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Abstract

Since big data has emerged as central in many applications, efficient ways of storing and processing need
to be adopted. Traditional database systems seem not to scale very well, whereas using cloud computing
frameworks such as Hadoop becomes a growing trend followed by many big enterprises. This global need
for handling big data efficiently creates space for improvements in the already implemented algorithms
and frameworks.

In the Hadoop framework, big spatial data, unlike traditional data, have some extra characteristics
that need to be taken into account to improve the storing and processing operations. While working in a
multinode environment, it is essential that each node has the same amount of computation to do, while
grouping together spatial objects that are geographically close to each other may reduce the amount of
the required computations depending on the query type.

In this thesis, we investigate how existing spatial partitioning algorithms help to scale up the process-
ing of big spatial data to reduce the runtime. Also, we draw some results about what type of partitioning
is more optimal over others regarding the query type and the dataset. Finally, we discuss why spatial
partitioning is important if we focus on the efficient processing of the data.

Our experiments show that the quad-tree based partitioning algorithm is the most efficient regarding
speed in most of the conducted queries, followed by the R-tree based partitioning algorithm. More
specifically, for queries affecting up to 70% of the dataset, the quad-tree based algorithm has 1.5 to 8
times less execution time, while R-tree based one ranges from 1.5 to 2 times, compared with the default
partitioner of Hadoop. The universal grid algorithm is quicker to be applied, but it is significantly
dependent on the data skew. Finally, the default hashPartitioner of Hadoop, completely ignores any
spatial characteristic, rendering it inefficient in processing big spatial data.
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Chapter 1

Introduction

1.1 Spatial Data

Among the specialized data handled by today’s databases, spatial data has emerged as central to many
applications. These include geographic information systems (GISs), computer-aided design (CAD),
robotics, image processing, and VLSI, all of which have at their core spatial objects that must be
stored, queried, and displayed[1]. There is an increasing need for specific techniques to handle spatial
objects and that gave rise to the area of spatial databases, to make the processing faster[1]. This way,
the difficulty regarding the execution time that arises from handling big data needs to be overcome. In
a relatively short period, spatial databases have developed a comprehensive technology, including rep-
resentations for spatial objects, spatial access methods for fast retrieval, specific query languages, and
algorithms adapted from adjacent areas such as computational geometry[1].

Spatial Database Management Systems store and maintain large collections of multidimensional data.
Past research in the database community focused on the evaluation of big data systems by applying
common query types which they are quite often used in many applications, such as range queries[2] (i.e.,
find all objects that intersect or are contained in a spatial region), spatial joins[3] (i.e., find all pairs of
objects from two datasets that satisfy a spatial predicate), and nearest-neighbor queries[4] (i.e., find the
closest object to a reference point or object)[5].

Traditional data processing systems cannot process spatial data with the same efficiency as other
types of data and the reason behind that is some extra characteristics that the spatial data has [6]. First
of all, spatial data is location-based data, which means that the key to reducing the run-time of each
query is the efficient processing of the spatial location of each object. Additionally, spatial data has a
complex structure, unlike most of the traditional data, which can vary from a single point, to complicated
polygons or curves in many dimensions. This extra complexity has to be taken into account, to achieve
efficient processing. Moreover, spatial data is at most cases dynamic, leading to multiple insertions and
deletions over time, making indexing quite challenging.

1.2 Big Data Systems

Some decades ago, the available data was not sufficient enough to process it and draw results out of it.
In recent years though, the problem is quite the opposite. There are numerous sources of data, providing
information about various fields, but due to its extent, it is challenging to process it all efficiently and
acquire information out of it[1]. Traditional database systems work well when the data is relatively small,
but they seem to have a scaling problem [4]. For that reason, to efficiently store and process big data,
alternative approaches need to be followed.

According to Rui Han et. al. [7], Big Data Systems can fall into 3 major camps:

Hadoop and its relevant systems: Hadoop is mainly known for its Hadoop Distributed File System
(HDFS) along with its MapReduce method for storing and processing data respectively. It also comes
with a rich, growing ecosystem containing various support regarding high-level languages and Structured
Query Language (SQL). This camp has become the de facto solution for a majority of big data applica-
tions. Hadoop and in general MapReduce based systems are increasingly being used for large-scale data
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CHAPTER 1. INTRODUCTION

analysis applications[8].

Database Management Systems (DBMSs) and NoSQL Data Stores: Such Systems are widely
used in online transactional and analytical applications. While they provide an efficient solution, these
systems rely on the high availability of memory.

Specialized System in the big data domain: Such systems deal with specific processing require-
ments of connected graphs, continuous streams, and complex scientific data. They are used for more
specific problems, and they do not provide a generic solution.

Choosing the right big data system has to be done regarding the very nature of each problem. Em-
pirical studies have shown that Hadoop can be efficiently used when the update rate of our data is
relatively high and works great even with limited memory sources [9]. Relational database systems work
better when we are concerned about reading the data rather than update it, while NoSQL’s efficiency
may be close to the Hadoop’s, but it requires high memory utilization [9].

1.3 Big Data Partitioning

When the amount of data gets too big for a single node to handle, the data is usually partitioned and each
group of partitions is stored in a different data block. When a query takes place, these data blocks are
given to different calculating nodes, where each of them is executing part of the query to its data block.
The partitioning technique should be chosen regarding the type of the data, its complexity and the type
of processing. Different queries work better under different partitioning, thus to choose a partitioning
technique, one should consider the most common and time-consuming queries that take place.

Traditional and spatial data do not share the same characteristics when it comes to partitioning.
While traditional data can be partitioned with simple techniques such as based on their hashmap by
using key-value pairs, spatial data needs to be partitioned in a way that its spatial attributes will be
taken into account. To illustrate this further, spatial objects that their position is physically close to
each other should be -if possible- included in the same data block, if we are interested in spatial location
queries[10]. This is very useful since the majority of the processing that one needs to have with spatial
data are queries that rely on the position of the objects. Hence, if the partitioning is done regarding
the spatial location of the data, queries may have to be conducted in fewer data blocks, saving valuable
processing time. Further, in parallel computation, it is essential for each node to have all the objects
that fall into an area because this minimizes the communication among other nodes in spatial queries.

1.4 Problem Statement

As mentioned in the above sections, the structure and complexity of spatial data make it more difficult
to store and process in the traditional data systems and the problem gets tougher the bigger the spatial
data is. For that reason, big data systems have been developed to bridge the gap between processing
traditional and spatial data. Such systems should take into account an efficient way of partitioning the
data, that respects their location so that spatial queries can be conducted more efficiently.

We have also mentioned in the previous section that when dealing with big data, it is quite common
to divide/partition the data into multiple data blocks and assign different nodes to store and process
them. Spatial objects adjacent to each other should be saved in the same data block so that each block
can have all the objects included in an area. Traditional partitioning techniques are not designed to be
efficient with spatial data, thus they completely ignore their spatial location and lead into spatial objects
that belong to an area to be scattered around different data blocks [11]. While this may be efficient for
processing alphanumeric values, spatial queries cannot process the data efficiently, since they rely on the
spatial location of the objects. Given the spatial datatype, the volume and the query type, the selection
of a right partitioning technique could reduce the run time and provide quicker results.

1.4.1 Research questions

To tackle these issues, we investigate how the most efficient partitioning techniques for spatial data in
traditional databases scale up in a multinode environment conducting queries in parallel. We have chosen
to use the Hadoop System along with its relevant systems since we are interested in spatial data that
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CHAPTER 1. INTRODUCTION

requires continuous updates and we want to use a limited portion of the memory resources. We will
examine how different partitioning techniques affect the efficiency of a parallel computation in Hadoop
for spatial data, given the spatial database and query type. More specifically, we will examine how
partitioning based on quad and r-trees affect the computational efficiency of a query in the HDFS envi-
ronment, comparing to the standard grid partitioning of the SpatialHadoop framework[10] and default
hashPartitioner of Hadoop, that completely ignores any spatial characteristics. The problem statement
can be formalized into the following research question.

RQ: How can spatial partitioning methods help to scale up the processing of big spatial
data?

This question is of great importance to be answered since by using the right partitioning methods,
we can boost the performance of processing the big data and as a result increase the capabilities of our
system. However, to answer the above question we need to provide answers to the following subquestions:

What are the best data structures that are used in traditional spatial databases?

Answering this question can help us understand the core concepts of storing spatial databases, therefore
partitioning it in a distributed file system could be based on the best practices, rather than implement
something from scratch.

Do these methods scale up well in multinode systems processing data in parallel?

Learning from the past is a good technique to predict similar behaviors in other systems that have
some aspects in common. Because the two systems are not identical though, we have to delve into the
behavior of these practices and examine if their performance is efficient for the given problem.

1.5 Outline

In Chapter 2 we describe the background of our research along with some core terminology. Next, in
Chapter 3 we analyze the partitioning algorithms used for our research and the query types for processing
the data efficiently. The results of our experiments are shown and discussed in Chapter 4. Finally, we
present our concluding remarks in Chapter 5 together with future work.
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Chapter 2

Background

This chapter will present the necessary background information for this thesis. First, we define some
basic terminology that will be used throughout this thesis. Next, we explain the importance of efficient
partitioning techniques along with the efficient state of the art partitioning methods for traditional spatial
databases. Last, we present some use cases and we explain the relevance of this research.

2.1 Hadoop and Subsystems

The Apache Hadoop software library is a framework that eases the processing of large data sets across
clusters of computers[12]. It is designed to scale up from single servers to thousands of machines, each
offering local computation and storage. The library itself is designed to detect and handle failures at the
application layer, so delivering a highly-available service on top of a cluster of computers, each of which
may be prone to failures[12].The 2 most useful components of the Hadoop, are the Hadoop Distributed
File System (HDFS) and the MapReduce under a master/slave architecture (Fig.2.2), which we will
describe in the next sections.

2.1.1 MapReduce

MapReduce is a popular programming model for distributed processing of large data sets. [8]. A MapRe-
duce job consists of two main functions the Map and the Reduce along with some other processes that
take place in between:

Map Function:

The Map function creates key-value pairs for each input, while many pairs have the same -no unique-
key. Then the system sorts the key-value pairs by key, and for each one of them creates a pair consisting
of the key itself and a list of all the values associated with it [13].

Reduce Function:

The Reduce function takes each corresponding key and its associated list of values. Then it executes
the necessary calculations written by the user and applies them to the list of values. The final result
contains the calculation outcome to each key and its list.

In Figure 2.1 we can see a visualization of the structure of the MapReduce model. In the Hadoop
environment, since the Map tasks can be executed in parallel as well as the Reduce tasks, we can obtain
an almost unlimited degree of parallelism, if we also have the hardware support [13]. Furthermore, one
of the core features of MapReduce is the blocking property [14], which reassures that all of the Map
or Reduce tasks deliver the outputs when all the work has been finished. As a result, if a hardware or
software fails in the middle of a MapReduce job, the system can easily recover by restarting the tasks
[13].
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Input Map Task

Map Task

Map Task

Map Task

Map Task

Reduce Task

Reduce Task

Reduce Task

Output

Figure 2.1: The structure of a MapReduce job in Hadoop

2.1.2 Hadoop Distributed File System (HDFS)

The Distributed File system of Hadoop (HDFS) is a highly fault-tolerant distributed file system designed
efficient scaling up of big data storage and run on clusters of commodity machines. An HDFS cluster
consists of a single NameNode and several Datanodes. The NameNode is a master server that manages
the file system and regulates access to files by clients containing all of the metadata. The DataNodes,
usually one per node in the cluster, manage storage attached to the nodes that they run on. HDFS
exposes a file system and allows user data to be stored in files, where each of them is split into one
or more blocks and these blocks are stored in a set of DataNodes. The DataNodes also perform block
creation, deletion, and replication upon instruction from the NameNode [12]. When we want to process
the data or conduct a query, the JobTracker which belongs to the MasterNode assigns Map and Reduce
tasks to the TaskTrackers (Figure 2.2).

2.2 Spatial Partitioning in Traditional Databases

To store and process big spatial data efficiently, we need to partition the big data into smaller data blocks.
As mentioned by Han et. al. [7], two of the most efficient partitioning techniques in traditional databases
are based on the Quad-tree and the R/R+ tree. Another empirical study using the spatialHadoop Frame-
work [15] shows that the quad-tree based partitioning outperformed the other 6 partitioning methods
that they examined for the range query and the spatial join, while R/R+ tree-based partitioning was
the second best.

We hypothesize that these partitioning methods will have the same relevant efficiency in the HDFS
since we will have 3 major benefits. First, if the spatial query to be conducted does not refer to the
whole data set, but to a specific area, it is quite possible that not all of the data nodes will have to
be queried. If the partitioning was ignoring spatial characteristics, then all of the data blocks should
have been examined to be sure about the correctness of the query. Second, within each data block, the
processing time will require less communication with the other blocks, if each one has all the adjacent
objects, for example in a range query. Last, these partitioning methods try to balance the number of
spatial objects within each data block, so that roughly all of them will require similar execution tasks.
This boosts the efficiency in parallel since no node will have to wait for the others as the processing time
should be roughly equal.

Some of the partitioning techniques rely on sampling, while others do not. Sampling allows us to
predict factors such as the topology of the objects along with other useful statistics, which makes it
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CHAPTER 2. BACKGROUND

MapReduce:

HDFS:

Master Node Slave Node Slave Node

JobTracker

TaskTracker TaskTracker TaskTracker

NameNode

DataNode DataNode DataNode

Figure 2.2: High Level Architecture of Hadoop

easier to choose the right thresholds given the partitioning technique. Sampling, however, comes with
an extra cost of pre-processing the data, increasing the computational time of the algorithm. Hence,
the number of random objects for sampling should guarantee that the overall computational time gets
improved. This trade-off is not easy to be thoroughly examined, due to the randomness of sampling,
along with the different types of datasets and queries.

2.3 Partitioning in HDFS

When using the Hadoop environment, the traditional databases need to be partitioned into data blocks
for parallel calculations. The two major problems that a partitioning technique should overcome are the
data skew and the boundary object problem[16]. Regarding spatial data partitioning, the majority of
the approaches in the literature are based on a) location of the objects, b) spatial grid cells [17], or 3
space-filling curves[18]. Other factors also affect the partitioning result, namely, the size of the objects,
their distribution, their number, and the query type. Thus, different partitioning techniques may have
varying performance depending on the dataset and query operation.

2.3.1 Supported Frameworks

HDFS is a popular way of storing big data along with the MapReduce for processing it, but unfortu-
nately, it was not designed to take into account spatial characteristics. For that reason, Hadoop should
be used along with a pre-processing of the dataset, and/or other technologies when used for spatial
data operations if one is interested in optimization. The Hadoop ecosystem offers some support to the
processing and storing of spatial data which we are going to further discuss it in this chapter.

Parallel and distributed GIS systems have been vastly improved during the last years, but there is
still a lot of room for improvements, especially in the spatial area. There are a few different frameworks
that work in the HDFS as Hadoop extensions and deal with spatial data but they come with some cons.
First, Hadoop-GIS [16] uses a post re-partitioning technique to deal with the data skew, which increases
the computational time. Second, SpatialHadoop [10], uses random sampling for the partitioning part,
which may lead to over/under-sized blocks. Third, Kangaroo[19] has quite a few partitioning techniques
based on k-d trees and depending on the query type, the dataset gets re-partitioned again. Yet, only large
data blocks based on the spatial grid are taken into account which leads to data balance miscalculations.
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Moreover, Eagle-Eyed Elephant(E3)[11] to deal with data splits, it handles only one-dimensional spatial
datasets, while 2-dimensional spatial data is more common [18].

2.3.2 Spatial Partitioning over HashPartitioning

The default partitioner that Hadoop uses is the HashPartitioner [20] which splits the data into many
child blocks with a fixed block size - most commonly 64MB or 128 MB - to reduce data skew and have a
good data balance in HDFS. The HashPartitioner groups together data based on their hash value, which
means that in the spatial world, it can group data quite randomly. In figure 2.3 we can see a simulation on
how the HashPartitioning could group the objects in comparison with a Spatial Partitioning technique.

Figure 2.3: Simulation of the HashPartitioner (on the left) and Spatial Partitioning (on
the right)

Let’s examine the 2 partitioning methods in Figure 2.3 showing the map of the Netherlands. If a
spatial query would ask to return all the objects that belong in the northern islands of the Netherlands
in the first case we would have to search in every data block, since the objects were not grouped by their
location. On the second case, only the data block 1 (purple) would be searched for since the partitioning
reassures that all of the objects are within the block 1. With this simple example, it is easy to understand
the significance of the partitioning based on object location in spatial storing.

2.4 Data structures

The spatial partitioning techniques respect the location of the spatial objects, hence they group objects if
they are adjacent. Though, there are different techniques on how to split the objects and draw the borders
between the data blocks. HDFS defines the size of each data block and then the partitioning algorithm
has to fill these blocks with the spatial objects. Two of the most efficient partitioning techniques in
traditional database systems are based on quad-trees and R-trees [7],[15]. In this chapter, we will give
an illustration of these data structures.

2.4.1 Uniform Grid

Having a uniform grid partitioning is an easy way to divide the space into cells of the same length, each
of them stored as a data block. This partitioning method requires very little time to be applied, but it
works only if the spatial objects are scattered around the space uniformly. If the data skew is big, we
will end up with unbalanced cells and the processing time for each of them may differ significantly. This
technique can be used as a baseline for more complex algorithms.
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In Figure 2.4 we can see the partitioning using a uniform grid. While the uniform grid is a simple
implementation and works well with equally distributed objects around the space, in this example we
observe the main drawback of the algorithm. The upper-left cell, for example, contains only 2 points,
while the upper right one contains 13. Since the object difference in each cell is quite big, this will have
an impact if each cell will be given to different nodes for further calculations. Some of them will have
less work to do, while others will suffer. The result will be that the overall runtime will be based on
the ”slowest” nodes. If though, the cells contained the same amount of objects, each node would have
undertaken a similar processing task, so there would not be a significantly slowest node and the runtime
would be less.
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Figure 2.4: Example of dividing the space with Grid Partitioning

2.4.2 Quad-trees

Quad-trees are data structured that each internal node has exactly 4 children. The root of the tree
divides the space into 4 quadrants [21]. Quad-trees are often used to decompose space into adaptable
cells. If a cell reaches its maximum capacity, it has to split into 4 other sub-cells in order all of the
data to fit in respecting the max size. In general, quadtrees are a cheap way to divide the space into
cells without requiring many computations for this division. This benefit of quadtrees saves computation
time during the partitioning phase before we go to the processing of our data. Thus, if we are interested
in the complete run-time including both the partitioning time and the processing time, quadtrees come
with an edge.

In Figure 2.5 there is an example of a quadtree. On the left, we can see an example of a space that
contains points. In some areas, the points are more dense, while in others they are quite sparse. In our
example, the maximum points that a cell can store are 8. The first division will split the space into 4
quadrants. The upper right and bottom left quadrants contain more than 8 points, so they need to split
again. Finally, we have 10 cells with a different size, but all of them contain the same amount of points.
On the right, we see the representation of our example in a tree form. Notice that some nodes like 2
and 4 may not have any children while others like 1 and 3 have exactly 4 children. No node can have a
different amount of children than the 2 aforementioned cases.

Using quad-trees to slice the space is a relatively light procedure, since the only variables that make
increase the complexity of the algorithm are the space limit and the number of objects. While the
uniform grid only takes into account the space, without minding the number of objects in each cell, the
quad-trees add another parameter for optimizing the capacity of objects in each cell. Comparing the
complexity of the quad-tree algorithm with some data partitioning algorithms, the latter ones take into
account even more parameters like the geometry of the objects and/or the size of them, making them
more computationally heavy.

2.4.3 R-trees

R-trees are height-balanced trees based on B+-trees. Each node of the R-tree corresponds to the Mini-
mum Bounded Rectangle (MBR) that bounds its children, whilst the leaves point to the database objects.
[22]. Most of the time the MBRs may overlap with each other or be included in many nodes (it is only
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Figure 2.5: Left: Example of dividing the space with Quad-tree partitioning. Right:
Representation of the Quad-Tree

associated with only one of them). Thus, a spatial query might visit many nodes when seeking for an
object. An R-tree has a maximum number of leaves per node, and each node has to be at least half-filled.
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Figure 2.6: Demonstration on how we can use an R-tree to group up and store
square-shaped objects.

There are multiple ways to construct an R-tree. The original algorithm creates the tree based on
the sequence of the items which is a quick way to calculate the corresponding R-tree. A variation of
the R-tree is the R+tree, which is somewhere between an R-tree and a kd-tree. In this variation, the
nodes are not guaranteed to be at least half-filled and there is no overlap between internal nodes because
we can have an object inserted in multiple leaves. Minimal coverage reduces the empty areas which are
covered by the nodes of the R-tree so that efficient search can be achieved.

In figure 2.6 there is an example of squares getting grouped by in an R-tree. In this example, assuming
that the maximum number of objects each partition can have is 4 and the minimum 2, we can see the
corresponding MBR. Several R-trees can represent the same set of data rectangles since the resulting
R-tree is determined by the insertion and deletion order of its entries [22].
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Chapter 3

Partitioning Algorithms

In this chapter, we will demonstrate our partitioning methods, explain the algorithms behind each
implementation and illustrate the importance of having efficient partitioning methods in spatial data.
For these algorithms, we used the SpatialHadoop [10] framework, an extension for Hadoop[12], which
contains all the tools for the next algorithms that we are going to describe. The four main algorithms
that we are going to put into test are the hashPartitioner (the default partitioner of Hadoop), the grid-
based partitioning (space partitioning), the quadtree based partitioning (space and space-filling curve
partitioning) and the R-tree based partitioning (data partitioning).

3.1 HashPartitioning

The default partitioning algorithm that Hadoop has is the HashPartitioner. It is a partitioning algorithm
that takes the hash code of each data entry and given the capacity of each data block, it groups together
objects that have a similar hash code. This means that it completely ignores any spatial characteristic
of spatial shapes, resulting in not grouping together with neighboring objects. On the other hand,
partitioning takes place quite quickly because almost none preprocessing needs to be done. In figure 3.1
we can see how Hadoop implements its main partitioning method. In the next chapter, we will conduct
experiments to find out if the hashPartitioner of Hadoop has efficient results compared to the other three
algorithms, but our hypothesis is that since the spatial characteristics are ignored, the processing time
under the hashPartitioning will be significantly higher.

public class HashPart i t ioner<K, V> extends Par t i t i one r<K, V> {
public int g e tPa r t i t i o n (K key , V value , int numReduceTasks ) {

return ( key . hashCode ( ) & In t eg e r .MAXVALUE) % numReduceTasks ;
}

}

Listing 3.1: Hadoop’s hashPartitioner

3.2 Grid Partitioning Algorithm

The grid partitioning algorithm is an easy implementation of dividing the space into equal slices, where
each of them contains the objects that geographically belong to it. Rather than dividing the space
randomly, first, there is a sample pre-processing (approximately 1% of the total objects) where we get
information about the number of the points and their relative location on the map. The sampling
method, which is provided by the spatialHadoop framework [10], decides the number and the location
of the partitions. All the partitions have equal size, but then they can get expanded or reduces, in order
to fit whole shapes and/or contain mostly objects instead of empty space.

In Figure 3.1 we can see how the partitioning took place when using the grid algorithm. We can
observe 6 partitions that on first sight they don’t seem to occupy the same space, but this is because
after the improvements some of the partitions got reduced forming an MBR, like the top left one, and
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CHAPTER 3. PARTITIONING ALGORITHMS

others had to be increased in order to contain full objects and not part of them. As a result of the latter,
we have some overlapping partitions but they do not contain the same objects since each object is only
stored once to its corresponding partition. We can also conclude that the grid partitioning algorithm
is rather a simple implementation and quick to run, but it does not take into account the data skew
and the density of the objects resulting in rather unbalanced partitions. It could be efficient for objects
scattered around symmetrically, but this is not the case in most datasets.

Figure 3.1: Example of how the Grid partitioning algorithm divides a space of spatial
objects.

3.3 Quadtree Partitioning Algorithm

Next, we are going to describe the quadtree-based algorithm we used which is a variation of the quadtree
partitioning we described in chapter 2. Before the main algorithm is applied, there is a pre-indexing of
the data based on the Z-curve of our space. Thus, to explain the quadtree-based algorithm, first, we will
explain the Z-curve Partitioner of SpatialHadoop. Below we explain the 3 most common space-filling
curves that are used for indexing 2-dimensional spatial objects into one-dimensional ordering.

3.3.1 Space filling curves

Space-filling curves are widely used in the design of indexes for spatial and temporal data. The key
metric for a space-filling curve is the clustering, which measures how well the curve preserves locality in
moving from higher dimensions to a single dimension [23]. In the 2-dimensional space, spatial coding
using space-filling curves is a specific implementation method of spatial data structure in a standard
database [24], which indexes the cells regarding their topology in a single number ascending order. The
most common space-filling curves that are used in spatial indexing are the Peano, Hilbert, and Z-curve.
Among those, the Z-curve is frequently used for space partitioning in literature [10], [18] due to its simple
implementation and the quick one-dimension indexing that provides for easier processing.

∙ Peano curve: The Peano curve was the first to be discovered by Giuseppe Peano [25], and some
authors use the term ”Peano curve” regarding any space-filling curve. An indexing value (1,2...n) is

14
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given to each cell, enabling the indexing of a 2-dimensional space into a growing series of numbers.
The construction code of a Peano curve can be seen in Listing A.1 but since it is rather complicated,
we will demonstrate an example of Peano’s curve which can be seen in Figure 3.2. In this example,
the Peano curve starting from the bottom left cell uses trident-shape processing to order all of
the cells. This type of a space-filling curve is a continuous, surjective but not injective function,
meaning that for each cell will be given an indexing value, while not all cells have a unique one.
Through each consecutive step, only the x or the y value changes, but not both at the same time.

Figure 3.2: Representation of the Peano space filling curve

∙ Hilbert curve: is a continuous fractal space-filling curve first described by the German mathe-
matician David Hilbert in 1891 [26], as a variant of the space-filling Peano curves discovered by
Giuseppe Peano in 1890 [25]. The Hilbert curve is also fractal and self-similar. If we zoom in at
one section of a higher-order curve, the pattern is the same. Like the Peano curve, the Hilbert one
is also surjective and through each consecutive step, only the x or the y value change at a time.
The construction code of the Hilbert curve can be seen in Listing
reflist:hilbertCode, but since it is complicated as well, we will illustrate an example in Figure 3.3.
Here we can see an implementation of the curve in a 2-dimensional space starting from the upper
left cell and by using a wrench shape it processes all of the cells.

∙ Z-curve: The Z-curve or Morton space-filling curve was named after Guy MacDonald Morton [27],
who first applied this order to file sequencing. The z-curve, like the previous space-filling curves,
maps multidimensional data to one dimension while preserving locality of the data points. The
z-value of an object is calculated by interleaving the binary representations of its coordinate values.
The z-value pre-processes the object ordering them in the one-dimension, making it easy for simple
data structures to undertake them such as binary trees, B-trees or in our case quadtrees. In Figure
3.4 there is an illustration of how the z-curve applies the ordering in a space.

3.3.2 Quadtree based partitioning

The idea behind the second partitioning algorithm is that it is based on a quadtree after an object
indexing based on the Z-curve, along with some improvements in merging cells if they contain few
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Figure 3.3: Representation of the Hilbert space filling curve

objects or deleting cells if they contain none. Furthermore, some partitions overlap with each other, in
order to contain full shapes and no cut some shapes that are close to the border in half. The Z-curve was
chosen because it has been extensively used in literature for pre-ordering spatial objects to be stored in
a quadtree [15], because the resulting ordering can equivalently be described as the order one would get
from a depth-first traversal of a quadtree. All of the sample objects are inserted into a quadtree with
node capacity of ⌊𝑘/𝑛⌋, where k is the sample size, while the boundaries of all leaf nodes are used as cell
boundaries.

In Listing 3.2 we can see some simplified pseudo-code on how the algorithm is implemented. Note
that we may have overlapping partitions depending on the data set we are trying to store. In Figure 3.5
we can see an example of a dataset with points, lines and polygons, and how it gets partitioned by the
quadtree based algorithm in order to be stored in HDFS.

// Order the o b j e c t s based on the z−curve
for ( i =0; i<object num ; i++) {

z va lue [ i ]= ob j e c t [ i ] . c a l c u l a t e z v a l u e ( ) ;
}
ar rays . s o r t ( z va l u e s ) ;

// Create the quad t r e e
c r e a t e quad t r e e ( z va l u e s ) ;
for ( i =0; i<part i t ion num ; i++) {

// c a l c u l a t e MRB for each p a r t i t i o n and expand
// i f r equ i red in order to s t o r e whole shapes
pa r t i t i o n [ i ] . calculate MRB () ;

// S p l i t p a r t i t i o n i f exceeds capac i t y
i f ( p a r t i t i o n [ i ] . o b j e c t s > capac i ty ) {

pa r t i t i o n [ i ] . s p l i t ( ) ;
c o n f i g u r e p a r t i t i o n s ( ) ;

}

// Dele te empty p a r t i t i o n s
else i f ( p a r t i t i o n [ i ] . empty ( ) ) {

pa r t i t i o n [ i ] . d e l e t e ( ) ;
}

// Merge p a r t i t i o n s
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i f ( p a r t i t i o n [ i ] . objects num + ne i ghbo r pa r t i t i o n [ i ] . objects num < capac i ty ) {
merge pa r t i t i on s ( ) ;
c o n f i g u r e p a r t i t i o n s ( ) ;

}
}

Listing 3.2: Pseudo code for the object ordering in the quadtree partitioning algorithm.

Figure 3.4: Representation of the Z space filling curve

3.4 R-tree Partitioning Algorithm

There are many different ways to create r-trees from a list of objects. The general form of the algorithm,
as presented in [28] contains 3 core steps:

1. Pre-processing stage: We pre-process the data so that the total (T) objects are ordered in ⌈𝑇/𝑏⌉
consecutive groups of b rectangles, where each group of b is intended to be placed in the same leaf
level node. The b number is chosen based on the capacity of the R-tree and it is possible that the
last group can contain less than b rectangles.

2. Calculating Minimum Bounding Rectangles: Next to the grouping follows the Minimum Bounding
Rectangles (MBRs), assigned with a page-number. For each group of data, we calculate the borders
of the cell by finding the MBR of the containing objects and we assign a page-number which be
used as a child pointer in the nodes of the next higher level.

3. Finalize node packing: The final step is to pack the MBRs into nodes at the next level recursively
until the root node is created.

In our research, we used a variation of the general algorithm which is also presented in [28]. this
variation is called Sort-Tile-Recursive (STR) and has shown better results than the original algorithm
and some other variations [28]. In general, in comparison with the Hilbert sort algorithm (HS, sorting
according to the Hilbert curve) and the Nearest-X (NX, where the rectangle are sorted by x-coordinate),
the STR algorithm gives better results. In detail, STR requires almost half of the disc access comparing
with the HS, both for point and region queries [28]. Whilst the NX algorithm performs as well as STR
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Figure 3.5: Example of how the quadtree based partitioning algorithm divides a space of
spatial objects.

for point queries on point data, its performance is significantly worse for point queries on region data or
region queries [28]. For these reasons, we chose to use a partitioning based on the STR algorithm.

3.4.1 STR-based Algorithm for R-trees

The idea behind this algorithm is to first divide the space into vertical slices so that each slice contains
enough objects (polygons or points) to pack roughly

√︀
𝑟/𝑏 nodes, where r is the total amount of the

spatial objects and b is the capacity of the data block. It follows the pattern of the original aforementioned
algorithm, but it differentiates in how the objects are ordered at each level. In Listing 3.3 there is the
pseudo-code for the object ordering in the STR algorithm. First, since the number of the leaf level pages
P is ⌈𝑟/𝑏⌉ we calculate the number of vertical slices

√︀
𝑟/𝑏 by having our objects sorted by the x-axis.

Each slice consists of ⌈
√︀
⌈𝑟/𝑏⌉⌉ consecutive objects from the sorted list, except for the last slice which

may contain less. After we have created the slices, we sort the objects by the y-axis in each slice, so that
we can assign nodes to each slide. The first b objects ordered by the y-axis will belong to the first node,
the next b to the second, etc.

// Sor t ing po in t s by the x−ax i s and c a l c u l a t e the MBR
Points . s o r t by x ( ) ;
mbr = calculateMBR ( ) ;

// Ca l cu la t e the number o f rows and columns
splitsNum = c e i l i n g ( po in t s . l ength / capac i ty ) ;
columns = rows = c e i l ( s q r t ( numSplits ) ) ;

// Ca l cu la t e the boundaries o f each column
for ( i =0; i<columns ; i++) {

column [ i ] = po in t s [ i * capac i ty ] . x ;
po int s at co lumn [ i ] . s o r t by y ( ) ;
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// Ca l cu la t e the rows in t h i s s l i c e
for ( j =0; j<rows ; j++){

row [ i * rows +j ] = po int s at co lumn [ i ] [ rows* j ] ;
}

}

Listing 3.3: Pseudo code for the object ordering in the STR partitioning algorithm.

In Figure 3.6 we can see an illustration of the STR algorithm and the partitions it creates. In
this example, the space contains polygons, points, and lines (building installation) and provides a clear
visualization on how the algorithm works. We can see that areas with dense objects tend to have more
and smaller partitions, while sparse areas have less and bigger ones. Furthermore, we can observe that
a lot of the partitions overlap with others, while not all of the space is covered in partitions. This
optimization helps in order to have more accurate data stored and save computation time from checking
in this direction.

Figure 3.6: Example of how the STR-based partitioning algorithm divides a space of spatial
objects.
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Chapter 4

Experiments and Discussion

In this chapter, we demonstrate the experiments that were conducted, in order to test the efficiency of
the partitioning algorithms that were mentioned in the previous chapters. In the experiments, the 4
partitioning algorithms that were introduced in chapter 3 were put to test; the hashPrtitioner, universal
grid, R-tree and quadtree based algorithm. The processing type that was chosen is the range queries
and we will further discuss it in this chapter.

4.1 Experimental setup

In this section, we are going to describe the procedure of the experiments were conducted. In Figure 4.1
we can see an outline of the steps that were conducted in order to experiment with the aforementioned
algorithms. In the next sections, we will describe in detail these steps and we will give an illustration of
the whole process.

Query processing

RDBMS Spatial Workshop csv

txt

wkt

HDFS ...

partition 2

partition 1

partition n

results

Figure 4.1: The experiments procedure

4.1.1 Data provision

The spatial data that was used for the following experiments was provided by our cooperation with the
company Spatial Eye. The company possesses big real data from various customers along with some
public spatial data. Such kind of data contains spatial objects of various shapes like points, (multi)lines,
(multi)curves, multi(polygons), etc and vary from roads and building installations to complete water or

20



CHAPTER 4. EXPERIMENTS AND DISCUSSION

electricity networks. For our experiments, we used some public data that the company obtains, mostly
for sensitivity issues, but also because they provide a variety of objects, shapes and data skew.

Spatial Eye stores all the data into relational databases. The Hadoop ecosystem provides support
to directly obtain data from relational databases with Apache Scoop [29]. For our experiments, though
we decided to import txt, wkt and csv files to be more flexible in choosing and modifying the data that
we want to use. Another reason is that in our theoretical approach we do not aim on a fully automated
system that processes data, but on manual experimentation in order to draw some results about how the
partitioning technique affects the efficiency of the querying. Thus, we used the product of Spatial Eye
called the Spatial Workshop, were we could export multiple data into various format types.

Hadoop and HDFS work better with files that each line can be read individually. For this reason,
we chose the format types of txt, wkt, and csv because they can store each spatial object in one line.
Hadoop then can read multiple files at the same time and store the items in the HDFS since, the order
of the reading does not matter. Hence, after extracting the required data from the product Spatial
Workshop into the aforementioned format types, then we imported this data into HDFS. In addition,
by using the partitioning algorithms that we put in the test, we create data blocks in Hadoop, where
each stores one partition of our datasets. Each different partitioning algorithm creates different data
blocks and groups together the objects in a unique way. Finally, after we conduct multiple queries with
different parameters, MapReduce gathers all the results.

4.1.2 Query type

The query type that was used for the experiments is the range query. The range query returns all of the
items in a specific location. Such a location can be a shape like a circle or a polygon and it returns all
of the items that completely fit that area. In Figure 4.2 we can see multiple range queries in the shape
of a rectangle, starting from the center of the map and growing until it covers the whole of it.

The range queries are not very computational heavy since they mostly require I/O operations. On
the other hand, the spatial joins require a lot of CPU computation along with I/O operations resulting
in stressing the system to trigger results under extreme circumstances. We aim to demonstrate if there
will be a significant difference in the results if we conduct more complex queries, or if the results will be
independent of the CPU usage.

4.1.3 Testing system

At first, the development of this project took place in a single-node Hadoop system in windows 10 Pro, and
afterward, it was migrated in a virtual machine under the Linux Ubuntu 17.10 operational system, where
it was using a pseudo multinode simulation. However, in order to obtain reliable results, we migrated
once more our project to the DAS-4 system [30]. DAS-4 (The Distributed ASCI Supercomputer 4) is a
six-cluster wide-area distributed system designed by the Advanced School for Computing and Imaging
(ASCI) [31]. We used a Hadoop cluster containing 8 nodes in total, one NameNode, and 7 DataNodes.
Each node shares the same specifications:

∙ Processor: dual quad-core, 2.4 GHz,

∙ RAM: 24 GB and

∙ Storage: 30 TB

4.1.4 Datasets

For the datasets to be tested we chose public data over client data, so that there will not be any copyrights
issue. We chose datasets that contain points, lines and (multi)polygons all together. More specifically,
dataset A includes building installations, overgrowth terrain, barren terrain and supporting water part
of the Netherlands, containing 1.1 GB of data. Dataset B contains spatial data about the road and
water sections of the Netherlands along with some point-type objects (poles). Its size is 1.58 GB of data
and the area that it covers is similar to the first dataset. We made sure that the chosen datasets will
contain at least 3 different types of shapes to increase the complexity and examine how the partitioning
algorithms behave under diverse spatial objects. Furthermore, we separated the data into two datasets
in order to investigate the behavior of the partitions created. We wanted both our datasets to refer to
the same area (the Netherlands) and because of the different object numbers between the two datasets,
we can examine how the partitioning methods are affected by the density of the data.
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Figure 4.2: Multiple growing range queries strating from the center of a dataset, each time
containing more objects.

4.2 Results

In this section, we show the results of our experiments. More specifically, we provide data on how the
partitions were formed under different datasets and partitioning methods, performance tests along with
the time needed for each partitioning technique.

4.2.1 Partitions

In Figure 4.3 we can see how the Grid-based partitioning algorithm divided the space into partitions. The
visualization of the data between the two datasets may seem similar, but they contain a lot of different
objects. Hence, the two partitioning results show some diversity. As we can see, the grid partitioning
algorithm is highly dependent on the data skew, and in the datasets A and B, it does not create cells with
a similar amount of spatial objects. If the objects were equally distributed to the space, each partition
would contain roughly the same amount of data.
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Figure 4.3: Grid partitions of dataset A (on the left) and dataset B (on the right).

In Figure 4.4 we can observe the two datasets being partitioned by the same quadtree based algo-
rithm. We also notice that in dataset B some areas are denser and as a result, we have more partitions.
If we pay close attention we will see that the partitioning structure is quite similar, but for dataset B, we
have more divisions due to the bigger amount of data. Another observation that one can make is that
a lot of the partitions are of the same size. This happens to the dense areas, where the quadtree based
algorithm keeps dividing each cell into 4 smaller ones until it reaches a cell size where the objects can be
stored to the data block of Hadoop.

Finally in Figure 4.5 we can observe the behavior of the STR partitioning algorithm in the datasets
A and B. Similarly, we can notice a similar partitioning structure, but since the datasets differentiate the
partitions change accordingly. The amount of cells does not change, but the dimensions of each partition
slightly change. After all, both datasets contain data of the Netherlands, hence it is rational that the 2
datasets share a lot of similarities.
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Figure 4.4: Quadtree partitions of dataset A (on the left) and dataset B (on the right).

Figure 4.5: STR partitions of dataset A (on the left) and dataset B (on the right).

24



CHAPTER 4. EXPERIMENTS AND DISCUSSION

4.2.2 Performance Tests

In this section, we provide the results of our performance tests and we discuss the important findings
after each test.

Figure 4.6: Performance test with range queries starting from the center fitting a percent-
age of the total space.

Quadtree partitioning:

Based on the findings shown in Figure 4.6 we can observe that for range queries that affect up to 70% of
the spatial objects the quadtree based algorithm demonstrates the best results regarding the runtime of
the processing. The quadtree along with STR partitioning slice the space in many more partitions than
the other two methods, saving a lot of computation time if we are concerned about a specific part of the
dataset. For queries that affect 70% - 100% of the partitioning it seems that the more partitions, the
harder to organize them, resulting sometimes in a greater runtime even than the hashPartitioner. If we
want to process (almost) all the data, we cannot reduce the computations required and as a result, all of
the objects will be processed. The cells of the quadtree based algorithm are designed to have the ability
to skip unwanted computations, but in this case, it seems that it rather incommodes the procedure by
having imbalanced partitions. Such partitions will require different processing time, thus some data
nodes will have more work to do, while others not.

STR partitioning:

Again, by looking at the 4.6 we can see that the STR method also demonstrates good results, following
the quadtree based method. More specifically, for an object coverage up to 70%, the STR algorithm
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handles the data efficiently and comes second after the quadtree partitioning with some small excep-
tions. For queries affecting the 70% until the 100% of the population, the STR algorithm shows the
same drawback of the quadtree algorithm, but it behaves slightly better than the latter. We assume
that this behavior is because of the fewer partitions it has over the quadtree based algorithm, but also
because the very nature of the STR algorithm makes it divide the space into partitions with a roughly
equal number of objects.

Grid partitioning:

The grid-based partitioning method displays the most imbalanced results. Since the datasets that we
examine do not have objects equally distributed in the space, the grid algorithm does not have the best
results that could have. In detail, based on Figure 4.6 for a data coverage up to 30% it allows the pro-
cessing to be quicker than the hashPartitioner, but slower than the other two algorithms. In addition,
for data coverage ranging from 30% to 80% it demonstrates the worst efficiency, while for range queries
affecting 80% till 100% of the population, it has an average behavior.

Figure 4.7: Number of objects returned by applying the range queries.

HashPartitioning:

The default partitioning method of Hadoop, the hashPartitioner, exhibits the worst behavior in most
cases verifying our hypothesis. Since the hashPartitioner completely ignores the spatial characteristics
of the two datasets, every range query has to search in all of the data blocks. This has as a result that
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no matter the coverage percentage of the population, the processing of the data to be similar. In Figure
4.6, we detect that throughout the growing coverage percentage, the execution time of the queries for
the hashPartitioning method does not differentiate a lot and it is only slowly changing. This happens
because of the more I/O operations that are required by the bigger range queries. In Figure 4.7 we can
see the number of objects returned for each of the range queries and rationally we can justify the slight
increase in the execution time of the hashPartitioning algorithm. Moreover, hashPartitioner makes sure
that each partition has roughly the same amount of data. For this reason when we reach 90% - 100% of
the coverage it can exhibit similar or even better results than the other algorithms.

4.2.3 Partitions matched

Figure 4.8: Overlapping partitions with range queries starting from the center fitting a
percentage of the total space.

Quadtree partitioning:

In Figure 4.9 we can observe the number of partitions that each range query matches. For the quadtree
based method, we notice that the partitions matched for each query are roughly twice the number of
the STR algorithm. The same conclusion can be drawn from Figure 3.5, since there are many more
partitions for the quadtree algorithm than the other ones. This attribute comes with some pros and
cons. The main difference is that more partitions can smartly avoid extra computations since they index
the space in a better way, but collecting the results of all of them comes more costly. For this reason, we
assume that this behavior makes the processing of the high percentages of the population slower since
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it includes the coordination of the many partitions. Finally, the time required for applying the quadtree
based partitioning is not significantly different than the other two algorithms as we can see in Figure 4.9.

STR partitioning:

The STR algorithm has a relatively average number of partitions (roughly half of the ones that the
quadtree based algorithm has). This configuration gives the former the ability to build up a more stable
behavior when the object coverage of the query reaches 100%, since the cost for waiting and gathering
the results from all the data nodes will be significantly lower. Last, in Figure 4.9 we notice that the STR
algorithm requires the most amount of time to be applied, but the difference among the other methods
is almost insignificant. By design, the STR partitioning algorithm has a more complex implementation
and requires more computations than the other ones.

Grid partitioning:

If we look now at the number of the partitions that the grid-based partitioning algorithm shows in
Figure 4.9, we will see that it has the least ones. Since they fit in HDFS’ data block, there is no reason
for further dividing the cells when applying the grid algorithm, resulting in imbalanced cells with a lot
of objects. Finally, the advantage of the grid algorithm over the others is that it can be applied quicker
(Figure 4.9) but again the difference in the execution time is not significant.

HashPartitioner:

There is no reason for showing the partitions matched for the hashPartitioner, since for each query
all of the data blocks have to be processed. Since this type of partitioning does not group objects
together based on their location, no data block will be excluded from the querying.

Figure 4.9: Runtime for applying the partitioning methods.
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4.3 RQ: How can spatial partitioning methods help to scale up
the processing of big spatial data?

In this section, we will answer the research question along with the subquestion that we introduced in
chapter 1. We have proven that spatial partitioning is useful over traditional partitioning when dealing
with spatial data in the HDFS environment. When the processing coverage of the dataset is less than
70%, spatial partitioning facilitates the query procedure by skipping unwanted calculations. Spatial
partitioning can reduce the execution time of processing in multiple cases, and if one’s dataset consists
of mere spatial objects, indexing it with a spatial partitioning algorithm would possibly boost the per-
formance of the system.

What are the best data structures that are used in traditional spatial databases?

We have answered this question in chapter 2. Two of the most efficient partitioning techniques that
exist in traditional database systems are based on quadtrees, r-trees, r+-trees and kd-trees [7], [15].
These data structures demonstrate quite an efficient behavior since they were mostly designed to store
spatial data. In our research, inspired by these structures, we examined if they are also efficient in
distributed file systems.

Do these methods scale up well in multinode systems processing data in parallel?

In file distributed systems working with many different nodes, it is obligatory to divide the data into
smaller parts for parallel computation. We have proven that spatial partitioning of the data based on the
best data structures that are used in traditional spatial databases (quad-tree and R-tree) provide better
results to the most of the testing cases over partitioning it disregarding its spatial nature. Quad-trees
and R-trees showed that they are reliable sources of a baseline for dividing the space into multiple slices
and process the data in parallel since in the majority of the cases they outperform the default data
partitioning method of Hadoop and the grid partitioning method.
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Conclusion

As the big data emerges in many applications, efficient ways of processing it need to be found. When it
comes to spatial data, different rules apply since one needs to also take into account spatial characteristics
such as geometry and location of the spatial objects. The growing trend of migrating from traditional
database systems to cloud computing is followed by big enterprises. One such solution is the Hadoop
environment along with its ecosystem that offers great support for various kinds of data.

We chose the Hadoop Distributed File System (HDFS) and frameworks like spatialHadoop to examine
how one can efficiently process spatial data with common queries. The HDFS requires data partitioning
to execute computations in parallel, thus partitioning the big data is obligatory. The way that the data
will be partitioned may affect the runtime of its processing. We investigated how 4 partitioning methods
behave in the HDFS environment regarding the execution time of range queries. The 4 partitioning
algorithms that were put to test are the default partitioning method of Hadoop, the hashPartitioner and
three other partitioning algorithms using the spatialHadoop framework, the grid-based, quad-tree based
and R-tree (STR) based partitioning algorithms.

We have proven that for most of the test cases, a spatial partitioning makes the processing of the
data quicker, with some exceptions of the grid partitioning, since it is highly dependent on the uniform
data skew. More specifically, we showed that the quad-tree based partitioning demonstrates the best
results regarding the runtime of the processing of the data, followed by the STR algorithm, especially
when the processing affects less than 70% of the dataset. When the dataset coverage reaches 100%, the
partition methods with the more partitions (such as quad-tree) suffer from coordination problems of the
multiple resulting sets, increasing slightly the runtime, while the rest of them have an average behavior.
For data coverage less than 30% the quad-tree based algorithm outperforms the others, followed by the
STR method with a significant difference.

In general, our findings show that for datasets that consist of spatial data, a spatial partitioning
method is more efficient in most cases in the HDFS environment. In addition, the data structures that
are used in the traditional database systems can efficiently group spatial data in distributed file systems
and be used for spatial partitioning. Finally, we showed that even in parallel systems, spatial partitioning
outperforms traditional partitioning techniques for big spatial datasets.

5.1 Future work

This research only set a small step in the area of spatial partitioning to efficiently process spatial data.
During this research, we have identified several directions for future work. If we had more time through-
out this research we would investigate the following points of interest:

Apache Sqoop:

During this research, we focused on the actual research questions rather than on implementing an auto-
mated program that could improve the runtime of processing big spatial data. For that reason simple
input and output formats were used, instead of dragging the data directly from the relational database
using Apache Sqoop [29]. That would be something interesting for further implementation along with
other improvements that could turn this project from manual to automated and as a result to be able
to be used by individuals interested in migrating from an RDBMS to Hadoop.
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Spatial and Alphanumeric data:

Furthermore, we were focused on datasets containing only spatial data, and we proved that spatial
partitioning boosts the efficiency of its processing. It would be also challenging to observe the behavior
of a dataset containing a hybrid of spatial and alphanumeric data. Queries such as “Find all buildings
in the Netherlands that were built after the year 2000” will increase the complexity and a spatial parti-
tioning may not be the best solution. In that case, a mixture of spatial and alphanumeric partitioning
techniques could also demonstrate efficient behavior.

More partitioning Algorithms:

Additionally, one could observe the behavior of other partitioning algorithms. We examined 2 of the most
promising ones along with the simple implementation of the grid partitioning and the default partitioner
of Hadoop. However, there are many other partitioning algorithms in the literature and potentially many
more that haven’t been implemented.

Furthermore, some other variants would be interesting for someone to take into account and research
them as well. The complexity of the outcome though might significantly affect the purpose of this master
project.

Multidimensional Data:

It would be an interesting approach if 3-dimensional or multi-dimensional objects were put to test
under these algorithms. Partitioning the space in the 3 dimensions can be challenging, while the rules
that apply in the 2 dimensions may change. Moreover, it would be interesting to observe the behavior of
these algorithms with a dataset that is a mixture of alphanumeric and multi-dimensional spatial data.

Future guide for migration to Hadoop:

Finally, this project could be the start for a future guide on how to migrate one’s spatial database
from a traditional system to Hadoop, and how to process the data quicker. Regarding the different
behavior of the spatial data over the alphanumeric one, one should focus on different things depending
on their dataset.
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Appendix A

Non-crucial information

/*Abhishek Ghosh , 14 th September 2018*/

#inc lude <graph i c s . h>
#inc lude <math . h>

void Peano ( int x , int y , int lg , int i1 , int i 2 ) {

i f ( l g == 1) {
l i n e t o (3*x ,3* y ) ;
return ;

}

l g = l g /3 ;
Peano (x+(2* i 1 * l g ) , y+(2* i 1 * l g ) , lg , i1 , i 2 ) ;
Peano (x+(( i1−i 2+1)* l g ) , y+(( i 1+i 2 ) * l g ) , lg , i1 , 1− i 2 ) ;
Peano (x+lg , y+lg , lg , i1 , 1− i 2 ) ;
Peano (x+(( i 1+i2 ) * l g ) , y+(( i1−i 2+1)* l g ) , lg , 1− i1 , 1− i 2 ) ;
Peano (x+(2* i 2 * l g ) , y+(2*(1− i 2 ) * l g ) , lg , i1 , i 2 ) ;
Peano (x+((1+i2−i 1 ) * l g ) , y+((2− i1−i 2 ) * l g ) , lg , i1 , i 2 ) ;
Peano (x+(2*(1− i 1 ) * l g ) , y+(2*(1− i 1 ) * l g ) , lg , i1 , i 2 ) ;
Peano (x+((2− i1−i 2 ) * l g ) , y+((1+i2−i 1 ) * l g ) , lg , 1− i1 , i 2 ) ;
Peano (x+(2*(1− i 2 ) * l g ) , y+(2* i 2 * l g ) , lg , 1− i1 , i 2 ) ;

}

int main (void ) {

in itwindow (1000 ,1000 , ”Peano , Peano” ) ;

Peano (0 , 0 , 1000 , 0 , 0) ; /* S tar t Peano recurs ion . */

getch ( ) ;
c l e a r d e v i c e ( ) ;

return 0 ;
}

Listing A.1: The Peano curve implementation code in C [32]

#inc lude <s t d i o . h>

#de f i n e N 32
#de f i n e K 3
#de f i n e MAX N * K

typede f s t r u c t { int x ; int y ; } point ;

void ro t ( int n , po int *p , int rx , int ry ) {
int t ;
i f ( ! ry ) {

i f ( rx == 1) {
p−>x = n − 1 − p−>x ;
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p−>y = n − 1 − p−>y ;
}
t = p−>x ;
p−>x = p−>y ;
p−>y = t ;

}
}

void d2pt ( int n , int d , po int *p) {
int s = 1 , t = d , rx , ry ;
p−>x = 0 ;
p−>y = 0 ;
while ( s < n) {

rx = 1 & ( t / 2) ;
ry = 1 & ( t ^ rx ) ;
ro t ( s , p , rx , ry ) ;
p−>x += s * rx ;
p−>y += s * ry ;
t /= 4 ;
s *= 2 ;

}
}

int main ( ) {
int d , x , y , cx , cy , px , py ;
char pts [MAX] [MAX] ;
po int curr , prev ;
for ( x = 0 ; x < MAX; ++x)

for ( y = 0 ; y < MAX; ++y) pts [ x ] [ y ] = ’ ’ ;
prev . x = prev . y = 0 ;
pts [ 0 ] [ 0 ] = ’ . ’ ;
for (d = 1 ; d < N * N; ++d) {

d2pt (N, d , &curr ) ;
cx = curr . x * K;
cy = curr . y * K;
px = prev . x * K;
py = prev . y * K;
pts [ cx ] [ cy ] = ’ . ’ ;
i f ( cx == px ) {

i f ( py < cy )
for ( y = py + 1 ; y < cy ; ++y) pts [ cx ] [ y ] = ’ | ’ ;

else
for ( y = cy + 1 ; y < py ; ++y) pts [ cx ] [ y ] = ’ | ’ ;

}
else {

i f ( px < cx )
for ( x = px + 1 ; x < cx ; ++x) pts [ x ] [ cy ] = ’ ’ ;

else
for ( x = cx + 1 ; x < px ; ++x) pts [ x ] [ cy ] = ’ ’ ;

}
prev = curr ;

}
for ( x = 0 ; x < MAX; ++x) {

for ( y = 0 ; y < MAX; ++y) p r i n t f ( ”%c” , pts [ y ] [ x ] ) ;
p r i n t f ( ”∖n” ) ;

}
return 0 ;

}

Listing A.2: The Hilbert curve implementation code in C [33]
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