
MASTERARBEIT

Provenance in WS-VLAM

Comparing Open Provenance Model
with History Tracing XML-based
Provenance Framework

vorgelegt an der
Fachhochschule Aachen, Campus Jülich

Fachbereich: Medizintechnik und Technomathe-
matik

Studiengang: Technomathematik, M. Sc.

Diese Arbeit wurde betreut von:

Prof. Dr. rer. nat. Volker Sander
Prof. Dr. Adam S. Z. Belloum

Vorgelegt von:

Torsten Matzerath
Lyatenstr. 12
52382 Niederzier

Matrikel - Nr.: 981764

Jülich, 18. April 2011

Diese Arbeit ist von mir selbständig angefertigt und verfasst. Es sind keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt worden.

Ort, Datum Unterschrift

Table of Contents Torsten Matzerath

Page 1

Table of Contents

1	 Introduction	 5	

2	 Background	 8	
2.1	 Workflow	 and	 Workflow	 Management	 System	 8	
2.2	 WS-‐VLAM	 9	
2.3	 The	 BLAST	 workflow	 11	

3	 Provenance	 14	
3.1	 The	 term	 of	 provenance	 14	
3.2	 Provenance	 in	 Literature	 16	
3.2.1	 Methodology	 16	
3.2.2	 Use	 cases	 and	 technical	 requirments	 16	
3.2.3	 Analysis	 of	 use	 cases	 and	 technical	 requirements	 23	

3.3	 Reproducibility	 27	
3.3.1	 Definition	 of	 Reproducibility	 27	
3.3.2	 Required	 data	 for	 Reproducibility	 28	

3.4	 Suggestions	 of	 BLAST	 users	 29	
3.5	 Provenance	 in	 WS-‐VLAM	 31	

4	 History	 tracing	 XML-‐based	 provenance	 framework	 for	 workflows	 34	
4.1	 Introduction	 34	
4.2	 The	 original	 history	 tracing	 system	 36	
4.2.1	 Architecture	 36	
4.2.2	 Transmission	 to	 web	 server	 and	 web	 service	 methods	 39	
4.2.3	 The	 content	 of	 the	 XML	 provenance	 file	 43	
4.2.4	 Signature	 46	

4.3	 History	 tracing	 system	 in	 WS-‐VLAM	 47	
4.3.1	 Architecture	 47	
4.3.2	 Transmission	 to	 web	 service	 50	
4.3.3	 The	 content	 of	 the	 XML	 provenance	 file	 55	
4.3.4	 Signature	 59	

4.4	 Conclusion	 61	

5	 Provenance	 Query	 Interface	 63	
5.1	 Provenance	 Query	 Interface	 Analysis	 63	
5.2	 Provenance	 Query	 Interface	 Implementation	 65	

6	 The	 Open	 Provenance	 Model	 70	

Torsten Matzerath Table of Contents

Page 2

6.1	 Introduction	 70	
6.2	 The	 Open	 Provenance	 Model	 specification	 71	
6.3	 The	 Open	 Provenance	 Model	 XML	 schema	 79	

7	 Comparison	 of	 OPM	 and	 history	 tracing	 system	 82	
7.1	 Approach	 of	 comparison	 82	
7.2	 Comparison	 of	 concepts	 83	
7.3	 Comparison	 of	 XML	 provenance	 files	 86	
7.4	 Comparison	 of	 implementations	 88	
7.5	 Consequences	 for	 History	 Tracing	 System	 learned	 from	 OPM	 92	
7.6	 Conclusion	 93	

8	 Future	 Work	 95	

9	 References	 97	
9.1	 Bibliography	 97	
9.2	 Auxiliary	 Means	 99	

10	 Appendix	 100	
10.1	 Example	 of	 original	 history	 tracing	 system	 XML	 file	 100	
10.2	 Example	 of	 XML	 file	 by	 history	 tracing	 system	 for	 WS-‐VLAM	 101	
10.3	 Use	 cases	 described	 in	 literature	 102	
10.4	 Schema	 file	 for	 BLAST	 workflow	 110	
10.5	 XML	 provenance	 file	 file	 for	 BLAST	 workflow	 with	 the	 history	 tracing	 system	 116	
	

List of Figures Torsten Matzerath

Page 3

List of Figures
Figure 1: WS-VLAM GUI with BLAST workflow 9	

Figure 2: Generic DNA sequencing workflow 12	

Figure 3: BLAST workflow generated with WS-VLAM 13	

Figure 4: Example of building provenance file 35	

Figure 5: Architecture of preparing steps for provenance collection 36	

Figure 6: Original workflow and workflow with additional steps 37	

Figure 7: Architecture of provenance file creation 38	

Figure 8: Web service calls on client side 42	

Figure 9: Provenance file of searching master thesis example 43	

Figure 10: Schema of layered provenance file 44	

Figure 11: Mapping of workflow tasks to layers with signature 47	

Figure 12: Architecture of history tracing system with WS-VLAM 48	

Figure 13: Order of events of WS-VLAM 52	

Figure 14: Web service calls of a fileReader/fileWriter example 55	

Figure 15: Workflow with two end modules 56	

Figure 16: XML provenance file with two end modules 56	

Figure 17: Starting window of Provenance Query Interface 65	

Figure 18: Main window of Provenance Query Interface 66	

Figure 19: Message selection window of the Provenance Query Interface 67	

Figure 20: Graph with times of modules 68	

Figure 21: Graph with times of farmed run 68	

Figure 22: Menu of Provenance Query Interface 69	

Figure 23: Illustration of Artifact, Process and Agent 73	

Figure 24: Edges defined in OPM 74	

Figure 25: Example of OPM graph with baking process 75	

Figure 26: OPM graph with overlapping sub-graphs 76	

Figure 27: Time dependencies in OPM 77	

Figure 28: Completion in OPM 77	

Figure 29: Example of Multi-Step edges in OPM 78	

Figure 30: Example of OPM graph 80	

Figure 31: XML representation of OPM provenance file 80	

Figure 32: Complete provenance file of introduction example 100	

Figure 33: Provenance file of fileReader/fileWriter example 101	

Torsten Matzerath List of Tables

Page 4

Figure 34: Planned experiment differs from process documentation 104	

Figure 35: Split parallel processes into two single processes 106	

List of Tables
Table 1: Use of Technical Requirements for Use Cases 24	

Table 2: Performance data for BLAST workflow executions 30	

Table 3: Comparison of collected and not collected provenance data by WS-VLAM 31	

Table 4: Java methods in WfMS 40	

Table 5: C# web service methods and meaning 41	

Table 6: XML tags in provenance file 45	

Table 7: XML attributes in provenance file 45	

Table 8: Events of WS-VLAM, which call web service methods 50	

Table 9: Finish states of workflows in WS-VLAM 51	

Table 10: Web service methods and meaning 53	

Table 11: Possible tags in history tracing XML file 57	

Table 12: Parameters in history tracing XML file 59	

Table 13: Differences in the concepts of OPM and history tracing system 86	

Table 14: Differences in XML files of OPM and history tracing system 88	

Table 15: Differences in implementations of OPM and history tracing system 92	

Chapter 1 – Introduction Torsten Matzerath

Page 5

1 Introduction

In the last few decades, the use of workflows to answer diverse scientific problems in disci-

plines like bioinformatics, physics or medicine, strongly increased. The advance in the scien-

tific areas as well as the introduction of the grid infrastructure to enhance the computing pow-

er caused an increasing complexity of workflows. These two reasons made the implementa-

tion of the scientific questions so complex that engineers and scientists could not create the

programs themselves anymore, but computer scientists were needed.

To be more efficient and to give engineers and scientists the chance to create the workflows

themselves, so-called Workflow Management Systems (WfMS) were developed. These sys-

tems help to create workflow tasks and deal with the workload in the distributed environments

automatically. Moreover, scientists can use the WfMS to define the applications, analyse and

execute the workflows, and collect the results. Another advantage is that the modules of one

workflow can be reused for other workflows. Summing up, one can say that the WfMS offer

an intuitive way to compose scientific workflows, especially for non-computer-scientists. [2]

However, the simple execution of workflows and the collection of results is not enough for

modern workflows. As data volumes expand and the computer systems become more distrib-

uted, the interest of the origin of the data and how it was generated is growing. Moreover,

information like who or what created the data, the history of the data, and the calculating sys-

tem are critical to a better understanding, reusability and reproducibility of the results. [12]

This collection of data, which shows the origin of results, is called provenance. Provenance is

not the original data. It is the way to trace back all events that lead to the creation of a certain

data up to the initial data set. The member of the Open Provenance Model (OPM) challenge, a

group of computer scientists from companies and universities around the world, defined it as:

 “Provenance is a critical concept in scientific workflows, since it allows scien-

tists to understand the origin of their results, to repeat their experiments, and to

validate the processes that were used to derive data products.” [17]

As a consequence of the recognized importance of collecting provenance data, many prove-

nance models and techniques were developed. All systems have advantages and disad-

vantages. The goal of this master thesis is to compare the provided provenance data of two

models using the workflow management system WS-VLAM. On the one hand the Open

Torsten Matzerath Chapter 1 – Introduction

Page 6

Provenance Model and on the other hand the history tracing XML-based provenance frame-

work for workflows will be analysed.

The Open Provenance Model is a specification with the goal to define a provenance model in

a precise technology-agnostic manner. By dint of the specification it should be possible to

exchange provenance information between different systems and allow developers to create

programs, which collect and handle provenance data. The aim of the specification is to be

independent from any workflow management system and therefore no implementation exists.

Hence, the developers of every WfMS have to realize their own implementation. For this the-

sis the implementation of the Open Provenance Model for the WfMS WS-VLAM by the Uni-

versity of Amsterdam is used. [13]

The history tracing XML-based provenance framework for workflows is a ready-implemented

web service based program, which can be used for any WfMS with minor changes in the

source code of the tracing system. The provenance data is stored in XML files in a layered

structure. The re-implementations were accomplished during this thesis as well as the devel-

opment of a Provenance Query Interface to figure the provenance data.

Both systems have the same goal – to collect provenance data, but in different ways. To be

able to better compare them, both systems will be executed on the WfMS WS-VLAM using

the workflow BLAST. This practice ensures that the input for the two systems is the same and

the different outputs of the systems can only be caused by the different concepts.

The goal of the comparisons is to find out which system is responsible for providing which

provenance data. It will also be analysed, which of the systems can be extended more easily to

collect the needed provenance data and which data can be analysed more easily. Additionally,

the XML structure and security questions will be discussed and the more efficient and secure

system will be pointed out. The study of the provided provenance data will be done in close

contact to bioinformaticians who use the workflow and need the provenance data to under-

stand errors and the output data. This is necessary to develop a provenance system, which is

adapted to the needs of the users and will be accepted by them. The comparison of the two

systems helps to find out the advantages and disadvantages of OPM and history tracing and to

develop a lineage system that combines the goals of both systems.

To be able to analyse the differences between the two provenance systems some implementa-

tions are necessary, which will be discussed in the thesis. The thesis begins with a chapter

describing the most important background topics. This section will be followed by a chapter

that describes the term of provenance in detail with requirements that can be found in litera-

ture and that are expressed by users. It follows a chapter that explains the history tracing sys-

Chapter 1 – Introduction Torsten Matzerath

Page 7

tem and which adaptations are necessary to combine it with WS-VLAM. Then, the Prove-

nance Query Interface that visualizes the provenance data is described. The next chapter dis-

cusses the Open Provenance Model specification and the XML schema. After that, the com-

parison of the two provenance models is pointed out. The thesis closes with a look on future

work that can be done in the area of history tracing system and the adaptation to WS-VLAM.

Besides the comparison of the two provenance systems the main focus of the thesis is to find

out if the history tracing system can be used to save provenance data from WS-VLAM. It will

be pointed out if all necessary provenance data can be collected and if the system is configu-

rable enough to fulfil the users’ needs. As a consequence it will be considered if the history

tracing system is an alternative to the OPM implementation for WS-VLAM and if both sys-

tems can be used as standard provenance systems.

Torsten Matzerath Chapter 2 – Background

Page 8

2 Background

This section introduces the most important terms used in this thesis. First, definitions of work-

flow and workflow management system will be given. Descriptions of the workflow man-

agement system WS-VLAM and the used BLAST workflow follow.

2.1 Workflow and Workflow Management System

The term workflow is understood as a sequence of single activities, which are often dependent

on each other or parallel.

First, workflows were adopted for the description of business processes. But nowadays they

are also used to describe scientific experiments or problems like the simulation, analysis or

execution of experiments. The workflows help scientists to describe complex scientific chal-

lenges from the analysis, via the development to the collection of results, without using pro-

gramming languages. The piece of software, with which the user can design a workflow, is

called Workflow Management System (WfMS). Workflow management systems hide the

complexity of the workflow execution on complex systems such as grid infrastructures.

A workflow management system contains several components and consists at least of:

• Workflow description model: It defines the structure of the activities and their de-

pendencies in the workflow. It describes the order of the modules and the input and

output parameters or files.

• Workflow engine: The engine executes the defined workflow on any computing re-

sources from desktop computer to grid resources.

• User interface: Provides tools to describe, execute and control the workflow and its

results. [2]

As already mentioned, the workflow management system used in this thesis is WS-VLAM

(Virtual Laboratory Abstract Machine). WS-VLAM was developed at the University of Am-

sterdam and is the second generation of the VLAM software. VLAM was developed between

2002 and 2004. VLAM was re-implemented to WS-VLAM to follow the new standards of

Web Services and SOA. How the workflow management system works will be described in

the following section.

Chapter 2 – Background Torsten Matzerath

Page 9

2.2 WS-VLAM

The workflow management system WS-VLAM consists of three components. First, the

graphical user interface, also called the composer, second the Run Time System Manager

(RTSM) service and third the run-time part, which consists of the libraries for executing the

modules. The user just gets in contact with the graphical user interface, which is based on the

JGraph library and allows creating workflows per drag and drop. The modules describe the

tasks and are displayed as vertices on the GUI. The connections between the vertices are de-

fined by the input and output ports of the modules.

Figure 1: WS-VLAM GUI with BLAST workflow

As a result, the composer creates a file in XML format containing the workflow description.

Then, the user can create his credentials to get the authority running the modules on the grid

infrastructure. When the credentials were delegated correctly the user can press the play but-

ton and run the workflow. [8] The following list shows the actions, which run in to execute

the workflow.

1. Workflow engine starts as a Run Time System Manager service:

The content of the XML file describing the workflow is transmitted to the RTSM.

This is necessary to set the parameters and connections at a later state.

2. RTSM creates an instance:

The instance gets a unique ID and a Java object, which can receive events from run-

time. If events occur during execution they are passed to a queue with the unique

RTSM ID and the module ID, which is assigned at composing time and is unique in

scope of the workflow template. The RTSM-ID is passed back to the client as an end

point reference (EPR). The EPR is a XML element to specify a communication end

Torsten Matzerath Chapter 2 – Background

Page 10

point for messages to a web service. It can contain the address, security tokens and

other metadata needed for the interaction with the instance.

3. Client sends run command to the RTSM instance:

The instance is using the end point reference and a reference to the credential and

RTSM puts the job description to the job queue with assigned credentials.

4. Modules get instantiated on the remote resource:

The instantiation is done with the Resource Specification Language (RSL), a language

used to describe how to run a concrete task on a remote resource. Among other things

RSL contains the host name of the resource, the path to the executable and the work-

ing directory.

5. Job submitter creates a Global Access to Secondary Storage (GASS) Server:

It retrieves stdout and stderr for the modules of the experiment. GASS is used to prop-

agate stdin and stdout and the server uses secure http for authentication and data trans-

fer. [14]

6. Job description is taken out of the queue and passed to Globus Resource Allocation

Manager (GRAM) system:

GRAM is a component of the Globus Toolkit, which is an open source toolkit for

building computing grids. GRAM locates, submits, monitors and cancels jobs on grid

computing resources. Then, the task is instantiated on the explicitly specified remote

resource. [15]

7. Modules get started:

The modules contact the RTSM and register their selves and also create an association

between the module representation and the running program. If this is done an MOD-

ULE_REGISTERED event is generated. GRAM can also generate events, which are

created by module execution and pass them to RTSM.

8. When all modules are registered:

RTSM connects the modules according to the XML file it received before, sets all pa-

rameters and sends the run command to each module. For each operation an event is

generated and passed to the RTSM.

9. The modules receive the run command:

The execution is started and the state is changed to RUNNING and RTSM waits until

all modules finished execution.

Chapter 2 – Background Torsten Matzerath

Page 11

10. When all modules are finished:

If no errors occurred in GRAM the experiment is considered as successfully finished.

Thus, if GRAM reports an error the experiment is considered to be failed.

All events will be displayed in a window for every module so that the user can view them

during execution and see if the workflow runs properly. WS-VLAM also allows to run the

same workflow many times parallel with other input values or other parameters. Those pa-

rameters are read from lists or different input and output files can be defined when the user

defines the workflow. A parallel run like that is called farmed run and WS-VLAM gives eve-

ry single workflow run of a farmed run the same farming ID so that all instances can be as-

signed to the farmed run.

2.3 The BLAST workflow

The BLAST workflow conducts similarity search in DNA sequences. If DNA sequences are

read with DNA sequencers, one of the first questions is which kind of DNA sequence was

recorded. To answer this question, a scientist usually compares the sequence with the content

of a public database like GenBank. Programs written for the alignment search in DNA se-

quences finally accomplish the comparison. The fastest of these programs is the BLAST

(Basic Local Alignment Search Tool, http://blast.ncbi.nlm.nih.gov/Blast.cgi) program, also

being used in the BLAST workflow. The algorithm is based on mathematical methods, which

have been developed by Stephen Altschul and Samuel Karlin in the 1990s. BLAST points out

a comparison of the analysed sequences and calculates the probability of analogies being real

matches or random background hits. [21]

Since modern DNA sequencers analyse giga- or even terabytes in a short time it is not possi-

ble to analyse the data on a local computer, but the grid has to be used. As other steps have to

be taken before the BLAST task can be run, a workflow should be utilised to automate the

activity.

Torsten Matzerath Chapter 2 – Background

Page 12

Figure 2: Generic DNA sequencing workflow ([9], p.4)

As can be seen in Figure 2, the first task reads the experimental data. It converts the data from

the so-called sff-format to the fasta-format. This conversion is necessary because the BLAST

task can only handle data in the fasta-format.

The second task also fulfils some preparing. Since the researcher can analyse more than one

sample or patient in one sequence experiment, it is necessary to add a sequence label (also

called MID or barcode) to the DNA fragments making sure that the data is assigned to the

right patient. These labels are read by the patternMatch task as an input file, added to the se-

quences and sorted in different files for each expression.

The BLAST task gets the arranged experimental data and the data from the database as input

to compare them. The output of the workflow is a text file, which contains all found matches.

This file will then be given to the biomedical researchers who analyse the data.

The researchers of the Academisch Medisch Centrum (AMC) of the University of Amsterdam

use the workflow for their research for which the MOTEUR workflow management system is

used. MOTEUR is a workflow management system that was developed by the Modalis Team

and can be used to create and execute workflows on the e-BioScience Infrastructure. The cre-

ation and running of a workflow involves the following steps. First, one describes the work-

flow in Simple Conceptual Unified Flow Language (SCUFL) specifying all workflow inputs,

outputs, the programs to be executed and how they are connected. This can be done by a

graphical user interface running as a plugin in the VBrowser. Second, the user starts the work-

!"#$
%&'(&)*&+$
,+--."/0

%&"/*1$
2"33&/)$

,2"33&/)$456&0

%&'(&)*&$/&-&/&)*&$
7"3"8"+&$

,/&-&/&)*&9:;0

<=)>&/3$4=/?"3$
,+--.=4"+3"0

%=/3@A/=(2$%"?26&+$
,2"33&/)B"3*10

</&"3&$C)7&D$")7$
EFG%.$,E6"+3"660

H>&/"66$+&'(&)*&$
'("653I$

,'("6H(32(3."/456&0

%&'(&)*&$'("653I$2&/$
2"35&)3$

,+2653J("6H(32(3."/456&0

EFG%.$/&+(63$
,E6"+3."/456&0

K

L

M

Chapter 2 – Background Torsten Matzerath

Page 13

flow with that plugin and MOTEUR then executes the workflow on the grid using the gLite

middleware. The execution progress is visualized on HTML pages. [16]

To run the workflow in WS-VLAM some changes, described in the following section. Since

the modules already exist it is not necessary to re-implement them but one has to create lega-

cy applications are necessary (More details on this are available at

http://staff.science.uva.nl/~gvlam/wsvlam/Documentation/WS-VLAM-tutorial-II.ppt). Those

legacy applications are used in the WS-VLAM graphical user interface to create the workflow

with all file readers, file writers and parameters. The resulting workflow looks as depicted in

Figure 3.

Figure 3: BLAST workflow generated with WS-VLAM

Figure 3 illustrates the workflow used for the feasibility study of the history tracing prove-

nance system, which poses two challenges in the thesis. On the one hand, the use of the work-

flow helps the bioinformaticians to envisage the needs and chances of provenance in their

daily work and they will formulate requirements for the provenance system. On the other

hand, the BLAST workflow is the first scientific application, which is used in context with the

history tracing system. This helps to find out possible shortcomings of the original system and

necessary changes to the system. [9]

Torsten Matzerath Chapter 3 – Provenance

Page 14

3 Provenance

This chapter points out the importance of provenance for the analysis of scientific workflows.

Therefore, the term of provenance will be defined first. In the second section use cases and

technical requirements will be explained including an analysis of which data has to be collect-

ed. It follows a description of reproducibility and the data needed to answer reproducibility

before the suggestions of BLAST workflow users will be described. The chapter closes with a

discussion highlighting, which data can be collected in a provenance system used in the WS-

VLAM workflow management system.

3.1 The term of provenance

The recent launch of workflow management systems as well as the growing power of com-

puter systems and grid computing systems around the world caused a huge increase in the use

of large-scale applications. Those applications help to accomplish complex scientific experi-

ments and are too complicated to find errors or analyse the results without the assistance of

metadata. Metadata also describe the applied and generated data of the programs, which are

often in the size of giga- or even terabytes. No scientist can handle or reuse them without the

utility of additional information. [3] [5]

Provenance (also called lineage or audit trail) is one kind of metadata, which differs from oth-

er types because it is based on relationships among data and processes. With the aid of the

recorded relationships, it is possible to pertain to the derivation history of a data product start-

ing from its original sources. Hence, analysing the provenance data helps to understand which

processes and/or persons are involved and which input data and parameters are used to gener-

ate them. [4]

Groth et al. ([1], p.2) define provenance as follows:

“The provenance of a piece of data is the process that led to that piece of data.”

A demonstrative example, for which the storage of provenance data is sensible, is the follow-

ing experiment of a bioinformatician: A bioinformatician downloads sequence data of a hu-

man chromosome from a database and performs an experiment analysing the data. The bioin-

formatician later performs the same experiment on data of the same chromosome, which is

Chapter 3 – Provenance Torsten Matzerath

Page 15

downloaded from the same database. He compares the two experiment results and notices a

difference. Therefore, he determines whether the difference was caused by a change in the

experimental process or configuration, or by differing chromosome data (or both). [6]

This example highlights some questions, which should be answered by the collected prove-

nance data. A user could query:

• Who created this data product and when?

• When was the data product modified and by whom?

• What was the process used to create the data product?

• Were two data products derived from the same raw data?

([7], p. 1)

Besides these questions, provenance data can capture a more complex process analysis, which

will be analysed in the chapter “Provenance in Literature”.

The previously mentioned questions are only one aspect of workflow analysis with prove-

nance. The other aspect is the reproducibility - a detailed record of input values allowing other

scientists to validate and re-run the experiment. Reproducibility is one of the forces of prove-

nance since one can monitor which input data and processes were used to create the results. A

more precise description of reproducibility and the necessary provenance data to permit re-

runs is given in the chapter “Reproducibility”.

Besides the collection of data, formatting is an essential aspect for the usability of provenance

data. The collected lineage data is normally stored in XML format or in databases. These

formats are not easy to be read for non-computer scientists and have to be displayed in a

graphical user interface. Graphs are used as a technique of visualization by almost all prove-

nance systems as they have the advantage of being able to show the dependencies in an intui-

tional way. An additional aspect is that workflows in workflow management systems are also

visualized by graphs and users can easily understand the provenance graphs since both dia-

grams look similarly.

Another important facet that should be provided by provenance systems is the transfer of out-

puts to other WfMS, which are able to read the collected data. On the one hand, it is desirable

since scientists want to compare their own provenance files and origin of the data with the

ones of their colleagues. On the other hand, the transfer facilitates the reproducibility on other

systems to verify the results.

Torsten Matzerath Chapter 3 – Provenance

Page 16

3.2 Provenance in Literature

In this chapter different use cases and technical requirements will be analysed, which are de-

scribed in The requirements of using provenance in e-Science experiments by Miles et al.

(2006) from the University of Southampton. First of all, the methodology will be described

with which the authors succeeded in the paper, which will be followed by a numeration of the

use cases and technical requirements with listings of needed data. The paragraph closes with

the discussion what the use cases stand for and which are the most important. [6]

3.2.1 Methodology

From the computer scientists’ point of view it is not easy to find out which data has to be col-

lected by a provenance system. Indeed, they create the concepts and implement the data line-

age systems, but they do not have to analyse the workflow results or re-run the workflows.

Thus, they have to talk to bioinformaticians, physicists, chemists or biologists who do the

analysis with their year-long experience to finally identify which information is relevant and

has to be stored.

One analysis of requirements for provenance architecture is described in the paper The re-

quirements of using provenance in e-Science experiments. The paper was written by Miles,

Groth, Branco and Moreau who have delved into provenance for several years and belong to

the authors of the Open Provenance Model. The authors also faced the problem that they

needed some feedback of workflow users, telling them which audit trail data they require. The

computer scientists wanted to implement a user friendly and accepted architecture to collect

and show provenance data with this information. For that, they asked different scientists of

diverse disciplines to accomplish their workflows and write down the desired lineage data.

With the help of this method the authors formulated use cases and technical requirements

their architecture should achieve. The requirements are formulated in the way “PASOA should

provide…” PASOA is the architecture the authors wanted to implement. However, the tech-

nical requirements are good for all provenance architectures and a cornerstone of the analysis

for the history-tracing XML-based provenance framework.

3.2.2 Use cases and technical requirments

This section describes the use cases and technical requirement of the mentioned paper. The

use cases are classified into nine topics: Types of Provenance, Structure and Identity of Data,

Metadata and Context, Sessions, Query, Processing and Visualisation, Non-Repudiation, Re-

Chapter 3 – Provenance Torsten Matzerath

Page 17

Using Experimental Process and Aggregated Service Information. In every of these topics the

use cases are briefly summarized and a list of necessary information to be collected of a prov-

enance system are listed. At the end of every part a summary in form of a technical require-

ment is given, which will also be analysed. All eighteen use cases described in the original

paper are inserted in the “Appendix” in the section “Use cases described in literature”.

TYPES OF PROVENANCE

The three different views of provenance listed below are necessary if a user runs an experi-

ment twice and wants to know why the results differ or a bioinformatician wants to examine

the source and intermediate data used to produce the result data.

The three different views are:

1. Interaction: A record of the interaction between services that took place, including the

data that was passed between them.

2. Actor State: Extra information about a service participating in the experiment at the

time that the experiment was run.

3. Relationship: Information on how one data item in a process relates to another.

The required data for the analysis of the use cases in this section is:

• Interaction between services

• Data passed between services

• State or version of any service used in the experiment

• State or version of any input data

• State or version of the workflow management system

• Input data, intermediate and end results

• Relationships between data

• Relationships between data and processes

TECHNICAL REQUIREMENT 1:

The architecture should provide for the recording and querying of interactions, actor states

and relationships.

This means that the provenance architecture should contain a mechanism to store and visual-

ize the data in a way that different users with different intentions can adapt the system so that

they see the data, which is interesting for them. This should be in a way that the graphical user

Torsten Matzerath Chapter 3 – Provenance

Page 18

interface is dynamically adaptable with minor changes. Especially the three mentioned views

are necessary since users asked most often for them.

STRUCTURE AND IDENTITY OF DATA

Identification of data is necessary if users need information of links between input data and

output data or used data in workflows.

The required data for the analysis of the use cases in this section is:

• Add identifier to data to identify and follow them

• Identifier has to be usable in provenance queries

• One must be able to reference element by id

• A message system if input data sets are changed

• Link from workflow to input data

• State or version of input data

TECHNICAL REQUIREMENT 2:

The architecture should provide for association of identifiers with data, so that it can be re-

ferred to in queries and by data sources linking experiments together.

TECHNICALREQUIREMENT 3:

The architecture should provide for referencing of individual data elements contained in mes-

sage bodies recorded in the process documentation.

These two technical requirements mean that there should exist a mechanism to refer end re-

sults to input data. Normally logging files have to be searched for the linking and this can be

very complex depending on the workflow. The technical requirement says that the infor-

mation should be stored in a provenance system and a consistent mechanism should be im-

plemented.

METADATA AND CONTEXT

Metadata is important for many experiments. Thus, it can be used if a user wants to check the

possibility whether an experiment is adequate for the used input data or if the planned tasks of

an experiment are matching the executed tasks.

Chapter 3 – Provenance Torsten Matzerath

Page 19

The required data for the analysis of the use cases in this section is:

• Link from process documentation to metadata

• Different views on data

• Input data and parameters

• Store metadata in separate store

• Output data

• Used modules and connections between them

• Task describing data

• Documentation of modules

• Link from provenance data to metadata

TECHNICAL REQUIREMENT 4:

The architecture should provide for process documentation and associated metadata in differ-

ent stores to being integrated in providing the answer to a query.

The technical requirement says that the lineage system should contain a system that collects

metadata in provenance files from input data or modules. This can be necessary to get back-

ground information about the content or the algorithms of data and modules. They can be im-

portant in a provenance file since an analysis of the outputs is easier with the metadata.

SESSIONS

Different sessions are useful to check if different paths of a workflow are calculating the same

results and which of them are more efficient.

The required data for the analysis of the use cases in this section is:

• Should be able to compare different workflows

• Data passed between services

• Version of Module

TECHNICAL REQUIREMENT 5:

The architecture should provide a mechanism, which groups recorded process documentation

into a session, and should allow comparison between sessions.

Torsten Matzerath Chapter 3 – Provenance

Page 20

This technical requirement says that it is very important for provenance architectures to split

and compare parallel tasks in a workflow. This is necessary to compare parallel tasks and see

if the parallel tasks work correctly and which one is more efficient.

QUERY

Searching over several provenance files is a necessary technique to answer questions like

whether input data was used in other experiments and changed by them or to find all work-

flows generating special output data.

The required data for the analysis of the use cases in this section is:

• Input data, intermediate and end results

• Full contents of the records of several experiments

• All services which were used

• Search mechanism over different provenance files to find queried values

TECHNICAL REQUIREMENT 6:

The architecture should provide for the process documentation to be returned in the groups

specified at the time of recording or searched through on the basis of contextual criteria.

The purpose of this technical requirement is to provide searching over several provenance

files for used input or output data. This can be important if the user wants to find out the us-

age of special files in all workflows. A mechanism for this kind of searching has to be imple-

mented to the user interface of the provenance system.

PROCESSING AND VISUALISATION

An example in this section is a bioinformatician B performing an experiment. B publishes the

results and makes a record of the experiment details available for the interest of B’s peers.

The required data for the analysis of the use cases in this section is:

• Input data, intermediate and end results

• All services which were used

• All settings of a user/process

• All actors of tasks

• Create different views to visualize the information which is interesting for each query

Chapter 3 – Provenance Torsten Matzerath

Page 21

• Relationships between data and processes

• State or version of any service used in the experiment

• State or version of any input data

• State or version of the workflow management system

TECHNICAL REQUIREMENT 7:

The architecture should provide a framework for introducing processing of process documen-

tation of all three types discussed in „TYPES OF PROVENANCE“ (interactions, actor states

and relationships), using various methods, then visualising the results of that processing.

The seventh technical requirement is similar to the first one. It also requires different views of

the provenance files and it should be able to visualize them in a Provenance Query Interface.

NON-REPUDIATION

If workflow results have to be checked by a patent reviewer they want to know if the used

input data is also free for commercial use or which of the results were generated earlier.

The required data for the analysis of the use cases in this section is:

• State or version of database and input data

• Processes that were used

• Input data, intermediate and end results

• All services which were used

• Relationships between data and processes

• State or version of any service used in the experiment

• Times of all events that happened

• All data have to be stored in an unmodifiable way

TECHNICAL REQUIREMENT 8:

The architecture should provide a mechanism for recording adequate process documentation,

in an unmodifiable way, to make results non-repudiable.

The technical requirement mentions non-repudiation in provenance files. Signatures in XML

files can for example do this. This is an important aspect since provenance is often used for

legal affairs like contracts, in the medical area or for waste disposal.

Torsten Matzerath Chapter 3 – Provenance

Page 22

RE-USING EXPERIMENTAL PROCESS

Biologists or bioinformaticians running workflows often use databases for their analysis. If

the data from the databases is updated they want to re-run the workflow with the new data.

The required data for the analysis of the use cases in this section is:

• Input data, intermediate and end results

• State or version of any service used in the experiment

• Times of all events that happened

• A message system if input data sets are changed

• Link from workflow to input data

TECHNICAL REQUIREMENT 9:

The architecture should provide for the use of process documentation to re-enact an experi-

ment using the same process but new inputs, and to reproduce an experiment with the same

process and inputs.

This technical requirement means that re-running of experiments should be possible. There-

fore, the same or other input parameters should be taken, which signifies that it must be pos-

sible to connect the Provenance Query Interface together with the workflow management sys-

tem to simplify the re-running process.

AGGREGATED SERVICE INFORMATION

If users want to calculate statistical values of different workflow runs a search algorithm over

different provenance files is necessary.

The required data for the analysis of the use cases in this section is:

• Calculate extra information like duration of process from saved information

• Query over different workflows

TECHNICAL REQUIREMENT 10:

The architecture should provide for querying, over process documentation of multiple exper-

iments, about the aggregate behaviour and properties of services.

Chapter 3 – Provenance Torsten Matzerath

Page 23

This technical requirement needs searching over several provenance files, too. In contrast to

technical requirement six, especially information about administrative questions are handled.

3.2.3 Analysis of use cases and technical requirements

This chapter summarizes the awareness achieved by the use cases and the resulting technical

requirements for the provenance system to be developed. Since it is not possible to develop all

technical requirements in this thesis, the following analysis will help to identify the most fre-

quently used ones.

The following table gives an overview about the technical requirements that are necessary to

answer the different use cases. The occurrence is a degree indicating the priority to implement

the technical requirements in the Provenance Query Interface. In any case, it has to be dis-

cussed if the data can be collected and which the users would prioritize.

Torsten Matzerath Chapter 3 – Provenance

Page 24

Table 1: Use of Technical Requirements for Use Cases

T
R

10: A
ggregated

service inform
ation

T
R

9: R
eusing ex-

perim
ental process

T
R

8: N
on-

R
epudiation

T
R

7: Processing

and V
isualisation

T
R

6: Q
uery

T
R

5: Sessions

T
R

4: M
etadata and

C
ontext

T
R

2&
3: Structure

and identity of data

T
R

1: T
ypes of

provenance

T
echnical R

e-

quirem
ent

	 X	 	 X	 	 	 X	 X	 X	

U
C

1

	 	 	 X	 	 	 	 X	 X	

U
C

2

	 	 	 X	 	 	 	 X	 X	

U
C

3

	 X	 	 	 X	 	 X	 X	 	

U
C

4

	 	 	 X	 	 	 X	 	 X	

U
C

5

	 X	 	 	 	 	 X	 	 	

U
C

6

	 	 	 X	 	 	 X	 	 X	

U
C

7

	 	 	 X	 	 X	 X	 	 	

U
C

8

X	 	 	 	 X	 	 X	 	 	

U
C

9

X	 	 X	 	 X	 	 	 X	 	

U
C

10

	 	 	 X	 	 	 X	 	 X	

U
C

11

	 	 	 X	 	 	 	 	 X	

U
C

12

	 X	 X	 X	 	 	 	 	 X	

U
C

13

	 	 X	 	 	 	 X	 X	 	

U
C

14

	 	 X	 	 	 	 X	 X	 	

U
C

15

	 X	 	 	 X	 	 X	 X	 	

U
C

16

	 X	 	 	 	 	 X	 X	 	

U
C

17

X	 	 	 	 X	 	 	 	 	

U
C

18

Chapter 3 – Provenance Torsten Matzerath

Page 25

As shown in the table, the different technical requirements are used unequally often to answer

the use cases. The technical requirements one and seven, which provide different views of the

provenance data, are used very often. Collecting and showing the documentation of processes

and data in different views is very important because users with other interests need a dissimi-

lar look on the lineage data. While it is more important for a scientist analysing the results to

have a view on the generation of data with input data and parameters, a scientist debugging

the process of the workflow has more interest in data that is showing the dependencies be-

tween the modules and their influence on the results. To fulfil these two requirements, the part

of the provenance system collecting the data is not able to make a change between the differ-

ent views. It always has to collect the provenance data important for all users since it does not

know which kind of user is considering the data. Indeed, the Provenance Query Interface to

be implemented has to make sure that different users can decide which data they want to get

advised.

Other very important technical requirements are number two and three. They say that the sys-

tem should provide to add IDs to the data that is processed in the workflow so that end results

can be allocated with the input data. The results are useless without utilizing these IDs since it

is not possible for the user to connect input with output data and therefore, the meaning of the

results cannot be understood. Although those data is important to analyse the results, it is very

hard to save the IDs in the provenance data. The reason is that the IDs have to be generated by

the modules themselves and only the provenance system can store them. However, not every

used module, which is often provided by third parties, generates the data. Therefore, the prov-

enance system has no chance to collect the data. This is also the reason why this technical

requirement will not be supported and users still have to acquire the data from log files.

The technical requirement answering most use cases is the fourth. It shows metadata of input

data and processes to ensure that the right information was used or the module was indeed

designed to process with the used files. However, this requirement cannot only be provided by

the provenance system. The used data and processes, which are often allocated or implement-

ed by third party scientists, have to provide this information. The input data needs a special

field at the beginning before the real content begins, which describes the input. Therefore, a

standard format for metadata has to be adopted to make sure that the provenance system can

collect them.

The fifth technical requirement is a special case, which is rarely occurring. It is only used if a

workflow has parallel tasks, which should be compared. It is required for an analysis of the

workflow tasks to find the most efficient module and to analyse whether they produce the

Torsten Matzerath Chapter 3 – Provenance

Page 26

same output data. If the technical requirement is slightly modified, one could imagine that the

architecture should provide for the comparisons between different workflow runs. The re-

formulated technical requirement is more often used than the original one because scientists

can compare the influence of different parameters on the results more easily. Since the lineage

data is the same for every workflow run, the Provenance Query Interface has to visualize the

comparison between the runs.

It follows the technical requirement saying that it would be sensible to store contextual infor-

mation and search over different workflows. This could be useful if a working group that exe-

cutes many workflows is using a special database. The user can search in all previously exe-

cuted workflows for the database if it is updated and the found workflows can be reproduced.

For this kind of search method special search algorithms are necessary because it can take a

long time to search for the information in all generated provenance files.

Another interesting requirement is the eighth saying that a provenance architecture should

provide for a mechanism to store the lineage data in an unmodifiable way. This is necessary

for legal affairs, as mentioned in the use cases. Additionally, saving the provenance data in a

way that every author can be identified also helps to find out who executed the workflow and

who created errors. Although this technical requirement answers only three use cases it is

important. To achieve a high acceptance of the users they must be sure that they can rely on

their data. To attain acceptance, a security model has to be implemented by using signatures

or encryption.

Moreover, the ninth technical requirement has to be analysed. Users who executed a work-

flow must have the possibility to collect all data to re-run the workflow with the same or op-

timised data. An analysis which data is necessary to provide reproducibility is given in the

chapter Reproducibility”.

Very similar to the sixth technical requirement is the last one. It also states that a provenance

system should provide for searching in the provenance data of all previously executed work-

flows. Instead of analysing the data, the focus in this technical requirement lies on administra-

tive questions like calculating the runtime of previously executed modules to finally be able to

evaluate the costs of new workflows using the tasks. Here, a search algorithm has to be im-

plemented too, as in the case of requirement six.

Chapter 3 – Provenance Torsten Matzerath

Page 27

3.3 Reproducibility

This chapter describes the term of reproducibility and the importance in provenance. The first

section defines what is understood as reproducibility and the second section describes which

data has to be collected to provide reproducibility.

3.3.1 Definition of Reproducibility

Results calculated with scientific workflows are often published in papers or in publicly

available databases. However, these results are only accepted if the publisher can prove that

the results are calculated correctly. One very accredited form that guarantees trust in the pro-

vided data is reproducibility.

A few years ago, the workflow-based community recognized that the reproducibility is a very

important utility to arouse trust. By means of an example in the field of climate change, one

can see the importance of reproducibility and the record of all data and processes that led to

results in the field of science. As a result of the Climatic Research Unit email controversy

(http://en.wikipedia.org/wiki/Climatic_Research_Unit_email_controversy), a parliament

committee enacted that it is necessary to publicize all raw data and computer codes used in

the research. By dint of the decision, the fact-finding commission saw the only chance to re-

trieve trust of the publicity in science. This way of thinking does not only exist in climate sci-

ence but also in clinical trial results for drug approval or in social science to justify determina-

tions on objective evidence. [5]

The workflow-based community also considered how reproducibility can be provided and

came to the result that provenance is most adequate. The usage of provenance is best adapted

for this use case since a rich representation of provenance allows steps to be reproduced and

all intermediary and final results to be checked and validated. The community points out the

importance of provenance in reproducibility as follows: ([5], p.1)

“Reproducibility requires rich provenance information, so that researchers can

repeat techniques and analysis methods to obtain scientifically similar results... In

order to support reproducibility, workflow management systems must capture and

generate provenance information as a critical part of the workflow-generated da-

ta.“

Torsten Matzerath Chapter 3 – Provenance

Page 28

Besides collecting and displaying the data necessary for reproducibility, one should consider

whether the architecture can provide the ability to automatically re-run the workflow with the

collected data. The reproducibility data should be linked to the workflow management system

to run a workflow with the collected data. If the lineage data is published in context of a re-

lease of calculated data it must be ensured that the reproducibility data is readable for other

workflow management systems too. This means that the data has to be stored in a structure

that many organisations use to store their provenance data. One standard format is the Open

Provenance Model. [5]

Thus, one can summarize the key benefit of using provenance for reproducibility, by means of

the conclusion of Davidson and Freiere: ([7], p.3)

“A detailed record of the steps followed to produce a result allows others to re-

produce and validate these results.”

This means that the recording of provenance data for result analysis or debugging can be easi-

ly used to reproduce the results since most necessary information will be collected anyway.

3.3.2 Required data for Reproducibility

A list of necessary queries and data to ensure reproducibility will now be given. The list was

created by conversations to workflow users.

• Version of workflow management system:

The different workflow management versions can handle the jobs differently and re-

sults can slightly differ.

• Connections of tasks:

Since data is often modified and passed between tasks it is important to know which

modules the results passed.

• Version of every task:

The calculation algorithm can be changed or different errors corrected so that results

can differ.

• Grid node where the module was executed:

Different operating systems or processors on the nodes can calculate different results.

The execution time and the communication can also differ due to different architec-

tures.

• Start and End time of every module:

Chapter 3 – Provenance Torsten Matzerath

Page 29

The execution time is a hint if the execution was successful, interrupted or deadlocks

exist. This helps to compare if the re-execution was successful.

• Version of input data:

The version is necessary if databases are used as input data since they are often updat-

ed and new results can follow-up.

• Path of input data:

The path of input data is important since it must be recorded which files were used as

input.

• Parameters of modules:

The parameters are essential for reproducibility since they are a kind of input values

and have impact on the results.

• Path of output data:

To be able to compare results of different workflows it is necessary to save where the

data is stored.

3.4 Suggestions of BLAST users

As mentioned before, a close contact to the users executing the workflows and analysing the

results is a very important part of this thesis to make sure that the provenance system collects

the needed data and will be accepted by the clients. Hence, several meetings with users were

arranged to discuss the provenance systems. The results of those meetings concerning the data

to be collected will be discussed in this chapter.

The two aspects, which are in the eyes of the bioinformaticians most important, are the sim-

plification of information search and reproducibility. Table 2 will help to understand which

kind of information should be searched.

The table contains statistical values for every workflow execution; those are listed in rows. To

fill the columns of the table the authors needed to analyse many different logging files, and

information from the workflow management system. They need a long time to collect all re-

quired information like number of samples (#Sam), number of executed tasks for all modules

and those correctly finished. The wish of the bioinformaticians is that this data can be provid-

ed by the provenance system in a more user friendly way.

Torsten Matzerath Chapter 3 – Provenance

Page 30

Table 2: Performance data for BLAST workflow executions ([24], p.1)

Exp	 #Sam	 #Seq	
Workflow	 Tasks	 Workflow	 Results	 Jobs	 Time	

(hrs)	 Sff2Fasta	 Blast	 ParseBlast	 Ok	 failed	 success	 Ok	 failed	 success	

A	 96	 37,632	 95/96	 190/190	 189/190	 190	 3	 98.4	 474	 10	 97.9	 4.2	

B	 44	 2,338	 44/44	 88/88	 88/88	 88	 0	 100	 220	 0	 100	 3	

C	 48	 149,949	 48/48	 96/96	 95/96	 96	 1	 99.0	 239	 3	 98.8	 3.2	

D	 93	 205,258	 93/93	 186/186	 186/186	 186	 0	 100	 465	 7	 98.5	 10.5	

E	 12	 36,721	 12/12	 24/24	 24/24	 24	 0	 100	 60	 0	 100	 4.2	

F	 45	 13,974	 45/45	 89/90	 89/89	 89	 1	 98.9	 223	 3	 98.7	 4.8	

G	 24	 34,541	 24/24	 48/48	 48/48	 48	 0	 100	 120	 0	 100	 3.2	

H	 45	 9,096	 45/45	 90/90	 90/90	 90	 0	 100	 225	 1	 99.6	 3	

I	 27	 7,463	 26/27	 52/52	 52/52	 52	 2	 96.3	 130	 3	 97.7	 3	

J	 54	 474,821	 54/54	 106/108	 105/106	 106	 3	 97.2	 265	 14	 65.0	 4.6	

K	 53	 504,277	 53/53	 106/106	 106/106	 106	 0	 100	 265	 5	 98.1	 3.7	

L	 55	 383,796	 55/55	 110/110	 110/110	 110	 0	 100	 275	 2	 99.3	 3.5	

M	 56	 368,975	 56/56	 112/112	 112/112	 112	 0	 100	 280	 8	 97.2	 3.8	

N	 56	 65,794	 55/56	 110/110	 110/110	 110	 2	 98.2	 275	 5	 98.2	 3	

O	 14	 97,252	 14/14	 28/28	 28/28	 28	 0	 100	 70	 0	 100	 2.8	

ALL	 722	 2,391,842	 719/722	 1436/1438	 1436/1436	 1436	 8	 99.4	 3591	 12	 99.7	 13.7	

Total	 1444	 4,783,684	 1438/1444	 2871/2876	 2868/2871	 2871	 20	 99.3	 7177	 73	 98.9	 74.2	

The following provenance data has to be collected to define the data in the table:

• Farming ID:

Every workflow execution consists of a set of workflow runs with different input data

or parameter. Since single provenance files will be created it must be possible to group

them to the current workflow execution with a unique ID for every workflow execu-

tion.

• Number of calls of tasks:

It must be counted how often which task was called in every run in a workflow execu-

tion.

• Number of failed tasks:

It must be counted how many tasks did not finish correctly.

• Execution time:

The execution time of every workflow execution must be recorded.

The required values will be collected either directly or indirectly. How exactly the values are

collected can be found in the chapter “Provenance in WS-VLAM”.

Chapter 3 – Provenance Torsten Matzerath

Page 31

The other aspect mentioned by the users is reproducibility. The provenance data needed to

provide reproducibility has been described in the previous sub-paragraph. Among the listed

aspects the following data is in the eyes of the users the most important for reproducibility:

• Version of applied databases or data

• Version of modules

• Saved output files

• Workflow executer

However, the first two aspects cannot be achieved since versions of input data and modules

always have to be delivered by the providers of the data or by the programmers of the mod-

ules. Furthermore, a standard for versioning was not yet inserted into WS-VLAM.

3.5 Provenance in WS-VLAM

This paragraph will finally discuss the assertions in this sub-chapter with main focus laid on

the feasibility of WS-VLAM. It points out which use cases and technical requirements can be

replied, which aspects of the reproducibility can be considered and which of the requirements

of the BLAST users can be answered. Additionally, it will be described which data is collect-

ed and how they help to answer every question.

The following table gives an overview which data can be collected by WS-VLAM and which

are currently not supported. A detailed description of the aspects follows.

Table 3: Comparison of collected and not collected provenance data by WS-VLAM

Collected data by WS-VLAM Not collected data by WS-VLAM

Parameters of file readers and writers con-
taining the input, intermediate result and end
result file paths

Content of input, intermediate result and end
result files

Data and catalogues for searching infor-
mation in a set of provenance files

Content of files only passed between mod-
ules of a workflow

Execution times of workflows and modules Metadata of input files or modules
Execution node of a module Versions of input data, modules and work-

flow management system
Executer of a workflow
Number of executed workflows in a farmed
run

Number of executed modules and correctly
finished modules

The collected data provides the possibility to
show different views

Torsten Matzerath Chapter 3 – Provenance

Page 32

One of the most important domains mentioned in the previous paragraphs is used and gener-

ated data by a workflow. As provenance describes the derivation of data, all kinds of data

used in a workflow should be saved. On the one hand there is the input data. The users want

to know which of the input data was used by the modules and what the content of the data is.

Since WS-VLAM uses file readers to read the input data it is possible to save the parameter of

a file reader, which contains the path of the input file. Thus, the provenance system does not

save the content of the files. The reason is that input data may have a size in the range of tera-

bytes and the provenance system cannot handle file sizes like that. On the other hand there are

intermediate and end results, which are saved with file writers. They also have a parameter

containing the file’s path and this path can be saved in the lineage file. Though, there are ex-

isting files, which are passed between different modules and will not be available after the

transfer. If the user really needs the files for the analysis of the output data he can add a file

writer storing the data in a consistently saved file.

Sometimes it is necessary to provide searching for data or comparing of data between differ-

ent runs of the same or different workflows. One application for this is to search for all work-

flows using a special input file, which was changed and the user wants to re-run all workflows

using it. Because all data required for this searching, like the input file path, is saved anyhow,

it is not a problem of the WfMS but it has to be provided by the provenance system or the

Provenance Query Interface. The way in which an efficient search algorithm is implemented

over all provenance files will be described in the chapter “Transmission to web service”.

The use cases from literature also mentioned the necessity of metadata or documentation to

describe the modules. This part cannot be supported because there is no possibility to make

sure that the used modules have metadata or documentation because they are often from third

party organisations or the programmers forgot to describe the tasks.

Also very important are execution times in provenance. In WS-VLAM workflow and mod-

ules’ starting and ending times can be saved. The starting and ending times also help finding

modules, which did not finish correctly. If a module has no finish time and the workflow has

finished, it can be inferred that the module finished with error. This method will be used in

the provenance system to be implemented.

There is also some information, which is interesting for reproducibility of workflows. Exam-

ples for this are the execution node of a module or the executer. WS-VLAM also provides this

data and can save it in the provenance file. The executer is ascertained via the credentials,

which are generated if the workflow is executed. Other information, which is also important,

is the version of input data, modules and workflow managements system. However, none of

Chapter 3 – Provenance Torsten Matzerath

Page 33

this data is accessible by WS-VLAM because it is not in the hand of the WfMS. Another as-

pect is that the Provenance Query Interface will not be combined with the WfMS to re-run it

automatically as the connection is not required by the users currently. This connection is pos-

sible in WS-VLAM but the feature will not be supported.

Most of the other provenance values can be provided by WS-VLAM like the number of exe-

cuted workflows in a farmed run, the number of executed tasks and the number of correctly

finished modules. The number of workflows of one run can be calculated by the number of

workflows that have the same farming ID. The connection of modules, the parameters and the

grid node that calculates the module are saveable by the provenance system, too.

The possibility to show different views with a provenance system is also possible with the

data collected by WS-VLAM. All information, which is interesting for the different users, is

collected. Thus, the visualization and the definitions how the different views are defined have

to be conducted by the provenance system itself.

Therefore, one can say that some of the required data in literature and from the users cannot

be answered because most of them are not in the area of WS-VLAM itself. Here some rules

for the implementation of modules and input data has to be made and after adapting WS-

VLAM this data could be collected, too. However, the most important data describing the

derivation of the results can be collected.

Torsten Matzerath Chapter 4 – History Tracing System

Page 34

4 History tracing XML-based provenance framework for

workflows

This chapter describes the history tracing XML-based provenance framework for workflows

and starts with an overview of the provenance system. Then, the original system will be ex-

plained with main focus on the architecture, the web service, the XML provenance files and

the signature of data. It is followed by the description of the re-implementation of the lineage

system for WS-VLAM with focus on the same aspects like for the original system. The para-

graph closes with a conclusion.

4.1 Introduction

The history tracing XML-based provenance framework for workflows, also called history-

tracing system, was developed during the master’s thesis written by Michael Gerhards at the

University of Applied Science in Aachen in 2010. [11]

Within the context of the “History tracing XML for an Actor-driven Grid-enabled Workflow

System (HiX4AGWS)” project the provenance system was developed. Besides collecting the

provenance data, an important requirement was to save the data in a legally binding way. To

provide this requirement the data was saved in XML whereas the workflow modules are

saved in recursively nested layers with the youngest task containing all older ones. This struc-

ture allows signing the values of the current workflow task and all of the history in the XML

document. After signing the document it is not possible to change the previous steps and the

provenance data can also be used for legal affairs.

Figure 4 shows the process of collecting provenance data during the execution of the work-

flow. When the execution of the workflow starts (1), the provenance file is generated. First,

the root element with the workflow name and second the start tag are inserted into the XML

file. The file is saved on the hard disk with the collected information to enable the user to also

analyse the provenance file during runtime of the workflow. Then, the workflow reaches the

loop_start element (2) and the tag will be inserted in the XML file. This will be the child of

the root element in the XML structure and its predecessor is the child element of the

loop_start element. It follows the decision (3), which again gets the root’s child element with

the forerunner as child element. As one can see, the decision runs along the left path because

the left1 element follows into the provenance file (4). This XML tag contains a difference

Chapter 4 – History Tracing System Torsten Matzerath

Page 35

because it owns a second child element called parameters containing the method’s input pa-

rameters in a serialized type. The following element left2 has also return values, which can be

seen by the existence of the tag results. The elements merge and loop_condition follow. Since

the parent element of the loop_condition tag is loop_start, the condition of the loop was true

and a new run of the loop starts. This time the decision executes the right path before the loop

condition comes false and the workflow stops after reaching the end element. This is as well

the root’s child node of the XML file since it is the last action of the workflow.

Figure 4: Example of building provenance file

Torsten Matzerath Chapter 4 – History Tracing System

Page 36

4.2 The original history tracing system

This section explains the idea of the history tracing XML-based provenance framework for

workflows and the steps, which are necessary to collect the provenance data. A special focus

will be put on the architecture, the necessary transmissions from the workflow management

system to the web service, the structure of the XML provenance file, and the signature of the

data.

4.2.1 Architecture

At this stage, a detailed description of the original architecture will be given. It is mainly

based on the graphics shown in this chapter.

Figure 5: Architecture of preparing steps for provenance collection ([10], p. 6)

The XML tracing system contains two components. On the one hand is the workflow engine

or workflow management system, which defines and executes the workflow. On the other

hand is the webserver, which runs the functions to create the schema, the extended workflow

and collects the provenance data.

!"#$%&"'()*+,&-)*

./0*+-()-$*#

1/0*+-(23)*#%-/*(%"#(!451(666

1/0*+-(23)*#%-/*(%"#(!451(66

1/0*+-(23)*#%-/*(%"#(!451(6

!"#$%&"'((23)*#%-/*(%"#(!451(666

!"#$%&"'((23)*#%-/*(%"#(!451(66

!"#$%&"'((23)*#%-/*(%"#(!451(6

7#"8*3-3/*(,#"82923:('"#$%&"'()*+,&-)*

23.)-3/*()-$*#

1/0*+-(&2;#-#<

23.)-3/*

7#"8*3-3/*(./0*+-
!4=6>(?(@AB.9

23.)-3/*(&2;#-#<

!4=6>(?(@

!4=6>(?(@

/#*-)*

!"#$%$"#$"&'
()*+$,-).

/$0'1$)2$)

Chapter 4 – History Tracing System Torsten Matzerath

Page 37

As always, the whole process starts with the creation of the workflow in the workflow man-

agement system of the users choice. When the user is ready with implementing the workflow

it will be saved in XML format by the WfMS. However, to be able run the workflow and col-

lect provenance data some additional steps have to be taken.

As a first additional step, the user has to create a schema file, which describes the provenance

file generated by the history tracing system. For this, the user has to call the schema interface

method on the web server. The method reads the content of the workflow file, analyses the

structure and describes every workflow module that is used in the workflow with all input

values, output values and the dependencies. Since the XML format of the workflow file is

different for every workflow management system, it has to be adapted whenever a new work-

flow engine is used. The content and structure of the schema and the XML files will be de-

scribed in the chapter “Transmission to web server and web service methods”.

After analysing the structure and collecting the relevant data for the schema file, the data is

passed to the schema library, implemented in a workflow engine independent framework.

Subjoining the schema interface, which transforms the data in the independent format, enables

the schema library to be independent from the workflow engine.

The second additional step extends the original workflow by tasks that collect all provenance

information like the input and output parameters of the workflow tasks. To create the extend-

ed workflow file, another web service method is called – the instance interface. This method

has also to be adapted to every workflow engine, because it writes a new WfMS independent

workflow file, which has to be readable by the workflow management system.

Figure 6: Original workflow and workflow with additional steps ([11], p. 103)

Task1

Task2

Before_Task1

Task1

After_Task1

Before_Task2

Task2

After_Task2

Torsten Matzerath Chapter 4 – History Tracing System

Page 38

As shown in Figure 6, every workflow step gets forerunner and follower tasks. Those tasks

are necessary to record the modules and collect the input and output data of every original

task. Since the history tracing system should be independent of a WfMS it is not possible to

automatically extend the modules or the workflow engine with provenance data collecting

functionality. In the case of the JBPM workflow engine the original tasks are Java methods.

The added tasks are methods passing the name of the module, the values and the parameters

to the web server. These modules have to be created by the user for the current workflow

management system. However, those have to be created only once per workflow engine.

Furthermore, the described actions add the same unique identifier to the schema file and the

extended workflow file. This identifier is called workflow-ID and helps combining the sche-

ma file with the provenance file.

At this stage, the preparations are finished. If the user now wants to execute the workflow he

does not execute the workflow created with the workflow engine but the extended one, creat-

ed by the instance interface. This means that a user has to execute these two web service

methods always if he changes the original workflow to be sure that the modifications influ-

ence the results.

Figure 7: Architecture of provenance file creation ([10], p. 6)

Chapter 4 – History Tracing System Torsten Matzerath

Page 39

The first action of the workflow management system after executing the workflow template

with documentation modules is the creation of workflow instances. Every run of the abstract

workflow creates a new workflow instance with the workflow-ID on the one hand and the

instance identification on the other hand. The instance ID is necessary to execute several

workflows parallel and being able to differentiate them so that the provenance system can

assign the provenance data to the right provenance file.

The next step is a call of the web server method by the workflow management system to cre-

ate an empty xml file. After that, the workflow engine executes all workflow tasks. Always if

a documentation task is executed it calls web service methods and passes information to the

provenance file. The corresponding web service method saves the values that are adequate to

the schema in the XML lineage file.

The XML file gets filled with the provenance values after every workflow step. The speciality

in the structure of the xml file is that it is valid against the schema at any time. The reason is

that a workflow can break suddenly and the user must still be able to analyse the file in that

case because a very important application range of provenance is the debugging of workflow

executions and locating errors.

As soon as the workflow finishes, a web service method is called for the last time to conclude

the provenance file and to deallocate the instance-ID. The user can analyse the created prove-

nance file after concluding all these steps. Provenance queries can be answered and debug-

ging or result analysis accomplished. As the inserted workflow tasks do not have any influ-

ence on the results of the original modules it does not make any difference which of the two

workflows are executed. They will always produce the same results.

4.2.2 Transmission to web server and web service methods

As described in the previous section, the communication between the workflow management

system and the provenance recording system is based on web services. This practice is neces-

sary due to the different programming languages Java in JBPM and C# on the web server. In

order to create the web service client methods, the program wsimport.exe from the Java De-

velopment Kit (JDK) is used to automatically create the java classes. Thereby it is very simple

to create the interface between JBPM and the web service methods since they just have to be

inserted in the project and can be called by the workflow tasks. {1}

In the following, it will be described how the methods are exactly called to pass all necessary

information from the workflow to the provenance file. As mentioned before, a user executes a

Torsten Matzerath Chapter 4 – History Tracing System

Page 40

workflow template with additional steps. All the additional steps are calls of Java methods.

The following table shows which additional methods exist and their meaning.

Table 4: Java methods in WfMS ([11], p. 114)

Method name Functionality

vor

Parameters:
String

It is called if the additional task before the real task is running.
The method is called if no input parameters are used for the
task

Name of the workflow task that follows

vor

Parameters:
String
Object

It is called if the additional task before the real task is running.
The method is called if one input parameter is used for the
task

Name of the workflow task that follows
Input parameter of the workflow task.

nach

Parameters:
string

It is called if the additional task after the real task is running.
The method is called if no input parameter is used for the task

Name of the workflow task

nach

Parameters:
string
Object

It is called if the additional task after the real task is running.
The method is called if a return parameter is used for the task

Name of the workflow task
Return value of the workflow task

These methods again call the web service client methods. Since web services can just pass

strings from the client to the server, all parameters have to be converted from the original type

to a string. Marshalling the input and return values to a string is achieved by the method ob-

jectToString, which converts the given Object to a string. Thus, the web service methods are

called with the name of the workflow task and the converted input or output values. The name

of the workflow task is necessary to create new layers in the XML file or to assign the values

to the existing nodes. The following web service methods exist with the adapted meanings.

Chapter 4 – History Tracing System Torsten Matzerath

Page 41

Table 5: C# web service methods and meaning ([11], pp. 121-122)

Web server methods Functionality

Instance

Parameters:
string
string

Creates a documentation instance by specifying WF-ID and
I-ID

WF-ID of workflow template to identify the schema
ID of the workflow instance to differentiate documentation
instances

Before

Parameters:
string
string
params string[]

Inserts new task steps to the provenance file with input pa-
rameters by giving the I-ID

I-ID to assign the data
Workflow task name
Parameter values (only for Java workflow tasks)

Behind

Paramters:
string
string
string (optionally)

Finalizes workflow tasks by inserting return values by the I-
ID

I-ID to assign the data
Workflow task name
Return values (only for Java workflow tasks)

Close

Parameters:
string

Deletes the I-ID from the allocation table

I-ID to delete

The values of the workflow engine are transmitted to the web server by calling these methods.

Now it will be explained in detail how the provenance file creation is done on the web server.

The Instance method is a kind of constructor. It has the job to create the provenance file and

add the object of the provenance file to a table containing all provenance instances. This is

necessary to be able to execute the provenance system several times simultaneously and at-

tach the provenance data to the right file. Every time the Before, Behind or Close methods are

called, the right file can be found by scanning the instance table for the given instance ID.

The Before function is the forerunner of the real workflow task. It creates a XML tag with the

given task name. Parameters of the tag, which are also created, are an id, important for the

signature and the time stamp when the method was called. Beyond, the given input values are

saved as a child of the workflow task. These are marshalled Java values so that they can be

unmarshalled for the re-run of the workflow with the same values.

Executing	 the	 Behind	 method	 completes	 the	 task	 initialized	 by	 the	 Before	 action.	 The	

function	 therefore	 inserts	 a	 time	 stamp	 and	 optionally	 the	 return	 values	 of	 the	 function.	

Torsten Matzerath Chapter 4 – History Tracing System

Page 42

When	 the	 workflow	 is	 completed	 the	 file	 has	 to	 be	 closed	 and	 deleted	 from	 the	 prove-‐

nance	 instance	 table.	 After	 that	 the	 used	 instance	 id	 is	 free	 and	 can	 be	 used	 for	 other	

workflows.	

To	 picture	 the	 complete	 process	 an	 example	 follows	 showing	 how	 the	 single	 methods	

create	 the	 provenance	 file.	 The	 content	 of	 the	 XML	 provenance	 file	 will	 be	 described	 in	

the	 chapter	 “The content of the XML provenance file”.	

The	 following	 code	 abridgement	 contains	 the	 web	 service	 methods	 with	 the	 parameters	

creating	 the	 provenance	 file.

Figure 8: Web service calls on client side ([11], p. 68)

	
The	 call	 of	 the	 constructor	 (1)	 creates	 a	 XML	 file	 with	 the	 name	 SequenceInstanz.xml,	 an	

instance	 of	 the	 schema	 SequenceSchema.xsd.	 The	 constructor	 also	 inserts	 a	 root	 element	

into	 the	 provenance	 file.	 The	 next	 method	 call	 (3)	 creates	 the	 innermost	 layer	 of	 the	 XML	

file	 with	 the	 XML	 tag	 Start	 and	 the	 parameters	 datetime,	 id	 and	 wftype.	 To	 know	 at	 which	

position	 the	 tag	 has	 to	 be	 inserted	 in	 the	 provenance	 file	 the	 instance	 library	 on	 the	 web	

server	 searches	 the	 XML	 schema	 to	 find	 the	 location	 in	 the	 instance	 file.	 The	 Behind	

method	 (4)	 sets	 the	 tag	 as	 closed.	 If	 the	 Before	 and	 Behind	 functions	 have	 a	 second	 pa-‐

rameter	 (6,9,13)	 it	 is	 the	 parameter	 of	 the	 corresponding	 workflow	 task.	 The	 task	 Miss	

(6)	 for	 example	 has	 the	 value	 Master’s	 thesis	 and	 will	 be	 inserted	 in	 the	 element	 Parame-‐

ter	 as	 a	 child	 of	 the	 Miss	 tag.	 The	 created	 provenance	 file	 looks	 as	 follows.

 (1) InstanceFramwork ifw = new InstanceFramework(“SequenceSchema.xsd“,
 “SequenceInstance.xml“);
 (2)
 (3) ifw.Before(“Start“);
 (4) ifw.Behind(“Start“);
 (5)
 (6) ifw.Before(“Miss“, “Master’s Thesis“);
 (7) ifw.Behind(“Miss“);
 (8)
 (9) ifw.Before(“Search“, “Office“);
(10) ifw.Behind(“Search“);
(11)
(12) ifw.Before(“Find“);
(13) ifw.Behind(“Find“, “Desk“);
(14)
(15) ifw.Before(“End“);
(16) ifw.Behind(“End“);

	

Chapter 4 – History Tracing System Torsten Matzerath

Page 43

Figure 9: Provenance file of searching master thesis example ([11], p. 68)

4.2.3 The content of the XML provenance file

This chapter gives an overview of the contents and structure of the provenance and schema

file. This survey is important to point out which provenance information is collected. The

kind of lineage data affects the usability of the provenance information and the application

areas.

As stated above, the XML file contains the provenance data in a nested layered style. Where-

by all layers are recursively saved with the youngest container comprising all older ones. This

document style has the advantage that the workflow steps can be signed one by one and the

workflow structure can be redrawn by just following the XML tags from the inmost layer to

the root.

A schema file exists for all provenance files. To create it, all necessary information is collect-

ed from the workflow file. The workflow file contains the following information, which is

necessary for the schema creation:

• Successor and Predecessor of every task

• Parameter values

• Return values

• Type of every task

Figure 10 shows a sample of a schema file with layers.

<?xml version="1.0" encoding="UTF-8"?>
<inst:Root xmlns:inst="http://sequenz/" p1:schemaLocation="http://sequenz/SequenceSchema.
 xsd" wftype="ROOT" xmlns:p1="http://www.w3.org/2001/XMLSchema-instance">

 <inst:End datetime="2010-07-19T21:47:45.2671937+02:00" id="End_C_0" wftype="SEQUENCE">
 <inst:Find datetime="2010-07-19T21:47:45.2515687+02:00" id="Find_C_0" wftype="SEQUENCE">
 <inst:Search datetime="2010-07-19T21:47:45.2359437+02:00" id="Search_C_0"
 wftype="SEQUENCE">
 <inst:Miss datetime="2010-07-19T21:47:45.1890687+02:00" id="Miss_C_0">
 <inst:Start datetime="2010-07-19T21:47:45.1734437+02:00" id="Start_C_0"
 wftype="SEQUENCE"/>
 <inst:Parameter>
 <inst:Object><![CDATA[Master's thesis]]></inst:Object>
 </inst:Parameter>
 </inst:Miss>
 <inst:Parameter>
 <inst:Room><![CDATA[Office]]></inst:Room>
 </inst:Parameter>
 </inst:Search>
 <inst:Return>
 <inst:Location><![CDATA[Desk]]></inst:Location>
 </inst:Return>
 </inst:Find>
 </inst:End>
</inst:Root>	

Torsten Matzerath Chapter 4 – History Tracing System

Page 44

Figure 10: Schema of layered provenance file

The layered structure gets clear in this example because the start element is referenced in the

miss element and this one in the search element. The start element, which has no child, is the

starting element and the element end is not referenced, as it is the last element in the work-

flow. All possible signatures and parameters are also visible in the schema file.

When the workflow is executed and the lineage file created, the web service methods use the

structure information from the schema file to sort the modules into the right order and to be

able to know if a choice or parallel region follows. Ancillary to the structure are other infor-

mation saved for every module, listed in the following table.

Chapter 4 – History Tracing System Torsten Matzerath

Page 45

Table 6: XML tags in provenance file

XML Element Meaning

Workflow name The root element of the XML provenance file
Workflow task name Representation of the workflow task which was executed
Parameters Input values of the parent workflow task
Parameter name Child of Parameters tag and contains the value of the in-

put value
Return Return values of the parent workflow task
Return name Child of Return tag and contains the value of the return

value
Regions If a parallel region exists in the workflow the region ele-

ment is inserted. It has as many children as parallel paths.
The children are named like the names of the workflow
tasks

Signature Contains the signature of the parent element with all chil-
dren excluding the signature tag

Additionally, parameters will be added for every tag shown in the following table.

Table 7: XML attributes in provenance file

Parameters of workflow tag Meaning

datetime Creation time of the tag. The web server inserts the time
id Identification to combine tag with signature
wftype The type of the current element:

wftype Meaning
SEQUENCE Normal workflow task
ROOT Root element
REFERENCE If a parallel region exists
CONTAINER Contains a parallel region
PARALLEL_REGION The complete region where

two paths are parallel
PARALLEL_SPLIT If two parallel paths start at

the task
SYNCHRONISATION If two parallel paths come

together
XOR If two paths start at the task
MERGE Here a region ends, which

started with a XOR.

As one can see, a parameter, called wftype, is part of every XML tag. This differentiation be-

tween different task types is made because they have to be handled differently. A SE-

QUENCE, for example, has always only one child element whereas the PARALLEL_REGION

element has as many children as parallel paths exist. Hence, the different workflow types are

a kind of identifier so that the web service can decide how it has to insert the element into the

Torsten Matzerath Chapter 4 – History Tracing System

Page 46

file. The same is true for a Provenance Query Interface, which shows the provenance data.

The wftype element also tells the Provenance Query Interface how to handle the data and the

children.

As one can see in Figure 10, the schema file also contains an optional Signature element.

Thus, the user can decide whether it is reasonable to add a signature to the provenance file to

trust the content. The signature element is always a child of the signed tag. How the signing

process works will be explained in the chapter “Signature”.

Figure 9 shows that all parameters and return values are inserted as new tags of the current

workflow task. They contain a serialized value in the simple data type CDATA. Indeed, it is

not always necessary to save the values in CDATA data type, but all data is converted in

CDATA data type to make them more equal.

Thus, one can sum up that the provenance XML file is always an instance of the schema file.

The schema file describes the structure of the workflow and the runtime information is insert-

ed by the web server methods in the provenance file. The provenance file is always valid

against the schema to allow the analysis during runtime of the workflow.

4.2.4 Signature

Often it is inescapable in the area of provenance to save the data in a legally binding way. As

described in the chapter “Use cases and technical requirments” legal affairs exist in the use

cases 14 and 15. The legal affairs require a mechanism to provide non-repudiation. Another

example is if acts of sale are accomplished. In this case all values have to be saved in a way

that the parties cannot doubt the contracts. In order to support a legally valid provenance, each

executer of a workflow could be asked to sign his achieved part.

The signature is done with the XML-DSig and XAdES standards. “Both standards provide a

general framework for digitally signing documents. XAdES, however, specifies precise pro-

files of XML-DSig for use with qualified electronic signatures and is thus an implementation

that follows the European Union Directive 1999/93/EC”. ([10], p. 3) In fact, the enveloped

signature is used to follow the layered structure of the provenance files. The enveloped signa-

ture is used because it enhances the layered structure and the structure of the file is not dis-

turbed.

Figure 11 depicts how the signing procedure is working. Workflow task A sends the lineage

data in the provenance file. Then, the element is signed and the signature inserted in the XML

tag A. After that, the workflow task B runs and inserts the provenance data in the file. B con-

tains element A with regard to the layered structure described before. When the signature is

Chapter 4 – History Tracing System Torsten Matzerath

Page 47

generated not only the element B is signed but also all content of the tag including A and its

signature. This advances the security and non-repudiation once again. On the web server, the

Behind method signs the tag as it is not changed after that method.

Figure 11: Mapping of workflow tasks to layers with signature ([10], p. 3)

The layered structure of the provenance file and signing every workflow step separately has

the advantage that different users of the workflow can always sign the part they executed.

Another advantage is that not all layers have to be signed and only important parts get a sig-

nature.

4.3 History tracing system in WS-VLAM

This chapter describes the changes, which are necessary to adapt the original history tracing

XML-based provenance framework for workflows, tested with JBPM, to the workflow man-

agement system WS-VLAM. The changes and enhancements will be segmented in the parts

“Architecture”, “Transmission to web service”, “The content of the XML provenance file”

and “Signature”. In every subchapter the problems of the original system will be discussed

and at the end of every paragraph follows the concrete realisation.

4.3.1 Architecture

The new architecture differs immensely from the original system. Here, the necessary changes

are especially inherent in the interface of the web server and the collection of the provenance

values. There are different reasons that make changes in the architecture inescapable.

The first reason why a new architecture has to be implemented is that WS-VLAM is running

on a grid, whereas the proof of concept achieved with the WfMS JBPM is running on only

Torsten Matzerath Chapter 4 – History Tracing System

Page 48

one machine. The problem occurring when running a workflow on a distributed system is that

the Before and Behind mechanism is not applicable. Since the WfMS distributes the workflow

tasks on different computers on the grid it cannot be guaranteed that the Before and Behind

tasks are running on the same execution node like the main module. A collection of parame-

ters or other values would be unusable.

Another important fact is that WS-VLAM has a completely different method to program

modules. In opposite to the in Java implemented tasks of the JBPM WfMS, every module in

WS-VLAM is a single program written in programming languages like C/C++ or Perl. The

communication is based on streams passing file contents from one to another module. This

means that input and output values as in Java methods do not exist. Adding tasks, which read

all provenance data is not possible to automate like for the additional tasks in JBPM.

The argument of using the additional tasks in order to be independent of the source code of

the WfMS is not important for WS-VLAM. The author has full access to the source code and

the WfMS can be extended to generate the provenance information.

Figure 12: Architecture of history tracing system with WS-VLAM

Chapter 4 – History Tracing System Torsten Matzerath

Page 49

However, not all parts of the architecture have to be changed. Indeed, the framework part of

the web server shown in Figure 12 can stay unchanged from the architecture’s point of view.

A more detailed description of the new architecture will now be given by describing the fol-

lowing figure.

In the new structure, the user’s first action is to create a workflow and save it in a XML file.

As a next step the user has to create the schema of the provenance file. The workflow file is

sent to the schema taker of the web server and analysed by the schema interface. As stated

above, it is obligatory to adapt the schema interface to the XML structure of the WS-VLAM

workflow files. This is not a problem since the structure of the workflow file provides all

needed information unambiguously and the file is in XML format, which is a condition to

create the schema file. The schema library is from its architectural perspective the same as the

one in the original provenance system. It just has to be adapted to the new collected prove-

nance values. This will be discussed in the chapters “Transmission to web service” and “The

content of the XML provenance file”.

The workflow ID still exists in the new architecture. It keeps the same functionality and helps

assigning the workflow to the generated schema and provenance files. The workflow ID is

always added to the files and is the name of the workflow file. The workflow name is accessi-

ble during the schema creation because the workflow file must be passed to the web service

and the workflow file name is useable for the provenance file creation as the RTSM can query

the file name.

The first big difference between the original and the WS-VLAM versions of the history trac-

ing system is the omission of the creation of the extended workflow. The demonstrated prob-

lems require another method to collect the provenance data. This means that the only prepara-

tion step is the generation of the schema file.

The provenance data is collected in the re-implementation of the history tracing system by

creating events. Hence, when the user runs the original workflow in WS-VLAM, events will

occur always if data relevant for the provenance system appear. Every kind of event calls dif-

ferent web service methods to send the data to the web server, which is storing the data in the

lineage file. This means two different methods passing provenance data to the web server do

not exist, but methods for every kind of event. Examples for generated events are the registra-

tion of a module, the setting of parameters or the finish of the execution.

As described previously, the procedure in the framework is the same for both versions of the

history tracing system. After passing the event values to the web server, the provenance file

Torsten Matzerath Chapter 4 – History Tracing System

Page 50

with the matching instance-ID is opened and the data is stored in the given module tag. The

instance-ID is generated by the workflow name and the current time stamp.

Indeed, it is easy to collect new provenance data. The developer has only to add a new event

and a new web service method to save the data. This is easy to realize because the new web

service methods do not affect the existing events and methods.

Anyway, it is not guaranteed that the events appear in the chronological order. It may happen

that a fileWriter module is destroyed before the forerunner is destroyed. This has an influence

on the signature and will be discussed in the chapter “Signature”. Another point arising by the

random order and the many different events is that the provenance file has to be searched re-

cursively to add the provenance data at the right module. This needs some extra time and

slows the workflow engine down. However, this effect is not too huge for small workflows

with just a few dozen modules like the BLAST workflow.

4.3.2 Transmission to web service

As stated above, the communication between the workflow management system and the web

server writing the provenance file remains. The structure is maintained because only minor

changes are necessary in the web server and the problem of the two programming languages

with Java for WS-VLAM and C# for the web server remains.

The web service client methods were inserted into the WS-VLAM source code after generat-

ing them with the wsimport.exe application. {1} After adding them to the source code of WS-

VLAM it is possible to call the web service methods by the WfMS if an event happens during

the runtime.

The following events are generated and handled by WS-VLAM. If they occur they call the

web service methods to pass information to the provenance file.

Table 8: Events of WS-VLAM, which call web service methods

Event Meaning

All events

Every event has the following parameters

moduleName: The name of the module
moduleID: The unique ID of the module
dateStump : The time stamp of the event

ModuleRegisteredEvent

Occurs if a module is created in the Run Time System Manager
(RTSM)

Chapter 4 – History Tracing System Torsten Matzerath

Page 51

Event Meaning
PortResolvedEvent

Occurs if the end of a connection between two modules was set

port: The port of the connection
portName: The name of the modules’ entry point. The
 user sets the name
hostname : The name of the host containing the con-
 nection

ConnectionDoneEvent

Occurs if the beginning of a connection between two modules
was set

port: The port of the connection
portName: The name of the module’s leaving point,
 which is set by the user
hostname : The name of the host containing the con-
 nection

ParameterSetDoneEvent

Occurs if a parameter of a module was generated with the initial
value

parameterName: The name of the parameter defined by the
 user
parameterValue: The initial value, which is assigned to the
 parameter

ParameterChangedEvent

Occurs if a parameter value was changed

parameterName: The name of the parameter defined by the
 user
parameterValue: The changed value, which is now assigned
 to the parameter

StdoutEvent

Occurs if a module writes text on the standard out

message: Contains the text written on the standard
 out

StderrEvent

Occurs if a module writes text on the standard error

message: Contains the text written on the standard
 error

StdoutClosedEvent

Occurs if the standard out stream is closed after finishing the
execution

StderrClosedEvent Occurs if the standard error stream is closed after finishing the
execution

ExecutionFinishedEvent Occurs if the execution of an event was finished.
ModuleFinishedEvent Occurs if an event is destroyed and removed from RTSM. This

is the ExecutionFinishedEvent time plus some overhead
There are also two important states, which are described now.

Table 9: Finish states of workflows in WS-VLAM

State Meaning

DONE The workflow was finished without any error

FAILED The workflow exited with an error that cannot be fixed

Torsten Matzerath Chapter 4 – History Tracing System

Page 52

If the status changes to DONE or FAILED it will be registered by RTSM and a web service

method is called to finish the creation of the provenance file with or without error flag.

The events for one module cannot appear completely randomly, as there are some rules that

define an order. This is visualized in Figure 13.

Figure 13: Order of events of WS-VLAM

The event blocks will be generated in the order as shown. However, the events in such a block

can appear in a random order. Every event is obligatory without the ModuleRegisteredEvent,

which must be generated if the module starts. If the module finishes the events ExecutionFin-

ishedEvent and ModuleFinishedEvent are mandatory, too. In the right column the number of

appearance is given whereas the latter N shows that the event can occur arbitrarily often. The

small number next to the N shows if other events can happen as often another one.

If one of the described events or states occurs, the adequate web service method is called. The

existing kinds of methods as well as the functionality will be described in the following table.

The parameters are not individually mentioned since they are the same as the variables de-

scribed together with the events. There is also one additional parameter that is important for

every method. It is the parameter provenanceFileName, which is the instance ID making sure

that the values are inserted into the right provenance file. It is created by the name of the

workflow and the time stamp.

Chapter 4 – History Tracing System Torsten Matzerath

Page 53

Table 10: Web service methods and meaning

Method name Functionality

Instanz

schemaFile
provenanceFileName
timestampHuman
timestamp
executerName
workflowName
farmingID

Creates a new instance of the provenance file and inserts the prov-
enance file in the catalogue
The path of the schema file describing the provenance file
The path of the provenance file, also instance ID
The time stamp of the creation in a human readable way
The time stamp of the creation in a technical way
The credentials name of the executer
The name of the workflow determined by the workflow file name
The ID of a farming run. To connect all files from one farming run

SendCredentials

provenanceFileName
credentials

Is called if the first event is generated. It sends the content of the
credential file to the web server
The path of the provenance file
The content of the credentials file

Initialize Is called if a module is registered. Adds the tag with the module’s
name with the starting time and the ID to the provenance file

Function for every
event

Are called if an event is generated. Adds the information of the
connection to the appropriate module

ExecutionFinished Is called if the execution of a module is finished. Adds time stamp
to the appropriate module

End Is called if a module is destroyed. Is the last event of the module
and inserts the time

Close

provenanceFileName
timestamp
status

Is called if the state changes to DONE or FAILED. Adds the end-
time or errortime to the provenance file. Closes the file and re-
moves it from the instance list. It is always the last action of a
provenance file
Name of the provenance file. Is the instance ID
The time stamp when the events happen
The exit status of the module. Either DONE or FAILED

The last part of this paragraph describes the exact behaviour on the web server and how the

provenance file creation is accomplished. As soon as a workflow is executed, the first action

on the server is the creation of a provenance file and adding the name of the provenance file

to a table containing all provenance file names. This task is done by the method Instanz. It is

called before any event is generated during the initialization phase of the RTSM. After that all

web service method calls are achieved if an event occurs. The queue of events always begins

with the ModuleRegisteredEvent that will appear at any time and call the function Initialize.

This adds the tag of the new module to the provenance file. Because it creates the tag of the

module it has to be the first event describing any lineage values of the task. Thus, problems

are circumvented since the ModuleRegisteredEvent occurs directly after the initialization of

the task and no other event can happen before.

Consecutively, the events of all modules are able to occur in a random order. As the order of

the events of one and the same module and the order between the different tasks are random,

Torsten Matzerath Chapter 4 – History Tracing System

Page 54

every module has to be searched recursively in the provenance file. This might take some

time if there are many modules but another procedure is not allowed because of the random-

ness. Every module tag is completed if the ModuleFinishedEvent occurs and one can be cer-

tain that no other event concerning the same task will happen after that. One can be sure that

it is the last event since the ModuleFinishedEvent is always thrown when destroying the mod-

ule was finished. After receiving the last ModuleFinishedEvent all modules finished and the

workflow has to be completed. If the state of the workflow changes to DONE or FAILED the

method Close is called to close the provenance file. If the workflow finishes with the state

DONE, it stops without any errors and the parameter endtime is added in the root element. In

the other case it closes the provenance file with the parameter errortime. Certainly, an error

can happen at any time during the execution of the workflow and immediately when the error

happens the provenance file is closed. The reason for immediately stopping the lineage collec-

tion is that no other events will happen and no provenance information will be collected and

written to the provenance file. Finally, the instance ID of the provenance file is deleted from

the instance list.

In order to select the created provenance files in the Provenance Query Interface the path of

every provenance file will be inserted in a catalogue file when the lineage file is created. The

catalogue file is a XML file that contains tags with every created provenance file and some

properties. The currently saved properties are workflow name, creation time, status of work-

flow, the name of the executer and the farming ID. The farming ID helps to find all lineage

files of one farming run in the catalogue. The entry in the catalogue file is accomplished by

the method Instanz and the finish status is inserted by the function Close. Moreover, two other

catalogue files exist: on the one hand a catalogue containing the paths of input files and on the

other hand the paths of all output files. The entries are created always if the method AddPa-

rameterChanged is called and the module is a fileReader or fileWriter. An explanation of the

way in which the files are used in the Provenance Query Interface is given in the chapter

“Provenance Query Interface”.

The code abridgement in Figure 14 shows some of the web server methods and their parame-

ters. Running this code calls the constructor of the class InstanceFramework. It creates an

instance of the schema file BLAST.xsd with the name BLASTInstanz.xml and inserts the path

of the instance in the catalogue with the time stamp, executer, workflow name, and farming

ID. After that, the two modules are initialized and the tags are inserted in the XML file with

ID and starting time as parameters. Then, the other provenance values follow and will be in-

serted as children of the given module. All parameters are inserted into the element infor-

Chapter 4 – History Tracing System Torsten Matzerath

Page 55

mation and ordered by the meaning of the lineage values. When the execution finishes the

ExecutionFinished function is called and the time stamps are inserted as parameters to the

module tags. The same happens with the time stamps of destroying the modules done by the

function End. At the end the function Close inserts the endtime of the workflow and sets the

status of the provenance file in the catalogue as DONE. The resulting XML file can be seen in

the “Appendix” in “Example of XML file by history tracing system for WS-VLAM”.

Figure 14: Web service calls of a fileReader/fileWriter example

4.3.3 The content of the XML provenance file

After explaining how the data is transmitted to the web server, this chapter describes how the

data is saved in the provenance XML file.

First, it can be said that the XML structure within the provenance file remains as in the origi-

nal history tracing system. It is just adapted to the new architecture with collecting the prove-

nance data via events and it is expanded to save the values described in the previous chapter.

This means that the layered structure is still used in the new history tracing system. The ad-

vantages of the layered structure as including the visualization of the workflow dependencies

and the possibility to sign every workflow module are still valid. Thus, one crucial difference

exists between the structures of the two history tracing versions.

(1) InstanceFramework ifw = new InstanceFramework("C:\\BLAST.xsd",
"C:\\BLASTInstance.xml", "Thu Feb 10 16:58:54 CET 2011",
"2011:02:10:16:58:54", "matzerat", "BLAST", "5793845");

(2) ifw.Initialize("fileWriter", "916452136", "Thu Feb 10 16:58:56 CET 2011");
(3) ifw.Initialize("fileReader", "741287972", "Thu Feb 10 16:58:55 CET 2011");

(4) ifw.PortResolved("fileReader", "741287972", "Thu Feb 10 16:58:59 CET 2011", "1234",

"port1", "node.node1");
(5) ifw.ConnectionDone("fileWriter", "916452136", "Thu Feb 10 16:58:59 CET 2011", "1234",

"port1", "node.node1");

(6) ifw.AddParameters("fileWriter", "1464339253", "filename", "C:\\Temp\\file.xml",

"Thu Feb 10 16:59:03 CET 2011");
(7) ifw.AddParameters("fileWriter", "1464339253", "farmed", "false",

"Thu Feb 10 16:59:03 CET 2011");
(8) ifw.AddParameters("fileReader", "741287972", "filename", "C:\\Temp\\input.tgz",

"Thu Feb 10 16:59:05 CET 2011");

(9) ifw.AddParameterChanged("fileReader", "1464339253", "filename",
"C:\\Temp\\input.xml",

"Thu Feb 10 16:59:06 CET 2011", "C:\\BLASTInstanz.xml");

(10)ifw.ExecutionFinished("fileReader", "1464339253", "Thu Feb 10 16:59:30 CET 2011");
(11)ifw.ExecutionFinished("fileWriter", "916452136", "Thu Feb 10 16:59:35 CET 2011");

(12)ifw.End("fileReader", "1464339253", "Thu Feb 10 16:59:37 CET 2011");
(13)ifw.End("fileWriter", "916452136", "Thu Feb 10 16:59:38 CET 2011");

(14)ifw.Close("Thu Feb 10 16:59:40 CET 2011", "DONE");

Torsten Matzerath Chapter 4 – History Tracing System

Page 56

Due to multiple starting and ending points in a workflow, created with WS-VLAM, it is nec-

essary to break the layered structure. This problem was not handled because workflows in

JBPM always have only one starting and one ending point and all paths starting at a parallel

split always synchronize at the same point. Thus, this requirement is not existing in WS-

VLAM and another XML structure has yet to be developed. The following example shows

how the new structure looks like.

Figure 15: Workflow with two end modules

Figure 16: XML provenance file with two end modules

As the example shows, task1 is the starting point of two independent paths of the workflow.

Since both paths are relying on task1 it is necessary to save it in both elements. In order to

keep the overhead as small as possible task1 is defined as an element on the highest layer and

only references are inserted into the two paths. Much overhead would arise to save the com-

plete history of task1 in the tasks two and three instead of the reference. Another characteris-

tic of a reference is that it has no parameter.

Adding a single starting point and a single ending point accessorily to the workflow to gener-

ate a workflow structure used in the original history tracing system is also no solution. At first

view this looks like a solution of the problem but it makes the creation of the provenance file

more complicated and only slides the problem to another point of the provenance file. If one

inserts one starting and one ending point it is not possible to achieve the other requirements

described in the original history tracing system regarding forks, joins and other elements. This

is a general problem because it is not easy to describe workflows defined as graphs with mul-

<Workflow>
 <task2 id="345435433" starttime="12.02.2011 12:34:56">
 <task1 id="759576896"/>
 </task2>
 <task4 id="235454667" starttime="12.02.2011 12:34:56">
 <task3 id="678456332" starttime="12.02.2011 12:34:56">
 <task1 id="759576896"/>
 </task3>
 </task4>
 <task1 id="759576896" starttime="12.02.2011 12:34:56">
 <task0 id="46556767" starttime="12.02.2011 12:34:56"/>
 </task1>

</Workflow>	

Chapter 4 – History Tracing System Torsten Matzerath

Page 57

tiple starting and ending points by XML documents, which are trees. However, the use of the

references is a good way to solve this problem by saving as few overheads as possible and

keeping the layered structure as unchanged as possible.

As stated above, one schema file is created for every provenance file. The workflow file pro-

vides some information for the schema as well, which is used as provenance data, too. It con-

tains the following information:

• The names of the execution nodes of the modules

• The names of the modules

• The IDs of the modules

• Successor and predecessor of every task

• How many connections start and end at the modules

• How many parameters every module has

Using the information provided by the events and the schema file provide, the provenance file

is created if the user runs the workflow. Besides the information that are determined by the

schema file like predecessor and successor as well as name of the execution node, the web

server will also insert the information transmitted by the events in the provenance file. The

tags that can occur in the lineage file are listed in the following table. For some elements a

code sample is inserted to visualize the content.

Table 11: Possible tags in history tracing XML file

XML Element Meaning

Workflow name The root element of the XML provenance file
Workflow task name Representation of the workflow task, which was executed
information It is a child of the module; it describes and contains all prov-

enance information, which are collected for the module
parameters It is a child of information tag. It contains all lineage infor-

mation that is dealing with parameters.

<inst:parameters>
 <inst:filename>
 <inst:initialValue time="date">C:\\input.tgz
 </inst:initialValue>
 <inst:parameterChanged time="date">C:\\input.xml
 </inst:parameterChanged>
 </inst:filename>
</inst:parameters>	

Torsten Matzerath Chapter 4 – History Tracing System

Page 58

XML Element Meaning
portStart It is a child of information tag. It contains all provenance in-

formation that is dealing with the starting point of a port

portEnd It is a child of information tag. It contains all provenance in-

formation that is dealing with the ending point of a port.

events It is a child of information tag. It contains events that are ap-

pearing at every module and which are not dependent of the
workflow structure or settings

stdoutReady It is a child of events. It contains all text that is written on
standard out

stderrReady It is a child of events. It contains all text that is written on

standard error.

stdoutClosed It is a child of events. It contains the time stamp of the clo-

sure of the standard out stream.
stderrClosed It is a child of events. It contains the time stamp of the clo-

sure of the standard error stream.
Signature It contains the signature of the parent element with all chil-

dren excluding the signature tag.
Every module tag and the root node have also parameters, which are specified in the follow-

ing table. If a module tag is missing the parameter starttime is a reference of the task and is

described in detail at another position in the provenance file as a root’s child. Some of the

<inst:portStart>
 <inst:start time="Thu Feb 10 16:58:59 CET 2011">
 <inst:id>4875756667</inst:id>
 <inst:portName>toOutput</inst:portName>
 </inst:start>
 <inst:cluster>node.node1</inst:cluster>
 <inst:port>1234</inst:port>
</inst:portStart>	

<inst:portEnd>
 <inst:start time="Thu Feb 10 16:58:59 CET 2011">
 <inst:id>890349345</inst:id>
 <inst:portName>fromInput</inst:portName>
 </inst:start>
 <inst:cluster>node.node1</inst:cluster>
 <inst:port>1234</inst:port>
</inst:portEnd>	

<inst:stdoutReady>
 <inst:text time="Thu Feb 24 17:39:57 CET 2011">
 Output Text 1
 </inst:text>
 <inst:text time="Thu Feb 24 17:42:37 CET 2011">
 Output Text 2
 </inst:text>
</inst:stdoutReady>	

<inst:stderrReady>
 <inst:text time="Thu Feb 24 17:39:57 CET 2011">
 Error Text 1
 </inst:text>
 <inst:text time="Thu Feb 24 17:42:37 CET 2011">
 Error Text 2
 </inst:text>
</inst:stderrReady>	

Chapter 4 – History Tracing System Torsten Matzerath

Page 59

XML tags that describe events also have a time attribute and will not be explained in the fol-

lowing table. The appliance of the attribute can be seen in the examples of the previous table.

Table 12: Parameters in history tracing XML file

Parameters Meaning
starttime It is a root and module parameter. The time of the workflow

/ module start
endtime It is a root and module parameter. The time when the module

is destroyed / the workflow ends
errortime It is a root parameter. The time when an error occurs in the

workflow
executefinish It is a module parameter. The time when the execution of the

module finishes
node It is a module parameter. The name of the node, which exe-

cutes the module
id It is a module parameter. The unique identifier of the module
name It is a module parameter. The name of the module shown on

the GUI of WS-VLAM
In contrast to the original history tracing, the new system saves no parameters describing the

type of the module. Storage of this value is not necessary anymore because no different types

of modules are consisting in WS-VLAM. Searching and writing data in the provenance file is

achieved by a recursive search in the document now. The loss of the information, which ele-

ments are inserted and in which order, makes it obligatory to apply the recursive search.

Like in the original system, a signature is also available for the WS-VLAM implementation of

the history tracing system. The signature will be inserted automatically by the provenance

system generated with the credentials of the executer. A more detailed description of the new

signing technique will be given in the next sub-chapter.

An example of the schema file and a XML provenance file for the BLAST workflow can be

seen in the “Appendix” in the sections “Schema file for BLAST workflow” and “XML

provenance file file for BLAST workflow with the history tracing system”.

4.3.4 Signature

The considerations of security are for the new implementation of the history tracing system as

important as for the original one. This is the reason why this feature is still available in the re-

implementation. As the re-implementation runs together with another WfMS, which has many

approaches in the field of security it will be adapted to the new possibilities.

Beforehand, it should be said that the implementation in this thesis is just a proof of concept

and some aspects do not achieve all security concepts due to a limited amount of time. None-

Torsten Matzerath Chapter 4 – History Tracing System

Page 60

theless, one can see the possibilities an enhancement could provide for security. The potential

problems of the current signing process will be pointed out in this chapter and possible solu-

tions will be discussed.

As stated above, WS-VLAM provides a security system, which can also be used in the prove-

nance system. The security in WS-VLAM is based on credentials and is used to ensure the

authenticity of the user running the workflow and using the resources on the grid. Now these

credentials, which are anyway created for workflow execution, will be used for the signing

process of the provenance data. The complete process for signing is working as follows.

When the workflow is started the credentials are created and can be accessed by the RTSM

process of WS-VLAM. If the first event is generated, the credentials are transmitted to the

web server by calling the method SendCredential. A string containing the credentials and pri-

vate key is transmitted to the web server. It is obvious that this practice is not secure because

other persons could read the credentials and the private key so that security is not assured an-

ymore. One alternative could be to remove the process of sending the credentials via web ser-

vice methods and use the MyProxy Credential Management Service instead. This allows sav-

ing X.509 proxy certificates with a temporal password in a repository and later being able to

download the certificate above the network. In the case of the history tracing system the WS-

VLAM process can save the credentials with the private key in the MyProxy repository and

the web server can download the information to sign the document. [23]

As a next step, after transmitting the certificate file to the web server, the information has to

be saved in a file in X.509 format. Since the C# classes in the namespace Sys-

tem.Security.Cryptography.Xml cannot handle the format transmitted from WS-VLAM it is

necessary to convert the saved file. This is done by the openssl command and as a result a file

in the PKCS#12 format with the file ending .pfx is created. {3} The new format contains the

same information but saves them in another structure than the old one. [22]

If a module finishes the execution now and if the event is occurring, the signing process has to

be started using the private key saved in the .pfx file. To be sure that the signature is not de-

stroyed one has to reassure that no event happening after the signing process is inserted in the

signed module. Here, a problem occurs due to the fact that the modules can happen randomly.

As stated above is it possible that a successor is destroyed after the predecessor. A signature

would be invalid if the values of the predecessor are inserted in the signed tag. To be sure that

the elements are occurring in the right order the executionFinished event was developed,

which is always in the right order. Thus, events like stdoutClosed are always happening after

the exectutionFinished event. These cannot be collected when the user wants to sign the prov-

Chapter 4 – History Tracing System Torsten Matzerath

Page 61

enance file. However, this is no problem since these events are not very important for the

analysis of the results.

Now the signing process is finished and the data can be validated with the same certificate

after finishing the workflow. The validating process could be accomplished in the Provenance

Query Interface to be implemented by clicking a button because this is the user-friendliest

technique.

4.4 Conclusion

This main chapter begins describing the original history tracing system and lies the main fo-

cus on the aspects “Architecture”, “Transmission to web server and web service methods”,

“The content of the XML provenance file” and “Signature”. In the course of the chapter the

necessary re-implementations in the history tracing system and the WfMS are pointed out

with the main focus on the same aspects as for the original system. This paragraph summariz-

es the main results of the discussion in the chapter.

There are two facets, which completely changed compared to the original history tracing sys-

tem. The first is that the creation of the extended workflow is replaced by the provenance col-

lection by events. Thereby, the accountability of the provenance data collection changed from

the workflow to the workflow management system. This means that the functions that send

the provenance data to the web server are not called by the workflow anymore but have to be

added to the source code of the WfMS. It also implies that access to the source code exists.

Ancillary to the necessity to be able running the provenance system with WS-VLAM there

are also advantages like the possibility to collect more different data. The connection to the

WfMS has the advantage that many data is not passed to the workflow and this data could not

be collected with an extension of the workflow including the workflow name or the executer.

The other aspect, which is adapted in the re-implementation of history tracing, is the en-

hancement of the XML structure. On the one hand the adaptation of multiple starting and end-

ing points has been added and on the other hand the XML file was adapted to the event-based

structure with events the users also asked for. The enlargement to be able to save workflows

with multiple starting and ending points was necessary due to the fact that this kind of work-

flows was not examined. The new data that is saved in the provenance file do not change the

XML structure in an immense way. Thus, the new data immensely appreciate the history trac-

ing system because the system is more adapted to the user’s needs now.

Torsten Matzerath Chapter 4 – History Tracing System

Page 62

Summing up, one can say that most parts of the architecture of the history tracing system

could be taken over for WS-VLAM and the deployment of the web server based technique

was successful and only minor changes are necessary in the web server for a new WfMS.

Other aspects of the original system like the security aspect and the schema creation are also

good fundaments to adapt the system to WS-VLAM or other WfMS.

Chapter 5 – Provenance Query Interface Torsten Matzerath

Page 63

5 Provenance Query Interface

The Provenance Query Interface was developed in close collaboration with the bioinformati-

cians of the Academisch Medisch Centrum (AMC) of the University of Amsterdam who are

using the BLAST workflow for their research. After discussing which provenance data can

and should be collected, the Provenance Query Interface was designed to support them in

doing their analysis on the workflows.

In this chapter, it will be discussed which analysis can be done with the provenance data and

how the Provenance Query Interface should be designed to display the data first. The second

paragraph describes the resulting implementation and the functionality of the interface.

5.1 Provenance Query Interface Analysis

The need for implementing a Provenance Query Interface is obvious. The structure of a XML

file as it is used in the history tracing system can be very complex and for many users it is not

easy to find out the information they are looking for. An interface can help to visualize the

data concerning the needs of the scientists. To learn about the requirements of the users, espe-

cially from the BLAST users, several meetings were held with the intention to develop a

Provenance Query Interface feasible by users of other workflows and designed in a way that

different user groups can use it.

At the beginning of the discussions it was emphasised that it is indispensable to select prove-

nance files by categories. A selection that filters the provenance files by different categories is

necessary as the complete data set of provenance files will extend after every run and it gets

too confusing to handle all files at once. The categories could be the name of the workflow

described by the provenance file the time when the workflow was executed. The latter one

should be specified by a time span since the user does not always know exactly when he exe-

cuted the workflow. Moreover, it is reasonable to categorize according to the executer of the

workflow, because one may not be interested in the results of others. Beyond, it is possible to

select all workflows by the state, which can be Running, Finished Correct or Finished Error.

To be able to select workflows by input or output files it is achievable to insert a file name

and get all provenance files using or generating these files.

When the choice is done, all found provenance files should be listed and the user can select

them in order to display the provenance information in detail. Here, it is possible to select a

Torsten Matzerath Chapter 5 – Provenance Query Interface

Page 64

single provenance file or a set of provenance files that were executed in one farmed run and

achieve the settings. The selection of a farming set is sensible because it helps to see at first

glance which of the workflows finished correctly and which not, so that the definition of sta-

tistical values is facilitated.

After collecting a single provenance file, the user should be able to view the provenance data

saved in the file. On the one hand, an overview should be given by re-drawing the workflow

as a graph showing all modules that were executed so that it can be seen at one sight which

modules are dependent on each other and which modules were not executed. On the other

hand, all other provenance data selected by the events has to be depicted. It was decided to do

this with a replay mechanism that prints out the contents of the events that occurred during the

runtime. During the replay, all events will be displayed in the same time gap as they occurred

in the real workflow helping to demonstrate the events or errors in time dependence. Visuali-

zation like that helps to point out the dependence between single actions of the WfMS and

how errors arose.

Since persons with different roles and a different view on the data will use the Provenance

Query Interface it must be possible to select messages that should be displayed. That means

that a scientist developing the workflow might want to know information about the dependen-

cies and if the execution finished correctly, whereas an end user is more interested in the input

and output files. At the end, the user interface should be useful for almost all operators and for

this, a selection of displayed provenance data should be implemented that allows to select the

messages, which can answer his/her queries.

The query interface should also contain some features helping the users to create a table like

the one in the section “Suggestions of BLAST users”. Two possibilities will be implemented

to provide the users the needed data. The first one saves all provenance data in a text file be-

cause some information is only required for one workflow or for one publication. The format

of the file should be easy to parse in order to deal with the data by shell programs or by Excel

macros, which can collect the required data that is too rarely used for implementing them on

the Provenance Query Interface. The other feature in the Provenance Query Interface is a kind

of graph that shows the execution times of the modules and those failed. A user can see the

modules causing errors and those using most of the resources. Beyond, it should be possible

to get also an overview over all runs of a farming execution. Here it would be beneficial to

see all execution times of workflows and which of them did not finish correctly. Using this

additional application makes it possible to find all provenance files with errors, identify them,

Chapter 5 – Provenance Query Interface Torsten Matzerath

Page 65

and select the provenance file to analyse all details causing the error during execution and

analyse it.

To summing up, one can say that the Provenance Query Interface is a tool to browse and read

the provenance files. The user can see the complete course of action of the workflow and ana-

lyse it in detail. The architecture of the interface was made in close collaboration with the

users and many of the features were added by request of them.

5.2 Provenance Query Interface Implementation

This section describes the design and the functionality of the Provenance Query Interface. It

will be described how the interface looks like and how to work with it.

When the program is started, a window appears that allows the user to select a set of prove-

nance files by categories. Figure 17 shows the parameters, which can be chosen to narrow the

collection of provenance files down. The user can make settings like the workflow name, a

time span during which the workflow was executed, the name of the executer, the status of the

workflow, the input file name and the output file name. It is feasible to fill out any field but it

is not mandatory.

Figure 17: Starting window of Provenance Query Interface

Pressing the Search button starts a search algorithm running through the catalogues and

checking if a provenance file fulfils the settings made in the interface. All provenance files

achieving these requirements will be mentioned and listed at the left side in the tree view of

the window that appears. Besides the listing of every single workflow, folders containing runs

of one farming workflow are also shown. The aggregation of the provenance files of one

Torsten Matzerath Chapter 5 – Provenance Query Interface

Page 66

farming run is meaningful as they have a common context and they belong together to one run

with different parameters. The belonging to one farmed run can be ascertained using the cata-

logue file because every instance of the farmed run gets the same farming ID.

Figure 18: Main window of Provenance Query Interface

After pressing on a single provenance file a graph appears in the area on the right top of the

window. This graph contains the executed modules of the workflow and is drawn with the

Graphviz dot program that draws circles as well as lines and sets the positions automatically if

the predecessors and successors are given. {2}

The buttons on the bottom of the window are also changing by selecting a provenance file.

They get enabled and allow the user to start the replay that visualizes the provenance data.

Clicking the Play button starts moving the time slider and the events are printed in chronolog-

ical order on the text area on the right bottom of the window. All events are printed in the

same format with the time and the module name in the heading making it easier to see when a

new event appears. The other content of the event and all other values saved in the prove-

nance file are printed below the heading. By using a menu entry the user has also the possibil-

ity to change the duration of the replay from sixty seconds to any value of his/her choice. In

that case, the replay mechanism maintains the time spans between the events but compresses

it to the replay length that was set.

Chapter 5 – Provenance Query Interface Torsten Matzerath

Page 67

The remaining buttons have the following functionality. The Pause button stops the replay

process and can be continued later with the Play button. The Clear button deletes all printed

events in the text area. The radio buttons Play forwards and Play backwards allow running

the replay from beginning to end or vice versa. This option allows configuring the Provenance

Query Interface for the needs of every user. Additionally, the Select Messages button opens a

window allowing the selection of the messages, saved in the provenance file, which should be

printed in the text area. The selection of the messages is divided into two tabs with the first

tab containing all messages, which are important for end users analysing the output and the

process of the workflow. These messages are selected as default because users working on

those topics will mainly use the interface. The second tab contains messages, which could be

more interesting for workflow or application developers and these messages are not selected

as default. Figure 19 shows which messages can be selected in the two tabs.

Figure 19: Message selection window of the Provenance Query Interface

Below the tree view showing the provenance files is the Show Graph button that shows a dia-

gram with different content depending on the selection in the tree view. If a single workflow

is selected in the tree view, the diagram shows the starting and ending times of every module.

The green bar shows the time span between start and execution finish, the blue one shows the

time between execution finish and destroying the module. If a bar is printed in red colour the

module was cancelled and did not finish properly. Generally, the time scale of the diagram is

in seconds and the start of the workflow has the value zero and the highest value is the last

measured time in the provenance file. If the user selects a farmed run of a workflow in the

tree view and clicks the Show Graph button the diagram contains the starting and ending

times of all workflows of the farming run. Here, every bar stands for a workflow and not for a

module like in the other kind of diagram. In this graph, the green colour shows the starting

and ending times of a correctly finished workflow and the red colour the execution times of a

Torsten Matzerath Chapter 5 – Provenance Query Interface

Page 68

workflow with errors. The diagrams will help to see at one sight which of the workflows or

modules finished with errors and how long they need. The figures show the two different

graphs.

Figure 20: Graph with times of modules

Figure 21: Graph with times of farmed run

The last options on the interface are located in the Options menu with three different items.

The first is Delete All Files, which removes all files shown on the Provenance Query Interface

from the hard disk and all references of those files from the catalogues. The second menu

item is Set Replay Length opening a text input field to set the new replay length in seconds.

Finally, the menu item Export Output To File transforms the events saved in the provenance

Chapter 5 – Provenance Query Interface Torsten Matzerath

Page 69

file to a text format. This format contains every event in a single line and separates the infor-

mation time stamp, module name, event description and all other values by a tabulator so that

it is easy to parse the text or insert it in Excel.

Figure 22: Menu of Provenance Query Interface

To sum up, the Provenance Query Interface shows a set of provenance files, which can be

defined by setting parameters and helps to comprehend the temporal activity with a replay

mode. Some additional features were implemented like the diagrams or the transformation to

a text file to fulfil the users wishes and give them a tool to collect the needed information

more easily.

Torsten Matzerath Chapter 6 – The Open Provenance Model

Page 70

6 The Open Provenance Model

The goal of this chapter is to explain and analyse the Open Provenance Model (OPM). After

giving a short introduction of the background of OPM, the specification of the model will be

explained in detail. The chapter closes with a view on the XML representation of the OPM.

6.1 Introduction

As stated above, provenance is one of the best approaches to analyse results and the adjust-

ment of errors generated by scientific workflows. Workshops were initiated to discuss the

chances and problems of provenance for workflow management systems. The International

Provenance and Annotation Workshop (IPAW ’06) is one workshop in the abundance of

workshops in the area of provenance. The main topic of the meetings was to find a standardi-

zation of provenance. Since all participating teams introduced different provenance systems

and because it was not easy to find out the pros and cons of all systems, the responsible per-

sons decided to initiate a Provenance challenge to compare the different systems. Up to twen-

ty teams participated in the standardization of a provenance system during the four challenges

between 2006 and 2010.

The four challenges focused on different areas of the provenance collection. The first chal-

lenge was a general workshop to understand every single concept and which data is necessary

in the term of provenance. The second challenge focused on the interoperability of the data

between the workflow management systems. As a result of this challenge, the first specifica-

tion of the Open Provenance Model (OPM v1.00) was defined. The third challenge was held

to test the provenance specification practically with a given workflow and the fourth chal-

lenge brought all results, collected in the previous challenges, together. It specified all parts of

the provenance from understanding the provenance, over problems of inter-operability to test-

ing the OPM solution.

In the meantime two enhancements of the OPM v1.00 specification were developed with the

specifications OPM v1.01 and OPM v1.1. These specifications of the Open Provenance Mod-

el are very abstract definitions that point out which kind of data and types of causal depend-

encies can be stored for provenance. However, it is not defined in which format the data

should be stored or how the workflows should provide the data. Hence, the Open Provenance

Chapter 6 – The Open Provenance Model Torsten Matzerath

Page 71

Model does not provide any implementation or protocols, which can be used to save prove-

nance data. [17]

In order to collect provenance data, following the Open Provenance Model, scientists of the

University of Amsterdam implemented the specification for the workflow management sys-

tem WS-VLAM. Originally this implementation was supposed to be used to compare it with

the history tracing system but it was not possible to run the program and collect provenance

data, which can be compared to the output of the history tracing system. For that reason the

comparison will be on a theoretical layer. However, the procedure and the results will be dis-

cussed in more depth in the section “Comparison of OPM and history tracing system”.

6.2 The Open Provenance Model specification

This section describes the content of the Open Provenance Model specification version 1.1.

[13] The different definitions and elements of OPM will be described separately with differ-

ent headings.

Requirements and Non-Requirements

First, the OPM specification provided as well as specially not provides will be depicted. The

authors established a list of requirements that the new specification should fulfil.

1. The OPM has to allow the exchange of provenance information between different im-

plementations of the provenance system following the specification. Therefore a com-

patibility layer is inserted to the model.

2. It also supports the possibility to share tools operating with OPM data of other people

to advance the spread of the OPM idea.

3. Another very important requirement that will be answered is that the paper gives a

very precise and technology-agnostic definition of provenance so that everybody has

the same background on provenance.

4. In the qualification it is also mentioned that a digital representation of provenance for

any “thing”, whether produced by computer systems or not, will be defined.

5. The specification also allows different levels of lineage paths to co-exist.

6. The last requirement of OPM is that a core set of rules has to exist that allows making

inferences on the provenance representation.

Thus, there are also some non-requirements that will not be answered by the specification and

have to be replied by every developer himself. These non-requirements are explicitly men-

Torsten Matzerath Chapter 6 – The Open Provenance Model

Page 72

tioned because the authors want to highlight that OPM does not contain technical restrictions

and is inter-operable.

1. The first non-requirement includes that it is not the purpose to define the internal rep-

resentations of the provenance data and how to store and manipulate it.

2. This also means that the developer can decide for example if he uses XML, databases

or any other storage systems to save the provenance data. Thus, other documents exist

that define realisations of OPM in XML, RDF or other types.

3. The specification does not define protocols saying how to store the provenance data in

repositories.

4. The techniques of querying provenance information will not be answered by the speci-

fication, either.

Nodes

As Provenance always is a state of all described objects in the past with the main focus on

what caused the objects or “things” to be as they are, OPM consists of directed graphs, which

show those dependencies. The following part of the specification discusses the main compo-

nents of the graphs and how they help to visualize the lineage data.

One component is the nodes that are representing material objects like digital data or cars and

immaterial objects like decisions. The nodes are describing the “things” at a special point of

time in the past and how the saved state came out to be. The following three different kinds of

nodes exist in the OPM graph representation. ([13], pp. 2-3)

• Artifact

Immutable piece of state, which may have a physical embodiment in a physical object,

or a digital representation in a computer system.

• Process

Action or series of actions performed on or caused by artifacts, and resulting in new

artifacts

• Agent

Contextual entity acting as a catalyst of a process, enabling, facilitating, controlling, or

affecting its execution.

Artifacts are always immutable objects that exist at a special point of time. Processes can

change the artifacts and as a result a new artifact is created. The processes can be observed by

agents, which can for example be persons or computing nodes that control the activity of the

processes.

Chapter 6 – The Open Provenance Model Torsten Matzerath

Page 73

Since OPM does not only define which data should be collected but also how it should be

visualized different icons for the three nodes are defined, depicted in the following figure.

Figure 23: Illustration of Artifact, Process and Agent ([13], p. 5)

Causal Relationships

In order to constitute dependencies between the processes, the specification defines the di-

rected graph with the nodes artifact, process and agent and the following five edges. ([13], p.

4)

Artifact Used by a Process: In a graph, connecting a process to an artifact by a used edge is

intended to indicate that the process required the availability of the artifact to

complete its execution. When several artifacts are connected to a same process by

multiple used edges, all of them were required for the process to complete.

Artifacts Generated by Processes: In a graph, connecting an artifact to a process by an edge

wasGeneratedBy is intended to mean that the process was required to initiate its

execution for the artifact to be generated. When several artifacts are connected to

a same process by multiple wasGeneratedBy edges, the process had to have begun,

for all of them to be generated.

Process Controlled by Agent: The assertion of an edge “was controlled by” between a pro-

cess P and an agent Ag indicates that a start and end of process P was controlled

by agent Ag.

Process Triggered by Process: A connection of a process P2 to a process P1 by a “was trig-

gered by” edge indicates that the start of process P1 was required for P2 to be able

to complete.

Artifact Derived from Artifact: An edge “was derived from” between two artifacts A1 and

A2 indicates that artifact A1 may have been used by a process that derived A2.

As one can see, every of the five defined edges represent another combination of the three

nodes. The following picture summarizes the different edges and the involved edges.

Torsten Matzerath Chapter 6 – The Open Provenance Model

Page 74

Figure 24: Edges defined in OPM ([13], p. 5)

Summing up, one can define causal relationships, to which edges belong, as follows: ([13], p.

6)

Causal Relationship: A causal relationship is represented by an arc and denotes the presence

of a causal dependency between the source of the arc (the effect) and

the destination of the arc (the cause).

Roles

The edges Used, Was Generated By and Was Controlled By, shown in Figure 24, additionally

have denoted by the letter R. Roles can be necessary and helpful if several artifacts are used

by a process or different processes are controlled by one agent. Different roles help to differ-

entiate the edges and make the allocation of the edges to the nodes possible. An example is a

division using two numbers with the roles dividend and divisor, and producing two other

numbers with the roles quotient and rest. The roles have just the task to help the user to dif-

ferentiate the artifacts and allocate the edges and the meaning.

The two edges Was Triggered By and Was Derived From can be used to show the OPM

graph in a data view or in a process-oriented view. The Was Triggered By edge creates a pro-

cess-oriented view as artifacts between two processes are faded out in the graph and a more

detailed view on the processes that took place is possible. If the processes are hidden as in the

Was Derived From edge a data view is shown in the lineage graph. Here, a more detailed look

on the generated objects is provided and it helps to analyse the results.

Chapter 6 – The Open Provenance Model Torsten Matzerath

Page 75

The following example depicts an OPM graph with all defined nodes and most causal rela-

tionships. The example shows that John is baking a cake with the ingredients butter, eggs,

flour and sugar. Since the process bake has several Used edges they all contain a role to differ

them more easily.	

Figure 25: Example of OPM graph with baking process ([13], p. 10)

	

Overlappings and Hierarchical Descriptions

An enhancement of the previously described graph is overlappings and hierarchical descrip-

tions of the OPM data. An example, which points out the appliance of the hierarchical graphs,

is adding one to all values of a list with the values (2,6). The OPM graph shows how the re-

sulting list (3,7) was generated. The following figure shows the process in an OPM graph in

two different levels of details. The two sub-graphs are called overlapping accounts because

they share the same common nodes. As the darker graph contains more details than the red

one it is a refinement of the red sub-graph. A problem that might occur when overlapping

graphs are used is that cycles are generated. Then it is necessary to insert Was Derived From

edges to accent that the different sub-graphs show the workflow in different refinements.

Torsten Matzerath Chapter 6 – The Open Provenance Model

Page 76

Figure 26: OPM graph with overlapping sub-graphs ([13], p. 12)

Times

Times can also be added to the provenance data and to the graphs. An important aspect is that

times in OPM are not influencing the causality of modules. The edges are generated only by

the five defined causal relationships. If synchronized clocks are used for all provenance data,

the time of the cause has to be greater than the origin of it. Time can be used for validating

causality claims in the case of a single clock, too. Four different times exist in OPM, at which

creation and use times are utilized together with artifacts and the times starting and ending

for processes. The following figure shows the usage of the different times and the dependence

of the times that exist due to causal relationships.

Chapter 6 – The Open Provenance Model Torsten Matzerath

Page 77

Figure 27: Time dependencies in OPM ([13], p. 16)

	

Completion and Multi-Step Edges

The two edges Was Triggered By and Was Derived From are so-called completion rules. The

name is used as they reduce the OPM graphs by the artifacts or processes. Figure 28 shows

the completion processes.

Figure 28: Completion in OPM ([13], p. 17)

If users need information about causes of artifacts, it is sometimes necessary to view not only

the direct neighbours but also indirect causes with multiple transitions. To show edges that

express these indirect causes four additional edges are defined: the Multi-Step Was Derived

From and three kinds of the Secondary Multi-Step edges. ([13], p. 18)

Torsten Matzerath Chapter 6 – The Open Provenance Model

Page 78

Mulit-Step WasDerivedFrom: An artifact a1 was derived from a2 (possibly using multiple

steps), written as a1 →∗ a2, if a1 Was Derived From an artifact that was a2 or

that was itself derived from a2 (possibly using multiple steps). In other words, it

is the transitive closure of the edge Was Derived From. It expresses that artifact

a2 had an influence on artifact a1.

Secondary Multi-Step Edges:

• Process p used artifact a (possibly using multiple steps), written p →∗ a, if p used an

artifact that was a or Was Derived From a (possibly using multiple steps).

• Artifact a was generated by process p (possibly using multiple steps), written a →∗ p,

if a was an artifact or was derived from an artifact (possibly using multiple steps) that

Was Generated By p.

• Process p1 Was Triggered By process p2 (possibly using multiple steps), written p1

→∗ p2, if p1 used an artifact that was generated or Was Derived From an artifact (pos-

sibly using multiple steps) that was itself generated by p1.

“The four relationships, and associated inferences, are illustrated in Figure 29. In this figure,

plain edges represent single-step dependencies, whereas dashed edges represent multi-step

dependencies. For instance, from p2 → a3 → a2 we can infer p2 →∗
 a3 →∗

 a2 and p2 →∗
 a2,

by “eliminating” a3.” ([13], p.18)

Figure 29: Example of Multi-Step edges in OPM ([13], p. 19)

	

Chapter 6 – The Open Provenance Model Torsten Matzerath

Page 79

Causality Graph Data Model

Finally, all previously defined components of the OPM will be given in a causality graph data

model without the time-set. The figure shows which components exist and how they are gen-

erated.

ProcessId

ArtifactId

AgentId

Role

Account

Value

Process

Artifact

Agent

Used

WasGeneratedBy

WasTriggeredBy

WasDerivedFrom

WasControlledBy

Overlaps

Refines

OPMGraph

:

:

:

:

:

:

=

=

=

=

=

=

=

=

=

=

=

primitive set

primitive set

primitive set

primitive set

primitive set

application specific set

ProcessId ⟶ Value ×ℙ(Account)

ArtifactId ⟶ Value ×ℙ(Account)

AgentId ⟶ Value ×ℙ(Account)

ProcessId × Role × ArtifactId × ℙ(Account)

ArtifactId × Role × ProcessId × ℙ(Account)

ProcessId × !"#$%&&'(×ℙ(Account)

ArtifactId × !"#$%&'#() × Value ×ℙ(Account)

ProcessId × Role × AgentId ×ℙ(Account)

Account × Account

Account × Account

Artifact × Process × Agent × ℙ (Used) ×

 ℙ (WasGeneratedBy) × ℙ (WasTriggeredBy) ×

 ℙ (WasDerivedFrom) × ℙ (WasControlledBy) ×

 ℙ(Overlaps) × ℙ(Refines)

([18], p. 16)

6.3 The Open Provenance Model XML schema

Although no XML representation is described in the Open Provenance Model specification,

the OPM community developed a XML schema. This schema is available on the official

Open Provenance Model website and contains the schema itself and Java libraries which han-

dle XML provenance files. OPMX defines which types for entities exist and how they are

defined. This chapter will explain the content of a XML file based on the OPMX schema. [17]

[18]

(Process Identifiers)

(Artifact Identifiers)

(Agent Identifiers)

(Roles)

(Accounts)

(Values)

Torsten Matzerath Chapter 6 – The Open Provenance Model

Page 80

One of the goals of the schema is to define a XML serialization that can be converted into

RDF format and vice-versa. RDF stands for Resource Description Framework and is a family

of the World Wide Web Consortium (W3C) specifications and helps to define directed graphs.

The data can be serialized by the XML format, databases or other formats. [19]

All nodes and edges, described in the previous paragraph, are defined in this schema and the

information that can be saved in addition to the elements is also defined. To describe the

XML content more in detail the following sample is given.

Figure 30: Example of OPM graph

Figure 31: XML representation of OPM provenance file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<opm:opmGraph xmlns:opm="http://openprovenance.org/model/v1.1.a"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://example.com/" id="gr_114">
 <opm:accounts>
 <opm:account id="black"/>
 </opm:accounts>
 <opm:processes>
 <opm:process id="p1">
 <opm:account ref="black"/>
 <opm:label value="PC1 Workflow"/>
 </opm:process>
 </opm:processes>
 <opm:artifacts>
 <opm:artifact id="a5">
 <opm:account ref="black"/>
 <opm:label value="Atlas X Graphic"/>
 </opm:artifact>
 </opm:artifacts>
 <opm:agents>
 <opm:agent id="ag1">
 <opm:account ref="black"/>
 <opm:label value="John Doe"/>
 </opm:agent>
 </opm:agents>
 <opm:causalDependencies>
 <opm:wasGeneratedBy id="g_107">
 <opm:effect ref="a5"/>
 <opm:role id="r_106" value="x"/>
 <opm:cause ref="p1"/>
 <opm:account ref="black"/>
 </opm:wasGeneratedBy>
 <opm:wasControlledBy id="c_113">
 <opm:effect ref="p1"/>
 <opm:role id="r_112" value="user"/>
 <opm:cause ref="ag1"/>
 <opm:account ref="black"/>
 </opm:wasControlledBy>
 </opm:causalDependencies>

</opm:opmGraph>	

	

Chapter 6 – The Open Provenance Model Torsten Matzerath

Page 81

The XML serialization shown in Figure 31 represents the graph in Figure 30. The three dif-

ferent nodes process, artifact and agent are stored in different tags to delimit the three differ-

ent kinds of nodes. They all contain three values: the unique ID, the account they belong to

and the label, which will be presented in the graph. The account is also a separate tag, which

contains all accounts that exist in the provenance file. The last category that can be found in

an OPM file is the tag causalDependencies. This contains XML nodes that represent the five

different edges. In this example the connections wasGeneratedBy and wasControlledBy exist

and embody information like beginning and ending node of a connection and ID.

Torsten Matzerath Chapter 7 – Comparison of OPM and history tracing

Page 82

7 Comparison of OPM and history tracing system

In the course of the thesis the discussion of the term of provenance and which data have to be

collected in a lineage file, the description how the adaptation of the history tracing system was

accomplished and the definition of the Open Provenance Model were performed. This chapter

points out the differences between the Open Provenance Model and the History-tracing XML-

based Provenance Framework for Workflows with the achieved knowledge about the two

models. The main focus of the comparison will be laid on the technical requirements, which

were discussed and if the models can answer them. The sub-sections will describe the con-

cepts of the provenance systems and the adaptation to WS-VLAM as well as the adjustment

to other WfMS. Furthermore, accomplished and future adaptations of the history tracing sys-

tem learned by OPM will be discussed. The chapter closes with a conclusion of the compari-

sons. At the end of three sections tables are added to summarise the conclusions and contrast

them.

7.1 Approach of comparison

As stated in the “Introduction”, one of the main goals of this thesis is to compare the two

provenance systems especially in conjunction with the workflow management system WS-

VLAM. As the comparison has to be laid on a common basis both systems were adapted to

the workflow system WS-VLAM. This has the advantage that all provenance data generated

by the workflow management system and used as input for the provenance systems is the

same. After running the two systems with WS-VLAM workflows the provenance data can be

compared and advantages and disadvantages can be highlighted.

This was the plan to accomplish the comparison as effectively as possible with most benefit

for the developers and users of the workflow management system and the provenance systems.

A comparison like that is very close to the users’ needs and can be discussed with them very

well because it is based on real provenance output. Theoretical comparisons often cannot cov-

er all eventualities because the systems are too complex.

The connection of the history tracing system with WS-VLAM was no problem and prove-

nance data could be collected using the re-implementation of the history tracing system. In

order to integrate OPM with WS-VLAM the implementation of the University of Amsterdam

should be used, as this implementation already exists. However, it was not possible to collect

Chapter 7 – Comparison of OPM and history tracing system Torsten Matzerath

Page 83

provenance values with that OPM implementation and it was not possible to fix the problems

during this thesis.

Nevertheless, there will be a comparison of the two systems with a shifted focus from the

practical to a theoretical comparison of the two provenance systems. Examples of topics that

will be compared are the concepts, the security or the possibilities to expand the systems. The

fact that a comparison on a theoretical layer is not detailed enough is only conditionally true.

The knowledge about the underlying WfMS and the re-implementation of the history tracing

system for WS-VLAM weakens the disadvantage of a theoretical comparison.

7.2 Comparison of concepts

This section will point out the differences between the Open Provenance Model and the histo-

ry-tracing XML-based Provenance Framework for Workflows. The focus of the comparison

is laid on an abstract level and decoupled from any workflow management system. The com-

parison will be structured in sections that are oriented on the technical requirements of the

chapter “Use cases and technical requirments”. Every part discusses if the provenance sys-

tems answer the technical requirements and the way in which they do it.

The goal of the two systems is the same as they are running during the execution of a work-

flow to record how a specific status at a certain point of time was created. The provenance

systems can save the states of variables and parameters of a workflow, and allow tracing back

to the origin of the results. Thus, there are differences in the way they collect the data, which

will be discussed in this chapter. The specification of the Open Provenance Model is an ab-

stract definition that appoints the kinds of data and types of causal dependencies that can be

stored. It does not state in which format the data should be stored or how programs can access

the data of the workflow. Hence, the Open Provenance Model does not provide any imple-

mentation or protocols in the core specification, which can be used to store provenance data.

In contrast, the history tracing system is a ready-implemented framework, which can be used

to store the provenance data of arbitrary workflow engines. For the comparison of the two

systems, the consideration of the history tracing system will be brought to the same abstract

level as the OPM specification.

Different Views on Provenance Data

As previously described, different views on provenance data are a very important technique to

customize the provenance interface and show only the interesting data to every user group.

Torsten Matzerath Chapter 7 – Comparison of OPM and history tracing

Page 84

However, not only the interfaces are important to visualize different views but also the data

collecting and storing part of the provenance systems. The differences in saving and visualiz-

ing provenance data for different views will now be described.

OPM contains three different nodes, which represent a state of a thing (artifact), an action

performing an artifact (process) and an entity that controls a process (agent). Besides the

nodes different edges consist, which show the dependencies of the nodes. Using the Comple-

tion and Multi-Step Edges described in the chapter “The Open Provenance Model specifica-

tion”, it is additionally possible to show the graph in a process or data oriented view, interest-

ing for different user groups. The dataflow-oriented view consists mainly of artifacts and does

not visualize the processes that are in between the artifacts. In opposite to that the process-

oriented view shows only the processes and hides the artifacts that are generated or used. This

can be interesting for users that have a different background and want to analyse other aspects

of a workflow.

In opposite to OPM, in the history tracing system exists only one kind of node that stores all

provenance information of the workflow, and is called sequence in the history tracing system.

The other nodes that exist represent only different workflow actions like fork, join or decision

and define the course of the graph. However, the single task contains information that can be

allocated to the OPM nodes artifact and process. The stored changes of a workflow module

like parameters or input and output values are an artifact combined with processes that change

the modules. This means that a node of history tracing does not only contain the state of a

“thing” at a special point of time, but all input as well as output values. It also contains the

parameters with all changes during its lifetime. Most times the agent can also be found in his-

tory tracing system since it saves the executer of a module and the computing node. Thus, an

agent can be built by different information saved in the history tracing system. Although the

history tracing system does not describe different views in the concept, it is possible to pro-

vide the data that is necessary to show the graph in the two views. To show different views an

additional logic has to analyse the collected data and allocate it to the three nodes.

Knowing that history tracing saves all data that is necessary to differ between artifacts, pro-

cesses and agents it is obvious that the five different edges can be shown in the history tracing

system, too. Summing up, one can say that both systems save all data necessary for the crea-

tion of artifacts, processes and agents so that different views are easy to provide. However,

OPM saves the data in the storage system making it easier for the provenance interface to

visualize the data. For history tracing most of the complexity to show different views has to

be implemented in the provenance interface. Moreover, the Open Provenance Model orders

Chapter 7 – Comparison of OPM and history tracing system Torsten Matzerath

Page 85

data belonging to one of the three categories artifact, process and agent whereas the history

tracing system sorts the modules according to their forerunner and follower.

Reproducibility in Workflows and Exchange Provenance Information

Reproducibility is one of the most important aspects in provenance. This means that the prov-

enance system should allow using the provenance data to re-run the workflow. In the area of

the concepts of the provenance systems are only one part that defines the usability of repro-

ducibility. The concepts can only define which provenance data will be saved. Both systems

save the most important parts of the reproducibility data so that reproducibility can be provid-

ed after the handling of the data limitations are especially given because of the data that can-

not be provided by the WfMS.

The exchange of provenance information is different in the two systems. Since up to twenty

teams from institutions around the world participated in the composition of an OPM specifi-

cation, it is much more accepted. Another important fact is that many of the participants al-

ready implemented OPM for their WfMS and thus the exchange of provenance data is possi-

ble. The history tracing system is not as widespread as OPM and other scientists cannot use

the data and compare it with their provenance output of the WfMS. However, it is not too

much work to adapt the history tracing system too other WfMS due to the web service archi-

tecture. More on the adaptation to other WfMS will be described in the chapter “Comparison

of implementations”.

Security in the Provenance Systems

Some users of workflows need provenance systems that store the data in a legally binding

way. To provide the reliability on the data the history tracing system contains a mechanism to

sign the XML tags that contain the lineage data of a module. In opposite to that, OPM con-

tains no security mechanism to save the data in a legally binding way. For OPM it is not easy

to implement a mechanism to store the data reliable either, because the inter-operability is not

assured and an exchange of provenance to other scientists is not possible anymore. The exist-

ence or absence of the security mechanisms can be a reason to decide for or against the prov-

enance systems.

Other Technical Requirements

The technical requirements asking for metadata and references between input and output data

as well as the search of data in different workflow management systems will not be described

Torsten Matzerath Chapter 7 – Comparison of OPM and history tracing

Page 86

in this section because the accountability is at the WfMS and not in the concepts of the prove-

nance systems.

Other Differences

A similarity is that both systems are able to store the execution times of any action happening

in the workflow. The distinction between the two methods is that OPM stores the times only

optionally, whereas they are stored mandatorily in history tracing. Thus, in both concepts the

dependencies determined due to workflow addictions are more important than the dependen-

cies based on time. The reason is that the WfMS only relies on defined causal dependencies

and time does not matter for the execution order.

A difference in the data types that are supported by the two systems also exists. History trac-

ing defines XML explicitly as the format to be supported. In opposite to that OPM says noth-

ing definite about data types. It is just mentioned that other documents exist telling how the

provenance data should be stored in XML and RDF. However, saving in databases is also

possible. The reason for being so imprecise in OPM is that the specification does not want to

tell anything about internal representations of OPM in a WfMS.

Summing up, one can say that the concepts differ especially in the way the data is sorted. The

history tracing system stores module-oriented and OPM saves category-oriented. Thus, both

systems store almost the same data and the differences in the other categories are insignificant

in the view of the collected data.

Table 13: Differences in the concepts of OPM and history tracing system

Category OPM History tracing system

Different nodes Yes Data are stored but have to be as-
certained

Different views Yes Data are stored but have to be as-
certained

Reproducibility Main data are stored Main data are stored
Non-Repudiation No Yes
Time of execution Optionally Mandatory
Datatypes Not defined XML

7.3 Comparison of XML provenance files

The comparison of the XML provenance file created by the two provenance systems will be

based on the history tracing system schema framework and The Open Provenance Model

Chapter 7 – Comparison of OPM and history tracing system Torsten Matzerath

Page 87

XML schema (OPMX). OPMX can be found on the official web site of OPM and describes a

possible XML file for the provenance data storage. [20]

As described in the previous chapter, the history tracing system is based on a module-oriented

storage and OPM on a category-based storage of provenance information. This fact also mir-

rors in the XML structure of the two systems.

The history tracing system uses a layered style and saves the course of the workflow modules

in layers. This means that the dependencies are saved indirectly by the use of the layered

structure and makes it easy and fast to walk through the xml file and find the predecessors and

successors. In opposite to that OPM uses no layers to describe the course of the saved data. It

saves the artifacts, processes and agents without dependencies so that the dependencies have

to be saved separately. The dependencies are saved in a way that all have to be passed through

to find all forerunners and followers of a node. The absence of the layered structure gets in-

creasingly important for the provenance interface if the provenance files grow in complexity

because the drawing of the provenance graph and the visualization of the data takes more and

more time. On the other side, the storage in the three categories in OPM has the advantage

that the interface can read the different nodes from the file and does not have to classify the

data in one of the three categories. However, there is also an advantage of saving the data in

the simple style since the time necessary for saving provenance data is decreasing due to a

lowered complexity that limits the time for the workflow execution. But the difference should

not be too big since the history tracing system inserts only one new tag as the root’s child if a

sections is inserted and only forks, joins or other complex paths could use slightly more time

as they insert multiple tags.

Another advantage of the layered structure is that the possible paths of the workflow execu-

tion can be saved more easily in a schema file to find out if the workflow ran the right course.

However, this possibility is also caused by the fact that a new schema file is created for every

workflow saving the application flow of the workflow and help to validate the correctness of

the predecessors and successors by the schema file.

Security can also be implemented more easily and effectively for the history tracing system in

the layered style. If a layer is finished one knows that there will not be any changes in that

element or any of its children and an inserted signature will not be falsified by new values.

Inserting signatures is also possible in an Open Provenance Model XML file. Thus, for every

artifact, agent, process and dependency a signature is necessary so that this action needs a

much higher number of signatures and slows down the workflow execution, blows up the

provenance file size and needs a long time for validation of the high number of signatures.

Torsten Matzerath Chapter 7 – Comparison of OPM and history tracing

Page 88

Furthermore, the signed OPM file will not be compatible to implementations of other WfMS

and one of the central requirements, the inter-operability, gets lost.

Summing up, one can say that the adaptation of the layered style brought some advantages in

the efficiency of storing and requiring the course of the dataflow and in the possibility of sav-

ing the data in a non-modifiable way.

Table 14: Differences in XML files of OPM and history tracing system

Category OPM History tracing system

Storage order Stored in categories artifact, pro-
cess, agent and dependency

Layered structure

Dependencies Stored in extra category Indirect by layered structure
Validation of prov-
enance file

Complex because of variable or-
der

Easy because of layered structure

Security Every artifact, process, agent and
decision needs own signature

One signature for every layer

7.4 Comparison of implementations

This chapter compares the adaptation of the two provenance systems based on three main

aspects. First, the adjustment to WS-VLAM will be compared. Then the alignment user’s

needs and last to other WfMS. In some parts it is necessary to do the comparison on a theoret-

ical layer because the OPM implementation for WS-VLAM could not be used to save prove-

nance values, as it was not possible to get the OPM implementation running and collecting

provenance values.

As OPM is only a specification, an implementation is necessary to collect provenance data of

WS-VLAM. The history tracing system is also not originally developed for WS-VLAM and

some adaptations have to be made, which are described in the chapter “History tracing system

in WS-VLAM” in detail. In this section, the assertions for both systems will be pointed out

and compared.

Adaptations of the Provenance Systems to WS-VLAM

As mentioned, implementations are necessary in order to collect data with both provenance

systems from the WfMS WS-VLAM. The concrete adaptation s are very different and dis-

cussed in this section.

As the history tracing system is based on web services most parts of the server side can be

taken over from the original system to WS-VLAM. On the server side changes are necessary

that save the data of a workflow with multiple starting and ending points. This kind of work-

Chapter 7 – Comparison of OPM and history tracing system Torsten Matzerath

Page 89

flow was not considered and a new structure of the layers in the XML file was implemented.

However, this is a change that is non-recurring and can be used for all WfMS using the histo-

ry tracing system in the future. Additionally, the history tracing system was enlarged to store

more and other provenance data. Since WS-VLAM not only creates provenance data like in-

put and output values of the modules, it is necessary to enlarge the system and collect all other

data like the standard output or the paths of the input and output files. The last change on the

server side is writing the schema file that has to be adapted to the new multiple starting and

ending points and to the different structure of the XML workflow file. Since every WfMS has

its own XML structure to describe the workflow file, it is necessary to adapt writing the

schema and collecting the necessary data out of it. Besides, most changes are necessary on the

client side. As WS-VLAM cannot use the mechanism of inserting additional tasks to the cre-

ated workflow, the provenance collection has to be changed to an event-based mechanism.

This causes the loss of the independence of the workflow management system.

As OPM is a specification and does not contain an implementation the adaptation to WS-

VLAM has to be programmed. The OPM implementation of the University of Amsterdam for

WS-VLAM also uses an event based mechanism to collect the provenance data of the WfMS.

For OPM it is also necessary to implement the data storing part from the beginning with only

a few libraries. The libraries and namespaces for Java are for example The Open Provenance

Model Java Library, a Java library for creating Java representations of OPM graphs and seri-

alizing them to and from XML. [20] However, those are only some low level facilities that

can be used for the own implementation and most of the work has to be done by the develop-

ers themselves. The system of the University of Amsterdam saved the provenance data in a

database but they can be converted in XML files at any time.

For both provenance systems the event mechanism is almost the same and this means that

none of the two systems has an advantage in the way they are collecting the provenance data.

Due to the fact that they are both using this technique, both systems are dependent of WS-

VLAM. OPM has a big advantage in opposite to the history tracing system, as it is a much

older provenance system and developed by teams all over the world. A consequence of this is

that no extensions have to be accomplished in the schema for multiple starting or ending

points or other unconsidered workflow structures. The yearlong development of the specifica-

tion with many use cases and working groups considers all possible workflow structures.

However, the already finished process of writing a specification has also the disadvantage that

additional provenance data is not mentioned in the specification result in a loss of the inter-

operability. Thus, the history tracing system will reach a state like the current status of OPM

Torsten Matzerath Chapter 7 – Comparison of OPM and history tracing

Page 90

with enough concepts and regulations so that it does not have to be extended, either. When the

history tracing system is adapted to other workflow management systems and other use cases

with other workflows are executed then the new awareness will help to reach a state that does

not make changes necessary. At this stage the schema will be frozen and it will not be possi-

ble to extend the schema anymore so that the architecture allows interoperability between

different workflow management systems using history tracing. One can say that the higher

influence of the developers and users on the history tracing system is caused by the fact that it

is a new implementation. And this influence can and should be used to develop a provenance

system that has very good acceptance of the users.

During the development of the history tracing system one has to make sure that the different

versions are compatible. Provenance files created by new developments should be readable by

old ones and vice versa. Otherwise, it is problematic to read old provenance files created with

older versions of history tracing system, which might be important over a long time span.

Summing up, it can be said that the biggest differences are in the re-use of the web service

methods for history tracing system and the complete re-implementations of OPM. Thus, the

XML files of history tracing had to be adapted for WS-VLAM and will probably be changed

in future when new workflows are used.

Adaptations of the Provenance Systems to the Users Needs

The adaptation of the provenance systems to the users’ needs again consists of two compo-

nents. On the one hand the users define which data they need for their analysis and further-

more the data collecting part of the lineage system has to be adapted. On the other hand the

presentation of the provenance data is an important aspect and the users remark requirements

that a provenance interface should contain.

If users need new provenance data that is not saved in the lineage file the provenance system

should be adaptable to collect the required data. However, the developers should always

check if the data could not be ascertained indirectly by available information saved in the file.

If the data is not available the developer has to ask the user if the data is only important for a

special workflow or for an analysis that will not be repeated in the future. The reason is that

saving all data that is available of a workflow run will extend the provenance file so much

that it gets increasingly slow and the query interfaces get too complex. If data is used very

rarely the users should think about saving the data in log files to query the data.

The adaptation to the users’ needs is different for the two provenance systems. As OPM is

described in a specification it is not possible to extend the system and collect new provenance

Chapter 7 – Comparison of OPM and history tracing system Torsten Matzerath

Page 91

data since all other implementations of OPM are not compatible with the re-implementation

of OPM. In WS-VLAM it is possible for the developers to extend the provenance system the

system is in the development phase, important advancements and enhancements can be added.

Here, the compatibility to older versions has to be considered.

The provenance interfaces of both systems are mainly developed to answer the requirements

of the users. As no provenance interface existed for the original history tracing system a new

Java based Provenance Query Interface was implemented. During the development much at-

tention was paid on designing the interface in a way that the needs of the BLAST users are

answered but other scientists can also use the provenance interface for their research. It is

important to develop interfaces that can be used by as many user groups as possible because it

is too much work and takes too much time to develop interfaces for every user group or even

every workflow that is developed. The interface for the OPM model that was developed by

the University of Amsterdam is too much oriented at the wishes of the users and it is hard to

find other users being able to utilize it. Although, the OPM community developed many inter-

faces and most of them use the specification as a basis, it is hard to find an interface that can

be used for the particular WfMS as the storage system has to be the same as the particular one

and many of the interfaces are too special to re-use them.

Adaptations of the Provenance Systems to other Workflow Management Systems

In the course of this chapter it was mainly described which actions are necessary to combine

the provenance systems with WS-VLAM. In the following it will be discussed which parts of

the provenance systems can be used for other workflow management systems.

Because of the wide spread of OPM around the world and the usage in many well-known

WfMSs like Taverna, Kepler or VisTrails it is not often necessary to do the adaptation by

oneself. [20] However, if a WfMS does not contain OPM, all parts of the provenance collect-

ing system have to be developed because the architectures are often not usable for other

WfMS. The adaptation of the history tracing system is not as comprehensive as the adaptation

of OPM since the web service can be used with minor changes. Changes are only necessary

for the adaptation of the schema creation that has to be matched to the different XML work-

flow files. The section collecting the data has to be re-implemented to call the web services

and pass the data to the provenance file.

For the history tracing system the Provenance Query Interface can be used without changes

since it only reads the provenance files and those are the same for every WfMS. The prove-

nance interfaces of OPM can also be used for other WfMS. However, it might be necessary to

Torsten Matzerath Chapter 7 – Comparison of OPM and history tracing

Page 92

implement a conversion from the storage system of the new OPM implementation to XML so

that the system can access the data.

Table 15: Differences in implementations of OPM and history tracing system

Category OPM History tracing system

Independence of WfMS No For web server yes,
For interface collecting
events no

Re-usability Only libraries Web server part
Extensions necessary? No Yes, under development
Compatibility Yes Problematic because of con-

tinously development
Save data users require No Yes
Show data users require Yes, if affected by available

values
Yes

Exchange of provenance
interfaces

If same storage system Yes

Distribution Used in many WfMS WS-VLAM and JBPM

7.5 Consequences for History Tracing System learned from OPM

History tracing system is a concept that is in development and some aspects can be advanced

to get a more comprehensive and accepted system. In this section, possible and realized en-

hancements of the history tracing system that are learned from OPM will be discussed. As

some aspects take a long time to realize not all were implemented during this thesis. Moreo-

ver, some of them should be discussed with the users to learn what they think how the en-

hancements should be put into practice.

A suggestion that is organizational and done in OPM is the accomplishment of different chal-

lenges that are more informational as for OPM. For every challenge the main focus could be

laid on a special aspect as the provenance interface, the graphs, the adaptation to the users’

needs or the security. At the end of every challenge the pros and cons of the concepts will be

discussed and the best concept will be implemented to enhance the history tracing system.

The most obvious aspect that was missing for the history tracing system was a provenance

interface that visualizes the provenance data in a user-friendly manner. A first implementation

of the Provenance Query Interface was developed to answer the requirements of the users. As

OPM interfaces always show provenance data by graphs, a graph is also generated for the

new Provenance Query Interface that represents the course of the executed modules. As the

history tracing system stores the data according to the forerunners and followers the graph

contains the modules that were executed and the graph looks like the originally created work-

Chapter 7 – Comparison of OPM and history tracing system Torsten Matzerath

Page 93

flow template. This means that the graph contains not many additional information compared

to the workflow file. The user can just see which modules were executed and which not.

As OPM is saving the provenance data in the three categories artifact, process and agent the

provenance graph contains more information about the behaviour of the executed workflow.

The user can see which parameters were used, the results of the artifacts or which agents con-

trolled the processes. The information provides a detailed look on the provenance data and

help to analyse the results. The graph generated by the history tracing system should be ex-

tended and elements of the OPM graph should be used to provide more information. The real-

isation of a graph that contains all OPM information is no problem as all data is saved in the

XML file. One problem could be to collect the data fast and simple, as the data has to be

completely re-ordered and for this a complex algorithm may be necessary. However, a first

step could be to show all or selected information of a module by clicking on it or drawing the

module red if it finished with errors.

Another interesting feature that could be used for the history tracing system is the possibility

to create sub-graphs with more information or Multi-Step edges to show different views of the

same workflow. These features are not only realizable if the graph is drawn in the view of the

three nodes but also zooming in a graph that contains loops could show the loop unrolled.

Another possibility is to select the messages that are shown if the user clicks on the modules

on the graph.

The history tracing system contains no roles either, as they are described in OPM. Roles can

be used if many modules are executed in a workflow and it gets confusing to follow the path.

Furthermore, tasks are often using different parameters and roles help to allocate the values to

the meaning. This also facilitates the understanding of the results more easily.

Summing up, one can say that most of the enhancements of the history tracing system that can

be learned by OPM are in the area of graphs. The visualization in graphs was disregarded in

the history tracing system in the past and some advancement is necessary. The storage in the

XML files is very efficient and allows signing the data. OPM does not contain a better storage

system so that changes are currently unnecessary.

7.6 Conclusion

The chapter pointed out the differences between the Open Provenance Model and the history

tracing system. Both of the provenance systems have advantages and disadvantages in their

Torsten Matzerath Chapter 7 – Comparison of OPM and history tracing

Page 94

concepts or in the way they save provenance values in XML files. This paragraph summarizes

the advantages and disadvantages of the two provenance systems.

First, OPM defines the nodes artifact, process and agent and five different causal relation-

ships (edges), which exist due to diverse combinations of the tree nodes. The differentiation

between different nodes and edges does not exist in the history tracing system. However, the

different nodes help to adjust a Provenance Query Interface easier to the user’s needs and

point out different views like the data or the process view. As the history tracing system saves

the data, which is necessary to differ nodes, the data can be collected in order to visualize

them in a provenance interface.

The most important difference between the two systems is the XML structure. History tracing

uses the layered style to represent the provenance data whereas OPM uses a structure separat-

ing the kinds of nodes and the connections. Indeed, OPM avoids the problem with multiple

starting and ending points, but the disordered structure arouses the problem of an ineffective

redrawing of graphs. This problem does not occur in history tracing because the forerunner

and follower of the current child are always the parent and child of the current node in the

XML file. The possibility of creating signatures of every module is another advantage in or-

der to assure non-repudiation.

Another aspect, which has to be mentioned, is the fact that OPM is a specification and cannot

be changed by the application developer to collect new provenance values. If the developers

do not strictly follow the specification it is not assured that the data and tools are compatible

with other implementations. Because history tracing is in development it is easier to adapt the

system to the user’s needs. This may cause the problem that different version are not compat-

ible. However, the developers should expand the system as much as possible so that important

values are saved until the system is used with other WfMS.

In conclusion, one can say that the history tracing system has some advantages in the way it

saves the provenance values in XML. Anyhow, the Open Provenance Model has the huge

advantage that many WfMS use this system to save the provenance values. In contrast to that,

history tracing is only running together with WS-VLAM so that one of the most important

aspects of provenance, the interoperability to other WfMS, cannot be guaranteed. OPM has a

advance in this area and most of the working groups of a WfMS will not be willing to add

another provenance system to their WfMS.

Chapter 8 – Future Work Torsten Matzerath

Page 95

8 Future Work

Within this master thesis the main focus was laid on the field of linking up the history tracing

provenance system to the workflow management system WS-VLAM and on the area of com-

paring the Open Provenance Model with the history tracing system. However, the paper does

not answer all questions and examines not all possible issues of the history tracing system in

general and of the connection of the history tracing system with WS-VLAM in specific. The

necessary increments of the systems will be discussed in this chapter and possible approaches

will be raised.

This section starts with the discussions of the link-up of the history tracing system with the

WfMS WS-VLAM. As the new history tracing system was usually only tested with the

BLAST workflow, other sample workflows have to be used to test the provenance system in

detail. During running these tests the executer has to focus on different aspects. One facet the

tester has to consider is whether all different paths of workflows like loops or forks and joins

are supported. The loops have to be inserted in the layered structure of the XML file as en-

rolled loops. The Provenance Query Interface should visualize both views. One view shows

arrows with the loops as an overview and the second view is visualized as an enrolled graph

for the detailed view with all parameters and passed data. Moreover, the tester should use

workflows, which are in use by scientists and stay in close contact to them to learn from them

if all important provenance values are collected and saved in the XML file. When the users

need more or other provenance values those wishes can be added to the WfMS and to the lin-

eage system. In future the history tracing provenance system will be the default provenance

framework, which is running on WS-VLAM. Therefore, the mentioned tasks will be pro-

cessed and the developers try to get in contact with the bioinformaticians of the AMC to get

workflows and discuss the output with them.

Thus, other enhancements have to be achieved in order to advance the effectiveness of the

system. Some of the expansions are already under development to be able to use the prove-

nance system in WS-VLAM as fast as possible. The first action, which has to be changed, is

the storage system of the provenance files. Currently the lineage files are saved on the virtual

machine running the web server. A better way to save the XML data is to create a database,

which contains the provenance data and the catalogue data. This service should be accessible

for all users and contain a small interface that allows uploading and downloading the content

of the provenance files. Then, the web server and the Provenance Query Interface have to be

Torsten Matzerath Chapter 8 – Future Work

Page 96

changed to access the provenance repository. Furthermore, the creation of the schema file has

to be done automatically either by clicking a button in the WS-VLAM client or when the user

saves the provenance file. Therefore, a web service method has to be implemented, which is

called by the WS-VLAM client and runs the existing methods on the web server creating the

schema file automatically. Furthermore, the Provenance Query Interface has to be added to

the WS-VLAM client. One possibility is to add another button to the client, which opens the

Provenance Query Interface and shows the provenance data. All those changes are minor

changes and will not take too long to implement. The bigger task is to adapt the provenance

system to the users needs and to save all those data.

The Provenance Query Interface is not finished, either. There are some wishes of the users,

which could not be integrated in the Provenance Query Interface due to a limited amount of

time especially the comparison of workflows and the collection of statistical data of farmed

workflows. The users like to know how many modules finished correctly or how long they

ran on average. All this data should be visualized as clearly as possible so that the users have

a goal of using the provenance systems for their daily work. Thus, the demonstration of the

data that led to a result should not be disregarded. Furthermore, the Provenance Query Inter-

face has to be extended always if new provenance data is collected in the provenance file in

order to display them intuitionally.

Another very important challenge for the future is to combine the history tracing system with

as many other workflow management systems as possible. The reason for this is that the

provenance files have to be shared with other scientist using different WfMS so that they can

analyse the data or re-run the workflows.

The comparison of the two provenance systems could also not be finished in the depth as it

was planned at the beginning of the thesis. The reason is that the implementation of the Open

Provenance Model for WS-VLAM by the University of Amsterdam was not runnable. The

provenance system did not collect provenance values and as a result, the discussion of the

comparisons was laid on a theoretical layer. In order to prove the conclusions of the compari-

sons of the two lineage systems for WS-VLAM, the OPM implementation should be repaired.

Then the assertions of the previous paragraph can be verified by the output of the provenance

system.

Summing up, one can say that the results developed in this thesis are a good basis to continue

the research on the history tracing system and the combination with WS-VLAM in the future.

However, until the provenance system is usable in real research some enhancements have to

be implemented.

Chapter 9 – References Torsten Matzerath

Page 97

9 References

9.1 Bibliography

[1] Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, Sofia Tsasakou, Luc

Moreau, “An Architecture for Provenance Systems”,

http://eprints.ecs.soton.ac.uk/12023/, February 2006

[2] Ekaterina Elts, Hans-Joachim Bungartz, “Grid-Workflow-Management-Systeme für die

Ausführung wissenschaftlicher Prozessabläufe”,

http://drehscheibe.in.tum.de/forschung/pub/reports/2010/TUM-I1004.pdf.gz, February

2010

[3] Yogesh L. Simmhan, Beth Plale, Dennis Gannon, „A Survey of Data Provenance Tech-

niques“, http://www.cs.indiana.edu/l/www/ftp/techreports/TR618.pdf, 2005

[4] David A. Holland, Uri Braun, Diana Maclean, Kiran-Kumar Muniswamy-Reddy, Mar-

go I. Seltzer, „Choosing a Data Model and Query Language for Provenance“,

http://www.eecs.harvard.edu/syrah/pass/pubs/ipaw08.pdf, June 2008

[5] Luc Moreau, „Provenance-Based Reproducibility in the Semantic Web“,

http://eprints.ecs.soton.ac.uk/21992/1/reproducibility.pdf, 2011

[6] Simon Miles, Paul Groth, Miguel Branco, Luc Moreau, „The requirements of using

provenance in e-Science experiments“,

http://eprints.ecs.soton.ac.uk/12566/1/pasoa04requirements.pdf, 2006

[7] Susan B. Davidson, Juliana Freire, „Provenance and Scientific Workflows: Challenges

and Opportunities“,

http://portal.acm.org/ft_gateway.cfm?id=1376772&type=pdf&CFID=11089175&CFTO

KEN=84769110, 2008

[8] WS-VLAM, http://staff.science.uva.nl/~gvlam/wsvlam/, March 2011

[9] Vladimir Korkhov, Silvia Olabarriaga, „Application description – BLAST“, September

2010

[10] M. Gerhards, A. Belloum, F. Berretz, V. Sander, S. Skorupa, “A History-tracing XML-

based Provenance Framework for Workflows”,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5671873, September 2010

[11] M. Gerhards, “Ein Framework zur Nachweisführung der Arbeitsvorgänge eines Work-

flows in XML”, August 2010

Torsten Matzerath Chapter 9 –References

Page 98

[12] Luc Moreau, Ian Foster, “Provenance and Annotation of Data”,

http://www.springer.com/computer/database+management+%26+information+retrieval/

book/978-3-540-89964-8, May 2006

[13] Luc Moreau et al., “The Open Provenance Model Core Specification (v1.1)”,

http://eprints.ecs.soton.ac.uk/21449/1/opm.pdf, December 2009

[14] David Groep, http://www.dutchgrid.nl/Admin/Nikhef/globus-local/node9.html, re-

trieved in March 2011

[15] Wikipedia – The free Encyclopedia, Grid Resource Allocation Manager (GRAM),

http://en.wikipedia.org/wiki/Grid_Resource_Allocation_Manager, retrieved in March

2011

[16] BIOINFORMATICS LABORATORY,

http://www.bioinformaticslaboratory.nl/twiki/bin/view/EBioScience/MOTEUR, re-

trieved in March 2011

[17] Provenance Challenge Wiki, http://twiki.ipaw.info/bin/view/Challenge/WebHome, re-

trieved in March 2011

[18] Luc Moreau et al., “The Open Provenance Model (v1.01),

http://eprints.ecs.soton.ac.uk/16148/1/opm-v1.01.pdf, July 2008

[19] Wikipedia – The free Encyclopedia, Resource Description Framework,

http://en.wikipedia.org/wiki/Resource_Description_Framework, retrieved in March

2011

[20] The OPM Provenance Model (OPM), http://openprovenance.org/, retrieved in March

2011

[21] Wikipedia – The free Encyclopedia, BLAST, http://en.wikipedia.org/wiki/BLAST, re-

trieved in March 2011

[22] Wikipedia – The free Encyclopedia, X.509, http://en.wikipedia.org/wiki/X.509, re-

trieved in March 2011

[23] MyProxy Credential Management Service, http://grid.ncsa.illinois.edu/myproxy/, re-

trieved in March 2011

[24] BMC Bioinformatics, http://www.biomedcentral.com/content/supplementary/1471-

2105-11-598-s1.pdf, retrieved in March 2011

Chapter 9 – References Torsten Matzerath

Page 99

9.2 Auxiliary Means

{1} wsimport.exe

http://download.oracle.com/javase/6/docs/technotes/tools/share/wsimport.html

{2} Graphviz – Graph Visualization Software, dot program

http://www.graphviz.org/

{3} openssl

http://www.openssl.org/

Torsten Matzerath Chapter 10 – Appendix

Page 100

10 Appendix

10.1 Example of original history tracing system XML file

This XML file shows the complete provenance file of the example in the chapter “History

tracing XML-based provenance framework for workflows” in the section “Introduction”.

Figure 32: Complete provenance file of introduction example

1 <?xml version="1.0" encoding="UTF-8"?>
2 <inst:sample xmlns:inst="http://sample.jpdl.xml/">
3 <inst:end starttime="01.01.1980" id="end_1" tasktype="SEQ" endtime="01.01.1980">
4 <inst:loop_condition starttime="01.01.1980" id="loop_condition_2" tasktype="XOR"

endtime="01.01.1980">
5 <inst:merge starttime="01.01.1980" id="merge_2" tasktype="XOR" endtime="01.01.1980">
6 <inst:right1 starttime="01.01.1980" id="r1_1" tasktype="SEQ" endtime="01.01.1980">
7 <inst:decision starttime="01.01.1980" id="decision_2" tasktype="XOR"

endtime="01.01.1980">
8 <inst:loop_start starttime="01.01.1980" id="loop_start_2" tasktype="XOR"

endtime="01.01.1980">
9 <inst:loop_condition starttime="01.01.1980" id="loop_condition_1"

tasktype="XOR" endtime="01.01.1980">
10 <inst:merge starttime="01.01.1980" id="merge_1" tasktype="XOR"

endtime="01.01.1980">
11 <inst:left2 starttime="01.01.1980" id="l2_1" tasktype="SEQ"

endtime="01.01.1980">
12 <inst:left1 starttime="01.01.1980" id="l1_1" tasktype="SEQ"

endtime="01.01.1980">
13 <inst:decision starttime="01.01.1980" id="decision_1" tasktype="XOR"

endtime="01.01.1980">
14 <inst:loop_start starttime="01.01.1980" id="loop_start_1"

tasktype="XOR" endtime="01.01.1980">
15 <inst:start starttime="01.01.1980" id="start_1" tasktype="SEQ"

endtime="01.01.1980" />
16 </inst:loop_start>
17 </inst:decision>
18 <inst:parameters>
19 <inst:i>
20 <![CDATA[<?xml version="1.0"?><integer>1</integer>]]>
21 </inst:i>
22 </inst:parameters>
23 </inst:left1>
24 <inst:parameters>
25 <inst:i> <![CDATA[<?xml version="1.0"?><integer>1</integer>]]>
26 </inst:i>
27 </inst:parameters>
28 <inst:results>
29 <inst:i> <![CDATA[<?xml version="1.0"?><integer>2</integer>]]>
30 </inst:i>
31 </inst:results>
32 </inst:left2>
33 </inst:merge>
34 </inst:loop_condition>
35 </inst:loop_start>
36 </inst:decision>
37 <inst:results>
38 <inst:i> <![CDATA[<?xml version="1.0"?><integer>3</integer>]]>
39 </inst:i>
40 </inst:results>
41 </inst:right1>
42 </inst:merge>
43 </inst:loop_condition>
44 </inst:end>
45</inst:sample>

	

Chapter 10 – Appendix Torsten Matzerath

Page 101

10.2 Example of XML file by history tracing system for WS-VLAM

This XML file shows the resulting provenance file that is created by the code abridgement in

the chapter “History tracing system in WS-VLAM” in the section “Transmission to web ser-

vice”.

Figure 33: Provenance file of fileReader/fileWriter example

<?xml version="1.0" encoding="utf-8"?>
<inst:BLAST xmlns:inst="http://blast.wsvlam.xml/"

p1:schemaLocation="http://blast.wsvlam.xml/ BLAST.xsd" tasktype="ROOT"
xmlns:p1="http://www.w3.org/2001/XMLSchema-instance" starttime="Thu Feb 10
16:58:54 CET 2011" endtime="Thu Feb 10 16:59:40 CET 2011">

 <inst:fileWriter_916452136 starttime="Thu Feb 10 16:58:56 CET 2011"
node="fs0.das3.cs.vu.nl" id="916452136" name="fileWriter" executefinish="Thu Feb
10 16:59:35 CET 2011" endtime="Thu Feb 10 16:59:38 CET 2011">

 <inst:information>
 <inst:events>
 </inst:events>
 <inst:portEnd>
 <inst:start time="Thu Feb 10 16:58:59 CET 2011">
 <inst:id>1234</inst:id>
 <inst:portName>node.node1</inst:portName>
 </inst:start>
 <inst:cluster>fromInput</inst:cluster>
 <inst:port></inst:port>
 </inst:portEnd>
 <inst:parameters>
 <inst:filename>
 <inst:initialValue time="Thu Feb 10 16:59:03 CET 2011">

C:\\Temp\\file.xml</inst:initialValue>
 </inst:filename>
 <inst:farmed>
 <inst:initialValue time="Thu Feb 10 16:59:03 CET 2011">

false</inst:initialValue>
 </inst:farmed>
 </inst:parameters>
 </inst:information>
 <inst:fileReader_741287972 starttime="Thu Feb 10 16:58:55 CET 2011"

node="fs0.das3.cs.vu.nl" id="741287972" name="fileReader"
executefinish="Thu Feb 10 16:59:35 CET 2011" endtime="Thu Feb 10 16:59:37
CET 2011">

 <inst:information>
 <inst:events>
 </inst:events>
 <inst:portStart>
 <inst:start time="Thu Feb 10 16:58:59 CET 2011">
 <inst:id>1234</inst:id>
 <inst:portName>node.node1</inst:portName>
 </inst:start>
 <inst:cluster>toOutput</inst:cluster>
 <inst:port></inst:port>
 </inst:portStart>
 <inst:parameters>
 <inst:filename>
 <inst:initialValue time="Thu Feb 10 16:59:05 CET 2011">

C:\\Temp\\input.tgz</inst:initialValue>
 <inst:parameterChanged time="Thu Feb 10 16:59:06 CET 2011">

C:\\Temp\\input.xml</inst:parameterChanged>
 </inst:filename>
 </inst:parameters>
 </inst:information>
 </inst:fileReader_741287972>
 </inst:fileWriter_916452136>
</inst:BLAST>

	

Torsten Matzerath Chapter 10 – Appendix

Page 102

10.3 Use cases described in literature

This section contains the original use cases and technical requirements described in the paper

The requirements of using provenance in e-Science experiments. [6] Comments on the use

cases and technical requirements can be seen in the chapter “Use cases and technical

requirments”.

TYPES OF PROVENANCE

USE CASE 1:

A bioinformatician B downloads sequence data of a human chromosome from GenBank and

performs an experiment. B later performs the same experiment on data of the same chromo-

some, again down-loaded from GenBank. B compares the two experiment results and notices

a difference. B determines whether the difference was caused by the experimental process or

configuration having been changed, or by the chromosome data being different (or both).

USE CASE 2:

A bioinformatician B enacts an experimental workflow using a workflow enactment engine

W. W processes source data to produce intermediate data, and then processes the intermediate

data to produce result data. B retrieves the result data. B then examines the source and inter-

mediate data used to produce the result data.

Three different views are needed for use cases one and two:

4. Interaction: A record of the interaction between services that took place, including the

data that was passed between them.

5. Actor State: Extra information about a service participating in the experiment at the

time that the experiment was run.

6. Relationship: Information on how one data item in a process relates to another.

TECHNICAL REQUIREMENT 1:

The architecture should provide for the recording and querying of interactions, actor states

and relationships.

STRUCTURE AND IDENTITY OF DATA

Chapter 10 – Appendix Torsten Matzerath

Page 103

USE CASE 3:

A bioinformatician B performs an experiment on a set of chromosome data, from which the

exon and intron sequences have been extracted. As a result of that experiment, B identifies a

highly compressible intron sequence. B identifies which chromosome the intron originally

came from.

USE CASE 4:

A physicist P extracts a subset of data from a large data set, owned by the Collaboration, and

performs experiments on that subset over time. The Collaboration later updates the data set

with new data. P determines whether the experiments should be re-run based on the new data

set.

TECHNICAL REQUIREMENT 2:

The architecture should provide for association of identifiers with data, so that it can be re-

ferred to in queries and by data sources linking experiments together.

TECHNICALREQUIREMENT 3:

The architecture should provide for referencing of individual data elements contained in mes-

sage bodies recorded in the process documentation.

METADATA AND CONTEXT

USE CASE 5:

In order to conform to health and safety requirements, a chemist C plans an experiment prior

to performing it. The plan is at a high-level, e.g. including the steps of mixing and analysing

materials but excluding implied steps like measuring out materials. C performs the experi-

ment. Later, another chemist R determines whether the experiment carried out conformed to

the plan.

Torsten Matzerath Chapter 10 – Appendix

Page 104

Figure 34: Planned experiment differs from process documentation

The figure is showing the following content:

In the Second Harmonic Generation Experiment, planned activities do not map exactly to

performed activities, because several activities can comprise a single planned activity. The

arrows in the figure show some temporal or other dependencies between activities, which may

be recorded in process documentation.

Remark to USE CASE 5:

In Use Case 5, the pre-defined plan of the experiment does not necessarily exactly match the

actual steps performed. As shown in Figure 1, a single planned activity may map to one or

more actual activities. As described in the use case, the plan is produced before any process

documentation is recorded, but is used in comparison with the process documentation. It is an

example of process metadata: data independent from but used in conjunction with process

documentation. Given that process metadata is of an arbitrary wide scope, any framework for

supporting the use of provenance must take into account stores of metadata that will be que-

ried along with the process documentation.

USE CASE 6:

A biologist B sets the voltage of a mass spectrometer before performing an experiment to

determine the mass-to-charge ratio of peptides. Later another biologist R judges the experi-

ment results and considers them to be particularly accurate. R determines the voltage used in

the experiment so that it can be set the same for measuring peptides of the same protein in

future experiments.

12

ActualActivity
ActualActivity

ActualActivity
ActualActivity ActualActivity

ActualActivity
ActualActivity

PlannedActivity PlannedActivity PlannedActivity

Figure 1. In the Second Harmonic Generation Experiment, planned activities do not map ex-
actly to performed activities, because several activities can comprise a single planned activity.
The arrows in the figure show some temporal or other dependencies between activities, which
may be recorded in process documentation.

A particular type of metadata is semantic descriptions of the entities in-
volved in an experiment. For instance, the following use case requires seman-
tic metadata about the data exchanged between services in the experiments.

USE CASE 7. (ICE) A bioinformatician, B, performs an experiment on a
FASTA sequence encoding a nucleotide sequence. A reviewer, R, later deter-
mines whether or not the sequence was in fact processed by a service that
actually only meaningfully processes protein sequences. !

Use Case 7 requires not only that an ontology of biological data types is
provided, but also that process documentation can be annotated with semantic
descriptions taken from that ontology. This does not require, however, that the
semantic descriptions be stored in the same place as the data.

TECHNICAL REQUIREMENT 4. PASOA should provide for process doc-
umentation and associated metadata in different stores to being integrated in
providing the answer to a query.

4.2.4. Sessions
We have found that many use cases compare the run of one experiment to
that of another, requiring that records regarding those experiments include a
delimitation of one experiment from another. In service-oriented architecture
terms, this means that we need to delimit one set of service interactions from
another. We define a session as a group of service interactions (experiment
activities).

pasoa04requirements.tex; 4/04/2006; 13:21; p.12

Chapter 10 – Appendix Torsten Matzerath

Page 105

USE CASE 7:

A bioinformatician B performs an experiment on a FASTA sequence encoding a nucleotide

sequence. A reviewer R later determines whether or not the sequence was in fact processed by

a service that actually only meaningfully processes protein sequences.

TECHNICAL REQUIREMENT 4:

The architecture should provide for process documentation and associated metadata in differ-

ent stores to being integrated in providing the answer to a query.

SESSIONS

USE CASE 8:

A computer scientist C calls service X, which calculates the mean average of two numbers as

(a/2)+(b/2). C then calls service Y with the same two numbers, where Y calculates the aver-

age as (a+b)/2. C does not know if X or Y are reliable, so by getting results from both, C can

compare them and, if they are the same, be more sure having the correct result (because the

same value is produced by two different services). However, X and Y may use a common

third service Z behind the scenes, e.g. to perform division operations. If Z is faulty then the

results from X and Y may be consistent but wrong. For extra assurance, C determines whether

X and Y did in fact use a common third service.

Torsten Matzerath Chapter 10 – Appendix

Page 106

Figure 35: Split parallel processes into two single processes

The figure is showing the following content:

Sessions using the same common service in e-Demand: the client is unaware that two services,

A and B performing the same function using different algorithms, rely on a common service

C.

TECHNICAL REQUIREMENT 5:

The architecture should provide a mechanism, which groups recorded process documentation

into a session, and should allow comparison between sessions.

QUERY

USE CASE 9:

A laboratory receives a batch of chemicals, and samples are distributed to chemists in that

laboratory. A chemist C performs an experiment but then examines the results and finds them

doubtful. C determines the source material used in the experiment and then which other recent

experiments used material from the same batch. C examines the results of those experiments

to determine whether the batch may have been contaminated and so should be discarded.

The requirements of using provenance in e-Science experiments 13

USE CASE 8. (SRE) A computer scientist, C, calls service X which calcu-
lates the mean average of two numbers as (a/2)+(b/2). C then calls service
Y with the same two numbers, where Y calculates the average as (a+b)/2. C
does not know if X or Y are reliable, so by getting results from both, C can
compare them and, if they are the same, be more sure having the correct result
(because the same value is produced by two different services). However, X
and Y may use a common third service, Z, behind the scenes, e.g. to perform
division operations. If Z is faulty then the results from X and Y may be
consistent but wrong. For extra assurance, C determines whether X and Y
did in fact use a common third service. !

Session 2

Session 1

Uses Uses

UsesUses

Client

Service A Service B

Service C

Client Service A Service C

Client Service B Service C

Figure 2. Sessions using the same common service in e-Demand: the client is unaware that
two services, A and B performing the same function using different algorithms, rely on a
common service C.

In Use Case 8, two sessions must be distinguished in order to answer
the provenance question. The first session is the execution of X and all its
dependencies, the second is the execution of Y and all its dependencies.
The scenario is depicted in Figure 2. The provenance question can then be
expressed as: was the same service used in both sessions? Similarly, Bioin-
formatics Use Case 1 requires that we compare two experiments, recorded as
two sessions, and show the differences.

TECHNICAL REQUIREMENT 5. PASOA should provide a mechanism by
which to group recorded process documentation into a session, and should
allow comparison between sessions.

pasoa04requirements.tex; 4/04/2006; 13:21; p.13

Chapter 10 – Appendix Torsten Matzerath

Page 107

USE CASE 10:

A biologist B performs many experiments over time to discover the characteristics of peptide

fragments. The fragments are used as evidence that a peptide is in the analysed material. Usu-

ally the discovery of several fragments is required to confidently identify a peptide, but some

fragments are unique enough to be adequate alone. B determines that a fragment with particu-

lar characteristics is produced most times by a particular peptide and rarely or never when that

peptide was not present.

TECHNICAL REQUIREMENT 6:

The architecture should provide for the process documentation to be returned in the groups

specified at the time of recording or searched through on the basis of contextual criteria.

PROCESSING AND VISUALISATION

USE CASE 11:

A chemist C performs an experiment to determine the characteristics of a liquid by bouncing

laser light off of it and examining the changes to the polarisation of the light. As this method

is fairly new, it is not established how to then process the results. C analyses the results

through a plan, i.e. a succession of processes, that seem appropriate at the time and ends with

potentially interesting results. At a later date, C determines the high-level plan that they fol-

lowed and re-performs the experiment with different liquid and configuration.

USE CASE 12:

A service X is accessed by an intruder I that should not have rights to do so. Later, an admin-

istrator becomes aware of the intrusion and determines the time and the credentials used by

the intruder to gain access.

USE CASE 13:

A bioinformatician B performs an experiment. B publishes the results and makes a record of

the experiment details available for the interest of B’s peers.

TECHNICAL REQUIREMENT 7:

Torsten Matzerath Chapter 10 – Appendix

Page 108

The architecture should provide a framework for introducing processing of process documen-

tation of all three types discussed in „TYPES OF PROVENANCE“ (interactions, actor states

and relationships), using various methods, then visualising the results of that processing.

NON-REPUDIATION

USE CASE 14:

A bioinformatician B performs an experiment from which they develop a new drug. B at-

tempts to patent the drug. The patent reviewer R checks that the experiment did not use a da-

tabase that is free only for non-commercial use, such as the Ecoli database.

USE CASE 15:

A chemist C performs an experiment finishing at a particular time. D later performs the same

experiment and submits a patent for the result and the process that led to it to patent officer R.

C claims to R that they performed the experiment before D. R determines whether C is correct.

TECHNICAL REQUIREMENT 8:

The architecture should provide a mechanism for recording adequate process documentation,

in an unmodifiable way, to make results non-repudiable.

RE-USING EXPERIMENTAL PROCESS

USE CASE 16:

A bioinformatician B performs an experiment using as input data a specific human chromo-

some from the most recent version of a database. Later, another bioinformatician, D, updates

the chromosome data. B re-enacts the same experiment with the most recent version of the

chromosome data.

USE CASE 17:

A biologist performs an experiment to identify peptides in a sample. Identifications are made

by comparing characteristics of the peptides and their fragments with already known matches

in a database. In the experiment, some peptides are identified, others cannot be. Later, after

other experiments have been conducted, the database contains more information. The system

automatically re-enacts the analysis of those peptides that were not identified.

Chapter 10 – Appendix Torsten Matzerath

Page 109

TECHNICAL REQUIREMENT 9:

The architecture should provide for the use of process documentation to re-enact an experi-

ment using the same process but new inputs, and to reproduce an experiment with the same

process and inputs.

AGGREGATED SERVICE INFORMATION

USE CASE 18:

Several bioinformaticians perform experiments using service X. Another bioinformatician B

constructs a workflow that uses X. B can estimate the duration that the experiment might take

on the basis of the average time X has taken to complete its tasks before.

TECHNICAL REQUIREMENT 10:

The architecture should provide for querying, over process documentation of multiple exper-

iments, about the aggregate behaviour and properties of services.

Torsten Matzerath Chapter 10 – Appendix

Page 110

10.4 Schema file for BLAST workflow

This schema file contains the definition of the BLAST workflow.
<?xml version="1.0" encoding="utf-8"?>
<schema targetNamespace="http://blast.wsvlam.xml/" xmlns:wf="http://blast.wsvlam.xml/"

elementFormDefault="qualified" xmlns:ds=http://www.w3.org/2000/09/xmldsig#
xmlns:p1="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.w3.org/2001/XMLSchema">

 <import namespace="http://www.w3.org/2000/09/xmldsig#"
schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-
core-schema.xsd" />

 <element name="BLAST">
 <complexType>
 <all>
 <element ref="wf:fileReader_967155551" minOccurs="0" />
 <element ref="wf:fileWriter_916452136" minOccurs="0" />
 <element ref="wf:fileReader_741287972" minOccurs="0" />
 <element ref="wf:fileWriter_1599921089" minOccurs="0" />
 <element ref="wf:fileReader_458790670" minOccurs="0" />
 <element ref="wf:fileWriter_1464339253" minOccurs="0" />
 <element ref="wf:sffToFasta_81081428" minOccurs="0" />
 <element ref="wf:patternMatch_1587433265" minOccurs="0" />
 <element ref="wf:blastall_368139581" minOccurs="0" />
 </all>
 <attribute name="tasktype" use="required" type="string" fixed="ROOT" />
 <attribute name="starttime" type="string" />
 <attribute name="endtime" type="string" />
 </complexType>
 </element>
 <group name="parameter">
 <sequence>
 <element name="initialValue" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="time" type="string" />
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="parameterChanged" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="time" type="string" />
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </group>
 <group name="stdText">
 <sequence>
 <element name="text" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="time" type="string" />
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </group>
 <group name="portStart">
 <all>
 <element name="start" minOccurs="0">
 <complexType>
 <all>
 <element name="id" type="string" />
 <element name="portName" type="string" />
 </all>
 <attribute name="time" type="string" use="required" />
 </complexType>
 </element>

Chapter 10 – Appendix Torsten Matzerath

Page 111

 <element name="port" type="string" />
 <element name="cluster" type="string" />
 </all>
 </group>
 <group name="portEnd">
 <all>
 <element name="port" type="string" />
 <element name="cluster" type="string" />
 <element name="end">
 <complexType>
 <all>
 <element name="id" type="string" />
 <element name="portName" type="string" />
 </all>
 <attribute name="time" type="string" use="required" />
 </complexType>
 </element>
 </all>
 </group>
 <group name="events">
 <all>
 <element name="stdoutReady" minOccurs="0">
 <complexType>
 <group ref="wf:stdText" minOccurs="0" />
 </complexType>
 </element>
 <element name="stdoutClosed" minOccurs="0">
 <complexType>
 <attribute name="time" type="string" use="required" />
 </complexType>
 </element>
 <element name="stderrReady" minOccurs="0">
 <complexType>
 <group ref="wf:stdText" minOccurs="0" />
 </complexType>
 </element>
 <element name="stderrClosed" minOccurs="0">
 <complexType>
 <attribute name="time" type="string" use="required" />
 </complexType>
 </element>
 </all>
 </group>
 <element name="fileReader_967155551">
 <complexType>
 <all>
 <element xmlns:q1="http://www.w3.org/2000/09/xmldsig#" ref="ds:Signature"

minOccurs="0" />
 <element name="information" minOccurs="0">
 <complexType>
 <all>
 <element name="events" minOccurs="0">
 <complexType>
 <group ref="wf:events" minOccurs="0" />
 </complexType>
 </element>
 <element name="parameters" minOccurs="0">
 <complexType>
 <sequence>
 <element name="filename" minOccurs="0">
 <complexType>
 <group ref="wf:parameter" minOccurs="0" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="portStart" minOccurs="0" maxOccurs="1">
 <complexType>
 <group ref="wf:portStart" />
 </complexType>
 </element>
 </all>
 </complexType>
 </element>
 </all>
 <attribute name="starttime" type="string" />
 <attribute name="endtime" type="string" />

Torsten Matzerath Chapter 10 – Appendix

Page 112

 <attribute name="executefinish" type="string" />
 <attribute name="id" use="required" type="string" fixed="967155551" />
 <attribute name="name" use="required" type="string" fixed="fileReader" />
 <attribute name="node" use="required" type="string" fixed="fs0.das3.cs.vu.nl" />
 </complexType>
 </element>
 <element name="fileWriter_916452136">
 <complexType>
 <all>
 <element xmlns:q1="http://www.w3.org/2000/09/xmldsig#" ref="ds:Signature"

minOccurs="0" />
 <element name="information" minOccurs="0">
 <complexType>
 <all>
 <element name="events" minOccurs="0">
 <complexType>
 <group ref="wf:events" minOccurs="0" />
 </complexType>
 </element>
 <element name="parameters" minOccurs="0">
 <complexType>
 <sequence>
 <element name="filename" minOccurs="0">
 <complexType>
 <group ref="wf:parameter" minOccurs="0" />
 </complexType>
 </element>
 <element name="farmed" minOccurs="0">
 <complexType>
 <group ref="wf:parameter" minOccurs="0" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="portEnd" minOccurs="0" maxOccurs="1">
 <complexType>
 <group ref="wf:portEnd" />
 </complexType>
 </element>
 </all>
 </complexType>
 </element>
 <element ref="wf:sffToFasta_81081428" minOccurs="0" />
 </all>
 <attribute name="starttime" type="string" />
 <attribute name="endtime" type="string" />
 <attribute name="executefinish" type="string" />
 <attribute name="id" use="required" type="string" fixed="916452136" />
 <attribute name="name" use="required" type="string" fixed="fileWriter" />
 <attribute name="node" use="required" type="string" fixed="fs0.das3.cs.vu.nl" />
 </complexType>
 </element>
 <element name="fileReader_741287972">
 <complexType>
 <all>
 <element xmlns:q1="http://www.w3.org/2000/09/xmldsig#" ref="ds:Signature"

minOccurs="0" />
 <element name="information" minOccurs="0">
 <complexType>
 <all>
 <element name="events" minOccurs="0">
 <complexType>
 <group ref="wf:events" minOccurs="0" />
 </complexType>
 </element>
 <element name="parameters" minOccurs="0">
 <complexType>
 <sequence>
 <element name="filename" minOccurs="0">
 <complexType>
 <group ref="wf:parameter" minOccurs="0" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="portStart" minOccurs="0" maxOccurs="1">

Chapter 10 – Appendix Torsten Matzerath

Page 113

 <complexType>
 <group ref="wf:portStart" />
 </complexType>
 </element>
 </all>
 </complexType>
 </element>
 </all>
 <attribute name="starttime" type="string" />
 <attribute name="endtime" type="string" />
 <attribute name="executefinish" type="string" />
 <attribute name="id" use="required" type="string" fixed="741287972" />
 <attribute name="name" use="required" type="string" fixed="fileReader" />
 <attribute name="node" use="required" type="string" fixed="fs0.das3.cs.vu.nl" />
 </complexType>
 </element>
 <element name="fileWriter_1599921089">
 <complexType>
 <all>
 <element xmlns:q1="http://www.w3.org/2000/09/xmldsig#" ref="ds:Signature"

minOccurs="0" />
 <element name="information" minOccurs="0">
 <complexType>
 <all>
 <element name="events" minOccurs="0">
 <complexType>
 <group ref="wf:events" minOccurs="0" />
 </complexType>
 </element>
 <element name="parameters" minOccurs="0">
 <complexType>
 <sequence>
 <element name="filename" minOccurs="0">
 <complexType>
 <group ref="wf:parameter" minOccurs="0" />
 </complexType>
 </element>
 <element name="farmed" minOccurs="0">
 <complexType>
 <group ref="wf:parameter" minOccurs="0" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="portEnd" minOccurs="0" maxOccurs="1">
 <complexType>
 <group ref="wf:portEnd" />
 </complexType>
 </element>
 </all>
 </complexType>
 </element>
 <element ref="wf:patternMatch_1587433265" minOccurs="0" />
 </all>
 <attribute name="starttime" type="string" />
 <attribute name="endtime" type="string" />
 <attribute name="executefinish" type="string" />
 <attribute name="id" use="required" type="string" fixed="1599921089" />
 <attribute name="name" use="required" type="string" fixed="fileWriter" />
 <attribute name="node" use="required" type="string" fixed="fs0.das3.cs.vu.nl" />
 </complexType>
 </element>
 <element name="fileReader_458790670">
 <complexType>
 <all>
 <element xmlns:q1="http://www.w3.org/2000/09/xmldsig#" ref="ds:Signature"

minOccurs="0" />
 <element name="information" minOccurs="0">
 <complexType>
 <all>
 <element name="events" minOccurs="0">
 <complexType>
 <group ref="wf:events" minOccurs="0" />
 </complexType>
 </element>
 <element name="parameters" minOccurs="0">
 <complexType>

Torsten Matzerath Chapter 10 – Appendix

Page 114

 <sequence>
 <element name="filename" minOccurs="0">
 <complexType>
 <group ref="wf:parameter" minOccurs="0" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="portStart" minOccurs="0" maxOccurs="1">
 <complexType>
 <group ref="wf:portStart" />
 </complexType>
 </element>
 </all>
 </complexType>
 </element>
 </all>
 <attribute name="starttime" type="string" />
 <attribute name="endtime" type="string" />
 <attribute name="executefinish" type="string" />
 <attribute name="id" use="required" type="string" fixed="458790670" />
 <attribute name="name" use="required" type="string" fixed="fileReader" />
 <attribute name="node" use="required" type="string" fixed="fs0.das3.cs.vu.nl" />
 </complexType>
 </element>
 <element name="fileWriter_1464339253">
 <complexType>
 <all>
 <element xmlns:q1="http://www.w3.org/2000/09/xmldsig#" ref="ds:Signature"

minOccurs="0" />
 <element name="information" minOccurs="0">
 <complexType>
 <all>
 <element name="events" minOccurs="0">
 <complexType>
 <group ref="wf:events" minOccurs="0" />
 </complexType>
 </element>
 <element name="parameters" minOccurs="0">
 <complexType>
 <sequence>
 <element name="filename" minOccurs="0">
 <complexType>
 <group ref="wf:parameter" minOccurs="0" />
 </complexType>
 </element>
 <element name="farmed" minOccurs="0">
 <complexType>
 <group ref="wf:parameter" minOccurs="0" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="portEnd" minOccurs="0" maxOccurs="1">
 <complexType>
 <group ref="wf:portEnd" />
 </complexType>
 </element>
 </all>
 </complexType>
 </element>
 <element ref="wf:blastall_368139581" minOccurs="0" />
 </all>
 <attribute name="starttime" type="string" />
 <attribute name="endtime" type="string" />
 <attribute name="executefinish" type="string" />
 <attribute name="id" use="required" type="string" fixed="1464339253" />
 <attribute name="name" use="required" type="string" fixed="fileWriter" />
 <attribute name="node" use="required" type="string" fixed="fs0.das3.cs.vu.nl" />
 </complexType>
 </element>
 <element name="sffToFasta_81081428">
 <complexType>
 <all>
 <element xmlns:q1="http://www.w3.org/2000/09/xmldsig#" ref="ds:Signature"

minOccurs="0" />

Chapter 10 – Appendix Torsten Matzerath

Page 115

 <element name="information" minOccurs="0">
 <complexType>
 <all>
 <element name="events" minOccurs="0">
 <complexType>
 <group ref="wf:events" minOccurs="0" />
 </complexType>
 </element>
 <element name="portEnd" minOccurs="0" maxOccurs="1">
 <complexType>
 <group ref="wf:portEnd" />
 </complexType>
 </element>
 <element name="portStart" minOccurs="0" maxOccurs="2">
 <complexType>
 <group ref="wf:portStart" />
 </complexType>
 </element>
 </all>
 </complexType>
 </element>
 <element ref="wf:fileReader_967155551" minOccurs="0" />
 </all>
 <attribute name="starttime" type="string" />
 <attribute name="endtime" type="string" />
 <attribute name="executefinish" type="string" />
 <attribute name="id" use="required" type="string" fixed="81081428" />
 <attribute name="name" use="required" type="string" fixed="sffToFasta" />
 <attribute name="node" use="required" type="string" fixed="fs0.das3.cs.vu.nl" />
 </complexType>
 </element>
 <element name="patternMatch_1587433265">
 <complexType>
 <all>
 <element xmlns:q1="http://www.w3.org/2000/09/xmldsig#" ref="ds:Signature"

minOccurs="0" />
 <element name="information" minOccurs="0">
 <complexType>
 <all>
 <element name="events" minOccurs="0">
 <complexType>
 <group ref="wf:events" minOccurs="0" />
 </complexType>
 </element>
 <element name="parameters" minOccurs="0">
 <complexType>
 <sequence>
 <element name="resultPatternMatch" minOccurs="0">
 <complexType>
 <group ref="wf:parameter" minOccurs="0" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="portEnd" minOccurs="0" maxOccurs="2">
 <complexType>
 <group ref="wf:portEnd" />
 </complexType>
 </element>
 <element name="portStart" minOccurs="0" maxOccurs="2">
 <complexType>
 <group ref="wf:portStart" />
 </complexType>
 </element>
 </all>
 </complexType>
 </element>
 <element ref="wf:sffToFasta_81081428" minOccurs="0" />
 <element ref="wf:fileReader_741287972" minOccurs="0" />
 </all>
 <attribute name="starttime" type="string" />
 <attribute name="endtime" type="string" />
 <attribute name="executefinish" type="string" />
 <attribute name="id" use="required" type="string" fixed="1587433265" />
 <attribute name="name" use="required" type="string" fixed="patternMatch" />
 <attribute name="node" use="required" type="string" fixed="fs0.das3.cs.vu.nl" />
 </complexType>

Torsten Matzerath Chapter 10 – Appendix

Page 116

 </element>
 <element name="blastall_368139581">
 <complexType>
 <all>
 <element xmlns:q1="http://www.w3.org/2000/09/xmldsig#" ref="ds:Signature"

minOccurs="0" />
 <element name="information" minOccurs="0">
 <complexType>
 <all>
 <element name="events" minOccurs="0">
 <complexType>
 <group ref="wf:events" minOccurs="0" />
 </complexType>
 </element>
 <element name="parameters" minOccurs="0">
 <complexType>
 <sequence>
 <element name="tmp_path" minOccurs="0">
 <complexType>
 <group ref="wf:parameter" minOccurs="0" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 <element name="portEnd" minOccurs="0" maxOccurs="2">
 <complexType>
 <group ref="wf:portEnd" />
 </complexType>
 </element>
 <element name="portStart" minOccurs="0" maxOccurs="1">
 <complexType>
 <group ref="wf:portStart" />
 </complexType>
 </element>
 </all>
 </complexType>
 </element>
 <element ref="wf:patternMatch_1587433265" minOccurs="0" />
 <element ref="wf:fileReader_458790670" minOccurs="0" />
 </all>
 <attribute name="starttime" type="string" />
 <attribute name="endtime" type="string" />
 <attribute name="executefinish" type="string" />
 <attribute name="id" use="required" type="string" fixed="368139581" />
 <attribute name="name" use="required" type="string" fixed="blastall" />
 <attribute name="node" use="required" type="string" fixed="fs0.das3.cs.vu.nl" />
 </complexType>
 </element>
</schema>

10.5 XML provenance file file for BLAST workflow with the history

tracing system

The XML file contains the XML instance generated by the history tracing system of the

BLAST workflow executed with WS-VLAM. The standard output was deleted.
<?xml version="1.0" encoding="utf-8"?>
<inst:BLAST xmlns:inst="http://blast.wsvlam.xml/" p1:schemaLocation="http://blast.wsvlam.xml/
 BLAST.xsd" tasktype="ROOT" starttime="Thu Feb 24 17:39:01 CET 2011" endtime="Thu Feb
 24 17:44:36 CET 2011" xmlns:p1="http://www.w3.org/2001/XMLSchema-instance">
 <inst:fileWriter_1599921089 starttime="Thu Feb 24 17:39:21 CET 2011"
 node="fs0.das3.cs.vu.nl" id="1599921089" name="fileWriter" executefinish="Thu Feb 24
 17:42:34 CET 2011" endtime="Thu Feb 24 17:42:41 CET 2011">
 <inst:information>
 <inst:events>
 <inst:stdoutReady>
 <inst:text time="Thu Feb 24 17:39:57 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:39:58 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:42:37 CET 2011">...</inst:text>
 </inst:stdoutReady>

Chapter 10 – Appendix Torsten Matzerath

Page 117

 <inst:stdoutClosed time="Thu Feb 24 17:42:41 CET 2011" />
 <inst:stderrClosed time="Thu Feb 24 17:42:41 CET 2011" />
 </inst:events>
 <inst:parameters>
 <inst:filename>
 <inst:initialValue time="Thu Feb 24 17:42:22 CET 2011">
 file:///home/matzerat/results/result_txt</inst:initialValue>
 <inst:parameterChanged time="Thu Feb 24 17:42:22 CET 2011">
 file:///home/matzerat/results/result_txt</inst:parameterChanged>
 </inst:filename>
 <inst:farmed>
 <inst:initialValue time="Thu Feb 24 17:42:23 CET 2011">false</inst:initialValue>
 <inst:parameterChanged time="Thu Feb 24 17:42:23 CET 2011">
 false</inst:parameterChanged>
 </inst:farmed>
 </inst:parameters>
 </inst:information>
 <inst:patternMatch_1587433265 node="fs0.das3.cs.vu.nl"id="1587433265"name="patternMatch"/>
 </inst:fileWriter_1599921089>
 <inst:fileWriter_916452136 starttime="Thu Feb 24 17:39:48 CET 2011" node="fs0.das3.cs.vu.nl"
 id="916452136" name="fileWriter" executefinish="Thu Feb 24 17:42:29 CET 2011"
 endtime="Thu Feb 24 17:42:37 CET 2011">
 <inst:information>
 <inst:events>
 <inst:stdoutReady>
 <inst:text time="Thu Feb 24 17:39:53 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:39:54 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:42:33 CET 2011">...</inst:text>
 </inst:stdoutReady>
 <inst:stdoutClosed time="Thu Feb 24 17:42:37 CET 2011" />
 <inst:stderrClosed time="Thu Feb 24 17:42:37 CET 2011" />
 </inst:events>
 <inst:parameters>
 <inst:filename>
 <inst:initialValue time="Thu Feb 24 17:42:14 CET 2011">
 file:///home/matzerat/results/fastaOutput</inst:initialValue>
 <inst:parameterChanged time="Thu Feb 24 17:42:14 CET 2011">
 file:///home/matzerat/results/fastaOutput</inst:parameterChanged>
 </inst:filename>
 <inst:farmed>
 <inst:initialValue time="Thu Feb 24 17:42:22 CET 2011">false</inst:initialValue>
 <inst:parameterChanged time="Thu Feb 24 17:42:22 CET 2011">
 false</inst:parameterChanged>
 </inst:farmed>
 </inst:parameters>
 </inst:information>
 <inst:sffToFasta_81081428 node="fs0.das3.cs.vu.nl" id="81081428" name="sffToFasta" />
 </inst:fileWriter_916452136>
 <inst:sffToFasta_81081428 starttime="Thu Feb 24 17:39:51 CET 2011" node="fs0.das3.cs.vu.nl"
 id="81081428" name="sffToFasta" executefinish="Thu Feb 24 17:42:28 CET 2011"
 endtime="Thu Feb 24 17:42:40 CET 2011">
 <inst:information>
 <inst:events>
 <inst:stdoutReady>
 <inst:text time="Thu Feb 24 17:39:56 CET 2011">... </inst:text>
 <inst:text time="Thu Feb 24 17:39:56 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:39:57 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:40:26 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:42:36 CET 2011">...</inst:text>
 </inst:stdoutReady>
 <inst:stdoutClosed time="Thu Feb 24 17:42:40 CET 2011" />
 <inst:stderrClosed time="Thu Feb 24 17:42:40 CET 2011" />
 </inst:events>
 <inst:portStart>
 <inst:start time="Thu Feb 24 17:41:52 CET 2011">
 <inst:id>81081428</inst:id>
 <inst:portName></inst:portName>
 </inst:start>
 <inst:cluster>inputSff</inst:cluster>
 <inst:port></inst:port>
 </inst:portStart>
 <inst:portEnd>
 <inst:end time="Thu Feb 24 17:42:07 CET 2011">
 <inst:id>81081428</inst:id>
 <inst:portName></inst:portName>
 </inst:end>
 <inst:cluster>sffOutput</inst:cluster>
 <inst:port></inst:port>

Torsten Matzerath Chapter 10 – Appendix

Page 118

 </inst:portEnd>
 <inst:portEnd>
 <inst:end time="Thu Feb 24 17:42:08 CET 2011">
 <inst:id>81081428</inst:id>
 <inst:portName></inst:portName>
 </inst:end>
 <inst:cluster>sffOutput</inst:cluster>
 <inst:port></inst:port>
 </inst:portEnd>
 </inst:information>
 <inst:fileReader_967155551 starttime="Thu Feb 24 17:40:18 CET 2011"
 node="fs0.das3.cs.vu.nl" id="967155551" name="fileReader" executefinish="Thu
 Feb 24 17:42:24 CET 2011" endtime="Thu Feb 24 17:42:28 CET 2011">
 <inst:information>
 <inst:events>
 <inst:stdoutReady>
 <inst:text time="Thu Feb 24 17:40:54 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:42:28 CET 2011">...</inst:text>
 </inst:stdoutReady>
 <inst:stderrClosed time="Thu Feb 24 17:42:28 CET 2011" />
 <inst:stdoutClosed time="Thu Feb 24 17:42:28 CET 2011" />
 </inst:events>
 <inst:parameters>
 <inst:filename>
 <inst:initialValue time="Thu Feb 24 17:42:09 CET 2011">
 file:///home/matzerat/BLAST-package4torsten/input-
 data/Input_sffinfo_Component.tar
 </inst:initialValue>
 <inst:parameterChanged time="Thu Feb 24 17:42:09 CET 2011">
 file:///home/matzerat/BLAST-package4torsten/input-
 data/Input_sffinfo_Component.tar
 </inst:parameterChanged>
 </inst:filename>
 </inst:parameters>
 </inst:information>
 </inst:fileReader_967155551>
 </inst:sffToFasta_81081428>
 <inst:patternMatch_1587433265 starttime="Thu Feb 24 17:40:51 CET 2011"
 node="fs0.das3.cs.vu.nl" id="1587433265" name="patternMatch" executefinish="Thu
 Feb 24 17:42:34 CET 2011" endtime="Thu Feb 24 17:42:39 CET 2011">
 <inst:information>
 <inst:events>
 <inst:stdoutReady>
 <inst:text time="Thu Feb 24 17:41:25 CET 2011">...<inst:text>
 <inst:text time="Thu Feb 24 17:42:35 CET 2011">...</inst:text>
 </inst:stdoutReady>
 <inst:stdoutClosed time="Thu Feb 24 17:42:39 CET 2011" />
 <inst:stderrClosed time="Thu Feb 24 17:42:39 CET 2011" />
 </inst:events>
 <inst:portStart>
 <inst:start time="Thu Feb 24 17:42:08 CET 2011">
 <inst:id>1587433265</inst:id>
 <inst:portName></inst:portName>
 </inst:start>
 <inst:cluster>sffOutputFile</inst:cluster>
 <inst:port></inst:port>
 </inst:portStart>
 <inst:portStart>
 <inst:start time="Thu Feb 24 17:42:08 CET 2011">
 <inst:id>1587433265</inst:id>
 <inst:portName></inst:portName>
 </inst:start>
 <inst:cluster>patternFile</inst:cluster>
 <inst:port></inst:port>
 </inst:portStart>
 <inst:portEnd>
 <inst:end time="Thu Feb 24 17:42:08 CET 2011">
 <inst:id>1587433265</inst:id>
 <inst:portName></inst:portName>
 </inst:end>
 <inst:cluster>result_fasta</inst:cluster>
 <inst:port></inst:port>
 </inst:portEnd>
 <inst:portEnd>
 <inst:end time="Thu Feb 24 17:42:09 CET 2011">
 <inst:id>1587433265</inst:id>
 <inst:portName></inst:portName>
 </inst:end>

Chapter 10 – Appendix Torsten Matzerath

Page 119

 <inst:cluster>result_txt</inst:cluster>
 <inst:port></inst:port>
 </inst:portEnd>
 <inst:parameters>
 <inst:resultPatternMatch>
 <inst:initialValue time="Thu Feb 24 17:42:24 CET 2011">
 /home/matzerat/results/resultPatternMatch</inst:initialValue>
 <inst:parameterChanged time="Thu Feb 24 17:42:24 CET 2011">
 /home/matzerat/results/resultPatternMatch</inst:parameterChanged>
 </inst:resultPatternMatch>
 </inst:parameters>
 </inst:information>
 <inst:sffToFasta_81081428 node="fs0.das3.cs.vu.nl" id="81081428" name="sffToFasta" />
 <inst:fileReader_741287972 starttime="Thu Feb 24 17:41:52 CET 2011"
 node="fs0.das3.cs.vu.nl" id="741287972" name="fileReader" executefinish="Thu
 Feb 24 17:42:24 CET 2011" endtime="Thu Feb 24 17:42:32 CET 2011">
 <inst:information>
 <inst:events>
 <inst:stdoutReady>
 <inst:text time="Thu Feb 24 17:42:28 CET 2011">...</inst:text>
 </inst:stdoutReady>
 <inst:stdoutClosed time="Thu Feb 24 17:42:32 CET 2011" />
 <inst:stderrClosed time="Thu Feb 24 17:42:32 CET 2011" />
 </inst:events>
 <inst:parameters>
 <inst:filename>
 <inst:initialValue time="Thu Feb 24 17:42:22 CET 2011">
 file:///home/matzerat/BLAST-package4torsten/input-data/tagMichel20080707.txt
 </inst:initialValue>
 <inst:parameterChanged time="Thu Feb 24 17:42:22 CET 2011">
 file:///home/matzerat/BLAST-package4torsten/input-data/tagMichel20080707.txt
 </inst:parameterChanged>
 </inst:filename>
 </inst:parameters>
 </inst:information>
 </inst:fileReader_741287972>
 </inst:patternMatch_1587433265>
 <inst:fileWriter_1464339253 starttime="Thu Feb 24 17:41:21 CET 2011"
 node="fs0.das3.cs.vu.nl" id="1464339253" name="fileWriter" executefinish="Thu
 Feb 24 17:44:21 CET 2011" endtime="Thu Feb 24 17:44:33 CET 2011">
 <inst:information>
 <inst:events>
 <inst:stdoutReady>
 <inst:text time="Thu Feb 24 17:41:56 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:42:46 CET 2011...</inst:text>
 <inst:text time="Thu Feb 24 17:44:26 CET 2011">...</inst:text>
 </inst:stdoutReady>
 <inst:stderrClosed time="Thu Feb 24 17:44:33 CET 2011" />
 <inst:stdoutClosed time="Thu Feb 24 17:44:33 CET 2011" />
 </inst:events>
 <inst:parameters>
 <inst:filename>
 <inst:initialValue time="Thu Feb 24 17:42:23 CET 2011">
 file:///home/matzerat/results/out_blast_tar</inst:initialValue>
 <inst:parameterChanged time="Thu Feb 24 17:42:23 CET 2011">
 file:///home/matzerat/results/out_blast_tar</inst:parameterChanged>
 </inst:filename>
 <inst:farmed>
 <inst:initialValue time="Thu Feb 24 17:42:23 CET 2011">false</inst:initialValue>
 <inst:parameterChanged time="Thu Feb 24 17:42:23 CET 2011">
 false</inst:parameterChanged>
 </inst:farmed>
 </inst:parameters>
 </inst:information>
 <inst:blastall_368139581 starttime="Thu Feb 24 17:39:18 CET 2011" node="fs0.das3.cs.vu.nl"
 id="368139581" name="blastall" executefinish="Thu Feb 24 17:44:20 CET
 2011" endtime="Thu Feb 24 17:44:30 CET 2011">
 <inst:information>
 <inst:events>
 <inst:stdoutReady>
 <inst:text time="Thu Feb 24 17:39:54 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:39:55 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:42:44 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:44:14 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:44:24 CET 2011">...</inst:text>
 </inst:stdoutReady>
 <inst:stdoutClosed time="Thu Feb 24 17:44:30 CET 2011" />
 <inst:stderrClosed time="Thu Feb 24 17:44:30 CET 2011" />

Torsten Matzerath Chapter 10 – Appendix

Page 120

 </inst:events>
 <inst:portStart>
 <inst:start time="Thu Feb 24 17:42:08 CET 2011">
 <inst:id>368139581</inst:id>
 <inst:portName></inst:portName>
 </inst:start>
 <inst:cluster>result_fasta</inst:cluster>
 <inst:port></inst:port>
 </inst:portStart>
 <inst:portStart>
 <inst:start time="Thu Feb 24 17:42:08 CET 2011">
 <inst:id>368139581</inst:id>
 <inst:portName></inst:portName>
 </inst:start>
 <inst:cluster>Ref_File_gz</inst:cluster>
 <inst:port></inst:port>
 </inst:portStart>
 <inst:portEnd>
 <inst:end time="Thu Feb 24 17:42:09 CET 2011">
 <inst:id>368139581</inst:id>
 <inst:portName></inst:portName>
 </inst:end>
 <inst:cluster>out_blast_tar</inst:cluster>
 <inst:port></inst:port>
 </inst:portEnd>
 <inst:parameters>
 <inst:tmp_path>
 <inst:initialValue time="Thu Feb 24 17:42:24 CET 2011">
 /var/scratch/matzerat/result</inst:initialValue>
 <inst:parameterChanged time="Thu Feb 24 17:42:24 CET 2011">
 /var/scratch/matzerat/result</inst:parameterChanged>
 </inst:tmp_path>
 </inst:parameters>
 </inst:information>
 <inst:fileReader_458790670 starttime="Thu Feb 24 17:40:21 CET 2011"
 node="fs0.das3.cs.vu.nl" id="458790670" name="fileReader" executefinish="Thu Feb
 24 17:42:24 CET 2011" endtime="Thu Feb 24 17:42:31 CET 2011">
 <inst:information>
 <inst:events>
 <inst:stdoutReady>
 <inst:text time="Thu Feb 24 17:40:57 CET 2011">...</inst:text>
 <inst:text time="Thu Feb 24 17:42:27 CET 2011">...</inst:text>
 </inst:stdoutReady>
 <inst:stdoutClosed time="Thu Feb 24 17:42:31 CET 2011" />
 <inst:stderrClosed time="Thu Feb 24 17:42:31 CET 2011" />
 </inst:events>
 <inst:parameters>
 <inst:filename>
 <inst:initialValue time="Thu Feb 24 17:42:23 CET 2011">
 file:///home/matzerat/BLAST-package4torsten/input-data/Ribosomal_Human.gz
 </inst:initialValue>
 <inst:parameterChanged time="Thu Feb 24 17:42:23 CET 2011">
 file:///home/matzerat/BLAST-package4torsten/input-data/Ribosomal_Human.gz
 </inst:parameterChanged>
 </inst:filename>
 </inst:parameters>
 </inst:information>
 </inst:fileReader_458790670>
 <inst:patternMatch_1587433265 node="fs0.das3.cs.vu.nl" id="1587433265"
 name="patternMatch" />
 </inst:blastall_368139581>
 </inst:fileWriter_1464339253>
</inst:BLAST>

