
 and �� � � 	

and the signal length � has to be some power of 2, or padded with zero’s to

make it a power of 2. Other radix FFT’s use prime factorisation to determine

the �

and ��

. Cooley and Tukey also defined � � � ��� 	�� (called twiddle factor)

the DFT can be written as:

36 Chapter 4. Architecture Design

(a) Single butterfly phase (b) FFT for N=8

Figure 4.2: FFT computation

� �	 � �
� �

�
���

� �� ��
���

(4.3)

If the signal is split into an even and an odd signal of equal length and we define	 � 	
 � �
	� � 	
 �
	� then:

� �	
 �
	� � �
� ���

�
���

� �
� ��
� ��� �� � �� ���	�

� ��
� ���

�
���

� �
� � ���
� ��� ��

(4.4)

This process can be iterated until there are two signals of length 1. A clever

way to separate the even and the odd signals is via bit-reversal. The addition of

the two signals multiplied with a twiddle factor is called the butterfly phase (fig-

ure 4.2.1). It is called butterfly, because the operation in figure 4.2.1a looks like

a butterfly. This phase is critical to the speed of computation, since the twiddle

factors can be pre-computed and stored to be used again for many different sizes

of � .

The FFT itself represents a class of algorithms. The complexity of the algo-

rithm depends on the implementation used. The Cooley-Tukey algorithm makes

our module implementation an example of the divide and conquer class of appli-

cations and therefore the performance model developed in the next section also

represents this class of algorithms.

An implementation of a large number of different FFT’s is the FFTW [42]

library and it is widely used in the scientific community. Because our main con-

cern is not to optimise, but to analyse the FFT we use a simple implementation

of a recursive radix-2 Cooley-Tukey FFT.

5
Experiments

This chapter reviews the results we obtained from testing the small implemen-

tation of our framework for the described case study. Most performance models

we prefer to build are parameterised by the problem size of the module. The

performance model for our case study will therefore also be parameterised by

it’s problem size. As described in section 4.1 the framework is able to extract ex-

ecution data from application runs. The exact execution data will be instruction

counts and memory consumption. To test the scalability of the model, the FFT

module was executed with small data sizes as input. With the collected data of

multiple runs for different data sizes we were able to compute parameterised

curves for both execution time and memory usage.

5.1 Experimental Methodology

For our experiments we used two implementations for the FFT algorithm. The

first is where the FFT algorithm is implemented in a standalone C program,

totally independent of the ������ library functionality. The instrumentation

needed for the execution time model is placed around the function that com-

putes the FFT. We will refer to this implementation as “standalone FFT”. For

the memory usage model the total program is traced and we will refer to the

measurements as “standalone”. This implementation is used in order to vali-

date the behaviour characteristics of the FFT for our case-study module.

The second implementation uses the same code for the FFT algorithm as the

first implementation, but now embedded in a module. The instrumentation for

the execution time model is placed at two positions in the module. Around the

FFT function, verifying any occurrence of overhead in application instruction

counts between a module and it’s standalone version. To these measurements

we will refer as “module FFT”. The other position with calls to the PAPI library

is around the ��� ��� �� function of the module (see section 2.2.1 for the module’s

structure). To these measurements we will refer as “vlmain” and the resulting

execution time model will be the one used in the scheduler. For the memory

37

38 Chapter 5. Experiments

usage model we did sampling over the complete execution of the module and

hence refer to this as “module”.

5.1.1 Testbed

The testbed used during the experiments consists of two machines with differ-

ent architectures and operating systems.

The first machine has a Intel Pentium III processor with a clock-rate of 700

MHz. Both the D-cache and I-cache are 16Kb 4-way associative and the L2-

cache is 256 Kb 8-way associative. The cache line sizes are 32 bytes. The total

amount of RAM is 64 Mb. The operating system is a Debian distribution of

Linux. All testdata for the construction of the performance models were run on

this machine.

The second processor is an AMD mobile AthlonXP 1600+ processor with a

clock-rate of 1393 MHz. There is a 64Kb 2-way associative D-cache and I-cache.

The L2 cache is also 64 Kb, but 4-way associative. The cache line sizes are

64 bytes. The total amount of RAM is 352 Mb. On this architecture run two

operating systems, a Debian distribution of Linux and Microsoft Windows XP

SP2. This machine is used in section 5.4 and ??, to verify architecture and

operating system independence.

5.2 Execution Time

5.2.1 Model Construction

First, we construct a model based on the collected data from the number of in-

structions executed for “standalone FFT”. For every small problem size, the pro-

gram was executed 21 times in a loop. Because of instruction and data caching,

the instruction counts from the second run on differed from the first run. The

test set consists of 4 different small sized problem sizes shown in figure 5.1a,

with corresponding averages and standard deviations over runs 2-21. Because

in general the module will only run one time, we will only use value of the first

run. This value was constant for every first run of the application, while the

later runs in the loop fluctuated due to earlier mentioned caching.

The sample runs from from figure 5.1a didn’t show any polynomial behaviour,

when the linear regression technique was applied. However, they showed the

characteristic of a function in a power law class. For a power law the following

family of functions hold:
� � � ��� �

. The regression technique closely fit the

number of instructions executed, when we consider
�

as the problem size. Fig-

ure 5.1b shows the fit for the small test set. The purple points in the figure are

the measured values and the green line is the prediction function. The coeffi-

cients for the function are:
�
 � � ����

and
�� �
��� �� . The residual of the fit

is � � � ��, which represents a close fit through the data. In the next section

we will validate the model by predicting large problem sizes for a module using

a function derived from a few samples with a small problem size.

5.2.2 Model Validation

The power law function class appears to be a good model for the FFT. This can be

validated if we look at the FFT algorithm. For the Cooley-Tukey FFT it is known

that is has a complexity of � �� ���� �
. This matches the power law of

� �
� ��� �

. If on both sides the logarithm is taken, we get: �� �� � � �� ��� �� �
�� �� �.
For this function the linear regression technique is easily applied.

5.2. Execution Time 39

(a) Fit for four samples

sample run 1 run 2-21

size � � �
16 62382.00 50817.75 0.536

32 136284.00 121179.00 0.000

64 302854.00 281193.15 0.357

128 674468.00 677016.05 0.218

(b) Instruction counts

Figure 5.1: “standalone FFT”

To validate the function’s scalability for predicting instruction counts for

large problem sizes based on a model estimated for small problem sizes, we

executed “standalone FFT” also for larger, more realistic problem sizes � up to

� � �� ��
. Figure 5.2a shows that the constructed model (the green line),

based on four test samples from figure 5.1 (the purple points), has a reasonable

prediction for the larger problem sizes (the red points). The accuracy of the

prediction results are evaluated as follows :

� �� �� � �� ����� �� �� � � � � ���	���� �� ����� �� �� � � � (5.1)

Also the mean error was calculated. Figure 5.2b show this relative error for

all the predictions. Figure 5.2c and 5.2d show the model and error, when the

model was based on five other samples and figure 5.2e and 5.2f show the results

when all the problem sizes were used for fitting the model.

The model build based on the first four samples, has a large relative error

for � � �, resulting in 25.62% for � � �� ��
. When all samples are taken

into account the prediction error decreased to only 7.12% for � � �� ��
. The

mean relative error is 3.54% . A reason for non-scalability for larger � could be

that � � �
� still fits in cache while larger � do not and therefore need more

instructions.

Now, we will verify whether the same function class applies for “vlmain” .

Figure 5.3a-f shows the results for “vlmain”. Figure 5.3a-b show that the first

four samples are not able to the result in an accurate model. The maximum

relative error is 68.60%, with a mean error of 33.91%. It appears that there is

too much extra overhead because the application is a module and that the small

samples are not able to overcome this overhead and scale to large � .

However, sample � taken not much larger (128-512) were able to compen-

sate for the introduced module overhead and result in an accurate prediction.

The error is larger than 2.20% only for the three smallest � and and the mean

error is 4.08%. Figure 5.3c-d show this result, which is even better than when

40 Chapter 5. Experiments

(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Curve fits and prediction errors for “standalone FFT”

5.3. Memory Usage 41

sample � �
 � � �� �� � � �Error (%) Residual

16-128 0.92371 20244.33 9.91563 33.91 0.08325

128-512 1.0858 9570.11 9.1664 4.08 0.004300

all 1.0671 11463.23 9.3469 5.12 0.2737

Table 5.1: Function coefficients for “vlmain”

sample � �
 �� �� �� � � � Error (%) Residual

128-512 standalone FFT 1.1570 2463.40 7.8093 10.30 0.003911

module FFT 1.1485 4990.54 8.5153 7.42 0.0025602

vlmain 1.0858 9570.11 9.1664 4.08 0.004300

all standalone FFT 1.1232 2917.84 7.9786 3.54 0.15384

module FFT 1.1196 5820.26 8.6691 2.51 0.10674

vlmain 1.0671 11463.23 9.3469 5.12 0.27366

Table 5.2: Differences between three instrumentations

all samples were used for fitting the model, figure 5.3e-f. Compared to “stan-

dalone FFT”, “vlmain” results in more accurate predictions.

Table 5.1 shows the different values for
�

and
� �

. The residual value shows

how well the function fits through the test samples and not how accurate the

total prediction is. The performance model based on all samples is better than

when based on the four smallest samples , although it’s residual is higher.

The best model for predicting the instruction counts, only based on three

samples, for “vlmain” is:

� � ��� �� � �
 �����
(5.2)

Executing an application as a module introduces overhead. But, we are still

able to use the same function model, although with different coefficients. To

verify the quantity of the actual overhead introduced by the module, we will

compare “standalone FFT” and “module FFT”. Figure 5.2.2a shows the mea-

surements, and the overhead is relatively the same for every problem size. The

mean relative overhead is 93,37% with a standard deviation of 4.72%.

Table 5.2 shows the comparation in coefficients for the three different instru-

mentations and figure 5.2.2b includes “vlmain” in the graph of Figure 5.2.2a.

The extra instructions needed for reading and writing the signal in “vlmain”

have a larger account in the total for small problem sizes. For large problem

sizes, the computation of FFT takes the upper hand.

5.3 Memory Usage

5.3.1 Model Construction

The performance model for memory usage is build the same way as for execu-

tion time. For a few small data sizes the peak amount of memory consumption is

measured. This is done by sampling the program’s memory consumption during

small time intervals. In a Linux operating system, this information is available

in the
�����

filesystem. Every program has a process ID (PID), which is a sub-

directory in the
�����

filesystem. In the PID directory is a statm file, which

contains information regarding the memory behaviour of the program. This file

is sampled during execution of the program at an interval around 1/100 second.

42 Chapter 5. Experiments

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Curve fits and prediction errors for “vlmain”

5.3. Memory Usage 43

(a)

(b)

Figure 5.4: Difference between “standaloneFFT” and “module FFT” b. also including

“vlmain”

The maximum amount of memory used by the program serves as input for the

regression technique of the model builder component (section 4.1.2). The trace

shows the memory consumption behaviour. For resolving more accurate initial

and ending memory consumption a ����� ��� was introduced at the beginning

and before termination of the program. This was only done for modelling pur-

poses and is not needed in the real execution.

Profiling “module” was more difficult than “standalone”, because of it’s multi-

threaded behaviour. However, all the threads for the ��� ��� �� function shared

the same memory space and this was profiled.

Figure 5.5a-d shows the traces for all the problem sizes for “standalone”

and “module”. Figure 5.5a and 5.5b show traces for the small problem sizes

up to � �
�� for both “standalone” and “module”. In the traces an exponen-

tial behaviour is seen. Furthermore, the initial amount of memory claimed for

“module” is much higher than for “standalone”. Executing a program as a mod-

ule introduces overhead. Figure 5.5c and 5.5d show the traces for the largest

problem sizes. Remarkable is that for � � �����
the decrease of memory con-

sumption as a result of cleaning the claimed memory in both “standalone” as

“module” is much higher than for the other problem sizes.

For the maximum memory consumption, a polynomial behaviour in the log-

arithm of the problem size was found. For the linear regression we found a good

approximation for a polynomial of degree 5, where
�

is memory peak and
�

is

the ���of the problem size � .

� � � � � �
� � ��� � � ��� � � ��� � � ��� �
(5.3)

44 Chapter 5. Experiments

(a)

(b)

(c)

(d)

5.3. Memory Usage 45

sample �� �� � � �
 �� � � �� �� �Error (%) residual

4-10
��

� -70.202 20.438 -2.8314 0.18371 -0.0041667 18.83 0.23028

8-12 120.68 219.64 -81.556 12.584 -0.89369 0.024540 6.41
� �

all -3309.8 2378.9 -604.38 73.199 -4.2607 0.096438 4.13 69.640

Table 5.3: Function coefficients for “standalone”

sample �� �� � � �
 �� � � �� �� �Error (%) residual

4-10
�
�� � -9.3258 3.2917 -0.4924 0.02651
 ��� � �

�
�
5.86 0.1974

8-12 311.59 581.16 -142.86 17.41 -1.0602 0.026204 1.86
� ��

all -524.64 1227.3 -324.72 41.18 -2.5233 0.006048 0.38 22.984

Table 5.4: Function coefficients for “module”

5.3.2 Model Validation

The same method was used for validating the models as for the execution time

model (section 5.2.2). Figure 5.6a-f shows the curve fits and prediction errors for

“module” when different samples where taken for fitting the model. The maxi-

mum problem size was � �

�

. Figure 5.6a shows that the constructed model

(the green line), based on the five smallest data samples (the purple points), is

not able to result in a reasonable prediction for the larger problem sizes (the

red points). This is due to the lack of increase in memory consumption for the

small data sizes. Hence, the maximum prediction error was 38.90% for � �

�

.

Taking samples for � �
� resulted in a more accurate model and using all

samples (5.6e-f) results in the most accurate model with a mean prediction er-

ror of 0.386%. The orange line in the figure is the initial amount of memory

consumption,which remains constant for all problem sizes.

Table 5.3 and table 5.4 show the function’s coefficients with error and resid-

ual of the fit. There is much fluctuation in the coefficients for both “standalone”

and “module” as the number of samples and the problem size of the samples

increase. This is due to high order polynomial that is chosen. The scalability of

the memory usage model based sampling is worse than for the execution time

model. The best model for “module” is when all the samples are used:

� � ��
� �� � �

� �� � ��
� �
�
� � � � ��� � � �
 �
���

� � ���� �
(5.4)

The extra overhead introduced by the vlport accounts for a more scalable

model, because the fits for ”standalone” had a mean predicition error of 18.83%

(maximum error of 82.32% for � �

�

) for the fit based on problem sizes

� �

�
and a mean prediction error of 4.13% (maximum error of 9.85% for � �

�
) for

the fit of the total test set.

To determine the overhead of the module in memory usage, the maximum

and minimum values of the memory traces for all profiled problem sizes for

“standalone” and “module” were taken and drawn in one graph. Figure 5.7

shows the results. The amount of overhead is almost constant and scales when

problem sizes becom larger. There is only initial overhead in memory consump-

tion for the module.

46 Chapter 5. Experiments

(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Curve fits and prediction errors for “module”

5.4. Different architectures 47

Figure 5.7: Maximum and minimum memory usage for “standalone” and “module”

sample � �
 � � �� �� � � �Error (%) residual

16-128 0.92347 20257.29 9.91627 33.96 0.083982

128-512 1.0858 9596.15 9.1663 4.09 0.0043761

all 1.0671 11463.23 9.3469 5.12 0.27366

Table 5.5: Coefficients for fitting “vlmain” on AMD

5.4 Different architectures

5.4.1 Execution time

In order to test the architecture independence of the execution time model, the

same source implementation of the module was compiled and executed on a re-

source with an AMD processor (see section 5.1.1). Figure 5.8 shows the perfor-

mance data for both architectures and they don’t differ much, therefore it should

be possible to use the performance model for “vlmain” generated on the Pentium

3, to predict the instruction counts on the AMD processor. Figure 5.9a-b shows

the model and the prediction errors. The mean prediction error is 4.09%, which

is the same as for the model for the Pentium 3 and mostly due to large errors of

the three smallest samples. Table 5.5 shows the coefficients for the model when

it was constructed in the same way on AMD as in section 5.2.2. The differences

in coefficients compared to table 5.1 are very small.

5.4.2 Memory Usage

In order to verify architecture independence of the memory model, we compiled

and executed the module on the resource with the AMD processor and run all

experiments again. The model of equation (XXX) was used to predict the mem-

ory usage for “module” on AMD. Figure 5.10a-b shows the results. The P3 model

can make accurate predictions for AMD samples. The mean error is 0.55% with

a maximum error of 1.10%.

48 Chapter 5. Experiments

Figure 5.8: Difference in instruction counts for “vlmain” between two architectures

(a) (b)

Figure 5.9: Model constructed on a Pentium 3 used for predicting “vlmain” on AMD

(a) (b)

Figure 5.10: Model constructed on a Pentium 3 used for predicting ”vlmain” on AMD

6
Conclusion

In the past the gVLAM scheduler relied on the accuracy of the data provided by

the module developer in the module description file. The architecture proposed

in this thesis provides a more elaborate way to increase accuracy and scalabil-

ity of this data by the development of semi-architecture independent dynamic

performance models for Virtual Laboratory modules. A prototype of the archi-

tecture was able to construct an execution time model and a memory model for

a case-study containing a Fast Fourier Transform module. As the implementa-

tion for the FFT used belongs to the divide and conquer class of algorithms, the

model’s skeleton extends to other applications in this class of algorithms. For

these applications the model builder only has to find coeffients for the model’s

skeleton. The accuracy of the model is automatically increased, because the

module’s execution information is stored in a database and the model is updated

each time new performance information becomes available.

For the module of the case study an execution time model and a memory

model were built, based on the module’s problem size as input parameter. Given

a small number of initial problem sizes a reasonable accurate model was con-

structed. For the prediction of instruction counts, the resulting model was based

on only three small problem sizes:

� � ��� �� � �
 �����

The mean prediction error over fifteen different problem sizes is 4.08% and is

mostly due to the smallest problem sizes, not realistic in real life research, used.

For the memory usage model more samples were needed to build the model with

reasonable accuracy. The resulting model based on a fit for all problem sizes is:

� � ��
� �� � �

� �� � ��
� �
�
� � � � ��� � � �
 �
���

� � ���� �

The mean prediction error over fourteen different problem sizes is 0.38%

with a maximum error of 1.10%

49

50 Chapter 6. Conclusion

The profiling techniques used for building the models proved to be architec-

ture independent, because the model constructed on a Pentium 3 processor ar-

chitecture was able to make accurate predictions on a AMD processor architec-

ture. For the execution time model the mean error was 4.09%, which is almost

the same as the mean error for the predictions made on the Pentium 3. For the

memory usage model used to predict executions on AMD, the mean error was

0.55%, compared to 0.38% for predictions made on the Pentium 3.

The major disadvantage of the execution time model is compiler dependence

and the memory usage model is restricted to the Linux operating system. More

application specific approaches are future work and discussed in the next sec-

tion.

6.1 Discussion

The current implementation of the proposed performance modelling architec-

ture is only a prototype. Future plans are to move the instrumentation part of

the architecture to become part of the
������

library. The database currently

consists of textfiles, this should become a more advanced structure. Historic

performance data will become searchable, easier retrievable and it can be used

if the analytical model’s prediction is to inaccurate or given the problem size,

performance data is available. Furthermore, an appropiate format should be

developed to store the analytical performance model, developed by the model

builder, in the database. For one application class the architecture has shown

to be useful. Future plans are to add support to other application classes.

The execution time model and memory model should be enhanced to become

more architecture independent. A few possibilities were already discussed in

this thesis. For example, DynInst [39], a library for dynamic binary instrumen-

tation adds possibilites to overcome the compiler dependence now present at

both models. This also has an advantage for the memory model. If load and

store calls in the programs binary are profiled, memory reuse distance [43] can

be measured. Memory reuse distance is a measure for the number of distinct

memory locations that are referenced between two references of the same loca-

tion. Given memory reuse distance, the data locality can be predicted. However,

the overhead is rather large, because each memory reference has to be profiled.

The gVLAM execution framework currently does not have a performance

monitoring component. Autopilot [33] provides the appropiate infrastructure

for performance monitoring and active steering. By making use of performance

monitoring, feedback to the scheduler will serve as input for rescheduling deci-

sions.

Bibliography

[1] L. Smarr, Grids in Contexts, Chapter 1, The Grid: Blueprint for a New

Computing Infrastructure, Morgan Kaufmann Publishers Inc., 1999, pp.

1-13.

[2] I. Foster, C. Kesselman, The Globus Toolkit, Chapter 11, The Grid:

Blueprint for a New Computing Infrastructure, Morgan Kaufmann Pub-

lishers Inc., 1999, pp. 259, 278.

[3] F. Berman, High-Performance Schedulers, Chapter 12, The Grid: Blueprint

for a New Computing Infrastructure, Morgan Kaufmann Publishers Inc.,

1999, pp. 279-309.

[4] M. Livny and R. Raman, High-Throughput Resource Management, Chap-

ter 13, The Grid: Blueprint for a New Computing Infrastructure, Morgan

Kaufmann Publishers Inc., 1999, pp. 311-337.

[5] The Globus Project, http://www.globus.org

[6] I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International J. Supercomputer Applica-

tions, 15(3), 2001.

[7] I. Foster, C. Kesselman, J. Nick, S. Tuecke, The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration, Open

Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002.

[8] A. Belloum, D. Groep, Z. Hendrikse, B. Hertzberger, V. Korkhov, C. de Laat,

D. Vasunin, VLAM-G: a grid-based virtual laboratory, Future Generation

Computer Systems 19, 2003, p 209-217.

[9] K. Czajkowski et al., A Resource Management Architecture for Metacomput-

ing Systems, Proc. IPPS/SPDP ’98 Workshop on Job Scheduling Strategies

for Parallel Processing, pg. 62-82, 1998.

[10] C. Liu, L.Yang, I. Foster, D. Angulo, Design and Evaluation of a Resource

Selection Framework for Grid Applications.

[11] J. Schopf, L. Yang, Using Predicted Variance for Conservative Scheduling

on Shared Resources, Chapter 15, Grid Resource Management: State of the

Art and Future Trends, Kluwer Academic Pub, 2003, pp. 215-237.

[12] H. Dail et al. Scheduling in the Grid Application Development Software

Project, Chapter 6, Grid Resource Management: State of the Art and Fu-

ture Trends, Kluwer Academic Pub, 2003, pp. 73-95.

51

52 BIBLIOGRAPHY

[13] J. Schopf, Ten Actions when Grid Scheduling, Chapter 2, Grid Resource

Management: State of the Art and Future Trends, Kluwer Academic Pub,

2003, pp.15-23.

[14] D. Vasunin, V. Korkhov, A. Belloum, Z.G. Hendirkse, R.G. Belleman,

VLAM-G Modules Developer’s Guide, revision 1.17, februari 2004.

[15] D. Vasunin, Jwrapper developers guide.

[16] http://omniorb.sourceforge.net/

[17] V. Korkhov, A.S.Z. Belloum, L.O. Hertzberger, Evaluating Meta-scheduling

Algorithms in VLAM-G Environment, 2003.

[18] Usersguide for GVLAM, 2005.

[19] P. Au, J. Darlington, M. M. Ghanem, and Y. Guo. Co-ordinating Heteroge-

neous Parallel Computation. In L. Boug, P. Fraigniaud, A. Mignotte, and Y.

Robert, editors, Euro-Par ’96, pages 601-614, August 1996

[20] .N.C. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M. Starkey, P.

Stephan, Dome: parallel programming in a distributed computing environ-

ment, in: Proceedings of the 10th International Parallel Processing Sym-

posium (IPPS 96), IEEE Computer Soc. Press, Silver Spring, MD, April

1996

[21] J. Gehring and A. Reinefeld. MARS - A Framework for Minimizing the

Job Execution Time in a Metacomputing Environment. Future Generation

Computer Systems, 12(1):87–99, 1996.

[22] F. Berman and R. Wolski, The AppLeS Project: A status report, Proceedings

of the 8th NEC Research Symposium, Berlin, Germany, May 1997.

[23] F. Berman et al., New Grid Scheduling and Rescheduling Methods in the

GrADS Project, Parallel and Distributed Processing Symposium 2004 Pro-

ceedings, pp. 199-206.

[24] K. Kennedy et al. Towards a framework for preparing and executing adap-

tive grid programs, Proceedings of NSF Next Generation Systems Program

Workshop (International Parallel and Distributed Processing Symposium,

April 2002).

[25] H. Dail et al, A modular scheduling approach for Grid Application Devel-

opment Environments, 2002.

[26] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L.

Johnsson, K. Kennedy, C. Kesselamn, D. Reed, L. Torezon and R. Wol-

ski, The GrADS project: Software support for high-level Grid application

development. International Journal of High-Performance Computing Ap-

plications, 15(4):327-344, 2001.

[27] V. Taylor et al., Prophesy: Automating the Modeling Process, Third Annual

International Workshop on Active Middleware Services, 2001.

[28] V. Taylor, X. Wu, R. Stevens, Prophesy: An Infrastructure for Performance

Analysis and Modeling of Parallel and Grid Applications, ACM SIGMET-

RICS Performance Evaluation Review, Volume 30, Issue 4, March 2003

BIBLIOGRAPHY 53

[29] V. Taylor, X. Wu, J. Geisler, Using Kernel Couplings to Predict Parallel

Application Performance, in Proc. of the 3rd international Symposium on

High Performance Distributed Computing, Edinburgh Scotland, July 24-

26, 2002.

[30] S.L. Graham, P.B. Kessler, M.K. McKusick, gprof: a Call Graph Execution

Profiler,

[31] Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D. Using PAPI

for Hardware Performance Monitoring on Linux Systems , Conference on

Linux Clusters: The HPC Revolution, Urbana, Illinois, June 25-27, 2001.

[32] J.W. Cooley and J.W. Tukey, An algorithm for the machine calculation

of complex Fourier series,. Mathematics of Computation, 19(90):297-301,

1965.

[33] Randy L. Ribler, Jeffrey S. Vetter, Huseyin Simitci, and Daniel A. Reed,

Autopilot: Adaptive Control of Distributed Applications, Proceedings of

the 7th IEEE Symposium on High-Performance Distributed Computing,

Chicago, IL, July 1998.

[34] R. Wolski, N.T. Spring and J. Hayes, The network weather service: a dis-

tributed resource performance forecasting service for metacomputing, Fu-

ture Generation Computer Systems, 15(5-6):757-768, 1999.

[35] K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman, Grid informa-

tion services for distributed resource sharing. In Proceedings of the Tehnth

IEEE International Symposium on High-Performance Distributed Com-

puting (HPDC-10), August 2001.

[36] T. Hey and A.E. Trefethen, The UK e-science core programme and the grid,

Future Generation Computing Systems,18(8):1017-1031, 2002.

[37] Vl-e, Virtual Laboratory for e-Science, http://www.vl-e.nl

[38] DynaProf, http://icl.cs.utk.edu/˜mucci/dynaprof/

[39] Bryan R. Buck, Jeffrey K. Hollingsworth , An API for Runtime Code Patch-

ing , Journal of High Performance Computing Applications 14 (4), Winter

2000.

[40] B.P. Miller, M.D. Callaghan, J.M. Cargille, et al./ The Paradyn Parallel

Performance Measurement Tool, IEEE Computer, 28(11):37-46, November

1995.

[41] J. Cao, D. J. Kerbyson, E. Papaefstathiou and G. R. Nudd. Performance

Modeling of Parallel and Distributed Computing Using PACE. Proc. 19th

IEEE Int. Performance, Computing and Communications Conf., Phoenix,

AZ, USA, 485-492, 2000.

[42] Fast Fourier Transform of the West, http://www.fftw.org

[43] Chen Ding , Yutao Zhong, Predicting whole-program locality through reuse

distance analysis, ACM SIGPLAN Notices, v.38 n.5, May 2003.

[44] Valgrind, http://valgrind.org

[45] [http://www.techonline.com/community/ed resource/feature article/6397]

54 BIBLIOGRAPHY

.1 Linear Least Squares Curve Fitting

Curve fitting is concerned with the fitting of an analytical function to a set of

data points. Given
�

pairs of data
�� � � � � �

, where � � � � � �
, try to find the

parameters
�

and � such that
� � � � � � � is a good fit for the data. This is

an example of linear curve fitting. Linear curve fitting deals with functions

that are linear in the parameters, but the variables them self don’t have to be

necessarily linear.
� � � � � � � � � � � � 	

can be solved with linear curve

fitting, but the variable
�

is quadratic. The parameters are linear, because they

appear as multipliers for the variable
�
. There also exist non-linear problems

for curve fitting. Exponential functions, where the parameters are part of the

exponential have this property. For example,
� � � � � ����� �. This one can be

linearised by taking the logarithmic of both sides. If a constant is added to

the function, taking the logarithmic does not work anymore. The system is

not able to be solved with linear methods anymore. A way for solving linear

parameterised models is by Gaussian elimination. Given a linear system that

is over determined, we can solve any linear combination of functions, as long as

the following property is fulfilled:

� � �
�
 �� � � ���� �� � � � �� �� �� � (1)

It is important that
�� �� �

contain no parameters in the function, like for

example
��� �	
� �

. For any given points
�� � � � � �

fitting the polynomial coefficients

for the vector matrix
� � ��
 � �� � � �� �yields for the matrix vector multiply:

�
����

� �
 � �

� � � � ��
...

...
. . .

...� �� ���

�
			

�
����

���

...��

�
			

�

�
����

�

��
...��

�
			
 (2)

� � � � �
(3)

� � � � � � � � � �
(4)

� � �� � � � ��
 � � � � �
(5)

A measure to determine the goodness of the fit for the function’s coefficients�
, is called residual. This represents the mean squared error between the mea-

sured data and the predicted data.

� � � � �� � � � �� � � �
 � �� � � �� ��� (6)

.2. JWrapper 55

Figure 1: JWrapper

.2 JWrapper

To be able to construct modules as Java applications, a module called JWrapper

is available [15]. Figure 1 shows a picture of the Jwrapper functionality.

