
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Privacy-Preserving Record Linkage
with Apache Spark

Author: Onno Valkering

1st supervisor: Adam Belloum
2nd reader: Rob van Nieuwpoort

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

July 17, 2018

ii

Abstract

Privacy-Preserving Record Linkage
with Apache Spark

by Onno VALKERING

Privacy considerations obligate careful and secure processing of personal data. This
is especially true when personal data is linked against databases from other organi-
zations. During such endeavours, privacy-preserving record linkage (PPRL) can be
utilized to prevent needless exposure of sensitive information to other organizations.
With the increase of personal data that is being gathered and analyzed, scalable
PPRL capable of handling massive databases is much desired. In this work we eval-
uate the Hadoop-ecosystem, in particular Apache Spark, as an option to scale PPRL.
Not only is it valuable to have a scalable PPRL implementation, but one based on
the Hadoop-ecosystem and Spark would also be commonly deployable and could
take advantage of further development of the ecosystem. The results show that a
PPRL solution based on Apache Spark outperforms alternatives when it comes to
handling multiple millions of records; can scale to dozens of nodes on a cluster; and
is on-par with regular record linkage implementations in terms of achieved results.

iii

Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Privacy-preserving record linkage . 1

1.1.1 The PPRL process . 2
1.1.2 Applications of PPRL . 3

1.2 PPRL on a Big Data scale . 4
1.2.1 Thesis outline . 5

2 Related work 6
2.1 Secure multi-party computation . 6
2.2 LSHDB . 6

3 Encoding 7
3.1 Bloom filter encoding . 7

3.1.1 Field-level Bloom filters . 7
3.1.2 Record-level Bloom filters . 9

4 Matching 12
4.1 The Hamming space . 12

4.1.1 Hamming distance . 12
4.2 Nearest neighbour . 13

5 Scaling PPRL 14
5.1 Locality-sensitive hashing . 14

5.1.1 HLSH-based blocking . 15
5.1.2 Spark implementations . 17
5.1.3 Single-node benchmark . 19
5.1.4 Discussion . 21

5.2 Pivots . 21
5.2.1 Strict pivot-based blocking . 24
5.2.2 Strict pivot-based (Euclidean) . 25
5.2.3 Spark implementation . 26
5.2.4 Single-node benchmark . 28

iv

5.2.5 Discussion . 29

6 Applications 30
6.1 The NCVR dataset . 30
6.2 Cluster deployment . 31

7 Future work 33

8 Conclusions 35

A Micro-Benchmarks 36
A.1 Benchmark setup . 36
A.2 Calculating Hamming distances . 36
A.3 Generating Hamming LSH keys . 36

Bibliography 39

v

List of Figures

1.1 Steps of the PPRL process. 2

3.1 Creation of a static FBF (l = 30, k = 2). 8
3.2 Creation of a dynamic FBF (g = 6, l = 18, k = 2). 9
3.3 Sampling bits (l = 16, W = {.30, .35, .35}, mRBF = 54). 10

5.1 The first phase of both the HLSH implementations. 17
5.2 The second phase of both the implementations. 18
5.3 Singe-node runtimes of the HLSH implementations. 20
5.4 Clusters based on pivots (circles represent pivot radii). 22
5.5 Querying the pivots clusters. 23
5.6 Clusters based on prime pivots (circles represent radii). 25
5.7 Euclidean vectors based on sub-pivots. 26
5.8 The first phase of the three Pivot-based implementations 27
5.9 Steps for each of the Pivot-based implementations. 28
5.10 Singe-node runtimes of the Pivots implementations. 29

6.1 Cluster runtimes of the HLSH (RDD) implementation. 31
6.2 Cluster runtimes of the HLSH (SQL) implementation. 32

A.1 Hamming distance calculations on 32-bit long vectors. 37
A.2 Hamming distance calculations on 64-bit long vectors. 37
A.3 Generating HLSH keys from 32-bit long vectors. 38
A.4 Generating HLSH keys from 64-bit long vectors. 38

vi

List of Tables

5.1 Evaluation metrics for LSHDB and HLSH. 20
5.2 Amount of records assigned to a pivot. 24
5.3 Amount of overlapping pivots to a query record. 24
5.4 Amount of records assigned to a sub-pivot. 25
5.5 Amount of overlapping sub-pivots to a query record. 26
5.6 Evaluation metrics for LSHDB and Pivot-based. 28

6.1 The generated NCVR sub-datasets. 30
6.2 The used NCVR fields with parameters. 31

1

Chapter 1

Introduction

1.1 Privacy-preserving record linkage

The insight that organizations can gain from analyzing data may lead to a compet-
itive advantage and/or improved decision making. The prospect of this valuable
insight can be an incentive for organizations to start or extend gathering and ana-
lyzing data on a Big Data scale. This scale is characterized by massive volumes of
varied data that are gathered and/or analyzed at a high velocity [16].

It is possible that, intentionally or unintentionally, personal data is also captured
when operating on such a Big Data scale. When this is the case, privacy consid-
erations obligate careful and secure processing of personal data. This is especially
true when personal data is linked against databases from other organizations, for
example with record linkage1 applications. The goal of record linkage is to identify
one and the same entities across multiple databases [10, pp. 3-4]. When databases
from different organizations are the subject of record linkage, measures can be taken
to prevent unnecessary exposure of sensitive information to any of the other par-
ticipating organizations. When records are found that represent, with a sufficiently
high confidence, the identical entity, only the relevant database owners will be noti-
fied. Still without exposing any sensitive information, until organizations, in agree-
ment, exchange full details. This extension of record linkage is known as privacy-
preserving record linkage (PPRL).

There are, apart from the various techniques that can be used, two major ways to per-
form PPRL: with a two-party protocol or with a three-party protocol [10, pp. 193-194].
When using a two-party protocol, the involved organizations directly and solely
communicate with each other. In case of a three-party protocol, a trusted third-party,
called the linkage unit, is involved to perform the actual linkage. Choosing between
the two protocols involves a trade-off between security and practicality. Two-party
protocols are considered to be more secure, as it is not possible for organizations to
collude with the linkage unit, but are computationally more intensive and complex

1In other domains record linkage is also referred to as data matching or entity resolution.

Chapter 1. Introduction 2

Linkage Unit

Database Owner(s)

1. Parameter Alignment

2. Data Pre-Processing

3. Indexing 4. Comparison 5. Classification 6. Evaluation

FIGURE 1.1: Steps of the PPRL process.

than three-party protocols [10, pp. 193-194]. Whether or not to account for the pos-
sibility of colluding organizations depends on the adversary model applicable. In
this work the most commonly used honest-but-curious (HBC) model [41] is assumed.
In essence, this model states that while organizations are interested in sensitive in-
formation from other organizations, they won’t break the rules to gain it. Therefore
colluding organizations aren’t included in the HBC adversary model and we can
limit this work to the more practicable three-party protocol PPRL.

1.1.1 The PPRL process

A typical record linkage process [10, pp. 23-35] consists of six steps: data pre-processing,
indexing, comparison, classification, evaluation and clerical review. Two alterations have
been made, on account of the privacy-preserving aspects of PPRL, to this process
(figure 1.1). Namely, we discarded the clerical review, as this might undermine pri-
vacy, and consider parameter alignment as a mandatory first step in the process.

1. Parameter alignment — With PPRL, records have to be encoded in such a way
that the original values of fields can’t be recovered by other participants. On the
other hand, it must remain possible to perform meaningful comparisons of the en-
coded records. These comparisons are made to determine if two records are match-
ing, i.e. are the identical entity. To achieve this, participants must use the same
parameters for certain tasks. In this step the parameters are determined and shared.

2. Data pre-processing — In this step each organization encodes2 its records. Records
used for PPRL typically consist of multiple fields that are quasi-identifiers (QIDs).
QIDs are attributes that, when combined, may trace back to a specific entity [38].
Before encoding, it is useful to first clean and format these QIDs in a uniform way.
After encoding, the records are send to the linkage unit. Since access to plain records
is required, this step needs to be performed within the organization’s boundaries.

3. Indexing — Next, the linkage unit will index the encoded records. Typically, an
indexing technique is used that can efficiently group potentially matching records.
By only comparing these records the total amount of comparisons that have to be
performed can be reduced. This is a crucial step in terms of scalability, as the amount
of comparisons of a naive pairwise approach could be np in the worst case (where p
is the number of databases, each containing n records).

2To encode with the aim to obfuscate is also known as data masking.

Chapter 1. Introduction 3

4. Comparison — Through comparison of two records the degree of (dis)similarity
can be determined. Various similarity or distance functions can be used for this pur-
pose, the most appropriate one depends on the encoding scheme used. Commonly
used functions include Hamming distance, Dice coefficient and Jaccard index.

5. Classification — Once it is known how (dis)similar two records are, a classifica-
tion can be made: match or non-match. For regular record linkage various decision
models exist, including machine learning models [18]. For PPRL, other options than
a threshold function have not been thoroughly explored [43].

6. Evaluation — Metrics such as accuracy, precision and recall can be used for eval-
uation. Measuring privacy itself is more difficult [42], and is out of scope for this
work. Furthermore, in case of private real-world data it might not be possible to
perform a complete evaluation, as some metrics require full disclosure to the data.
In particular, the amount of false-positives and/or -negatives might not be known.

1.1.2 Applications of PPRL

Although the goal of PPRL is the same as that of regular record linkage, the use cases
are often slightly different. As mentioned, the use cases for PPRL typically ask for
careful and secure processing of data. Take for example the application of record
linkage on a single database, this essentially is data deduplication. If the database
would be so extensive that the organization’s own IT capabilities are too limited,
the organization could decide to rent a more powerful infrastructure from a public
cloud provider. However, if the database contains personal data, the organization
can make use of PPRL to effectively make sure that other parties, in this case the
public cloud provider, can’t learn anything from the data. In such a private data
deduplication scenario, the public cloud provider would function as the linkage unit.

PPRL applications that involve multiple parties are typically found in the domains
of crime and fraud detection, government services and healthcare [43]. An interest-
ing example, involving multiple parties, is outlined in [20]. This example considers
a measure that can be taken during a virus outbreak. Namely, comparing airline
passenger lists with hospital records to be able to alert passengers in case it is ret-
rospectively discovered that another passenger aboard of the same flight had been
infected with the virus. Such an application requires linkage between personal data
originating from multiple organizations. For this part PPRL can be used.

Another example, described in [13], is the identification of terrorist suspects that
enter or leave a country. This is already done by the European Union that shares
information about inbound travelers with the United States to check if any of them
is on a terrorist watchlist [25]. This kind of surveillance and screening can make use

Chapter 1. Introduction 4

PPRL to prevent privacy intrusions of those that are not on any watchlist. Similar ap-
plications are possible for checking against lists of wanted criminals or checking for
open debts when engaging in (risky) financial products, without violating privacy.

Some PPRL techniques can also be adapted to perform privacy-preserving similar-
ity search (PPSS). In this case the matching criteria are relaxed and a record does no
longer can only be matched to a single other record, but can be matched to any num-
ber of other record that matches the criteria, i.e. any record that is similar enough.
This privacy-preserving approach to similarity search may, for example, be used to
find similar patients based on their medical records. Other possible applications of
PPSS include analysis of clinical trails and healthcare software that automatically
personalizes to specific patients [40].

1.2 PPRL on a Big Data scale

PPRL on a Big Data scale poses several challenges, as listed in [43]:

• attaining high-quality linkage results in noisy and varied Big Data;

• preserving a certain privacy level, even with multiple participants;

• scalability when the size and amount of databases increases.

In recent papers [43, 36] the Hadoop-ecosystem, and Spark in particular, is suggested
as an option for scaling PPRL. The umbrella term Hadoop-ecosystem encompasses
Hadoop itself (i.e. HDFS, MapReduce and YARN) [37, 44], as well as the various tools
and frameworks that integrate seamlessly with Hadoop (e.g. HBase, Spark and Pig).
An important advantage of the Hadoop-ecosystem is its widespread adoption and
accessibility. Most major public cloud providers, for example Amazon Web Services
(AWS), offer fully managed Hadoop clusters3. This allows organizations that don’t
possess the required hardware and infrastructure required for a Hadoop cluster to
still make use of the Hadoop-ecosystem. It is known that Spark can achieve great
performance and scale to hundreds of nodes [47]. However no clear picture exists
how well it can handle PPRL [43]. The last evaluation, of those available in scientific
literature, used the MapReduce framework on a relatively small dataset of 300,000
record and was limited to 2-4 compute nodes [22]. Since then (2013), the Hadoop-
ecosystem has developed further and new tools and frameworks have been released.

In this work the fitness of the Hadoop-ecosystem for PPRL is re-evaluated, by pre-
senting and benchmarking scalable PPRL implementations based on Spark. Not
only is it valuable to have a scalable PPRL implementation, but one based on the
Hadoop-ecosystem and Spark would also be commonly deployable and could take
advantage of further development of the ecosystem and community expertise.

3https://aws.amazon.com/emr/

https://aws.amazon.com/emr/

Chapter 1. Introduction 5

1.2.1 Thesis outline

This thesis is structured as follows. In the next chapter (2), related work is discussed.
Then, the theoretic foundation of the PPRL encoding scheme used in this work is laid
out in chapter 3. In the subsequent chapter (4) a description is provided on how to
find matches based on the encoded records. Then, in chapters 5, two alternative
Spark implementations are discussed. Further applications of the PPRL implemen-
tations are described in 6. In this last two chapters and we discuss future work (7)
and state our conclusions (8).

Reproducibility

All source code written and datasets used as part of this work are available on
GitHub4 under the MIT open-source license, or are publicly available elsewhere.

Acknowledgment

The cluster-deployed experiments in this work have been made possible by SURF-
sara, that granted access to their Hathi Hadoop cluster for this purpose.

4https://github.com/onnovalkering/bigpprl

https://github.com/onnovalkering/bigpprl

6

Chapter 2

Related work

2.1 Secure multi-party computation

With secure multi-party-computation (SMC) two or more parties engage, without
an intermediary, in a joint effort to solve some arbitrary computation [28]. The input
that is required from each party is not revealed to the other parties. However, after-
wards every party receives the output of the computation intended to solve. This
makes it especially useful for calculations based on personal data originating from
different organizations. As a drawback, SMC suffers from significant computational
overhead [43] that limits its ability to be used for efficient and large-scale PPRL.

2.2 LSHDB

LSHDB is an open-source1 database and execution engine, developed using Java,
capable of performing similarity search, record linkage and PPRL [21]. It supports
batch processing, as well as online querying. To optimize query speed it relies on
locality-sensitive hashing for indexing of records and features distributed and par-
allel capabilities. We identified two shortcomings that impede efficient and large-
scale deployment of LSHDB for PPRL. First, the parallel execution only kicks in
once a query is submitted and works only in favor of solving that particular query.
There is no coordination between threads in case of multiple concurrent queries.
Secondly, underlying LSHDB is the NoSQL database LevelDB. This is a on-disk
database that may impose a disk reading latency bottleneck when querying large
amounts of records.

In this thesis LSHDB is used as a performance baseline to indicate the current state
of open-source PPRL solutions. For us to use LSHDB for this purpose, some modi-
fication had to be made to the source code. The modified source code, along with a
description of the modifications can be found on GitHub2.

1https://github.com/dimkar121/LSHDB
2https://github.com/onnovalkering/lshdb-star

https://github.com/dimkar121/LSHDB
https://github.com/onnovalkering/lshdb-star

7

Chapter 3

Encoding

3.1 Bloom filter encoding

As mentioned in section 1.1.1 (The PPRL process), records have to be encoded before
they are sent to the linkage unit. The Bloom filter data structure [8] has been adopted
for this purpose [35]. Because of its effectiveness, good privacy protection and its
relatively low computational costs, it has become a widely used encoding scheme
for PPRL [10, 14, 20, 22, 36, 40, 43]. Compared to directly using cryptographic hash
functions for encoding, Bloom filters encoding has the advantageous feature that a
small difference in input doesn’t produce a completely different output. Therefore,
Bloom filter encoding can also be used for approximate matching of values instead
of only exact matching. This makes Bloom filter encoding tolerant for modest data
corruption such as typing errors or phonetic variation. An important characteristic,
as data corruption often occurs in real-world personal data [39].

This work considers two Bloom filters types: field-level Bloom filters (FBF) and record-
level Bloom filters (RBF). Before describing further details, some notations need to be
introduced:

• R is a ordered list of fields (i.e. a record), fi denotes the ith field;

• W is a ordered list of weights, wi denotes the weight intended for fi;

• T is a set of tokens;

• v is a bit vector of length m, with all values initially set to 0;

• H is a set of k hash functions with range [0, m).

3.1.1 Field-level Bloom filters

Records are encoded by first separately encoding all of its fields into FBFs. For an
arbitrary textual field f , the encoding procedure is as follows [35]. First a bit vector
vFBF of length mFBF is created. Next, the field f is tokenized into the set T using

Chapter 3. Encoding 8

1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0

h he el ll lo o

FIGURE 3.1: Creation of a static FBF (l = 30, k = 2).

n-grams of size two as tokens1. That is, they are decomposed into sets of every two
consecutive characters of the field’s value (e.g. _hello_ becomes {_h, he, el, ll, lo, o_}).
Each token is then hashed using k independent hash functions of H. The output val-
ues of these hash functions are considered indices of vFBF. Each of the corresponding
bits, i.e. those in vFBF with an index equal to at least one of the output values, is set to
1 (figure 3.1). After this, vFBF is the FBF for the field f . To reduce the success rate of
dictionary attacks against FBFs, a keyed cryptographic hash function (e.g. HMAC)
must be used to hash tokens [43].

Dynamic sizing

Ideally, around 50% of the bits in a FBF are set to 1 (i.e. a uniform distribution).
When this percentage deviates too much, a malicious party might infer the length
of the field’s value and/or the value of the parameter k [14]. To accomplish this, the
predetermined value of mFBF in the above procedure has to be replaced by a value
that has been dynamically determined. This way vFBF can be made shorter or longer
to ensure not too many bits will remain 0. An equation for dynamically determining
the value of mFBF for FBFs of the same field2, which is called dynamic FBF sizing, is
provided in [14]:

l =
1

1− kg
√

p

This equation introduces two new variables: g and p. The first, g, denotes the av-
erage amount of tokens in T for the specific field. The variable p stands for the
probability that a bit in the resulting FBF remains 0. Because we aim for a uniform
distribution of the bit values, p is set to a fixed value of 0.5. Figure 3.2 illustrates the
creation of a dynamic FBF, compared to the static FBF (figure 3.1) the bits are much
more uniformly distributed.

1Fields need to be padded, on the left and on the right, with whitespace first (indicated with _ here).
2Here, using database terminology, field means a column of a table and not a cell of a single row.

Chapter 3. Encoding 9

1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0

h he el ll lo o

FIGURE 3.2: Creation of a dynamic FBF (g = 6, l = 18, k = 2).

Numerical data

Encoding of numerical data can also be done using Bloom filters. Instead of us-
ing n-grams as tokens, neighboring numbers are used as tokens to construct T [40].
Consider an integer value x, in this case the tokens are the numbers in the range
[x− b, x + b], with an interval of bintv. Here, b and bintv are parameter values. When
encoding the value 10, with parameters b = 2 and bintv = 1, the tokens will be
{8, 9, 10, 11, 12}. A lower b value (1 ≤ b ≤ 4), increases accuracy, as T in that case
will primarily contain numbers close to x. However, a greater degree of privacy pro-
tection is achieved by using a higher b value. Using b = 5 offers similar accuracy
and privacy protection as the textual encoding counterpart [40].

Tokenization of floating-point values is slightly different, as the method for integer
values might result in differently aligned neighbors for such values. For instance,
5.5 and 5.6 are very close, but {4.5, 5.0, 5.5, 6.0, 6.5} and {4.6, 5.1, 5.6, 6.1, 6.6} have no
tokens in common. As a solution, the neighboring numbers are based on x′, which
is determined for a floating-point value x with the following function [40]:

x′ =

x x mod bintv = 0

x− (x mod bintv) x mod bintv < bintv / 2

x + (bintv − (x mod bintv)) x mod bintv ≥ bintv / 2

This function returns the closest number to x on an arithmetic sequence with inter-
val bintv. The value x′ is not included in T, but will only be used to determine the
neighboring numbers. Consider the floating-point value 5.6, with parameters b = 2
and bintv = 0.5. Then x′ will be 5.5 and the tokens will be {4.5, 5.0, 5.6, 6.0, 6.5}.

3.1.2 Record-level Bloom filters

FBFs of a record can be combined into a single RBF. This has two main advantages.
First, it reduces the amount of comparisons that have to be performed with a factor
equal to the amount of fields. As the similarity of two records can be determined by

Chapter 3. Encoding 10

1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 1

1 0 1 1 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0

FIGURE 3.3: Sampling bits (l = 16, W = {.30, .35, .35}, mRBF = 54).

a single comparison of the RBFs, instead of pairwise comparison of each FBF. Sec-
ondly, it makes it more difficult to infer original field values and thereby improves
the privacy protection [11].

The procedure for constructing a RBF is as follows [14]. First, a bit vector vRBF of
length mRBF is created. The length mRBF must be set such that each FBF can take
up a proportion of space that, at least, corresponds to its own length mFBF and the
FBF’s weight wi (i.e. mRBF is the maximum of the values mFBF / wi calulated for each
FBF, where 0 ≤ wi ≤ 1). Consider a FBF with mFBF = 200 and w = 0.25, the RBF
in that case must be at least of length 800 because 25% of its space is needed for the
FBF of length 200. Next, a random sample is drawn, with replacement, from each
FBF (figure 3.2). The sample size for a FBF is its weight wi times mRBF. Replacement
is needed, as it might be the case that more than mFBF bits are to be drawn from a
FBF. In case the ith drawn bit is 1, then the bit in vRBF with index i is also set to 1. As
a last step, the bits in vRBF are randomly shuffled. This random shuffling must be
preserved between RBF constructions, across the involved organizations. Otherwise
the RBFs loose their ability to be compared. This can be accomplished by agreeing
on a secret random seed that is only known by the involved organizations.

Field weighting

Weights for the fields might be known in advance, or estimated in agreement among
the involved organizations. If this is not the case, the weights can be determined
based on the discriminatory power of the fields. The Felligi-Sunter (FS) field weight-
ing algorithm is commonly used for this purpose [13, 15]. This algorithm computes
the agreement weight wa and disagreement weights wd for each field:

wa = log
m
u

wd = log
1−m
1− u

These weights can be combined into a single weight wi as follows [14]:

Chapter 3. Encoding 11

wi =
w(i)

a − w(i)
d

∑|R|j=1 w(j)
a − w(j)

d

In the above equations m denotes the probability that the specific field is equal
among record pairs M that are true matches. Similarly, u is the probability that a
field is equal among true non-matching record pairs U. To calculate m and u it must
be known, at least partly, what record pairs are true matches. If this is not known, as
often the case with private real-world data, an Expectation Maximization algorithm
can be used to estimate the probabilities m and u [46]. The public datasets used in
this work allow to directly calculate m and u, based on the formal definitions [13]:

mi = Pr[f (a)
i ≡ f (b)i | (a, b) ∈ M]

ui = Pr[f (a)
i ≡ f (b)i | (a, b) ∈ U]

In these definitions, mi and ui represent the values of m and u for the ith field. Like-
wise, f (a)

i and f (b)i represent the ith field of the records a and b respectively. Equality
of field values is denoted with the ≡ sign, and is true if the values of the two fields
are exactly the same.

Intuitively, fields are assigned greater weights if agreement of two field values more
likely indicates a true match than agreement by random chance, i.e. if fields are more
discriminatory. Therefore, fields such as surname and address are typically assigned
a higher weights than city and birthyear fields.

12

Chapter 4

Matching

4.1 The Hamming space

After the encoding step (chapter 3), what remains for the linkage unit to operate
on is exclusively a collection of RBFs (possibly annotated with an identifier and the
originating organization). As described in section 3.1, these RBFs have the property
that the relative distance among them can be calculated. This property permits the
collection of RBFs to be considered a metric space. An arbitrary metric space is
defined asM = (X, d), where X is a set of items and d is a distance function [19]. To
qualify as a metric space, four conditions must hold forM [5], for any a, b, c ∈ X:

1. d(a, b) ≥ 0 for all a, b;

2. d(a, b) = 0 if and only if a = b;

3. d(a, b) = d(b, a) for all a, b;

4. d(a, b) ≤ d(a, c) + d(c, b) for all a, b, c.

Since RBFs are essentially bit vectors, the applicable metric space can be defined as
Hn = ({0, 1}n, d), this corresponds to a Hamming space of dimension n1 [19]. The
Hamming distance, denoted as dh, is used as the distance function. Alternative dis-
tance functions do not satisfy all of above four conditions (e.g. Dice coefficient2) or
are not meant to be used on bit vectors (e.g. Cosine similarity, Euclidean distance).

4.1.1 Hamming distance

The Hamming distance between two items is defined as the number of bit positions
that are different. The function dh can be implemented using iteration, bitwise opera-
tions or vectors algebra. Iteration loops over two items x and y (arrays) simultaneously
and increments a counter each time when xi 6= yi. In the end the value of the counter
is equal to the Hamming distance between x and y. If storing the items x and y using

1The dimension n will be equal to mRBF.
2Doesn’t satisfy the fourth metric space condition (triange inequality).

Chapter 4. Matching 13

numerical data types, i.e. the binary representation of a number is equal to the bit
vector or a part of the bit vector, than bitwise operations can be used:

dh = hammingWeight(x⊕ y)

Above, ⊕ represents the XOR operator and hammingWeight counts the amount of
bits that are set to 1. These operations combined calculate the Hamming distance. A
third implementation relies on vectors algebra:

x · (−1(y− 1)) + y · (−1(x− 1))

Here, x and y are vectors and the minus 1 and multiplication by −1 should be per-
formed element-wise. Performing the dot product results in the Hamming distance.

A micro-benchmark has been performed to get an indication of the runtime perfor-
mances of each of the possible Hamming distance calculation implementations (see
appendix A.2). Based on the results of this benchmark, the bitwise implementation
is chosen as the to-use implementation as it offers significantly better runtime per-
formance than both the iteration and vector algebra implementations.

4.2 Nearest neighbour

Matching records within the Hamming space can be generalized to a k-nearest neigh-
bour(s) (k-NN) [19] problem, where k = 1 for PPRL or k ≥ 2 for the similarity search
variant (PPSS, section 1.1.2). Characteristics that still set apart PPRL are:

• the Hamming space of RBFs is typically high-dimensional (n > 3000);

• few k-NN structures are explored for high-dimensional Hamming space [31];

• the nearest neighbour(s) must be within some distance-threshold radius.

Assuming a two-database scenario, an interpretation of the PPRL process steps (sec-
tion 1.1.1) that fulfill the matching of records based on k-NN, could be as follows.
First, the records of one database are indexed (step 3 of the PPRL process) simi-
lar to how indexing is performed with k-NN [27]. Then, every record of the other
database is used as query input for the constructed k-NN index structure to find its
closest neighbour(s) in the other database (step 4 of the PPRL process). A match or
non-match classification is given to the identified neighbour(s), if any, when a certain
distance-threshold is not exceeded (step 5 of the PPRL process). The actual value
of the distance-threshold is a parameter and depends on the implementation. In
case of multiple match classifications, only the top k neighbour(s) are kept. In the
next chapter (5) two alternative implementation approaches that follow this general
procedure are presented, evaluated and discussed.

14

Chapter 5

Scaling PPRL

5.1 Locality-sensitive hashing

To be able to efficiently search a metric space, such as Hn (section 4.1), for matching
items, some preparation in the form of indexing is required. With PPRL, an indexing
method to efficiently group similar RBFs (those in close proxmity based on dh) is
of interest. By only pairwise comparing RBFs in the same group the total amount
of comparisons that have to be performed can be greatly reduced. This is called
blocking [4]. Blocking creates groups, or blocks, of items based on a blocking key [43].
To apply blocking to RBFs, blocking keys must be created based on RBF bit vectors
in such a way that similar RBFs will have the same blocking key, and thus end up in
the same block. For this, Locality-sensitive hashing (LSH) is commonly used [43].

In contrast to cryptographic hash functions, that are designed to prevent collisions,
LSH functions are hashing functions that aim to collide in case of input that is similar,
i.e. in close proximity within the metric space based on d. This property can be
expressed formally for an arbitrary LSH function h : X → U [19], take any a, b ∈ X:

d(a, b) ≤ r1 ⇒ Pr[h(a) = h(b)] ≥ p1

d(a, b) > r2 ⇒ Pr[h(a) = h(b)] ≤ p2

For the LSH function to be effective, it must adhere to the inequalities p1 > p2 and
r1 < r2. When it does, it is called (r1, r2, p1, p2)-sensitive to the function d. This
property makes the output of a LSH function suitable as blocking keys. Items a
and b are placed in the same block with at least probability p1, if they are within a
radius r1. Because p1 > p2, items in the same block are more likely to be similar
than dissimilar. Still, when placed in the same block, it doesn’t mean that items will
match by definition in the PPRL-sense. However, it narrows the search and thereby
increases scalability compared to a pairwise linear search. Since we are using the
Hamming distance as the distance function for our RBF metric space, we also need to
use a LSH function that is (r1, r2, p1, p2)-sensitive to this distance function. Hamming
LSH (HLSH) is such a function [19] and is commonly used [13, 23, 43].

Chapter 5. Scaling PPRL 15

5.1.1 HLSH-based blocking

In essence, HLSH is a function that samples bits from a given item [13]. If items a
and b are equal, we can reason that the output of the HLSH function must also be
equal, as all sampled bits will have the same values. More distant items will likely
yield different outputs, as some or all sampled bits are more likely to be different.

A blocking scheme for the Hamming space based on HLSH is as follows [23]. We
construct L number of hash tables, that contain mappings from each xi ∈ X to their
corresponding HLSH function output h(xi). For the construction of each hash table,
a distinct HLSH function is used that samples k bits. Each item that has the same
value h(xi) within the same hash table is considered to be in the same block. Having
more hash tables increases the probability that items are placed in the same block one
or more times. On the other hand, too many hash tables will increase the amount of
redundant comparisons. An optimal value of L can be determined by [23]:

L =

⌈
ln(δ)

ln(1− ρk)

⌉
In this equation, δ is a confidence parameter that indicates the probability that two
similar items do not end up in the same block. The value of δ should be set to a
sufficiently low value, 0.1 or 0.05 [23]. The parameter ρ is defined as [24]:

ρ = 1− r1

mRBF

Sampling k bits from a RBF bit vector can be implemented in various ways. Here we
consider two possible implementations. In both implementations, the positions that
are sampled for each of the L hash tables must be determined at random. Similar to
bit sampling during the creation of RBFs (section 3.1.2), the sampled positions must
be equal among all involved organizations. To achieve this, a secret random seed
can be used that is only known by the involved organizations.

Suppose we have two HLSH functions, h1 and h2, that sample positions {1, 3, 5} and
{2, 4, 6} respectively. As input items consider:

x1 =
[
1 1 0 1 1 0

]
x2 =

[
1 0 1 0 1 0

]
A straightforward algorithm is to iterate over each input item. At every position that
is to be sampled, prepend the value of the bit to a sequence. This sequence is then
used as output. By prepending instead of appending, we can interpret the output

Chapter 5. Scaling PPRL 16

value as a binary number. Converting the binary number to a decimal number is a
storage-efficient way of representing the output compared to arrays and strings1.

h1(x1) = 101 = 5

h2(x1) = 011 = 3

h1(x2) = 111 = 7

h2(x2) = 000 = 0

Bit sampling can also be implemented using matrix multiplication. For this we need
two matrices, X and K. Each row in X corresponds to an input item:

X =

[
x1

x2

]
=

[
1 1 0 1 1 0
1 0 1 0 1 0

]

The matrix K in turn indicates column-wise which bits are to be sampled. To pre-
serve to the order of sampled positions, incremental values are used. For the ith

position the value to use is 2i−1. For the functions h1 and h2:

K =

20 0
0 20

21 0
0 21

22 0
0 22

The output values can be calculated by performing a matrix-matrix multiplication:

X(K) =

[
h1(x1) h2(x1)

h1(x2) h2(x2)

]
=

[
5 3
7 0

]

To get an indication of the runtime performance of the above two bit sampling im-
plementations, a micro-benchmark has been performed (see appendix section A.3).
The matrix multiplication implementation has been chosen as the to-use implemen-
tation. Based on the benchmark results, this implementations offers better runtime
performance and has a lower memory-footprint.

In the remainder of this text, the term HLSH blocking key will be used to refer to a list,
regardless of representation, of sampled bits outputted by a HLSH function.

1Java/Scala uses 32 bits for a single integer, compared to 16 bits per character for strings (UTF-16).

Chapter 5. Scaling PPRL 17

5.1.2 Spark implementations

Two Spark implementations based on HLSH (section 5.1.1) have been developed.
One using the resilient distributed dataset (RDD) API and the other using Spark SQL2.
The RDD API is the low-level API of Spark that provides more control over the
performed operations. Spark SQL is a higher level API that lets Spark perform some
optimization by itself using the Catalyst optimizer [2].

Both implementations consist of two phases. In the first phase (figure 5.1) the in-
volved organizations load (and clean, if required) their records and encode them
into RBFs. Also, for each RBF a set of HLSH blocking keys is generated using the
matrix multiplication method as described in section 5.1.1. This whole phase corre-
sponds to the second step of the PPRL process (Data Pre-Processing, section 1.1.1).

1. Load records

2. Encode records

4. Store records

3. Generate HLSH blocking keys

 .CSV

FIGURE 5.1: The first phase of both the HLSH implementations.

At the end of the first phase, the output is stored on disk so that it can be transferred
to the linkage unit3. The linkage unit will then perform the second phase (figure 5.2).
The input for the second phase is a collection with the following (pseudo-)signature:

[〈Id, RBF, [Key1, Key2, . . .]〉, . . .]

Here, [. . .] denotes a list and 〈. . .〉 a sequence of elements (tuple) that corresponds to
a single record. The number of keys depends of the parameter L, but is at least one.

The steps of the second phase are for the most part (logically) the same between the
RDD API and Spark SQL implementations, only the generation of candidates (step
seven) is considerably different and influences the implementation of the subsequent
steps. Before discussing the seventh step, let’s first describe the preceding step that

2Also refered to as the Dataframe API or Dataset API.
3This step is omitted during benchmarks of the implementations.

Chapter 5. Scaling PPRL 18

5. Load records

6. Generate hash table entries

7. Generate candidates

 Parquet

8. Compare records

9. Classify records

10. Store records

FIGURE 5.2: The second phase of both the implementations.

generates hash table entries. A hash table entry is generated for each of the HLSH
blocking keys of records, thus effectively multiplying the total number of items by L.
This is required to allow Spark to process the entries independently and thereby the
hash tables in parallel. For each record, hash table entries are generated as follows:

〈Id, RBF, [Key1, Key2, . . .]〉 →

〈Key1, Id, RBF〉

〈Key2, Id, RBF〉

. . .

Based on the hash table entries, the RDD API implementation generates candidate
record pairs by performing a cogroup4 on the HLSH blocking keys. This transforma-
tion results in a collection of groups (i.e. hash table), one for every distinct HLSH
bloking key. All groups contains two records lists, one for each of the two databases.
The pairwise combinations of the lists of records within each group (hash table) are
the generated candidate record pairs. The (pseudo-)signature of this step is:

[〈Key1, Id1, RBF1〉, . . .]→ [〈Key1, [〈Id1, RBF1〉, . . .], [〈Id2, RBF2〉, . . .]〉, . . .]

4https://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations

https://spark.apache.org/docs/latest/rdd-programming-guide.html#transformations

Chapter 5. Scaling PPRL 19

The Spark SQL implementation generates candidate record pairs differently based
on the hash table entries. Namely, it performs a JOIN5 based on the HLSH blocking
keys. This results in the same candidate records pairs as the RDD API implementa-
tion, but they are not grouped by HLSH blocking keys and thus can, and must, be
processed independently. The (pseudo-)signature of this operation is as follows:

[〈Key1, Id1, RBF1〉, . . .]→ [〈Key1, Id1, RBF1, Id2, RBF2〉, . . .]

The remaining three steps (8-10) are very similar between the two implementations.
Comparing records is in both cases done using bitwise operations (section 4.1). As-
signing classifications is done based on a simple threshold function, the threshold
value itself is a parameter. Storing records is done using the Parquet6 format, but
could be replaced by any other format compatible with Spark and Hadoop (HDFS).

5.1.3 Single-node benchmark

The two implementations have been benchmarked against LSHDB (section 2.2), us-
ing the the North Carolina voting register (NCVR) dataset. The NCVR dataset is a
public dataset with real-world personal data, a more detailed described, along with
the appropriate parameters, is provided in section 6.1. Since LSHDB cannot be de-
ployed on a cluster, we used a single-node setup for the comparison benchmark. A
Docker-based Spark cluster7 (version 2.1.1, one master node, one worker node) has
been used to run the two Spark implementations. LSHDB has been run by directly
invoking the .jar8 file (JDK8). The host machine contained 8 CPU cores (Intel i7-
6700), 32GB RAM and a SSD for storage. The average of four runs are used as the
final result for each configuration, plotted in figure 5.3.

What stands out is that LSHDB is faster than both the Spark implementations for up
to a million records. This can be explained by the overhead of Spark, that, in addi-
tion to the actual work, also performs Job Scheduling9 and other cluster-related tasks,
even on a single-node setup. LSHDB is a lot more lightweight in that area, it’s a
pure Java implementation that immediately and solely will work on the PPRL task.
The RDD API implementation performs worse than both the Spark SQL implemen-
tation and LSHDB for all database sizes. Spark seems to optimize the Spark SQL
implementation better as the database size increases, from around 2 million records
a moderate runtime reduction, compared to LSHDB, is observable. Thereby making
the Spark SQL implementation the fastest option for handling multiple millions of
records, and LSHDB the fastest option for databases with sub-million records.

5An SQL inner equi-join, to be exact.
6https://parquet.apache.org
7https://github.com/gettyimages/docker-spark
8Java Archive; the file format of a Java executable.
9https://spark.apache.org/docs/latest/job-scheduling.html

https://parquet.apache.org
https://github.com/gettyimages/docker-spark
https://spark.apache.org/docs/latest/job-scheduling.html

Chapter 5. Scaling PPRL 20

0 500 1000 1500 2000 2500 3000 3500 4000
Number of records (in thousands)

0

20

40

60

80

100

120

D
ur

at
io

n
(in

 m
in

ut
es

)

LSHDB
HLSH (RDD)
HLSH (SQL)

FIGURE 5.3: Singe-node runtimes of the HLSH implementations.

Implementation Records Precision Recall Accuracy F1 Score
RL Toolkit 50,000 0.99 0.89 0.98 0.94
LSHDB 50,000 0.99 0.95 0.99 0.98
HLSH 50,000 0.99 0.88 0.99 0.93
RL Toolkit 100,000 0.99 0.89 0.98 0.94
LSHDB 100,000 0.99 0.95 0.99 0.97
HLSH 100,000 0.99 0.88 0.98 0.94

TABLE 5.1: Evaluation metrics for LSHDB and HLSH.

When we look at the accuracy of LSHDB and the HLSH implementations (table 5.1).
The precision, accuracy and F1-score are all on-par. Except for recall. This means that
although the HLSH (SQL) implementation, compared to LSHDB, is becoming faster
as more records are added, it comes with a compromise of finding fewer of the total
true matching records, i.e. there are more false-negatives. In the case of privacy,
we can argue that extra false-positives is worse than having extra false-negatives.
For example, with the watch-list example (section 1.1.2) it would be worse to falsely
accuse someone to be on a watch-list, and have its privacy violated, than the other
way around. Thus, having more false-negatives might be a reasonable compromise
when speed is essential. This is strictly in terms of privacy, and not in security.

The same benchmark has been ran using the Record Linkage Toolkit10, an open-source
library for regular record linkage. This shows that LSHDB and the HLSH implemen-
tations are on-par with regular linkage results in terms of these evaluation metrics.

10https://github.com/J535D165/recordlinkage

https://github.com/J535D165/recordlinkage

Chapter 5. Scaling PPRL 21

5.1.4 Discussion

A drawback of HLSH results from the fact that blocking keys are generated individ-
ually for each record without considering any of the other records in the database(s),
i.e HLSH is data-oblivious [1]. Thus, it is not known after generating a blocking key
if that key will ensure that all the true matching records will be encountered. Fur-
thermore, with HLSH only records with the exact same blocking key(s) are consid-
ered candidate record pairs. For example, if the generated HLSH blocking keys, for
a certain hash table, of two true matching records differ only by one bit, the two
records won’t end up as a candidate record pair based on that hash table. As a con-
sequence multiple HLSH blocking keys have to be generated in advance for every
single record to increase the probability of colliding with true matching records.

The creation of multiple HLSH blocking keys blows-ups, in terms of total amount
of items in that flow through the application, the dataset in the second phase of
the both HLSH implementations. This burdens the RAM requirement and increases
the amount of (redundant) comparisons that have to be performed. Other indexing
structures exist, such as LSH Forest [1, 3], that are data-dependent and generally are
less burdened by the aforementioned drawback. One of the key features of the LSH
Forest structure is that, in essence, it can peek into nearby hash tables based on
the distance between the blocking keys11. This lowers the amount of required hash
tables and has the potential to increase scalability.

In section 5.2 an alternative to HLSH is presented that tries to prevent blowing-up of
the amount of items and reduce redundant comparisons by incorporating the idea
of peeking into nearby hash tables, just as with the LSH Forest structure.

5.2 Pivots

A data-dependent way of creating blocks is to use relative distances among the records,
i.e. by applying clustering based on dh. It is data-dependent because other records in
the dataset are considered when creating the blocking keys. Only records in the same
cluster are compared pairwise. Thus, compared to HLSH, hash tables are replaced
with clusters. The general procedure as described in section 4.2 is still adhered.

Constructing a complete view of how all the records are positioned requires 1
2 n(n−

1) comparisons, which boils down to (almost) a complete pairwise comparison of
the database. As discussed in section 1.1.1, this does not scale. Therefore, pivots
are used to mark the centroids of the clusters. By using m pivots the amount of
comparisons to construct the clusters is reduced to mn. Pivots can be selected using
a random sample or a special pivot-selection strategy [29].

11The Hamming distance can be used to calculate the distance between two hash tables, since the
HLSH blocking keys are essentially, just as RBFs, bit vectors.

Chapter 5. Scaling PPRL 22

A procedure for creating clusters based on pivots, described in [36], is as follows.
First, a set of pivots is determined based on one of the two databases. This is done by
taking a sample of size 3m [9], where m is the number of pivots, and than iteratively
select pivots that are farthest away. The farthest away pivot is the pivot with the
largest minimum distance to any of the previously selected pivots. Then, from the
dataset that was used to determine the pivots, all non-pivots are assigned their most
nearby pivot. Important is the the radius of a pivot, which is defined as the distance
from a pivot p to the farthest away record r f that is assigned to that pivot:

rad(p) = dh(p, r f)

Figure 5.4 illustrates an example of possible pivots and their assigned records. For
the illustrative purpose the pivots and records are shown in a (fictional) 2D space.

p3

p1

p2

p4

FIGURE 5.4: Clusters based on pivots (circles represent pivot radii).

Once the pivot clusters are constructed, the items from the other database are used
as queries. This is done in two steps. First it is determined which pivot raddii are
overlapping with the query record’s radius. The radius of a query record q is the
threshold-distance (section 4.2), i.e. any record that lies within this radius is consid-
ered a match. The query record is compared to each of the records that is assigned
to one of the overlapping pivots. Before performing the complete comparison, the
triangle inequality is checked (fourth condition of a metric space, section 4.1):

dh(p, q) ≤ dh(p, r) + dh(r, q)

dh(p, q) ≤ dh(p, r) + rad(q)

dh(p, q)− dh(p, r) ≤ rad(q)

Chapter 5. Scaling PPRL 23

The query record’s radius can be used as a (temporary) substitute for the dh(r, q)
distance, as shown above. If this inequality doesn’t hold, it is impossible for the two
record to have a distance lower or equal than the threshold-distance [36]. Figure 5.5
illustrates the querying. The query record q1 overlaps with p2, p3 and p4, therefore
all the blue, orange and green records will be compared to.

p3

p1

p2

p4

q1

q2

FIGURE 5.5: Querying the pivots clusters.

The overlap with a pivot can be interpreted as being part of a block, i.e. overlap
becomes the blocking key. Since there is no maximum to the radius of pivots, they
can potentially grow very large. Also, there is no limit to the amount of blocks a
query record can be part of. We can reason that, potentially, a query record will be
part of a lot of blocks because pivot radii have grown very large. Among these blocks
can be blocks with pivots with only very distant records, because the pivot radius is
determined based on one direction, but is applied in all directions. For instance, in
figure 5.5, q2 overlaps with p2, but the assigned records are on the other side.

To support this reasoning, we looked at the amount of records that are typically
assigned to a single pivot (table 5.2) and the amount of pivots that a single query
records typically overlaps with (table 5.3). These are based on averages. We can
observe that the amount of records that are assigned to a pivot decreases with the
total amount of pivots, i.e. they seem to distribute nicely between pivots. However,
endlessly increasing the amount of pivots imposes two problems. First, the amount
of overlap increases with the number of pivots. Second, the pivot selection process
itself requires 1

2 m(m− 1) comparisons, which does not scale well. Especially since
the pivot selection cannot be fully parallelized. In a proposed distributed setup for
the discussed pivot-based blocking approach, a pre-selection is performed in parallel
but in the end still requires 1

2 m(m− 1) comparisons on a single node [17].

Chapter 5. Scaling PPRL 24

Pivots Records Mean Std. Min. Max.
400 50,000 125 73 15 473
800 50,000 62 37 7 272
1,200 50,000 42 28 4 238
400 100,000 250 145 46 845
800 100,000 124 74 19 544
1,200 100,000 83 51 9 475

TABLE 5.2: Amount of records assigned to a pivot.

Pivots Records Mean Std. Min. Max.
400 50,000 42 12 5 97
800 50,000 49 16 4 128
1,200 50,000 51 18 5 138
400 100,000 46 13 5 106
800 100,000 56 18 7 152
1,200 100,000 59 20 6 171

TABLE 5.3: Amount of overlapping pivots to a query record.

5.2.1 Strict pivot-based blocking

To improve the scalability of the discussed pivot-based blocking we propose a more
strict pivot-based blocking approach. The aim is to decrease runtime by lowering the
required pivots. The approach is as follows. First, mprime prime-pivots are selected,
say mprime ≤ 2, 048 depending on the dataset size. Prime-pivots are selected using
the farthest-away strategy (section 5.2), but with an additional requirement. Namely,
that the smallest distance to a previously selected pivot is not lower than ppmin. If
this minimum distance is exceeded, the prime-pivot selection is stopped. The goal
of selecting prime-pivots is to divide the RBF space into non- or slightly-overlapping
parts. The radius of a prime-pivot is the distance to the nearest prime-pivot ppnearest

times cradius (e.g. 0.5 or 0.75). This will allow the prime-pivots to fill up empty space.

As a next step, each record, from the database that was used to select the prime
pivots, are assigned to one of the prime pivot (illustrated in figure 5.6). Prioritized
in the following order: 1) the record lies within the radius of the prime pivot; 2) the
record has the largest overlap with the prime pivot; 3) the prime pivot is the nearest
prime pivot. Based on the records that are assigned to a prime pivot, at most msub

sub-pivots are selected using the farthest-away strategy. Again, with an additional
requirement that the smallest distance to a previously selected pivot is not lower
than spmin. Similarly to prime pivots, the radius of a sub-pivot is the distance to the
nearest sub-pivot spnearest times the parameter cradius. This prime-/sub-pivot scheme
can be parallelized better than the original scheme (section 5.2). The prime-pivot
selection still has to happen on a single node, but the amount is limited. The sub-
pivot selection can be performed in parallel at different nodes for each prime-pivot.

Chapter 5. Scaling PPRL 25

pp3

pp1

pp2

pp4

FIGURE 5.6: Clusters based on prime pivots (circles represent radii).

mprime msub Pivots Records Mean Std. Min. Max.
64 32 1,600 50,000 31 29 1 374
128 64 3,165 50,000 16 15 1 183
258 128 6,064 50,000 8 7 1 111
64 32 1,504 100,000 65 73 2 180
128 64 3,072 100,000 33 35 1 917
256 128 5,878 100,000 17 18 1 385

TABLE 5.4: Amount of records assigned to a sub-pivot.

It is still the case that increasing the pivots, through mprime and msub, results in fewer
assigned records to a single pivot (table 5.4). And with more pivots, there is also
more overlap between query records and pivots (5.5). However, the amounts are
much smaller than with the original pivot-based blocking approach (section 5.2).

5.2.2 Strict pivot-based (Euclidean)

With strict pivot-based blocking the RBF space is divided in several sub-spaces based
on the prime-pivots. Within the sub-spaces there are only a modest amount of sub-
pivots that a query record can quickly be compared to, as done in the strict pivot-
based scheme (section 5.2.1). The distances from a query record to all the sub-pivots
can be put into a single vector to create a Euclidean vector12. The idea is that this vec-
tor can substitute the RBF bit vector as the query record, since exact/similar RBFs
will have exact/similar distances to sub-pivots and therefore also exact/similar Eu-
clidean vectors. The same goes for distant RBFs that will have dissimilar Euclidean
vectors. The idea is illustrated in figure 5.7, where an analogy can be made to the

12We mainly use this term to distinguish bit vectors (Hamming) and numeric vectors (Euclidean).

Chapter 5. Scaling PPRL 26

mprime msub Pivots Records Mean Std. Min. Max.
64 32 1,600 50,000 13 4 1 32
128 64 3,165 50,000 17 7 1 64
256 128 6,064 50,000 18 9 1 128
64 32 1,504 100,000 11 4 1 32
128 64 3,072 100,000 13 6 1 64
256 128 5,878 100,000 14 7 1 128

TABLE 5.5: Amount of overlapping sub-pivots to a query record.

global positioning system (GPS): sub-pivots are satellites that are used to position the
query record in the space. Since the Euclidean vectors are in a different metric space,
namely the Euclidean space Rn, it opens up the possibility for more indexing struc-
tures such as K-D Tree [6] or Ball Tree [32]. These are out the scope of this work.

pp3

pp1

pp2

pp4

q1

q2

FIGURE 5.7: Euclidean vectors based on sub-pivots.

5.2.3 Spark implementation

Three pivot-based Spark implementations have been developed, these follow the
original pivot-based blocking scheme (section 5.2), the strict pivot-based blocking
scheme (section 5.2.1) and an implementation that utilizes the pivot-based Euclidean
vector (section 5.2.2) respectively. These implementation consists of two phases, the
first is executed by the involved organizations and the second by the linkage unit.

In the first phase (figure 5.8), records are loaded and cleaned, if required, by the
involved organizations. Also, they are encoded into RBFs. Since the pivot-based
schemes are data-independent no (pre-)indexing steps are performed, as all the records
are record for that. This phase represents the second step of the PPRL process (Data

Chapter 5. Scaling PPRL 27

1. Load records

2. Encode records

3. Store records

 .CSV

FIGURE 5.8: The first phase of the three Pivot-based implementations

Pre-Processing, section 1.1.1). The output is a collection with the (pseudo-)signature:

[〈Id, RBF〉, . . .]

The second phase (figure 5.9) differs in the two steps after loading the records (6 and
7). The remaining steps (8-10) are equal to the HLSH implementation, discussed in
section 5.1.2. The original pivot-based scheme generates m pivots based on a 3m ran-
dom sample. Both the strict pivot-based schemes generate prime-pivots on a sample
up to 50,000. This larger sample is required so that as much as possible distant RBFs
are included, so that the prime-pivots can be generated in such a way that they par-
tition the space as much as possible. These pivots, for all implementations, are are
broadcasted13 and have the same signature as a regular RBF collection, i.e. it is a sub-
set. The strict pivot-based schemes also generates and broadcasts sub-pivots based
on the records that are assigned to the prime-pivots. This results in the collection:

[〈PrimeId, [〈SubId, RBF〉, . . .]〉 . . .]

The strict pivot-based Euclidean vector approach creates Annoy14 models for each
of the prime-pivots. Annoy is a library for k-NN, it uses random projection [7], a
form of LSH for the Euclidean space. These models are trained, using the default
configuration, on the Euclidean vectors (section 5.2.2) created for each of the records
assigned to a prime-pivot. After training the models are broadcasted. Because every
worker node will have a local copy of all the models, every worker node will be pro-
cess any arbitrary query. Since no joins are required, this can be highly parallelized.

13Spark’s broadcasting mechanism is an efficient way of providing every worker node with a local
copy of variables and collections.

14https://github.com/spotify/annoy

https://github.com/spotify/annoy

Chapter 5. Scaling PPRL 28

5. Load records

6. Generate pivots

7. Assign records to pivots

Parquet

8. Compare records

9. Classify records

10. Store records

6. Generate prime-pivots

6b. Generate sub-pivots

6. Generate prime-pivots

6b. Generate sub-pivots

7b. Train Annoy models

Strict pivot-based Strict pivot-based (Euclidean)Original pivot-based

8. Create candidates

FIGURE 5.9: Steps for each of the Pivot-based implementations.

5.2.4 Single-node benchmark

Each of the pivot-based implementations have been benchmarked. The same dataset
and single-node configurations have been used as the HLSH benchmark (section
5.1.3). The benchmark results have been plotted in figure 5.10. For the original pivot-
based 1, 200 pivots have been used. The runtime performance is a lot more worse
than LSHDB and doesn’t scale well. The more strict pivot selection has better perfor-
mance up until 2,000,000 records, after that the runtime increases dramatically. Of all
the implementations the one based on Euclidean has the best runtime performance,
but is still significantly slower than LSHDB and both the HLSH implementations.

Implementation Records Precision Recall Accuracy F1 Score
LSHDB 50,000 0.99 0.95 0.99 0.98
Pivots 50,000 0.99 0.89 0.99 0.94
Pivots (Strict) 50,000 0.99 0.79 0.98 0.88
Pivots (Euclidean) 50,000 0.99 0.87 0.98 0.89
LSHDB 100,000 0.99 0.95 0.99 0.97
Pivots 100,000 0.99 0.88 0.98 0.94
Pivots (Strict) 100,000 0.99 0.80 0.96 0.89
Pivots (Euclidean) 100,000 0.99 0.79 0.96 0.88

TABLE 5.6: Evaluation metrics for LSHDB and Pivot-based.

Chapter 5. Scaling PPRL 29

0 500 1000 1500 2000 2500 3000 3500 4000
Number of records (in thousands)

0

50

100

150

200

D
ur

at
io

n
(in

 m
in

ut
es

)

LSHDB
Pivots
Pivots (Strict)
Pivots (Euclidean)

FIGURE 5.10: Singe-node runtimes of the Pivots implementations.

Based on the evaluation metrics in (table 5.6), all pivot-based implementations have
worse recall compared to LSHDB. This is due to the pivot-based implementations
not finding as much as true matching records as LSHDB. What is interesting, is the
differences between the pivot-based implementations. The strict adjustments (sec-
tion 5.2.1) to the original pivot-based technique, increases runtime at the cost of re-
call, i.e. finding less true matches. The Euclidean pivot-based implementation can
again improve upon the strict pivot-based implementation, at the cost of recall.

5.2.5 Discussion

Despite being data-dependent and, especially the two strict variants, only blows
up the dataset in the worst case15, the pivot-based schemes all perform worse than
both the LHSDB and HLSH implementations. This might have several causes. First,
it may be that the particular computations of HLSH can be performed more effi-
cient, despite requiring some joins and the associated coordination. Second, since
the pivot-based schemes are data-dependant it might require fine-tuning the param-
eters for each (sub-)dataset used. On the same line, it might be that for some datasets
not enough pivots can be generated that are sufficiently distant. The reliance on the
distribution of the dataset is a major drawback of the pivot-based schemes.

Furthermore, the Euclidean vectors where consolidated in a model based on default
configuration and tested with only a single indexing method. It might also be that
for these specific vectors, that are in a relatively low dimension n ≤ 128, another
indexing structure is more performant. Tweaking these might improve the perfor-
mance, in both runtime and accuracy of the Euclidean pivot-based implementation.

15With HLSH every record is guaranteed to be multiplied by L, where with pivots this depends on
the prime pivots and may well be 1.

30

Chapter 6

Applications

6.1 The NCVR dataset

The North Carolina Voting Regiser1 (NCVR) dataset is one of the few publicly available
real-world dataset with around 7,000,000 records of personal data. This dataset is
therefore commonly used as a benchmark dataset for PPRL [43]. For the benchmarks
in this work, several sub-dataset have been generated based on the NCVR dataset.
These sub-datasets mimic a two-database situation where each dataset pair (A & B)
has a total record overlap of ≈ 10%. The dataset pairs are listed in table 6.1.

Name Records A Records B Total records True matches
50k 49,999 50,000 99,999 10,000
100k 99,993 99,992 199,985 19,998
200k 199,989 199,988 399,977 39,998
500k 499,980 499,986 999,966 99,998
1m 999,950 999,948 1,999,898 199,991
2m 1,999,908 1,999,897 3,999,805 399,984
3m 2,999,849 2,999,857 5,999,706 599,973
4m 3,999,791 3,999,825 7,999,616 967.950

TABLE 6.1: The generated NCVR sub-datasets.

As discussed in section 3.1, real-world personal data often is corrupted with, for
example, typing errors. The NCVR dataset is in this perspective a relatively clean
dataset, and contains only few corruptions. To make sure the PPRL techniques work
properly with unclean data, i.e. not only on exact matches, the generated datasets
have been corrupted using GeCo [39]. GeCo is a tool that can realistically corrupt
personal data, such as names and addresses. Half of the overlapping records of each
generated dataset pair have been randomly corrupted. This is around 5% of the total
amount of records, evenly split among the A and B parts.

Encoding parameters for the used NCVR fields have been determined upfront and
are listed in table 6.2. These have been used by all benchmarks, including LSHDB.

1https://s3.amazonaws.com/dl.ncsbe.gov/data/list.html

https://s3.amazonaws.com/dl.ncsbe.gov/data/list.html

Chapter 6. Applications 31

Field Tokens g k w
Firstname Text 7.0 15 22
Lastname Text 7.4 15 24
Birthyear Numeric 6.0 15 5
Address Text 18.0 15 29
City Text 9.9 15 16
Zipcode Text 6.1 15 4

TABLE 6.2: The used NCVR fields with parameters.

6.2 Cluster deployment

In chapter 5, the Spark implementations have been ran using a single-node config-
uration, so a fair comparison can be made with LSHDB. However, Spark applica-
tions primarily target clusters. To measure how well the created Spark implemen-
tations scale on a cluster, the same benchmark performed in chapter 5 has been
repeated, also using the NCVR dataset, on a cluster of various sizes (10, 20, 40,
80 and 160 worker nodes). For this, only the HLSH implementations (section 5.1)
have been considered, because only they showed a reasonable scaling curve with
the single-node evaluation. The pivot-based implementation based on Euclidean
vectors would also be interesting to deploy on a cluster, unfortunately the required
native component (Annoy) has a compatibility issue2 with the used cluster3. The
worker nodes used had the ability of 4 CPUs (cores) and 16 GB RAM.

1000 1500 2000 2500 3000 3500 4000
Number of records (in thousands)

0

10

20

30

40

50

D
ur

at
io

n
(in

 m
in

ut
es

)

10 nodes
20 nodes
40 nodes
80 nodes
160 nodes

FIGURE 6.1: Cluster runtimes of the HLSH (RDD) implementation.

The averages of four runs for each configuration (number of nodes/records) for the
RDD and Spark SQL implementations have been plotted in figure 6.1 and figure 6.2

2Linux containers are used, but within these containers glibc, required by Annoy, isn’t available.
3A Hortonworks Data Platform (HDP) v2.3.4 deployment (also see acknowledgments in section 1.2.1).

Chapter 6. Applications 32

respectively. Only runtime improvement is considered here, as it is assumed that
the accuracy stays the same as in section 5.1.3, i.e. the computations are the same.

1000 1500 2000 2500 3000 3500 4000
Number of records (in thousands)

0

10

20

30

40

50
D

ur
at

io
n

(in
 m

in
ut

es
)

10 nodes
20 nodes
40 nodes
80 nodes
160 nodes

FIGURE 6.2: Cluster runtimes of the HLSH (SQL) implementation.

The runtime of the RDD implementation for the 1m dataset can be halved, com-
pared to the single-node deployment, when using 10 nodes. This reduction steadily
increases to two-third for the largest 4m dataset. Doubling the amount of nodes
to 20, has only a modest effect for the 1m dataset (one-quarter runtime reduction),
but for the other datasets again halves the runtime. Further doubling the amount
of nodes decreases the runtime, but in lesser quantities. With 40 nodes the runtime
is almost halved, compared to 20 nodes, with 45% on average across all datasets.
This is reduced with on average 40% by again doubling the amount of nodes to 80
nodes. Using 160 nodes doesn’t noteworthy decrease the runtime anymore, it even
is slightly slower than using 80 nodes for the 2m dataset. The maximum reduction is
18% for the largest 4m dataset. We can conclude that for the RDD implementation,
doubling the nodes up to 40 nodes has favorable runtime reductions, but beyond
that the cost-benefit becomes effectively less tot none.

The Spark SQL implementation has a similar relation between runtime reduction
and doubling the amount of worker nodes. However, the reduction between the
single-node deployment and a 10-node cluster deployment is much greater with on
average 58 % for the 2m, 3m and 4m datasets. The 1m dataset is the exception, with
the Spark SQL implementation it seems that this size of dataset doesn’t fully take
advantage of the extra nodes. For amounts of nodes larger than 40, the 1m dataset
is processed even slower than the 2m, 3m and 4m datasets. It is hard to pinpoint the
exact reason, since Spark’s SQL optimizer, Catalyst, is implemented as a black box.

We can extrapolate that for the larger cluster deployments (80 and 160 nodes) the
runtimes will diverge, as the 20-node and 40-node lines, when using even larger
datasets. In that case it becomes beneficial again to use the larger amount of nodes.

33

Chapter 7

Future work

This work considered a limited scope, in terms of tools, techniques and implementa-
tions. In each of these areas lie opportunities for further work. In this chapter some
of these are mentioned.

Other Hadoop-ecosystem tools

Only Apache Spark has been used in this work as a framework for the various imple-
mentations. However, the Hadoop-ecosystem consists of multiple other candidates
with each its advantages and disadvantages. Another good option is to use Apache
Flink1, as also suggested in recent other work [17, 43]. Flink provides a similar ab-
straction of computations as Spark, but mainly focuses on stream processing. This in
contrast to Spark, that mainly focuses on batch processing. Streaming can be a good
fit for PPRL, when there is a constant inbound of checks that have to be performed,
as in the border security application (section 1.1.2).

Using a (big) data stores to store records and/or intermediate values is also worth
exploring. In the implementations in this work, all data is managed by Spark itself.
It might be the case that certain data operations can be performed more efficient
when using a optimized data store, such as Apache HBase2 or Apache Cassandra3.

Other hashing/blocking techniques

The LSH technique used in this work relies on hashing of items, such that similar
items collide by having the same hash function output (section 5.1). The effective-
ness of LSH depends on the parameters used and on the specific dataset used. The
same goes for the pivot-based schemes (section 5.2). A new development are hash-
ing functions based on the Learning to Hash principle [45]. This is a technique that can

1https://flink.apache.org
2https://hbase.apache.org
3https://cassandra.apache.org

https://flink.apache.org
https://hbase.apache.org
https://cassandra.apache.org

Chapter 7. Future work 34

be used to learn a hashing function, based on the data characteristics and distribu-
tion, that most effectively accomplishes what LSH functions also try to accomplish.
These methods are often based on Machine Learning and even Deep Learning [12].

In the same area, using (learned) dimensionality reduction functions can be used.
The PPRL methods used in this work rely heavily on bit vectors (RBFs) in the Ham-
ming space. A method for dimensionality reduction of these vectors is the, not com-
monly used, Logistic Principal Component Analysis [34]. Applying this technique can
speed up PPRL applications, as it will be working in a lower dimension [19].

Other implementations

Implementation-wise there are also a few opportunities to explore. For instance, ex-
perimenting with native components on a larger cluster. The benefit of using native
components is that they can perform operations on a much lower level4. The pivot-
based implementation with Euclidean vectors relies on Annoy, a native component
to train k-NN models (section 5.2.2). When these models are broadcasted, a higher
degree of parallelism can be obtained. As every worker node is able to process any
arbitrary incoming query record. Deploying this implementation, or similar, on a
cluster can give insight in how, if so, favorable such a setup is.

Another option is to resort to graphical processing unit (GPU) computing for acceler-
ation. Most of the required computations can be, in someway or another, be defined
as vector or matrix operations. Such operations can be performed faster by exploit-
ing the parallel nature of GPUs [30]. GPUs can also be used to accelerate the creation
of RBFs, by performing the cryptographic hashes on GPUs instead of CPUs [26].

More than two involved organizations has not been considered in this work. How-
ever, the used two-party database scenario used could be adapted to a multi-database
scenario. This works by assuming a transitive property for matches. For example,
take three databases A, B and C. We first compare A and B, and then B and C. Then
we consider the triplet 〈a, b, c〉 a match when a = b and b = c, where a, b and c orig-
inate from A, B and C respectively and = indicates a match between two records.
This could be implemented using a graph processing library, such as GraphX5, that
takes the output matches from multiple two-database scenarios as input.

An similarity search (PPSS) implementation has not been considered in this work.
Two possible ways to modify the created PPRL implementations for PPSS is to in-
crease to distance-threshold (section 4.2) and allow for multiple matches to be made
for a single record. This can be combined with the above description for supporting
multiple organizations. In this case, using a graph processing library, clusters can be
found based on graph cliques [33].

4For example when implemented with C or C++.
5https://spark.apache.org/docs/latest/graphx-programming-guide.html

https://spark.apache.org/docs/latest/graphx-programming-guide.html

35

Chapter 8

Conclusions

In this work we have made the case that PPRL is important, and that is it benefi-
cial to have a PPRL implementation that runs on the widespread available Hadoop-
ecosystem. We considered multiple Spark-based PPRL implementations, including
HLSH and multiple pivot-based implementations. With the aim to find the imple-
mentation that scales sufficiently to a big data scale (at least multiple millions of
records). As a baseline for the benchmark we have used the open-source LSHDB.

From the performed experiments we have learned that HLSH, especially the Spark
SQL variant, is able to outperform LSHDB in terms of runtime for multiple millions
of records. However, at the cost of finding fewer true matches. The same principle
goes for the pivot-based implementations. But all of these implementations perform
worse than LSHDB, in terms of runtime and achieved accuracy. We can therefore
conclude that, when performance is essential, creating custom tailored applications
in Java or even C++ is advisable when going to run it on a single-node. Using Spark
for such deployments, brings along too much overhead to the table.

This doesn’t mean Spark is not a good option for PPRL applications. When there
is a cluster available, even with 10 modest worker nodes, using Spark can greatly
improve the runtime of PPRL applications. Even if single-node deployments do not
take tens of hours or days to complete even for a few million records, there might
be scenarios where matches have to be made as quick as possible. For example in
streaming scenarios with a constant influx of records that have to be checked.

Furthermore, the proposed PPRL solution does not under-perform in terms of accu-
racy compared to regular linkage libraries. Combined with being implemented in
Spark, makes it a viable and accessible option when considering PPRL. We believe
this can take away the threshold for start using PPRL, because in contrast to the ob-
scure and scare non-Spark implementations, the Hadoop-ecosystem and Spark have
the benefit of having a community with expertise and is offered by cloud providers.

36

Appendix A

Micro-Benchmarks

A.1 Benchmark setup

The micro-benchmarks have been implemented using Scala 2.11 (JDK9) and has
been executed on a modest laptop (2 CPU cores, 8 GB RAM). The UsePopCountIn-
struction1 option has been enabled to accelerate the bitwise implementations. Simi-
larly, a native BLAS2 library has been included to accelerate implementations based
on vector/matrix algebra.

A.2 Calculating Hamming distances

The results, averages of four runs (figure A.1 and A.2), show that iteration is the
slowest option and bitwise the fastest option. Still, all implementations increase lin-
early with the amount of comparisons. The runtime of the bitwise implementation
does not seem to increase when doubling the bit vector dimension, in contrast to it-
eration and vector algebra. This can be explained by the fact that both the 32-bit and
64-bit vectors fit in a single numerical data type (Scala’s Integer and Long) and thus
requires the same amount of operations. If the dimension would grows larger, an
array of numerical values have to be used and a runtime increase can be expected.
Nevertheless, the bitwise implementation is chosen to calculate Hamming distances.
Therefore, RBFs must also be stored using numerical data types.

A.3 Generating Hamming LSH keys

The results (figure A.3 and A.4) indicate only a small sub-second performance gain
from using the matrix multiplication implementation for the runs with 500,000 vec-
tors (for both 32- and 64-bit long vectors). The performance gain is more significant
for the other two runs, where the runtime is reduced with up to 68% compared to

1Allows the JVM to use the low-level POPCNT instruction to count the number of bits set to 1.
2Basic Linear Algebra Subprograms; implemented using low-level routines.

Appendix A. Micro-Benchmarks 37

500 750 1000
Number of comparisons (in thousands)

0

500

1000

1500

2000

2500

R
un

tim
e

(in
 m

ill
is

ec
on

ds
)

1081

1648

2481

22 30 44

270
433

567

Iteration
Bitwise
Vectors

FIGURE A.1: Hamming distance calculations on 32-bit long vectors.

500 750 1000
Number of comparisons (in thousands)

0

1000

2000

3000

4000

5000

R
un

tim
e

(in
 m

ill
is

ec
on

ds
)

2033

3186

4669

20 31 43
359

593
738

Iteration
Bitwise
Vectors

FIGURE A.2: Hamming distance calculations on 64-bit long vectors.

the iteration implementation. An explanation for the large discrepancy in runtime
between the 500,000 and 1,000,000 runs for the iteration implementation might be
the JVM’s garbage collection mechanism kicking in when working with datasets
that have a larger memory footprint. If this would be the case, it implies that the
matrix multiplication implementation has a lower memory footprint. The matrix
multiplication has been chosen as the to-use implementation.

Appendix A. Micro-Benchmarks 38

500 750 1000
Number of bit vectors (in thousands)

0

1000

2000

3000

4000

5000

R
un

tim
e

(in
 m

ill
is

ec
on

ds
)

1328

2233

4647

1152 1206
1504

Iteration
Matrices

FIGURE A.3: Generating HLSH keys from 32-bit long vectors.

500 750 1000
Number of bit vectors (in thousands)

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

(in
 m

ill
is

ec
on

ds
)

1453

2516

6971

1227

1780
2170

Iteration
Matrices

FIGURE A.4: Generating HLSH keys from 64-bit long vectors.

39

Bibliography

[1] Alexandr Andoni, Ilya Razenshteyn, and Negev Shekel Nosatzki. “LSH for-
est: Practical algorithms made theoretical”. In: Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2017, pp. 67–78.

[2] Michael Armbrust et al. “Spark SQL: Relational data processing in spark”. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. ACM. 2015, pp. 1383–1394.

[3] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. “LSH forest: self-tuning
indexes for similarity search”. In: Proceedings of the 14th international conference
on World Wide Web. ACM. 2005, pp. 651–660.

[4] Rohan Baxter, Peter Christen, Tim Churches, et al. “A comparison of fast block-
ing methods for record linkage”. In: ACM SIGKDD. Vol. 3. Citeseer. 2003,
pp. 25–27.

[5] D J Baylis. Error Correcting Codes: A Mathematical Introduction. Vol. 15. CRC
Press, 1997.

[6] Jon Louis Bentley. “Multidimensional binary search trees used for associative
searching”. In: Communications of the ACM 18.9 (1975), pp. 509–517.

[7] Erik Bernhardsson. “ANNOY: Approximate nearest neighbors in C++/Python
optimized for memory usage and loading/saving to disk, 2013”. In: https://github.
com/spotify/annoy (2013).

[8] Burton H Bloom. “Space/time trade-offs in hash coding with allowable er-
rors”. In: Communications of the ACM 13.7 (1970), pp. 422–426.

[9] Sergey Brin. “Near neighbor search in large metric spaces”. In: (1995).
[10] Peter Christen. Data Matching: Concepts and Techniques for Record Linkage, Entity

Resolution, and Duplicate Detection. Springer Science & Business Media, 2012.
[11] Peter Christen et al. “Efficient cryptanalysis of Bloom filters for privacy-preserving

record linkage”. In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer. 2017, pp. 628–640.

[12] Thanh-Toan Do, Anh-Dzung Doan, and Ngai-Man Cheung. “Learning to hash
with binary deep neural network”. In: European Conference on Computer Vision.
Springer. 2016, pp. 219–234.

[13] Elizabeth Ashley Durham. “A framework for accurate, efficient private record
linkage”. PhD thesis. Vanderbilt University Nashville, TN, 2012.

BIBLIOGRAPHY 40

[14] Elizabeth A Durham et al. “Composite bloom filters for secure record linkage”.
In: IEEE transactions on knowledge and data engineering 26.12 (2014), pp. 2956–
2968.

[15] Ivan P Fellegi and Alan B Sunter. “A theory for record linkage”. In: Journal of
the American Statistical Association 64.328 (1969), pp. 1183–1210.

[16] John Gantz and David Reinsel. “Extracting value from chaos”. In: (2011).
[17] Marcel Gladbach et al. “Distributed Privacy-Preserving Record Linkage using

Pivot-based Filter Techniques”. In: 2018 IEEE 34th International Conference on
Data Engineering Workshops (ICDEW). IEEE. 2018.

[18] Lifang Gu and Rohan Baxter. “Decision models for record linkage”. In: Data
mining. Springer. 2006, pp. 146–160.

[19] Piotr Indyk and Rajeev Motwani. “Approximate nearest neighbors: towards
removing the curse of dimensionality”. In: Proceedings of the thirtieth annual
ACM symposium on Theory of computing. ACM. 1998, pp. 604–613.

[20] Alexandros Karakasidis and Vassilios S Verykios. “Secure blocking + secure
matching = secure record linkage”. In: Journal of Computing Science and Engi-
neering 5.3 (2011), pp. 223–235.

[21] Dimitrios Karapiperis, Aris Gkoulalas-Divanis, and Vassilios S Verykios. “LSHDB:
a parallel and distributed engine for record linkage and similarity search”. In:
Data Mining Workshops (ICDMW), 2016 IEEE 16th International Conference on.
IEEE. 2016, pp. 1–4.

[22] Dimitrios Karapiperis and Vassilios S Verykios. “A distributed framework for
scaling up LSH-based computations in privacy preserving record linkage”. In:
Proceedings of the 6th Balkan Conference in Informatics. ACM. 2013, pp. 102–109.

[23] Dimitrios Karapiperis and Vassilios S Verykios. “A fast and efficient Hamming
LSH-based scheme for accurate linkage”. In: Knowledge and Information Systems
49.3 (2016), pp. 861–884.

[24] Dimitrios Karapiperis et al. “Efficient Record Linkage Using a Compact Ham-
ming Space.” In: EDBT. 2016, pp. 209–220.

[25] William J Krouse and Bart Elias. “Terrorist watchlist checks and air passenger
prescreening”. In: LIBRARY OF CONGRESS WASHINGTON DC CONGRES-
SIONAL RESEARCH SERVICE. 2009.

[26] Wai-Kong Lee et al. “Parallel and High Speed Hashing in GPU for Telemedicine
Applications”. In: IEEE Access (2018).

[27] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive
datasets. Cambridge university press, 2014.

[28] Yehida Lindell. “Secure multiparty computation for privacy preserving data
mining”. In: Encyclopedia of Data Warehousing and Mining. IGI Global, 2005,
pp. 1005–1009.

[29] Rui Mao et al. “Pivot selection for metric-space indexing”. In: International
Journal of Machine Learning and Cybernetics 7.2 (2016), pp. 311–323.

BIBLIOGRAPHY 41

[30] John Nickolls and William J Dally. “The GPU computing era”. In: IEEE micro
30.2 (2010).

[31] Mohammad Norouzi, Ali Punjani, and David J Fleet. “Fast exact search in
hamming space with multi-index hashing”. In: IEEE transactions on pattern
analysis and machine intelligence 36.6 (2014), pp. 1107–1119.

[32] Stephen M Omohundro. Five balltree construction algorithms. International Com-
puter Science Institute Berkeley, 1989.

[33] Satu Elisa Schaeffer. “Graph clustering”. In: Computer science review 1.1 (2007),
pp. 27–64.

[34] Andrew I Schein. “A generalized linear model for principal component anal-
ysis of binary data.” In: 2003.

[35] Rainer Schnell, Tobias Bachteler, and Jörg Reiher. “Privacy-preserving record
linkage using Bloom filters”. In: BMC medical informatics and decision making 9.1
(2009), p. 41.

[36] Ziad Sehili and Erhard Rahm. “Speeding up privacy preserving record link-
age for metric space similarity measures”. In: Datenbank-Spektrum 16.3 (2016),
pp. 227–236.

[37] Konstantin Shvachko et al. “The hadoop distributed file system”. In: Mass stor-
age systems and technologies (MSST), 2010 IEEE 26th symposium on. Ieee. 2010,
pp. 1–10.

[38] Latanya Sweeney. “k-anonymity: A model for protecting privacy”. In: Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10.05 (2002),
pp. 557–570.

[39] Khoi-Nguyen Tran, Dinusha Vatsalan, and Peter Christen. “GeCo: an online
personal data generator and corruptor”. In: Proceedings of the 22nd ACM inter-
national conference on Information & Knowledge Management. ACM. 2013, pp. 2473–
2476.

[40] Dinusha Vatsalan and Peter Christen. “Privacy-preserving matching of similar
patients”. In: Journal of biomedical informatics 59 (2016), pp. 285–298.

[41] Dinusha Vatsalan, Peter Christen, and Vassilios S Verykios. “A taxonomy of
privacy-preserving record linkage techniques”. In: Information Systems 38.6 (2013),
pp. 946–969.

[42] Dinusha Vatsalan et al. “An evaluation framework for privacy-preserving record
linkage”. In: Journal of Privacy and Confidentiality 6.1 (2014), p. 3.

[43] Dinusha Vatsalan et al. “Privacy-Preserving Record Linkage for Big Data: Cur-
rent Approaches and Research Challenges”. In: Handbook of Big Data Technolo-
gies. Springer, 2017, pp. 851–895.

[44] Vinod Kumar Vavilapalli et al. “Apache hadoop yarn: Yet another resource
negotiator”. In: Proceedings of the 4th annual Symposium on Cloud Computing.
ACM. 2013, p. 5.

[45] Jun Wang et al. “Learning to hash for indexing big data—a survey”. In: Pro-
ceedings of the IEEE 104.1 (2016), pp. 34–57.

BIBLIOGRAPHY 42

[46] William E Winkler. “Using the EM algorithm for weight computation in the
Fellegi-Sunter model of record linkage”. In: Proceedings of the Section on Survey
Research Methods, American Statistical Association. Vol. 667. 1988, p. 671.

[47] Matei Zaharia et al. “Apache spark: a unified engine for big data processing”.
In: Communications of the ACM 59.11 (2016), pp. 56–65.

	List of Figures
	List of Tables
	Introduction
	Privacy-preserving record linkage
	The PPRL process
	Applications of PPRL

	PPRL on a Big Data scale
	Thesis outline

	Related work
	Secure multi-party computation
	LSHDB

	Encoding
	Bloom filter encoding
	Field-level Bloom filters
	Record-level Bloom filters

	Matching
	The Hamming space
	Hamming distance

	Nearest neighbour

	Scaling PPRL
	Locality-sensitive hashing
	HLSH-based blocking
	Spark implementations
	Single-node benchmark
	Discussion

	Pivots
	Strict pivot-based blocking
	Strict pivot-based (Euclidean)
	Spark implementation
	Single-node benchmark
	Discussion

	Applications
	The NCVR dataset
	Cluster deployment

	Future work
	Conclusions
	Micro-Benchmarks
	Benchmark setup
	Calculating Hamming distances
	Generating Hamming LSH keys

	Bibliography

