
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Workflow Planning under Constraints

Author: Radu-Marian Doros, (2749875)

1st supervisor: Adam Belloum
daily supervisor: Tim Müller
2nd reader: Thomas van Binsbergen

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

February 6, 2024

“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley

ii

Abstract

Context. Workflow management systems, crucial in sectors like healthcare and

manufacturing, require efficient task coordination while adhering to complex

policies. Approaching these challenges through the lens of the Workflow Satis-

fiability Problem (WSP) emerges as a primary method, attributed to its effi-

ciency and intuitive nature.

Goal. The primary objective of this work is to develop a planning framework for

workflow workloads that can handle a broad spectrum of constraints, including

both user-independent (UI) and general constraints, while sacrificing as little

efficiency as possible.

Method. A prototype workflow planner, written in Rust, was developed to

test the feasibility of the approach. The system employs a combination of

pattern-based backtracking algorithms and DPLL-style solvers to address dif-

ferent classes of constraints. Benchmarking tools were utilized to validate the

implementation and compare its performance with existing solutions.

Results. The system demonstrated effective scalability and flexibility in han-

dling UI constraints. Although its performance in scenarios combining UI with

non-UI constraints didn’t match that of more specialized solutions, it displayed

adequate capability for handling smaller-scale problems.

Conclusions. The study confirms the viability of a generalized approach to

workflow satisfiability under a diverse range of constraints, at least for work-

loads with a low number of steps. Future exploration will focus on studying

optimization methods, examining the system’s effectiveness in various environ-

ments, and applying the methodology to more complex constraint hierarchies.

Contents

1 Introduction 1

1.1 A Motivating Example . 1

1.2 Policy Enforcement in Workflow Systems . 3

1.3 Problem Statement & Objectives . 4

1.4 Approach . 5

1.5 Summary of the Following Chapters . 5

2 Background 6

2.1 Workflow Satisfiability Problem (WSP) . 6

2.1.1 Authorization Sets . 8

2.1.2 Pattern-Based Algorithms . 9

2.1.3 Combining Pattern Enumeration and Bipartite Matching 11

2.1.4 Optimizations for Pattern Enumeration 11

2.1.4.1 Incremental eligible partition generation 12

2.1.4.2 Incremental bipartite matching 12

2.1.4.3 Prioritizing nodes that are inside predicates 13

2.1.5 Handling more general constraints 15

2.2 Applications Discussion . 16

2.2.1 GDPR purposes & permissions . 16

2.2.2 RBAC . 16

2.3 Chapter Conclusions . 17

3 Related Work 18

3.1 Generalization to constraint hierarchy . 18

3.2 Workflow Planning in General (no constraints) 19

3.3 Solvers . 19

3.3.1 SAT with DPLL and its Heuristics 20

i

CONTENTS

3.3.2 Satisfiability-Modulo-Theory (SMT) 20

3.4 Summary . 21

4 Design 22

4.1 Introduction . 22

4.2 System Architecture . 22

4.2.1 High-Level Design . 22

4.2.1.1 Implementing Scoping Mechanisms 24

4.3 Analysis . 27

4.3.1 Computing the Complexity . 27

4.3.2 Worst Case Analysis . 28

4.3.3 Comparison with Naive Approach 31

4.4 The prototype . 31

4.4.1 Implementation Features and Choices 32

4.4.1.1 Iterative Generators . 32

4.4.1.2 Optimizations . 34

4.4.1.3 Node Priority Optimization 34

4.4.1.4 Combining techniques . 35

4.4.1.5 Backjumping . 36

4.4.1.6 Implementation Summary: 36

4.4.1.7 Benchmark-Based Validation of the Implementation 37

5 Experimental Results 38

5.1 Workload Format and Constraint Descriptions 38

5.2 Evaluation Methodology . 38

5.3 Benchmark Results . 39

5.3.1 User-Independent Constraint Runs 39

5.3.2 Runs Incorporating Both User-Independent and General Constraints 40

5.4 Interpretation and Reproducibility . 40

6 Conclusions 42

6.1 Reviewing our Objectives’ Completion . 42

6.2 Future work . 43

References 45

ii

1

Introduction

Nowadays workflow management systems play an increasingly critical role across various

industries, from healthcare to manufacturing and beyond. A workflow, in the simplest

terms, refers to a series of interlinked processes or tasks that are part of a larger operation

or project. These workflows can often be represented as Directed Acyclic Graphs (DAGs),

where each task is a node in the graph, and the flow from one task to another is depicted

by directed edges, emphasizing the sequential and dependent nature of tasks. Workflows

are essential for coordinating and executing complex tasks efficiently across various sectors,

ensuring that each component of the process seamlessly integrates with the next. They

serve as the backbone of many operations, coordinating tasks and resources to ensure effi-

ciency and compliance with legal or organizational policies. However, the very complexity

that makes these systems indispensable also makes them difficult to manage. In particular,

the often contradictory and conflicting constraints that govern these workflows can make

planning an intricate and computationally challenging problem.

1.1 A Motivating Example

To concretize the challenges and complexities inherent in workflow management systems,

especially those dealing with sensitive data and multiple stakeholders, let us consider a real-

world scenario in the healthcare sector. Consider a consortium of hospitals collaborating

on a medical research project aimed at analyzing patient data for performing research

in healthcare. In this multi-hospital environment, each institution stores its data locally

and is understandably reluctant to freely share this sensitive information due to concerns

around privacy and data security.

1

1.1 A Motivating Example

Figure 1.1: The depicted process illustrates a collaborative process among Hospital Partners.
The steps are as follows: 1. Hospital Partners come together to discuss and finalize research
terms during a convention. 2. A consensus is reached to adopt a system for customized policy
checking. 3. One of the partners initiates a request for data sharing and analysis (this is
represented as a workflow request). 4. The central planner assigns the workflow to those
partners who comply with each hospital’s policy rules. In this specific case, the policy rules
of one hospital lead to the disapproval of a workflow allocation request from another hospital.

To facilitate the research while adhering to these concerns, each hospital could define its

policies for data usage and sharing. These policies serve a dual purpose:

• They act as safeguards, ensuring that any system or research project accessing the

data abides by the specific constraints and permission rules set by each hospital.

• They also open the door for broader collaboration. By clearly outlining what is

permissible, these policies could allow other systems or research projects to utilize

the data—something that would be impossible without such clearly defined rules.

This example underscores the importance of efficient and flexible policy enforcement in

workflow systems. Effective management of individual constraints from multiple stakehold-

ers is essential, as is the need for speed and efficiency in the planning process. Figure 1.1

2

1.2 Policy Enforcement in Workflow Systems

provides a visual representation of this scenario, illustrating how the collaborative work-

flow among hospital partners might typically be structured. These considerations naturally

lead us to the general discussion on the methods and mechanisms of policy enforcement in

workflow systems in the next section.

1.2 Policy Enforcement in Workflow Systems

Before delving deeper into policy enforcement, it is important to define how workflows are

conceptualized in this work. Workflows are represented as graph structures, with tasks

depicted as nodes connected by their dependencies or required order of execution. The

process of planning in workflow systems entails assigning these tasks to suitable agents or

resources, ensuring that all constraints and dependencies are met.

As highlighted by the preceding example, policy enforcement is a critical feature that

enhances the security, compliance, and operational integrity of workflow systems. It acts

as the regulatory framework that ensures tasks and activities align with some established

rules. The mechanisms for enforcing policies can generally be classified into two primary

approaches:

1. Access Control (28): This involves pre-execution checks to determine whether a spe-

cific action or access should be allowed according to pre-defined rules and constraints.

2. Continuous Monitoring (Usage Control) (26): In this approach, the system continu-

ously monitors actions and access patterns during execution, intervening only when

a violation is detected.

This thesis focuses on the first approach, Access Control. It is worth mentioning that

the first approach serves as a foundational building block for the second. In the context of

continuous monitoring, access control serves as the initial gatekeeping step, dictating the

terms under which subsequent actions unfold.

In practical terms, the importance of Access Control becomes particularly clear when

considering dynamic workflows that are susceptible to changes over time during executions.

We can imagine a scenario in which a workflow is initially planned to be executed by a

specific actor, only to find out during the execution that the actor’s actions violate the

system’s policies. In such cases, the task would need to be reallocated to another actor

who is compliant with the rules. The complexity increases when the permissibility of task

allocation is contingent on preceding tasks, which may necessitate a wholesale reallocation

3

1.3 Problem Statement & Objectives

of multiple tasks within the workflow. In such contexts, the mechanisms of Access Control

are crucial. By ensuring at a planning phase that task allocations comply with policies,

we mitigate the risk of extensive reallocations and the computational costs associated with

them.

While Access Control serves as a strong initial gatekeeper for policy enforcement, it is

important to note that there might be scenarios where a policy that was evaluated as

permissible during the planning stage could become impermissible by the time of execu-

tion. This discrepancy may arise due to internal state changes in the policy evaluation

mechanisms between the planning and execution phases. Although such occurrences are

arguably rare given the relatively short time frame between planning and execution, they

nonetheless could happen.

1.3 Problem Statement & Objectives

The problem this thesis aims to address is how to achieve efficient planning in workflow

systems under general constraints, creating an Access Control framework. Specifically,

the constraints under which planning occurs can incorporate Access Control rules, thereby

transforming the planning process into an inherent form of policy enforcement. The re-

search will concentrate on the following objectives:

• Tailoring Planning Approaches to Complex Constraints: This aspect aims

to explore and develop planning methods that are both efficient and capable of ac-

commodating a wide array of constraints, including but not limited to GDPR pur-

pose/permissions mechanics described in Basin et al. (2) and role-based access control

(RBAC) INCITS (18).

• Benchmarking and Analysis: The goal here is to establish appropriate evaluation

metrics and methodologies for assessing the effectiveness of the proposed planning

methods. This involves running benchmark experiments against existing workflow

planning algorithms to provide a comparative analysis.

• Applicability Framework: This component focuses on creating a conceptual frame-

work that guides organizations in adapting their specific operational rules and re-

quirements into the proposed problem formulation, thereby ensuring the general ap-

plicability of our approach.

4

1.4 Approach

1.4 Approach

Our approach primarily aims to identify a feasible plan that meets all constraints, known

as a ’satisfiable’ plan. This term refers to a solution where every task in the workflow is

assigned in a manner that aligns with all the specified operational and policy requirements.

To achieve this goal, we categorize constraints based on their type and then apply one of

two main strategies:

1. For constraints of a specific type that lend themselves to optimization, we employ

pattern-based planning techniques. As explained by Karapetyan et al. (20), these

techniques involve constraints that yield the same results for any allocations of a

partition of the workflow nodes. This approach leverages the uniformity in constraint

behavior to facilitate more efficient workflow planning.

2. For constraints that diverge from this predictable pattern, we resort to the naive

plan enumeration approach. In cases where constraints are more complex or irreg-

ular, lacking a discernible pattern, this method involves systematically exploring all

possible task assignments within the workflow. Within this category, we also explore

optimization techniques and heuristics to improve efficiency.

1.5 Summary of the Following Chapters

In Chapter 2, we explore the Background notions, providing the necessary theoretical

groundwork for the thesis. Chapter 3 focuses on reviewing existing literature and studies

relevant to our research field, emphasizing the differences in approach and methodology

from our selected strategies. Chapter 4 outlines our approach to addressing the problem

statement. Chapter 5 presents the experimental results, demonstrating the effectiveness

of our framework. Finally, Chapter 6 concludes the thesis and discusses future avenues for

research.

5

2

Background

As mentioned in the introductory Chapter 1, the scope of the thesis is to find a general and

practical solution to the problem of planning under constraints. This chapter provides a

background that lays the foundation of the solution we introduce in the subsequent chap-

ters. We review the formulation of the workflow satisfiability problem, introduced in the

seminal work of Wang and Li (31) and then further analyzed and explored by Karapetyan

et al. (20) and Karapetyan and Gutin (19). The later articles provide us with critical build-

ing blocks for our designed system. These works offer critical insights and foundational

elements for our system’s design, detailed in Chapter 4, where we integrate pattern-based

backtracking techniques, discussed in the following sections, with naive methods for han-

dling more general cases.

2.1 Workflow Satisfiability Problem (WSP)

In addressing the challenge of planning under constraints, the concept of the Workflow

Satisfiability Problem (WSP) emerges as a central theme in research (9). Recognized as a

specific class of satisfiability problem, WSP concerns itself with the allocation of workflow

tasks to users in a manner that adheres to predefined constraints. This section delves

into the foundational definitions and theoretical constructs of WSP as established by the

seminal works of Wang and Li (31) and further elaborated by Karapetyan et al. (20). These

definitions form the cornerstone of our understanding of WSP and provide the necessary

terminological and conceptual framework for the subsequent discourse

Definitions The Workflow Satisfiability Problem (WSP) can be formally defined as

follows: Given a set of workflow steps S, a set of users U , and a set of constraints

6

2.1 Workflow Satisfiability Problem (WSP)

C = {c1, c2, ..., cl}, where each ci represents an evaluation function applied over plans

π : S ⇀ U (i.e. partial functions from S to U), constraints C : US → {0, 1, ω} are defined

as:

C(π) =

0 if π violates the constraint,
1 if π satisfies the constraint,
ω if the scope of π is incomplete for full evaluation.

A plan π satisfies all constraints if and only if every constraint ci evaluates to true

(equivalently, c1(π) = ... = cl(π) = 1). It is assumed that each constraint ci can be

evaluated in polynomial time with respect to the sizes of S and U , ensuring computational

feasibility. Constraints may not require π to be fully defined over all elements of S and can

evaluate partially defined plans. While authorization sets A : S → 2U are introduced in the

model, representing constraints that act as simplified allowlists for individual steps, they

are not essential for all cases of the WSP. However, in many instances where constraints

C are more limited, these authorization sets become particularly useful. Therefore, an

instance of a WSP problem is effectively defined as a quadruple (S,U,A,C), where the

role of A varies depending on the nature and restrictiveness of the constraints in C.

It is important to understand why constraints should be able to handle partial plans.

Mostly constraints are assumed to concentrate on a portion of a plan (a scope). Once

that scope is defined (users planned to be assigned to the scope’s steps), the constraint

will not necessarily require other parts of the plan and can be evaluated already. This

comes in handy during the planning phase when plans are built incrementally and scoped

constraints can reject partial plans.

Another aspect noteworthy to highlight is that the Workflow Satisfiability Problem

(WSP) resembles a generalized version of the Boolean satisfiability problem (SAT) when

its application is confined to scenarios in which workflow nodes are assignable to only two

potential users. In this context, SAT involves assigning Boolean values to a set of vari-

ables in such a way that they satisfy a predetermined set of clauses. For a comprehensive

overview of the current algorithmic approaches to this problem, the work in Vizel et al. (29)

serves as an excellent reference. In Chapter 3, we delve into a variety of methods, insights,

and techniques derived from SAT solvers, exploring their relevance and applicability to the

Workflow Satisfiability Problem.

7

2.1 Workflow Satisfiability Problem (WSP)

Fixed Parameter Tractability (FPT) FPT algorithms are characterized by a com-

putational complexity that is polynomial with respect to the size of the input data N

and exponential solely in terms of a fixed parameter k. This is generally expressed as

f(k) ·O(N c), where f(k) is a function of the parameter k, and c is a constant. In the case

of WSP, the complexity of planning algorithms depends on two variables: the number of

steps k and the number of users N . When the number of steps k is bounded and rela-

tively small, FPT approaches become highly practical and effective, even as the number

of users N increases. This scenario is common in many real-life applications, making FPT

methodologies particularly suited for WSP. Consequently, it is important to determine the

scenarios in which FPT is possible within the context of WSP.

As subsequent discussions will show, the WSP can support FPT algorithms under specific

constraints, whereas the introduction of more general constraints negates this possibility.

2.1.1 Authorization Sets

s1

s2

s3

s4

s5

u1

u2

u3

u4

u5

u6

S

U

Figure 2.1: Authorization Sets: planning as Max Bipartite Graph Matching. The edges in
the graph represent the authorization table’s permissions, where each edge connects a user to
a permissible step. The red edges specifically denote the chosen allocations in the bipartite
matching, indicating the users assigned to each step in the final plan. Note that each user can
be allocated to only one step.

Before delving into the pattern-based method, it is useful to consider a foundational

8

2.1 Workflow Satisfiability Problem (WSP)

building block: the concept of authorization sets for each workflow step. In this context,

the task of assigning users to specific workflow steps can be formulated as a maximum

bipartite matching problem, if users can be allocated to a workflow step at most once.

Specifically, a bipartite graph is generated with workflow steps and users as the two disjoint

sets of vertices. Edges between these sets are determined by membership in the respective

authorization sets. A valid plan in this scenario corresponds to a bipartite matching that

covers all workflow steps, as illustrated in Figure 2.1.

The maximum bipartite graph problem is known to be solvable in O(nm) with the Kuhn-

Munkres (21) algorithm where n is the number of vertices in one set and m the number

of edges in the bipartite graph. Hopcroft-Karp-Karzanov (17) is a more efficient bipartite

graph matching algorithm that runs in O(
√
nm).

2.1.2 Pattern-Based Algorithms

User Independent Constraints Another concept introduced in Gutin (14) is the con-

cept of user-independent constraints. These constraints have the following properties: Any

labeling of the steps with users π : S → U that satisfies the user-independent constraint

has the property that we can replace all instances of any user with another user. That is,

given a remapping τ : U → U , we have the composed function τ ◦π : S → U also satisfying

the UI constraints.

In this context, the integration of both the authorization sets A and the constraints C

that are user-independent proves to be highly advantageous. User-independent constraints

cannot target users for steps specifically, a role that is effectively fulfilled by authorization

sets that dictate the banning or allowance of users for individual steps. The need for having

them both also provides a solid rationale for the subsequent chapters of this work, which

focus on the design of a more general constraint framework.

Patterns Another important related concept is the Pattern. Patterns are partitions of

the set of steps S into disjoint subsets S1, . . . , Sp such that
⋃p

i=1 Si = P and Si∩Sj = ∅ for

all i ̸= j. These subsets are referred to as blocks. For convenience, each block is assigned

to a user, while different blocks are assigned to different users. Importantly, if multiple

blocks were assigned the same user, an equivalent pattern could be formed by merging

those blocks.

Given a user assigning plan function π : Si → U , in the context of User-Independent

(UI) constraints, if π satisfies these constraints, then the plan will also be valid under

any remapping τ : U → U . In other words, τ ◦ π : P → U will also satisfy the UI

9

2.1 Workflow Satisfiability Problem (WSP)

constraints. This property allows us to evaluate these constraints using arbitrary user

assignments. Consequently, the planning problem under UI constraints simplifies finding

a valid pattern, making it essentially a partition enumeration problem. The number of

partitions of k elements is known to be defined as Bell’s number Bk. In Karapetyan et al.

(20) Bk is approximated as O(2k log2 k) = O(kk).

Having examined the definitions of user-independent constraints, we will now turn our

attention to the specific constraints outlined in Karapetyan et al. (20) as examples:

• Binding of Duty (BoD): This constraint is satisfied when, within a two-step scope

s, t, the user assigned to step s is the same as the user assigned to step t, denoted

as π(s) = π(t). BoD could be useful in scenarios where continuity or consistency of

task handling is important. For instance, in legal or financial document processing,

the same individual might be required to handle multiple steps to ensure consistency

and accountability.

• Separation of Duty (SoD): This constraint is satisfied when, within a two-step scope

s, t, the assigned user of step s is different than the assigned user of t, i.e π(s) ̸= π(t).

SoD constraints can be useful in preventing conflicts of interest and ensuring checks

and balances in financial systems.

• At-least-k and at-most-k: The at-least-k constraint is satisfied if for a scope T , the

number of unique users assigned to the scope |π(T)| ≥ k. The at-most-k constraint is

defined symmetrically. These constraints are useful in situations requiring diversity

or limiting concentration in task allocation. For example, in project management,

ensuring that a task is seen by a minimum number of different eyes (At-least-k) or

preventing workload overload on individuals (At-most-k).

It should be noted that the Binding of Duty constraint is given mostly only as an example

since using it trivially simplifies the problem. With this constraint, we can simply transform

the problem to a simpler one by merging the connected components generated by the BoD

steps together and transforming the remaining constraints to refer to the new merged step.

Wang and Li (31) notes that in the case the constraints are only formed of the Separation

of Duty constraint, the satisfiability problem is equivalent to a Graph k-colorability problem

(22). In the graph k-colorability problem, a graph is said to be k-colorable if we can assign

at most k colors to vertices to the vertices of the graph such that all vertices have distinct

colors from their adjacent vertices. Furthermore, they show that these types of constraints

admit FPT type complexity of O(kk+1n).

10

2.1 Workflow Satisfiability Problem (WSP)

2.1.3 Combining Pattern Enumeration and Bipartite Matching

The two methods discussed Section 2.1.1 and Section 2.1.2 are effectively integrated into

a two-step process in Karapetyan et al. (20).

This process involves:

1. Enumerating the partitions that fulfill the user-independent constraints.

2. Mapping the patterns to specific users according to the authorization sets using

maximum bipartite matching.

The combined approach is concisely represented in pseudo-code as seen in Listing 1.

Algorithm 1 UI Planning
Require: G, C, A

Ensure: Plan(G) satisfies C, A

1: generator ← Partition_Generator(G)

2: while part← generator.next() do
3: if part satisfies C and match← find_bipartite_matching(part, A) then
4: return match

5: end if
6: end while
7: return ∅

In this process, we explore through Bk partitions in the worst case, each requiring ver-

ification via determining a maximal bipartite match. It is important to note that this

analysis does not take into account the complexity associated with evaluating constraints,

nor does it consider any state-managing overhead complexity of the partition.next() func-

tion. Assuming the use of an O(n·k) bipartite matching algorithm, the complexity becomes

O(Bk · n · k), which is Fixed-Parameter Tractable (FPT) because Bk, while exponential,

does not depend on n.

2.1.4 Optimizations for Pattern Enumeration

This subsection summarizes essential optimizations highlighted in the study by Karapetyan

et al. (20), expanding upon the basic methods of pattern enumeration and bipartite match-

ing as discussed in Listing 1. These enhancements are particularly significant for their

ability to increase pruning, thereby enabling the algorithm to bypass the need to evaluate

all potential partitions in many cases.

11

2.1 Workflow Satisfiability Problem (WSP)

u1

u2

u3

...

un

{s1, s2, ..., sk}

u1

u2

...

un

{s1}

{s2}

...

{sk}

Figure 2.2: This diagram presents the two extreme cases in the partitioning of a set con-
taining steps s1..sk: one where each element forms a singleton set and the other where all
elements are grouped into a single partition. While these are the extremes, it is imperative to
acknowledge the entire spectrum of partition possibilities that exist between these two cases.
The number of average parts in all partitions of a set of k elements is described in Odlyzko and
Richmond (25) as O(k

logk). For our purposes, we will simply use k as an approximation of it,
since it simplifies calculations while also not significantly altering the results complexity-wise.

2.1.4.1 Incremental eligible partition generation

The first property leveraged by Karapetyan et al. for optimization is the monotonic prop-

erty of the pattern function P : if a pattern P (S′) is valid (satisfies all constraints) for some

S′ ⊆ S, then all sub-patterns P (S′′) are also valid for every S′′ ⊆ S′. In other words, when

a constraint evaluates positively for a scope, larger scopes containing it will not change

their positive evaluation. This property allows for an incremental evaluation of constraints,

enabling us to efficiently enumerate and assess subset partitions.

This is very convenient also because generating full partitions requires an incremental

approach already, where we find sub-partitions before completing an integral one. In

Listing 1 we can think of the Partition_Generator :: next() method to now return partial

partitions.

This approach also offers flexibility in the order in which the partial partition generator

adds nodes to the configuration. Specifically, we can prioritize nodes that frequently appear

in the constraints, thereby increasing the likelihood of early pruning of invalid partitions.

2.1.4.2 Incremental bipartite matching

Similar to the previous observation from Section 2.1.4.1, that evaluations remain consis-

tent in the presence of extending subsets, the matching problem has similar properties

as described in Karapetyan et al. (20). Suppose we have an existing partial partition

P = {b1, b2, ..., bk} that is eligible. We aim to add new nodes to the matching without

12

2.1 Workflow Satisfiability Problem (WSP)

having to rerun the entire matching algorithm; instead, our goal is to update the exist-

ing solution. When adding the new node, we distinguish between two options, as also

illustrated in Figure 2.5:

• We extend some block bi to include s. This affects the bipartite graph the following

way: we must remove all edges that are connecting bi to all users that are not

authorized for s. Here again, we distinguish between 2 cases:

1. If the old matching did not contain an edge that is removed when adding s, we

can keep the old matching.

2. Otherwise, we remove the edge from the matching and we need to find a new

M-augmenting path starting in the bi. In this context, an M-augmenting path

is a path that starts and ends with unmatched vertices and alternates between

edges that are not in the matching. Given that we already have a full matching

except for the removed node, the goal is to find an M-augmenting path that will

include this unmatched node, thereby restoring the full matching.

• s becomes a new singleton block. In this case, we can keep the previous matching

and we need to find a new M-augmenting path starting in the s step.

The operation of finding an augmented path starting from a block node requires per-

forming a DFS of complexity O(V + E). Besides this, also graph update operations are

required to be done. We need to allow both the deletion and addition of nodes and edges.

2.1.4.3 Prioritizing nodes that are inside predicates

An improvement can be made that increases the pruning power. Since pruning occurs in

cases when evaluations of the attributes refute some subset, we can reorder the planning

algorithm to focus on the nodes that are more present in the predicates, therefore heuristi-

cally increasing the chances that pruning will occur. This can be applied when expanding

the current subset of nodes (picking the next step node to be added).

In their approach to node selection, Karapetyan et al. (20) utilize the transparency

of constraints. They assign weights to each candidate node, with these weights being

indicative of the likelihood of a node triggering a pruning action within the algorithm.

This weighting system is rooted in the probability that a given constraint, upon being

fulfilled by the node, will lead to pruning. Nevertheless, it should be noted that this

method of prioritization may not be feasible for constraints that are less transparent or

more complex, where such direct assignment of probabilities is not straightforward.

13

2.1 Workflow Satisfiability Problem (WSP)

u1

u2

u3

u4

u5

u6

{s1, s2}

{s3}

{s4}

u1

u2

u3

u4

u5

u6

{s1, s2}

{s3}

{s4, s5}

Figure 2.3: For all cases: Every edge represents a potential assignment, and red edges
indicate actual assignment. Case 1: when adding the new node s5 in the block of s4, remove
edges to users not authorized for s5. In this case, the previous assignment for the block is still
valid.

u1

u2

u3

u4

u5

u6

{s1, s2}

{s3}

{s4}

u1

u2

u3

u4

u5

u6

{s1, s2}

{s3}

{s4, s5}

u1

u2

u3

u4

u5

u6

{s1, s2}

{s3}

{s4, s5}

Figure 2.4: Case 2: when adding the new node s5 in block of s4 and remove edges to users
not authorized for s5, u6. In this case, the previous assignment for the block becomes invalid
and we need to find an M-augmenting path starting from s4, s5. Paths to u3 and u4 exist and
we repair s3 with u3 to obtain the new full matching.

u1

u2

u3

u4

u5

u6

{s1, s2}

{s3}

{s4}

u1

u2

u3

u4

u5

u6

{s1, s2}

{s3}

{s4}

{s5}

u1

u2

u3

u4

u5

u6

{s1, s2}

{s3}

{s4}

{s5}

Figure 2.5: Case 3: when adding the new node s5 and creating a singleton block. We now
need to pair a new user and we need to find an M-augumenting path. We find one to u6 and
we repair s4 with u6, allowing s5 to be paired with u5.

14

2.1 Workflow Satisfiability Problem (WSP)

2.1.5 Handling more general constraints

To address the broad scope of UI constraints, Karapetyan and Gutin (19) have demon-

strated a method for converting general constraints into a format suitable for UI problem-

solving. This involves reformulating these constraints into distinct branches of valid au-

thorization sets and then verifying the feasibility of these sets by assessing if they allow

for appropriate user-pattern matches. While this approach proves that general constraints

can indeed be adapted to this UI framework, the inherent complexity of some constraints

could result in extensive branching, resulting in significant computational overhead.

Karapetyan and Gutin (19) highlight a range of constraints that are not inherently

compliant with User-Independent (UI) criteria. These include:

• Super-User At-Least Constraint (SUAL): This specifies that within a certain scope

T in S, given a parameter h and a group of super users X, if the total number of

users allocated to T falls below h, then these users must all belong to the super user

set X. SUAL can be particularly useful in high-security or sensitive environments

where certain tasks require a minimum number of qualified individuals (super users)

to handle them. If the number of individuals available falls below a certain thresh-

old, this constraint ensures that only those with specific, higher-level clearance or

qualifications (the super users) are assigned to these tasks.

• Wang-Li (WL) (31): This constraint mandates that within a specific scope T in S,

involving d distinct sets of departmental users U1, U2, ..., Ud, all assigned users in

T should come from the same departmental set Ui. This constraint is particularly

relevant in scenarios where conflict of interest policies must be enforced. It ensures

that tasks within a particular scope are handled by users from a single, distinct

department or group, thereby preventing the crossover of information or influence

between different departments.

• Assignment-Dependent Authorisation (ADA): It states that in scope with two steps,

s1 and s2, and two sets of users, U1 and U2, if step s1 is assigned to a user from U1,

then step s2 must be assigned to a user from U2. ADA is applicable in workflows

where the assignment of one task influences the suitability or eligibility of users for

subsequent tasks. One example where ADA is useful might be in situations where

the skill level or performance history of a user assigned to one task influences the

assignment of subsequent tasks. This can ensure that more experienced or senior

15

2.2 Applications Discussion

users oversee or follow up on tasks handled by less experienced or historically less

reliable users.

While the concept holds merit in its exploration of constraint nature and demonstrates

a tangible method for converting constraints within branching UI frameworks, the idea

suffers from the fact that it is a "manual" approach. The process of translating a general

constraint into an alternate formulation necessitates the creation of a unique authorization

set for each potential evaluation branch of the constraint predicate. It is imperative to es-

tablish methods for the automatic transformation of general constraints into UI constraint

branches, as this is a critical condition for the practicality of the method.

2.2 Applications Discussion

Next, we briefly look at two cases where the WSP formulations can be applied, even when

only limiting them to the authorization sets structure: handling of GDPR purposes &

permissions and role-based access control (RBAC).

2.2.1 GDPR purposes & permissions

The work by Basin et al. (2) on GDPR compliance underscores the significance of align-

ing data collection with specific, consented purposes. They advocate for a methodology

where each business process is distinctly tied to its purpose, ensuring that data handling

adheres strictly to the GDPR’s requirement for purpose-specific consent. This approach

is compatible with the presented pattern-based formulations. In this framework, we apply

this principle by identifying users whose permissions match the intended purposes of each

workflow step. This is achieved by constructing authorization sets for each step, where

the set contains users with permissions that align with that step’s purpose as illustrated

in Figure 2.6.

2.2.2 RBAC

Likewise, this approach can also be applied to translate formulations within Role-Based

Access Control (RBAC) (18). While Wang and Li (31) focus on the R2BAC model, Gutin

(14) asserts that standard RBAC configurations are compatible with their proposed for-

mulation.

RBAC (18) is a widely used framework for managing user permissions within a system.

In RBAC, access rights are not assigned to individual users directly; instead, they are

16

2.3 Chapter Conclusions

Figure 2.6: Translating GDPR purpose/permission labelling, as proposed by Basin et al.
(2), into the authorization set formulations. Compiling these sets is as simple as identifying
for each step’s purposes the set of users/sites that have gathered permissions for that task.

associated with roles, and users are then assigned to these roles. Each role encompasses

a specific set of permissions that pertain to the user’s authority and responsibility within

the organization.

In RBAC, since permissions are role-based rather than user-specific, it aligns seamlessly

with the concept of user-independent constraints in workflow satisfiability problems. This is

because UI constraints are designed to be applicable irrespective of the specific user identi-

ties, focusing instead on the roles or functions that the users fulfill. Similarly, authorization

sets in RBAC can be easily conceptualized: each role can be seen as an authorization set

with its own unique set of allowable actions within the system. This compatibility allows

for an effective application of RBAC principles in workflows governed by UI constraints.

2.3 Chapter Conclusions

This chapter has laid the necessary groundwork for introducing our planning system in

Chapter 4. We summarized the literature on User-Independent (UI) concepts and looked

at a Fixed-Parameter Tractable (FPT) algorithm that handles UI constraints, providing

us with insights into the planning problem under constraints. In the following chapters,

we will leverage these foundational concepts to design our system.

17

3

Related Work

Before delving into our approach and implementation, it is imperative to review related

works and motivate the rationale behind our diverging path. In Section 3.1 we look at an

attempt at creating a hierarchy of constraint expressivity due to dos Santos and Ranise (9).

Then we check briefly the ways optimization is done in non-constrained workflow planning.

And last, we briefly check some relevant literature on solver.

3.1 Generalization to constraint hierarchy

The comprehensive survey in dos Santos and Ranise (9) presents various constraints related

to the Workflow Satisfiability Problem (WSP) and its extensions. We observe distinct

classes of constraints in their conceptual diagram 3.1:

Figure 3.1: Constraint Hierarchy, shown in dos Santos and Ranise (9)

• Class-Independent Constraints (CI) introduced by Crampton et al. (5): These

constraints establish equivalence classes of users, allowing for the interchangeable

assignment of users within the same class. An example is the formation of organiza-

18

3.2 Workflow Planning in General (no constraints)

tional departments, where any member of a department is a suitable candidate for

assignment.

• Counting Constraints (Count): These constraints evaluate the frequency of a

user’s assignments to tasks within specific scopes.

• Entailment Constraints (Ent): A generalization over the class-independent con-

straints, these entailment constraints facilitate more complex binary relations be-

tween users beyond the equivalence relations typical in class-independent scenarios.

• User-Independent Constraints (UI) are the constraint types we already men-

tioned in Chapter 2.

• Equivalence Constraints (Eq): Constraints based on equivalence relations be-

tween the assignees of the workflow nodes.

The analysis of constraint classes, particularly those related to user-independent con-

straints, presents a noteworthy area of study. However, the practicality and boundaries of

applying more general constraints, such as Entailment Constraints, within an FPT frame-

work remain to be thoroughly explored.

3.2 Workflow Planning in General (no constraints)

The realm of workflow planning, in the usual case, when the formulation is devoid of con-

straints, has a substantial body of research. Notably, Grandl et al. (13) offer an approach

focusing on the identification and scheduling of "troublesome" tasks—those expected to

have extended durations. Their strategy revolves around the strategic scheduling of re-

lated tasks (e.g., parents, siblings, children) in conjunction with these troublesome tasks.

However, an obvious and critical limitation of this approach is its lack of consideration for

constraints, a fundamental requirement in our context.

Furthermore, it’s important to highlight that their methodology is centered around op-

timization - seeking the most efficient plan, rather than simply identifying the first plan.

3.3 Solvers

Solvers can be conceptualized as computational entities designed to resolve specified prob-

lems by transforming them into mathematical formulations, such as systems of equations.

We can borrow some ideas from them, like optimizations, and port them to our problem.

19

3.3 Solvers

We next look at some options, that are possible to be applied to perform workflow planning

under constraints.

We discuss briefly some concepts and ideas from the fields of general-purpose solvers as

well as some WSP extended work.

3.3.1 SAT with DPLL and its Heuristics

Boolean satisfiability (SAT) problem refers to the problem of assigning values to a set of

boolean variables that are subjected to some constraints. Constraints are limited to propo-

sitional calculus. However, some of the developed techniques can be used as enhancements

and future work to the problems we look at in Chapter 4.

The optimizations used in Boolean satisfiability, as pioneered in Davis et al. (7), that

target the order in which steps are explored by SAT solvers can offer valuable insights for

WSP solvers:

• Unit Propagation: This technique involves monitoring nodes within a predicate to

identify when the final node is explored, then having solvers focus on the last node

of a constraint for enhanced pruning chances (the solver will now have access to and

will enumerate the complete scope of the predicate).

• Pure Literal Elimination: The identification of literals appearing both in their

original and negated forms allows for arbitrary value assignments.

• Backjumping: An efficiency-improving technique where the solver, upon encoun-

tering a failure at a certain variable, can skip retrying previous values and jump back

to an earlier variable for reassessment.

3.3.2 Satisfiability-Modulo-Theory (SMT)

Expanding on the concepts of Boolean satisfiability, as discussed in De Moura and Bjørner

(8), the Solvers-Modulo-Theory (SMT) approach integrates theories and solvers for more

comprehensive solutions. Unlike SAT, which only deals with propositional logic, SMT can

handle formulas with rich theories like arithmetic, bit-vectors, arrays, and uninterpreted

functions, making it more suitable for a wide range of practical applications. Despite

this, finding such a universally applicable theory that caters to our case remains a work

in progress. Our objective is to maintain maximal flexibility for users (constraint checker

implementers), allowing them to utilize any language of their choice.

20

3.4 Summary

While Karapetyan and Gutin (19) showcases the application of OR Tools’ (12) Pseudo-

boolean formulations, our pursuit is to achieve an even higher degree of generality.

3.4 Summary

Firstly, we see that the mentioned approaches suffer from a lack of generality and cus-

tomization ease. However, this is not the case with the WSP approach. In this context, we

have the flexibility to examine and tailor our implementation, as well as adapt it to broader

generalizations, as will be demonstrated in Chapter 4. It is important to note, however,

that our exploration is constrained by time limitations. This necessitates a focused and

efficient approach to our research, thereby precluding an in-depth investigation into all the

potentially interesting aspects of related work.

21

4

Design

4.1 Introduction

This chapter focuses on the design and implementation of a workflow planner capable of

handling general constraints in complex environments, as exemplified by the multi-hospital

scenario described in Chapter 1. The planner’s architecture and functionalities are tailored

to address the challenges of sensitive data handling and to facilitate effective collaboration

amongst stakeholders sharing data for research purposes.

To account for the need for the generality of the constraints, these constraints are treated

as functions mapping plans, which are themselves functions π : S → U , to a Boolean

value. Predicates then, have the signature: p : US → {0, 1, ω}. Within this formulation,

0 denotes a situation where the plan conflicts with the given constraint. 1 is indicative of

a plan that aligns with or satisfies the constraint. The symbol ω is employed to denote

instances where the determination of the plan’s compliance is uncertain, potentially due

to incomplete information in scenarios where the plan has not yet assigned all workflow

nodes, which are within the constraint’s scope, to a user.

4.2 System Architecture

4.2.1 High-Level Design

In response to the scenario of a consortium of hospitals, the system is designed for flexibility

and security. Each hospital (site) can define its constraints through HTTP(s) request han-

dlers, mirroring the need for each hospital to set its data usage policies while collaborating

securely. The high-level design of the system is illustrated in Figure 4.1.

22

4.2 System Architecture

Figure 4.1: High Level Design

An important aspect of the system’s architecture is its technological agnosticism. By

making a simple HTTP server interface pivotal to the interaction mechanism, the system

allows each participating hospital to choose its preferred programming language for defin-

ing constraints. This approach effectively circumvents the limitations often imposed by

conventional constraint-solving methodologies, which typically mandate adherence to spe-

cific technologies or design languages. Consequently, hospitals can leverage their existing

technical expertise and resources without being constrained by the need to adapt to a new

or unfamiliar technology framework. Moreover, the incorporation of black-box predicates,

functioning as opaque HTTP request handlers, enables hospitals to implement complex

decision-making processes internally, without exposing sensitive logic or data structures.

Dynamic Policy Adaptation Based on Logged Historical Data A natural exten-

sion of the system is a dynamic policy adaptation mechanism, which utilizes a history of

requests and plan executions. These actions are logged in an operations log, observable

by all participating sites. This log serves as a foundation for sites to adapt and update

their policy functions. For instance, if a site identifies a breach or non-compliance with an

agreed protocol by another participant, it can modify its policies accordingly. Subsequent

workflow requests from the violating party could be subjected to stricter scrutiny or even

23

4.2 System Architecture

Figure 4.2: Illustration of the operations log, enabling checkers to observe events and adapt
their policy constraints accordingly.

rejection, particularly in cases involving unsupervised collaborations.

While the formulation and design of these adaptation mechanisms and rules can present a

complex challenge and fall outside of the scope of this work, the availability of an operations

log offers the opportunity for checkers to monitor and respond to activities within the

system. This monitoring capability enables checkers to adapt their policies as needed,

aligning with our design’s emphasis on flexibility. Figure 4.2 provides a visual illustration

of the operations log.

Checker-Eventlog Synchronization The challenge of synchronizing constraint check-

ers with the event log parallels the issue of managing stale followers in database replication

contexts. A variety of synchronization methods, discussed in sources like Wang et al.

(30), offer several potential solutions. The selection of a synchronization strategy depends

largely on the acceptable delay in the update times of the checkers. In our discussed

scenario, considering that a slight delay in checkers updating their state may not be criti-

cally detrimental, we can opt for a synchronization approach that provides ’good enough’

timeliness.

4.2.1.1 Implementing Scoping Mechanisms

Checkers in our system have the flexibility to formulate their predicate constraints regard-

less of complexity. Nonetheless, as highlighted in the study by Wang and Li (31), the

complexity of the general problem (with general constraints), not accounting for the time

complexity of constraint evaluation, grows to O(nk). Our method involves segregating

constraints into different classes and employing distinct algorithms for solving their re-

spective subproblems, which, in our context, combines the pattern backtracking algorithm

24

4.2 System Architecture

discussed in the background Section 2.1.2 with a DPLL-style solver (7) for more general

constraints.

To effectively categorize the constraints, we may consider two primary approaches:

• Automated Detection of Constraint Classes: Utilizing language analysis tech-

niques to automatically identify the constraint class defined by each checker. One

potential approach lies in creating reliable tests that can accurately identify con-

straint classes. For example, a test suite could be created to verify if the user

independence property is maintained upon constraint creation. This suite can be

designed to ascertain whether the constraint evaluations remain consistent across

various permutations of user assignments, in line with the defining property of user

independence.

• User-Defined Constraint Labeling: Here, users themselves label their constraints

according to the type, based on the understanding that they will strive for efficient

constraint planning as collaborative contributors.

Based on the literature we summarized in Chapter 2, we identify three distinguishable

classes of constraints: authorization sets, user-independent, and non-user-independent con-

straints.

Scoping Operations: In line with the conceptual frameworks presented in Section 2.1.2,

the implementation of scoping mechanisms is a key consideration for our system. The cur-

rently described high-level design, however, does not enable checkers to directly commu-

nicate their operational scopes to the planner. Recognizing the potential for optimization

through scoping, our design should handle a way of determining the scopes. For this, we

extend our planner, as illustrated in Figure 4.3, to initially broadcast a plan request to all

checkers. Upon receiving this request, each checker determines and communicates back to

the planner the specific scope within which it will operate.

Authorization Set Propagation Mechanism: Since we want to make use of the

techniques explored in Chapter 2, we need to find a proper way of informing the planner

of authorization sets. This can be done while broadcasting the client’s workflow planning

request, where checkers inform the planner of their interested scope. Additionally, we make

the checkers also send their authorization sets. On the planner, the full authorization set

is constructed by intersecting the sets of allowed users for each step by each checker.

Practical Scenario for Scope Determination: Consider a scenario where a checker

is tasked with overseeing protocols involving sensitive data operations. Upon identify-

ing a request relevant to its domain—such as steps involved in handling privacy-sensitive

25

4.2 System Architecture

Figure 4.3: Planning Flow

information—the checker informs the planner of its intention to assess the planned task

assignments within a defined nearby scope. This scope might encompass the initial analysis

phase and any related subsequent steps, to ensure the desired protocol is implemented.

Altogether, the high-level steps that are executed by the planner are seen in Figure 4.3.

Step by step we do the following:

1. A client of the workflow system issues a workflow request.

2. The planner feeds the request to all registered checkers.

3. Each of the checkers announces the scopes they are interested in, where the plan-

ner needs to verify their constraints acceptance. The checker also messages their

authorization sets, for specifying simple allowlists constraints.

4. The planner aggregates the scopes based on the responses received by the checkers

and tags them accordingly to prepare them for each type of planning.

5. Then, the planner starts the main planning routines, finding the allocation config-

uration that satisfies all checkers. Listing 2 describes the way we combine the UI

planning from the background chapter with the planning of the general constraints.

(a) We first find a configuration for the general part of the workflow request.

(b) We then correlate this sub-plan with sub-plans of the UI part.

6. The planner finds the satisfying configuration and feeds it to a plan execution or-

chestrator, or is unable to find the correct configuration and rejects it as a response

to the client.

26

4.3 Analysis

Algorithm 2 Hybrid Planning Algorithm
Require: G, A, Cud, Scopeud, Cui

Ensure: Plan(G) satisfies Cui, A, Cud

1: generator ← BTGenerator(G,Cud ∪ Cui, Scopeud)

2: while subplanud ← generator.next() do
3: A′ ← A \ subplanud

4: subplanui ← solveui(G,Cui, A
′)

5: if subplanui ̸= ∅ then
6: return subplanui ∪ subplanud

7: end if
8: end while
9: return ∅

4.3 Analysis

4.3.1 Computing the Complexity

To evaluate the complexity of our algorithm, we primarily focus on its worst-case scenario,

not considering the constraint evaluation in our calculation. While this approach provides

a boundary on the algorithm’s performance, a more practical analysis would benefit from

considering the average case complexity.

The central challenge in average case analysis is establishing a standard for what consti-

tutes an ’average case’. The inherent input-dependent nature of the algorithm’s complexity

necessitates a thorough examination of typical input data. This examination predomi-

nantly takes one of two forms:

• Combinatorial Analysis of Random Inputs: This method entails the study of

random graphs (workflows) and constraint expressions, through combinatorial tech-

niques. A survey of available techniques is done by Canon et al. (3) for generating

workflow scheduling graphs. However, work in generating random constraints is lack-

ing. We will use the random graphs generated by Karapetyan and Gutin (19).

• Empirical Analysis Using Representative Data: This approach focuses on

employing real-world representative datasets to evaluate the algorithm’s performance.

In the realm of big data, benchmarks such as TPCx-HS (24) and TPCx-BB (4)

provide datasets that are real-world inspired. An empirical analysis for WSP could

make use of these benchmarks.

27

4.3 Analysis

An added dimension of complexity in our analysis arises from the implementation of

pruning methods in the algorithm. These methods, which aim to enhance performance by

narrowing the search space, can significantly impact the efficiency of the algorithm. How-

ever, their effectiveness is very dependent on the specific nature of the input, introducing

a further element of variability.

A phenomenon describing the behavior of SAT-solving algorithms, including our work-

flow satisfiability planning, is the Phase Transition, described in Gent and Walsh (11) for

general satisfiability problems and illustrated in Figure 4.4 for WSP difficulty in relation

to the growing number of constraints.

Figure 4.4: The Phase transition feature diagram. In Gutin and Karapetyan (15), a phase
transition is observed about the number of constraints. The red line illustrates the probability
of satisfiability, while the solid black line represents the corresponding running time. This
phenomenon demonstrates that as the number of constraints increase, running times initially
rise, reaching a peak before eventually decreasing. This trend correlates with the likelihood of
satisfying the constraints. In scenarios with fewer constraints, the algorithm finds satisfiable
configurations more readily, leading to early termination. Conversely, with an excess of con-
straints, the search space is pruned more aggressively, leading to earlier halts in exploration
and reduced overall running times.

4.3.2 Worst Case Analysis

Given the difficulty of conducting an average case analysis within the time constraints of

this thesis, we resort to a worst-case analysis instead. The scenarios we look at help us

to understand the upper bounds of computational complexity and guides us in identifying

the resilience of our algorithms under extreme conditions.

28

4.3 Analysis

Assumptions for Worst-Case Analysis We base our analysis on the assumption that

the constraints we deal with, will not allow early pruning in the decision tree. This means

that each predicate will only reject a state at the very last node, thus requiring a full

traversal of the search space. In the presence of pruning, estimations time complexities

become more complicated.

In our analysis, we consider the overall structure of the workflow graph, which is a

combination of UI and non-UI components. Therefore, we define the total number of steps

or nodes in the graph as k, where k is the sum of the steps in the UI scope (kui) and the

steps in the non-UI scope (kud) and together we have:

k = kui + kud

Figure 4.5: Illustration of scope types in the workflow graph. The total size of the workflow
graph is denoted as k, with the combined size of the non-UI (user-dependent) and mixed
scopes represented by kud, and the size of user-independent scopes represented by kui. It
follows that k = kui + kud.

Case Analysis We identify three distinct cases based on the scope of the UI (User

Interface) and non-UI constraints, as shown in Figure 4.5:

Case 1: Non-Intersecting Scopes When the scopes of UI and non-UI constraints

do not intersect, each algorithm runs independently. The complexity for this scenario is

O(Bkui · kui · n + nkud), where Bkui represents the complexity due to UI constraints, and

nkud represents the complexity due to non-UI constraints.

29

4.3 Analysis

Case 2: Non-UI Constraints Cover Entire Workflow In this case, the non-UI

constraints encompass the entire workflow graph. Consequently, the complexity simplifies

to O(nk). This scenario is less interesting from an algorithmic perspective as it does not

leverage the benefits of our hybrid approach.

Case 3: Interleaved Constraints Covering the Entire Workflow The most

complex and interesting scenario occurs when the non-UI and UI constraints are interleaved

and together span the entire workflow. The complexity in this case is O(nkud · 2kui log kui ·
kui · n). This complexity arises from the intertwining of the UI and non-UI constraints.

Here, O(k · n) represents the complexity for performing maximal bipartite matching, as

presented in Section 2.1.3.

Worst-Case Scenarios For the Non-Intersecting Scopes Case we can build a scenario

where the constraints will reject only when the last node is labeled, therefore always mak-

ing the planning algorithm explore the full search space. For the case where Non-UI Con-

straints cover the entire workflow, the worst-case scenario is straightforward: constraints

cover the entire workflow graph and reject configurations at the last node. In contrast,

constructing a worst-case scenario for the case that has Interleaved Constraints which cover

the entire workflow requires more nuance. Here, we imagine a situation where non-UI con-

straints are met, but UI constraints fail at the last moment, such as in a failed bipartite

matching scenario.

Practical Implications While these theoretical cases provide a framework for under-

standing the upper bounds of our algorithms, it is essential to recognize that real-world

applications may not always align with these worst-case scenarios. Factors like algorithmic

efficiency, data distribution, constraint early rejection chance, and real-world constraints

often result in performance that deviates from these theoretical models.

Nevertheless, a particularly revealing insight is depicted in Figure 4.4, which illustrates

the intrinsic pattern of varying difficulty – an easy-hard-easy transition – depending on

the extent to which the constraints are applied. This more intuitive and empirical ob-

servation provides a practical and realistic understanding of the problem’s nature, which

extends beyond the limitations of theoretical worst-case analyses. The runtimes are pri-

marily influenced by the peak points, which are dictated by the likelihood of satisfying the

constraints.

30

4.4 The prototype

4.3.3 Comparison with Naive Approach

We make a comparison between the two potential approaches for solving the general prob-

lem in the case of Interleaved Constraints Covering the Entire Workflow. The two

solving algorithm candidates we compare are:

• Full Naive Planning (Only General Constraints): O(nk)

• Hybrid Planning as described in Listing 2 (Combining UI and General

Constraints): O(nkud · 2kui log kui · kui · n).

An important consideration is to discern which method — Full Naive Planning or Hybrid

Planning —yields a more efficient solution in relation to the specific values of the WSP

parameters k (representing the number of steps in the workflow) and n (indicating the

number of users involved). The decision to prefer naive planning over hybrid planning is

markedly evident in contexts with a minimal user count, for instance, when n = 2. This

is highlighted by inserting n = 2 into the complexity formulas for both approaches. Under

these conditions, the naive method demonstrates greater efficiency, as illustrated by the

relation O(2k) ≤ O(2kud · kkuiui · kui · n).
Simplifying the inequality nkudkkuiui · kui · n < nk, using k = kui + kud and implicitly

nkui = nk−kud leads to kkuiui ·kui ·n < nkui . By substituting x = kui
n , the inequality becomes

finally simplified to:

xkui−1 · k2ui ≤ 1

We numerically solve this inequality and present a heat map in Figure 4.6, illustrating

the conditions under which each planning approach is advantageous.

However, it is important to note that these results are estimations of actual performance.

Due to the algorithm’s susceptibility to unpredictable pruning, the worst-case analysis may

diverge significantly from actual performance. Therefore, while these calculations provide

a theoretical framework, real-world efficiency and effectiveness may vary.

4.4 The prototype

We created a prototype written in the Rust language, where we simplified the problem in

the following way:

• The constraints are assumed to be directly defining the scopes. Scopes are embedded

in the definitions of rules.

31

4.4 The prototype

Figure 4.6: Values in the grid for the function f(x, k) = min(xk−1k2, 1). The yellow area
determines the subspace for which the naive algorithm should perform better.

• Constraint verification is conducted exclusively by checkers that are local to the

planner, this approach simplifies the process by eliminating the need to establish

separate HTTP(s) servers for each constraint or its respective checker.

• The prototype accommodates the constraint set as defined in Karapetyan and Gutin

(19). Constraints are imported from files and maintained within the planner as

generic function objects, with the signature Fn(&graph)→ bool.

These assumptions don’t limit us from easily extending our prototype in the final design

described previously in Section 4.2.1. An advantage of having these limitations is the

ability to utilize the tools from Karapetyan and Gutin (19) for generating benchmark sets,

which include non-UI constraints. Instead of converting these constraints into branched

authorization sets as detailed in their work, our prototype addresses them in their original

form.

4.4.1 Implementation Features and Choices

4.4.1.1 Iterative Generators

For generating the plan configurations while exploring the search space, the algorithm may

use a naive backtracking algorithm. In Listing 3, we give a possible iterative pseudo-code

implementation example, similar to our implementation. This implementation allows for

easy extension with our mentioned optimizations as follows:

32

4.4 The prototype

Algorithm 4 Pseudocode of iterative backtracking that can be used for generating valid
configurations
Require: scope, max_user, constraints

Ensure: Sequence of sub-plans satisfying constraints within scope

1: constructor BTgenerator

2: this.state← vector(scope.size(), -1) ▷ Initialize state vector
3: this.crt_index← 0

4: this.constraints← constraints

5: procedure next()

6: while true do
7: if this.crt_index = −1 then
8: return ∅
9: end if

10: this.state[crt_index]← this.state[crt_index] + 1

11: if this.state[crt_index] ≥ max_user then
12: this.state[crt_index]← −1
13: this.crt_index← this.crt_index− 1

14: continue
15: else
16: if not this.constraints.evaluate(this.state) then
17: continue ▷ Configuration Invalid
18: end if
19: end if
20: if this.crt_index = scope.size() then
21: return this.state ▷ Valid Configuration Found
22: end if
23: this.crt_index← this.crt_index+ 1

24: end while
25: end procedure

33

4.4 The prototype

• Ordering can be solved by adding a new indirection layer (a vector that can represent

the ordered indices of the initial steps).

• The previous indirection layer, is also capable of adding the filtering of users in the

search space according to the authorization sets.

• Backjumping, discussed in Section 4.4.1.5, can also be implemented, particularly

when considering the ordered indices of steps and their corresponding constraints.

By tracking these indices, our system can efficiently backtrack to previous steps if all

potential evaluations for a given node are exhausted, thereby optimizing constraint

evaluation.

4.4.1.2 Optimizations

Our prototype incorporates various optimizations outlined in the background Chapter 2.

However, some constraints necessitate insights into predicate internals, diverging from our

aim of maintaining generality. For instance, the assignment of weights for node priori-

tization is challenging, given our goal of generality. Another notable limitation of node

ordering is its impact on cache locality, presenting a trade-off between pruning efficiency

and memory access performance. This is because node reordering introduces an additional

layer of indirection which affects cache locality design.

4.4.1.3 Node Priority Optimization

Figure 4.7: Node Prioritization Based on Encounter Frequency. This methodology prioritizes
nodes according to the frequency of their references. Such prioritization facilitates the earlier
processing of nodes with a higher frequency of references, thereby increasing the probability
of pruning as illustrated in Figure 4.8.

34

4.4 The prototype

We apply the Fail-First principle to enhance node ordering as described in Haralick and

Elliott (16), inspired by SAT solvers. This approach involves prioritizing nodes based on

their likelihood of leading to a failure, determined by the frequency of their appearances

in the scopes of various constraints. We implement this by recording the scopes for each

predicate and then arranging the nodes according to a weighted frequency of their occur-

rence in these constraint scopes. To illustrate the benefits of node ordering strategies, we

provide an example with a very simplified constraint in Figure 4.8, where a good ordering

can significantly enhance the efficiency of the pruning process. These node weights are

adaptable and allows for tuning based on performance in validation tests.

Figure 4.8: An example demonstrating the advantage of node ordering in constraint eval-
uation. Here, p represents an expression over the full graph. Early evaluation is facilitated
when the node with id = 5 is labeled, allowing for the prompt rejection of unsuitable labels.

While hyperparameter optimization for specific worksets, such as those in Karapetyan

and Gutin (19), is possible, this approach might not suit scenarios with opaque constraints.

It risks tailoring the system to specific scenarios at the expense of broader applicability.

4.4.1.4 Combining techniques

Our system leverages the interaction between solvers, enhancing their efficacy through

information exchange:

• For the general solver (non-UI), responsible for the configuration of general nodes:

– The search is limited to labels present in the authorization set.

– UI constraints are included to eliminate infeasible configurations early in the

process.

• The bipartite matching routine as summarized in Section 2.1.1, part of the UI solver,

dynamically adjusts the authorization set to reflect the user choices from the general

solver’s configuration, ensuring coherence between solvers and optimizing the search

domain.

35

4.4 The prototype

4.4.1.5 Backjumping

Backjumping, as detailed in Prosser (27), is generally implemented to identify conflicts in

predicates. A potential approach encompasses:

1. Evaluating all constraints to identify the latest node leading to conflicts across all

labelings for possible backjumping.

2. Upon encountering a situation where a node cannot be assigned due to constraints,

the method allows for an immediate jump back to the penultimate node that was

referenced in the constraints. This facilitates efficient backtracking by directly ad-

dressing the root cause of the conflict.

However, this method can incur high latency due to the need to run all predicate evalu-

ations, making its practicality less general.

4.4.1.6 Implementation Summary:

Ultimately, our deliverable contribution is the development of a workflow satisfiability

solver, which includes the following components:

• Two solver components to parse and manage constraints aligned with the benchmarks

outlined in Karapetyan and Gutin (19). This encompasses the creation of a hybrid

solver, shown in simplified form in Listing 2, which integrates:

– A solver that is capable of handling general types of constraints.

– A specialized solver for handling User Independent (UI) constraints, as shown

in Chapter 2.

• Optimizations:

– Node ordering based on their frequency as discussed in Section 4.4.1.3.

– Combining techniques, utilizing results from a solver to filter out candidates

when performing the subsequent User Independent solver as detailed in Sec-

tion 4.4.1.4.

Several components were not fully developed due to time constraints and can constitute

future work. These parts include:

• Comprehensive optimization of constraints and processing.

36

4.4 The prototype

• Implementation of incremental bipartite matching.

• Integration of the backjumping technique.

• Detailed tuning of hyperparameters for node ordering.

4.4.1.7 Benchmark-Based Validation of the Implementation

The validation of our implementation’s correctness was primarily conducted through a

comparative analysis against established benchmarks and existing solvers. We utilized the

benchmarking tools as outlined in Karapetyan and Gutin (19) for this purpose. By using

these tools we could do a direct comparison between the performance and outcomes of

our implementation and those produced by the solver referenced in Karapetyan and Gutin

(19). This comparison was invaluable for promptly identifying any regressions or potential

performance issues. Detailed evaluations and benchmark results is presented in Chapter 5.

37

5

Experimental Results

This chapter presents the results of the experimental evaluations conducted on our proto-

type. The experiments were designed following the methodologies outlined by Karapetyan

and Gutin (19), which offered a comprehensive framework for adapting general constraints

within the context of the Workflow Satisfiability Problem (WSP).

5.1 Workload Format and Constraint Descriptions

For our experiments, we employed a specific format for the workloads, including a combi-

nation of UI and non-UI constraint types. We remind the reader that the UI constraints

are constraints that allow for replacing any allocated user with another one. The UI part

consists of Separation of Duty (SoD) and At-most-3 (AM3) constraints as described in Sec-

tion 2.1.2. The non-UI constraints are also constraints we already mentioned in a previous

chapter, in Section 2.1.5:

1. Assignment Dependent (ADA) constraints.

2. Super-User At-Least constraints (SUAL).

3. Wang-Li (WL) constraints.

These constraints, along with tools for generating workloads provided by Karapetyan

and Gutin (19), were crucial in our prototype’s testing and measuring.

5.2 Evaluation Methodology

The methodologies employed in the study by Karapetyan and Gutin (19) and our approach

differ slightly. Their assessments focus on two scaling behaviors:

38

5.3 Benchmark Results

• Workloads where k = 18, observing the growth of n, while keeping the value of k

constant.

• Workloads where 10k = n, increasing values of k, while keeping the k
n ratio constant.

In contrast, our evaluation aims to verify the prototype’s efficacy in smaller workload

sizes. We primarily focus on:

• Runs with only user-independent constraints to validate our Pattern-based backtrack-

ing approach. These reuse the same workloads, limiting them to the UI constraints

only.

• Runs combining both user-independent and non-user-independent constraints to as-

sess the system’s performance in more complex scenarios.

All instances, in addition to containing the defined constraints, also include authorization

sets.

5.3 Benchmark Results

We run the benchmarks on the DAS-6 supercomputer (1), with SLURM jobs (32) dis-

tributed across 10 nodes. Each task runner runs a partition of the instances in parallel and

gathers the average times for its partition of the instances. After the jobs have been run we

aggregate the results and get the full averages of each configuration across the partitions.

Each configuration pair (k, n) runs a total of 100 instances, which are then averaged.

5.3.1 User-Independent Constraint Runs

Figure 5.1 illustrates the results of running our implementation on UI-only workloads, as

proposed by Karapetyan and Gutin (19). We observe notable scalability, with our system

demonstrating efficient planning capabilities as the size of n increases. We attribute this

mostly to our system running a Rust planner against their Python-based implementation

since our optimizing efforts were simply modest. A potential other reason is the writing

of the constraints in the more "pruneable" format, compared to the solver’s translation to

Pseudo-Boolean mathematical equations.

39

5.4 Interpretation and Reproducibility

Figure 5.1: The performance of our implementation compared to Karapetyan and Gutin
(19) for UI constraints with k = 18 and varying n.

5.3.2 Runs Incorporating Both User-Independent and General Con-
straints

In Figure 5.2, we examine the system’s performance under combined UI and non-UI con-

straints. The results indicate that while our system may not match the efficiency of manual

transformation methods, it effectively handles smaller configurations.

Interestingly, we achieved similar results with Wang-Li constraints as we obtained with

UI constraints only. This is because compared to other non-UI configurations, Wang-Li

had the smallest scope size, only 2, compared with 5 and 6 of SUAL and ADA.

A valuable direction for further investigation would involve enlarging the scope sizes of

non-UI elements and evaluating the system’s performance under these conditions. Addi-

tionally, conducting a study on Phase Transitions, as detailed in Figure 4.4, would be a

significant enhancement. This would involve identifying the most challenging number of

constraints in terms of solving time for various configurations.

5.4 Interpretation and Reproducibility

Our experiments demonstrate that the prototype, while not completely optimized, shows

promising results, particularly in handling UI constraints efficiently. The performance

differences observed are partly attributed to our use of Rust, in contrast to the Python-

based solver employed in Karapetyan and Gutin (19). We have reproduced the results, as

depicted in Figure 5.1, validating that the configuration of the Karapetyan and Gutin (19)

solvers was correct and that we obtained similar results. The results of our experiments

40

5.4 Interpretation and Reproducibility

Figure 5.2: Results for combined UI and non-UI constraints, showing the system’s perfor-
mance across different workload sizes.

are reproducible, with the source code and work sets available via the author’s GitHub

repository.

41

https://github.com/radudoros/workflow-satisfiability-experiments
https://github.com/radudoros/workflow-satisfiability-experiments

6

Conclusions

For our thesis, we developed a hybrid solver capable of processing a wide array of con-

straints, with components specifically designed for general and User Independent (UI)

constraints. However, certain aspects of our project remain underdeveloped, primarily due

to time constraints. We take a look and assess the extent to which our objectives, outlined

in Chapter 1, have been achieved.

6.1 Reviewing our Objectives’ Completion

Returning to our study’s primary goals, we assess the extent to which we have met them.

Let’s restate the summarized objectives of our thesis:

• Designing a system to allow for flexible constraints: Our design aimed to encompass

the broadest range of constraints, treating them as abstract predicate functions over

plans. Our prototype, though basic, met our expectations of generating satisfactory

plans within these parameters. Furthermore, we’ve outlined a roadmap for enhancing

the system into a more sophisticated version in Section 4.2, specifically designed for

facilitating collaborative research in healthcare settings, running with distributed

policy checkers and dynamic policy changes.

• Measuring and evaluating: We have utilized the instance generators and solvers

provided by Karapetyan and Gutin (19) as a baseline for comparison and validation.

Our performance evaluation, benchmarked against these established solvers, enabled

us to assess the efficacy of our system within the field’s standards. The primary

objective was to develop a system that performs adequately for practical use, rather

than exceeding existing benchmarks. To determine its practicality, we established a

42

6.2 Future work

performance criterion focused on response time for typical workloads. Our system

consistently achieves evaluation times of under a few seconds for standard scenarios,

aligning with our ’good enough’ performance benchmark.

• In examining the system’s applicability, we referenced the flexible framework of Kara-

petyan et al. (20) in Section 2.2. Our system’s support for general constraints extends

this flexibility, showing potential for very diverse application scenarios.

6.2 Future work

Given the time constraints, it was not feasible to fulfill every objective initially envisioned

for this master’s thesis. Additionally, during this work, we uncovered several potential

areas of study. Below, we outline key suggestions for future research and relevant sources

that warrant further investigation:

• Expand research to include the exploration of black-box solvers and surrogate mod-

els in constraint programming, which are discussed comprehensively in Michel and

Van Hentenryck (23). This involves studying how these methods can enhance the

efficiency and flexibility of constraint-solving in workflows, particularly in scenarios

where direct analytical models are challenging to construct. Black-box solvers have

the ability to handle problems with limited information about the underlying policy

functions. If combined with surrogate models that approximate complex systems,

they could significantly improve problem-solving strategies in diverse and dynamic

workflow environments. Yet, integrating these methods into workflow planning under

constraint-based environments remains largely unexplored and presents a significant

opportunity for innovation.

• Investigate the potential of designing fixed-parameter tractable (FPT) algorithms in

scenarios where the number of users (n) is constant, a situation often encountered in

hospital research collaborations. This research would examine the viability and effi-

ciency of FPT methods in these specialized contexts, assessing if they can effectively

manage workflow satisfiability problems with a fixed user count.

• Enhance post-planning strategies by implementing continuous enforcement and re-

silience checks in workflows, following the guidelines in Crampton et al. (6). This

includes adapting to policy changes and establishing fallback plans for potential ex-

ecution failures.

43

6.2 Future work

• Conduct average case analyses to better understand typical workloads in real-world

applications, or use mathematical tools like Random Graphs for theoretical insights.

• Develop parallelization techniques for handling large-scale planning tasks. Inspiration

can be drawn from parallel Davis–Putnam–Logemann–Loveland (DPLL) solvers, as

described in Feldman et al. (10), to improve workflow satisfiability algorithms.

Our study’s primary focus was the adaptability of our framework to various constraints,

a key aspect in the field of workflow satisfiability. Our way of tackling this was mostly

from the perspective of allowing the constraints to be as general as possible. While we’ve

made significant strides in this area, the practical application of our findings, particularly

in specialized domains like hospital collaborations, requires deeper investigation. A tar-

geted study exploring the specific needs and dynamics of hospitals engaged in collaborative

research would be invaluable. Such a study, approached from a multidisciplinary angle,

especially within policy enforcement in information systems, could provide critical insights

into optimizing workflows in these complex environments.

44

References

[1] Henri Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Thilo Kielmann, Jason

Maassen, Rob Van Nieuwpoort, John Romein, Luc Renambot, Tim Rühl, et al. The

distributed asci supercomputer project. ACM SIGOPS Operating Systems Review, 34

(4):76–96, 2000. 39

[2] David Basin, Søren Debois, and Thomas Hildebrandt. On purpose and by necessity:

compliance under the gdpr. In Financial Cryptography and Data Security: 22nd In-

ternational Conference, FC 2018, Nieuwpoort, Curaçao, February 26–March 2, 2018,

Revised Selected Papers 22, pages 20–37. Springer, 2018. 4, 16, 17

[3] Louis-Claude Canon, Mohamad El Sayah, and Pierre-Cyrille Héam. A comparison

of random task graph generation methods for scheduling problems. In Euro-Par

2019: Parallel Processing: 25th International Conference on Parallel and Distributed

Computing, Göttingen, Germany, August 26–30, 2019, Proceedings 25, pages 61–73.

Springer, 2019. 27

[4] Paul Cao, Bhaskar Gowda, Seetha Lakshmi, Chinmayi Narasimhadevara, Patrick

Nguyen, John Poelman, Meikel Poess, and Tilmann Rabl. From bigbench to tpcx-bb:

Standardization of a big data benchmark. In Performance Evaluation and Bench-

marking. Traditional-Big Data-Internet of Things: 8th TPC Technology Conference,

TPCTC 2016, New Delhi, India, September 5-9, 2016, Revised Selected Papers 8,

pages 24–44. Springer, 2017. 27

[5] Jason Crampton, Andrei Gagarin, Gregory Gutin, Mark Jones, and Magnus

Wahlström. On the workflow satisfiability problem with class-independent constraints

for hierarchical organizations. ACM Transactions on Privacy and Security (TOPS),

19(3):1–29, 2016. 18

45

REFERENCES

[6] Jason Crampton, Gregory Gutin, and Rémi Watrigant. Resiliency policies in access

control revisited. In Proceedings of the 21st ACM on Symposium on Access Control

Models and Technologies, pages 101–111, 2016. 43

[7] Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Communications of the ACM, 5(7):394–397, 1962. 20, 25

[8] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction

and applications. Communications of the ACM, 54(9):69–77, 2011. 20

[9] Daniel Ricardo dos Santos and Silvio Ranise. A survey on workflow satisfiability,

resiliency, and related problems. arXiv preprint arXiv:1706.07205, 2017. 6, 18

[10] Yulik Feldman, Nachum Dershowitz, and Ziyad Hanna. Parallel multithreaded satisfi-

ability solver: Design and implementation. Electronic Notes in Theoretical Computer

Science, 128(3):75–90, 2005. 44

[11] Ian P Gent and Toby Walsh. The sat phase transition. In ECAI, volume 94, pages

105–109. PITMAN, 1994. 28

[12] Google. Or-tools, 2024. URL https://github.com/google/or-tools. [Online; ac-

cessed 10-January-2024]. 21

[13] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan Kulka-

rni. {GRAPHENE}: Packing and {Dependency-Aware} scheduling for {Data-

Parallel} clusters. In 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16), pages 81–97, 2016. 19

[14] Gregory Gutin. The workflow satisfiability problem with user-independent constraints.

In 2019 First International Conference on Graph Computing (GC), pages 1–4. IEEE,

2019. 9, 16

[15] Gregory Gutin and Daniel Karapetyan. Constraint branching in workflow satisfiability

problem. In Proceedings of the 25th ACM Symposium on Access Control Models and

Technologies, pages 93–103, 2020. 28

[16] Robert M Haralick and Gordon L Elliott. Increasing tree search efficiency for con-

straint satisfaction problems. Artificial intelligence, 14(3):263–313, 1980. 35

[17] John E Hopcroft and Richard M Karp. An nˆ5/2 algorithm for maximum matchings

in bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973. 9

46

https://github.com/google/or-tools

REFERENCES

[18] ANSI INCITS. Incits 359-2004. Role based access control, 2004. 4, 16

[19] Daniel Karapetyan and Gregory Gutin. Solving the workflow satisfiability problem us-

ing general purpose solvers. IEEE Transactions on Dependable and Secure Computing,

2022. 6, 15, 21, 27, 32, 35, 36, 37, 38, 39, 40, 42

[20] Daniel Karapetyan, Andrew J Parkes, Gregory Gutin, and Andrei Gagarin. Pattern-

based approach to the workflow satisfiability problem with user-independent con-

straints. Journal of Artificial Intelligence Research, 66:85–122, 2019. 5, 6, 10, 11,

12, 13, 43

[21] Harold W Kuhn. The hungarian method for the assignment problem. Naval research

logistics quarterly, 2(1-2):83–97, 1955. 9

[22] Kia Kai Li. Exploring k-colorability. arXiv preprint cs/0702058, 2007. 10

[23] Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-box con-

straint programming solvers. In Integration of AI and OR Techniques in Contraint

Programming for Combinatorial Optimzation Problems: 9th International Conference,

CPAIOR 2012, Nantes, France, May 28–June1, 2012. Proceedings 9, pages 228–243.

Springer, 2012. 43

[24] Raghunath Nambiar, Meikel Poess, Akon Dey, Paul Cao, Tariq Magdon-Ismail,

Da Qi Ren, and Andrew Bond. Introducing tpcx-hs: the first industry standard for

benchmarking big data systems. In Performance Characterization and Benchmarking.

Traditional to Big Data: 6th TPC Technology Conference, TPCTC 2014, Hangzhou,

China, September 1–5, 2014. Revised Selected Papers 6, pages 1–12. Springer, 2015.

27

[25] Andrew M. Odlyzko and L. Bruce Richmond. On the number of distinct block sizes in

partitions of a set. Journal of Combinatorial Theory, Series A, 38(2):170–181, 1985.

12

[26] Jaehong Park and Ravi Sandhu. The uconabc usage control model. ACM transactions

on information and system security (TISSEC), 7(1):128–174, 2004. 3

[27] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Compu-

tational intelligence, 9(3):268–299, 1993. 36

47

REFERENCES

[28] William Tolone, Gail-Joon Ahn, Tanusree Pai, and Seng-Phil Hong. Access control in

collaborative systems. ACM Computing Surveys (CSUR), 37(1):29–41, 2005. 3

[29] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability solvers

and their applications in model checking. Proceedings of the IEEE, 103(11):2021–2035,

2015. 7

[30] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mammad

Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. Building a replicated

logging system with apache kafka. Proceedings of the VLDB Endowment, 8(12):1654–

1655, 2015. 24

[31] Qihua Wang and Ninghui Li. Satisfiability and resiliency in workflow authorization

systems. ACM Transactions on Information and System Security (TISSEC), 13(4):

1–35, 2010. 6, 10, 15, 16, 24

[32] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux utility for

resource management. In Workshop on job scheduling strategies for parallel processing,

pages 44–60. Springer, 2003. 39

48

	1 Introduction
	1.1 A Motivating Example
	1.2 Policy Enforcement in Workflow Systems
	1.3 Problem Statement & Objectives
	1.4 Approach
	1.5 Summary of the Following Chapters

	2 Background
	2.1 Workflow Satisfiability Problem (WSP)
	2.1.1 Authorization Sets
	2.1.2 Pattern-Based Algorithms
	2.1.3 Combining Pattern Enumeration and Bipartite Matching
	2.1.4 Optimizations for Pattern Enumeration
	2.1.4.1 Incremental eligible partition generation
	2.1.4.2 Incremental bipartite matching
	2.1.4.3 Prioritizing nodes that are inside predicates

	2.1.5 Handling more general constraints

	2.2 Applications Discussion
	2.2.1 GDPR purposes & permissions
	2.2.2 RBAC

	2.3 Chapter Conclusions

	3 Related Work
	3.1 Generalization to constraint hierarchy
	3.2 Workflow Planning in General (no constraints)
	3.3 Solvers
	3.3.1 SAT with DPLL and its Heuristics
	3.3.2 Satisfiability-Modulo-Theory (SMT)

	3.4 Summary

	4 Design
	4.1 Introduction
	4.2 System Architecture
	4.2.1 High-Level Design
	4.2.1.1 Implementing Scoping Mechanisms

	4.3 Analysis
	4.3.1 Computing the Complexity
	4.3.2 Worst Case Analysis
	4.3.3 Comparison with Naive Approach

	4.4 The prototype
	4.4.1 Implementation Features and Choices
	4.4.1.1 Iterative Generators
	4.4.1.2 Optimizations
	4.4.1.3 Node Priority Optimization
	4.4.1.4 Combining techniques
	4.4.1.5 Backjumping
	4.4.1.6 Implementation Summary:
	4.4.1.7 Benchmark-Based Validation of the Implementation

	5 Experimental Results
	5.1 Workload Format and Constraint Descriptions
	5.2 Evaluation Methodology
	5.3 Benchmark Results
	5.3.1 User-Independent Constraint Runs
	5.3.2 Runs Incorporating Both User-Independent and General Constraints

	5.4 Interpretation and Reproducibility

	6 Conclusions
	6.1 Reviewing our Objectives' Completion
	6.2 Future work

	References

