
M
a
st

e
r

o
f

S
c
ie

n
c
e

in
G

r
id

C
o
m
p
u
t
in

g

Problem Solving Environment for
Medical Image Analysis
A thesis submitted to the Board of Examiners in partial

fulfillment of the requirement of the degree of Master of

Science in Grid Computing

Ketan C Maheshwari

Supervisors:
S̀ılvia Olabarriaga and Adam Belloum

ii

Contents

Contents iii

Acknowledgment v

Abstract vii

1 Problem Definition 1
1.1 Introduction . 1

1.1.1 Medical Image Analysis (MIA) . 1
1.2 Motivation . 2

1.2.1 MIA Support System(MIASS) . 2
1.2.2 MIA Development Phases . 2
1.2.3 MIASS Users . 4

1.3 Problem Definition . 5
1.4 Requirements . 5

1.4.1 Concepts and Terminology . 5
1.4.2 System Requirements . 6
1.4.3 Technical Requirements . 8

1.5 Organization of Thesis . 8

2 Literature Review 11
2.1 Introduction . 11
2.2 Problem Solving Environments . 12

2.2.1 Workflow Management Systems . 14
2.2.2 Rapid Application Development Environment 17
2.2.3 Parameter Sweep Environment . 18

3 Available Infrastructure 19
3.1 Introduction . 19
3.2 Resources Infrastructure . 19
3.3 Legacy Systems . 20

3.3.1 DeVIDE . 20
3.3.2 AMC-DWMS . 21
3.3.3 Nimrod . 21

iii

4 Proposed Architecture 25
4.1 Introduction . 25
4.2 System Architecture . 25

4.2.1 Architecture Features . 26
4.3 User Interaction . 26
4.4 Modeling Concepts . 27

5 Implementation and Test 31
5.1 Introduction . 31
5.2 APIs and Functions . 31
5.3 Functional Specification . 31
5.4 Grid-Service Implementation . 32
5.5 Experimental Setup . 32
5.6 Test Cases . 34

6 Conclusions and Outlook 39
6.1 Conclusions . 39
6.2 Outlook . 39

A Choice of Technology 41

Bibliography 43

iv Contents

Acknowledgment

I am grateful to my supervisors Silvia Olabarriaga and Adam Belloum for their invaluable guid-
ance. Charl, Jeroen, Johan, Piter T. de Boer. Stanley. opensource developers community.
Dhiraj, friends and family.

v

Abstract

The development of Medical Image Analysis (MIA) applications that can successfully be applied
in clinical practice is difficult for several reasons, one of them being the large amount and variety
of resources involved (people, data, methods, computing). The application goes through sev-
eral phases (development, parameter optimization, evaluation and clinical deployment) usually
supported by different systems. The lack of support for information flow from phase to phase
puts extra logistics burden on the lifecycle of MIA applications. The present report describes
efforts to develop a Problem Solving Environment (PSE) for MIA applications using the three
systems available at the proof-of-concept environment of the Virtual Laboratory for e-Sciences
project. The proposed PSE implements data provenance mechanisms that support information
flow among systems, facilitating navigation across phases of the application lifecycle.

The thesis is partly published in and presented at the IEEE Computer Based Medical Systems (CBMS)
symposium 2007 as “Problem Solving Environment for Medical Image Analysis” Authors Ketan C Maheshwari,
Silvia D Olabarriaga, Charl P Botha, Jeroen G Snel, Johan Alkemade and Adam Belloum

vii

viii

CHAPTER 1

Problem Definition

1.1 Introduction

Medical Image Analysis (MIA) [1] is a field that enables the knowledge extraction through
computational post-processing of digital medical images. Processing of digital images using MIA
modalities, greatly assist in disease monitoring, diagnosis and preoperative planning. Application
of High Performance Computing (HPC) has become an essential part of MIA [2]. Grid Computing
is increasingly used as a source of HPC and large scale data storage infrastructure in the hospitals.
However, a suitably facilitated computational framework is yet to be fully realized. Such a
framework would not only facilitate the effective use of HPC, it would also greatly enhance
the user experience and patient comfort in a hospital setup. The present report describes the
analysis, design and implementation of an interoperable environment, wherein a series of phases
are involved.

A diverse range of software systems are often used by users to perform the clinical research
and experiments. Workflow management systems (WfMS)[3] and Problem Solving Environments
(PSE) with varying degree of specialization are two such candidates to tackle the requirements
in such a scenario. Every system that is used has its own domain of specialties that caters to
a subset of these requirements. Ideally an interoperable combination of these systems is needed
that facilitates a smooth transition of data and control across the system. However, these systems
are not necessarily inherently interoperable. Yet, they are all required together to perform a set
of interrelated tasks. This makes it necessary to join these WfMS and/or PSE to avoid technical
difficulties and incompatibilities.

1.1.1 Medical Image Analysis (MIA)

Figure 1.1 shows a high level overview of a MIA method. Medical image from an image acqui-
sition modality are sent to the MIA methods for enhancements and the resulting image is sent
to the users’ workstation for further analysis and diagnosis. PACS (Picture Archiving and Com-
munication System) is a tailormade system at the hospital for image archival and distribution
purposes. The box representing MIA in the figure is a high level view of a whole range of MIA
subsystems that work in coordination to achieve a specific task. The viewing workstation can
also be user’s personal computer.

1

1.2 Motivation

PACS

Viewing
Workstation

Image Data

Image Data

Medical Image
Analysis

Image Retrieval
Image Source

Figure 1.1: General Scheme of an Ideal Medical Image Analysis in a Clinical Setting

1.2 Motivation

This work is motivated by the proposed Medical Image Analysis Support Systems (MIASS)
model, as proposed in the article “Integrated Support for Medical Image Analysis Methods:
from Development to Clinical Application” by Olabarriaga et. al. in [4]. This section summa-
rizes the MIASS model. MIA applications are compute intensive and time consuming process
involving heterogeneous skills and resources. To fully support MIA multiple software systems
are needed. There is a need for information organization and management in order to increase
the interoperability among these systems. This in turn also accelarates the adaptation of new
MIA techniques and tools.

1.2.1 MIA Support System(MIASS)

MIASS is viewed as an ideal environment to provide the necessary technical and human support
to the development and deployment of MIA methods in a clinical setup. The vision of MIASS is
guided by a set of requirements. It consists of several well defined phases that will be explained in
the subsequent sections. MIASS brings in the desired computing and process development system
to the MIA methods. A diverse set of users are identified based on their technical background
and clinical expertise. The necessity of MIASS is motivated by several factors that include
among others (a) a user-friendly interface to HPC infrastructure, (b) a seamless environment
that binds together the computing, storage and instrumentation devices within the hospital, (c)
a collaborative environment for the users involved.

1.2.2 MIA Development Phases

During its lifecycle, a MIA method evolves through phases. Figure 1.2 depicts the phases of
MIASS with the information transmission. A MIASS lifecycle starts with the development of
components and network of components. This is followed bychoosingg optimal parameters for
the developed network and using statistical as well as qualitative evaluation in the evaluation
phase. These phases are developed using the test data. Once the evaluation phase clears the
MIASS method, it reaches the clinical routine where it could be used with the clinical data.
During any phase the control can shift backwards to the component development in the form of
feedback. The purpose of feedback is to enhance and tune the Developed Component in order
to suit one or many requirements. Described below is each of these phases.

Component Development/Network Development A new MIA method is developed in this phase.
This could be a new basic algorithm or a combination of algorithms to perform a series of
computational and analytical tasks. As figure 1.3 (a) shows the component accepts the data
as input and performs processing transferring them to the output or a next component. These

2 Problem Definition

1.2 Motivation

Evaluation Before introducing the method into clinical routine (the final phase), it is thoroughly
evaluated, validated, and verified for correctness for a large number of images. Various statistical
and quantitative methods for evaluation are used during this phase. This is usually performed by
a user role called Evaluation User (EU). An image sweeping operation is carried out on a large
number of images to test the properties of the method. Several qualitative parameters are also
tested for, eg. the costs involved, time elapsed, patient comfort, amount of human intervention.

Clinical Routine In this final phase of the MIASS method, a thoroughly evaluated and tested
method is introduced for practice into the clinical routine. As shown in figure 1.4, the new MIA
method becomes a part of the existing MIA routine in the clinical environment. The developed
component is used as a workflow within the clinical practice to help the diagnosis, prognosis and
treatment related tasks. Such a workflow can be used repetitively for the clinical applications.
A Clinical User (CU) performs the clinical routine phase.

input
output

archiveretrieve

Notifications
Exception

Data Results

MIA
Method

Opt
Parameters

PACS

Figure 1.4: Clinical Routine

Navigation Between Phases The aforementioned phases are part of a series that results in a
routinely used MIA method. The phases are part of an evolution process to be supported by
MIASS. During this evolution, the focus may shift from one phase to other in forward as well
as the backward direction(Figure 1.2). This navigation is required for feedback and quality
refinement purposes of a particular phase during the development of a MIA method.

1.2.3 MIASS Users

A diverse set of users and tasks are involved with the MIASS along its lifecycle, that influences
the usability of the environment. User expertise shifts along the phases of MIASS from purely
technical to purely clinical background. Figure 1.5 illustrates the users and associated activity
through a UML (http://www.uml.org/) usecase diagram. The figure shows a dependency among
various phases and the users involved with each phase. The users CD/ND and PO are the one
with technical expertise and the users EU and CU possess clinical background. The dashed
arrow between activities denote a functional, behavioral and chronological dependency among
the activities.

The role played by the user at the component development phase is called CD and/or ND.
CD/ND is a user with purely technical background. The user at this stage has no clinical
knowhow. A PO and the EU has both technical and clinical competence. These roles are played
at the parameteroptimizationn and evaluation phases of MIASS. A CU is involved when a MIASS

4 Problem Definition

method is inserted into the clinical routine. A CU possesses purely clinical background and does
not have any technical knowhow. Clinician/technician is collectively referred to as ‘user’ when
not mentioned otherwise.

1.3 Problem Definition

The problem statement is largely based on the MIASS requirements. A concise statement of the
problem definition is given below:

Propose, implement and evaluate an extensible Problem Solving Environment for Medical
Image Analysis (PSEMIA) that supports the existing Workflow Management Systems (WfMS)
and other software devlopment environments.

Essentially, the problem is about processing and transmitting information and keeping track
of these processes and transmissions. The task is complicated by the fact that each processing
and/or transmission phase is characterized by its own environment and users. True integration
difficult.

1.4 Requirements

This section outlines the requirements of the PSEMIA system. The system has been classified
into “concepts” that describe structural and dynamic aspects.

1.4.1 Concepts and Terminology

1. User A person with technical, clinical or mixed expertise, interested in solving a MIA
problem or using the solution of a MIA problem.

2. MIA Problem A MIA (Medical Image Analysis) problem is the problem involving image
analysis functions subject to extensive resource and personnel requirements and a system-
atic solution to be practiced clinically.

3. Team A team is a group of users who are collaborating to solve a problem.

4. Project A project is an aggregation of the information associated with a single MIA
problem, containing sessions that correspond roughly to phases in the MIA lifecycle. Users
can subscribe to the events in a project. Project contains sessions which in turn contains
runs. A project is associated with an application and user(s).

5. Session Session is a logical entity that belongs to a project. A session may correspond to
a phase in MIA process.

6. Application An application is an abstraction of an executable program containing the
information of the program its parameters and a description.

7. Run Run is an instance of an application execution.

8. Rerun A rerun is a run that is created from an existing run with a same or different version
of application and/or set of parameters.

9. Legacy Systems

Problem Definition 5

1.4 Requirements

1.4.2 System Requirements

User and Team The system should be able to maintain the data about users and their affiliations.
A “super-user” which is a special type of user-role should be able to manage the users. A user
may have subscription with projects and sessions and the system should be able to notify the user
via email about the events a particular user is subscribed to. All team members have same rights
on the above mentioned activities. Diverse user roles and a necessity for user communication
during phases, implies a requirement for user collaboration. This collaboration could be between
dispersed users, eg. users who belong to the different departments of a hospital. User intervention
facilities at various stages, privacy of patient data in a secure environment is desirable.

Project A team member should be able to create, access, update and remove a project. He
should be able to set values for the following parts of a project:

• User

• Application

• Session

• Run

A team member can update and remove any of the above attributes. Following attributes should
also be automatically set and updated:

• Date of creation of the project.

• Date of last access of the project.

A user must be associated with a project to perform the above activities. An active project is
the one a user is interacting and working in. At a given time not more than one project should
be active for a given user. However, more than one project can be active simultaneously for
different users.

Session A session contains a related set of runs. Session is managed by user in that he can
access, update and remove a session. At a time more than one session might be active and the
user must have flexibility to associate a run to any session. However, one run can belong to
exactly one session.

Run Run(s) belong to session. System should record the information related to runs passively
through logs from the legacy systems. The system should capture information in logs corre-
sponding to following attributes of each run:

• The application involved in the run.

• The input and output parameters and their values.

• Completion status of the run.

• date of execution.

A user should be able to record the run into the database with additional attributes as follows:

• A description of the run.

• The author of the run.

• Whether the results are inspected.

6 Problem Definition

Requirements 1.4

Application A user should be able to register an application into the database. This involves
setting the attributes of application by the user and placing it in the database. These attributes
include:

• Name of the application.

• Version of the application.

• Backward compatibility of the application.

• Author of the application.

• Parameters associated with the application.

• Return status of the application.

• Location of the executable program.

• A description of the application.

The system should automatically keep the date of creation of the application and the date the
application was last called. The user should be able to retrieve an application from the database
through registry.

Application Versions The system should manage versions of applications. All versions of an
application should be related to each other. A user should be able to run different versions of
same application subject to compatibility. The system should identify compatible versions of an
application.

Application Parameters The parameters for an application must be specified and stored on
a per version basis. parameters can take values as well as reference to a remote resource.

Provenance The data provenance requirement states that the system should facilitate a user
to be able to search ’backwards’ and discover information related to a particular run, session
and application. This includes the application parameters, session and project information ,
the run responsible to produce a given output and the user associated. Provenance requirement
involves maintenance of logs, retrieval of historical data, execution trace of methods, parameters,
metadata and clinical interpretation of archived data for the purpose of reproduction, evaluation,
and/or recovery. For debug and diagnosis purposes.

Search The system should provide a search feature. This feature should be tuned to be able to
perform search at different levels. A system-wide broad search based on a generic keyword from
all entities and attributes to a refined search for a particular attribute and advanced search for a
combination of values. A search keyword should be treated by the system as regular expression.

1. Open Search An open search is a system wide search based on the user-provided keyword.
For e.g. search for a keyword “contrast”,“elimination”, “mask” from the system.

2. Attribute Based Search An attribute based search is based on the value a user provides
for an attribute of an entity. For e.g. search for all runs whose description contains the
keyword “soft tissue”.

Problem Definition 7

1.5 Organization of Thesis

Clinical Routine

Evaluation

{depends}

{depends}

{depends}

CD/ND

PO

EU

CU

Development

Parameter
Optimization

Figure 1.5: MIASS UML Usecase Diagram CD=Component Developer, ND=Network Developer,
PO=Parameter Optimizer, EU=Evaluation User, CU=Clinical User

3. Advanced Search Advanced search is based on a combination of attributes. A logical
“or” or “and” combination of the above search options could be provided in the advanced
search.

A search returns results that could be handled by the system depending upon the context. A
search for run, for instance must enable user to rerun it or update the its attributes. Similarly,
a search for an application must enable the user to update the application.

Fetch Run A user should be able to retrieve an existing run from the database and create a new
run using existing one. The user must be provided with the information if a different version of
the application is compatible with the version used in existing run. A rerun executes in the same
manner as the run and same information as the run is stored in the log. A rerun may be executed
with exactly the same information as the existing run or it can have change in parameters and/or
application version.

an extensible problem solving environment.

1.4.3 Technical Requirements

User Authentications

Extensible Externally activable methods should be available.

Notifications automated, user notification.

Distributed Resource Usage The system should be able to transparently use the available dis-
tributed resources for storage and execution. These resources include distributed database and
filesystem as well as a grid based computational power. A transparent and stable environment
for the storage and automated (as opposed to manual) transfer of large amount of data. The
environment should Provide execution control management as per the user requirements.

1.5 Organization of Thesis

The rest of this thesis is organized as follows: Chapter 2 reviews the literature on various as-
pects of Problem Solving Environments and Workflow Management Systems. Chapter 3 briefly

8 Problem Definition

Organization of Thesis 1.5

describes the infrastructure available within the VL-e. Chapter 4 describes the proposed archi-
tecture that addresses the problem and its features. Chapter 5 describes the implementation and
test cases in order to verify the implementation. Chapter 6 concludes the thesis with concluding
remarks and future work.

Problem Definition 9

CHAPTER 2

Literature Review

2.1 Introduction

As more and more science is done with the help of HPC infrastucture (e-science or enhanced
Science), the complexity of experiments and the number of required computing tools has in-
creased. These include hardware tools like storage and network devices, instruments and their
adapters as well as software tools like Problem Solving Environments(PSE), Workflow Manage-
ment Systems(WfMS) and an integrated framework that enables the utilization of software and
distributed infrastructure in a transparent fashion. This chapter presents a literature review
of various software tools and techniques involved in doing e-science. This literature review is
motivated by the problem requirements as mentioned in chapter 1. The envisioned environment
requires tools, techniques and concepts associated with PSE, their integration and interoper-
ability support. Figure 2.1 shows a partial classification and properties of a PSE. The second

Problem Solving Environment

Provenance
Management

User
Collaboration

HPC
Support

Application
Development

Support

Execution
Model

Wf�MS RAD Parameter Sweep

Figure 2.1: Classification of the Problem Solving Environments

level of the hierarchy in Figure 2.1 presents the conceptual classification for the integration and
interoperability requirements. User collaboration has increasingly become evident and relavant
in large-scale scientific applications [5]. Domain scientists form what is known as virtual organi-
sations in order to collaborate to achieve short or long term goals. Execution Model or Execution
Specification describes how the system in question allows user to specify and represent the exe-
cutable portion of an application. The scope of literature review includes the study of concepts
and systems that relate to the classification as shown in figure 2.1. Provenance management,

11

2.2 Problem Solving Environments

being a vast area in its own right, is treated as a separate section for literature review. This liter-
ature review is motivated by the investigation of possibilities for integration and interoperability
of several systems under the hood of a single PSE.

2.2 Problem Solving Environments

Architecture There is no single architecture for a Problem Solving Environment (PSE). The
components that make up a PSE depends upon the range of problems a PSE is intended to solve.
Hence the architecture differs from situation to situation and depends largely upon the problem
domain [6]. However, certain components are must in a PSE using HPC and/or Grid support.
Figure 2.2 attempts to capture a set of common components and their role in a PSE and Figure
illustrates a “specialized” PSE for computational chemistry. An intuitive user interface that
makes the human-computer interaction more productive is a salient feature of PSE. Application
Development Tools enable users to develop prototype applications rapidly to solve simple or
complex scientific problem at hand. These applications serve as reusable off the shelf components
that could reside in a library. Middleware acts as a broker for scheduling and managing the
underlying HPC resources. Distributed agents acts a glue to tie the distributed applications
and provides auxiliary support eg. provenance, debugging, logging among others. The last layer
comprises of the hardware devices and instruments. These devices are controlled and interfaced
through the low-level system software.
A PSE is a computational framework that solve a target class of problems, support rapid proto-
typing and can be used at the frontiers of science [6]. A PSE brings together all the capabilities
a given domain of problems might require.
Triana [7] is described as a PSE capable of acting as a complete integrated computing environ-
ment for composing, compiling and executing application for a specific problem domain. It is
dominantly used as a WfMS in scientific community. The architecture of Triana is based on a
third-party interfacing to Grid and p2p components. It is capable of visually developing workflow
based applications that can use the underlying grid and/or p2p resources.
It provides a suit of tools to perform computational Chemistry integrated within a PSE. The Ecce

Problem Solving Environments 2.2

ordinate activities between applications. This provides a strong basis for collaborative work
environments. A notification agent serves messages to users as well as interested applications
whenever the output of subscribed job changes. LabGrid [8] provides an easy-to-use and poten-
tially collaborative web-browser based environment. Triana does not seem to be supporting any
explicit user collaboration.

Application Development Support A wide range of tools could be used to support application
development for PSE. The choice of a tool depends upon the requirements the PSE in question is
addressing. These tools could be WfMS, RAD tools, Paramsweep applications, compilers, Legacy
hardware and software toolkits and libraries. Essentially, they makes up the core components of
a given PSE. LabGrid [8] is one such example wherein a range of “Application Packages” combine
to form a PSE infrastructure. Triana [8] integrates various tools and technologies in order to
achieve a range of functionality under a single user interface. Notable components include java
tools, Legacy applications Grid and P2P toolkits. Ecce [9] provides support for python and TCL.
It includes various domain specific tools like calculators for chemistry, visualisation tools and a
molecule builder application. Both Triana and ecce are extensible, in that additional components
could be added to extend their functionality.

Execution Model A PSE could often have more then one execution modalities depending upon
the problem at hand. On one hand a simple problem involving a single job could be handled
through a command-line job-submission method. On the other hand a complicated problem
might need a team of users composing a complex workflow using GUI-based tools for the de-
ployment. Certain problems with intermediate complexity could be solved by a technical expert
using an xml-like “meta-language” to compose an execution sequence. Triana [7] can be used as a
dataflow or distributed workflow system depending upon the application and user requirements.
It has a rich GUI-based execution model. A user can graphically compose the execution scheme
using the “box-and-arrow-modality”. A box is a representation for processing and an arrow rep-
resents flow of data and/or control. LabGrid [8] has no specific execution model. Jobs could be
submitted through a web-browser based console. Every job is specified by its associated prop-
erties including application package, output filename, portnumber and job specific parameters.
The results of this job are written on the specified output file. Ecce uses a combination of globus
[10] based globusrun and Resource Specification Language(RSL) [] as its execution specification.
For the cases wherein RSL is not suitable, ecce relies upon the

HPC Usage The amount of computation power needed and the data produced is increasing
rapidly in most scientific application domains, including the Medical Image Analysis [2]. Ac-
quiring, processing and archiving of large amount of data requires the usage of sophisticated
devices and supporting software. Further, the development and testing of application programs
in such feilds takes considerable time which could be minimized through HPC. Triana [7] uses the
underlying grid and p2p resources through Grid Application Toolkit(GAT) [11] and GAP Jxta
1. LabGrid [8] uses an existing computing infrastructure at the university including personal
computers, routers and other network instruments. This provides sufficiently high distributed
computing power to perform the scientific computing. A special job control and monitoring com-
ponent is responsible for launching and migrating jobs dynamically among the resources. Job
submission and scheduling is performed using a number of existing tools including Globus [10],
Legion and NetSolve. Ecce includes an advance reservation-based metascheduler called Silver.

1http://www.jxta.org

Literature Review 13

2.2 Problem Solving Environments

Silver manages a queue of jobs and dispatches the jobs based on a job and target resources’
constraints match.

User Interface

Applications
Repository

Application Development Tools

Middleware and Distributed Agents

Hardware Infrastructure System Software

Collaborative
Users

Figure 2.2: A general PSE model

2.2.1 Workflow Management Systems

Architecture The Workflow Management Coalition [3] defines a WfMS as

The automation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action, according
to a set of procedural rules.

The OGSA-WG (Open Grid Services Architecture-Working Group) glossary [12] describes the
term workflow as closely associated with choreography and orchestration and defines it as

Workflow is a pattern of business process interaction, not necessarily corresponding
to a fixed set of business processes. All such interactions may be between services
residing within a single data center or across a range of different platforms and im-
plementations anywhere.

In simplest terms, a workflow could be treated as a “program” at higher level of abstraction
intended to run on a specific execution-enabled environment [13]. A workflow should be able
to support common “patterns” [14], including sequential, repetitive and conditional execution.
Figure 2.3 shows an architectural model of a generic WfMS as proposed by Workflow Management
Coalition (WfMC). This acts as a common reference model for WfMS products. A set of workflow
engines lie at core of this architecture. These engines communicate to the external world including
other workflow systems through several dedicated interfaces. The grid-based WfMS architecture
proposed by Yu and Buyya [15] as shown in Figure 2.4 is based on the WfMS model. An
important feature of this model is the classification of functions into build-time and run-time
functions. The build-time functions are concerned with describing tasks and dependencies while
the run-time functions are concerned with executing and monitoring of these tasks. The model
replaces the normal computing resources with grid resources and a grid middleware layer to
manage these resources. Grid-flow is a petri-net based WfMS. The architectural model is depicted
in Figure. The Grid-Flow Description language acts as an interface between the graphics based
petr-net interface and the grid-flow engine. The data and program integration layer manages the

14 Literature Review

Problem Solving Environments 2.2

Administration &
Monitoring Tools

Process
Definition

Workflow Engine(s)

Workflow
Client

Application

Invoked
Applications

Workflow API and Interchange

Interface 1

Interface 4
Interface 5

Interface 2 Interface 3

Workflow Enactment Service

Workflow Engine(s)

Other Workflow
Enactment Services

Figure 2.3: A general WfMS model [3]

underlying distributed resources. The program integration layer works on top of the WebRun
system, a unified platform that invokes remote programs using grid computing modality. A grid-
flow repository helps in storing a number of compiled programs, meta-data, system property info
and other necessary context information in order to run the applications.

Krishnan et. al. [16] proposes an OGSA compliant grid-based workflow framework called
Grid-Services Flow Language or GSFL. GSFL is based on a set of grid services. It has the
following important features:

• Service Providers is a registry of the services taking part in the workflow.

• Activity Model is a list of all operations belonging to the individual service providers.

• Composition Model describes the composition of grid services into a new service.

• Lifecycle Model is concerned with the runtime activities of the services.

Kepler [5] is a scientific workflow management system built on top of the PtolemyII
(http://ptolemy.eecs.berkeley.edu/ptolemyII) system. Webservice extensibility is one of the high-
lights of Kepler. The “actor” modality of Kepler allows to create actors representing webser-
vices/grid services hence facilitating an extension to the existing functionalities. “Box and pipe”
model of user interface makes it easy to use for scientific workflows. Planning for Execution in
Grids or Pegasus [17, 18, 19] is a scientific workflow management system that maps complex and
abstract scientific workflow specification onto the grid resources. A user can create an abstract
workflow using Chimera [20] and Directed Acyclic Graph (DAG) tools. Chimera is a “virtual
data system” that could be used for the generation and management of derived data in scientific
experiments. This abstract workflow is submitted to the Pegasus engine. Pegasus, in turn cosults
the grid based resource brokers to locate apropriate resources, data and applications to execute
the workflow tasks.

Taverna [21] from the myGrid2 project is webservice based tool to create and execute work-
flows in the field of lifesciences. A workflow is formed of tasks or “processors” connected with each
other in a flow represented by arrows. A processor can consume multiple input data and produce

2http://www.mygrid.org.uk

Literature Review 15

2.2 Problem Solving Environments

Grid Users

Grid Workflow Application Modeling
& Definition Tools

Grid Workflow
Specification

Workflow Design and
Definition

Build Time

Run Time

Workflow Execution
& Control

Workflow
Change

Grid Middleware

Grid Resources

Interaction with
Grid Resources

Grid Workflow Enactment Service

Workflow Scheduling

Data Movement Fault Management

Interaction With
Information Services

Grid Information Services

Resource Info Service

Application Info Service

Figure 2.4: A grid based WfMS model [15]

multiple output data. The workflows are written in a new, xml-based conceptual language called
Simple conceptual unified flow language (Scufl).

Karajan [22] is a derivative of gridant [23]. It is an engine as well as workflow language
that supports a number of workflow patterns [14]. Karajan is scalable, parallel and extensible
language that can be used to manage a large number of tasks as a workflow.

User Collaboration Modern science is an era of collaborative work. With the emergence of
sophisticated computing infrastructure, more and more science is done across organisations in
a collaborative fashion. Workflows becomes pivotal in sharing resources, data, applications and
knowledge, hence fuelling collaborative environment [24]. A workflow may be considered as a
societal entity supporting work coordination. One of the important component for a workflow
enactment engine is a human control interface [13]. Its functionality include supervision of the
overall execution, distribution of the results and manage collaborative activities. Collaboration
in WfMS is about providing the following:

• Co-editing of the workflow specification.

• Simultaneous reciept of the results of execution.

Currently, no WfMS seems to provide a fully collaborative environment. However, several WfMS
provide a semi-collaborative environment. Most WfMS provide an automated offline-sharing and
reusability mechanisms at the workflow as well as resource level. Taverna enables the sharing

16 Literature Review

Problem Solving Environments 2.2

of resources through webservices. These shareable services are used by the bioinformatics com-
munity. Non-sharable scripts could also be used for individual purposes using Taverna. GSFL
incorporates a serviceprovider modality implemented as a list of services identified by a unique
name. These services are used as working units in GSFL. Users can use control,data and noti-
fication models as described in section 2.2.1, in order to communicate with processes as well as
other users. Communication in GSFL includes control messages as well as large amount of data.
The Grid Workflow Definition Language(GFDL) proposed in [24] is a translatable language by
design with most of the scripting workflow languages. This enables construction of a translator
an easy and mechanical task. This makes an integration and collaboration with other workflow
systems and hence users can become potentially easy. GridANT and Karajan doesnt provide
any specific features for collaboration per se, however they could be used collaboratively through
their underlying service based modality. Users can use shareable grid services in the form of
workflow tasks.

Application Development Support Most WfMS provides a minimal set of auxiliary or integrated
tools for application development. Depending upon the problem domain, they might or might
not be sufficient. This calls for an external development environment suitable to the user needs
along with the workflow system. Several systems provide mechanisms for saving and reuse of
previously created workflow and legacy applications. These repositories, often called “application
factories” [25] acts as a collection of invocable applications through a registry. User may compose
new workflows using a combination of these applications with appropriate parameters. Kepler
[5] provides some support through [write more ...]. Other workflow systems does not seem to
provide any significant application development support with an exception of gridAnt, which
provides an application factory construct.

Execution Model Workflow definitions for large-scale problems may get reasonably complex
[26]. Such complexity calls for a sufficiently usable execution model. A workflow execution
model can be as sophisticated as an intuitive box-and-pipe network or can be as raw as a set of
customised scripting statements. At times the execution model might be difficult to learn and
apply. Thus requiring user-training for more then simplest of problems. XML and XML-based
vocabularies are most popular execution specification models for workflow systems. Business
Process Execution Language is increasingly becoming popular for the representation of scientific
workflows[26]. BPEL is Based on Service Oriented Architecture (SOA) wherein, every process
acts as a service. The execution specification is based on the XML schema. This schema is
responsible for the typed variable system and name resolution through namespace management.
It provides constructs for activities such as variable declaration, service invocation and SOAP
message reciept, dataflow and controlflow. BPEL can maintain and communicate temporary
data structures to other services during execution.

2.2.2 Rapid Application Development Environment

Architecture Scientists that develop applications need a very high level of abstraction. This
motivates a need for rapid prototyping and the reuse of existing components in an easy fashion.
Java CoG kit [27, 28] is a Rapid Application Development environment for Computational Grids.
Talisman [29] is a Rapid Application Development component of the myGrid project.

Literature Review 17

2.2 Problem Solving Environments

2.2.3 Parameter Sweep Environment

Architecture AppLeS or the Application Level Scedular is a parameter sweep system that takes
into account the system and application requirements in order to adaptively schedule the appli-
cation jobs. It attempts to exploit the embarrasingly parallel constructs within the application
and deploys them on the grid.

Controller

APST Daemon

Scheduler
(sched_api impl.)

Workqueue Algorithm

Actuator

GRAMNetSolveNFSIBPGASS
localNWS

transport_api impl. env_api impl.

Meta-Data
Bookkeeper

(meta_api impl.)

SufferageMaxMin MinMin XSufferage

Grid Infrastructure LegionIBM

NWS

GRAM

GSINetSolve Ninf

daemon/client
wire protocol APST Client

actuate report actuate retrieve

queryexecutetransfer

Figure 2.5: The AppLeS parameter sweep model [30]

Application Development Support AppLeS supports the development of large scale parameter
sweep applications through the what is called the AppLeS Parameter Sweep Template or APST.

HPC Usage AppLeS uses the underlying grid resources in an optimal way by enabling colocation
of data by parallel jobs.

18 Literature Review

CHAPTER 3

Available Infrastructure

3.1 Introduction

As a part of this research, it is desired to leverage the available infrastructure within the Virtual
Laboratory for e-science (VL-e project). This chapter describes the available infrastructure and
their working in brief.

3.2 Resources Infrastructure

The Storage Resource Broker (SRB) The Storage Resource Broker (SRB) [31] is the large-scale
storage facility hosted by the SARA SARA Computing and Networking Services and the Dutch
Institute for Nuclear Physics and High Energy Physics (NIKHEF) at Amsterdam.

The VL-e Proof-of-Concept Environment(VL-e PoC) The Vl-e Proof of Concept (VL-e PoC) envi-
ronment is a common, shared hardware and software support platform within the VL-e project.
Various tools are available to scientists to run scientific applications.

The VL-e Toolkit (vlet) The VL-e Toolkit is a software utility developed within the VL-e project
in order to ease the usage of virtual resources available in a transparent and user-friendly manner
by aggregating the resources and presenting them to the users via a single graphical interface.

The Adaptive Information Disclosure (AID) Services AID services can be used to support prove-
nance. The annotation tool is probably the most relevant service to your problem. It currently
works as a firefox plugin that let’s you ’annotate’ the URL being viewed with either established
jargon (e.g. imported as OWL into the repository) or with ad hoc tags. AID is a generic toolkit
developed by the AID group, aimed at groups of knowledge workers that cooperatively search,
annotate, interpret, and enrich large collections of heterogeneous documents from disparate lo-
cations. It consists of a set of services for metadata, learning, and storage and retrieval. A
few example clients are provided such as an annotation client, query construction client, and a
named-entity recognition client that show how the services can be applied in practical applica-
tions. The services perform the following tasks: text indexing, text statistics, meta-data storage
and querying, thesaurus reasoning, annotation, text retrieval, spelling correction, synonym de-
tection, and model learning. The AID toolkit is based on web services and W3C standards such

19

3.3 Legacy Systems

as OWL, RDF(S), and SKOS, and as well as other (mostly) open source technologies such as
SRB, Lucene, Sesame, and Jena. The AID components are available as web services in the PoC
environment.

3.3 Legacy Systems

This section describes the legacy systems used for this work: DeVIDE for the development,
Nimrod for optimization (parameter sweeps) and evaluation (image sweeps), and the AMC-
DWMS for clinical deployment.

3.3.1 DeVIDE

DeVIDE or the Delft Visualisation and Image Processing Development Environment is a plat-
form independent software system that facilitates for the rapid creation, testing and application
of modular image processing and visualisation algorithm implementations[32]. DeVIDE pro-
vides, what is called a modular development environment, wherein, the modules provide a visual
input/output and connectivity modality, through which, a pipeline or ’network’ could be devel-
oped. This network accepts an image and optionally several parameters and performs the series
of operations as specified by the network modules. Every module in DeVIDE has its own ‘prop-
erties’ that control its runtime behavior. DeVIDE facilitates to interactively alter the values of
module properties. The network hence developed could also be used as a new third-party module
by another application. A GUI for visualising and interacting with the processed image data
makes the experimentation with alternative algorithms faster and effective.

VTK and ITK Support The Visualization ToolKit (VTK)[33] is an open source, freely available
software system for 3D computer graphics, image processing, and visualization. VTK consists of
a C++ class library, and several interpreted interface layers including Tcl/Tk, Java, and Python.
The National Library of Medicine Insight Segmentation and Registration Toolkit (ITK)[34] is
an open-source software system for medical image processing in two, three and more dimensions.
Both VTK and ITK are application libraries, and provide a potentially powerfule set of function-
ality through wrapped usage from the Python environment. DeVIDE integrates all functionality
in both of these libraries and so makes all this functionality available through a data-flow appli-
cation builder architectural model. It is possible to experiment with any combination of VTK
and ITK elements at runtime. Effectively, one can experiment not only with parameters and
input data, but also with different code paths.

DeVIDE Environment Figure 3.1 shows a snapshot of the DeVIDE environment. Shown in the
figure is a visual interface to a simple DeVIDE network consisting of three modules. A DicomRDR
module provides the image slices from the Dicom data files it reads as input. DicomRDR sends
the output to the resampleImage module where the sampling rate could be adjusted by modifying
the spatial parameters. Finally, the resampled output data goes as input to the slice3DViewer
module. A user can activate/execute the network and visualise the image through slice2DViewer.
Figure 3.1 shows a snapshot of the image as visualised through the slice3DViewer module. The
interface also provides an interactive facility using which a user can navigate through the image
in four dimansions using standard I/O devices such as a mice and keyboard.

20 Available Infrastructure

Legacy Systems 3.3

Figure 3.1: DeVIDE network in interactive mode during the development phase.

3.3.2 AMC-DWMS

The AMC-DWMS [35] or the Acedamisch Medical Centrum Distributed Workflow Management
System is a software framework developed at AMC for the deployment of the custom MIA
applications in a clinical setting. The system provides logistics facilities to support various
clinical activities. Based on a Service Oriented Architecture(SOA), AMC-DWMS uses loosely
coupled modules specialized to perform a specific task. A workflow is specified using a specialized
XML vocabulory as shown in figure 3.2. These ‘templates’ are composed of logical units that
correspond to various activities within the workflow. The system supports image import-export,
caching, analysis and notification services among others. A relational Database is used to store
and retrieve the information related to workflow actions. A semi-graphical interface, called
‘control-center’ is used to install, configure, update, synchronize and monitor module activities.
The system is specialized in handling DICOM server data, a proprietary image format and
protocol.

3.3.3 Nimrod

Nimrod/G is a High Throughput Computing environment that performs job management and
resource scheduling based on a cost and time optimization strategy. It provides a queue man-
agement mechanism; a job submission system to communicate with other resources, and an
integration facility with resource management entity. In this way the resources are chosen from
a resource pool for individual jobs hence the jobfarming. The job is wrapped in a software con-
tainer called nimrod agent that contains job scheduling and dispatch specific information. Hence
one agent per node per job makes all job independent of each other. Nimrod/G performs these
activities with the help of a batch-like plan file submitted to its parametric engine(see figure
3.3). It sends out a number of parameter sweep calculations at the start of the execution of the
tasks. Next, these calculations are executed in parallel on available resources. When finished,
the calculation results are collected back from the resources and sent back to the client. During
the execution of these tasks, the client computer only needs to dispatch and collect the jobs to
and from alternative nodes in accordance with the commands on a plan file. A sample plan file
is shown in figure 3.3. Here a python script called ‘tangent.py’ is executed across a range of 1
to 3 for four parameters hence forming 81 independent jobs. In job farming, each node and,

Available Infrastructure 21

3.3 Legacy Systems

<unit xsi:type=“xwf:DicomSeries” description=“CTA Blanco”>
<dicomTagCondition>
<tag tagId=“0” description=“Acquisition Protocol”>
<group>24</group><element>4144</element>
<regEx>MMBE | CTA | CAROTIDEN | WILLIS</regEx>
</tag>
<tag tagId=“1” description=“Manufacturer Model”>
<group>8</group><element>4240</element>
<regEx>MX8000</regEx>
</tag>
<tag tagId=“2” description=“Contrast Bolus Agent”>
<group>24</group><element>16</element>
<regEx>CONTRAST</regEx>
</tag>
<boolEx>tag(0) & tag(1) & !tag(2)</boolEx>
</dicomTagCondition>
</unit>

Figure 3.2: Example of an XML used as workflow specification with DWMS.

therefore, each analysis runs independent of all other nodes. This method is particularly suited
to examining large parameter spaces.

22 Available Infrastructure

Legacy Systems 3.3

parameter THRESH integer range \

from 1200 to 1600 step 1;

task main

copy ./rundevide.sh node:.

copy ./dev_nw.dvn node:.

copy ./img_in.vti node:.

node: execute ./rundevide.sh $THRESH img_in.vti \

./test_network.dvn img_out.vti

copy node: stdout stdout.${THRESH}

copy node: stderr stderr.${THRESH}

copy node: dev_nw.dvn dev_nw${THRESH}.dvn

copy node: img_out.vti img_out${THRESH}.vti

endtask

stage-in

stage-out

Figure 3.3: Example of a nimrod plan file.

Available Infrastructure 23

CHAPTER 4

Proposed Architecture

4.1 Introduction

Architectural framework that support the MIA lifecycle must provide a way so as to make a
diverse set of WfMS and PSE work together. In order to support new and unforeseen tools the
architecture must be extensible. Further, it should be able to make use of the underlying grid
resources.

The proposed architecture is a component based approach where-in customized and glued
interfaces of existing systems talk to each other in a predefined way.

4.2 System Architecture

The proposed architecture is illustrated in 4.1. It supports the information flow among different
application lifecycle phases via data provenance mechanisms [36]. Three layers (User Interface,
Web-Services and Distributed Resource) along with legacy systems (AMC-DWMS, Nimrod and
DeVIDE) form a framework for managing and organizing the information associated with a MIA
application.

User Interface Layer The user interface layer provides command-line and web-browser based
interaction with the system.

Grid-services Layer The grid-services layer consists of Application Description, Data Provenance,
Project and Application Execution management services. These services are invoked directly by
the user or through the stubs extended from the legacy systems. Application Description services
provide a mechanism to describe, store, access and retrieve MIA applications and their versions.
Application Execution services are used to store information that needs to be tracked from phase
to phase, including applications, parameters, image data, and standard logs. Project management
services facilitate the creation, access, subscription and cleaning up of projects. Using the Data
Provenance services, the user can retrieve provenance data to navigate back during the MIA
lifecycle. The complete settings used to generate a given result can be restored and used to run
the application interactively for diagnosis and backtracking purposes. After sufficient testing,
The application is saved in the Application Registry using the Application Description services.

25

4.4 User Interaction

Resources Interface The Virtual File System (VFS) layer abstracts the database. Distributed
resources are managed through vlet API. The postgreSQL database is accessed through the Java
Database Connectivity API through a database connection pool.

Resource Layer Distributed storage resources available within the VL-e are used to store per-
sistence data. The data and references are controlled through PostgreSQL database. SRB,
gridFTP and local file systems form the data storage. These are transparent to the user and
accessed through URLs.

Legacy Systems The legacy systems perform application execution operations. These executions
are recorded in the system through service calls placed in the service-call stubs. These stubs are
service call programs inserted into the legacy systems.

App. Description
Management

App. Execution
Management

Project Management

VLET/VFS

User Interface (Web Browser/Commandline)

Data Provenance
Management

AMC-DWMS

Nimrod

DeVIDE

Other External
System

Service
call stubs

Grid-Service Layer (OGSA-WSRF)

User User

Java Database Connectivity

PostgreSQL
DataBase SRB Grid-FTP Local-FS

Figure 4.1: Architecture

4.2.1 Architecture Features

Passive The architecture supports “passive” information management. Its passive in the sense
that the information is stored and retrieved by the external systems and users after the events
happen. This enables a long term management and diagnosis of activities along the MIA lifecycle.

User-based Authentication Users associated with the system can only access and manipulate the
information. This is achieved with user based authentication mechanism. The system allows
only the users with valid credentials stored in a service container.

Scalable The proposed architecture is incremental systems scalable. This means that since
independent calls to webservices generate a new instance any number of new systems does not
affect the performance of the architecture.

4.3 User Interaction

Figure 4.2 shows a typical user’s interaction with the system. The horizontal boxes show the
APIs and the vertical lines show their lifetime. The horizontal arrows connecting these lines
show the users interaction with these APIs. The labels on these arrows represent the function
calls that the user makes to the APIs. Each vertical rectangle represents the life-time of the
function call.

26 Proposed Architecture

Modeling Concepts 4.4

4.4 Modeling Concepts

The concepts as described in the requirements in chapter 1 are modeled using the Relational
Database Management System (RDBMS)(figure 4.3). The database stores information in the
form of values and references to the remote resources. These references are stored in the form of
url links pointing to the virtual file system. The system maintains entity and referential integrity
through primary and foreign-key relations respectively.

Entities and Relationships

Advantages of RDBMS Since the provenance requirements of the system are predefined and
constant a relatively rigid and fast information design is best suited. RDBMS is a proven
and robust approach to management of a database. Predefined associations among entities in
RDBMS lends itself into intuitive and hence stable design. Retrieval of data from an RDBMS is
computationally cheap, flexible and quick.

Proposed Architecture 27

4.4 Modeling Concepts

P
rovenance

A
ppD

escM
gm

t
G

S
I

P
rojM

gm
t

A
ppE

xecM
gm

t

U
S

E
Rauth(user,credentials)

createS
ession(nam

e,user,project,description)

add(user, project, ...)

createU
ser(nam

e, affiliation,contact)

createA
pp(nam

e, desc, version, param
eter,iscom

p)

createP
roj(nam

e, desc, user,...)

addV
ersion(app, version, desc, ...)

addR
un(user, session, app, param

eter, desc)

fetchR
un(user, session, app, param

eter, desc)

find(user, desc, param
nam

e, session)

F
igure

4.2:
Sequence

D
iagram

depicting
the

user’s
interaction

w
ith

the
system

28 Proposed Architecture

Modeling Concepts 4.4

R
u
n

U
s
e
r

P
r
o
j
e
c
t

S
e
s
s
i
o
n

A
p
p
l
i
c
a
t
i
o
n

h
a
s

h
a
s

A
p
p
V
e
r
s
i
o
n

h
a
s

a
s
s
o
c
i
a
t
e
d

a
s
s
o
c
i
a
t
e
d

s
u
b
s
c
r
i
b
e
s

c
r
e
a
t
e
sA
u
t
h
o
r

n
a
m
e

n
a
m
e

d
a
t
e
_
c
r
e
a
t
e
d

d
e
s
c
r
i
p
t
i
o
n

e
m
a
i
l

o
r
g
a
n
i
z
a
t
i
o
n

n
a
m
e

d
a
t
e
_
c
r
e
a
t
e
d

d
e
s
c
r
i
p
t
i
o
n

d
a
t
e
_
a
c
c
e
s
s
e
d

d
a
t
e
_
c
r
e
a
t
e
d

d
e
s
c
r
i
p
t
i
o
n

d
a
t
e
_
c
r
e
a
t
e
dd
e
s
c
r
i
p
t
i
o
n

v
e
r
s
i
o
n

i
s
c
o
m
p
a
t
i
b
l
e

d
e
s
c
r
i
p
t
i
o
n

M
M

M
M

M

MM

M

M

1

1

1

1

i
s
a
c
t
i
v
e

i
s
c
h
e
c
k
e
d

n
a
m
e

c
o
m
p
l
e
t
i
o
n
_
c
o
d
e

l
o
c
a
t
i
o
n

h
a
s

P
a
r
a
m
e
t
e
r

n
a
m
e

v
a
l
u
e

i
s
r
e
f
e
r
e
n
c
e

1

M

1

i
n
p
u
t
_
o
u
t
p
u
t

t
y
p
e

h
a
s

M 1

1

d
e
s
c
r
i
p
t
i
o
n

P
a
r
a
m
e
t
e
r
_
i
n
s
t
a
n
c
e

h
a
s

M

a
s
s
o
c
i
a
t
e
d

1

1

A
t
t
a
c
h
m
e
n
t

n
a
m
e

A
A

A

H
a
sA

1 M

B

d
a
t
e
s
u
b
s
c
r
i
b
e
d

i
s
a
c
t
i
v
e

1 M

E
v
e
n
t

B

n
a
m
e

u
s
e
r
n
o
t
i
f
i
e
d

F
ig

ur
e

4.
3:

E
nt

it
y

R
el

at
io

ns
hi

p
M

od
el

fo
r

th
e

M
IA

In
fo

rm
at

io
n

Sy
st

em

Proposed Architecture 29

CHAPTER 5

Implementation and Test

5.1 Introduction

This chapter describes the implementation of the architecture proposed in the last chapter. The
implementation was done with a bottom-up approach implementing the methods then wrap-
ping them into grid-enabled grid-services. The section 5.3 describes the functions as they were
implemented. The section 5.4 desribes the implementation of grid-services.

5.2 APIs and Functions

Each of the APIs as described in chapter 4 contains several functions each performing a specific
task. As shown in Table api-functions.

5.3 Functional Specification

Table 5.1 shows the mapping of APIs into functions. These functions are implemented as part of
APIs and wrapped into the grid-service. Several functions are overloaded with a similar signature
but applying on different entities. Following is a brief description of these generic functions.

• Create: Create functions create an instance of the entity in question. This involves setting
up of values of the properties of that entity and recording them into the database for future
retrieval.

API Functions
Application Description Man-
agement

Register-Application, Add-Version

Application Execution Manage-
ment

AddRun, FetchRun

Data Provenance Management Find
Project Management create/delete [project,session,user], subscribe/unsubscribe

user

Table 5.1: APIs and Functions

31

5.5 Grid-Service Implementation

• Update: Update functions alter the values of one or more properties. Update method is
either triggered by the user or triggered automatically based on events.

• Delete: Delete functions are used to delete an entity.

• Get: Get functions are used to locate the id of an entity given one or more properties
associated with it. It returns more then one entities if they match with the provided
parameters.

• Find The provenance related requirements are addressed through the find methods. Find
Performs a search based on the criteria given by the user. A basic form of find performs
searching of entities and an advanced form performs a search on the associations among
entities.

Apart from the above mentioned generic functions, several other functions were implemented.
Following list briefly describes the key functions:

• add-run This function performs the recording of an execution into the system. Add-Run
is a batch mode function. The information recorded as part of an addrun function is the
user, project and session associated with the run and parameters and user notification
status for the outcome of this run.

• fetch-run As the name suggests a Fetch-Run action performs fetching of information
related to the run to a local computer. The associated parameters are also downloaded
from the remote locations. This information is fetched into a ’run-profile’ file and includes
information about associated user, project and session and parameters. Remotely located
files associated with this run are downloaded into a designated directory of the user.

• Register-application This method registers the application into the system. The appli-
cation could be retrieved at a later time. Further, additional versions of the application
can also be registered with the application.

• user-subscribeThis method enables a user to be subscribed to a project and session on
specific events. Subscription information is used to notify users via email when the events
occurs.

• exec-query This method provides a user friendly facility to submit a free query to the
system.

5.4 Grid-Service Implementation

A factory-insance pattern based Globus 4 complaint grid-service was implementated. Figure 5.1
depicts the invocation mechanism for the service. An authenticated client invokes the factory
service. The factory service in turn creates an instance of the service. The instance serves the
service call and is destroyed by the container at the end of the call.

5.5 Experimental Setup

The system was tested with a representative case that demonstrates a MIA lifecycle over a
time period. An experimental setup was implemented to realize all phases of a simple MIA
application using the proposed PSE. Both Nimrod and AMC-DWMS run DeVIDE networks in

32 Implementation and Test

Experimental Setup 5.5

User

GT4 Container

Factory
Service

Service
Instance

Client

Invoke Response

Create
Instance

Figure 5.1: A Factory-instance pattern grid-service invocation

command-line mode. Before running the DeVIDE application, the data and DeVIDE network
are staged in according to the Nimrod plan or the AMC-DWMS workflow. When the application
is completed, the output results are staged back. Currently no real data provenance mechanisms
are implemented; instead, all data (input/output images), standard log files (stdout,stderr) and
DeVIDE networks are stored in the local file system. At a later stage, the user can manually
retrieve data from the saved files and restore the interactive DeVIDE application with the same
settings.

Example Application. A region-of-interest (ROI) is segmented from an image using a threshold
operation. A DeVIDE network imports the image and a threshold range (TR) as parameters,
and outputs a binary mask for the voxels within the chosen TR. Different ROIs can be selected by
choosing a proper (optimal) TR. Here we focus on segmentation of blood vessels from contrast-
enhanced CT Angiography scans of the head.

Development. A DeVIDE network was developed to implement the segmentation application
using available components in DeVIDE’s library. The network contains a VTK image reader,
a ‘DoubleThreshold’ image processing operator, a custom ‘Slice3DViewer’ and a VTK image
writer. During development, the user runs DeVIDE interactively, setting the TR on the GUI
and observing the generated result in a viewer.

Optimization/Evaluation. Nimrod was used to investigate the optimal TR to segment blood
vessels. A parameter sweep on the upper threshold value was performed, while keeping the
lower threshold fixed (1200 HU). somefig-left shows the Nimrod plan for varying the threshold
between 1200 HU and 1600 HU. The data and executables are staged-in, DeVIDE is executed
in command-line mode, providing the image, parameters and the network as arguments, and the
output data is staged-out. The resulting images are visually inspected by an expert to determine
the optimal threshold value to segment blood vessels (i.e. 1210 HU). In a similar fashion, an
image sweep was performed with Nimrod to run the method with the optimal settings for many
images.

Clinical Deployment. AMC-DWMS was used to insert this application into a simulated clinical
setting. The complete workflow consists of the following tasks (see right): import the CT scan
(DICOM) data from a server, convert it to the appropriate VTK data format, start the DeVIDE

Implementation and Test 33

5.6 Test Cases

application with the optimal parameters, convert output from VTK to DICOM format, and
export results to a DICOM node.

Feedback in Lifecycle. During the inspection of results produced during optimization, evalua-
tion or deployment, a medical or technical expert can detect problems (e.g., degraded output,
algorithmic instability). Using the information saved in the log files, it is possible to reload the
DeVIDE network in interactive mode with the input image and parameters that generated the
problem. The user can then add more components to the network (e.g. other 3D viewers) to
comfortably investigate the situation at hand.

5.6 Test Cases

Application Registration Application Registration action (figure 5.2) interactively performs the
registering of a new application into the system. The system records the author of the application
and application creation time. A new version can be added to an existing application and reg-
istered into the system. The system keeps information about the version number, compatibility
and author of the version.

=======Main Menu==========

1. Prepare and Register a New Application

2. Add Version

3. Add Parameters

4. Quit

Choose One: 1

Enter Application name: DeVIDE

Description: Commandline Version of DeVIDE

Application Prepared, Registering ...

Application registered with id 12

Figure 5.2: Application Registration

User Subscription A user can subscribe to a project and session (figure 5.3). A subscribed user
is subject to recieve notifications via email based on the events he has been subscribed to the
project and session. Common examples of events are OK, ERROR, ABORT meaning a normal
execution, an error in execution and execution abnormally terminated respectively.

Add-Run User can invoke an add-run method using a commandline in batchmode. The addrun
method accepts information related to the run as shown in figure 5.4 and registers the run into
the system. In this case, a DeVIDE application running on a VTI image to obtain a region of

34 Implementation and Test

Test Cases 5.6

====Main Menu=====

Enter Session description: Development Session

Enter Session name: devel

Enter User Description: Programmer

Enter User name: Ketan

Choose one: 6

6. Add user to Session

.......
2. ...

1. Create Project

Adding user to session ... done.

Is the user active(true/false): true

Enter event for subscription:(OK/ABORT/ERROR) ERROR

Figure 5.3: User Subscription

interest is added by user with username “ketan” and as a part of “optimization” session. The
’ftrue’ option with the parameters specifies to save the parameters to a local folder.

add-run \

--notify true \

--status OK \

network;./testnetwork.dvn;ftrue;outfile;./image-out.vti;ftrue \

--param threshold;1100;ffalse,infile;./image-in.vti;ftrue, \

--app name=rundevide.sh, version=1.0 \

--session name=optimization \

--project name=ROI \

--user name=ketan \

Figure 5.4: Add Run

Fetch-Run A registered run can be fetched through the interactive fetch-run. As figure 5.5
shows, the fetched run is saved in a ’profile’ file marked with the id of the run fetched. The
profile contains relavant information about the run downloaded and path to the associated ref-
erenced parameters downloaded. In this case the parameters associated with the run would be
downloaded to the “/tmp” folder of local machine. In the case where multiple hits are found the
system returns an error message.

Find The interactive find method is used to address the provenance requirements. A basic form
of find performs the search on the entities. An advanced form of find performs the search on the
associations of the entities. Several options for find are available. For example a user could be

Implementation and Test 35

5.6 Test Cases

Fetch Run ...

done. Run profile: run_06.profile

Enter Destination Directory: file:///tmp

Is user Notified?: true

Enter Completion status: OK

Enter description: test

Choose one: 1

4. Find Run by Application

3. Find Run by Session

2. Find Run by User

1. Find Run by Attributes

========Main Menu========

Figure 5.5: Fetch Run

found based on the runs he is responsible for or the application he has authored. As figure 5.6
demonstrates, the user finds a project with name and description followed by a free query on
sessions. As shown in figure 5.6 b) one can find a run based on the users who executed it.

36 Implementation and Test

Test Cases 5.6

=======Main Menu=========

1. Find Project

2. Find Session
...
...

Choose One: 1

Enter name of Project: MMBE

Enter description of Project: MMBE

--

id || name || description

--- || ---------------- || --------------------

1 || MMBE Pilot || MMBE Pilot Project

Free Query

Enter the name of entity: session

List Attributes (q to end list):

name

description

q

select name, description from session ...

 name || description

 devel || development session

 eval || Evaluate

 opt || Optimize

=======Main Menu=========

1. Find Project

2. Find Session
...

6. Find Run

Choose One: 6

1. Find Run by Attributes

2. Find Run by User

3. Find Run by Session

4. Find Run by Application

Choose One: 2

Finding Run by User

Enter user name: Ketan

Enter User Description: Programmer

Runs found...

--

id || completion code || description

---||----------------------------||--------------------

6 || OK || null

8 || OK || MMBE final

12 || ABORTED || DeVIDE First
--

a) Basic Find b) Advanced Find

Figure 5.6: Basic and Advanced form of Find

Implementation and Test 37

CHAPTER 6

Conclusions and Outlook

6.1 Conclusions

6.2 Outlook

We proposed a general architecture of a PSE to facilitate the information flow among systems
supporting different phases of a MIA application lifecycle in the VL-e project. The PSE is
composed of existing systems and a mechanism to track provenance data that can be used to
navigate across phases. Information is saved to enable invoking the application in DeVIDE
interactive mode at a later stage, when errors are detected during optimization, evaluation or
deployment.

Several practical challenges had to be faced initially. Currently all systems work on com-
patible platforms, and a simple logging mechanism enables information flow among them. With
the prototype and simple application presented in this paper, we have demonstrated that it is
possible to construct a PSE that assists across all phases of MIA development for clinical appli-
cations. A proposed algorithm can be interactively developed in a rich graphical environment,
then seamlessly transported through parameter optimization and evaluation phases, and finally
deployed in clinical practice, all using a unified set of tools. At any stage return to a previ-
ous phase in the lifecycle is possible, with the prospect of facilitating the maintenance of MIA
applications that meet the standards of health care.

The implementation described here shows a minimal setup in which the systems were adapted
to run in the same platform following the requirements of the VL-e PoC. Using this experimental
set-up, we now focus on the supporting data provenance mechanisms, which are essential for
the design and implementation for the proposed PSE. Our future work concentrates on the
investigation of extensive provenance requirements and implementation of provenance mechanism
using standard practices.

39

APPENDIX A

Choice of Technology

java As is the programming platform used for vlet.

jpa and jakarta dbcp persistence architecture, jakarta database connection pooling

postgresql database, why this? what purpose?

javamail and jndi

globus and gridftp

vfs

41

Bibliography

[1] A. Dhawan, Introduction to Medical Image Analysis. Wiley Interscience, 2003.

[2] R. Kikinis, S. K. Warfield, and C.-F. Westin, “High performance computing in medical image
analysis at the surgical planning laboratory,” in High Performance Computing Asia’98,
(Singapore), pp. 290–297, September 22-25 1998.

[3] http://www.wfmc.org/.

[4] S. Olabarriaga, J. Snel, C. Botha, and R. Belleman, “Integrated support for medical im-
age analysis methods: from development to clinical application,” IEEE Transactions on
Information Technology in Biomedicine, January 2007.

[5] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. Lee, J. Tao, and
Y. Zhao, “Scientific workflow management and the kepler system.”

[6] E. Gallopoulos, E. Houstis, and J. R. Rice, “Computer as thinker/doer: Problem-solving
environments for computational science,” IEEE Comput. Sci. Eng., vol. 1, no. 2, pp. 11–23,
1994.

[7] I. Taylor, “Triana generations,” e-science, vol. 0, p. 143, 2006.

[8] Y. J. Choi, T. Oroguchi, Y. Kato, M. Takeda, and Y. Tago, “Labgrid: Integrated problem
solving environment system for high throughput computing,” e-science, vol. 0, p. 103, 2006.

[9] K. Schuchardt, B. T. Didier, and G. Black, “Ecce - a problem-solving environment’s evolu-
tion toward grid services and a web architecture.,” Concurrency and Computation: Practice
and Experience, vol. 14, no. 13-15, pp. 1221–1239, 2002.

[10] I. T. Foster, “Globus toolkit version 4: Software for service-oriented systems.,” in NPC
(H. Jin, D. A. Reed, and W. Jiang, eds.), vol. 3779 of Lecture Notes in Computer Science,
pp. 2–13, Springer, 2005.

[11] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky, R. V.
van Nieuwpoort, A. Reinefeld, F. Schintke, T. Schott, E. Seidel, and B. Ullmer, “The grid
application toolkit: Towards generic and easy application programming interfaces for the
grid,” in Proceedings of the IEEE, vol. 93, pp. 534–550, March 2005.

[12] https://forge.gridforum.org/sf/projects/ogsa-wg.

[13] D. C. Marinescu, “A grid workflow management architecture.” White paper.

43

[14] W. M. P. van der Aalst, , B. Kiepuszewski, and A. P. Barros, “Workflow patterns,” Dis-
tributed and Parallel Databases, vol. 14, pp. 5–51, July 2003.

[15] J. Yu and R. Buyya, “A taxonomy of workflow management systems for grid computing,”
2005.

[16] P. Wagstrom, S. Krishnan, and G. von Laszewski, “GSFL: A Workflow Framework for Grid
Services,” in SC’2002, (Baltimore, MD), 11-16 Nov. 2002. (Poster).

[17] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz, “Pegasus: A framework for
mapping complex scientific workflows onto distributed systems,” Scientific Programming,
vol. 13, no. 3, pp. 219–237, 2005.

[18] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R. Graves, N. Gupta, V. Gupta, T. H.
Jordan, C. Kesselman, P. Maechling, J. Mehringer, G. Mehta, D. Okaya, K. Vahi, and
L. Zhao, “Managing large-scale workflow execution from resource provisioning to provenance
tracking: The cybershake example,” e-science, vol. 0, p. 14, 2006.

[19] E. Deelman, “Mapping abstract complex workflows onto grid environments,” 2003.

[20] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, “Chimera: A virtual data system for repre-
senting, querying, and automating data derivation,” 2002.

[21] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover,
M. R. Pocock, A. Wipat, and P. Li, “Taverna: A tool for the composition and enactment
of bioinformatics workflows,” Bioinformatics Journal, vol. 10, no. 17, pp. 3045–3054, 2004.

[22] M. Hategan, G. von Laszewski, and K. Amin, “Karajan: A grid orchestration framework.”
Supercomputing 2004, Pittsburgh, 6-12 Nov. 2004. (Refereed Poster).

[23] GridAnt: a client-controllable grid workflow system.

[24] Z. Guan, F. Hernandez, P. Bangalore, J. Gray, A. Skjellum, V. Velusamy, and Y. Liu, “Grid-
flow: a grid-enabled scientific workflow system with a petri-net-based interface: Research
articles,” Concurr. Comput. : Pract. Exper., vol. 18, no. 10, pp. 1115–1140, 2006.

[25] D. Gannon, L. Fang, G. Kandaswamy, D. Kodeboyina, S. Krishnan, B. Plale, and A. Slomin-
ski, “Building grid applications and portals: An approach based on components, web services
and workflow tools.,” in Euro-Par, pp. 1–8, 2004.

[26] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L. Price, “Grid service orches-
tration using the business process execution language (bpel),” Journal of Grid Computing,
vol. 3, no. 3-4, pp. 283–304, 2005.

[27] G. von Laszewski, “Java CoG Kit Workflow Concepts,” accepted for publication in Journal
of Grid Computing, 2006.

[28] Grid Workflow, ch. Grid Workflow with the Java CoG Kit. 2006. in preparation.

[29] O. TM., “Talisman–rapid application development for the grid.,” Bioinformatics, vol. 19,
pp. 212–214, 2003.

44 Bibliography

[30] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, “The apples parameter sweep tem-
plate: user-level middleware for the grid,” in Supercomputing ’00: Proceedings of the 2000
ACM/IEEE conference on Supercomputing (CDROM), (Washington, DC, USA), p. 60,
IEEE Computer Society, 2000.

[31] C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The SDSC storage resource broker,” in
CASCON’98 Conference, 1998.

[32] C. Botha, “DeVIDE - The Delft Visualization and Image Processing Development Environ-
ment,” tech. rep., TU Delft, May 2005. http://cpbotha.net/DeVIDE.

[33] http://www.vtk.org/.

[34] http://www.itk.org/.

[35] J. G. Snel and S. D. Olabarriaga and J. Alkemade and H. G. van Andel and A. J. Nederveen
and C. B. Majoie and G. J. den Heeten and M. van Straten and R. G. Belleman, “A
Distributed Workflow Management System for Automated Medical Image Analysis and
Logistics,” in accepted to IEEE-CMBS special track on Grids for Biomedical Informatics,
2006.

[36] P. Buneman, S. Khanna, and W.-C. Tan, “Data provenance: Some basic issues,” in Foun-
dations of Software Technology and Theoretical Computer Science, 2000.

Bibliography 45

