
Dynamic Enactment of
Scientific Workflows

using Pilot-Abstractions

A thesis submitted for the degree of

Master of Science (MSc)

at the

Informatics Institute
Faculty of Science

University of Amsterdam

Mark Alexander Santcroos

October 2016

Supervised by

dr. Adam Belloum

Abstract

On a high level, scientific workflow enactment has to deal with the consecutive
execution of computational tasks. As these tasks often require input and pro-
duce output data, the enactment of these workflows also involves the transfer
of input and output data of these tasks to and from the resource where these
tasks are executed. On Distributed Computing Infrastructure (DCI) like the
Open Science Grid (OSG), which is inherently heterogeneous, the complexity
and dynamism of data and processing distribution have increased. The mapping
of logical workflow tasks to physical resources of the DCI and the subsequent
transfer of data to and from these sources exhibit a large degree of freedom.
We argue that the management of dynamic data and compute should become
part of the runtime system of workflow engines to enable workflows to scale
as necessary to address big data challenges and fully exploit the capabilities of
DCI. The P* model for pilot-abstractions defines a clear separation between
the logical compute and data units and their realization as a job or a file at a
physical resource. In this thesis we describe the implementation of Pilot-Data,
an extension of RADICAL-Pilot, that satisfies the data aspects of the P* model
for RADICAL-Pilot. To explore both functionally and experimentally whether
this Pilot-Data implementation can provide the capabilities for such a workflow
system runtime environment, we also implemented Marvin, a workflow engine
for the GWENDIA workflow language that interfaces to both the compute and
data capabilities of RADICAL-Pilot. For the empirical evaluation we use various
synthetic transfers and workloads and a real life case study: a DNA sequenc-
ing analysis workflow. We conclude that the pilot abstraction offers a valid
approach to explore the design of a new generation of workflow management
systems and runtime environments that are capable of intelligently deciding on
application-aware late binding of compute tasks and data to physical resources.

adambelloum
Highlight

adambelloum
Highlight

adambelloum
Highlight

Acknowledgements

The start of my study at the University of Amsterdam turned out to be also the
beginning of a new career. My initial course was with Adam Belloum who not
only enthusiastically lectured about distributed computing, but also brought me
in contact with Silvia Delgado Olabarriaga. Adam and I ran into each other
multiple times over the last years, of course in the context of study, but as well
as collaborators and peers. Adam, thanks for your role in bringing my study
to a good end in the form of my graduation research, and I hope we will cross
paths again in the future!
Silvia and I worked together for many years at the AMC where we did interesting
projects and had much fun in the process. Silvia, thank you for your guidance
and I would like to express my gratitude that you are now also part of the
committee, I’m sure we will meet again!
Paola Grosso, thank you for our encounters during the course of my study and
your willingness to take part in my defence committee.
Silvia on her turn was instrumental in the adventure that lead me to the USA
to work with Shantenu Jha. Shantenu: one thesis down, one to go, thanks!
As you can read in Section 1.3, this work was done in close collaboration with
many excellent researchers and dear colleagues, with a special mention of Shayan
Shahand and Barbera van Schaik at the AMC, and Andre Merzky at Rutgers.
A ‘Bedankt voor alles!’ to my mother who although has given up trying to
understand what I’m doing, didn’t give up showing interest and motivating me.
Not many theses are written without sacrifices in the personal sphere, and mine
was no exception. Kalinka, thank you for continued support and patience during
this sometimes turbulent period for both of us, love you!
Finally, a High-Five to Alec!

Contents

List of Figures 4

List of Tables 5

Abbreviations 6

1 Introduction 7
1.1 Research Questions . 9
1.2 Structure . 9
1.3 Contributions . 9

2 Related Work 11

3 Foundations 15
3.1 P*: Pilot Abstraction for jobs and data 15
3.2 RADICAL-Pilot . 16
3.3 Pilot-API . 18
3.4 GWENDIA . 20

4 Implemented Software 22
4.1 RADICAL-SAGA . 22
4.2 RADICAL-Pilot . 23
4.3 Pilot-Data . 24
4.4 Marvin . 25
4.5 Discussion . 25

5 Experiments 26
5.1 Target infrastructure . 26
5.2 Storage Element Transfer Baseline 27
5.3 Pilot Transfer Baseline . 27
5.4 Pilot-Data Characterizing . 29
5.5 Use case: Next-Generation Sequence Alignment 29

2

6 Results 32
6.1 Baseline SE-SE Transfer Times 32
6.2 Baseline SE-SE Reliability . 33
6.3 Baseline CE-SE Transfer Times 33
6.4 Baseline CE-SE Reliability . 36
6.5 Pilot-Data input location selection 37
6.6 Marvin . 38

7 Discussion 42

8 Conclusion 44

Bibliography 45

3

List of Figures

3.1 P* Architecture . 16
3.2 RADICAL-Pilot Architecture . 17
3.3 Workflow pattern encoded using three different families of languages 21

4.1 RADICAL-SAGA Architecture 23
4.2 Marvin Architecture . 24

5.1 Sites used in experiments . 27
5.2 GWENDIA/Marvin DNA Sequencing Workfow 30

6.1 Average transfer time of a 1M file for each SE to and from all
other SEs . 32

6.2 Average transfer time of a 1000M file for each SE to and from all
other SEs . 33

6.3 Average transfer time of a 1M file for each SE from and to each
other SE . 34

6.4 Average transfer time of a 1000M file for each SE from and to
each other SE . 34

6.5 Success rate of the transfer of a 1M file for each SE from and to
each other SE . 35

6.6 Success rate of the transfer of a 1000M file for each SE from and
to each other SE . 35

6.7 Average transfer time of a 1000M file for each CE from all SEs . 36
6.8 Average transfer time of a 1000M file for each SE to all CEs . . . 36
6.9 Average transfer time of a 1000M file for each CE from each SE . 37
6.10 Success rate of the transfer of a 1000M file for each CE from each

SE . 37
6.11 Average transfer time of a 1000M file for each CE with different

selection methods . 38
6.12 TTC for integrated Marvin experiment for different sizes and

different selection methods . 39
6.13 Duration per component for experiment size 1000 39
6.14 I/O transfer overhead per component for experiment size 1000 . 40
6.15 Input transfer overhead per component for experiment size 1000 40
6.16 Output transfer overhead per component for experiment size 1000 41

4

List of Tables

5.1 List of sites used in experiments 28
5.2 Data sizes for transfer experiments 29
5.3 Workflow data sizes . 30
5.4 Workflow input and output data volumes 31
5.5 Total workflow data volumes . 31

5

Abbreviations

API Application Programming Interface.

BWA Burrows-Wheeler Aligner.

CE Compute Element.

DCI Distributed Computing Infrastructure.

HPC High Performance Computing.

HTC High Throughput Computing.

LHC Large Hydron Collider.

MPI Message Passing Interface.

OGF Open Grid Forum.

OSG Open Science Grid.

RP RADICAL-Pilot.

SAGA Simple API for Grid Applications.

SE Storage Element.

SRM Storage Resource Manager.

TTC Time to Completion.

VO Virtual Organization.

6

Chapter 1

Introduction

A wide range of Biomedical applications have been successfully ported and ex-
ecuted on Distributed Computing Infrastructure (DCI) using workflow technol-
ogy. Workflow management systems can hide details of the underlying infras-
tructure, and serve as an excellent abstraction to carry out high throughput
experiments [1]. By lowering the barriers to use such complex infrastructures,
workflow management systems have been valuable allies in the realization of the
e-Science vision [2].

At the Academic Medical Center of the University of Amsterdam (AMC),
a workflow-based software platform has been adopted for many years to enable
medical imaging [3] and DNA sequencing [4] research. Workflows are extensively
used as the primary abstraction for programming and running applications on
the Dutch production grid infrastructure, facilitating access to both advanced
and novice users. With this approach, data processing ”pipelines” can be easily
described into grid workflows, and high throughput performance can be achieved
by splitting the datasets and distributing their processing on the DCI. Running
computations on the DCI has become a trivial exercise on this platform.

With the growth of the data volumes, the solution provided by the platform
turned out to be insufficient to address the increasing complexity and dynamism
of data and processing distribution [4]. The main challenges shifted from the
processing to the data, and the alignment of the two became more important.
Much more than before, it is now necessary to optimize the mapping of logical
tasks to physical resources to maintain high throughput. This includes, for
example, workload balancing to avoid bottlenecks, but also co-locating tasks
together to minimize data transfers. Furthermore we know from experience
that one size does not fit all, and that one approach can be an optimization for
one application and a pessimization for the other.

Ideally the location of data and processing should take into account the dy-
namic availability of resources and the data flow requirements derived from a
given workflow execution. In practice we have seen that such optimization is
hard to achieve using workflow abstractions as we know today. Optimization
attempts often found their way into the workflow descriptions, for example,

7

by early binding a given computation or dataset to resources that were known
in advance to have sufficient capacity. In this way the workflow descriptions
became ‘polluted’ with all types of DCI-specific information, and their execu-
tion became limited to a subset of the resource available at runtime. Users
(the workflow developer or the workflow executors) became responsible for the
optimizations that the workflow management system was unable to do.

Although our hands-on experience is limited to a couple of workflow man-
agement systems, we argue that this is a fundamental characteristic in most
workflow management systems today due to (a) the lack of an explicit approach
to handle distributed data in a workflow and (b) the lack of a proper abstrac-
tion to separate logical tasks and data flow from their mapping into physical
location on a DCI. While (b) has been partially addressed by using a pilot job
framework as back-end for workflow systems [5], to our knowledge handling data
distribution has not been properly addressed yet in the context of workflow sys-
tems. Based on our observations from backstage of various workflow systems,
we realize that implementing our vision of the ‘ideal case’ is very complex and
requires some out-of-the-box thinking and looking at fresh alternatives.

This thesis explores the P* model for pilot-abstractions [6], which proposed
a clear separation between the logical compute and data units and their realiza-
tion as jobs or files in some physical resources. This model is accompanied by
an Application Programming Interface (API) – the Pilot-API, which provides
an interface to Pilot-Job frameworks that adhere to the P* model, and which
supports programming of distributed applications that can implement complex
and dynamic scheduling of resources. We believe that this API exposes pow-
erful features to address (a) and (b), forming an interesting basis to explore
for the construction of a new generation of workflow management systems that
are more capable of intelligently deciding on application-aware late binding to
physical resources.

In this thesis we work with a real use case and the corresponding reported
challenges [7]. Modern DNA sequencing machines produce data in the range
of 1-100 GB per experiment and with ongoing technological developments this
amount is rapidly increasing. The majority of experiments involve re-sequencing
of human genomes and exomes to find genomic regions that are associated with
disease. There are many sequence analysis tools freely available, e.g. for se-
quence alignment, quality control and variant detection, and frequently new
tools are developed to address new biological questions. The group is using
workflow technology (MOTEUR [8], GWENDIA [9]) to allow easy incorpora-
tion of such software in the data analysis pipelines, as well as to leverage grid
infrastructures for the analysis of large datasets in parallel. The size of the
datasets had grown from 1 GB to 70 GB in 3 years, therefore adjustments
were needed to optimize these workflows. Procedures have been implemented
for faster data transfer to and from grid resources, and for fault recovery at
run time. A split-and-merge procedure for a frequently used sequence align-
ment tool, Burrows-Wheeler Aligner (BWA), resulted in a three-fold reduction
of the total time needed to complete an experiment and increased efficiency by
a reduction in number of failures. The success rate was increased from 10% to

8

adambelloum
Highlight

70%.

1.1 Research Questions

Q1 Can the semantics of a GWENDIA workflow be expressed using the Pilot-
API?

Q2 What factors of data and compute placement exist that can be exploited to
improve execution of data intensive workflows?

Q3 Can the decision making about compute and data placement be automated
in such a way that it has an impact on data intensive workflow execution?

1.2 Structure

The remainder of this thesis is organized as follows. In Chapter 2 related work
for all the topics discussed so far is put into context. Chapter 3 presents the
conceptual foundations on which this thesis is constructed. That is followed in
Chapter 4 by a description of the implementation of the software used for the
conducted experiments. The experiments and target infrastructure to verify the
concepts and implementation are laid out in Chapter 5, followed by the results
of the experiments in Chapter 6 and completed with a discussion of these results
in Chapter 7. In Chapter 8 we close the loop between the research questions
and the acquired results and end with a future outlook.

1.3 Contributions

This thesis is the aggregate of both published and (still) unpublished work. The
following papers are used as material for this thesis.

The P* model

• A Luckow, Mark Santcroos, A Merzky, O Weidner, P Mantha, and S Jha.
P∗: A model of pilot-abstractions. In E-Science (e-Science), 2012 IEEE
8th International Conference on, pages 1–10, 2012

• André Luckow, Mark Santcroos, Ole Weidner, Andre Merzky, Sharath
Maddineni, and Shantenu Jha. Towards a common model for pilot-jobs.
In HPDC ’12: Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing. ACM, June 2012

RADICAL-Pilot

• Andre Merzky, Mark Santcroos, Matteo Turilli, and Shantenu Jha. Exe-
cuting Dynamic and Heterogeneous Workloads on Super Computers, 2016.
(under review) http://arxiv.org/abs/1512.08194

9

adambelloum
Highlight

adambelloum
Highlight

adambelloum
Highlight

adambelloum
Highlight

• Mark Santcroos, Ralph Castain, Andre Merzky, Iain Bethune, and Shantenu
Jha. Executing dynamic heterogeneous workloads on blue waters with
radical-pilot. In Cray User Group 2016, 2016

DNA Sequencing Analysis on DCIs

• BDC van Schaik, Mark Santcroos, and V Korkhov. Challenges in DNA
sequence analysis on a production grid. In EGI Community Forum 2012,
2012

• BDC van Schaik, Mark Santcroos, S Madougou, A Jongejan, A H C van
Kampen, and S.D Olabarriaga. e-Bioscience Solutions and Challenges for
Next Generation Sequencing Experiments. In 2nd International Work-
Conference on Bioinformatics and Biomedical Engineering, pages 333–
334, 2013

Pilot-Data

• A Luckow, Mark Santcroos, A Zebrowski, and S Jha. Pilot-data: an ab-
straction for distributed data. Journal of Parallel and Distributed Com-
puting, 79-80:16–30, 2015

• Mark Santcroos, Barbera DC van Schaik, Shayan Shahand, Śılvia Del-
gado Olabarriaga, Andre Luckow, and Shantenu Jha. Exploring Dy-
namic Enactment of Scientific Workflows using Pilot-Abstractions. In
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pages 1–9, Delft

• Mark Santcroos, S Delgado Olabarriaga, D S Katz, and S Jha. Pilot
abstractions for compute, data, and network. In E-Science (e-Science),
2012 IEEE 8th International Conference on, pages 1–2, 2012

Unpublished

Materials in this thesis not yet published are:

• The software implementations described in Chapter 4.

• The experiments and results in Chapter 5 and Chapter 6 respectively.

• The discussion and conclusion in Chapter 7 and Chapter 8 that are based
on the experiments.

10

adambelloum
Highlight

adambelloum
Highlight

adambelloum
Highlight

adambelloum
Highlight

adambelloum
Highlight

adambelloum
Highlight

Chapter 2

Related Work

History of Pilot-Jobs Around twenty systems with pilot capabilities have
been implemented since 1995 [17]. AppLeS [18] is one of the first published im-
plementations of both placeholders for resources and application-level schedul-
ing; HTCondor [19] and Glidein [20] enabled pilot-based resource allocation
and execution to OSG; DIANE [21], AliEn [22], DIRAC [23], PanDA [24], and
GlideinWMS [25] brought pilot-based workload execution to the Large Hydron
Collider (LHC) and other grid communities.

In contrast to RADICAL-Pilot, the aforementioned systems are often tai-
lored for specific workloads, resources (particularly High Throughput Comput-
ing (HTC)), interfaces, or development models. They often encapsulate pilot
capabilities within monolithic tools with greater functional scope. For exam-
ple, HTCondor with Glidein on the Open Science Grid (OSG) [26] is one of
the most widely used Pilot systems but serves mostly single core workloads.
The Pilot systems developed for the LHC communities execute millions of jobs
a week [24] but specialize on supporting LHC workloads and, in most cases,
specific resources like those of Worldwide LHC Computing Grid (WLCG).

Pilots on HPC Falkon is a Pilot system for High Performance Computing
(HPC) systems. Just as RADICAL-Pilot, Falkon exposes an API that is used to
develop distributed applications or to be integrated within an end-to-end system
such as Swift and it has been designed to implement concurrency at multiple
levels including dispatching, scheduling, and spawning of tasks across multiple
compute nodes of possibly multiple resources. Falkon is designed for single core
applications. Coasters is similar to RADICAL-Pilot in that it supports hetero-
geneity at resource level. RADICAL-Pilot supports a greater variety of resources
though, mainly due to the use of Simple API for Grid Applications (SAGA) as
its resource interoperability layer. The two systems differ in their architectures
and workload heterogeneity (RADICAL-Pilot also supports multi-node Message
Passing Interface (MPI) applications). RADICAL-Pilot’s modular and extensi-
ble architecture was demonstrated by also supporting the Cray architecture on
Blue Waters and Titan [12].

11

Recognizing the potential for HTC on HPC resources, IBM developed an
HTC mode resembling a Pilot system [27] for the series of IBM BG/L prod-
ucts. Unsupported by later IBM Blue Gene series, RADICAL-Pilot brings
back this HTC capability generalizing it to HPC architectures beyond IBM
BG/L machines, like the BG/Q. Nitro [28], is a high-throughput scheduling so-
lution for HPC systems that works in collaboration with the Moab scheduler for
TORQUE. Instead of requiring individual job scheduling, Nitro enables high-
speed throughput on short computing jobs by allowing the scheduler to incur
the scheduling overhead only once for a large batch of jobs.

MySGE [29] allows users to create a private instance of a Sun GridEngine
cluster on large parallel systems like Hopper and Edison. Once the cluster is
started, users can submit serial jobs, array jobs, and other throughput oriented
workloads into the personal SGE scheduler. The jobs are then run within the
user’s private cluster.

QDO [30] is a lightweight high-throughput queuing system for workflows
that have many small tasks to perform. It is designed for situations where the
number of tasks to perform is much larger than the practical limits of the un-
derlying batch job system. Its interface emphasizes simplicity while maintaining
flexibility.

Distributed Data Management Systems Managing distributed data and
compute is an ongoing research theme. For grid environments for example, the
Stork [31] data-aware batch scheduler provides advanced data and compute
placement for HTCondor and DAGMan. Stork supports multiple transfer pro-
tocols like, Storage Resource Manager (SRM), (Grid)FTP, HTTP and SRB. Ro-
mosan et al. [32] present another data-compute co-scheduling approach based on
HTCondor and SRM. Both approaches are built on top of existing job schedul-
ing and data-transfer and storage solutions. Further frameworks for other dis-
tributed environments have been proposed. For example, FRIEDA [33] provides
a data management framework for cloud-environments.

Various research on when to distribute and replicate data has been con-
ducted: for example, Foster [34] and Bell [35] investigate algorithms for data
replication management system and dynamic replication in the context of sci-
entific data grids. A limitation of said approaches is that the systems and algo-
rithms are usually constrained to system-level replication, making it difficult for
the user to control replication on application-level and employ dynamic replica-
tion strategies. Glatard et al. [36] provide a classification of data placement and
replications algorithms and systems for distributed computing environments.

Programming models Various abstractions for optimizing access and man-
agement of distributed data have been proposed: Filecule [37] is an abstraction
that groups a set of files that are often used together, allowing an efficient
management of data using bulk operations. This includes the scheduling of
data transfers and/or replications. Similar file grouping mechanisms have been
proposed by Amer et al. [38], Ganger et al. [39] and BitDew [40]. Further sev-

12

eral higher-level, less resource-oriented abstractions for enabling data analysis
on large volumes of data have been proposed. A well-known example is the
MapReduce programming model [41] for which various implementations ex-
ist [42, 43]. Another example is DataCutter [44], a framework that enables
exploration and querying of large datasets while minimizing the necessary data
movements. While various abstractions for data-intensive applications exist,
these are typically bound to a specific infrastructure. For example, Hadoop –
the most-widely used MapReduce implementation – intermingles resource man-
agement, programming abstraction in a monolithic solution sacrificing flexibility
and extensibility with respect to other kinds of data-intensive workloads.

Pilot-Jobs and Data Management Pilot-Jobs have been successful ab-
stractions in distributed computing as evidenced by a plethora of Pilot-Job
frameworks. With the increasing importance of data, Pilot-Jobs have been also
used to process and analyze large data. However, in most Pilot-Job framework
the support for data movement and placement is insufficient [45]. Only a few of
them provide integrated compute/data capabilities, and where they exist, they
are often non-extensible and bound to a particular infrastructure. In general,
one can distinguish two kinds of data management: (i) the ability to stage-
in/stage-out files from another compute node or a storage backend, such as
SRM and (ii) the provisioning of integrated data/compute management mech-
anisms. An example for (i) is HTCondor-G/Glide-in, which provides a basic
mechanism for file staging and also supports access to SRM. Another example
is Swift [46], which provides a data management component called Collective
Data Management (CDM). DIANE provides in-band data transfer functional-
ity over its CORBA channel. In the context of the LHC Grid several type (ii)
Pilot-Job frameworks that support access to the vast amounts of experimental
data created by the Large Hadron Collider have been developed. DIRAC [47] is
an example of such a system. It interfaces to SRM storage resources and enables
the application to stage-in/out data to this system. AliEn [48] also provides the
ability to tightly integrate storage and compute resources and is also able to
manage file replicas. While all data can be accessed from anywhere, the sched-
uler is aware of data localities and attempts to schedule compute close to the
data. Similarly, PanDA [49] provides support for the retrieval of data from the
XRootD storage infrastructure. The PanDA Dynamic Data Placement compo-
nent [50] provides a demand-based replication system, which can replicate pop-
ular datasets to underutilized resources for later computations. However, this
capability is provided on system-level and constrained to official Atlas datasets,
i. e. it cannot be applied to user-level datasets. The data/compute management
capabilities of AliEn and PanDA are built on top of HTCondor-G/Glide-in. In
addition to this strong coupling to the underlying infrastructure, these frame-
works are tightly bound to their specific applications. Another example for a
type (ii) system is Falkon [51], which provides a data-aware scheduler on top
of a pool of dynamically acquired compute and data resources [52]. The so
called data diffusion mechanism automatically caches data on Pilot-level en-

13

abling the efficient re-use of data. Falkon provides limited interoperability and
is constrained to Globus-based HPC environments.

Workflow Systems Pilots and pilot-like capabilities are also implemented
or used by various workflow management systems. Pegasus [53] uses Glidein
via providers like Corral [54]; Makeflow [55] and FireWorks [56] enable users
to manually start workers on HPC resources via master/worker tools called
Work Queue [57] and LaunchPad [56]; and Swift [58] uses two Pilot systems
called Falkon [59] and Coasters [60]. In these systems, the pilot is not always
a stand-alone capability and in those cases any innovations and advances of
the pilot capability are thus confined to the encasing system. Pegasus-MPI-
Cluster (PMC) [61] is an MPI-based Master/Worker framework that can be
used in combination with Pegasus. In the same spirit as RADICAL-Pilot, this
enables Pegasus to run large-scale workflows of small tasks on HPC resources.
In contrast with RADICAL-Pilot, tasks are limited to single node execution. In
addition there is a dependency on fork()/exec() on the compute node which
rules out PMC on some HPC resources. WS-VLAM [62], a Service Oriented
Architecture (SOA) re-implementation of VLAM-G, is a data stream based
workflow system, with considering the ‘Human in the loop’ as one of the defining
properties. Workflow management systems such as MOTEUR [8] threat data as
first class citizen semantically but do not provide any performance optimization
capabilities. The overheads involved in accessing distributed resources can lead
to poor performance that a workflow system is not able to mitigate. Resource
provisioning techniques such as advance reservations, multi-level scheduling,
and infrastructure as a service (IaaS) may be used to reduce these overheads.
Advantages and disadvantages of such technique are explained in [63]. For
example, Juve et al. showed that a resource provisioning system based on
multi-level scheduling called Corral could improve workflow runtime by reducing
scheduling overheads [64]. Similarly, Singh and Deelman [65] showed that the
completion time of scientific workflows could be reduced by 50% by means of
task clustering and resource provisioning using advance reservations based on
statistics or dynamic provisioning mechanisms. Both of these examples use
Pegasus WfMS [66] in combination with HTCondor Glidein [67] for resource
provisioning, which is a mechanism to add one or more remote grid resources
to a local HTCondor resource pool temporarily. It uses the same method as
typically used by Pilot-Job frameworks, which is to submit a setup task that
creates daemons on a remote grid resource. Once the daemons are created
and started, they contact the local pool to fetch and run jobs. HTCondor’s
matchmaking mechanism is used to map jobs to resources, however, no direct
control over the placement of the pilots is exposed to the user.

14

Chapter 3

Foundations

3.1 P*: Pilot Abstraction for jobs and data

DCIs are by definition comprised of a set of resources that are fluctuating –
growing, shrinking, changing in load and capability, in contrast to a static re-
source utilization model of traditional parallel and cluster computing systems.
The ability to utilize a dynamic resource pool is thus an important attribute of
any application that needs to utilize DCIs effectively and efficiently.

Pilot-Jobs offer a simple approach for decoupling workload management and
resource assignment/scheduling, providing an effective abstraction for dynamic
execution and resource utilization. In essence, a Pilot-Job is a placeholder job
serving as a container for a set of compute tasks. Not surprisingly, Pilot-Jobs
have been very successful abstractions in distributed computing because they
liberate applications and or users from the challenging requirement of mapping
specific tasks onto explicit heterogeneous and dynamic resource pools. Pilot-
Jobs thus shield applications from having to load-balance tasks across such
resources.

The Pilot-Job abstraction is also a promising route to address specific re-
quirements of distributed scientific applications, such as coupled-execution and
application-level scheduling.

The P* model introduced in [10] and further described in [6] provides a
unified model for describing and analyzing common elements of Pilot-Job im-
plementations. The P* approach to pilots has the following natural advantages:
(i) it permits late binding of workloads to resources and (ii) the decoupling of
tasks from resource management can be extended to data. The extension of the
P* model with Pilot-Data is described explored in detail in [14].

In the extended model two fundamental abstractions are defined: Pilot-
Compute and Pilot-Data. The abstraction of a Pilot-Compute (PC) generalizes
the reoccurring concept of utilizing a placeholder job as a container for a set
of compute tasks or Compute-Units (CU). Instances of that placeholder job
are commonly referred to as Pilot-Jobs or pilots. Analogous to Pilot-Compute,

15

fdd

ebca

Pilot-API

Resource 1

Pilot-ComputePilot-Data

Compute
Unit

Data
Unit

Data
Unit

Compute
Unit

Resource n

Pilot-ComputePilot-Data

Compute
Unit

Data
Unit

Data
Unit

Compute
Unit

Pilot-Manager

Application

f

Figure 3.1: P* Architecture: The application allocates Pilot-Compute (a) and
Pilot-Data (b) resources through the Pilot-API. The application also describes
the Data-Units and passes these to the Pilot-Manager (c). The Pilot-Manager is
responsible for transferring (d) the Data-Units to their physical locations (Pilot-
Data). When the data is in place, the Application can submit Compute-Units
(e) that will run in Pilot-Computes (f).

the Pilot-Data (PD) abstraction has been introduced to provide a placeholder
for data as a container for a set of application-level logical Data-Units (DU),
separately from their physical allocation. A Compute-Unit represents a self-
containing piece of the processing to be carried out (e.g. a workflow task),
while a Data-Unit represents user data (e.g., input or output files for a task).
The Pilot-Compute and Pilot-Data abstractions enable application level or user
level control and management of the set of allocated resources, with late binding
of Compute-Unit and Data-Unit to pilots. Figure 3.1 shows the architecture of
the model.

3.2 RADICAL-Pilot

RADICAL-Pilot is a scalable and interoperable pilot system that implements
the Pilot abstraction to support the execution of diverse workloads. We describe
the design and architecture (see Figure 3.2) and characterize the performance of
RADICAL-Pilot’s task execution components, which are engineered for efficient
resource utilization while maintaining the full generality of the Pilot abstraction.
RADICAL-Pilot is supported on Crays such as Blue Waters (NCSA), Titan
(ORNL), Hopper & Edison (NERSC) and ARCHER (EPSRC), but also on

16

Resource Manager

 Compute Node

RP Agent

Unit Execution

RP Client

Application

Pilot Manager Unit Manager

Unit SchedulerPilot Launcher

MongoDB

Pilot-API

Resource Manager

Compute Node

RP Agent

Unit Execution

Pilot Description

Unit Description

SAGA

Figure 3.2: RADICAL-Pilot Architecture. Pilots (description and instance) in
green are for resource allocation; Units (description and instance) in red are for
task execution. Applications interact with RADICAL-Pilot through the Pilot-
API. Resource interoperability comes through SAGA. Unit Manager to Agent
communication is via MongoDB, all other communication is via ZeroMQ.

IBM’s Blue Gene/Q, many of XSEDE’s HPC resources, Amazon EC2, and on
the Open Science Grid (OSG).

RADICAL-Pilot is a runtime system designed to execute heterogeneous and
dynamic workloads on diverse resources. Workloads and pilots are described
via the Pilot-API and passed to the RADICAL-Pilot runtime system, which
launches the pilots and executes the tasks of the workload on them. Internally,
RADICAL-Pilot represents pilots as aggregates of resources independent from
the architecture and topology of the target machines, and workloads as a set
of units to be executed on the resources of the pilot. Both pilots and units are
stateful entities, each with a well-defined state model and life cycle. Their states
and state transitions are managed via the three modules of the RADICAL-Pilot
architecture: PilotManager, UnitManager, and Agent (Figure. 3.2). The Pilot-
Manager launches pilots on resources via the SAGA API [68]. The SAGA API
implements an adapter for each type of supported resource, exposing uniform
methods for job and data management. The UnitManager schedules units to pi-
lots for execution. A MongoDB database is used to communicate the scheduled
workload between the UnitManager and Agents. For this reason, the database

17

instance needs to be accessible both from the user’s workstation and the target
resources. The Agent bootstraps on a remote resource, pulls units from the
MongoDB instance, and manages their execution on the cores held by the pi-
lot. RADICAL-Pilot has a well defined component and state model which is
described in detail in [11].

The modules of RADICAL-Pilot are distributed between the client and the
target resources. The PilotManager and UnitManager are executed on the user
workstation (client) while the Agent runs on the target resources. RADICAL-
Pilot requires Linux or OS X with Python 2.7 or newer on the workstation but
the Agent has to execute different types of units on resources with very diverse
architectures and software environments.

3.3 Pilot-API

RADICAL-Pilot (RP) is a Python library that enables the user to declaratively
define the resource requirements and the workload. While the Pilot-API is a
well-defined interface, the application specific relationships between resources
and workload can be programmed in generic Python. In the following code
snippets we walk the reader through a minimal but complete example of running
a workload on OSG using RADICAL-Pilot.

Create a session -- closing it will destroy all Managers

and all things they manage.

session = rp.Session ()

Create a Pilot Manager.

pmgr = rp.PilotManager(session)

Create a Unit Manager.

umgr = rp.UnitManager(session)

Listing 3.1: Code example showing the declaration of Pilot Manager and Unit
Manager within a Session.

In Listing 3.1 we show the code used to declare the respective managers for
pilots and units, whose lifetime is managed by a session object.

18

Define a single core Compute Pilot that will run for 10 minutes.

cpdesc = rp.ComputePilotDescription ({

’resource ’: ’osg.xsede -virt -clust’,

’cores’ : 1,

’runtime ’ : 10,

’project ’ : ’TG-CCR140028 ’,

’queue’ : None

})

Submit the Compute Pilot for launching.

compute_pilot = pmgr.submit_pilots(cpdesc)

Make the Compute Pilot resources available to the Unit Manager.

umgr.add_pilots(pilot)

Listing 3.2: Code example showing the declaration of a Compute Pilot, its
subsequent submission to the Pilot Manager and the attachment to the Unit
Manager.

In Listing 3.2 we declare a Compute Pilot, by specifying where to start it,
how many cores, the walltime, and optional queuing and project/accounting
details. Once the pilot is submitted to the Pilot manager, it will get passed to
the queuing system asynchronously. In the last step the pilot is associated to
the unit manager, which means that this pilot can be used to execute units on.

Define a Data Pilot on an \gls{srm} Storage Element.

dpdesc = rp.DataPilotDescription ({

’resource ’: ’osg.UCSDT2 ’

})

Make the Data Pilot resources available to the Unit Manager.

data_pilot = pmgr.submit_data_pilots(dpdesc)

Listing 3.3: Declaration and submission of a Data Pilot.

In Listing 3.3 we declare a Data Pilot, by specifying its resource. In the last
step the pilot is associated to the unit manager, which means that the storage
on this Data Pilot can be used by Compute Units.

Create a new Data Unit Description.

dud = rp.DataUnitDescription ()

dud.file_urls = ["/etc/passwd"]

Associate the Data Unit with all available Data Pilots.

data_unit = umgr.submit_data_units(dud , existing=True)

Listing 3.4: Declaration of a DataUnit.

In Listing 3.4 we declare a Data Unit. The Data Unit is now a logical
handle to the specified files. At the final step, the Data Unit is brought under
the management of the Unit Manager.

19

Create a new CU description and fill it.

cud = rp.ComputeUnitDescription ()

Grep for the string ’John Doe’ in a file named ’passwd ’

in the current directory.

cud.executable = ’/bin/grep’

cud.arguments = [’-i’, ’John Doe’, ’passwd ’],

Associate the earlier created Data Unit as input to this Compute Unit.

cud.input_data = data_unit.uid

Submit Compute Unit to Unit Manager.

umgr.submit_units(cud)

Wait for the completion of the Compute Unit.

umgr.wait_units ()

Tear down Pilots and Managers.

session.close ()

Listing 3.5: Code example showing the declaration of a Compute Units, the
subsequent submission to the Unit Manager and the statement to wait for its
completion.

In Listing 3.5 we finally declare the workload by creating a compute unit
that specifies what to run with what input. The unit is then submitted to the
unit manager which schedules the unit to a pilot. Once the pilot has become
active, the unit may begin execution. The final wait call will block until all the
units have reached a final state.

3.4 GWENDIA

GWENDIA is a data-driven workflow language for distributed computing based
on array programming principles [9]. The orchestrations of tasks in workflows
are well described through graphs where nodes represent data analysis processes
and arcs represent their inter-dependencies.

In theory these inter-dependencies can either be data dependencies, where
data exchange is needed between consecutive processes or pure control depen-
dencies, where the dependency only enforces a synchronization of process exe-
cution in time. However, in practice, there is a data transfer involved in many
cases encountered. Often scientific applications are described as data analysis
pipelines: successive processes are inter-dependent through data elements, often
exchanged by means of files, that are produced and consumed during the analy-
sis. This is especially true when dealing with independent (legacy) applications
without message passing interface. Indeed, among the many existing scientific
workflow languages, focus is often put on the data although it does not always
appear explicitly.

To illustrate this discussion, Figure 3.3 shows a simple application workflow
pattern encoded using three different families of languages.

20

Figure 3.3: Application workflow pattern encoded using three different families
of languages. From left to right: pure data-driven language, explicit variables
assignments and parallel constructs, and pure control flow. The red arrows
show data dependencies and the blue connectors represent control dependencies
between activities. (Figure courtesy of [9])

Array programming was designed to improve the description of math pro-
cesses for manipulating arrays [69]. Array programming principle is not limited
to arithmetic operations and can be generalized to any case of function appli-
cation.

In array programming, arrays are defined as indexed collections of data
items with homogeneous type. An array of objects defines a new data type and
therefore, arrays may be nested at any depth. Every data item is associated
with a type, and a (multi-dimensional) integer index (one per nested level). For
example, x = ‘foo’, ‘bar’, ‘42’ is a 2 level array of strings and x(0,1) refers to
the string ‘bar’.

As an operator or function can be applied either to scalars or arrays in array
programming languages, the data-driven language define computing activities
independently from the data objects submitted to these activities. An activity
will fire one or more times depending on the exact input data set it receives.
Consider the example given on the left of Figure 3.3. Activity 1 will fire 3 times
as it receives the array with 3 scalar values during the workflow execution. De-
pending on the activities port depth, the array is then either processed as a
whole or unfolded. Iterations over the array element is handled (implicitly) by
the execution engine. GWENDIA defines the following iteration strategies: dot
product, cross product, flat cross product and match product. Iteration strate-
gies (introduced in Scufl [70]) define how the activity processes data elements if
multiple input and/or output ports are available.

In addition to implicit data flow constructs, GWENDIA also has explicit
conditional and loop control structures to influence the execution of the work-
flow.

GWENDIA supports the integer, double, string and file data structures. In
this thesis we only consider the file data structure.

21

Chapter 4

Implemented Software

In order to perform the experiments to validate the hypotheses posed a number
of software systems had to be developed and extended.

4.1 RADICAL-SAGA

Simple API for Grid Applications (SAGA) is an Open Grid Forum (OGF) stan-
dard [71] that specifies a high-level interface to the most commonly used dis-
tributed computing functionality. SAGA defines an access-layer and mecha-
nisms for distributed infrastructure components like job schedulers, file transfer
and resource provisioning services. Given the heterogeneity of distributed in-
frastructure, SAGA provides am interoperability layer that decreases the com-
plexity and lowers the threshold of using distributed infrastructure while at the
same time enhancing the sustainability of distributed applications, services and
tools.

RADICAL-SAGA [68] provides a Python implementation that is compliant
with the SAGA specification. Behind the API, RADICAL-SAGA implements a
flexible adaptor architecture as depicted in Figure 4.1. Adaptors are (dynam-
ically loadable) Python modules that interface applications through the API
with different middleware systems and services. Most users and application de-
velopers use the adaptors that are already part of RADICAL-SAGA, but one
can implement their own in case a backend system is not supported yet.

RADICAL-SAGA’s main focus is ease of use and simple user-space deploy-
ment in heterogeneous distributed computing environments. It supports a wide
range of application use-cases from simple, uncoupled tasks to complex work-
flows. RADICAL-SAGA is being used on many distributed cyberinfrastructures
such as XSEDE and OSG, as well as on many leadership class super computers
such as Titan and Blue Waters.

In the context of this thesis RADICAL-SAGA a Job adaptor1 was developed

1https://github.com/radical-cybertools/saga-python/blob/fix/mark_condor/src/

saga/adaptors/condor/condorjob.py

22

SAGA Python API

SAGA Runtime

SAGA Middleware Adaptor Plug-Ins

Distributed computing
infrastructure

(XSEDE, OSG, et al.)

PBS SGE

Cloud environments
(EC2, et al.)

Private clusters
(PBS, SLURM, et al.)

SLURM SFTP GlobusOnlineOpenStack

Data transfer
operations

Job
management
operations

Resource
management
operations

SAGA Python API

SAGA Runtime

SAGA Middleware Adaptor Plug-Ins

Distributed computing
infrastructure

(XSEDE, OSG, et al.)

PBS SGE

Cloud environments
(EC2, et al.)

Private clusters
(PBS, SLURM, et al.)

SLURM SFTP GlobusOnlineOpenStack

Data transfer
operations

Job
management
operations

Resource
management
operations

SAGA Python API

SAGA Runtime

SAGA Middleware Adaptor Plug-Ins

Distributed computing
infrastructure

(XSEDE, OSG, et al.)

PBS SGE

Cloud environments
(EC2, et al.)

Private clusters
(PBS, SLURM, et al.)

SLURM SFTP GlobusOnlineOpenStack

Data transfer
operations

Job
management
operations

Resource
management
operations

Figure 4.1: RADICAL-SAGA Architecture.

to run jobs on the OSG resources and a File adaptor was implemented2 to
support SRM [72] storage systems. The Condor adaptor is using the HTCondor
client tools and the SRM adaptor is using the [73].

4.2 RADICAL-Pilot

In Section 3.2 we presented RADICAL-Pilot as a Pilot job system implemented
in Python mainly for HPC systems. In the context of this thesis RADICAL-Pilot
was extended to also support the OSG, as an instance of a HTC infrastructure.
On HPC systems there is generally one pilot agent per job that orchestrates all
the resources that belong to that job. In contrast, because of the distributed
nature of resources, on the OSG there is a pilot agent for every compute resource.
While this is not a fundamental difference, some practical obstacles had to be
overcome in order for this to work. The mode of operation for RADICAL-Pilot
on the OSG is that via a so called submission node that operates a GlideinWMS
installation. The compute resource support of the OSG relies heavily on the
HTCondor changes to SAGA as mentioned in Section 4.1. The other extension
of RADICAL-Pilot required for support of the OSG is the capability of the
agent to pull in input data into the agent environment from a tertiary source
and push out output data back to a tertiary location.

2https://github.com/radical-cybertools/saga-python/blob/feature/srm/src/saga/

adaptors/srm/srmfile.py

23

4.3 Pilot-Data

The main topic of this thesis is Pilot-Data [14], conceptually introduced in Sec-
tion 3.1. In this section we describe the extension of RADICAL-Pilot that im-
plements the Pilot-Data abstraction. In Listing 3.3 and Listing 3.4 (Section 3.3)
we showed the code for declaring a data pilot and a data unit. When a data
unit gets associated to a compute unit as input or output, the unit scheduler
will take care of the data dependency resolution. Practically, this means that
before a compute unit gets launched on a resource, the Pilot-Agent will stage
in the data using the SAGA/SRM capabilities discussed in Section 4.2 into the
compute unit’s sandbox. Similarly the Pilot-Agent will stage out the output
files of a compute unit’s execution after its completion. When multiple data
pilots (e.g. at multiple storage locations) have been associated to the runtime,
and an input unit is available at more than one location, the unit scheduler has
the freedom to pick one instance based on policy and/or heuristics. Currently
the scheduler takes as input historic data transfer performance results and can
either select the ‘fastest’, ‘slowest’ or a ‘random’ instance of an available data
unit. A similar scheduling decision is applied for the output data.

GWENDIA

Resource Manager

 Compute Node

Agent

Unit Execution

Client

Marvin

Pilot Manager Unit Manager

Unit SchedulerPilot Launcher

MongoDB

Pilot-API

Resource Manager

Compute Node

Agent

Unit Execution

Pilot Description

Unit Description

SAGA

Workflow Description

Task Description

XML

Pykka Actor

Figure 4.2: Marvin architecture and integration with other components in the
stack. A GWENDIA workflow describes the activities and their relationships.
During enactment, these activities get instantiated as actors representing tasks
on the infrastructure. These tasks are then submitted using RADICAL-Pilot.

24

4.4 Marvin

Marvin [74] is a workflow system implemented using Pykka, supporting the
execution of GWENDIA workflows. Marvin is fully aware of pilot jobs and
pilot data. Pykka [75] is a Python implementation of the actor model [76]. The
actor model introduces some simple rules to control the sharing of state and
cooperation between execution units, which makes it easier to build concurrent
applications. Figure 4.2 shows the high level architecture of the complete stack.
Marvin takes a GWENDIA workflow and source data descriptions (both in
XML) as input parameters. It then creates actors for all input and output
ports and for the abstract activities. Based on the triggering of ports and
activities it will create new actors for all instantiated tasks. Task actors live as
long as they represent a running task on the infrastructure. Once all tasks are
completed and output ports are satisfied, the execution terminates. In addition
to the workflow and input descriptions, Marvin also takes a resource description
as input. It will create pilots using RADICAL-Pilot based on the description
provided. Marvin currently does not dynamically allocate resources based on
the given workflow. Currently Marvin does not implement control structures
either, however, these were not required for the given workflow, as the workflow
is fully data flow oriented.

4.5 Discussion

The workflow presented here has first been manually translated into an applica-
tion encoded using the Pilot-API in Section 3.3, and illustrates that compute-
data orchestration, coordination and execution in a distributed environment can
be expressed and captured using the Pilot-API[15]. In Section 4.4 we presented
how Marvin, a workflow runtime system for the GWENDIA language, could be
built on top of the Pilot-API.

Let us now revisit the qualitative research question Q1:

Q1 Can the semantics of a GWENDIA workflow be expressed using the Pilot-
API?

A1-i The combination of the Pilot-API expressiveness and the general pur-
poseness of Python allows the user to specify dataflow oriented workflow
patterns.

25

Chapter 5

Experiments

To characterize the introduced concepts and to quantitatively answer the re-
search questions, a set of experiments are designed. This chapter starts with
a description of the infrastructure that is used for the experiments and then
describes the different classes of experiments in detail.

5.1 Target infrastructure

The OSG [77] facilitates access to distributed HTC resources for research. The
resources accessible through the OSG are contributed by the community mem-
bers, but organized by the OSG. The OSG consists of computing and storage
elements at over hundred individual sites, mainly spanning the US and some in
South and Middle America. These sites are primarily at universities and na-
tional labs and range in size from a few hundred to tens of thousands of CPUs.
The distributed nature of these resource providers allows users from a single
Virtual Organization (VO) to submit their jobs at a single entry point and
have them execute at whatever resource is available. Sharing is a core principle
of the OSG. Over 100 million CPU hours delivered on the OSG are annually
utilized opportunistically (resources that would otherwise have remained idle).
This is the aspect of the OSG that allows individual researchers who might
not otherwise have access to large computing resources to do so. A VO is a
set of groups or users defined by some common infrastructure need. This can
be anything from a scientific experiment, a university campus or a distributed
research effort. A VO represents all its members and their common needs in a
grid environment, and major projects such as CMS and ATLAS are represented
in the OSG as VOs.

For the experiments in this thesis we access the OSG through the XSEDE
glideinWMS installation at SDSC. This is a HTCondor pool that runs as the
generic ‘OSG’ VO on all the OSG resources that support this VO. Table 5.1
shows the list of sites that have been used and whether the site has Compute
Elements and/or Storage Elements. Figure 5.1 visualizes all used sites on the

26

Figure 5.1: Sites used in experiments. Sites are numbered according to the order
in Table 5.1. Green represents that a site only has Storage, Red only Compute,
and Yellow both Compute and Storage.

map.

5.2 Storage Element Transfer Baseline

To characterize transfer capabilities between all sites we perform file transfer
measurements between all storage elements for file sizes as specified in Table 5.2.
These experiments do not involve Compute Elements, and therefore also does
not involve RADICAL-Pilot. The transfers are orchestrated using third-party-
transfer GridFTP commands via RADICAL-SAGA.

5.3 Pilot Transfer Baseline

To characterize transfer capabilities between Compute Elements and Storage
Elements we perform file transfer measurements back and forth between all
Compute Elements and all Storage Elements for file sizes as specified in Ta-
ble 5.2.

27

Id Site Name Compute Storage

1 AGLT2 Yes No
2 BNL-ATLAS Yes No
3 BU ATLAS Tier2 Yes No
4 CIT CMS T2 No Yes
5 Clemson-Palmetto Yes No
6 Crane Yes No
7 FIUPG No Yes
8 GLOW Yes Yes
9 GPGrid Yes No
10 Hyak Yes No
11 LUCILLE No Yes
12 MIT CMS No Yes
13 MWT2 Yes No
14 NPX Yes No
15 NWICG NDCMS Yes No
16 NYSGRID CORNELL NYS1 Yes No
17 Nebraska No Yes
18 SPRACE No Yes
19 SWT2 CPB Yes Yes
20 Sandhills Yes No
21 Tusker Yes No
22 UCD No Yes
23 UCSDT2 Yes Yes
24 UConn-OSG Yes No
25 UERJ No Yes
26 USCMS-FNAL-WC1 Yes No
27 UTA SWT2 Yes Yes
28 cinvestav Yes Yes
29 uprm-cms No Yes

Table 5.1: List of sites, numbered by Id’s in Figure 5.1 and specifying whether
the site hosts Compute Elements and/or Storage Elements.

28

Label Size

Micro 1 MB
Small 10 MB

Medium 100 MB
Large 1000 MB

Table 5.2: Data sizes for transfer experiments.

These experiments involve Compute Elements, and are therefore executed
using RADICAL-Pilot. We create a RADICAL-Pilot application that consists
of multiple Compute Units that have input and output configured in such a way
that all combinations of Compute Element and Storage Element are measured.
The RADICAL-Pilot Agent uses GridFTP via RADICAL-SAGA to effectuate
the transfers. The inputs and outputs are ‘hardcoded’ by the experiment driver
script and do not use RADICAL-Pilot’s Pilot-Data capabilities.

5.4 Pilot-Data Characterizing

The experiments described in this section have similarities to the experiments
described in the Section 5.3. The goal is again to create baseline insight into the
performance of Compute Element to Storage Element transfers, but now using
RADICAL-Pilot’s Pilot-Data capabilities. This will allow us to compare and
contrast the various Pilot-Data source and destination selection criteria. File
sizes for the experiments are specified in Table 5.2.

5.5 Use case: Next-Generation Sequence Align-
ment

The final set of experiments build upon the experiments in Section 5.4. But
instead of independent Compute Units with input and outputs, we now execute
a fully integrated DNA sequencing workflow with real data [7].

The structure of the workflow is depicted in Figure 5.2. Besides the BWA
alignment step, it contains data conversion steps to transform from the DNA
sequencing machine format (*.csFasta) to the BWA format (*.fastq), as well as
to split/merge the sequences to allow for parallel processing. The alignment of
each data chunk is performed against the human genome reference database.
First a data conversion step takes place for the paired-end files with the solid-
to-fastq component, where the sequence and quality information are combined
into two fastq files (solid-to-fastq component). Since the datasets are relatively
large, these files are split into smaller chunks (split-fastq component). The user
can define how large the chunks should be, and the files are split accordingly and
transferred back to SRM storage. These chunks are then used as input to the
sequence alignment step (bwa component), which is executed in parallel on each

29

�������

��������������

����

��������������

��� ��� ��� ���

�����������

���������

���

��� ���

Figure 5.2: The GWENDIA/Marvin DNA Sequencing Workflow with legend.

chunk of data. The results of the parallel jobs are stored onto a single directory
on grid storage. After all alignments have been performed the intermediate
files are passed on to the merge component (merge-bam). This last component
retrieves the files from grid storage and combines all alignment results into one
file, which is the final output of the workflow. For comparative reasons we
round-off the input and output sizes of the workflow to the sizes used in the
baseline experiments specified as specified in Table 5.2.

Exp Count Input Chunks Reference Conversion Split BWA Merge
(MB) (MB) (s) (s) (s) (s)

A 10 10 10 1 1 1 10 1
B 10 100 10 10 10 10 100 10
C 10 1000 10 100 100 100 1000 100

Table 5.3: Workflow data sizes and parameters configuration for experiment A,
B and C. Size entries are in MBs and duration entries are in seconds.

The experiments are performed in three different configurations, named A,
B and C. Table 5.3 shows the configurations. As described earlier, GWENDIA
is a data parallel language, meaning that for every given (set of) input(s), the
workflow is executed. Count refers to the number of input data sets. Chunks is
the number of outputs that the Split component creates out of a single input.
Reference refers to the size of the reference database used by the BWA compo-
nent. The remaining four parameters are the respective (artificial) runtimes of
the components that are relative to their input size.

30

Exp Conversion Split BWA Merge
In Out In Out In Out In Out

A 10 10 10 10×1 1+1 1 10×1 10
B 100 100 100 10×10 10+10 10 10×10 100
C 1000 1000 1000 10×100 100+100 100 10×100 1000

Table 5.4: Input and output data volumes per component instance for experi-
ments A, B and C. All entries are MBs.

Exp Input Output Total

A 500 400 900
B 5000 4000 9000
C 50000 40000 90000

Table 5.5: Total data volumes for experiments A, B and C. All entries are in
MBs.

Based on the number of chunks and input sizes per Table 5.3 we can derive
the input and output volumes of every component which is shown in Table 5.4.

If we combine the number of inputs from Table 5.3 with the resulting data
volumes in Table 5.4 we can derive the total input and output volumes of the
workflow for the three experimental configurations as shown in Table 5.5.

31

Chapter 6

Results

In this chapter we present the results obtained from the experiments described
in the previous chapter.

6.1 Baseline SE-SE Transfer Times

C
IT

C
M

S
T

2

F
IU

P
G

G
L

O
W

L
U

C
IL

L
E

M
IT

C
M

S

N
eb

ra
sk

a

S
P

R
A

C
E

S
W

T
2

C
P

B

U
C

D

U
C

S
D

T
2

U
E

R
J

U
T

A
S

W
T

2

u
p

rm
-c

m
s

Sites

0

5

10

15

20

T
ra

n
sf

er
ti

m
e

(s
) Source

Destination

Figure 6.1: Average transfer time of a 1M file for each Storage Elements (SE)
from and to all other SEs. The plot shows the results for both directions, in
blue the SE is the source and in red the SE is the destination. Error bars show
standard error.

We transferred files with the respective sizes many times over a longer period
in both directions between all combinations of Storage Elements. In Figures 6.1
and 6.2 we display the results of the transfers of 1M and 1000M respectively.
The error bars denote the standard error. The plots show the mean value of

32

C
IT

C
M

S
T

2

F
IU

P
G

G
L

O
W

L
U

C
IL

L
E

M
IT

C
M

S

N
eb

ra
sk

a

S
P

R
A

C
E

S
W

T
2

C
P

B

U
C

D

U
C

S
D

T
2

U
E

R
J

U
T

A
S

W
T

2

u
p

rm
-c

m
s

Sites

0

100

200

300

400

500

600

700

800

900

T
ra

n
sf

er
ti

m
e

(s
) Source

Destination

Figure 6.2: Average transfer time of a 1000M file for each Storage Elements
(SE) from and to all other SEs. The plot shows the results for both directions,
in blue the SE is the source and in red the SE is the destination. Error bars
show standard error.

the transfers from one site to all other sites, and the other direction, from all
sites to one site. We take both sides of the spectrum as the 1M files give an
intuition for the connection overhead and the 1000M gives an intuition of the
transfer speed. Results for 1M are in the same order of magnitude and mostly
symmetric. In contrast, the results for 1000M show large variations between
sites, and also large differences in the direction of the transfer.

Figures 6.3 and 6.4 show the same data, but in a full matrix.

6.2 Baseline SE-SE Reliability

While in Section 6.1 we presented the transfer times, in this section we look at
the reliability of the same transfers.

Figures 6.5 and 6.6 show the reliability of the 1M and 1000M transfers re-
spectively. Some of the sites have clearly better reliability than others. The
results for 1M and 1000M show similar patterns which leads to the assumption
that the file size has little impact on the success rate of transfers.

6.3 Baseline CE-SE Transfer Times

In this section we explore the baseline performance of transfers between Storage
Elements and Compute Elements as described in Section 5.3. Note that as
discussed in Section 5.1, some sites have both Compute Elements and Storage
Elements, while others have only one of the two. This means that part of the
Compute Element - Storage Element interactions remain on-site.

33

C
IT

C
M

S
T

2

F
IU

P
G

G
L

O
W

L
U

C
IL

L
E

M
IT

C
M

S

N
eb

ra
sk

a

S
P

R
A

C
E

S
W

T
2

C
P

B

U
C

D

U
C

S
D

T
2

U
E

R
J

U
T

A
S

W
T

2

u
p

rm
-c

m
s

Destination

CIT CMS T2

FIUPG

GLOW

LUCILLE

MIT CMS

Nebraska

SPRACE

SWT2 CPB

UCD

UCSDT2

UERJ

UTA SWT2

cinvestav

uprm-cms

S
ou

rc
e

6

9

12

15

18

21

24

27

30

T
ra

n
sf

er
ti

m
e

(s
)

Figure 6.3: Average transfer time of a 1M file for each Storage Element (SE)
from and to each other SE. The plot shows the results for both directions.

C
IT

C
M

S
T

2

F
IU

P
G

G
L

O
W

L
U

C
IL

L
E

M
IT

C
M

S

N
eb

ra
sk

a

S
P

R
A

C
E

S
W

T
2

C
P

B

U
C

D

U
C

S
D

T
2

U
E

R
J

U
T

A
S

W
T

2

ci
n
ve

st
av

u
p

rm
-c

m
s

Destination

CIT CMS T2

FIUPG

GLOW

LUCILLE

MIT CMS

Nebraska

SPRACE

SWT2 CPB

UCD

UCSDT2

UERJ

UTA SWT2

uprm-cms

S
ou

rc
e

250

500

750

1000

1250

1500

1750

2000

2250

T
ra

n
sf

er
ti

m
e

(s
)

Figure 6.4: Average transfer time of a 1000M file for each Storage Element (SE)
from and to each other SE. The plot shows the results for both directions.

In Figure 6.7 we show the mean transfer time of a 1000M file for each Com-
pute Element from all Storage Elements.

Conversely, in Figure 6.8 we show the mean transfer time of a 1000M file

34

C
IT

C
M

S
T

2

F
IU

P
G

G
L

O
W

L
U

C
IL

L
E

M
IT

C
M

S

N
eb

ra
sk

a

S
P

R
A

C
E

S
W

T
2

C
P

B

U
C

D

U
C

S
D

T
2

U
E

R
J

U
T

A
S

W
T

2

ci
n
ve

st
av

u
p

rm
-c

m
s

Destination

CIT CMS T2

FIUPG

GLOW

LUCILLE

MIT CMS

Nebraska

SPRACE

SWT2 CPB

UCD

UCSDT2

UERJ

UTA SWT2

cinvestav

uprm-cms

S
ou

rc
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
u

cc
es

s
R

at
e

Figure 6.5: Success rate of the transfer of a 1M file for each Storage Element
(SE) from and to each other SE. The plot shows the results for both directions.

C
IT

C
M

S
T

2

F
IU

P
G

G
L

O
W

L
U

C
IL

L
E

M
IT

C
M

S

N
eb

ra
sk

a

S
P

R
A

C
E

S
W

T
2

C
P

B

U
C

D

U
C

S
D

T
2

U
E

R
J

U
T

A
S

W
T

2

ci
n
ve

st
av

u
p

rm
-c

m
s

Destination

CIT CMS T2

FIUPG

GLOW

LUCILLE

MIT CMS

Nebraska

SPRACE

SWT2 CPB

UCD

UCSDT2

UERJ

UTA SWT2

cinvestav

uprm-cms

S
ou

rc
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
S

u
cc

es
s

R
at

e

Figure 6.6: Success rate of the transfer of a 1000M file for each Storage Element
(SE) from and to each other SE. The plot shows the results for both directions.

from each Storage Element to all Compute Elements.
Putting the two earlier plots together, in Figure 6.9 we display the transfer

time of a 1000M file from each Storage Element to each Compute Element.

35

A
G

L
T

2

B
N

L
-A

T
L

A
S

B
U

A
T

L
A

S
T

ie
r2

C
le

m
so

n
-P

al
m

et
to

C
ra

n
e

G
L

O
W

G
P

G
ri

d

H
ya

k

M
W

T
2

N
P

X

N
Y

S
G

R
ID

C
O

R
N

E
L

L
N

Y
S

1

S
W

T
2

C
P

B

S
an

d
h

il
ls

T
u

sk
er

U
C

S
D

T
2

U
C

o
n

n
-O

S
G

U
S

C
M

S
-F

N
A

L
-W

C
1

U
T

A
S

W
T

2

ci
n
ve

st
av

Compute Elements

0

200

400

600

800

1000

1200

1400

1600

T
ra

n
sf

er
ti

m
e

(s
)

Figure 6.7: Average transfer time of a 1000M file for each Compute Element
from all Storage Elements. Error bars show standard error.

C
IT

C
M

S
T

2

F
IU

P
G

G
L

O
W

L
U

C
IL

L
E

M
IT

C
M

S

N
eb

ra
sk

a

S
P

R
A

C
E

S
W

T
2

C
P

B

U
C

D

U
C

S
D

T
2

U
E

R
J

U
T

A
S

W
T

2

ci
n
ve

st
av

u
p

rm
-c

m
s

Storage Elements

0

100

200

300

400

500

600

700

800

900

T
ra

n
sf

er
ti

m
e

(s
)

Figure 6.8: Average transfer time of a 1000M file for each Storage Element to
all Compute Elements. Error bars show standard error.

6.4 Baseline CE-SE Reliability

For completeness we also show the reliability of all Storage Element to Compute
Element transfers in Figure 6.10.

36

C
IT

C
M

S
T

2
F

IU
P

G
G

L
O

W
L

U
C

IL
L

E
M

IT
C

M
S

N
eb

ra
sk

a
S

P
R

A
C

E
S

W
T

2
C

P
B

U
C

D
U

C
S

D
T

2
U

E
R

J
U

T
A

S
W

T
2

ci
n
ve

st
av

u
p

rm
-c

m
s

Storage Elements

AGLT2
BNL-ATLAS

BU ATLAS Tier2
Clemson-Palmetto

Crane
GLOW

GPGrid
Hyak

MWT2
NPX

NYSGRID CORNELL NYS1
SWT2 CPB

Sandhills
Tusker

UCSDT2
UConn-OSG

USCMS-FNAL-WC1
UTA SWT2

cinvestav

C
om

p
u

te
E

le
m

en
ts

300

600

900

1200

1500

1800

2100

2400

T
ra

n
sf

er
ti

m
e

(s
)

Figure 6.9: Average transfer time of a 1000M file for each Compute Element
(CE) from each SE.

C
IT

C
M

S
T

2
F

IU
P

G
G

L
O

W
L

U
C

IL
L

E
M

IT
C

M
S

N
eb

ra
sk

a
S

P
R

A
C

E
S

W
T

2
C

P
B

U
C

D
U

C
S

D
T

2
U

E
R

J
U

T
A

S
W

T
2

ci
n
ve

st
av

u
p

rm
-c

m
s

Storage Elements

AGLT2
BNL-ATLAS

BU ATLAS Tier2
Clemson-Palmetto

Crane
GLOW

GPGrid
Hyak

MWT2
NPX

NYSGRID CORNELL NYS1
SWT2 CPB

Sandhills
Tusker

UCSDT2
UConn-OSG

USCMS-FNAL-WC1
UTA SWT2

cinvestav

C
om

p
u

te
E

le
m

en
ts

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
u

cc
es

s
ra

te

Figure 6.10: Success rate of the transfer of a 1000M file for each Compute
Element (CE) from each SE.

6.5 Pilot-Data input location selection

In this section we show the first results based on the involvement of Pilot-Data.
In Figure 6.11 we show mean transfer times of a 1000M file for each Compute
Element (CE) with different source Storage Element (SE) selection methods. In
blue are the results when the SE is randomly chosen. In purple we show the
results of Pilot-Data selecting the fastest source site based on historical data.
In purple we show the results of Pilot-Data selecting the slowest SE based on
historical data. We can observe that selecting the ‘slow’ resource is in almost all
situations indeed the ‘worst’ decision. Selecting the ‘fast‘ resource is often the

37

101 102 103 104

Transfer time (s)

AGLT2

BNL-ATLAS

BU ATLAS Tier2

Clemson-Palmetto

Crane

GLOW

Hyak

MWT2

NPX

NYSGRID CORNELL NYS1

SWT2 CPB

Tusker

UCSDT2

USCMS-FNAL-WC1

UTA SWT2

cinvestav
C

om
p

u
te

E
le

m
en

ts

PD: Random

PD: Slow

PD: Fast

Figure 6.11: Average transfer time of a 1000M file for each CE with different
selection methods. In blue are the results when the SE is randomly chosen. In
purple we show the results of Pilot-Data selecting the fastest source site based
on historical data. In purple we show the results of Pilot-Data selecting the
slowest SE based on historical data.

best choice, but not always, as the ‘random’ pick seems to outperform the ‘fast’
method in a number of situations. We elaborate on this further in Section 7.

6.6 Marvin

Up till now we looked at results of transfers and components in an isolated way.
This section will present the results of the integrated experiments with a DNA
sequencing workflow executed by the Marvin workflow engine, as described in
Section 5.5.

In Figure 6.12 we show the Time to Completion (TTC) for executing the
BWA workflow with Marvin on the OSG. Sizes 10, 100, and 1000 correspond
to the experiments A, B, and C from Table 5.3. For every input size configura-
tion, we also the results for the ‘fast’, ‘random’, and ‘slow’ Pilot-Data selection
mechanism. For input size 10MB the effect is negligible, for 100MB and 1000MB
the improvement from selecting ‘fast’ is distinct. ‘Slow’ and ‘random’ perform
similarly, with a non-symmetric standard error between 100MB and 1000MB.

Figure 6.13 shows the same data as the 1000M experiment in Figure 6.12,
but now split out per component. The ‘CU Duration’ includes transferring the
input data from an SE, running the task, and transferring the output data to
an SE.

Figure 6.14 is a further refinement, now only showing the input and output
transfers. Given that the runtime does not vary between the selection methods,
this is a more insightful view of the difference. The difference in the performance

38

10 100 1000

Input size (MB)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
T

C
(s

)

fast

random

slow

Figure 6.12: TTC for integrated Marvin experiment for different sizes and dif-
ferent selection methods.

0 500 1000 1500 2000 2500 3000 3500 4000

CU Duration (s)

BWA

Conversion

Merge

Split

fast

random

slow

Figure 6.13: Duration per component for experiment size 1000.

between the selection methods is clearly not the same for all components. The
standard error is generally lowest for the ‘fast‘ method, except for the Merge
component. In absolute terms for all methods the BWA component spends least
time on transfers, which is consistent with the fact that each component deals
with 1/10th of the data of the other components.

Figures 6.15 and 6.16 are the breakup of Figure 6.14 for each direction. Now
we can see that the BWA and Conversion components have similar characteris-
tics for both input and output, which is explained by its symmetric input and
output patterns. The opposite is true for Split and Merge, which have different
input and output patterns in terms of number of transfers.

39

0 500 1000 1500 2000 2500 3000 3500

Task I/O (s)

BWA

Conversion

Merge

Split

fast

random

slow

Figure 6.14: I/O transfer overhead per component for experiment size 1000.

0 500 1000 1500 2000 2500 3000 3500

Task input staging (s)

BWA

Conversion

Merge

Split

fast

random

slow

Figure 6.15: Input transfer overhead per component for experiment size 1000.

40

0 100 200 300 400 500 600 700 800

Task output staging (s)

BWA

Conversion

Merge

Split

fast

random

slow

Figure 6.16: Output transfer overhead per component for experiment size 1000.

41

Chapter 7

Discussion

To structure the discussion of the results we revisit the research questions that
relate to the quantitative aspects:

Q2 What factors of data and compute coupling exist that can be exploited to
improve execution of data intensive workflows?

In Section 6.1 we report on the baseline transfer measurements between
Storage Elements, which is expanded in Section 6.3 by also performing CE-SE
measurements. The main observations are that there is wide spread in overall
transfer performance of sites towards other sites, and that for some of the sites,
the results are very asymmetric. Measurements with small files show relatively
low performance, indicating that data volume is just one parameter, and that
transfer setup overhead is significant. The outliers in Figure 6.8 correspond to
the outliers in Figure 6.2, which satisfies the expectation that the differences
that exist between SEs also translate to CEs. Although some sites stand out
more than others, those sites are not exclusively ‘slow’, which means that the
performance is ultimately dependent on a source and destination tuple.

A2-i Knowledge about ‘fast’ and ‘slow’ source-destination tuples allows to give
priority to faster transfer alternatives.

Section 6.2 and report on the reliability of SE-SE and CE-SE transfers re-
spectively. The data suggest that some sites are less reliable than the bulk of
them, and that the reliability is not a function of the file size. Although some
sites stand out more than others, they are not exclusively ‘bad’, which means
that the reliability is ultimately dependent on a source and destination tuple.

A2-ii Knowledge about ‘good’ and ‘bad’ source-destination tuples allows to give
priority to reliable transfer alternatives.

Q3 Can the decision making about compute and data placement be automated
in such a way that it has an impact on data intensive workflow execution?

42

The Pilot-Data baseline measurements in Section 6.5 use historical data
to determine which endpoint to choose. Without exception the ‘fast’ metric
outperforms the ‘slow’ metric, and almost always the ‘random’ metric too.

The DNA sequencing workflow results in Section 6.6 show that, although
in the integrated experiments there are more parameters that influence the
performance, the Pilot-Data optimizations also perform better than random.

A3-i RADICAL-Pilot’s PilotData implementation provided with historical data
can make informed decisions that are better than random behavior.

For the Pilot-Data experiments we gathered historical performance data to
steer the decision process for future transfers. In Section 6.1 and 6.3 there is
some correlation with transfer speed to distance, which can be both geographical
and/or network distance, which could also be taken into account.

A3-ii Any decision capability requires information, either actively gathered, or
passively offered.

Optimization is currently per transfer, and does not take global optimization
into account. Specifically this means that many tasks can start to transfer to
and/or from the same site at the same moment, and therefore undoing the
effect of optimized selection. This implies that depending on the degree of
concurrency, the ‘random‘ selection mechanism can be worse than ‘slow’ or
alternatively, better than ’fast’.

A3-iii Optimization decisions need to be global and not local.

43

Chapter 8

Conclusion

We have shown how RADICAL-Pilot enhanced with Pilot-Data capabilities en-
abled the construction of an array based workflow system (Marvin) that makes
transparently use of these capabilities. In both isolated and integrated experi-
ments this lead to performance improvements.

In this work we only made the decision on location of input and output data
dynamic. In similar fashion we could extend the implementation to also make
the decision of where to place the Compute Unit more intelligently.

The considerations for locating data were centered around reliability and
performance in this thesis. However, more dimensions of decision making exist,
for example, privacy policies that dictate where (and where not) certain data
can be processed, or a monetary cost factor of transferring data.

The results in the integrated DNA sequencing experiments were not com-
pletely isolated from other considerations. For example, the TTC of an ap-
plication is not only dependent on the transfer performance, but also on the
performance of the resources themselves, queuing effects, and policies.

In this thesis RADICAL-Pilot was extended with Pilot-Data. In [16] we
have also introduced the concept of Pilot-Network, which would also make the
network part more dynamic and part of the decision and control process.

The decision points in the Pilot-Data implementation are still rather static.
Especially once the (pilot-)network would also become a dynamic entity, there
is the need for a modelling effort to capture the relation between computing
workload, data, and resources.

RADICAL-Pilot provides rich profiling and tracing capabilities and it would
be interesting to explore how this functionality could be used to enable prove-
nance in Marvin, in a similar way as [78].

The goal of this research was not to write (yet) another workflow system
that would replace all existing systems. It is still a topic of debate whether the
ecosystem of workflow systems would benefit from more shared efforts on the
runtime level.

44

Bibliography

[1] Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor. Work-
flows and e-Science: An overview of workflow system features and capabil-
ities. Future Generation Computer Systems-The International Journal Of
Grid Computing-Theory Methods And Applications, 25(5):528–540, 2009.

[2] Adam Belloum, Marcia A Inda, Dmitry Vasunin, Vladimir Korkhov, Zhim-
ing Zhao, Han Rauwerda, Timo M Breit, Marian Bubak, and Luis O
Hertzberger. Collaborative e-Science Experiments and Scientific Workflows.
Internet Computing, IEEE, 15(4):39–47, 2011.

[3] M W A Caan, S. Shahand, F M Vos, A H C van Kampen, and S.D Olabar-
riaga. Evolution of grid-based services for Diffusion Tensor Image analysis.
Future Generation Computer Systems, 28(8):1194–1204, October 2012.

[4] Angela CM Luyf, Barbera DC van Schaik, Michel de Vries, Frank Baas,
Antoine HC van Kampen, and Silvia D Olabarriaga. Initial steps towards
a production platform for DNA sequence analysis on the grid. BMC Bioin-
formatics, 11(1):598, December 2010.

[5] Shayan Shahand, Mark Santcroos, Antoine H C Kampen, and Śılvia Del-
gado Olabarriaga. A Grid-Enabled Gateway for Biomedical Data Analysis.
Journal of Grid Computing, October 2012.

[6] A Luckow, Mark Santcroos, A Merzky, O Weidner, P Mantha, and S Jha.
P∗: A model of pilot-abstractions. In E-Science (e-Science), 2012 IEEE
8th International Conference on, pages 1–10, 2012.

[7] BDC van Schaik, Mark Santcroos, and V Korkhov. Challenges in DNA
sequence analysis on a production grid. In EGI Community Forum 2012,
2012.

[8] Tristan Glatard, J Montagnat, D Lingrand, and X Pennec. Flexible and
efficient workflow deployment of data-intensive applications on grids with
MOTEUR. International Journal of High Performance Computing Appli-
cations, 22(3):347–360, 2008.

[9] Johan Montagnat, Benjamin Isnard, Tristan Glatard, Ketan Maheshwari,
and Mireille Fornarino. A data-driven workflow language for grids based

45

on array programming principles. WORKS ’09: Proceedings of the 4th
Workshop on Workflows in Support of Large-Scale Science, November 2009.

[10] André Luckow, Mark Santcroos, Ole Weidner, Andre Merzky, Sharath
Maddineni, and Shantenu Jha. Towards a common model for pilot-jobs.
In HPDC ’12: Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing. ACM, June 2012.

[11] Andre Merzky, Mark Santcroos, Matteo Turilli, and Shantenu Jha. Exe-
cuting Dynamic and Heterogeneous Workloads on Super Computers, 2016.
(under review) http://arxiv.org/abs/1512.08194.

[12] Mark Santcroos, Ralph Castain, Andre Merzky, Iain Bethune, and
Shantenu Jha. Executing dynamic heterogeneous workloads on blue waters
with radical-pilot. In Cray User Group 2016, 2016.

[13] BDC van Schaik, Mark Santcroos, S Madougou, A Jongejan, A H C van
Kampen, and S.D Olabarriaga. e-Bioscience Solutions and Challenges for
Next Generation Sequencing Experiments. In 2nd International Work-
Conference on Bioinformatics and Biomedical Engineering, pages 333–334,
2013.

[14] A Luckow, Mark Santcroos, A Zebrowski, and S Jha. Pilot-data: an ab-
straction for distributed data. Journal of Parallel and Distributed Comput-
ing, 79-80:16–30, 2015.

[15] Mark Santcroos, Barbera DC van Schaik, Shayan Shahand, Śılvia Delgado
Olabarriaga, Andre Luckow, and Shantenu Jha. Exploring Dynamic Enact-
ment of Scientific Workflows using Pilot-Abstractions. In 13th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pages
1–9, Delft.

[16] Mark Santcroos, S Delgado Olabarriaga, D S Katz, and S Jha. Pilot ab-
stractions for compute, data, and network. In E-Science (e-Science), 2012
IEEE 8th International Conference on, pages 1–2, 2012.

[17] Matteo Turilli, Mark Santcroos, and Shantenu Jha. A comprehensive per-
spective on pilot-jobs, 2016. (under review)
http://arxiv.org/abs/1508.04180.

[18] Fran Berman, Rich Wolski, Silvia Figueira, Jennifer Schopf, and Gary Shao.
Application-level scheduling on distributed heterogeneous networks. In Pro-
ceedings of the ACM/IEEE Conference on Supercomputing, pages 39–39.
IEEE, 1996.

[19] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed comput-
ing in practice: The Condor experience. Concurrency and Computation:
Practice and Experience, 17(2-4):323–356, 2005.

46

[20] James Frey, Todd Tannenbaum, Miron Livny, Ian Foster, and Steven
Tuecke. Condor-G: A computation management agent for multi-
institutional grids. Cluster Computing, 5(3):237–246, 2002.

[21] Jakub T Mościcki. DIANE - distributed analysis environment for GRID-
enabled simulation and analysis of physics data. In Proceedings of the
IEEE Nuclear Science Symposium Conference Record, volume 3, pages
1617–1620. IEEE, 2003.

[22] Pablo Saiz, L Aphecetche, Predrag Bunčić, Ružica Piskač, J-E Revsbech,
Vedran Šego, Alice Collaboration, et al. AliEn: ALICE environment on
the GRID. Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equipment,
502(2):437–440, 2003.

[23] Adrian Casajus, Ricardo Graciani, Stuart Paterson, Andrei Tsaregorodt-
sev, et al. DIRAC pilot framework and the DIRAC Workload Management
System. In Proceedings of the 17th International Conference on Comput-
ing in High Energy and Nuclear Physics (CHEP09), Journal of Physics:
Conference Series, volume 219(6), page 062049. IOP Publishing, 2010.

[24] T Maeno, K De, A Klimentov, P Nilsson, D Oleynik, S Panitkin, A Pet-
rosyan, J Schovancova, A Vaniachine, T Wenaus, et al. Evolution of the
ATLAS PanDA workload management system for exascale computational
science. In Proceedings of the 20th International Conference on Comput-
ing in High Energy and Nuclear Physics (CHEP2013), Journal of Physics:
Conference Series, volume 513(3), page 032062. IOP Publishing, 2014.

[25] Igor Sfiligoi, Daniel C Bradley, Burt Holzman, Parag Mhashilkar, San-
jay Padhi, and Frank Würthwein. The pilot way to grid resources using
glideinWMS. In Proceedings of the World Congress on Computer Science
and Information Engineering, volume 2, pages 428–432. IEEE, 2009.

[26] Ruth Pordes et al. The Open Science Grid. J. Phys.: Conf. Ser.,
78(1):012057, 2007.

[27] Jason Cope, Michael Oberg, Henry M Tufo, Theron Voran, and Matthew
Woitaszek. High throughput grid computing with an IBM Blue Gene/L.
2007 IEEE International Conference on Cluster Computing (CLUSTER),
pages 357–364, 2007.

[28] Nitro web site. http://www.adaptivecomputing.com/products/

hpc-products/high-throughput-nitro/.

[29] Mysge. http://www.nersc.gov/users/analytics-and-visualization/
data-analysis-and-mining/mysge/.

[30] QDO web site. https://www.nersc.gov/users/data-analytics/

workflow-tools/other-workflow-tools/qdo/.

47

[31] T. Kosar and M. Livny. Stork: making data placement a first class citizen
in the grid. In Distributed Computing Systems, 2004. Proceedings. 24th
International Conference on, pages 342 – 349, 2004.

[32] Alexandru Romosan, Doron Rotem, Arie Shoshani, and Derek Wright. Co-
scheduling of computation and data on computer clusters. In Proceedings
of 17th International Conference on Scientific and Statistical Databases
Management (SSDBM), 2005.

[33] Devarshi Ghoshal and Lavanya Ramakrishnan. Frieda: Flexible robust in-
telligent elastic data management in cloud environments. High Performance
Computing, Networking Storage and Analysis, SC Companion:, 0:1096–
1105, 2012.

[34] K. Ranganathan and I. Foster. Decoupling computation and data schedul-
ing in distributed data-intensive applications. In High Performance Dis-
tributed Computing, 2002. HPDC-11 2002. Proceedings. 11th IEEE Inter-
national Symposium on, pages 352 – 358, 2002.

[35] William H. Bell, David G. Cameron, A. Paul Millar, Luigi Capozza, Kurt
Stockinger, and Floriano Zini. Optorsim: A grid simulator for studying
dynamic data replication strategies. International Journal of High Perfor-
mance Computing Applications, 17(4):403–416, 2003.

[36] Jianwei Ma, Wanyu Liu, and Tristan Glatard. A classification of file place-
ment and replication methods on grids. Future Generation Computer Sys-
tems, 29(6):1395 – 1406, 2013. Including Special sections: High Perfor-
mance Computing in the Cloud & Resource Discovery Mechanisms for P2P
Systems.

[37] A. Aamnitchi, S. Doraimani, and G. Garzoglio. Filecules in high-energy
physics: Characteristics and impact on resource management. In High
Performance Distributed Computing, 2006 15th IEEE International Sym-
posium on, pages 69 –80, 0-0 2006.

[38] A. Amer, D.D.E. Long, and R.C. Burns. Group-based management of dis-
tributed file caches. In Distributed Computing Systems, 2002. Proceedings.
22nd International Conference on, pages 525 – 534, 2002.

[39] Gregory Ganger and M. Frans Kaashoek. Embedded inodes and explicit
grouping: Exploiting disk bandwidth for small files. In In Proceedings of
the 1997 USENIX Technical Conference, pages 1–17, 1997.

[40] Gilles Fedak, Haiwu He, and Franck Cappello. Bitdew: a programmable
environment for large-scale data management and distribution. In Proceed-
ings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages
45:1–45:12, Piscataway, NJ, USA, 2008. IEEE Press.

48

[41] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. In OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation, pages 137–
150, Berkeley, CA, USA, 2004. USENIX Association.

[42] Apache Hadoop. http://hadoop.apache.org/, 2014.

[43] Pradeep Kumar Mantha, Andre Luckow, and Shantenu Jha. Pilot-
MapReduce: An Extensible and Flexible MapReduce Implementation
for Distributed Data. In Proceedings of third international workshop on
MapReduce and its Applications, MapReduce ’12, pages 17–24, New York,
NY, USA, 2012. ACM.

[44] Michael D. Beynon, Tahsin Kurc, Umit Catalyurek, Chialin Chang, Alan
Sussman, and Joel Saltz. Distributed processing of very large datasets with
datacutter. Parallel Comput., 27(11):1457–1478, October 2001.

[45] Andre Luckow, Mark Santcroos, Andre Merzky, Ole Weidner, Pradeep
Mantha, and Shantenu Jha. P*: A model of pilot-abstractions. IEEE
8th International Conference on e-Science, pages 1–10, 2012.
http://dx.doi.org/10.1109/eScience.2012.6404423.

[46] Michael Wilde, Mihael Hategan, Justin M. Wozniak, Ben Clifford, Daniel S.
Katz, and Ian Foster. Swift: A language for distributed parallel scripting.
Parallel Computing, 37(9):633–652, 2011.

[47] A. Tsaregorodtsev, N. Brook, A. Casajus Ramo, P. Charpentier, J. Closier,
et al. DIRAC3: The new generation of the LHCb grid software.
J.Phys.Conf.Ser., 219:062029, 2010.

[48] S Bagnasco, L Betev, P Buncic, F Carminati, C Cirstoiu, C Grigoras,
A Hayrapetyan, A Harutyunyan, A J Peters, and P Saiz. Alien: Alice envi-
ronment on the grid. Journal of Physics: Conference Series, 119(6):062012,
2008.

[49] T Maeno, K De, T Wenaus, P Nilsson, G A Stewart, R Walker, A Stradling,
J Caballero, M Potekhin, D Smith, and The Atlas Collaboration. Overview
of atlas panda workload management. Journal of Physics: Conference
Series, 331(7):072024, 2011.

[50] Tadashi Maeno, K. De, and S. Panitkin. PD2P: PanDA dynamic data
placement for ATLAS. In Journal of Physics: Conference Series, volume
396, page 032070, 2012.

[51] Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster, and Mike Wilde.
Falkon: A Fast and Light-Weight TasK ExecutiON Framework. In SC ’07:
Proceedings of the 2007 ACM/IEEE conference on Supercomputing, pages
1–12, New York, NY, USA, 2007. ACM.

49

[52] Ioan Raicu, Yong Zhao, Ian T. Foster, and Alex Szalay. Accelerating large-
scale data exploration through data diffusion. In Proceedings of the 2008
international workshop on Data-aware distributed computing, DADC ’08,
pages 9–18, New York, NY, USA, 2008. ACM.

[53] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan,
Philip J Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva,
Miron Livny, et al. Pegasus, a workflow management system for science
automation. Future Generation Computer Systems, 46:17–35, 2015.

[54] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahl, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. Katz.
Pegasus: A framework for mapping complex scientific workflows onto dis-
tributed systems. Scientific Programming, 13(3):219–237, 2005.

[55] Michael Albrecht, Patrick Donnelly, Peter Bui, and Douglas Thain. Make-
flow: A portable abstraction for data intensive computing on clusters,
clouds, and grids. In Proceedings of the 1st ACM SIGMOD Workshop
on Scalable Workflow Execution Engines and Technologies, page 1. ACM,
2012.

[56] Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani, Xiaohui Qu,
Michael Kocher, Miriam Brafman, Guido Petretto, Gian-Marco Rignanese,
Geoffroy Hautier, et al. FireWorks: a dynamic workflow system designed
for high-throughput applications. Concurrency and Computation: Practice
and Experience, 2015.

[57] Peter Bui, Dinesh Rajan, Badi Abdul-Wahid, Jesus Izaguirre, and Douglas
Thain. Work Queue + Python: A framework for scalable scientific ensemble
applications. In Workshop on Python for High Performance and Scientific
Computing at SC11, 2011.

[58] Michael Wilde, Mihael Hategan, Justin M Wozniak, Ben Clifford, Daniel S
Katz, and Ian Foster. Swift: A language for distributed parallel scripting.
Parallel Computing, 37(9):633–652, 2011.

[59] Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster, and Mike Wilde.
Falkon: a Fast and Light-weight tasK executiON framework. In Proceedings
of the 8th ACM/IEEE conference on Supercomputing, page 43. ACM, 2007.

[60] Mihael Hategan, Justin Wozniak, and Ketan Maheshwari. Coasters: uni-
form resource provisioning and access for clouds and grids. In Proceedings
of the 4th IEEE International Conference on Utility and Cloud Computing
(UCC), pages 114–121. IEEE, 2011.

[61] Mats Rynge, Scott Callaghan, Ewa Deelman, Gideon Juve, Gaurang
Mehta, Karan Vahi, and Philip J Maechling. Enabling large-scale scientific
workflows on petascale resources using MPI master/worker. In XSEDE

50

’12: Proceedings of the 1st Conference of the Extreme Science and Engi-
neering Discovery Environment: Bridging from the eXtreme to the campus
and beyond, July 2012.

[62] Vladimir Korkhov, Dmitry Vasyunin, Adianto Wibisono, Victor Guevara-
Masis, Adam Belloum, Cees de Laat, Pieter Adriaans, and L O Hertzberger.
WS-VLAM: towards a scalable workflow system on the grid. In WORKS
’07: Proceedings of the 2nd workshop on Workflows in support of large-scale
science. ACM, June 2007.

[63] G. Juve and E Deelman. Resource Provisioning Options for Large-Scale
Scientific Workflows. In eScience, 2008. eScience ’08. IEEE Fourth Inter-
national Conference on, pages 608–613. IEEE, 2008.

[64] G. Juve, E Deelman, K Vahi, and G. Mehta. Experiences with resource
provisioning for scientific workflows using Corral. Scientific Programming,
18(2):77–92, 2010.

[65] Gurmeet Singh and Ewa Deelman. The interplay of resource provision-
ing and workflow optimization in scientific applications. Concurrency and
Computation: Practice and Experience, 23(16), November 2011.

[66] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil,
Carl Kesselman, Gaurang Mehta, Karan Vahi, G Bruce Berriman, John
Good, Anastasia Laity, Joseph C Jacob, and Daniel S Katz. Pegasus:
A framework for mapping complex scientific workflows onto distributed
systems. Scientific Programming, 13(3), July 2005.

[67] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed Com-
puting in Practice:The Condor Experience. Concurrency and Computa-
tion: Practice & Experience - Grid Performance, 17(2-4):323–356, Febru-
ary 2005.

[68] Andre Merzky, Ole Weidner, and Shantenu Jha. SAGA: A standardized ac-
cess layer to heterogeneous distributed computing infrastructure. Software-
X, 2015. DOI: 10.1016/j.softx.2015.03.001.

[69] H Hellerman. Experimental personalized array translator system. Commu-
nications of the ACM, 7(7):433–438, July 1964.

[70] Daniele Turi, Paolo Missier, Carole Goble, David De Roure, and Tom Oinn.
Taverna Workflows: Syntax and Semantics. In Third IEEE International
Conference on e-Science and Grid Computing (e-Science 2007), pages 441–
448. IEEE, 2007.

[71] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Klei-
jer, Andre Merzky, John Shalf, and Christopher Smith. A Simple API for
Grid Applications (SAGA). OGF Recommendation, GFD.90, Open Grid
Forum, 2007.

51

[72] A Sim et al. GFD.154: The Storage Resource Manager Interface Specifi-
cation V2.2. Technical report, 2008. Global Grid Forum.

[73] GFAL2 utility tools web site. https://dmc.web.cern.ch/projects/

gfal2-utils.

[74] Marvin github website. https://github.com/marksantcroos/marvin.

[75] Pykka github website. https://github.com/jodal/pykka.

[76] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular AC-
TOR formalism for artificial intelligence. pages 235–245, August 1973.

[77] R Pordes, D Petravick, B Kramer, D Olson, M Livny, A Roy, P Avery,
K Blackburn, T Wenaus, F Würthwein, I Foster, R Gardner, M Wilde,
A Blatecky, J McGee, and R Quick. The open science grid status and
architecture. Journal of Physics: Conference Series, 119, 2008.

[78] Ammar Benabdelkader, Mark Santcroos, Souley Madougou, Antoine H C
van Kampen, and Silvia D Olabarriaga. A Provenance Approach to Trace
Scientific Experiments on a Grid Infrastructure. In ESCIENCE ’11: Pro-
ceedings of the 2011 IEEE Seventh International Conference on eScience,
pages 134–141. IEEE Computer Society, December 2011.

52

