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“All models are wrong, but some are useful”

George E.P. Box
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Abstract

User interaction data provides an invaluable source of training data for learning-

to-rank models. The cost-effectiveness of collecting user interaction data and

the abundance of implicit feedback that can be obtained from it recently in-

creased the interest in learning-to-rank from user interactions. However, a chal-

lenge in learning from user interaction data is the inherent bias and noise, most

notably position bias. The unbiased learning-to-rank framework enables learn-

ing of unbiased models from biased and noisy user interaction data. The critical

component in unbiased learning-to-rank is propensity estimation employed to

re-weigh user interactions using Inverse Propensity Scoring. In the unbiased

learning-to-rank framework, propensity is equivalent to position bias. We pro-

pose a novel system for position bias estimation for an online grocery store and

similar e-commerce stores. The system employs the Position-Based Propensity

Model utilizing add to basket events. The parameters of the model are learned

through a scalable implementation of the Expectation-Maximization algorithm.

The Position-Based Propensity Model significantly outperforms both baseline

models, the Document-Based CTR and Rank-Based CTR model, in terms of

the log-likelihood score on the observed test data. Furthermore, the novel

noise filtering extension of the Position-Based Propensity Model, employing

order data to overcome trust bias, significantly increases the performance of

the model. We find that the Position-Based Propensity Model estimates a

higher position bias compared to other e-commerce scenarios considered in the

literature. Most likely due to the specific characteristics of an online grocery

store and how customers interact with the application. We experiment with a

novel extension of the model that utilizes display events but find that — based

on our experiments and data — the proposed extension cannot outperform the

standard Position-Based Propensity Model. Furthermore, we investigate the

influence of personalized ranking on position bias and find that personalization

of search rankings increases position bias in the user interaction data.



Preface

This thesis concludes the two year program of the joint Master Computer Sci-

ence at the Vrije Universiteit Amsterdam and University of Amsterdam. The

six-month Master project was carried out as a research internship at Picnic

Technologies, in the Advanced Analytics and Algorithms team. The internship

was a great opportunity to apply both my professional and academic skills to

the full extent. I would like to start by thanking Picnic Technologies for the

opportunity to join the company as an intern and providing such an engaging

research project, even in these uncertain times of a global pandemic. I would

like to express my sincere gratitude to my daily supervisor Tom Steenbergen

for his invaluable guidance and feedback during the project. I would also like

to thank Dr. Adam Belloum for his guidance on the completion of the Master

project. Furthermore, I would like to thank the team members of the Advanced

Analytics and Algorithms team for their enthusiasm, inspiration and feedback.

I would also like to express my gratitude to Harrie Oosterhuis from the Infor-

mation and Language Processing Systems (ILPS) group of the University of

Amsterdam. His feedback and expert-knowledge on the topics of position bias

estimation and unbiased learning-to-rank provided valuable insights for this

thesis.

Finally, I want to thank my family and close friends for their encouragement

and support throughout my studies.



Contents

List of Figures v

List of Tables vi

1 Introduction 1

2 Problem Description 4

2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Theoretical Background 11

3.1 Learning-to-Rank in Information Retrieval . . . . . . . . . . . . . . . . . . . 11

3.2 User Interaction Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Click Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Document-Based CTR Model . . . . . . . . . . . . . . . . . . . . . . 16

3.4.2 Rank-Based CTR Model . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.3 Position-Based Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Unbiased Learning-to-Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Related Work 22

4.1 Result Randomization Methods . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Historical Click Log Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Standard Expectation-Maximization . . . . . . . . . . . . . . . . . . 25

4.2.2 Regression Based Expectation-Maximization . . . . . . . . . . . . . . 25

4.2.3 Embedded in Discriminative Models . . . . . . . . . . . . . . . . . . 26

4.2.4 Intervention Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . 27

ii



CONTENTS

4.2.5 Dual-Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.6 Simplified Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Methodology 30

5.1 Position Bias Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.2 Position-Based Propensity Model . . . . . . . . . . . . . . . . . . . . 33

5.3 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.1 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5.1 Expectation-Maximization Iteration Threshold . . . . . . . . . . . . 39

5.5.2 Expectation-Maximization Initial Values . . . . . . . . . . . . . . . . 40

5.5.3 Expectation-Maximization Data Smoothing . . . . . . . . . . . . . . 40

5.5.4 Noise Aware Position-Based Propensity Model . . . . . . . . . . . . . 40

5.5.5 Display Events Position-Based Propensity Model . . . . . . . . . . . 41

5.5.6 Personalized Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Implementation 44

6.1 Position-Based Propensity Model . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Production System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Potential Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Results 49

7.1 Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Expectation-Maximization Iteration Threshold . . . . . . . . . . . . . . . . 50

7.3 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.4 Position Bias Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.5.1 Expectation-Maximization Initial Values . . . . . . . . . . . . . . . . 54

7.5.2 Expectation-Maximization Data Smoothing . . . . . . . . . . . . . . 54

7.5.3 Noise Aware Position-Based Propensity Model . . . . . . . . . . . . . 55

7.5.4 Display Events Position-Based Propensity Model . . . . . . . . . . . 55

7.5.5 Personalized Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . 56

iii



CONTENTS

7.6 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Conclusion 60

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

References 63

Appendix 70

iv



List of Figures

2.2 Query-rank frequency distribution log-log plot. . . . . . . . . . . . . . . . . 9

2.3 Query rank-frequency distribution (truncated at rank 5000 of total 309,260). 10

3.1 Graphical representation of the Position-Based Model. . . . . . . . . . . . . 17

5.1 Window size experiment expanding window strategy. . . . . . . . . . . . . . 38

5.2 Time ordered k-fold sliding window strategy. . . . . . . . . . . . . . . . . . . 39

6.1 Overview of the production system. . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Overview of output tables in the Picnic data warehouse. . . . . . . . . . . . 46

7.1 Model performance with respect to sample size (in day buckets). . . . . . . 50

7.2 PBM EM convergence plot truncated at iteration 20. . . . . . . . . . . . . . 50

7.3 Average model performance over all folds, error bars indicate 95% CI. . . . . 51

7.4 Average model performance over all folds on non-personalized data, error

bars indicate 95% CI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.5 Position bias estimated by the standard Position-Based Propensity Model. . 54

7.6 Position bias estimated by the noise aware model extension. . . . . . . . . . 56

7.7 Position bias estimated by the display events model extension. . . . . . . . . 56

7.8 Estimated position bias for the filter based personalization experiment. . . . 58

7.9 Estimated position bias for both personalization experiments. . . . . . . . . 58

8.1 Position bias estimated by the standard Position-Based Propensity Mode

for all positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.2 Convergence plot initial values experiment {θk}, {γq,d} = 0.2. . . . . . . . . 74

8.3 Convergence plot initial values experiment {θk}, {γq,d} = 0.5. . . . . . . . . 74

8.4 Convergence plot initial values experiment 5.10. . . . . . . . . . . . . . . . . 74

8.5 Convergence plot initial values experiment 5.11. . . . . . . . . . . . . . . . . 74

v



List of Tables

2.1 General statistics on the Picnic in-app search engine. . . . . . . . . . . . . . 7

2.2 Frequency of events captured on the in-app search page of Picnic. . . . . . . 8

2.3 Distribution of the number of add to basket events per search session. . . . 9

3.1 Table of notation used in thesis. . . . . . . . . . . . . . . . . . . . . . . . . . 21

7.1 Model performance differences, * indicates statistically significant. . . . . . 51

7.2 Log-likelihood score of implemented models over all folds. . . . . . . . . . . 52

7.3 Model performance differences of proposed extension, * indicates statisti-

cally significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.4 Log-likelihood score of PBM display events extension on fold 13. . . . . . . 56

7.5 Data size statistics and PBM training time (in seconds) over all folds. . . . 59

vi



Chapter 1

Introduction

In the intersection of information retrieval and machine learning an increasing number

of systems and algorithms learn from user interaction data [1]. The cost-effectiveness of

collecting user interaction data and the abundance of implicit feedback that can be obtained

from it recently increased the interest in models that learn from user interactions for the

task of ranking in search and recommendation [2, 3, 4]. Specifically in the context of search

result ranking — which is the focus of this thesis — learning from user interactions has

several advantages over traditional learning methods. Traditionally, most learning-to-rank

systems are trained on annotated datasets collected from expert annotations or crowd-

sourcing. The annotated datasets are both costly to collect and inherently stationary,

hence they can become obsolete quickly [4, 5, 6]. Furthermore, implicit feedback reflects the

time-varying user preferences more closely compared to annotated datasets [7]. However,

a challenge in learning from user interactions is the inherent bias and noise. The problem

is that user interactions are not an absolute relevance signal but are affected by various

bias factors such as selection bias [2], presentation bias [8], quality-of-context bias [7],

trust bias [9, 10] and most notably position bias [2, 9, 11, 12, 13, 14]. Among these

biases, position bias has the strongest influence on user interactions [3]. Thus, the implicit

feedback obtained from the user interactions is inherently biased and potentially noisy.

Consequently, naive use would lead to biased and less effective ranking models [2, 3]. To

leverage the full potential of implicit feedback obtained from user interaction data, models

that learn from user interactions should account for bias. Recent work introduced the

unbiased learning-to-rank framework, which employs a counterfactual inference approach

that is proven to learn an unbiased ranking model from biased user interaction data [2, 3].

In this framework the click propensity estimation — which is equivalent to position bias

estimation under the unbiased learning-to-rank framework — and the learning-to-rank
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1. INTRODUCTION

problems are separated. The critical component in this framework is to estimate position

bias. In this thesis we address the problem of position bias estimation in the unbiased

learning-to-rank framework for an online grocery store, namely Picnic.

Picnic is Europe’s fastest growing online grocery store that aims at making online grocery

shopping affordable and convenient. Picnic is an app-only online grocery store currently

operating in The Netherlands and Germany that delivers the groceries directly to the

customer without operating any brick-and-mortar stores. The mobile application — in that

sense — is the store of Picnic. Consequently, the convergence of an app-only storefront and

the aim to make grocery shopping convenient makes it is essential to provide customers

with a seamless in-app experience. Picnic tracks in-app behavior of customers and collects

this information using an app event data pipeline. The resulting click stream data includes

information on practically any user interaction of a customer in the Picnic app. This user

interaction data is crucial for improving customer experience.

It is essential in any store that the customer can find the desired products and the

same goes for the online store of an online grocery like Picnic or any other e-commerce

store. Search and ranking fulfill an important role in this user journey. The in-app search

functionality and the ranking involved are crucial to ensure user satisfaction by presenting

the most relevant products to the user. Furthermore, optimizing the search ranking can

also be used to maximize business metrics such as product conversion and revenue [15].

Learning-to-rank for e-commerce search is an emerging new application of machine learn-

ing in information retrieval. To effectively train a learning-to-rank model a considerable

amount of labeled training data is required. Learning-to-rank models trained on user in-

teraction data can be employed for this purpose [5, 15]. However, the user interaction data

of Picnic is also affected by the aforementioned biases.

In this thesis we focus on position bias estimation for unbiased learning-to-rank under the

Position-Based Propensity Model. We propose and implement a system for position bias

estimation for an in-app product search engine of an online grocery store — or a similar

e-commerce scenario — employing a combination of historical click event data, customer or-

der data and product display event data. Furthermore, we implement a production ready

system for position bias estimation including a Python implementation of the Position-

Based Propensity Model [6, 16, 17] optimized using the Expectation-Maximization algo-

rithm [17, 18]. To the best of our knowledge, we are the first to estimate position bias in the

unbiased learning-to-rank framework for an online grocery store or a similar e-commerce

scenario, employing both add to basket click events and customer order data. Further-

more, we are the first to experiment with an extension of the Position-Based Propensity

2



1. INTRODUCTION

Model that utilizes product display events. Moreover, we are the first to estimate the effect

of personalized ranking on position bias. The proposed system can be employed in any

similar e-commerce scenario with a comparable number of products and queries.

The remainder of this thesis is organized as follows. In Chapter 2 we outline the context

and problem definition, define the research questions and discuss the considered data. We

outline the relevant theoretical background in Chapter 3. The related work on position bias

estimation is discussed in Chapter 4. In Chapter 5 we discuss the proposed methodology of

the thesis. The implementation details on the position bias estimation system are discussed

in Chapter 6. In Chapter 7 the results of the thesis are discussed. Finally, the thesis is

concluded in Chapter 8.

3



Chapter 2

Problem Description

In this chapter the problem of the thesis is formulated. First, we discuss the problem

definition. Next, we define the main research question as well as the sub-questions. Last,

a general outline of the Picnic data considered in the thesis is described.

2.1 Problem Definition

In-app product search ranking is an important part of an e-commerce store and learning-to-

rank can be employed to improve this. User interaction data provides an abundant source of

implicit feedback for such learning-to-rank models. However, this data is inherently biased

and noisy. The unbiased learning-to-rank framework enables learning of unbiased ranking

models even from biased implicit feedback. The critical component in this framework is

position bias estimation. We consider the problem of position bias estimation under the

unbiased learning-to-rank framework for an in-app product search engine of the online

grocery store Picnic.

In recent research the problem of position bias estimation has been considered for web

search [6], personal search [2, 13], hotel search [19] and e-commerce search [20]. Though,

online grocery stores are a type of e-commerce, they differ in multiple aspects from the

type of e-commerce considered by Aslanyan and Porwal [20]. First, an online grocery

store comprises a significantly different and smaller assortment. An online grocery store

and comparable e-commerce stores have a limited number of products (thousands to tens

of thousands) compared to the type of e-commerce stores considered by Aslanyan and

Porwal [20] such as eBay and Amazon where the number of products is at least a hundred

fold (millions). Furthermore, customers interact differently with an online grocery store

compared to other e-commerce stores. In an online grocery store, customers are familiar

4



2. PROBLEM DESCRIPTION

with the assortment, frequently order the same products and in many cases can directly

add a product to the basket without the need to visit a detailed information page of the

product.

The literature on position bias estimation for unbiased learning-to-rank includes no prior

work on position bias estimation for an online grocery store or similar e-commerce stores.

It is an open question how previously proposed methods for position bias estimation can

be effectively applied and adapted to fully leverage the available data and characteristics of

online grocery stores. Furthermore, there is no work carried out on how these methods can

be implemented in an efficient and scalable system. Moreover, the effect of personalized

ranking – which is common in online grocery stores – on position bias has not been studied.

In the unbiased learning-to-rank framework no prior work investigated how display event

data can be utilized for position bias estimation. From this point on, we will refer to Picnic

and assume that the concepts and solutions can be extended to any similar e-commerce

store that compares to the aforementioned scenario.

In addition to the in-app search engine, the Picnic app provides several other ways for

a customer to find and discover products. The app includes a category tree page where

products are categorized in multiple levels, a personalized page with products that the

customer purchased before as well as specific sets of curated product ranking pages such

as promotions. The effect of position bias can occur throughout the different product

rankings in the Picnic app. However, the focus of this thesis is on quantifying the position

bias effect for the in-app search engine.

2.2 Research Questions

The main research question considered in this thesis is:

How can we develop and implement a system to estimate position bias for un-

biased learning-to-rank in the context of Picnic?

To answer the main research question the following sub-questions are considered:

RQ1: What are characteristics of the Picnic search engine and the correspond-

ing user interaction data?

RQ2: Which methods for position bias estimation exist in the literature and

how do they compare?

5



2. PROBLEM DESCRIPTION

RQ3: Which method for position bias estimation can we employ and adapt in

the case of Picnic?

RQ4: How can we improve the position bias estimation method utilizing specific

characteristics and data of the Picnic in-app search engine?

RQ5: How can we develop a production ready and scalable system for position

bias estimation?

RQ6: What are potential use cases of position bias estimation for Picnic?

2.3 Data

In this section we consider the following sub-question:

RQ1: What are characteristics of the Picnic search engine and the correspond-

ing user interaction data?

The data considered for this research consists of user interaction data from the Picnic

in-app search page. This page allows a customer u to enter a search term, referred to as

query q and provides the user with a list of a variable number N of products Dq that match

the given query. The products are presented in a N
2 × 2 grid of product tiles of which the

four top most product tiles — or top most two rows — are always in the visible part of the

screen. The customer can scroll down the list of results to bring the other products into the

visible part of the screen. We consider the product tile positions in order from left to right

and top to bottom. Thus, the upper left product tile is considered as position one and the

upper right tile as position two, following this pattern down the result list. The product

tile comprises of the price, contents or weight, product image as well as labels on product

characteristics (e.g. bio). The products in the result set Dq = {d1, . . . , dN} are ranked by a

ranking function f(q, d, u) that considers a combination of attributes on the query, product

and customer. We will not discuss the details of the ranking system as this is proprietary

information and not directly relevant for this thesis. However, we do emphasize the fact

that the ranking function is personalized, meaning that based on the past purchases of a

customer the result ranking is individually optimized for the respective customer. This

ranking optimization induces that customers can be presented with divergent rankings for

identical queries. The customer can interact with the search system in different ways. The

different user interactions and corresponding frequencies, that are captured on the search

6



2. PROBLEM DESCRIPTION

Table 2.1: General statistics on the Picnic in-app search engine.

results page are listed in Table 2.2. First, the customer can directly interact with the

product tiles in the search result list. The customer can click on a product tile to add a

product to the basket. Subsequently, the customer can remove the item from the basket by

interacting with the product tile. Furthermore, the display events indicate the interaction

of scrolling in the result list and specifically that the product tile was in the visible part

of the screen. Second, the customer can click on an information icon or long press a

product tile to display a detailed information page on the product. The product detail

page, containing detailed information on the product, comprises nutritional information,

ingredients and information on the origin and supplier of the product. The customer can

also add or remove products from the basket in the product detail page. Next to the events

itself the system captures the context of every event. The context includes information on

the user that initiated the search, the respective query, the product and the encompassing

result list. The primary interest of this thesis is the event data in the search page but

additionally related data on the context can be employed to improve the position bias

estimation. The user interaction event dataset will be referred to as click log.

.

.

.

. .

.

.

. .

.

.
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Table 2.2: Frequency of events captured on the in-app search page of Picnic.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

The rank-frequency distribution of the queries is depicted in Figure 2.3. We observe the

long-tail distribution which is common in search engines [21]. A small quantity of queries

has a high frequency whereas the largest quantity of queries has a low frequency, often

occurring only once. The former group of queries are considered the head queries whereas

8



2. PROBLEM DESCRIPTION

Table 2.3: Distribution of the number of add to basket events per search session.

Figure 2.2: Query-rank frequency dis-
tribution log-log plot.

the latter group is considered the tail queries. Figure 2.2 depicts the log-log plot of the

rank-frequency distribution. We observe that compared to web search, as described by

Büttcher et al. [21], we have a larger quantity of head queries. This is revealed by the

curve of the line, in web search the rank-frequency distribution shows a more straight line

[21].

The dataset will be referred to as click log and is formalized for the remainder of this

thesis as follows. We have click log S that consist of search sessions s containing a click log

item (q, d, k, c) for every product included in the corresponding result list (q, d, k, c) ∈ s ∈
S. The click log items consist of q and d that denote the query and document identifiers

respectively, k = Z+ denotes the position on which the document was displayed and

9



2. PROBLEM DESCRIPTION

Figure 2.3: Query rank-frequency distribution (truncated at rank 5000 of total 309,260).

c = {1, 0} denotes a click (add to basket event) or non-click on the document. In this

thesis the query identifier is the corrected search term that the customer entered in the

search bar. The search term is corrected by the production search system of Picnic. We

could alternatively utilize the search term as typed by the user directly but this would yield

a reduced number of events per search term as well as additional noise. The document

identifier d is the product identifier as stored in the internal systems of Picnic. The product

tile display events are denoted by v. Some more details will be discussed in Chapter 5.

10



Chapter 3

Theoretical Background

In this chapter we outline the theoretical foundation of this thesis and discuss the relevant

theoretical background on various subjects. First, we will discuss the related elements of

information retrieval, learning-to-rank and user interaction data. Next, we will discuss rel-

evant theory on Bayesian Networks, including inference over parameters of such networks,

which are employed for the models implemented in this thesis. Next, we will discuss the

strongly related research on click models. Finally, we discuss the unbiased learning-to-rank

framework and the essential role of position bias estimation in this framework.

3.1 Learning-to-Rank in Information Retrieval

Document retrieval is a task in information retrieval where the system maintains a collec-

tion of documents D and given a query q the system must retrieve a sub set of relevant

documents Dq that match the query. Furthermore the system must rank this sub set of

documents. For the task of ranking the documents d ∈ Dq a ranking function is applied

f(q, d). Traditionally this ranking function is not trained but an increasing amount of

machine learning models are employed for this task, specifically referred to as learning-to-

rank models [22]. Learning to rank is a class of machine learning models that are utilized

in information retrieval for the task of ranking documents, most notably in search result

pages. Learning-to-rank algorithms can be classified based on the loss function used for

learning into three categories, pointwise, pairwise and listwise methods [1, 23]. In the

pointwise approach the model learns a numerical or ordinal score for each query-document

pair individually. Subsequently, any set of document for a given query can be ordered or

ranked using this relevance score. The pairwise approach is concerned with learning the

relative order of two document for a given query. The listwise approach optimizes the

11



3. THEORETICAL BACKGROUND

ranking for a given query by taking the entire set of document as input. The pairwise and

listwise algorithms usually outperform the pointwise algorithms [22]. We will not discuss

details on the different approaches as we can assume that the position bias estimation

can be employed in any of the learning-to-rank approaches considered in the unbiased

learning-to-rank framework [3, 13, 24].

3.2 User Interaction Data

User interaction data presents a potential wealth of implicit feedback on user preferences.

Thus, prior work has focused on extracting useful relevance signals from user interaction

data. Studies on the decision process of the user on a search results page prove that clicks

can be used as a relevance signal [7, 11]. However, these studies — that conduct several

experiments and track the users decision process through eye-tracking — also prove that

user interactions are not solely influenced by relevance but are affected by various biases.

Thus, user interactions cannot be used as absolute relevance judgments. We describe the

different types of biases by which user interaction data are affected and why we focus

on position bias estimation for this thesis. First, it is proven that users examine the

documents at higher ranked positions with a higher probability irrespective of the quality

of the ranking. Especially after the first two ranks — that receive most attention — the

examination probability drops fast. This effect and it’s influence on user interaction data

is referred to as position bias [3, 9, 13]. Furthermore, user interactions are also influenced

by the order of presentation. Users tend to click on the first result more often compared

to the second result though both positions having similar examination frequencies. This

effect on user interactions is caused by the trust of a user in the capability of a search

ranking function to estimate the relevance of a document and is referred to as trust bias

[9, 10, 11]. The overall quality of the ranking also affects user interactions and not solely

that of the clicked document. This effect is referred to as quality-of-context bias [7, 9].

Selection bias is the effect that user interactions are limited to the presented documents in

the result list [2]. The result attractiveness also has a significant influence on the click of

a user, this effect is referred to as presentation bias [8, 14].

In this thesis we focus on position bias estimation for three reasons. First, position

bias has the most affect on user interactions of all the aforementioned biases. Second,

position bias can be effectively estimated through various different methods as proven in

the literature. Finally, position bias can be leveraged in the unbiased learning-to-rank

framework to learn a proven unbiased ranker.
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3.3 Bayesian Networks

Bayesian Networks, used for representation, inferences and learning, are probabilistic

graphical models that represent the joint probability distribution of a set of random vari-

ables denotedX = {X1, . . . , Xn} [25]. In probability theory a random variable is a function

over the set of outcomes of an experiment. In this thesis it is assumed that events and

consequently random variables are binary-valued X = {1, 0}. The distribution over such a

random variable is the Bernoulli distribution X ∼ Bernoulli(θ) where θ is the parameter

of the distribution.

A Bayesian Network is a directed acyclic graph consisting of nodes and edges rep-

resenting random variables and the conditional dependencies between the variables re-

spectively. Bayesian networks consider an efficient factorized representation of the joint

probability distribution that leverages conditional independence of variables on their non-

descendants. Event A and B are conditionally independent given C, denoted by (A ⊥⊥ B),

if P (A,B|C) = P (A|C)P (B|C) holds. The joint probability of random variables X =

{X1, . . . , Xn} is denoted by P (X1, . . . , Xn) and can be factorized using the chain rule of

conditional probabilities as formalized in 3.1. For a Bayesian Network we can obtain this

factorization through 3.2 where Pa(Xi) is the set of parents of random variable Xi.

P (A1, . . . , An) = P (A1)P (A2|A1) . . . P (An|A1, . . . , An−1) (3.1)

P (X1, . . . , Xn) =
n∏
i=1

P (Xi|Pa(Xi)) (3.2)

3.3.1 Parameter Learning

Parameter learning or parameter estimation is the process of learning the joint distribution

of the network using training data D. The objective of parameters learning is to find the

parameters that maximize the likelihood of observing data D = {x1, x2, . . . , xn}. We can

obtain the likelihood for parameter θ relative to D using 3.3. Maximizing the log-likelihood

3.4 is equivalent to maximizing the likelihood as the two are monotonically related and

due to the favorable computational properties the log-likelihood is used in practice. If the

dataset D contains fully observed instances the parameters be estimated using maximum

likelihood estimation or Bayesian inference approaches. However, if the instances are not

fully observed, either due to latent parameters in the network or incomplete data, one

needs to apply other parameter learning methods most notably Expectation-Maximization
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[18]. The Expectation-Maximization algorithm provides an iterative solution to maximum

likelihood estimation with latent variables.

L(θ : D) =
∏
xi∈D

pxi(1− p)1−xi (3.3)

LL(θ : D) =

n∑
xi∈D

xi(log p) + (1− xi) log(1− p) (3.4)

3.4 Click Models

Click Models are a family of models with the main purpose of modeling the behaviour of

users on a Search Engine Result Page (SERP). The models are learned from user interaction

data, generally click data, hence then name. Click Models are employed for click simulation

experiments, evaluating search results and inferring document relevance. [17]

The intuitions behind different click models are based on hypothesis of user behaviour

that are tested by means of experiments on real users. There are many types of user

behaviour biases that different click models take into account by means of introducing

random variables and dependencies between them.

Click models are often represented as Bayesian Networks but can also be represented as

feature-based machine learning models. The conventional generative model approach em-

ploying Bayesian Networks aims to learn the joint probability of the observed and latent

random variables in the network from historical click log data. The process of statis-

tical inference in the context of click models, called parameter estimation, has two main

techniques, namely maximum likelihood estimation (MLE) and Expectation-Maximization

(EM). Two types of click models can be distinguished, models that contain only observed

variables and models that have one or more unobserved variables. The parameters of mod-

els that solely involve observed variables can be estimated using MLE. Whereas parameters

of models that include latent variables require estimation using the EM algorithm.

Click models range from simple models with a limited number of parameters to complex

models that contain many parameters and relations. The most basic click model is the

Random Click Model (RCM) [17] which assumes that every document has the same click

probability. The simplistic RCM consist of a single parameter that can be estimated

from observed click data and is often used as performance baseline. The RCM does not

incorporate assumptions on the user behaviour. The basic assumptions on user behaviour

are that the click of a user depends on the rank of document in the result list as well as the
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attractiveness or relevance of the document. These assumptions are incorporated in the

Rank-Based CTR Model model (RCTR) and the Document-Based CTR Model (DCTR)

respectively [17]. These models are based on the concept of click-through rate (CTR) as

formalized in 3.5. The CTR is the ratio of clicks and impressions where impressions is the

number of times the document or position was included in the search result list [17]. The

CTR models are simple models often used as performance baselines for more complex click

models.

CTR =
clicks

impressions
· 100% (3.5)

The Position-Based Model (PBM) [16, 26] consolidates the rank and relevance assump-

tions under the examination hypothesis as formalized in 3.6. The hypothesis states that a

document is clicked if and only if the document is both examined E and perceived relevant

R. The formal definition of the RCTR, DCTR and the PBM are given later in this section.

Cd = 1⇔ Ed = 1, Rd = 1 (3.6)

The Cascade Model (CM) [16, 17] incorporates the additional assumption that a user

sequentially examines the documents in the result list from top to bottom until the user

finds a relevant document that is clicked, after which the search session is ended. More

formally, the assumption is that the document at position k is examined if and only if

the document at position k − 1 was examined and not perceived relevant. This is a

stronger assumption on user behaviour compared to the Position-Based Model which does

not assume sequential examination of the result list or that a sessions can only have a

single click. More advanced click models are either an extension of the Position-Based

Model, such as the User Browsing Model (UBM) [27] or the Cascade Model such as the

Dependent Click Model (DCM) [28], Click Chain Model (CCM) [29] and the Dynamic

Bayesian Network Model (DBN) [30].

The aforementioned click models are trained on click data exclusively. However, some

click models aim to extend learning to other user interactions namely cursor movements

and scrolling interactions [31, 32].

The concept of relevance R, as introduced in the different click models and the learning-

to-rank framework is sometimes referred to as the perceived relevance or attractiveness.

Relevance is considered to be a characteristic of the document as presented to the user in

the search result list. The perceived relevance R is highly correlated with the true relevance

R̃ [6, 30, 33, 34]. However, there can be a substantial discrepancy between the perceived
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relevance R and actual relevance R̃. The degree of discrepancy depends on the scenario in

which a model is employed. In the example of web search, the document — a web page

— is presented in the search results list by means of a title and document snippet. The

snippet reveals only a part of the full content of the web page that it directs to. Thus,

the user can observe the full web page content after clicking and find that the web page is

actually not relevant as proven by Chapelle and Zhang [30].

Click models that are used to infer document relevance scores can be considered learning-

to-rank models of the pointwise category. However, the capabilities and performance are

limited compared to recent learning-to-rank models in the pairwise and listwise category.

A fundamental limitation of click models lies in the fact that the models can only infer pa-

rameters over query-document pairs that are included in past observations. Consequently,

in the role of a learning-to-rank model, click models cannot learn the relevance of un-

known query-document pairs. Furthermore, click models cannot infer reliable relevance

estimations for tail queries as the models require queries to repeat multiple times. [3, 17]

3.4.1 Document-Based CTR Model

The Document-Based CTR Model [16, 17] incorporates the assumption that the click of

a user depends on the relevance of document d for given query q. The model introduces

a single parameter for each query-document pair as formalized in 3.7. The log-likelihood

of observing given click log data S under the Document-Based CTR Model is obtained

through 3.8.

ρq,d = P (C = 1|q, d) (3.7)

LL(S) =
1

|S|
∑
s∈S

∑
(c,q,d,k)∈s

c · log(ρq,d) + (1− c) · log(ρq,d) (3.8)

3.4.2 Rank-Based CTR Model

The Rank-Based CTR Model [17, 27] incorporates the assumption that the click of a user

depends on the rank or position k of the document on the search result page. The model

introduces a single parameter for each position in the search result page as formalized in

3.9. The log-likelihood of observing given click log data S under the Rank-Based CTR

Model is obtained through 3.10.

ρk = P (C = 1|k) (3.9)
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LL(S) =
1

|S|
∑
s∈S

∑
(c,q,d,k)∈s

c · log(ρk) + (1− c) · log(ρk) (3.10)

3.4.3 Position-Based Model

The Position-Based Model incorporates the examination hypothesis 3.6. Thus, assuming

that a click depends jointly on the examination E and relevance R 3.14. The model

assumes that E and R are conditionally independent on C. The model incorporates the

assumption that relevance Rq,d depends on both the query q and document d by introducing

a set of query-document dependent parameters γq,d as formalized in 3.11. The probability

of examination depends heavily on position of a result, to incorporate this assumption in

the model a set of examination parameters θk as formalized 3.11.

P (E = 1|k) = θk (3.11)

P (R = 1|q, d) = γq,d (3.12)

In this model the random variable Cq,d,k is the only observed variable and both Ek and

Rq,d are unobserved latent parameters. A graphical representation of the model is depicted

in Figure 3.1. In the model the only observed random variable Cq,d,k has two parent nodes.

As per 3.2, we can obtain the factorized representation of the model by taking the product

of the probability of the parents Ek and Rq,d of Cq,d,k as formalized in 3.13. The model

assumes that the first position is always examined as formalized in 3.15.

Figure 3.1: Graphical representation of the Position-Based Model.
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P (C = 1|q, d, k) = P (E = 1|k) · P (R = 1|q, d) (3.13)

Cd = 1⇔ Ek = 1, Rq,d = 1 (3.14)

P (E = 1|k = 1) = θ1 = 1 (3.15)

The log-likelihood of observing given click log data S under the Position-Based Model

is obtained through 3.10.

LL(S) =
1

|S|
∑
s∈S

∑
(c,q,d,k)∈s

c · log(θkγq,d) + (1− c) · log(1− θkγq,d)) (3.16)

3.5 Unbiased Learning-to-Rank

Traditional click models aim to learn the query-document relevance directly by taking po-

sition bias into account. The focus of these models is not on position bias estimation but

rather on the modeling of user behaviour, click simulations and query-document relevance

inference. Recent work on the unbiased learning-to-rank framework leverages position bias

estimation to effectively learn unbiased learning-to-rank models from biased user inter-

action data. The unbiased learning-to-rank framework introduced by Joachims et al. [3]

separates the click propensity estimation from the learning-to-rank algorithms. The frame-

work enables the learning of sophisticated ranking models from implicit feedback employing

the (separately) estimated propensities. In click models the user modeling and relevance

learning are tightly coupled which limits the potential complexity and performance of the

models. The unbiased learning-to-rank framework adopts the approach of inverse propen-

sity scoring (IPS) from causal inference studies. This counterfactual inference framework

allows unbiased learning even with biased implicit feedback.

Unbiased learning-to-rank [2, 3] generalized in Counterfactual Learning-to-Rank [35]

aims to learn an unbiased ranking model from biased and noisy historical user interaction

data. Traditional learning-to-rank methods assume that the relevance of all documents is

known. This is referred to as full information feedback. However, due to bias and noise

in user interaction data, we only observe relevance signals on the documents that the user

interacted with. This is referred to as partial information feedback.

Considering search result pages, we assume that a user does not examine all the doc-

uments in the result list and is more likely to examine higher ranked documents. Due

18



3. THEORETICAL BACKGROUND

to this position bias, we do not observe the relevance of all documents with an equal

probability. More formally, the relevance of a document d on position k for query q is

revealed with a probability pk depending on the rank of the document in the result list.

This is called the propensity of observation or simply click propensity. For counterfac-

tual evaluation and learning employed in unbiased learning-to-rank we need to know this

propensity of observation pk. The click propensity can be used to re-weigh user interactions

through Inverse Propensity Scoring (IPS) in the evaluation metric and loss function of the

learning-to-rank model. To illustrate how the click propensities are employed in the unbi-

ased learning-to-rank framework we give an example of an unbiased version of the Mean

Reciprocal Rank (MRR) metric. The reciprocal rank is the multiplicative inverse of the

first relevant result. Taking the average over all queries results in the MRR as formalized

in 3.17 where ki denotes the rank of the clicked document in the evaluated ranking. We

can obtain an unbiased metric by defining a weighted MRR as formalized in 3.18 where

wk is the inverse propensity 1/pk of the position on which the document was displayed

during logging. We can observe from these equations that clicks with a high propensity

are weighed less and clicks with low propensity are weighed higher. Intuitively, click on

high ranks are more likely, thus weighed less, while clicks on lower rank are less likely and

thus are weighed more. This counterfactual evaluation method can be extended to obtain

an unbiased learning objective for learning-to-rank loss functions but we will not discuss

details on this.

MRR =
1

N

N∑
i=1

1

ki
(3.17)

MRR =
1∑N

i=1wk

N∑
i=1

wk
1

ki
(3.18)

In the unbiased learning-to-rank framework the Position-Based Propensity Model is in-

troduced. The assumptions of the Position-Based Propensity Model [3] or Position Bias

Model [13] are analogous to the Position-Based Model as discussed in Section 3.4.3. As

formalized in 3.13, in this model, a click depends jointly on the probability of examination

and the probability of relevance. In this model — under the assumption of noise free click

log data — it is assumed that a clicked document is relevant. However, the reverse of this

assumption does not always hold. A non-click or skip of a document does not necessarily

indicate non-relevance as the user might not have examined the document. Thus, we do

not observe the relevance for this document and the user interaction data is biased due
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to this unobserved feedback. In the Position-Based Propensity Model we assume that the

propensity of observation pk is equivalent to the probability of examination θk [3, 13].

pk ⇔ θk (3.19)

We will adopt the naming conventions of Chuklin et al. [17] and Agarwal et al. [6]and

refer to the models as the Position-Based Model and the Position-Based Propensity Model

receptively.

As discussed in Section 3.4, there is an extensive range of more complex click models

that also model position bias in different ways. However, it is an open question in how

far these more complex click models can be adapted and employed for effective propensity

estimation [13]. Prior works shows that the Position-Based Model is as effective as more

complex click models in case of a single click per search session and high query frequency

[36]. Li [19] consider position bias estimation for unbiased learning-to-rank in the context

on hotel search and incorporate a similar assumption to the Cascade Model [17] that a

user examines all the preceding documents D<k of the clicked document d on position

k. Fang et al. [37], Agarwal et al. [38] propose to extend the unbiased learning-to-rank

framework for context dependent propensity. The introduced Contextual Position-Based

Model (CPBM) extends the Position-Based Propensity Model by including the context of

a search query and the user. In this model the propensity can also depend on observable

features of the query, document or user. Vardasbi et al. [39] introduce a Cascade IPS

Model for unbiased learning-to-rank. The model is proven to outperform the PBM in case

of cascade model user behavior.

In the unbiased learning-to-rank framework the learning objective is invariant to mul-

tiplicative scaling [2, 37, 38]. Thus, it is sufficient to estimate the propensities up to

some positive multiplicative constant and pk is estimated relative to position one, obtained

through the relative ratio pk
p1
. Most click models and the Position-Based Model specifi-

cally [17] incorporate a similar assumption that the document at position one k1 is always

examined.
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Table 3.1: Table of notation used in thesis.

Notation Description
d document identifier, product identifier
q query identifier, search term
k position, rank
c click, add to basket event
b binary order indication
a binary re-buy indication
v binary display event
u user, customer
D set of documents
Q set of queries
S set of search sessions
s search session
Sk set of search sessions with result on position k
Sq,d set of search search sessions for query q containing document d
(q, d, k, c) click log item
f ranking function
R random variable for perceived relevance of document snippet
E random variable for examination
R̃ random variable for true relevance
θk probability of examination (position bias) of position k
γq,d query-document relevance score
pk propensity of observation for position k
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Chapter 4

Related Work

In this section the related work on position bias estimation for unbiased learning-to-rank

is discussed. The considered methods focus on position bias estimation under the assump-

tions of the Position-Based Propensity Model. The key problem of position bias estimation

is that we only observe the clicks of a user directly, yet the examination and relevance are

never observed individually. Thus, the click data depends jointly on the query-document

relevance and position bias which are both unobserved quantities. The high level goal of

position bias estimation is to disentangle the effects of the unobserved quantities on the

only observed quantity, the clicks. Two types of position bias estimation methods can be

distinguished. Methods that rely on online intervention and methods that estimate posi-

tion bias using historical click log data. The latter can be divided into methods that rely

on explicit modeling of query-document relevance — which can be a difficult problem in

many scenarios — and methods that do not. In this chapter we will answer the following

sub-question:

RQ2: Which methods for position bias estimation exist in the literature and

how do they compare?

4.1 Result Randomization Methods

Result randomization methods are online intervention methods that aim to estimate the

position bias directly without explicitly modeling and learning the query-document rel-

evance. The core concept of result randomization is to permute the ranked result list

consisting of n documents for a given query and present the permuted list to the end user

instead of the original result list. The permutation is employed through a randomized

experiment where the assignment of a position for a document does not depend on the
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relevance or any covariates. This procedure is applied to all searches for a (small) fraction

of the end users and the observed results can be used to estimate position bias as the

change in click through rates is proportional to the difference in examination. The method

proposed in [2] was the first result randomization method for position bias estimation.

The method uniformly at random permutes the complete result set of size n. Yielding

an equal probability for each document of being displayed at position k, resulting in a

uniform distribution of the query-document relevance over all positions k ∈ n. Thus, the

position bias for position k can be obtained by taking the observed click through rate on

the corresponding position in the results of the randomized experiment.

An extension to this method is the Randomize TopN method proposed by Wang et al.

[13]. In this method only the top N ∈ n documents for which position bias estimation

is desired are permuted. Both uniformly randomizing the complete result list or only

the top N are intrusive interventions as they degrade retrieval performance. Thus, the

methods have a negative impact on the user experience. The following result randomization

methods aim to reduce the impact on the retrieval performance by introducing less intrusive

permutation interventions.

Joachims et al. [3] propose a result randomization method named SwapK. The authors

prove that in the unbiased learning-to-rank framework it suffices to estimate the propensi-

ties up to some positive multiplicative constant. Thus, it is only required to estimate the

position bias pk relative to position 1 (or another anchor position), obtained through the

relative ratio pk
p1
. This is related to the general assumption in click models that the first

position is always examined by the user. The method defines the following intervention,

randomly swap the documents at rank 1 and rank k with a fixed probability p such as

p = .5. The intervention must be performed for any position k for which the position

bias effect is desired to be estimated. The interventions of this method are less intrusive

compared to the Randomize TopN interventions. However, swapping the item in the first

position to an arbitrary lower ranked position is in many cases, especially for large k, still

an intrusive intervention. Considering the fact that in the case of a proper ranking system

the document on the first position is one of the most relevant documents in the result

list. The Randomize Pair method proposed in [13] defines the least intrusive interventions

of the different result randomization approaches. Similar to the SwapK intervention, but

only swapping adjacent pairs, the interventions randomly swaps documents on adjacent

pairs at position k and k−1. Based on these interventions we can obtain the relative ratio
pk
pk−1

between position k and k − 1. Under the assumptions of the considered Position-

Based Propensity Model discussed in Section 3.5, we can obtain the relative ratio between
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any two position by multiplying the ratios of the adjacent positions 4.1. The method is

different compared to the Randomize TopN as the expected relevance can differ between

position pairs and thus the relevance is not constant over all positions. Nonetheless, given

the assumptions of the position bias model the relative ratios between different positions

are the same as with the Randomize TopN method. The Randomized Pair may need to

run longer to get a sufficient amount of clicks for position bias estimation as the lower

positions receive less clicks. There is no existing research that considers how much traffic

is required for accurate position bias estimation using the different result randomization

methods.

pk
p1

=
p2
p1
· p3
p2
. . .

pk
pk−1

· (4.1)

Another option to reduce the negative impact of the interventions of the SwapK and

Randomize Pair is to estimate position bias for specifically selected fixed ranks and apply

interpolation as suggested in [3]. A similar approach is applied in [20] but here the fixed

rank propensities are not estimated using results randomization.

Result randomization is the most accurate position bias estimation method and is con-

sidered the gold standard when compared to other methods. However the major drawback

of the different result randomization methods is that the interventions degrade retrieval

performance and consequently have a negative impact on the user experience. Wang et al.

[13] empirically compare the Randomize TopN and Randomize Pair methods with respect

to the effectiveness of the position bias estimation as well as the negative impact on the

ranking performance. A portion of the traffic of two search services is compared, an online

email (Gmail) and file storage service (Google Drive). The position bias effect is esti-

mated for the first five positions and both methods align well. The negative effect on the

search experience is quantified by means of the relative difference in the Mean Reciprocal

Rank metric between the randomized and production search traffic. The results show that

both methods significantly decrease the user experience with respect to the MRR metric

on both services. However, the less intrusive interventions of Randomize Pair result in a

lower negative impact compared to the Randomize TopN.

4.2 Historical Click Log Methods

The following methods aim to estimate position bias from historical click log data. The

methods exploit randomization — organic or explicit — present in the historical data.
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These method do not rely on online interventions and thus do not degrade retrieval per-

formance and user experience. Furthermore, most search systems have click log data in

abundance readily available. Two types of these methods can be distinguished, methods

that rely on explicit modeling of the query-document relevance and methods that do not.

4.2.1 Standard Expectation-Maximization

The traditional approach to learn the position-based model parameters is through a gen-

erative approach. To estimate position bias, one needs to estimate the latent variables of

the position-based model which are both the examination probability per position θk and

the query-document relevance γq,d. Thus, this method relies on relevance modeling. The

classic approach employs a Bayesian network for which the parameters can be estimated

using the Expectation-Maximization algorithm [17, 18]. The EM algorithm can find the

latent parameters that maximize the likelihood of the historical click log S by iteratively

performing the Expectation and Maximization steps. In the Expectation step, the model

parameter values are assumed to be fixed and given these variables from the previous time-

step the distribution of the hidden variable E and R are estimated. In the Maximization

step the new parameter values are derived using the quantities from the Expectation step.

The drawback of this approach is that it requires queries to repeat many times for reli-

able relevance estimation and a document must appear on a sufficient number of different

positions for a reliable estimation of position bias [13, 17, 30].

4.2.2 Regression Based Expectation-Maximization

Wang et al. [13] propose a regression based EM algorithm to estimate the latent parameters

of the PBM. The regression based EM algorithm aims to overcome shortcomings of the

standard EM method, specifically in the context of personal search. In personal search the

q, d identifiers may not be available due to privacy limitations. Furthermore, the document

collection is private and the click data is highly sparse. The methods introduces a mod-

ification of the Maximization step. Instead of using the exact query-document identifiers

q, d, the methods involves a feature vector xq,d that represent the query-document pairs.

The feature vectors are used to estimate relevance using a function γq,d = f(xq,d). The

objective of the Maximization step is to find a regression functions f(x) that, given the

estimations from the Expectation step, maximizes the log-likelihood. Specifically, for each

data point (c, q, d, k) ∈ s ∈ S, we have feature vector xq,d and binary relevance r = 0, 1 —
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effectively turning the problem into a classification problem — and the P (R = 1|c, q, d, k)
is estimated by the regression function f(xq,d). The objective of f(x) is formalized in 4.2.

∑
{(x,r)}

r · log(f(x)) + (1− r) · log(1− f(x)) (4.2)

This method does not require queries to repeat or for documents to appear in multi-

ple different positions. It merely requires that similar feature vectors appear in multiple

different positions. The authors suggest that the feature vector xq,d can be the same as

the ranking features used by the current production ranking system. Consequently, this

method can be efficiently adopted in systems where ranking features and click log data are

collected. Wang et al. [13] performed experiments on datasets of both a personal email

and file storage service. The results show that the method provides less accurate position

bias estimations compared to the result randomization method Randomize Pair as the

position bias effect is overestimated. However, the estimations still provide a significant

improvement of ranking performance for the considered unbiased learning-to-rank model.

4.2.3 Embedded in Discriminative Models

This method employs discriminative models and aims to estimate position bias by em-

bedding the position as an input feature for the discriminative model that predicts click

probabilities (similar to clicks models). Similar to the regression based EM discussed in

Section 4.2.2 we have a feature vector x, to which the encoded position is appended.

Yielding a training instance ([k,xq,d], c) for each click log item (c, q, d, k) ∈ s ∈ S. A

discriminative model can be trained to predict click probabilities using this data. Subse-

quently the position bias effect must be separated from the other ranking features. Wang

et al. [13] propose to employ a Gradient Boosted Decision Tree (GBDT) and separate the

position effect by setting the split depth to 1 which disallows feature interactions. In this

method the position is treated like a regular feature. Therefore, the click probability can

be attributed to both the position feature or any of the other ranking features. The dif-

ficulty with this method lies in the separation of the position bias effect and the ranking

features (relevance). The generative approach discussed in Section 4.2.2, that employs a

probabilistic graphical model, has a clear separation of the position bias and relevance

component. This structure allows learning of each component independently. Conversely,

with this method the separation of effects is a difficult problem. Wang et al. [13] show

that the embedded method provides less accurate position bias estimation compared to

the regression based EM.
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4.2.4 Intervention Harvesting

The drawback of the aforementioned methods is that they rely on explicit relevance mod-

eling. Defining an accurate relevance model is in itself a difficult problem, that is in many

cases just as difficult as the learning-to-rank problem. Intervention Harvesting [6, 38] aims

at exploiting natural interventions in the historical click log data for position bias estima-

tion and avoids explicit relevance modeling. These natural interventions are present in the

click log data of ranking systems that deploy multiple rankers at the same time in A/B

tests or where the production ranker is updated frequently. The method is fundamentally

interventional and thus analogous to methods that relay on explicit interventions. How-

ever, unlike the results randomization methods, Intervention Harvesting solely relies on

natural interventions and requires no additional online interventions. Furthermore, the

methods does not rely on relevance modeling and there is no prerequisite for queries to

occurs multiple times.

The method relies on harvesting interventions from historical clicks log data under mild

assumptions. Considering a historical click log S with rankings from m historical rankers

F = {f1, . . . , fm}. A crucial condition for this methods, as formalized in 4.3, is that the

query and user distribution do not depend on the ranker (i.e. rankers should not handle

different types of queries or users) (i.e. the choice of fi does not depend on q). This

generally holds for rankers that are compared in A/B tests. However, rankers that are

deployed in sequence of production might introduce a temporal covariate shift in query

and user distribution. This shift should always be guaranteed to be small for this method

to be valid.

∀fi : P (Q|fi) = P (Q) =⇒ ∀q ∈ Q : P (f1|q) = P (f1) (4.3)

Interventional sets Sk,k′ of query-document pairs are constructed by harvesting sets from

the click log where two ranking functions f and f ′ rank a document d on positions k and

k′ where k 6= k′ for the same query.

Formally, for a fixed number of top position M for which position bias estimation is

considered, for each two ranks where k 6= k′ ∈M the interventional sets are defined as 4.4

Sk,k′ := {(q, d) : q ∈ Q, d ∈ D,∃f, f ′rank(d|f(q)) = k ∧ rank(d|f ′(q)) = k′} (4.4)

The sets contains two different treatments as the rank of d was randomly assigned via the

choice of rankers which is a random intervention under the assumption of 4.3. However, the
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position assignment is generally not uniform and thus weights that reflect the probability

of a document being ranked at position k are applied to account for this non-uniformity.

Unlike the result randomization methods, where the interventions are explicitly con-

trolled, the swap interventions in Intervention Harvesting are not. Consequently we might

not observe direct swaps between all the ranks considered for position bias estimation. If

we take the example of SwapK it might be the case that no swaps between position 1 and

some arbitrary position k are observed in the click log. To solve this, Agarwal et al. [6]

propose a method to aggregate many local swaps into an overall estimate of position bias

for any considered k named the Global AllPairs Estimator. Agarwal et al. [6] consider

three test scenarios where all results show estimations consistent with the gold standard.

4.2.5 Dual-Learning Algorithm

Ai et al. [40] propose a dual-learning algorithm that jointly learns an unbiased ranker

and the position bias effect. The method defines the Inverse Relevance Weighted (IRW)

loss function, similar to the inverse propensity weighted loss. The method employs a

combination of both the IPW and IRW loss functions to simultaneously learn an unbiased

learning-to-rank model and the position bias effect. The advantage of the method is that

we have a fully automatic learning process. However, this also introduces a tight coupling

between the position bias estimation and learning-to-rank.

4.2.6 Simplified Likelihood

Aslanyan and Porwal [20] propose a method to directly estimate position bias without

modeling relevance in the context of e-commerce. The method involves harvesting query-

document pairs that appeared at multiple different positions and a likelihood function

that only depends on position bias and not the query-document relevance. The likelihood

function is derived under assumptions on the considered click log data and can be used to

directly estimate position bias. The method assumes that query-document pairs appear

a few times on different positions and receive at least one click and one non-click. Fur-

thermore, it is assumed that the click probabilities for a query-document pair ranked on

an arbitrary position k are low. Aslanyan and Porwal [20] conduct an experimental eval-

uation of the proposed methods through two experiments. First, the estimated position

bias is compared to the true position bias using a simulated dataset. Second, an unbiased

learning-to-rank model is trained for eBay search data using the estimated position bias

and the model performance is compared to a biased baseline as well as the EM method
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discussed in Section 4.2.2. Unlike other studies, Aslanyan and Porwal [20] do not conduct

an evaluation of the proposed method through a comparison of the bias estimated using

the proposed methods and using a result randomization experiment.
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Chapter 5

Methodology

In this chapter we discuss the methodology of this thesis. First, we address the question of

which method for position bias estimation can be employed in the context of Picnic. Next,

we discuss the model we propose to implement and how we propose to adapt and extend

the models. Furthermore, we describe the experimental setup of the thesis consisting of

the data pre-processing, a detailed description of implemented (baseline) models and the

evaluation. Finally, we describe the proposed extensions of the models considering noise

filtering, display events and personalized ranking.

5.1 Position Bias Estimation Method

The related work discussed in Chapter 4 proposes different methods for position bias

estimation that are applied in various scenarios. Based on the findings on the related work

and the characteristics of the Picnic in-app search engine and the corresponding data, we

will answer the following sub-question:

RQ3: Which method for position bias estimation can we employ and adapt in

the case of Picnic?

Although proven as the most reliable and consistent method for position bias estimation,

result randomization methods [2, 13] have several disadvantages over the historical click

log based methods. First, the methods degrade retrieval performance to varying degrees.

Consequently, resulting in a negative impact on user experience and potential loss in rev-

enue. In the case of Picnic and e-commerce in general both drawbacks are not desired and

can be costly. Second, the result randomization methods require an extensive testing setup
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that involves the production ranking system. Introducing modifications to production sys-

tems solely with the purpose of experimentation is both costly and not desired. Third,

as the ranking system or user population evolves, re-estimation of position bias requires a

new randomization intervention. Furthermore, the position bias estimation is limited to

the context of the experiment and to estimate position bias for varying context, additional

interventions are required. Methods that rely on historical click log data can be exploited

to learn models that account for changes in position bias due to context without additional

interventions.

We aim at an independent position bias estimation method of which the results can

be employed in any (future) unbiased learning-to-rank model or other use case. Thus, the

Dual-Learning algorithm proposed by Ai et al. [40] does not fit this scenario as the learning

of position bias and an unbiased ranking model are tightly coupled.

The intervention harvesting method [6] is proven to yield a similar accuracy to the result

randomization methods. However, the intervention harvesting method assumes that the

natural interventions in the data are the result of using multiple rankers in the historical

ranking system. Furthermore, the harvesting of interventions has strict assumptions that

either the pairs should be harvested from A/B testing results or an equal distribution

of queries and users over the rankers is guaranteed. Furthermore, this method assumes

that the relevance of a document does not change much over time which is an unrealistic

assumption for many e-commerce scenarios. The similar simplified likelihood method pro-

posed by Aslanyan and Porwal [20] has no restrictions on the query and user distribution

but has strict assumptions on the product pairs and the click-through rates on the ranks.

In the case of Picnic we cannot ensure that all the assumptions and requirements of the

aforementioned methods can be met.

In the context of Picnic and similar e-commerce stores we can — with certain adjust-

ments — estimate position bias through the standard EM algorithm by leveraging some

inherent properties of the ranking system and the resulting historical click data. We have

a relatively small non-private collection of documents and we can work directly with the

q, d identifiers unlike [13]. Furthermore, while the requirement of repeating might be un-

realistic in many cases, in the case of an online grocery store this is not the case. We have

many repeating queries that receive a lot of clicks, even by the same customers. As the

described by Agarwal et al. [6], Aslanyan and Porwal [20] defining an accurate relevance

model — which we need to learn with this approach — can be a difficult problem due to

the large number of parameters. However, we focus on position bias and are not directly in-

terested in learning the query-document relevance γq,d. Though, necessary to estimate the
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relevance parameters γq,d they be considered nuisance parameters. This allows us to focus

on head queries and thus reduce the number of parameters. Furthermore, we have a large

quantity of user interaction data for these head queries which simplifies the learning of the

relevance model. Moreover, we can leverage the natural or organic randomization present

in the click log data. (q, d) pairs appear at many different positions due to the dynamic

nature of e-commerce ranking. We propose to estimate position bias estimation under the

Position-Based Propensity Model learned through the standard Expectation-Maximization

algorithm solely utilizing queries for which we have sufficient user interactions.

The search sessions in the Pinic dataset mostly have a single click or no click, as observed

in Table 2.3. Furthermore, we focus on head queries that have a high query frequency. As

discussed in Section 3.4, the PBM has been shown to as effective as more complex click

models in this scenario. Thus, we do not propose to investigate the use of an alternative

to the Position-Based Propensity Model.

5.2 Models

In this section we formulate the models employed in this thesis. We first briefly discuss the

baseline models. Next, we extensively discuss the Position-Based Propensity Model and

the Expectation-Maximization algorithm used for parameter estimation.

5.2.1 Baseline Models

We implement two baseline models, the Document-Based CTR Model and Rank-Based

CTR Model. The model are used as a performance baseline for the more complex Position-

Based Propensity Model. Furthermore, as discussed in detail in Section 5.2.2, the parame-

ters values of the models are used to derive initial values for the Expectation-Maximization

algorithm. Both the DCTR and RCTR model comprise exclusively observed variables.

Thus, we can estimate the parameter values through maximum likelihood estimation [17].

The parameters are estimated using equations formalized in 5.2 and 5.1 for the DCTR and

RCTR model respectively. We introduce a modification to the MLE of the RCTR model

to accommodate for the variable number of result documents (not all search sessions have

the same number of results). In the algorithm as described by Chuklin et al. [17] we take

the total number of sessions |S|. However, we only consider the number of sessions in S

that include a document on position k denoted Sk.

ρk =

∑
s∈Sk

∑
(c,q,d,k)∈s c

|Sk|
(5.1)
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ρq,d =

∑
s∈Sq,d

∑
(c,q,d,k)∈s c

|Sq,d|
(5.2)

5.2.2 Position-Based Propensity Model

We implement the Position-Based Propensity Model to estimate position bias and infer

the (latent) parameters employing the standard Expectation-Maximization algorithm de-

scribed by both [2, 17]. Expectation-Maximization can be considered an approach of the

maximum likelihood estimation algorithm for models that comprise latent variables. The

Position-Based Propensity Model is such a model in which we have latent parameters Ek
and Rq,d. The objective of the EM algorithm is to find the parameters that maximize

the log-likelihood LL of the model given observed click log S. The intuition behind the

model is to take a bootstrap approach and initialize the model with a set of parameter

values, either arbitrary values or following some prior knowledge on the parameter values.

Next, we assume the parameter values to be know and complete the data by estimating

the latent or hidden variables for every data point. Then, we treat the completed data

set as observed and learn a new set of parameter through maximum likelihood estimation.

The process of completing the data (Expectation) and estimating a new set of parameters

(Maximization) is repeated until convergence.

More formally and specifically for the Position-Based Propensity Model. Consider in-

dependent random Bernoulli variables for relevance Rq,d and examination Ek, with cor-

responding latent parameters θk and γq,d respectively, as formalized in 3.13. We have a

click log S where Sq,d and Sk denote the set of sessions that contain a query-document

(q, d) pair and that consider a position k respectively. The objective of the EM algorithm

is to find the parameters θk and γq,d that maximize the log-likelihood LL of the model

given the observed click log S. The model starts with initialization of the parameters with

some starting point value. We discuss details on the initial values later in this section as

well as in Section 5.5.2. Subsequently, the EM algorithm iteratively alternates over the

Expectation and Maximization steps. In the Expectation step the distribution of latent

variable E and R are estimated for each click log item (q, d, k, c) ∈ s ∈ S using formulas

5.3, 5.4 and 5.5. The latent variables are estimated using the observed variables of the

corresponding click log item and the parameters γq,d and θk, from the previous iteration.

P (E = 1, R = 1|C = 1, q, d, k) = 1 (5.3)
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P (E = 1, R = 0|C = 0, q, d, k) =
θk(1− γq,d)
1− θkγq,d

(5.4)

P (E = 0, R = 1|C = 0, q, d, k) =
(1− θk)γq,d
1− θkγq,d

(5.5)

From the completed data where the distribution of E and R are estimated for every click

log item, the expected sufficient statistic for the parameters {θk} and {γq,d} are calculated
using 5.7 and 5.6 respectively.

ESSγq,d = E

 ∑
s∈Sq,d

∑
(c,q,d,k)∈s

(cd + (1− cd) · P (E = 0, R = 1|C = 0))

 (5.6)

ESSθk = E

∑
s∈Sk

∑
(c,q,d,k)∈s

(ck + (1− ck) · P (E = 1, R = 0|C = 0))

 (5.7)

In the subsequent Maximization step we assume the expected sufficient statistics as

observed and derive new values for the parameters {θt+1
k } and {γ

t+1
q,d } by performing max-

imum likelihood with respect to the expected sufficient statistics. We derive the new

optimal values that maximize the likelihood for parameters {θk} and {γq,d} using 5.9 and

5.8 respectively.

γq,d =
1

|Sq,d|
· ESSγq,d (5.8)

θk =
1

|Sk|
· ESSθk (5.9)

The algorithm is formalized in 1. We introduce a modification of the standard EM

algorithm [13, 17] to tailor it to the scenario of Picnic. We have a variable number of

products in the search results page thus instead of S, we have Sk in 5.9.

In order to initiate the Expectation-Maximization algorithm initial values for the param-

eters {θk} and {γq,d} are required. As suggested by [17] we utilize the output of a simpler

model — the baseline models — to initialize the parameters values. First, we take the

parameter values ρq,d of the DCTR model as initial values for γq,d. The parameters values

ρk of the RCTR model are normalized by the CTR of the first position ρ1 — as we aim

to estimate relative propensity — and used as initial values for θk. We will refer to this as

the normalized empirical CTR.
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The iterative process of the EM algorithm is theoretically guaranteed to improve the

likelihood upon previously derived parameters on every iteration. The algorithm is consid-

ered to converge if no further improvements can be made to the likelihood. It is common

practice to conclude the algorithm before complete convergence to reduce computational

time [41], considering the fact that the convergence rate of the likelihood is fast in the

first few iteration but slows down from a certain iteration to complete convergences [17].

The likelihood improvements will be minimal from this iteration on. Thus, we propose to

concluded the algorithm at a fixed threshold number of iterations instead of running until

complete convergence. We discuss the process on finding this threshold value in Section

5.5.1.

5.3 Data Pre-Processing

We split the data into bucket of one day in which all click log items for the given day

are captured. We do this to ensure the chronicle order of the events as well as to ensure

efficient loading and preprocessing of the data, by avoiding to load every individual event

in the downstream analysis pipeline.

Search sessions without clicks do not contribute to the learning objective of Position-

Based Propensity Model. Hence, we consider only search sessions with at least one click.

More formally, we consider sessions Sc=1 = {s ∈ S | (∃(q, d, k, c) ∈ s)[c = 1]}. Further-

more, a search session can contain multiple add to basket event for a single product. The

customer can add multiple units of a single product to the basket. We consider only a

single add to basket event per product per search session as a higher quantity of purchase

does not indicate higher relevance of a product for the given query.

We filter out any sessions that have missing values for any of the required click log item

values. Furthermore, we filter out any queries for which the result set size N , over all

queries in the training set N <= 1. The queries with only a single item in the result set

do not contribute to the learning objective of the model and induce unnecessary compute.

The primary goal of the Position-Based Propensity Model is position bias estimation.

The learning of a relevance model for the complete set of queries as well as click predictions,

are secondary requisites. Queries that do not repeat a sufficient amount of times do not

contribute to the position bias estimation. For non-repeating queries the model cannot

observe changes in clicks due to variations in the position of products. Hence, we filter out

any non-repeating queries.
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Algorithm 1: Position Based-Propensity Model Expectation-Maximization
input : S, {ρk}, {ρq,d}, iterations
output: {θk},{γq,d}

1 Initialize Parameters
2 {θk} ← {ρk}
3 {γq,d} ← {ρq,d}
4 t← 0

5 while t < iterations do
6 Expectation Step
7 Estimate distribution of latent parameters E and R for every click log item
8 Calculate ESS for each parameter based on estimated distributions.
9 ESSθ[sumk]← 0

10 ESSγ [sumq,d]← 0

11 foreach s ∈ S do
12 foreach (q, d, k, c) ∈ s do
13 if c = 1 then
14 E = R = 1 as per 5.3
15 else
16 E = P(E=1,R=0|C=0,q,d,k) estimate using 5.4
17 R = P(E=0,R=1|C=0,q,d,k) estimate using 5.5

18 end
19 ESSθ[sumk] += E

20 ESSγ [sumq,d] += R

21 end

22 end
23 Maximization Step
24 foreach θk ∈ {θk} do
25 θk =

1
|Sk| · ESSθ[sumk]

26 end
27 foreach γq,d ∈ {γq,d} do
28 γq,d =

1
|Sq,d| · ESSγ [sumq,d]

29 end
30 t = t + 1

31 end
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5.4 Evaluation

Both the position bias and query-document relevance are latent parameters of the Position-

Based Propensity Model. Hence, the estimated position bias cannot be evaluated directly

as the true position bias — which we aim to estimate — is unknown. However, as we

estimate position bias under the Position-Based Propensity Model we can evaluate the fit

of the model on the observed data by means of the likelihood function. The log-likelihood

functions as formulated in Section 3.4 can be used to evaluate the model fit on a hold-out

test set. The log-likelihood scores can be used to compare different model with respect to

the fit on the test set. This evaluation metric is an indication on how accurate the inference

of the latent parameters is. Thus, the log-likelihood score is indicative of the accuracy of

the position bias estimation. Though, the RCTR and DCTR models cannot be used to

estimate position bias, we can use the log-likelihood scores of the models as performance

baselines. Traditional clicks models can additionally be evaluated on perplexity [29, 32].

However, this is not a widely used metric — especially not in the recent unbiased learning-

to-rank framework — and difficult to interpret [17]. Thus, we do not consider the perplexity

metric for evaluation in this thesis. The log-likelihood score grows relative to the sample

size. To compare the log-likelihood over test sets of varying sample sizes we take the average

log-likelihood. The average log-likelihood can be computed with the formulas given in 3.10,

3.8, 3.16 for the RCTR, DCTR and PBM respectively [13, 17, 42]. The optimal value of

the log-likelihood is 0, indicating a perfect click prediction and a larger value indicates a

better performance with respect to model fit on the test data.

The click log data is intrinsically time ordered. To evaluate the model performance we

take a time window t− 1 to fit the model and time window t to evaluate the model. This

ensures that we test the model on out-of-sample observation which are in this case unseen

future search sessions. Furthermore, this ensures that seasonality effects and emerging

changes in customer behaviour patterns can be picked up by the model, which is important

for the relevance modeling.

The model requires both sufficient randomization in the query-document positions (to

learn the position bias) as well as sufficient query frequencies (to learn an accurate rel-

evance model). The most trivial option would be to train the model on the complete

dataset, or a substantially part of it, and hold-out a part of the data to test on. However,

we need to consider a few aspects of the data and models that constrain us to use the

complete dataset. First, we need to find a balance between the sample size and the long-

term relevance variations. The Position-Based Propensity Model requires enough natural
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Figure 5.1: Window size experiment expanding window strategy.

randomization in the positions of document. However, in e-commerce, variations in the rel-

evance of documents can occur over time due to variations in item popularity, seasonality

effects, price fluctuations and other covariates [19, 20]. This will introduce randomization

in positions due to variations in relevance. Secondary, this would yield a sample size of

hundreds of millions of sessions which would drastically increase the computational com-

plexity of the system. We propose the following setup to tackle this problem. First, we

find a sample size (in buckets of days) on which the performance of the model converges.

To find this sample size and adhere to the natural order we implemented the expanding

window strategy [43], as depicted in Figure 5.1. The size of the dataset allows us to apply

this to a separate sample of the complete dataset which can be seen as a validation set to

avoid data leakage. The sample size is designated as the windows size in the subsequent

experiments. Second, to evaluate the model generalization performance we implement a

modified version of k-fold cross-validation [44, 45, 46] that adheres to the natural time

order of the data. Furthermore, to ensure independence of the training samples we imple-

ment a sliding window strategy as depicted in Figure 5.2 similar to [17, 43]. In the absence

of model hyper-parameters we do not implement a validation set in the sliding window

strategy. We take a period starting in January 2019 ending in May 2020 resulting in 16

folds in total.

5.4.1 Hypothesis Testing

We employ statistical hypothesis testing to find if the differences in performance between

the models are statistically significant. Like other research on position bias estimation

and unbiased learning-to-rank [2, 4, 10, 47] we apply a two-tailed paired student t-test

and take a significance level of α = 0.01. Thus, we consider the difference in model
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Figure 5.2: Time ordered k-fold sliding window strategy.

performance statistically significant with p < 0.01. We apply a paired t-test to compare

the log-likelihood scores of the model on the same fold over all considered data windows.

We can apply the t-test as, unlike standard k-fold, the training samples are independent

over the data windows. The p-value is calculated by means of the t-distribution with the

degrees of freedom set as the number of folds minus one [48]. Furthermore, we report

the arithmetic mean of the model performances over the windows and the 95% confidence

intervals based on the t-distribution, similar to Chuklin et al. [17]

5.5 Experiments

In this section we propose various experiments to conduct in this research. We first propose

experiments on general improvements of the Position-Based Propensity Model. Next, we

propose experiments with the aim of improving and extending the model utilizing Picnic

specific characteristics and data to answer the following sub-question:

RQ4: How can we improve the position bias estimation method utilizing specific

characteristics and data of the Picnic in-app search engine

5.5.1 Expectation-Maximization Iteration Threshold

As discussed in Section 5.2.2 we propose to conclude the iterative EM algorithm at a fixed

threshold iteration. The literature on click models provides no specific recommendations

on a strategy to find the number of iterations for the algorithm. Chuklin et al. [17] take

a static value of 50, whereas Wang et al. [13] conclude the algorithm at 10 iterations.

Considering the fact that the literature provides no recommendations and the fact that

the Picnic dataset has different characteristics compared to the related literature. We aim
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to find the optimal value for the number of iterations by employing a convergence plot

and test with a range of threshold values. The convergence plot depicts the log-likelihood

improvement on the training set at each iteration and is used to find a threshold value that

balances the computation time of the algorithm as well as a near complete convergence

score.

5.5.2 Expectation-Maximization Initial Values

The Expectation-Maximization algorithm is only guaranteed to converge to a point of zero

gradient, which is not necessarily a local or global optimum [17, 18, 25, 49]. Consequently,

the model can get stuck at a saddle point. The initial values affect the convergence point of

the algorithm. We propose to initialize the model with the parameter values obtained from

the RCTR and DCTR models. However, to ensure that the model is converging to a global

optimum we experiment with the initial values of the model. Derived from related work

[17, 20], we experiment with the following initial parameters values {θk} = .2, {θk} = .5,

{γq,d} = .2, {γq,d} = .5, 5.10 and 5.11.

θk = min

(
1

log k
, 1

)
(5.10)

θk =
1

(1 + log k)
(5.11)

5.5.3 Expectation-Maximization Data Smoothing

We also experiment with data smoothing as suggested by [17, 28, 30]. We assume a

prior distribution Beta(1, 1) for both parameters {θk} and {γq,d}. More specifically, two

impression observations are included for each parameter, of which one receives a click and

one a non-click. Consequently, the numerator in 5.8 and 5.9 starts at two (click and non-

click) and the denominator starts at one (click). This data smoothing is involved with

sparsity of the click log data and in the case of Picnic this could potentially smooth the

estimations for both the lower positions that receive limited clicks and query-document

pairs that receive limited clicks for a given query.

5.5.4 Noise Aware Position-Based Propensity Model

The examination hypothesis of the Position-Based Propensity Model in the unbiased

learning-to-rank framework has a strict noise free assumption C = 1 =⇒ R = 1, E = 1.

However, this is an unrealistic assumption as clicks can happen for various unexpected
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reasons [2, 6, 37]. Initial research on the unbiased learning-to-rank framework adopts the

assumption of uniform click noise, under which the model is proven to be robust to noise

and able to learn an unbiased ranker despite click noise [2, 3]. However, as shown by

Joachims et al. [9], click noise cannot be assumed to be uniform due to trust bias. Recent

research by Agarwal et al. [10] proposes to explicitly model click noise to overcome the

problem of non-uniform click noise. Agarwal et al. [10] extend the Position-Based Propen-

sity Model by introducing additional parameters that model the click noise. Furthermore,

as discussed in Section 3.4, a click only reveals the perceived relevance R on the document

snippet. As proven by [30, 34] there can be a substantial discrepancy between the per-

ceived relevance R and true relevance R̃. Chapelle and Zhang [30] explicitly model both

the perceived relevance and the true relevance in the Dynamic Bayesian Network Model.

In this thesis we propose a novel two fold solution for this unrealistic noise free assump-

tion. First, we consider add to basket events only, which indicate the intention of the user

to buy the product. This is a stronger relevance signal compared to clicks in the scenarios

considered in the related work. Consequently, this reduces the difference between R and R̃.

Furthermore, we utilize order data to filter out unintended or reverted add to basked events.

More formally, we have extended click log Sb where each click log item (q, d, k, c) ∈ s ∈ Sb
is extended to ([q, d, k, c], b). b = {1, 0} denotes if the respective product was eventually

ordered. We extend the Position-Based Propensity Model by introducing the assumption

that b = 0 =⇒ C = 0 as formalized in Algorithm 3. Thus, we do not explicitly model click

noise but rather avoid to consider these confounding events by assuming a non-click on

click log items where b = 0. Unlike web search and similar scenarios, in e-commerce this is

possible as we know if the customer eventually ordered the clicked product. Furthermore,

customers of Picnic mostly interact with the search results by directly adding them to the

basket from the result list.

5.5.5 Display Events Position-Based Propensity Model

In the aforementioned models we solely utilize add to basket events. However, more ex-

tensive user interactions are captured on the search result page, as discussed in Section

2.3. We can utilize these events to extend the Position-Based Propensity Model and poten-

tially improve parameter estimations, similar to [1, 32, 50]. We propose an extension of the

Position-Based Propensity Model that can leverage display events of individual product

tiles. This display event indicates that a product tile was presented in the visible part of

the screen. The display events can potentially improve the model as they convey more

information on the behavior of the user on the search result page. We propose to use the
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5. METHODOLOGY

display event as an indication of examination. However, we cannot assume that a display

event implies examination of the corresponding document. Conversely, we can assume that

a non-display implies that the user did not examine the document as the user can never

examine a document that was not in the visible part of the screen. More formally, we have

an extended click log Sv where each item in session s ∈ Sv is extended to ([q, d, k, c], v)

where v = {1, 0} denotes a display or non-display of the respective instance. We assume

that v = 1 6=⇒ E = 1 as a display event does not guarantee examination. Conversely,

we assume that v = 1 =⇒ E = 0 as a user can never examine a document that was not

in the visible part of the screen. We incorporate the assumptions into the Position-Based

Propensity Model by adjusting the estimation of the distribution of latent variables E

and R. We assume that v = 1 =⇒ E = 0 thus we replace the parameter value θk in

5.4 and 5.5 with 0 yielding equations 5.12 and 5.13 respectively. The examination step is

adjusted employing these equations. In the case of v = 0 we replace 5.4 with 5.12 as the

examination probability is assumed to be zero and we replace 5.5 with 5.13 as the relevance

probability does not depend on the examination for v = 0. In the case of v = 1 we consider

the standard update rules as formalized in 5.4 and 5.5. The lines 16 and 17 in the EM

algorithm as formalized in 2 are adapted according to the aforementioned extension.

P (E = 1, R = 0 | C = 0, q, d, k) =
0(1− γq,d)
1− 0γq,d

= 0 (5.12)

P (E = 0, R = 1 | C = 0, q, d, k) =
(1− 0)γq,d
1− 0γq,d

= γq,d (5.13)

5.5.6 Personalized Ranking
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Chapter 6

Implementation

In this chapter we describe the implementation details of the system. First, we motivate

the choice of technology. Next, we describe the setup of the production ready system

implemented for Picnic. Last, we describe how we ensure the scalability of the system. In

this chapter we consider the following sub-question:

RQ5: How can we develop a production ready and scalable system for position

bias estimation?

6.1 Position-Based Propensity Model

In the absence of an open source implementation of the Position-Based Propensity Model

we developed an implementation of the model in Python. We employ Python as the

programming language for the model as Python is a widely used programming language in

the field of machine learning. Furthermore, Python is the language used by Picnic for all

data science and machine learning projects. Notable is that the implemented model has

no external dependencies and relies only on pure Python.

6.2 Production System

The primary objective of the system is position bias estimation. However, we employ the

Position-Based Propensity Model that also learns a relevance model. Though, only for head

queries, the query-document relevance scores have a substantial business value for Picnic as

these scores can potentially directly improve the current ranking system. We discuss some

details on the use case in Section 6.3. Thus, we aim to implement the system with the joint

objective of position bias estimation and pointwise query-document relevance learning for
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6. IMPLEMENTATION

head queries. The pipeline is implemented in Python with the exception of the Load Data

and Data Preprocessing steps which are implemented by means of SQL queries that run

in Snowflake, the Data Warehouse (DWH) system of Picnic. The system is documented

using Python docstrings and an extensive readme. An overview of the system is depicted

in Figure 6.1 and the different components are listed and briefly discussed below.

• Load Configuration: The pipeline has a set of configurable parameters such as the

train/test split ranges and the threshold number of iterations for the EM algorithm.

The configuration is loaded from a YAML file and set on initialization of the pipeline

execution.

• Loading & Preprocessing Data: For computational efficiency, the data loading and

preprocessing steps are combined and executed in the data warehouse. This signifi-

cantly reduces the amount of data that is loaded into the downstream pipeline.

• Train DCTR & RCTR: The Document-Based CTR and Rank-Based CTR models

are trained utilizing custom Python implementations. The models can be trained in

parallel. However, due to the limited runtime of the models we do not implement

parallel training of the models to avoid overhead and complexity of parallel execution.

• Output Parameter Preprocessing : The output parameters of the DCTR and RCTR

model are processed to be used as initial parameters for the Position-Based Propen-

sity Model.

• Train Position-Based Propensity Model : The PBMmodel is trained on the configured

train data set, given the initial values and the configured number of iterations.

• Model Evaluation: The models are evaluated using the log-likelihood scores on the

configured test data set.

• Anomaly Detection: The output parameters of the PBM and DCTR are analyzed to

detect unexpected or erroneous values. This is done in order to avoid that the values

will be loaded and utilized in customer facing production systems of Picnic.

• Format Output Data: The parameter values of the PBM and DCTR are formatted

such that they can be stored in columnar tables.

• Store Output Data: The formatted parameters as well as meta-data on the system

run are stored in the DWH of Picnic. The table definition is depicted in Table 6.2.
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Figure 6.1: Overview of the production system.

Figure 6.2: Overview of output tables in the Picnic data warehouse.
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6.2.1 Scalability

The data volume processed by the system will be in the tens of millions of click log items.

We propose a two-fold solution to ensure scalability of the system. First, the data pre-

processing component of the pipeline is executed in the data warehouse system of Picnic.

The DWH system is optimized for loading of data from the various tables and auto-

matically scales with the computational load of the preprocessing queries. Furthermore,

preprocessing in the data warehouse will reduce the data volume that is loaded into the

downstream pipeline components. Thus, reducing communication and network overhead.

Second, though the preprocessing is done in the DWH, the downstream pipeline will still

have to process tens of millions of click log items. Specifically, the training of the model

is a potential bottleneck of system performance and scalability. To ensure scalability of

the model training we do not employ a distributed computing system (e.g. Spark), but

rather optimize the algorithm in such a way that it can be handled on small-scale sys-

tems and does not directly require data parallelism or a distributed system. We optimize

the algorithm in the following way. We have a data set of which the size grows with the

number of sessions and corresponding click log items. The expected sample size will be

in the tens of millions of sessions. The CTR models and the Position-Based Propensity

Model have a time complexity of O(|S|) and O(|S| ·K) respectively where |S| denotes the
total number of click log items in S and K denotes the number of iterations of the EM

algorithm. The naive implementation of the algorithms would induce long computational

times and is not scalable considering the expected sample sizes and the time complexity

of the models. However, we can optimize the algorithms and significantly reduce the time

complexity of the implemented algorithms. Specifically, we can leverage the property of the

algorithms that for each unique query-document-position triple {(q, d, k)} the estimation

of the latent variables is identical for both c = 1 and c = 0. Thus, we can sum the number

of clicks c = 1 and the number of non-clicks c = 0 for every {(q, d, k)} over all click log

items in S. This yields a set of query-document-position triples and corresponding click

counts {(q, d, k, click_count, no_click_count)}. This set is significantly smaller compared

to |S|. Furthermore, the size of the click log grows linearly with the number of interactions,

whereas the set of query-document-position triples grows only with the number of query-

document-position combinations. The dataset is now reduced from the total number of

click log items |S| to the number of unique query-document-position triples |{(q, d, k)}|. To
outline the achieved scalability we report both the training time of the naive and optimized

implementation of the EM algorithm in Chapter 7. The optimized algorithm is formalized
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6. IMPLEMENTATION

in Algorithm 4. The proposed solution also applies to the MLE algorithm for the CTR

models but for brevity and because of the similarity with the Expectation-Maximization

algorithm we do not discuss the details.

6.3 Potential Use Cases

The initial phase of the research was not concerned with specific use cases of position bias

estimation but rather with finding out how Picnic can perform position bias estimation

primarily. However, during the thesis period we defined and discussed different potential

use cases of the implemented position bias estimation system. In this section we will answer

the following research questions:

RQ6: What are potential use cases of position bias estimation within Picnic?

.
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Chapter 7

Results

In this chapter we present the results of the thesis. We first present and discuss the results

of the experiments on the sample size and the EM iterations threshold value, as these results

are used in subsequent experiments. Next, we present the results on the model performance

with respect to the log-likelihood of the CTR Models and the Position-Based Propensity

Model. Furthermore, we present the position bias estimated by the standard Position-

Based Propensity Model. The different experiments on improvements and extensions of

the Position-Based Propensity Model as well as experiments on personalized ranking are

discussed next. Lastly, we discuss the results on the effectiveness of the implemented

scalable Expectation-Maximization algorithm.

7.1 Sample Size

We first discuss the experiment on the sample size as the output of this experiment is

used to determine the window size of the subsequent experiments. Figure 7.1 depicts the

log-likelihood score of the models over the range of increasing sample sizes. We can observe

that the performance of the Document-Based CTR and Position-Based Propensity Model

increase with the sample size whereas the Rank-Based CTR model slightly decreases in

performance. This can be explained by the fact that the DCTR and PBM have a large

number of parameters compared to the RCTR that has a limited number of parameters.

Intuitively, the model cannot learn more from an increased sample size. Interesting to note

is the similar increase in the performance curve of the PBM and DCTR. This pattern can

be explained by the fact that the parameter space of the PBM is a proper superset of the

parameter space of the DCTR. Based on the result of this experiment we take a window
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7. RESULTS

Figure 7.1: Model performance with re-
spect to sample size (in day buckets).

Figure 7.2: PBM EM convergence plot
truncated at iteration 20.

size of 30 days, to keep the balance between sufficient natural result randomization and

limited long-term relevance variations.

7.2 Expectation-Maximization Iteration Threshold

Figure 7.2 depicts the convergence plot of the Expectation-Maximization algorithm for the

Position-Based Propensity Model. The plot is truncated at iteration 20. We can observe

that the convergence rate is fast in the initial phase, as expected. The convergence rate

slows down significantly in later iterations and is only slowly converging at iteration 20.

The model is not yet fully converged at iteration 100 but the increase in log-likelihood is

minimal from iteration 20. Thus, to limit computational run-time we take the value of 20

iterations for the subsequent algorithm runs. We observe similar convergence plots on all

folds over the considered data set.

7.3 Model Performance

As discussed in Section 5.4, we cannot directly evaluate the position bias estimation. How-

ever, we can evaluate the fit of the model on a hold-out set of the observed data by means

of the average log-likelihood score and compare the score over different models. The log-

likelihood performance of the models provides an indication of the position bias estimation

accuracy. Figure 7.3 depicts the arithmetic mean of the average log-likelihood scores of

the RCTR, DCTR and PBM over the different windows as well as the 95% confidence in-

tervals. Furthermore, Table 7.2 lists the log-likelihood scores over all sixteen windows. We
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Table 7.1: Model performance differences, * indicates statistically significant.

RCTR-DCTR PBM-RCTR
Pairwise Difference Mean 0.01150 0.00825
p-value <0.0001 <0.0001
Improvement 2.54%∗ 7.82%∗

Figure 7.3: Average model perfor-
mance over all folds, error bars indicate
95% CI.

Figure 7.4: Average model perfor-
mance over all folds on non-personalized
data, error bars indicate 95% CI.

can observe that the Position-Based Propensity Model outperforms both baselines models.

Furthermore, we observe that the Rank-Based CTR, though having a limited number of

parameters, outperforms the Document-Based CTR model. A similar result is obtained

by Chuklin et al. [17]. Table 7.1 lists the results of the t-test between the models and

we can observe that the RCTR significantly outperforms the DCTR and the PBM signifi-

cantly outperforms both baseline models. This shows that the estimated parameters of the

Position-Based Propensity Model better fit the observed click data. This is a strong indi-

cation of the accuracy of the position bias estimation that is derived from the parameters

of the Position-Based Propensity Model.

7.4 Position Bias Estimation

Figure 7.5 depicts the position bias as estimated by the Position-Based Propensity Model,

for the last considered fold, truncated at position 20. The position bias curve for all

positions is included in the Appendix 8.1. The plot depicts the estimated position bias

curve as well as the empirical CTR and the display rate. The latter two rates can be

considered as the lower and upper bound for the position bias respectively. As discussed in
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Table 7.2: Log-likelihood score of implemented models over all folds.

Fold RCTR DCTR PBM Smoothed PBM Noise Aware PBM
1 -0.1168 -0.1157 -0.1055 -0.1043 -0.1028
2 -0.1139 -0.1170 -0.1065 -0.1060 -0.1017
3 -0.1127 -0.1214 -0.1119 -0.1111 -0.1066
4 -0.1092 -0.1094 -0.1005 -0.0998 -0.0972
5 -0.0998 -0.1029 -0.0942 -0.0934 -0.0961
6 -0.1033 -0.1047 -0.0939 -0.0930 -0.0912
7 -0.1017 -0.1034 -0.0917 -0.0909 -0.0893
8 -0.1056 -0.1127 -0.1001 -0.0991 -0.0968
9 -0.1182 -0.1225 -0.1097 -0.1089 -0.1069
10 -0.1193 -0.1221 -0.1093 -0.1085 -0.1062
11 -0.1197 -0.1235 -0.1107 -0.1096 -0.1067
12 -0.1156 -0.1193 -0.1064 -0.1056 -0.1026
13 -0.1166 -0.1229 -0.1095 -0.1087 -0.1049
14 -0.1313 -0.1337 -0.1227 -0.1219 -0.1074
15 -0.1284 -0.1299 -0.1175 -0.1169 -0.1071
16 -0.1215 -0.1243 -0.1108 -0.1103 -0.1029
Mean -0.1146 -0.1178 -0.1063 -0.1055 -0.1017
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Section 3.5 the position bias is equivalent to the probability of examination per position.

The display rate is an upper bound for the probability of examination as the customer

can never examine a product that was not displayed. Likewise — since we assume that

E = 0 =⇒ C = 0 — the click rate is a lower bound on the examination probability. We

observe that the position bias curve correctly lies between the upper and lower bound.

Furthermore, we observe that the curve is more inclined towards lower bound than the

upper bound.

We observe that the propensity curve is steeper — indicating higher bias — compared to

the position bias estimated for the e-commerce scenario considered by Aslanyan and Porwal

[20]. We hypothesize that this is due to the specific characteristics of an online grocery

store as discussed in Chapter 2. For example, as customers are familiar with the assortment

the search engine might be used more for navigation than for exploration. Furthermore,

this might be explained by the intuition that searches for a product in grocery stores are

less deliberate compared to searches in other type of stores. Furthermore, we observe that

we have less position bias compared to web search as estimated by Agarwal et al. [6]. In

the extended plot in Figure 8.1 we observe that the position bias estimation is inaccurate

near the lowest positions. This is most likely due to click and impression sparsity on these

lower ranks. We propose to solve this by imputation of the position bias values from a

certain anchor position as the differences in position bias are relatively small for the lower

positions.

We can clearly observe a pagination effect in the display rate. This is due to the fact that

the product tiles are displayed in a grid with two columns. As such, both positions on the

same row have an equivalent display rate. Notable is that the same effect can be observed

in the examination curve. We observe that the customer is more likely to examine both

columns in each row of product tiles when scrolling through the result list. However, the

Picnic search result page has no explicit pagination. Hence, we do not observe a pagination

effect similar to other research [20].

We observe differences between the position bias estimated over the different windows.

For brevity we present the position bias estimation on the latest time window, fold sixteen.

We hypothesize that the differences are either due to seasonality or variation in the active

customer base. As Picnic is a fast growing company, the customer base is not as static as

in some other scenarios considered in the literature.
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Figure 7.5: Position bias estimated by the standard Position-Based Propensity Model.

7.5 Experiments

In this section we discuss the outcome of various experiments on improvements and ex-

tensions of the Position-Based Propensity Model. The result of the experiments on the

influence of personalized ranking on position bias are discussed last.

7.5.1 Expectation-Maximization Initial Values

Based on the experiments with the initial values as discussed in Section 5.5.2 we find that

the algorithm converges to a global maximum with the initial values derived from the

DCTR and RCTR models. The experiments prove that the initial values derived from the

RCTR and DCTR model provide sufficient prior knowledge on the parameter values of the

Position-Based Propensity Model for the algorithm to not get stuck in a local maximum

or saddle point. The convergence plots of the experiments are included in the Appendix

depicted in Figures 8.2, 8.3, 8.4 and 8.5.

7.5.2 Expectation-Maximization Data Smoothing

The log-likelihood scores of the data smoothing experiment are listed in Table 7.2. We

observe a slight improvement of the log-likelihood score over the standard Position-Based
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Table 7.3: Model performance differences of proposed extension, * indicates statistically
significant.

Noise Aware Smoothing Noise Aware + Smooth
Pairwise Difference Mean -0.004656 -0.000806 -0.007719
p-value 0.0002 <0.0001 <0.0001
Improvement 4.33%∗ 0.75%∗ 7.25%∗

Propensity Model. Table 7.3 lists the result of the significance test and shows that the

smoothing extension provides a significant improvement over the standard Position-Based

Propensity Model.

7.5.3 Noise Aware Position-Based Propensity Model

As discussed in Section 5.5.4, we propose a noise aware extension of the Position-Based

Propensity Model that utilizes order data. Table 7.2 lists the scores over all folds of the

standard and the proposed noise aware Position-Based Propensity Model. Furthermore,

Table 7.3 lists the difference in model performance as well as the statistics on the signif-

icance test. We observe that the noise aware PBM significantly outperform the standard

PBM. Figure 7.6 depicts the position bias curves estimated by the Position-Based Propen-

sity Model and the noise aware extension of the PBM. We observe that the the noise aware

PBM estimates a slightly higher position bias. Unlike Agarwal et al. [6], who find the oppo-

site effect of estimating less position bias after noise modeling. We implemented a version

of the Noise Aware Position-Based Propensity Model that also incorporates data smooth-

ing. This model achieves the best performance of all models. As listed in Table 7.3, the

model has a significant improvement of 7.25% over the standard Position-Based Propensity

Model. This is a relatively high performance increase compared to the improvement of the

PBM over the baseline models.

7.5.4 Display Events Position-Based Propensity Model

Due to the nature of the structure of the display event data in the DWH system we

conducted the initial experiment on a single fold. The log-likelihood score of the models

are listed in Table 7.4. The hypothesis was that the proposed extension would improve the

position bias estimation as it reveals more details on user behaviour. Unexpectedly, we

observe that the model performance is worse than the standard Position-Based Propensity

Model. The position bias curve of both the models is depicted in Figure 7.7 and explains
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Table 7.4: Log-likelihood score of PBM display events extension on fold 13.

Fold Standard PBM PBM Display Events
13 -0.110 -0.119

Figure 7.6: Position bias estimated by the
noise aware model extension.

Figure 7.7: Position bias estimated by the
display events model extension.

why the model performance is worse. We can observe that the position bias curve intersects

with the empirical CTR curve and estimates a lower examination probability than CTR

which is impossible under the assumptions of the Position-Based Propensity Model. We

hypothesize that this is due to one of the following reasons:

• The proposed extension of the model could be misspecified.

• A combination of increased levels of noise in the granular display event data and a

strict assumption v = 0 =⇒ E = 0.

• Imbalance of display rates between the top four position and the other positions.

7.5.5 Personalized Ranking

To determine the influence of personalized ranking on position bias, we conducted two

experiments as discussed in Chapter 5.

Figure 7.4 depicts the model scores on the filter based personalized experiments. We

observe two notable differences compared to the complete data set results. First, we

observe that for the filter based approach the overall model performance is worse. This

can be attributed to either the significantly reduced sample size due to filtering or the fact
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that the models that are trained on the complete data set have an easier task of predicting

patterns that emerge more often in the training set.

.

.

. .

Figure 7.8 depicts the position bias curve estimated from the non-personalized ranking

experiment as well as the empirical CTR and position bias as estimated on the com-

plete data. We observe both a higher empirical CTR and less position bias on the non-

personalized rankings. Although we cannot verify the assumptions, we hypothesize that

this is related to quality-of-context bias [7, 9] as the quality of the overall ranking also

influences the user interactions. Customers might examine more documents in a non-

personalized ranking due to a lower overall quality of the search ranking. A personalized

ranking will most likely increase overall quality of the ranking and thus decrease exami-

nation of lower ranks, consequently increasing position bias. Notable, is that both curves

follow similar pairwise patterns on the lower ranked position.

.

.

.

.
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7.6 Scalability

Table 7.5 lists statistics on the size of the data set as well as the training time of the

Position-Based Propensity Model EM algorithm for each fold. We observe that the average

training time of the PBM EM algorithm is 100.6 seconds. Furthermore, We can observe

that the number of (q, d, k) triples is significantly lower compared to the number of click
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Figure 7.8: Estimated position bias for the
filter based personalization experiment.

Figure 7.9: Estimated position bias for
both personalization experiments.

log items for each fold. The average number of click log items is over 99 million whereas the

average number of (q, d, k) triples is just over a million. This indicates that the proposed

optimization of the algorithm can ensure scalability. From the number of click log items

we can obtain the potential runtime of the system had it not been optimized. 99,228,196
1,060,636 ×

100.6 ≈ 9, 411.67 seconds. Thus, the non-optimized algorithm would have a potential

runtime of more than two hours. We conclude that the implemented optimized version

of the algorithm provides sufficient run time performance for the current expected data

size. Future growth of the data size is expected as the number of customer, products

and consequently queries will increase over time. However, the system will still be able

to handle such data volumes. Even if the number of (q,d,k) will grow by a ten fold the

system will still have a reasonable run-time.
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Table 7.5: Data size statistics and PBM training time (in seconds) over all folds.

Fold Sessions Click log items (q,d,k) Queries PBM training time
1 2,915,116 76,728,027 756,922 3238 73.5
2 2,763,679 77,299,496 796,319 3220 80
3 3,089,353 89,337,729 886,121 3413 85
4 2,772,175 82,642,911 1,038,857 3315 100
5 3,000,112 92,743,723 1,007,071 3503 98.5
6 2,931,115 98,327,899 1,782,891 3830 168
7 2,483,803 79,004,589 1,156,910 3493 112
8 2,728,016 86,516,685 1,118,815 3492 106
9 3,317,873 98,819,145 1,216,776 3835 115.5
10 3,526,928 92,548,748 1,064,483 4074 102
11 3,764,510 97,787,309 1,040,645 4227 98
12 3,726,942 95,815,469 946,772 4275 89
13 4,402,104 114,463,943 1,009,862 4517 92.5
14 4,434,101 117,199,812 963,473 4522 88
15 5,597,963 148,715,459 1,116,416 5016 102
16 5,450,480 139,700,194 1,067,841 5260 99.5
Avg. 3,556,517 99,228,196 1,060,636 3952 100.6
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Chapter 8

Conclusion

In this thesis we set out to answer the following research question:

How can we develop and implement a system to estimate position bias for un-

biased learning-to-rank in the context of Picnic?

In conclusion, we propose and implement a novel system for position bias estimation

in the context of an online grocery store or similar e-commerce stores. We employ the

Position-Based Propensity Model to estimate position bias utilizing add to basket events.

The model parameters are learned through a scalable implementation of the Expectation-

Maximization algorithm. We put forward a production ready system with the joint

objective of position bias estimation and pointwise relevance learning-to-rank for head

queries. Furthermore, we put forward a Python implementation of the Rank-Based CTR,

Document-Based CTR and Position-Based Propensity Model. We find that the imple-

mented Position-Based Propensity Model significantly outperforms both baseline CTR

models. Furthermore, we find that the proposed noise aware extension of the Position-

Based Propensity Model presents a significant improvement over the standard model. We

experimented with an extension of the Position-Based Propensity Model that incorporates

display event data. However, based on our experiments we find that this extension cannot

improve the model performance.

8.1 Future Work

In this section we discuss the limitations and future work of the thesis. We acknowledge

the limitation of the research in the fact that we are not able to verify the propensity esti-

mations by learning an unbiased learning-to-rank model. The performance of the unbiased
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and biased learning-to-rank models can be compared to determine if the proposed propen-

sity estimation is accurate. Furthermore, the experiments on the display event extension of

the Position-Based Propensity Model are limited due to time constraints of the thesis. We

acknowledge that we cannot preclude that the proposed model can improve performance

under certain conditions of noise-free and balanced display event data.

Furthermore, as discussed in Section 3.2, user interaction data can be affected by other

types of biases such as presentation bias and selection bias. We acknowledge that both

biases can also affect user interactions in the Picnic data. The effect of selection bias

is mostly a future problem as the current assortment is limited. Presentation bias could

already have a significant effect on the Picnic user interaction data. We leave the estimation

of both bias effects for future work.

Furthermore, the search ranking layout in the Picnic app is a grid-based layout. Oost-

erhuis and de Rijke [51], Xie et al. [52] prove that more complex ranking layouts such

as grid-based layouts can introduce additional biases such as middle-bias. However, as

the number of columns is limited the user interaction are not affected by middle bias.

Furthermore, these additional biases are not considered in the unbiased learning-to-rank

framework yet. We leave it for future work to also consider these additional biases.

Moreover, due to the inherent limitations of the standard Position-Based Propensity

Model we cannot directly improve the model using additional features. Consequently, we

cannot conclude that the implemented model accounts for all unobserved covariates in

terms of product relevance. For example, variations in the price due to promotions and

discounts might influence product relevance. These covariates are not directly incorporated

in the model. However, the observed performance of the implemented models does not

indicate that this poses a point of concern.

8.2 Recommendations

In addition to the recommendations on the use cases, as discussed in Section 6.3. We

have the following recommendation for Picnic. Employing the estimated click propensities

Picnic can obtain an invaluable quantity of unbiased user interaction data. We recommend

Picnic to utilize this data and develop an unbiased learning-to-rank model for search and

potentially other rankings in the application. Current advances in both the literature and

the practice indicate that this is a worthwhile investment as discussed in the thesis. An

extension of the well establish machine learning platform TensorFlow incorporates support

for unbiased learning-to-rank [53].
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8. CONCLUSION

Regarding other biases, we recommend to first start with development of a learning-to-

rank model before further exploring how other biases affect the user interaction data of

Picnic. Furthermore, we recommend to verify the accuracy of the estimated propensity of

the proposed system by means of A/B testing both an biased and unbiased learning-to-

rank model. This recommendation also applies to context aware position bias and customer

specific position bias.

Lastly, we recommend to impute the propensity values for the lowest ranks by the propen-

sity of a preceding anchor position. Due to data sparsity these values are most likely to be

incorrect.
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Appendix

Figure 8.1: Position bias estimated by the standard Position-Based Propensity Mode for all
positions.
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Appendix

Algorithm 2: Display Events PBM Expectation-Maximization
input : Sv, {ρk}, {ρq,d}, iterations
output: {θk},{γq,d}

1 Initialize Parameters
2 {θk} ← {ρk}
3 {γq,d} ← {ρq,d}
4 t← 0

5 while t < iterations do
6 ESSθ[sumk]← 0

7 ESSγ [sumq,d]← 0

8 foreach s ∈ S do
9 foreach (q, d, k, c, v) ∈ s do

10 if c = 1 then
11 E = R = 1 as per 5.3
12 else
13 if v=1 then
14 E = 0
15 R = P(E=0,R=1|C=0,q,d,k) estimate using 5.13

16 else
17 E = P(E=1,R=0|C=0,q,d,k) estimate using 5.4
18 R = P(E=0,R=1|C=0,q,d,k) estimate using 5.5

19 end

20 end
21 ESSθ[sumk] += E

22 ESSγ [sumq,d] += R

23 end

24 end
25 foreach θk ∈ {θk} do
26 θk =

1
|Sk| · ESSθ[sumk]

27 end
28 foreach γq,d ∈ {γq,d} do
29 γq,d =

1
|Sq,d| · ESSγ [sumq,d]

30 end
31 t = t + 1

32 end
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Algorithm 3: Noise Aware PBM Expectation-Maximization
input : Sb, {ρk}, {ρq,d}, iterations
output: {θk},{γq,d}

1 Initialize Parameters
2 {θk} ← {ρk}
3 {γq,d} ← {ρq,d}
4 t← 0

5 while t < iterations do
6 Expectation Step
7 Estimate distribution of latent parameters E and R for every click log item
8 Calculate ESS for each parameter based on estimated distributions.
9 ESSθ[sumk]← 0

10 ESSγ [sumq,d]← 0

11 foreach s ∈ S do
12 foreach (q, d, k, c, b) ∈ s do
13 if c = 1 and b=1 then
14 E = R = 1 as per 5.3
15 else
16 E = P(E=1,R=0|C=0,q,d,k) estimate using 5.4
17 R = P(E=0,R=1|C=0,q,d,k) estimate using 5.5

18 end
19 ESSθ[sumk] += E

20 ESSγ [sumq,d] += R

21 end

22 end
23 Maximization Step
24 foreach θk ∈ {θk} do
25 θk =

1
|Sk| · ESSθ[sumk]

26 end
27 foreach γq,d ∈ {γq,d} do
28 γq,d =

1
|Sq,d| · ESSγ [sumq,d]

29 end
30 t = t + 1

31 end
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Algorithm 4: Scalable PBM Expectation-Maximization
input : S, {ρk}, {ρq,d}, iterations
output: {θk},{γq,d}

1 Initialize Parameters
2 {θk} ← {ρk}
3 {γq,d} ← {ρq,d}
4 t← 0

5 while t < iterations do
6 Expectation Step
7 Estimate distribution of latent parameters E and R for every click log item
8 Calculate ESS for each parameter based on estimated distributions.
9 ESSθ[sumk, countk]← 0

10 ESSγ [sumq,d, countq,d]← 0

11 foreach (q,d,k,c_sum,nc_sum) ∈ s do
12 if c = 1 then
13 E = R = c_sum as per 5.3
14 else
15 E = (P(E=1,R=0|C=0,q,d,k) · n_sum) estimate using 5.4
16 R = (P(E=0,R=1|C=0,q,d,k) · n_sum) estimate using 5.5

17 end
18 ESSθ[sumk] += E

19 ESSγ [sumq,d] += R

20 end
21 Maximization Step
22 foreach θk ∈ {θk} do
23 θk =

1
[countk]

· ESSθ[sumk]

24 end
25 foreach γq,d ∈ {γq,d} do
26 γq,d =

1
[countq,d]

· ESSγ [sumq,d]

27 end
28 t = t + 1

29 end
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Figure 8.2: Convergence plot initial values
experiment {θk}, {γq,d} = 0.2.

Figure 8.3: Convergence plot initial values
experiment {θk}, {γq,d} = 0.5.

Figure 8.4: Convergence plot initial values
experiment 5.10.

Figure 8.5: Convergence plot initial values
experiment 5.11.
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