

Automated Web Service Inventory Management

Software

The Benefits of Client Driven Dynamically Generated Web Services

Philip Pittle

Thesis Supervisor:
Adam Belloum

Faculty of Science

Universiteit van Amsterdam

A thesis submitted for the degree of Master of Science (MSc) in Grid Computing

2012 July

2

The transition from science to e-Science is happening: a data deluge

emerges from publicly-funded research facilities; a massive

investment of public funds into the potential answer to the grand

challenges of our times. This potential can only be realised by

adding an interoperable data sharing, re-use and preservation layer

to the emerging ecosystem of e-Infrastructures. The importance of

this layer, on top of emerging connectivity and computational layers,

has not yet been addressed coherently at ERA or global level.

 - Opportunities for Data Exchage

http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/ode.pdf

With a proper scientific e-infrastructure, researchers in different domains

can collaborate on the same data set, finding new insights. They can share

a data set easily across the globe, but also protect its integrity and

ownership. They can use, re-use and combine data, increasing

productivity. They can more easily solve today’s Grand Challenges, such

as climate change and energy supply. Indeed, they can engage in whole

new forms of scientific inquiry, made possible by the unimaginable power

of the e-infrastructure to find correlations, draw inferences and trade ideas

and information at a scale we are only beginning to see.

- High Level Expert Group on Scientific Data

http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/hlg-sdi-report.pdf

http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/ode.pdf
http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/hlg-sdi-report.pdf

3

Acknowledgments
I would like to acknowledge the encouragement and support of those that helped me in

completing not only this master’s thesis but the entire Computer Science – Grid

Computing master’s program at the University of Amsterdam. I would like to thank my

friends and family for encouraging my decision to study abroad and turning my dream

into reality. I thank the excellent faculty at the University of Amsterdam for providing an

exciting and enriching atmosphere for learning and personal growth. And I must

additionally acknowledge the faculty for having the flexibility to custom tailor the

program to best fit my needs and for helping to ensure I completed the program on time.

I thank my supervisor and professor, Dr. Adam S.Z. Belloum for his guidance, knowledge

and wisdom. His patient encouragement greatly contributed to the quality of this thesis

paper and his support gave me the confidence to challenge myself and pursue a topic of

my choosing.

Finally, I must acknowledge my former colleagues at the Public Broadcasting Service

(PBS). It was my time at PBS that first exposed me to the intricacies of the data sharing

problem and the lack of adequate solutions available. And it was there that I first had the

opportunity to explore the problem and made the decision to pursue its solution.

To everyone that has helped me on this two year journey, thank you. I could not have

come this far without you.

4

Abstract
Data sharing is integral to unlocking the full potential of scientific data; enabling multi-

disciplinary researchers to collaborate and work together in ways not otherwise possible.

And the growing adoption of e-science infrastructures opens new possibilities for data

analysis as long as raw data is readily available. Yet, despite the recognized value of data

sharing, modern technology infrastructures have yet to provide the scientific community

with an easy-to-use data sharing solution. In order for a solution to effectively meet the

needs of the scientific community and promote data sharing, three data sharing goals have

been identified:

1. Ease the burden on data owners that want to share their data.

2. Enable data consumers to easily consume data in a format most conducive to

their needs.

3. Support the integrated data schema so that data can be readily consumed by

computation engines.

Web services have emerged as a standardized and interoperable data sharing mechanism.

However, while several frameworks exist to ease implementation, utilizing them requires

non-trivial technology expertise; proving that the frameworks alone are not sufficient to

meet the data sharing goals. Further, operating a web service inventory in practice

requires additional effort, specifically version management, and the technical know-how

to deploy, operate and secure a web server.

This thesis introduces the Automated Web Service Inventory Management Software

(AWSIMS) as a complete data sharing solution that expands upon the proven power of

web services to meet the data sharing goals stated above. The design and architecture are

presented to discuss how AWSIMS meets the data sharing goals. The application is then

evaluated against three use cases to determine how AWSIMS meets data sharing

requirements in real world scenarios. Finally, AWSIMS’s applicability in the realms of

bio-informatics and health care are discussed.

5

Contents

Acknowledgments ... 3

Abstract .. 4

List of Figures .. 8

List of Tables ... 9

1 Introduction... 11

1.1 Scientific Data in the Computer Age ... 14

1.2 e-Science Infrastructure ... 15

1.3 Data Sharing Goals .. 15

1.4 Web Services ... 18

1.4.1 SOAP ... 18

1.4.2 WSDL .. 19

1.4.3 UDDI.. 20

1.4.4 Web Service Limitations .. 20

1.5 Case Studies .. 21

1.5.1 Case Study: Small Research Team ... 21

1.5.2 Case Study: Intra-Department Sharing .. 22

1.5.3 Case Study: Large Multi-Disciplinary Research Team 22

1.6 Current Solutions ... 23

1.6.1 Web Service Based Solutions .. 24

1.7 Motivation and Goal .. 25

2 Automated Web Service Inventory Management Software .. 27

2.1 Design Goals ... 27

2.1.1 Querying Data and Schema .. 27

2.1.2 Enable Users to Design Web Services, Methods, and Return Types 27

2.1.3 Generate Standards Compliant Web Services .. 28

6

2.1.4 Web Service Versioning .. 28

2.1.5 Discoverability ... 28

2.1.6 Extensibility ... 29

2.1.7 Scalability and Performance .. 29

2.2 .NET Foundation ... 29

2.2.1 Customizing the ASP.NET Pipeline .. 31

2.3 Architecture ... 32

2.3.1 Data Sources .. 34

2.3.2 Client Driven Interface Generation .. 37

2.3.3 Web Service Compilation .. 40

2.3.4 Web Service Method Execution ... 42

2.3.5 Versioning .. 43

2.3.6 Discoverability ... 44

2.3 Platform Benefits ... 46

2.3.1 Support for Multiple Protocols ... 46

2.3.2 Performance ... 47

2.3.3 Upgradability ... 48

2.4 Deployment ... 48

2.4.1 AWSIMS Cloud ... 49

3 Analysis .. 51

3.1 Interview with the Bio-informatics Community .. 51

3.2 Real World Integration: VPH-Share .. 51

3.3 Case Studies .. 54

3.3.1 Case Study: Small Research Team ... 54

3.3.2 Case Study: Intra-Department Sharing .. 55

3.3.3 Case Study: Large Multi-Disciplinary Research Team 55

3.4 Further Discussion ... 56

7

3.4.1 Big Data ... 56

3.4.2 Semantic Web .. 57

4 Conclusion .. 58

4.1 Future Work .. 59

4.1.1 User Review and Feedback .. 59

4.1.2 CRUD Support ... 59

4.1.3 Security .. 60

References ... 62

Appendix A – A Quick User Guide to AWSIMS in the Cloud ... 67

A.1 Sharing Data ... 67

A.2 Consuming Data ... 69

8

List of Figures
Figure 1 - Swine Flu Outbreaks in Several Geographic Regions 12

Figure 2 - Health Care Facilities’ Overlapping Coverage Areas 12

Figure 3 - Diagnosis for Hospital 1.. 13

Figure 4 - Diagnosis for Hospital 2.. 13

Figure 5 - Aggregated Diagnoses for Hospital 1 and 2 .. 14

Figure 6 - The Modern Data Sharing Problem .. 16

Figure 7 - ENFOS Email Based Workflow ... 23

Figure 8 - AWSIMS - The Data Sharing Solution ... 26

Figure 9 - IIS - ASP.NET Request Pipeline... 30

Figure 10 - AWSIMS Web Service Server Pipeline .. 32

Figure 11 - AWSIMS Architecture Diagram ... 33

Figure 12 - Data Source Key Classes .. 35

Figure 13 - Screenshot of AWSIMS Client Showing the Web Service Method Creation

Screen .. 38

Figure 14 - Query Mutator and Query Mutator Parameter Base Classes 40

Figure 15 - AWSIMS Web Service Definition Compilation Pipeline 41

Figure 16 - Sample Web Service Method Source Code .. 42

Figure 17 - Example Output from the Catalog Web Service ... 45

Figure 18 - AWSIMS Deployment Diagram ... 49

Figure 19 - LOBCDER Architecture ... 53

9

List of Tables
Table 1 - List of Existing and Planned Data Sources ... 35

10

11

1 Introduction
The advancement and application of science is dependent on quality scientific data created

through observation and calculation. However, for the full value of scientific data to be

realized it must be shared and aggregated within the scientific community. When data

resides in information silos accessible only to an individual scientist or scientific team, the

data is prevented from being subjected to independent peer review in order to verify its

quality. Teams working on similar hypothesize or overlapping areas must dedicate

limited resources towards recreating data sets; hampering the overall pace of scientific

progress. And, perhaps most importantly, the ability to analyze that data in a

comprehensive manner is reduced and conclusions drawn from limited data sets can be

inaccurate and inconclusive.

The field of epidemiology, specifically the study of severe food borne illness outbreaks is

a perfect example justifying the need and value of the open sharing of scientific data.

Local physicians and hospitals collect diagnosis data from patients, but as these medical

establishments often have overlapping coverage areas, rarely can a single establishment

determine if there are sufficient diagnosis’s to qualify as a localized outbreak. Instead,

responsibility typically falls to a government agency, such as the Dutch Ministry of

Health, Welfare and Sport (VWS)
1
, to aggregate and analyze data from local physicians in

order to spot regional and national trends.

The distributed data management solution, OGSA-DAI
2
, provide an excellent example of

this within the context of epidemiology, from which I paraphrase. Within several

geographical regions there have been several diagnoses of patients exhibiting swine flu

symptoms. Figure 1 - Swine Flu Outbreaks in Several Geographic Regions, presents this,

showing the home address of patients as red dots. From this view, it is easy to recognize

that the majority of patients reside in small clusters, engendering the conclusion that the

contagion might be localized and warranting investigation of that location.

1
 http://www.government.nl/ministries/vws

2
 http://www.ogsadai.org.uk/about/index.php

http://www.government.nl/ministries/vws
http://www.ogsadai.org.uk/about/index.php

12

Figure 1 - Swine Flu Outbreaks in Several Geographic Regions3

While the conclusion that the contagion is largely concentrated in one area is easy to

deduce once the data has been aggregated, in many cases this is a non-trivial step. In our

example region, there are multiple heath care facilities with overlapping coverage areas,

as shown in Figure 2 - Health Care Facilities’ Overlapping Coverage Areas.

Consequently, patients from the identified “hot-spot” may elect to go to different health

care providers. Figure 3 - Diagnosis for Hospital 1 shows the diagnoses that one provider,

Hospital 1 is aware while Figure 4 - Diagnosis for Hospital 2 shows the diagnoses that

another provider, Hospital 2, is aware of.

Figure 2 - Health Care Facilities’ Overlapping Coverage Areas4

3
 Original image http://www.ogsadai.org.uk/about/index.php

http://www.ogsadai.org.uk/about/index.php

13

Figure 3 - Diagnosis for Hospital 15

Figure 4 - Diagnosis for Hospital 26

As the diagrams above illustrate, neither Hospital 1 nor Hospital 2 has enough information

to make a definitive conclusion. Only when the two data sets are aggregated together, as

in Figure 5 - Aggregated Diagnoses for Hospital 1 and 2, is it possible to reach a correct

and informed conclusion.

4
 Original image http://www.ogsadai.org.uk/about/index.php

5
 Original image http://www.ogsadai.org.uk/about/index.php

6
 Original image http://www.ogsadai.org.uk/about/index.php

http://www.ogsadai.org.uk/about/index.php
http://www.ogsadai.org.uk/about/index.php
http://www.ogsadai.org.uk/about/index.php

14

Figure 5 - Aggregated Diagnoses for Hospital 1 and 2

1.1 Scientific Data in the Computer Age
The recent proliferation of computing equipment and networks and the ubiquitousness of

computing in daily human activities has engendered an avalanche of data creation. While

the increase of scientific data is unequivocally beneficial for science, its true potential

cannot be unlocked without data sharing mechanisms that facilitate the aggregation and

analysis of ever increasing quantities of data. But this rise in computer generated data has

fundamentally changed data sharing requirements. The sheer volume of data being

generated means that traditional human analysis is simply not feasible. Take the Large

Hadron Collider (LHC) as an example. Project experiments produce roughly 15 petabytes

of data annually [8] and with such high data volumes, human analysis of raw data is

logistically impossible. While the LHC is certainly on the high end of data producing

experiments, it is indicative of the way forward for modern science.

As experiments are producing more data than a human can analyze, scientists must rely on

computational resources to perform the analysis. This in turn means that modern data

sharing must be consumable by computation engines. The advent of the public Internet

has indeed made huge troughs of information available; however, it has specialized in

serving data summaries in formats easily consumed by humans. It has not been nearly as

successful in sharing massive amounts of raw data in a format conducive to algorithmic

and computational analysis. The scientific community has largely recognized the value of

15

data sharing for enabling scientific progress and the need to overcome the deficiencies

found in current technology infrastructures [5][6][7].

1.2 e-Science Infrastructure
The maturation of the field of high performance computing has produced computing

infrastructures that enable an application to access the resource equivalent of tens of

thousands of conventional desktop computers. Known commonly as Cloud computing

[11] and Grid computing [12], these systems offer scientists near unlimited computational

processing power to perform analyses never before possible. This technology, when

applied in conjunction with the Internet, with its collaborative nature and philosophy,

form the heart of what has been dubbed e-Science [13].

E-Science is a response to the needs of modern science. With theoretical and

observational experimentation generating ever larger and complex volumes of data,

research objectives becoming increasingly multi-disciplinary and research teams being

more often geographically dispersed, the technological infrastructures from even 10 years

ago are no longer adequate. Beyond greatly increasing the computing power available to

scientists, e-Science also seeks to provide tools to enhance collaboration and encourage

data sharing. This is accomplished by a fundamental shift in design ideologies and

principles aimed at bringing science technical infrastructure in line with the Internet age;

e-Science is built upon a model of service oriented architecture.

Service oriented architecture (SOA), as a design paradigm, is the loose coupling of

autonomous interactive software agents [14] that operate as services. It provides for

communication between agents over a network, such as the Internet, via a standardized

interface framework [15], promoting interoperability and providing a strong foundation

for computing across distributed hardware. Clients can invoke services, utilizing this

standard communication channel, to send data and receive a response.

The successful adoption and utilization of e-Science requires scientists to make their data

available via SOA communication services; fundamentally changing the nature of the data

sharing problem. Scientific data must be made consumable by e-Science frameworks. By

doing so, not only will scientists reap the benefits e-Science provides, they will

intrinsically make their data available to the scientific community at large.

1.3 Data Sharing Goals
As technology evolves and science evolves to take full advantage of it, the value of data

sharing persists; but the mechanisms and technical requirements of sharing change. The

16

proliferation of computing has resulted in the vast majority of scientific data being

digitized and warehoused electronically. The rise of the Internet has effectively

networked the vast majority of the scientific community and has become the transport

medium of choice. And scientific data aggregation and analysis has become reliant on

computer applications, most notably e-Science infrastructures. Thus, the sharing of

scientific data is distilled to the problem of effectively sending data from one computer

system to another, via the Internet, such that it can be appropriately consumed; as can be

seen in Figure 6 - The Modern Data Sharing Problem.

Data

Consumers

Internet Connection

Database Server

File Server

Application Server

Scientifc Data

Figure 6 - The Modern Data Sharing Problem

The service-oriented approach to performing distributed and computationally intensive

scientific research is potentially very powerful. Yet widespread adoption by many

scientists has been depressed, partly due to the technical difficulties involved in sharing

data [16]. When these difficulties are overcome, researchers with widely different

backgrounds - from the humanities and social sciences to the physical, biological and

engineering sciences – can collaborate on the same set of data from different perspectives.

Indeed, we begin to see what some have called a “fourth paradigm” [35] of science –

beyond observation, theory and simulation, and into a new realm of exploration driven by

mining new insights from vast, diverse data sets. [17]

17

In order to free data from being locked up in “data islands” [36] and help realize the full

potential of data, this thesis identifies the following data sharing goals an application must

meet in order to fulfill the data sharing needs of the modern scientific community:

1. Ease the burden on data owners that want to share their data.

2. Enable data consumers to easily consume data in a format most conducive to

their needs.

3. Support the integrated data schema so that data can be readily consumed by

computation engines.

For many researchers, the concept of research data sharing is a new one and they do not

know how to share their data [5]. Technological challenges should not be a barrier for a

data owner that has made the decision to share data. Additionally, data owners should not

be overly burdened to adapt their data to meet the needs of data consumers, who may

want the data to be provided in a certain format or the data sharing solution to support

advanced features such as pagination and filtration. Lowering the level of effort required

to both share data and maintain a repository will enable more data owners to share their

data and keep it up-to-date. And by offering data owners a solution that provides

performance and stability, they can be confident they are meeting the needs of their data

consumers.

For a data consumer to receive the maximum value from shared data, they must be able to

easily consume it using standardized protocols. Additionally, they need the data

customized to a format that meets their needs and offers querying functionality that allows

them to efficiently retrieve it. Together, this ensures data consumers can quickly and

effectively make use of shared data repositories, combining and aggregating it as well as

allowing them to quickly evolve their querying techniques.

In the age of modern computing infrastructures, it is essential that any data sharing

solution supports computational discovery, processing and data retrieval. Complex

analysis of data is no longer possible without the aid of computers and requiring a data

consumer to manually derive data format and structure creates an onerous burden.

Additionally, the sheer volume of data being generated annually makes it impossible for a

data consumer to effectively find a relevant data repository, mandating that a data sharing

solution supports discoverability. The onus is on the data owner to ensure that not only

their data is made easily available, but that a data consumer can query the data repository

to retrieve a description and structure of the data being stored.

18

1.4 Web Services
Web service technologies have emerged as a key tool for facilitating the structured

sharing of machine readable data in distributed system architectures, capable of powering

current and future e-Science infrastructures [16]. Web services adhere to SOA design

principles defining a framework for defining and invoking autonomous and interoperable

software agents. Consequently, it is a key technology for implementing modern data

sharing solutions.

The World Wide Web Consortium (W3C)
7
 is the standards organization responsible for

defining and curating the official Web Services Architecture definition [18] from which

an excerpt is presented below:

A web service is a software system designed to support interoperable machine-

to-machine interaction over a network. It has an interface described in a

machine-processable format (specifically WSDL). Other systems interact with the

Web service in a manner prescribed by its description using SOAP messages,

typically conveyed using HTTP with an XML serialization in conjunction with

other Web-related standards.

Essentially, the web service framework is comprised into three primary areas:

communication, description, and discovery [19]. Communication between software

agents takes place using the Simple Object Access Protocol (SOAP). Web Service

Description Language is used to provide a formal definition of a web service and its

capabilities. Universal Description, Discovery and Integration (UDDI) provides a

standard repository mechanism where clients can discovery web services available in a

given network. Each topic is explored further in the sections below.

1.4.1 SOAP

SOAP was originally developed by Microsoft
8
 with the goal of creating a protocol for

remote procedure calls (RPCs) that could operate on the existing Internet infrastructures.

This meant it needed to be platform-independent, interoperable and text based. The

designers opted to base the protocol in XML, the lingua franca for information and data

encoding for platform independence and internationalization [19]. Additionally, because

SOAP and XML are text based, SOAP can use existing internet transport protocols, such

as HTTP.

7
 www.w3.org

8
 www.microsoft.com

19

The W3C elected to use SOAP as the communication platform of choice for the web

services framework and now maintains the official protocol definition [21]. An excerpt

from the specification is presented below:

SOAP provides a simple and lightweight mechanism for exchanging structured

and typed information between peers in a decentralized, distributed environment

using XML. SOAP does not itself define any application semantics such as a

programming model or implementation specific semantics; rather it defines a

simple mechanism for expressing application semantics by providing a modular

packaging model and encoding mechanisms for encoding data within modules.

This allows SOAP to be used in a large variety of systems ranging from

messaging systems to RPC.

SOAP functions as essentially a message passing protocol, with SOAP messages (XML

documents) passed between client and server. A SOAP message consists of three parts:

1. The SOAP envelope is the root of the XML file and defines an overall

framework for expressing what is in a message; who should deal with it, and

whether it is optional or mandatory.

2. An optional SOAP header allows the injection of specialized processing rules,

including rules defining serialization and how recipients should process SOAP

messages.

3. A SOAP body containing the serialized message. This can either be a RPC sent

from a client or a payload containing a data set returned from a web service.

Using SOAP, web services have a robust mechanism for executing remote procedures to

query data. And because SOAP messages and payloads are serialized into XML, a plain

text data format, it can be transported over existing Internet technologies, most notably

HTTP(S). Additionally, the standard fully embraces interoperability to ensure not only

that a client on any platform can consume any web service, but web services developed on

different technology stacks can communicate with one and another.

1.4.2 WSDL

For clients to understand the capabilities of a web service, properly format a RPC

message, and correctly parse the response, the client must be able to retrieve a

standardized description of the web service. The Web Service Description Language [37]

is the web service solution to this problem. WSDL files describe a web service in two

ways, the abstract implementation details and the concrete end points. The abstract

20

component of a WSDL file describes method signatures and type definitions; essentially

how messages will be serialized. The concrete component of a WSDL file contains

binding information that instructs clients on which communication protocol is supported,

how to accomplish individual server interactions and an endpoint, such as a port number.

1.4.3 UDDI

Universal Description, Discovery and Integration (UDDI) provides a standardized

mechanism for web services to be registered and queried from a repository. UDDI

repository entries contain descriptive information about not only each web service and

where it’s located, but information about the author as well, such as business name.

Querying and updating a repository is accomplished via SOAP messages, meaning the

repository itself functions as a web service.

UDDI repositories add a powerful level of functionality to the web service framework.

Because they support querying, a client can easily find a web service that offers the

functionality or provides the data they need. Additionally, multiple vendors can

implement similar web services, allowing clients to choose from a range of market

options. Finally, the repository model supports service choreography protocols, such as

Web Service Choreography Description Language (WS-CDL) [22], by providing a

standard mechanism for resource discovery and advertisement.

1.4.4 Web Service Limitations

While there exists multiple web service frameworks [20] that abstract the complexities of

communicating and implementing web services, these frameworks still impose

implementers possess a non-trivial technological skill set. First and foremost, authoring a

web service requires rudimentary programing skills, including code authoring, library

linking, and source code compilation. Hosting a web service requires instantiating a web

server, and while most modern operating systems include a basic web server, hosting a

web service on a personal computer does not provide a highly-available platform.

Consequently, working knowledge of deploying a web application to a dedicated server is

required. And this list precludes the skills necessary to deploy a web service that follows

industry best practices and meets non-functional requirements of high availability,

performance and scalability.

Web services pose an additional barrier for a successful implementation: interfaces. A

web service interface defines the methods and method signatures provided by a web

service, including the structure of the returned data in WSDL format [18]. Web service

interfaces are required to be defined at compile time and cannot be modified without a

21

web service being recompiled. Because of this, a web service author must collaborate

with potential implementers and stakeholders in order to ensure all necessary data is made

available in a format that can be readily consumed, before the web service can be authored

and deployed. This back and forth negotiation adds negative time pressures, slowing

down software development cycles, especially in rapidly changing environments [1].

Problems associated with interfaces do not end once a web service has been successfully

deployed and accepted by all stakeholders. The schema of data provided by a web service

is not inherently static and may evolve. This in turns requires web service interfaces be

updated to expose the new schemas. As web service clients are developed with the

assumption that web service schemas will not change [3], web service authors are

burdened with creating backwards-compatible versions of their services in order to ensure

old clients may continue to use them. Unfortunately, there is a lack of robust versioning

support in relevant standards and tools [2] resulting in web service authors having to

develop non-standardized ad-hoc solutions, thus increasing the man hour costs necessary

to implement new features.

1.5 Case Studies
This thesis explores the barriers to successfully implementing web services described in

the previous section; technical skill requirements cost of interface negotiation, and version

management, in the context of three theoretical case studies. The case studies are first

described in this section as well as the applicable web service limitations relevant to each

case. Each case study is re-examined in section 3 Analysis to gauge how the problems

preventing a successful web service implementation can be addressed.

1.5.1 Case Study: Small Research Team

The first case study is a small university research team performing biological experiments

where the results are stored in a local database provided by the university. The team has

two data sharing goals. First, they want to make their data available to be consumed by an

e-Science Grid so that it can used to drive large scale computations. Second, the team

wants to publish a paper as an executable publication [49] and need their data to be

publically available.

The research project is mature at this stage and there is little risk of the data schema

changing. However, the database provided by the university does not allow public access

and the team lacks the in-house technical skills required to build a data sharing solution

themselves. Additionally, their budget does not afford hiring outside developer resources.

In essence, the team does not have the technical capacity to share their data.

22

1.5.2 Case Study: Intra-Department Sharing

The second case study is inspired by my personal experience in industry. A company is

grouped into several departments. The internal solutions department has a small technical

staff and is responsible for managing web applications for supporting industry partners.

Through several years of operations they have amassed a large database of information on

the company’s partners and this data may have value to other departments within the

company, specifically the customer solutions department, which is responsible for

managing public facing web applications for customers. The two departments operate on

differing technology stacks, one using Microsoft’s .NET platform, the other using LAMP.

Providing the customer solutions department with direct access to the internal solutions

database will overburden the database administrator and is risky because of

interoperability concerns. A conclusion is reached to implement a SOA solution utilizing

web services.

While the internal solutions department does have a technical staff they do not have the

time or budget to implement a solution from scratch. Additionally, the staff does not have

experience implementing a highly available SOA application capable of powering a

public facing web application, thus posing implementation risk. Further complicating the

task, several other departments have also expressed interest in accessing the same data,

should the project prove successful, but would have differing interface requirements. This

poses potential versioning problems as the internal solutions department could be faced

with supporting multiple stakeholder requirements. In essence the internal solutions team

does not have the resources to develop an enterprise grade data sharing application that

supports versioning.

1.5.3 Case Study: Large Multi-Disciplinary Research Team

The third case study is a large multi-disciplinary research team working on a multi-phase

project. The team stores research results in a database and routinely makes their data

available to the public via web services. As the project has progressed it has been

necessary to change and update their database schema to store data collected in new

phases. For each schema change they have to author an updated version of applicable

web services and as a result have a large inventory of versioned web services. The

number of versions has become unwieldy to manage and the team is having to spend

increasing resources to support it. Additionally, the team is unsure which versions of their

web services are actively being used and which can be safely decommisioned. In essence,

the team has a versioning problem resultant from supporting multiple evolutions of their

web services.

23

1.6 Current Solutions
The Internet age has spawned a variety of data sharing solution. This section explores a

sample of these technologies and evaluates them against the data sharing goals from

section 1.3 Data Sharing Goals.

E-mail is perhaps the most widely adopted data sharing solution offered in the Internet

age. Users commonly share photos with one another or collaborate on document

authoring by attaching files to an email message and sending it directly to the recipient.

Companies have even built workflows using e-mail to share data between parties as can

be seen in Figure 7 - ENFOS Email Based Workflow. ENFOS
9
 is an environment

liability and risk management company that works with contracted field scientists to take

local environment samples and then aggregates that data to provide their clients with

information as to whether or not they are in compliance with industrial pollution

legislation. Their reporting workflow requires field contractors to manually email raw

data packages to a centralized report generation service, which in turn emails reports to

clients [23].

Figure 7 - ENFOS Email Based Workflow10

While e-mail is decisively simple to use for data owners, it presents a significant barrier to

data consumer; it lacks a query mechanism. Data consumers must send an e-mail to the

data owner requesting data and as a human must reply, response times can easily take

days at best. In the worst case, requests for data are easily ignored or denied [24], proving

email to be ineffective data sharing solution.

9
 www.enfos.com

10
 Original image http://www.enfos.com/www/productsSolutionsLab.php

http://www.enfos.com/www/productsSolutionsLab.php

24

Another current data sharing solution, GridFTP, is a data transfer protocol designed for

transferring files to and from the grid as well as between different grid implementations.

GridFTP is based on the traditional FTP protocol and is therefore geared towards only

working with files; it can’t be used to transfer data from databases. Consequently,

GridFTP does not support sharing data schema, one of the data sharing goals identified in

section 1.3 Data Sharing Goals.

Several of the largest collaborative research projects decide against using existing

technology directly and instead create their own custom data sharing solution. The Large

Hadron Collider project is one such example and the team has created a project specific

solution called the Worldwide LHC Computing Grid (WLCG). The WLCG is a highly

customized grid platform combining resources from hundreds of world wide data centers

to store and process the 15 Petabytes of data generated annually; making the data

available to more than 8,000 physicists around the world [26]. While the volumes of data

generated, as well as, the budget available for project such as the LHC, allow them to

develop their own unique data sharing solution, this option isn’t available to the vast

majority of research projects.

1.6.1 Web Service Based Solutions

Web services offer an ideal framework for creating a data sharing solution and research

has been done to both expand its usefulness as well as reduce the technological

complexities required for implementation. One of the more mature projects is OGSA-

DAI, which describes itself as a distributed data access and management solution.

OGSA-DAI supports a wide range of data sources including databases, files and web

services and can be accessed directly on the web or from grid or cloud infrastructures.

While OGSA-DAI supports the data sharing goals, supporting data consumers as well as

sharing schema data, standing up a working OGSA-DAI instance is non-trivial task. [25]

describes the manual installation process for OGSA-DAI requiring the setup and

configuration of a Tomcat web server instance, a MySql database instance, and several

classpath and bash configurations. In the end, this makes OGSA-DAI a very challenging

tool for a non-technical team of scientists, or a technical team short on resources to

implement.

Escalante et al have researched and developed a tool, SW4BD, to automatically generate

web services for database management systems (DBMS) [27]. Their SW4BD tool excels

in allowing users to stand up web services that query databases without needing to write

the web services themselves or even have a basic understanding of the web service

protocol. This strategy meets all of the data sharing goals allowing data owners to easily

25

share their data, enabling data consumers an easy mechanism for consumption and

supports the sharing of data schemas. However, the problem with this approach is it is

primarily intended for facilitating querying across heterogeneous DBMS platforms. Users

are required to enter the SQL commands a generated web service is to execute, creating

technical requirements upon users as well as opening up serious security concerns. A

malicious user could, for example, use techniques similar to SQL injection attacks to

delete data. Consequently, this makes the SW4BD platform less than ideal for use as data

sharing platform in a public or non-trusted environment.

1.7 Motivation and Goal
There is a clear demand for a robust data sharing solution that lowers the barrier to entry

for non-technical users as well as that supports integrating with modern e-Science

infrastructures. Web services have been shown as an ideal framework, but proper

implementation places unreasonable demands on data owners. The goal of this thesis is to

develop an application that, similar to SW4BD [27], generates web service wrappers to

underlying data sources without requiring data owners or data consumers to write either

web service or data access code. In essence, the goal is to transform Figure 6 - The

Modern Data Sharing Problem into Figure 8 - AWSIMS - The Data Sharing Solution.

26

Regular label-callout text

AWSIMS

Data

Consumers

Internet Connection

AWSIMS
 Web Server

Database Server

File Server

Application Server

Scientifc Data

Automatically

Generated

Web Services

AWSIMS

Figure 8 - AWSIMS - The Data Sharing Solution

27

2 Automated Web Service Inventory Management Software

2.1 Design Goals
The overarching goal of Automated Web Service Inventory Management Software

(AWSIMS) is to expand the capabilities of web services into an enterprise class [30]

solution that meets the data sharing goals outlined in section 1.3 Data Sharing Goals.

AWSIMS should enable data owners to specify a data source they would like to share and

then enable data consumers to generate web services based on the available data sources.

In order to accomplish these top level goals, the following design goals were developed

for AWSIMS:

 Support querying both data and schema from a variety of data sources including

databases and spreadsheets.

 Enable data consumers to design web services, web service methods, and return

types.

 Generate standards compliant web services.

 Support web service versioning.

 Support Discoverability.

 Support Extensibility.

 Provide Scalability and Performance required for highly available web service

servers.

Each goal is discussed further in the sections below.

2.1.1 Querying Data and Schema

In order to automate the creation and execution or web services, AWSIMS must be able to

query both the data and schema of a variety of data sources. When a user specifies a data

source they would like to share they should not need to specify the schema, AWSIMS

should parse the schema directly from the data source. This is necessary to ease the

burden on data owners.

2.1.2 Enable Users to Design Web Services, Methods, and Return Types

This design goal ensures that data consumers can easily consume data in a format

conducive to their needs without burdening the data owner. Data consumers should be

able to specify the name and namespace of any web service and the name of any web

service method that they create. When they create a web service method they should be

able to map it to an existing data source and then customize the return type by specifying

28

the name and the fields it will return. Additionally, they should be able to indicate they

would like advanced features to modify the returned results, such as sorting, filtering, or

pagination.

2.1.3 Generate Standards Compliant Web Services

Web services generated by AWSIMS should be fully standards compliant, including

WSDL definitions, calling conventions, and serialization. This is a requirement for

AWSIMS to operate as an interoperable data sharing solution enabling data to be

consumed by computation engines. Additionally, AWSIMS should have the ability to

support other standards, such as Java Script Object Notation (JSON)
11

 to further promote

data sharing and support as many data consumers as possible.

2.1.4 Web Service Versioning

AWSIMS should allow data consumers to modify existing web services and create new

versions of a web service. Data consumers should be able to decide which version of a

web service they wish to invoke without requiring them to implement modifications to

web service convention or standards. Data owners should be informed of the number of

web services and web service methods relying on a particular data source so they can

know if modifying the data source could break a web service. This goal reduces the

burden of managing a web service inventory for data owners as well as empowering data

consumers to change the format of the data they consume to match their needs as the

evolve.

2.1.5 Discoverability

AWSIMS should generate web services that advertise their functionality by generating

valid and standards compliant WSDL files, such that a consuming application can query

the full capabilities of each web service. Additionally, AWSIMS should offer a

standardized catalog web service that lists the following information for each web service

that has been generated:

1. Web service name and namespace

2. Web service WSDL Url

3. Name of every method

4. Invocation Url for every method

This information allows all generated web services to be fully discoverable and supports

computer applications querying AWSIMS for the services and data provided.

11

 http://www.json.org/

29

2.1.6 Extensibility

AWSIMS should support modular additions that provide enhanced functionality and

maintenance releases. Adding additional features should not require users to perform any

maintenance on any data sources, web services, or web service methods that have been

defined. This goal ensures AWSIMS has architectural designs in place to ensure it can

expand iteratively to offer enhanced data sharing features; future-proofing the application.

2.1.7 Scalability and Performance

AWSIMS should be able to effectively scale vertically and horizontally in order to meet

demand, mitigate hardware failure risk and maintain high performance. While the

performance of generated web services will be dependent on the performance of the

underlying data source, web services should implement caching to improve performance

under high loads. These non-functional requirements ensure AWSIMS can function

optimally in real-world scenarios and ensure AWSIMS can appropriately meet the needs

of data consumers.

2.2 .NET Foundation
Several frameworks were evaluated during the design of AWSIMS with the goal of

selecting a framework that provided as much core web service functionality as possible.

The criteria included support for run-time web service generation and compilation,

automatic WSDL generation and xml type serialization. After the evaluation period

Microsoft .NET was selected as the framework of choice to serve as the architectural

foundation for AWSIMS as it met the goals listed above and was the framework the

author was most familiar with.

The Microsoft .NET technology stack utilizes the Microsoft Internet Information Server

(IIS) web server and ASP.NET web and web service libraries. The http client request

pipeline, as diagramed in Figure 9 - IIS - ASP.NET Request Pipeline, begins with IIS

receiving a client request such as:

http://Example/HelloWorld.asmx/HelloWorld

IIS performs some initial inspection including authentication and authorization checks.

The mime-type is parsed from the request URL and indicates the request should be

handled by ASP.NET. IIS spins up an instance of the ASP.NET common language

runtime (CLR) and passed control to ASP.NET for further processing [31].

30

HTTP Request

HTTP Response

Authentication

Send Response

Determine Handler

Authentication

Web Service Handler

ASP.NET
Process Boundary

Figure 9 - IIS - ASP.NET Request Pipeline

Once control passes to the CLR, ASP.NET launches its own pipeline. The request is

mapped to a web application based on the URL and the pipeline loads all applicable

configuration files. The request is then authenticated and authorized by ASP.NET
12

 and

ASP.NET instantiates the appropriate IHttpHandler to service a response [32]. In a

default configuration, ASP.NET instantiates a WebServiceHandlerFactory [33],

which examines the request URL and Http Verb, maps the request to a web service

definition file, compiles the web service definition, and instantiates a handler that executes

the compiled web service and writes a response to the client.

12

 ASP.NET authentication and authorization is done in addition to authentication and

authorization performed by IIS.

31

The default ASP.NET pipeline expects a web service request to map to a physical web

service definition file by requiring the URL to be of the format:

<http | https>://<path>/<to>/<file>/<class filename>.asmx/<method>

 The example in Error! Reference source not found. would be mapped to:

%Web Application Root%/Example/HelloWorld.asmx

Consequentially, the default ASP.NET web service pipeline has an implicit requirement

that every web service be backed by a physical class definition file. This creates the

restrictions that every client be served the same web service, and as each web service

definition explicitly states the return type for every web service method, each client is

returned the same return type. Herein, lays the root of the versioning problem intrinsic to

the ASP.NET web service pipeline. Because the run time does not allow the intelligent

routing of requests to different web service definitions, a web service author is required to

change the physical path and filename of a web service in order to implement a new

version.

The physical file mapping requirement additionally prevents the ASP.NET web service

pipeline from supporting authorization or alternative filtering of a method’s return type.

So if a web service method has a return type comprised of three properties, X, Y and Z,

there is no mechanism to indicate that property Y should only be served to clients that

have passed an authorization check and property Z should only be returned at the client’s

request, as indicated by the presence of a Query String parameter.

2.2.1 Customizing the ASP.NET Pipeline

AWSIMS overcomes these difficulties, yet retains the proven capabilities of the ASP.NET

pipeline, by hijacking the WebServiceHandlerFactory. The AWSIMS Web Service

Server (WSS) overrides the default IHttpHandler (i.e.

WebServiceHandlerFactory) and provides a custom mapping for determining and

compiling the web service definition that should be instantiated in response to a client

request. Once a web service definition is selected and compiled, the WSS passes the

compiled type back to the WebServiceHandlerFactory, resuming the default pipeline

and serializing the result set into a proper SOAP message. The WSS pipeline is displayed

in Figure 10 - AWSIMS Web Service Server Pipeline.

32

HTTP Request

HTTP Response

Authentication

Send Response

Determine Handler

Authentication

AWSIMS – Dynamic
Web Service Handler

Factory

ASP.NET
Process Boundary

AWSIMS – Web
Service Manager

AWSIMS – Web
Service Compiler

Web Service Handler

Pass the compiled
Web Service

Figure 10 - AWSIMS Web Service Server Pipeline

2.3 Architecture
AWSIMS’s architecture is conceptually divided amongst several components based on

intended functionality. Component interaction is displayed in Figure 11 - AWSIMS

Architecture Diagram and each component is described in the list below.

33

AWSIMS

Method
Executor

Web Service
Server

WWW WS
Definition
Interface

Web Service
Generator

Data Source
Parser

External Data Sources

WWW Data
Source Interface

Data Source
Schema Database

Web Service
Definition Database

Client Application

Data Consumer

Data Owner

Legend

Web Application

Module

Data Base
User Client Application

Figure 11 - AWSIMS Architecture Diagram

 Web Service Server (WSS) - Responsible for handling and processing all web

service requests including WSDL generation, return type serialization and SOAP

message formatting.

 Web Service Definition Interface - Web front end that provides an interface for

data consumers to define and modify web service and web service method

definitions.

 Data Source Interface - Web front end that provides an interface for data

owners to define data sources and generate schema.

 Method Executor - Invoked by the WSS to instantiate and populate a return

type. Responsible for retrieving and compiling and executing a web service

method definition.

34

 Web Service Generator - Invoked by the Web Service Definition Interface to

generate a properly formed web service definition and web service method

definition based on user input.

 Data Source Parser - Invoked by the Web Service Definition Interface to query

a user specified data source and generate properly formed data source schema

definitions.

 Data Source Schema Database - Persistent storage repository for data source

schema definitions.

 Web Service Definition Database - Persistent storage repository for web service

definitions and web service method definitions.

The proceeding sections detail key architectural design issues that enable the components

listed above to successfully interact to enable users to define data sources and web service

definitions and allow AWSIMS to compile and execute web service methods.

2.3.1 Data Sources

In order for AWSIMS to provide access to data via a web service method, the method

must be mapped to a data source definition created within the application. A data source

definition’s initial responsibility is to detail how to connect and extract a data source’s

schema. The schema is a collection of one or more schema columns and is conceptually

analogous with a database schema. Each schema column must, at minimum, contain a

name and a data type, as this information will be used by the web service method to define

the fields in the return type.

The AWSIMS data source model is designed to maximize the number of supported data

sources by utilizing a modular approach. The goal is to create a standardized interface so

that new data sources can easily be added and will integrate seamlessly into the existing

application. This allows schema parsing to be unified with the end result that parsing

system can be reused by multiple data sources. Additionally, it allows the web service

definition process to work with any data source through this standard interface.

Data sources are created by authoring classes that inherit from the base classes

SchemaDataSource, SchemaDefinition, DataSourceParser, and optionally

SchemaColumn. Class diagrams for these classes are shown in Figure 12 - Data Source

Key Classes. This strategy provides a standardized interface for web service definitions to

map to any data source regardless of its underlying implementation.

35

Figure 12 - Data Source Key Classes

The module approach to data source definitions takes on a special case for file system

based data sources. AWSIMS provides a specialized infrastructure for file system data

sources such that the data source is only responsible for implementing IO (input/output)

functions and is not responsible for directly generating schema. Instead a collection of

File Parsers examine each file in the data source and generate the schema. This

mechanism allows AWSIMS to support a file of a given type independent of the file

system and provides robust support for web based file systems such as DropBox
13

 and the

VPH-Share project [40].

 A full list of data sources provided by AWSIMS is listed in Table 1 - List of Existing and

Planned Data Sources. The table additionally lists data sources that have yet to be

implemented but are planned for a future release.

Table 1 - List of Existing and Planned Data Sources

Data Source Description

SQL Database Connects to a Microsoft SQL Database and provides

read only access to Tables and Views.

13

 www.dropbox.com

36

Local File Serves a single file that is located on a logical drive the

server can access. This includes physical and network

drives. File support is limited by available File

Parsers.

Local Directory Serves all files (non-recursively) that are located in a

defined directory on a logical drive the server can

access. This includes physical and network drives.

Data Source supports optionally specifying a regular

expression white list filter against file names. File

support is limited by available File Parsers.

DropBox Directory Servers all files (non-recursively) that are located in a

DropBox cloud storage folder. Data Source supports

optionally specifying a regular expression white list

filter against file names. File support is limited by

available File Parsers.

WebDAV

Directory

Serves all files (non-recursively) that are located in a

defined WebDAV folder. Data Source supports

optionally specifying a regular expression white list

filter against file names. File support is limited by

available File Parsers. This Data Source was created to

provide support for the VPH-Share project
14

 [40].

ODBC Database

(Planned)

Connects to any database engine that provides a .NET

compatible Open Database Connectivity (ODBC)

driver. Data Source provides read only access to

Tables and Views.

.NET Assembly

(Planned)

Imports an existing external .NET Assembly and

provides wrappers for methods meeting the following

requirements:

 Method is public

 Method return type is serializable

 Method parameters are serializable

 Method has a public parameterless constructor

JAVA Assembly

(Planned)

Imports an existing external Java Assembly and

provides wrappers for methods meeting the following

requirements:

 Method is public

 Method return type is serializable

 Method parameters are serializable

 Method has a public parameterless constructor

14

 Additional information on the integration of VPH-Share and AWSIMS is presented in

section 3.2 Real World Integration: VPH-Share

37

COM Object

(Planned)

Imports an existing external COM Object
15

 and

provides wrappers for methods meeting the following

requirements:

 Method is public

 Method return type is serializable

 Method parameters are serializable

 Method has a public parameterless constructor

2.3.2 Client Driven Interface Generation

The key to absolving data owners from the burden of negotiating web service method

interfaces with data consumers is empowering data consumers to independently define the

interfaces they need. The AWSIMS client tool is responsible for not only providing this

functionality but ensuring that the process is as simplistic as possible for the data

consumer. Using it, a potential data consumer can define their own web service(s),

specifying a name and namespace, and can then populate each web service with methods.

The data consumer is required to map to an existing data source and schema, but can

customize the return type, specifying the name and which fields should be returned.

Figure 13 - Screenshot of AWSIMS Client Showing the Web Service Method Creation

Screen shows the simplicity and ease of defining a web service method.

15

 http://www.microsoft.com/com/default.mspx

http://www.microsoft.com/com/default.mspx

38

Figure 13 - Screenshot of AWSIMS Client Showing the Web Service Method Creation Screen

Beyond simply defining web service methods, the AWSIMS client tool offers a data

consumer the ability to customize the method’s query behavior using a feature called

Query Mutators. By default, when a method is executed AWSIMS will return all data

present in the mapped data source schema in the order it is stored. This corresponds to a

SELECT * from a database data source or a sequential file read from a file system data

source. Query Mutators override this default behavior by allowing data consumers to

customize the returned result set.

When presenting a data set to a user it is common to provide sorting and filtering controls.

Additionally, in order to minimize load times and not overwhelm users, data is paginated

so that it can be sent in manageable subsets. Supporting this functionality is

computationally expensive and is therefore expected to be provided server side. If the

data source is a web service, this means the web service must support this functionality.

Within AWSIMS, adding this functionality to a web service method is the job of Query

Mutators.

39

When defining a web service method, the data consumer can add multiple Query Mutators

to perform data manipulation tasks such as filtering, sorting and pagination. Query

Mutators are executed in order to provide the correct behavior. For example, if a method

is to both sort and then limit the number of results to the first 100, the sorting Query

Mutator is applied first followed by the limitor Query Mutator.

As many of the Query Mutators are parameter driven, sorting for example, needs to know

which column to sort on and in which direction, AWSIMS provides Query Mutator

Parameters. Query Mutator Parameters provide a mechanism for data consumers to

define the data needed or how the web service client will provide this data. For example,

a data consumer may define a web service method where the sorting column is defined in

a constant but the sort direction is provided by a custom query string parameter.

Following the design goal of extensibility, the Query Mutator and Query Mutator

Parameters architecture follows the Strategy and Strategy Factory patterns [41]. These

Gang of Four pattern create a standardized interface to allow zero or more Query Mutators

to modify the result set and greatly simplifies their use in the method execution pipeline
16

.

Each Query Mutator and Query Mutator Parameter inherits from a respective base class,

shown in Figure 14 - Query Mutator and Query Mutator Parameter Base Classes, unifying

behavior, ensuring interoperability and providing a simplified hook for future Query

Mutators and Qurery Mutator Parameters to plugin to the existing application

infrastructure.

16

 See section 2.3.4 Web Service Method Execution for more information on the method

execution pipeline.

40

Figure 14 - Query Mutator and Query Mutator Parameter Base Classes

The net result of the AWSIMS client tool is data consumers are given a powerful set of

features that enable them to design and customize web services to meet their individual

specifications. They can easily modify their web service methods, modifying return type

fields and, via Query Mutators, the result set itself. Modifications are realized

immediately, allowing data consumers greater flexibility in implanting their software

lifecycles. And all of this can be accomplished with zero input and effort on the part of

data owners.

2.3.3 Web Service Compilation

Once a data owner has defined a data source and a data consumer has used the AWSIMS

client interface to create a corresponding web service method definition, the web service

must be compiled before any requests can be served by the Web Service Server. When a

web service or web service method is defined, AWSIMS automatically generates the

source code needed for execution. The source code for the web service is comprised of

three chunks generated at two different times. The web service class is generated when a

data consumer defines a new web service and is comprised of a simple namespace and

class declaration with the class decorated with the necessary attributes for the ASP.NET

Web Service framework to recognize the web service correctly. The source code for the

web service method and its return type are generated when a data consumer creates and

edits a web service method definition. Whenever source code is generated, it is

additionally analyzed and any external dependencies are noted so that they can be passed

to the compiler during compilation.

41

Compilation is performed Just-In-Time
17

 by the AWSIMS compilation pipeline. When

the AWSIMS WSS intercepts a request from the ASP.NET pipeline, it invokes the

AWSIMS compilation pipeline via a call to the IWebServiceManager interface. The

pipeline examines the request Url and client identity maps the request to a web service

definition. Once the web service definition is mapped, the pipeline checks the local

assembly store to see if a previously compiled assembly is available and if so the

assembly is loaded and the requested web service type is returned. Otherwise, the web

service definition is compiled, saved in the local assembly store and the requested type is

then returned. This process is shown in Figure 15 - AWSIMS Web Service Definition

Compilation Pipeline.

Intercepted HTTP Web
Service Request

Pass Web Service Type to
ASP.NET Pipeline

Dynamic Web Service Handler Factory

Web Service Manager

If web service
definition needs to be

compiled

Map request to web service
defintion

Web Service Assembly Manager

Web Service Compiler

Load Compiled Web Service Type from
Local Assembly File

Save compiled web
service assembly to

local disk

Figure 15 - AWSIMS Web Service Definition Compilation Pipeline

17

 http://en.wikipedia.org/wiki/Just_In_Time_compilation

http://en.wikipedia.org/wiki/Just_In_Time_compilation

42

The AWSIMS compilation pipeline relies on the wrapper classes for the C# compiler
18

provided by the .NET framework. When a web service definition is flagged for

compilation, the source code for the web service, each method, and each method’s return

type are aggregated as to produce a single assembly. Dependencies are also aggregated

into a unique list, as the compiler will fail if an external assembly is referenced more than

once. This process allows a user generated web service definition to be properly compiled

and fully served by the ASP.NET Web Service pipeline facilitating both WSDL

generation and method execution.

2.3.4 Web Service Method Execution

When a web service method definition is created or updated, AWSIMS generates the

source code that will be executed by the ASP.NET Web Service pipeline. The source code

is responsible for returning a single object or a collection of objects that can be serialized

by the ASP.NET Web Service pipeline and returned to the web service caller. The source

code, as shown in Figure 16 - Sample Web Service Method Source Code, has several key

features necessary to properly integrate with the ASP.NET Web Service pipeline as well

as to meet AWSIMS designs goals.

Figure 16 - Sample Web Service Method Source Code

First and foremost, the web service method must be decorated with the WebMethod

attribute and must be marked public. Failure to do either of these will result in the

ASP.NET Web Service pipeline throwing a run-time exception. The return type of all

AWSIMS web service methods is a generic type of List19, which will be serialized as

an array. This prevents AWSIMS from needing to inspect a data source to determine if it

will return a single item or a collection and has little impact on callers.

18

 http://msdn.microsoft.com/en-us/library/microsoft.csharp.csharpcodeprovider.aspx
19

 http://msdn.microsoft.com/en-us/library/6sh2ey19.aspx

http://msdn.microsoft.com/en-us/library/microsoft.csharp.csharpcodeprovider.aspx
http://msdn.microsoft.com/en-us/library/6sh2ey19.aspx

43

The body of the web service method is designed so that no data processing is performed

within the generated source code. Instead, the method offloads all processing to a

IMethodExecutor class specialized to handling a certain type of data source. The

IMethodExecutor interface exposes a single generic method, Execute, which expects

the return type and ID of the web service method. With this information the method

executor can query the schema powering the web service method and populate a

collection of strongly typed return types. Additionally, the IMethodExecutor interface

provides all child classes a standardized engine for incorporating the Query Mutators

discussed in section 2.3.2 Client Driven Interface Generation.

AWSIMS makes heavy use of the Dependency Injection pattern
20

, specifically the Ninject

framework
21

. The pattern requires objects list their dependencies, in the case of Ninject,

via a constructor. Object instantiation is relegated to a kernel, which is configured with a

type mapping that enables the kernel to inject dependencies into an instantiated object, via

its constructor. AWSIMS web service methods make use of Dependency Injection when

instantiating a IMethodExecutor. A kernel instance is provided by the static class

AWSIMS.WSS.NinjectKernelFactory, which is responsible for providing Ninject with

sufficient type mappings to enable it to instantiate all known method executors.

The Dependency Injection pattern offers AWSIMS WSS significant extensibility.

Because the web service method code isn’t responsible for instantiating its method

executor, additional dependencies could be added to a method executor and as long as the

NinjectKenrelFactory is updated, the changes could be deployed to the hosting

server and existing web service method source code would still be compatible and would

not need to be regenerated. Additionally, these changes could be incrementally staged

across a server farm and all servers in the farm could still serve the same web service

methods. Ultimately, this pattern ensures the longevity of AWSIMS web service

methods, ensuring that once they are generated, they will not need to be regenerated, even

in the face of platform upgrades.

2.3.5 Versioning

Several web service versioning techniques have been proposed by the computer science

community. Some focus on modifying the SOAP header [2] while others offer version

specific WSDL [37] or namespaces [9] [38] [39]. However, these techniques place the

onus of authoring and maintaining multiple web service versions on the data owner.

20

 http://en.wikipedia.org/wiki/Dependency_injection
21

 http://www.ninject.org/

http://en.wikipedia.org/wiki/Dependency_injection
http://www.ninject.org/

44

Instead, AWSIMS proposes client specific versioning. As data consumers can define and

maintain their own web service methods, they effectively manage their own specific

versions.

AWSIMS additionally proposes providing authorization based versioning as well. At

present, when a data owner defines a data source in AWSIMS and generates the data

source’s schema, they are given the option to hide a schema column to prevent it from

being mapped to a web service method. This mechanism can be extended so that a data

owner could restrict access to schema column to a particular set of clients or clients that

are a member of a security group. This security restriction would prevent an

underprivileged data consumer from creating a web service method that referenced the

restricted set of columns. However, a privileged data consumer could create such a web

service method and mark the web service public, enabling any client to call it. When

handling such a call, the AWSIMS Web Service Server would be responsible for

automatically versioning the method return type so that the client would receive only the

field they have permissions to access.

The capabilities listed above provide a rich versioning tool set, but are inadequate at

addressing breaking changes made to an underlying data source. If a data owner removes

a column from a database, for example, any web service method that depends on that

column will no longer be able to fully populate the return type, and while method

execution will not explicitly fail, the return type will contain a null or empty value for that

schema column. While AWSIMS does not have the power for preventing data owners

from making such changes, it does offer data owners the ability to see how many web

service methods depend on a particular schema column. Additionally, this functionality is

planned to be extended to allow data owners to see the number of clients consuming web

service methods dependent on a schema, the frequency clients execute the methods, and

offer the data owners the ability to inform the clients that the column is to be depreciated.

The goal is to provide data owners with the information they need to correctly gauge the

impact depreciating or changing a data source will have on the clients using the system.

2.3.6 Discoverability

AWSIMS gets individual web service discoverability largely for free. Because it hijacks

the existing ASP.NET web service pipeline, WSDL files for compiled web service

definitions are generated automatically. Providing a listing of available web services, on

the other hand, is not provided by the ASP.NET web service pipeline and had to be

manually implemented. AWSIMS offers the Catalog web service which provides a listing

of all web services, WSDL Urls, web service methods and web service methods

45

invocation Urls. Example XML output returned by invoking the Catalog web service’s

GetCatalog method, including the structure and format of the serialized data, is shown

in Figure 17 - Example Output from the Catalog Web Service.

Figure 17 - Example Output from the Catalog Web Service

46

2.3 Platform Benefits
Relegating web service management to a separate dedicated application intrinsically

offers several additional benefits over an ad-hoc solution. The AWSIMS application is

developed to offer several advanced performance features that could easily be neglected in

an ad-hoc solution due to a combination of lack of technical expertise and time or budget

constraints. AWSIMS can also implement multiple data sharing protocols to ensure

maximum interoperability support. Finally, AWSIMS can receive iterative application

updates to add new features and functionalities resulting in a future-proof data sharing

solution. Each of these benefits is further discussed in the following sections.

2.3.1 Support for Multiple Protocols

While web services have emerged as the de facto standard for facilitating data sharing

across networks and in particular the internet, the technology is not without limitations.

Because of its reliance on XML and use of specialized SOAP headers and envelopes, web

services are verbose and have large payloads. Additionally, because the results are

returned in XML, web service method return types must be serializable, which places

limits on the design of objects, preventing, for example, objects containing circular

references.

The limits of web services have given rise to alternative data sharing protocols. JavaScript

Object Notation (JSON)
22

 is designed for web applications and mobile clients that need to

minimize transport payloads and uses a custom serialization process that use name/value

pairs and doesn’t include object metadata. Both Java and .NET have custom protocols

that use binary serialization and transport enabling any object graph to be transported but

are not interoperable. These protocols all essentially serialize an object and distribute it

over a known channel.

Because AWSIMS already has the infrastructure to query data sources and populate return

objects, adding support for additional protocols only involves using a different

serialization engine. While AWSIMS currently only supports web services, support for

JSON is planned for a later release. When implemented, data consumers will have the

ability to specify which protocols they would like their web service to implement as well

as how they would like to alter the Url for each protocol by indicating if the protocol

should be specified in the web service extension or path. For example a JSON Url could

have the format http://server/webService.json/method or

http://server/json/webService.asmx/method/.

22

 http://www.json.org/

http://server/webService.json/method
http://www.json.org/

47

2.3.2 Performance

AWSIMS functions analogously to an abstraction layer and consequently incurs a slight

performance penalty versus a hard coded web service. For every request AWSIMS must

load a web service definition from the database and method execution requires further

database calls to load the web service method definition and return type definition.

Additionally, the return type is instantiated and populated using reflection
23

 which incurs a

performance penalty. This performance degradation can be largely mitigated using

caching techniques to reduce or completely remove the number of round trips to the

database for frequently called web services.

Despite this initial overhead AWSIMS, as an application, offers data owners several

advanced caching features designed to improve performance over an ad-hoc web service

solution. Because the bulk of a web service method’s execution time is expected to occur

during the querying of a data source, caching the results of data source queries can

significantly decrease execution time. Using the .NET framework’s built-in cache

libraries
24

, AWSIMS builds upon an established and proven caching infrastructure.

While full implementation has been relegated to a later development phase, AWSIMS

plans to offer a two staged data source caching solution. All data source queries will be

initially cached to ensure maximum utilization and the .NET framework automatically

evicts least access items when memory limitations are reached. Queries will be initially

cached for a default time interval in the range of ten minutes. Once a query has expired a

data source specific dependency will be checked to determine if the query is stale and

needs to be re-executed. .NET provides an out-of-box dependency manager for SQL

database, and file system data sources can use the file’s last modified time stamp. Data

owners have the ability to modify the default time interval each query is cached.

Increasing the cache time can reduce unnecessary ‘staleness’ checks for data sources that

rarely change. Conversely, reducing the cache time to zero effectively disables the first

caching tier causing a ‘staleness’ check to be performed during every query and ensuring

that stale data is never served to a client.

Because a data source query is cached, rather than the full XML web service method

response, multiple web service methods can share the same cached query. This strategy

reduces the cost of storing redundant data but requires additional processing to populate

the return object, run the Query Mutator pipeline and serialize the return object. In a

23

 http://msdn.microsoft.com/en-us/library/f7ykdhsy(v=vs.100).aspx
24

 http://msdn.microsoft.com/en-us/library/ms178597(v=vs.100).aspx

http://msdn.microsoft.com/en-us/library/f7ykdhsy(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms178597(v=vs.100).aspx

48

deployment where performance is critical the cost of caching a full response may be worth

the increased memory requirements and would engender a performance boost, however,

experimentation is necessary to determine the realized benefit of caching at this level.

2.3.3 Upgradability

Arguably the most powerful benefit the AWSIMS application offers overs a traditional

web service application is that the AWSIMS architecture is designed to support non-

obtrusive application upgrades. As discussed in section 2.3.4 Web Service Method

Execution, the web service method execution pipeline minimizes source code and web

service method definition dependencies. This allows tremendous flexibility for upgrades

to the AWSIMS application to add additional features, bug fixes, and performance

enhancements without requiring users to perform any upgrade steps on their actual web

service definitions.

2.4 Deployment
AWSIMS must be deployed to a server running Microsoft’s Internet Information Server

(IIS) and Microsoft SQL Server to function correctly. While the entire AWSIMS

application could be deployed to a single server, AWSIMS supports horizontal scaling to

provide increased performance and redundancy. The Web Service Server (WSS) and both

the Web Service Definition Interface (WSDI) and Data Source Interface (DSI) are

stateless, allowing multiple IIS instances to be used in conjunction with a rudimentary

load balancer. Microsoft SQL Server has native support for server clustering enabling

multiple database servers to be added. Additionally, the AWSIMS WSS can be deployed

separately from the WSDI and DSI for targeted scaling, as it is expected the majority of

traffic for a default AWSIMS deployment will be web service invocation requests handled

by the WSS. A recommended deployment diagram is shown in Figure 18 - AWSIMS

Deployment Diagram.

49

AWSIMS Deployment Diagram

Load Balancer Load Balancer

WSS Cluster

Web Service
Server 1

Web Service
Server N

WS Definition Interface and Data
Source Interface Cluster

Web Server 1 Web Server N

Clustered or mirrored SQL Server –

Data Source Schema and Web

Service Definition Database

Figure 18 - AWSIMS Deployment Diagram

This deployment strategy enables a range of benefits. Each primary component can be

mirrored, providing hardware redundancy and protecting against hardware failure. This

additionally allows targeted horizontal scaling for performance. If a bottleneck is

discovered in one piece of the application, additional role specific hardware can be added

to increase available throughput and ensure response times remain low. Additionally, this

strategy supports server maintenance as individual machines can be taken offline, serviced

and brought back online without interrupting operations.

2.4.1 AWSIMS Cloud

As correctly deploying and configuring public facing web and database servers are non-

trivial tasks requiring both technical knowledge and hardware resources, mandating

AWSIMS be deployed on-site limits its potential user base and does not fully support the

goal of allowing data owners to easily share their data. To overcome this limitation,

50

AWSIMS has been fully deployed to the Microsoft Azure
25

 cloud platform, enabling data

owners to share their data immediately, without requiring them to configure a web server

or install the application. The AWSIMS Cloud is deployed as shown in Figure 18 -

AWSIMS Deployment Diagram, offering the same benefits of a properly deployed on-site

installation. The Microsoft Azure platform delivers the same scalability and redundancy

ensuring AWSIMS is highly-available and can maintain acceptable performance levels

during high usage.

The cloud version of AWSIMS, AWSIMS Cloud, functions much the same way as a local

deployment with a few minor drawbacks. Specifically, the cloud version has limited data

source support. As AWSIMS in the cloud cannot access a data owner’s local disk or

network file systems, these data sources are unavailable. However, as AWSIMS supports

reading from cloud storage, data owners can easily use the DropBox data source to

generate web services from files. Additionally, as it is uncommon for organizations to

allow public access to their databases, AWSIMS will not be able to consume local

database content. The Microsoft Azure platform does support cloud hosting applications

securely reading local database instances [10], however, this functionality has not yet been

developed for AWSIMS, but is planned for a later release.

25

 http://www.windowsazure.com

http://www.windowsazure.com/

51

3 Analysis
A fully functional AWSIMS prototype

26
 was built as part of this thesis. I performed a

demo of the prototype for a member of the Bio-informatics community and elicited

feedback regarding its potential usefulness to future projects. The feedback is presented

in section 3.1 Interview with the Bio-informatics Community. I additionally worked with

members of the VPH-Share [40] project to discuss how AWSIMS could meet their data

sharing requirements. Full details are provided in section 3.2 Real World Integration:

VPH-Share. The AWSIMS prototype was analyzed against the case studies presented in

section 1.5 Case Studies and the resulting discussion is given in section 3.3 Case Studies.

Finally, section 3.4 Further Discussion explores additional topics relevant to the success

of using AWSIMS as a data sharing solution in real world circumstances.

3.1 Interview with the Bio-informatics Community
I presented a demo of the AWSIMS prototype to Dr. Marco Roos

27
, a biosemantics and e-

science researcher at the Human Genetics department of Leiden University Medical

Centre
28

 (LUMC) and the Informatics Institute
29

 of the Faculty of Science at the

University of Amsterdam. Dr. Roos agreed that AWSIMS had the potential of benefiting

his research team, especially if the interface could be further simplified for non-technical

users and the application was able to self-discover database data sources instead of

requiring users to supply AWSIMS with a connection string. Additionally, AWSIMS

could provide significant value in dealing with legacy systems, such as the Nuclear

Protein Database (NPD) [42]. When the NPD project was first launched, it was developed

in house and was not required to expose data via web services. After the project went

live, the team was requested to add a web service interface [43] and the project was

completed over several months by a graduate student completing his master’s thesis.

AWSIMS could have potentially created a comparable web service offering without

requiring a large development effort.

3.2 Real World Integration: VPH-Share
The Virtual Physiological Human: Sharing for Healthcare – a Research Environment

(VPH-Share) is an EU consortium project tasked with building an application that

26

 The prototype is publically available at www.awsims.com. A usage guide is presented

in Appendix A – A Quick User Guide to AWSIMS in the Cloud
27

 http://www.biosemantics.org/index.php?page=dr
28

 http://www.lumc.nl/home/
29

 http://www.science.uva.nl/ii/home.cfm

http://www.awsims.com/

52

facilitates the sharing of clinical and research data and tools within the medical field [40].

The VPH-Share project plan [44] defines a two-fold strategy data sharing strategy. First,

existing data must be federated by a data management platform in order to aggregate data

into a single virtual file system. Second, the virtual file system must be exposed via data

services and the data services must support querying source data that is contained in

relational databases or flat files such as CSV files.

I interviewed a member of the VPH-Share team, PhD student Spiros Koulouzis
30

, who is

working on creating Large Object Cloud Data Storage Federation (LOBCDER) [48], the

federated data management platform for VPH-Share. LOBCDER unifies a collection of

storage frameworks and providers and has a WebDAV [45] interface for file system

operations. The LOBCDER application architecture is shown in Figure 19 - LOBCDER

Architecture.

30

 http://staff.science.uva.nl/~skoulouz/pmwiki/index.php

http://staff.science.uva.nl/~skoulouz/pmwiki/index.php

53

Figure 19 - LOBCDER Architecture31

Because WebDAV offers functionality similar to a traditional file system, AWSIMS could

theoretically act as a front end for the LOBCDER system, creating web service wrappers

for exposed files. Consequently, a WebDAV data source was authored for AWSIMS

enabling AWSIMS to successfully interface with an early prototype of LOBCDER. A

basic CSV file was added to a cloud data storage exposed by LOBCDER and then

AWSIMS was used to create a web service exposing it for querying, proving that

AWSIMS can meet the VPH-Share project goals of offering data services to query the

virtual file system. The end result of the integration between AWSIMS and the VPH-

Share and LOBCDER project highlights the demand for web service data sharing

solutions and the utility of AWSIMS.

31

 Original image source: [48]

54

3.3 Case Studies
The following sections analyze AWSIMS in the context of the case studies presented in

1.5 Case Studies, and explore how AWSIMS functions as a data sharing solution.

3.3.1 Case Study: Small Research Team

The small research team wants to make the scientific data currently in their database

easily consumable by an e-Science grid and the greater scientific community. They do

not have the in house technical knowledge or budget to hire an IT staff in order to build a

custom solution. Without AWSIMS they could run a few queries against their database

and save the results into a series of CSV data files. They could set up a FTP server and

use that to share the CSV data files with the scientific community. And by using

technology such as GridFTP they could push data to their e-Science infrastructure.

This non-AWSIMS solution has several drawbacks. As FTP doesn’t support database

queries, they have to run a query and save it to a file in order to be served by the FTP

server. As soon as the database is updated the FTP server contains stale data and will

need to be updated with a fresh set of CSV files; a time consuming process. Another

drawback is using GridFTP to push data to their e-Science infrastructure. Depending on

the infrastructure, the scientists may not have permanent storage and will need to either

push the files to the infrastructure every time, or invest the time into learning and writing

scripts to automate the file movements.

Using the AWSIMS prototype offers the team a data sharing solution with none of these

drawbacks. By deploying a local instance of AWSIMS and configuring it to find their

database, AWSIMS will create web service wrappers for their data. The web services

provide real time data access and will pick up changes made to the underlying data base.

The web service Urls can be shared with the scientific community in order to provide

them access to the team’s data. The web services can also be used to get the data up to the

e-Science infrastructure. The web service can either be queried manually, using curl [28],

or by integrating the query into a workflow.

While using AWSIMS offers significant benefits, the proposed implementation does

require the team to setup a local AWSIMS instance. This requires the team to procure

hardware for a web server, execute the AWSIMS installer and then configure the firewall

to ensure public access. This process will be significantly eased with the planned addition

of the local-to-Cloud database connector that will enable the AWSIMS Cloud version to

read local databases. Once this feature has been added, the team will be able to use the

Cloud version of AWSIMS and will not need to deploy a local instance. Instead, they will

55

only need to configure the local-to-Cloud database connector to ensure their data can be

read properly by AWSIMS Cloud.

3.3.2 Case Study: Intra-Department Sharing

The internal solutions department is struggling to architect a SOA data sharing solution

that will be agile enough to meet the evolving needs of a growing group of stakeholders.

The department employs a small team of software developers but they lack the experience

and knowledge to build and deploy an enterprise grade SOA application. Additionally,

their technical staff has other projects they are responsible for and don’t have the

resources available to constantly field stakeholder change requests.

Without AWSIMS they would be forced to, in the common engineering vernacular, ‘wing

it’
32

. The development team would need to build and deploy a prototype application and

then interactively release updates to appease each new stakeholder and new stakeholder

requirement or change request. Due to scheduling pressures, it is unlikely the team will

be able to deliver a robust solution, having to sacrifice quality for a quick delivery. This

solution does not scale and maintenance costs will increase as new versions saddle the

application with technical debt [29]. The developers are further left with a data

dependency problem as they may not be able to easily discern which versions of their

applications are active and which portions of the database each version depends on. This

adds significant risk that introducing a database schema change could break their web

service solution.

Implementing AWSIMS removes the onus on the department’s developers to build and

maintain a custom solution. By installing a local instance and adding their databases as

data sources, their job is done. Other departments can use the AWSIMS web application

to define and version their own custom interfaces and can easily modify them as their own

application life cycle dictates. AWSIMS offers usage reporting so the internal solutions

department can easily check database dependencies and deduce the impact a database

change will have on their web service offering. And AWSIMS offers them performance

enhancements and the ability to scale to ensure web service performance metrics match

stakeholder expectations.

3.3.3 Case Study: Large Multi-Disciplinary Research Team

The large multi-disciplinary research team has a versioning problem. They need to share

the data in their database with scientists from several different backgrounds that are

32

 http://idioms.thefreedictionary.com/wing+it

http://idioms.thefreedictionary.com/wing+it

56

interested in different aspects of the data. And as the project progresses the database

schema is updated, requiring the authoring of new versions of old web services while still

needing to support legacy versions. They have the technical staff to write and maintain

their web service inventory but the versioning problem is quickly becoming

overwhelming.

Without AWSIMS the research team needs to implement and maintain a custom solution.

Every time the underlying database schema needs to be changed, the team needs to survey

their current web service offering to ensure the change will not break an existing web

service. Once the schema is changed, a new set of web services need to be authored to

ensure clients can get the latest version and client applications will need to be updated to

use the latest version Urls and then likely recompiled. While the team could use a web

service version management strategy, such as the Chain of Adapters [9] pattern, to

mitigate some of the version management development costs, they are still required to

invest an increasing amount of development effort for every schema change.

Implementing AWSIMS significantly reduces the team’s web service version

management problem. AWSIMS allows consumers to manage their own versions,

independent of the team, offloading the effort to the data consumers and allowing the data

consumers to use the latest version of the database schema immediately without having to

wait for the team’s developers to author a new version. Additionally, if the data consumer

is not interested in the new data provided by the schema change they can elect to continue

using their current version.

If the research team needs to implement a schema change that has the potential to break

existing web services they can use AWSIMS to easily see which web services would be

affected and whether the web services are actively being used. That knowledge can be

used to power and outreach effort to communicate with the impacted data consumers and

schedule an ‘end-of-life’ date. Ultimately, AWSIMS empowers the team to make a more

informed decision as to the impact of any database schema changes.

3.4 Further Discussion

3.4.1 Big Data

One of the potentially limiting factors to AWSIMS applicability is its ability to handle

large data sets. Cutting edge research projects are producing data sets on the order of

terabytes and even petabytes and are requiring data storage solutions and data sharing

57

solutions that can cope with such large data sets. Technologies such as hadoop
33

, HBase
34

and NoSQL
35

 are emerging as solutions capable of meeting the data storage needs of such

high data volume projects. While not fully tested during the prototyping of AWSIMS, the

AWSIMS architecture can theoretically support these new data stores as long as they

provide APIs to query both data and schema. However, serving large data sets via web

services presents additional technological challenges in that web services, or more

specifically the http protocol, is not designed for transmitting large data payloads.

Independent research [46] has investigated mechanisms for overcoming these limitations,

which AWSIMS could implement. At present though, AWSIMS supports large data via

pagination, requiring consumers to make repeated calls requesting manageable chunks of

data.

3.4.2 Semantic Web

The concept of the semantic web has been generated interest since it was first coined by

Tim Berneres-Lee in 2001 [47]; promising a mechanism for standardizing data formats for

the Internet. Semantic webs have become popular within the scientific community for

providing the technology to create a controlled vocabulary, or ontology, for scientific

disciplines. The benefit of semantic webs is improved data integration amongst multiple

scientific content repositories and simplified query interfaces that more closely models

natural language when compared to traditional internet search.

Semantic webs work by defining an ontology which contains the controlled vocabulary

for a particular domain and data repository schema are then mapped to the ontology in

order to aggregate that repository into the semantic web. While support for semantic web

is not among AWSIMS primary design goal, because AWSIMS allows data consumers to

customize web service method return types (as discussed in section 2.3.2 Client Driven

Interface Generation), including setting field names, a data consumer could use AWSIMS

to expose a web service method that confirms to a given semantic web ontology.

However, this is a tedious solution for the data consumer and would likely need to be

improved in a future version in order for it to be considered practical.

33

 http://hadoop.apache.org/
34

 http://hbase.apache.org/
35

 http://en.wikipedia.org/wiki/NoSQL

http://hadoop.apache.org/
http://hbase.apache.org/
http://en.wikipedia.org/wiki/NoSQL

58

4 Conclusion
Data sharing is integral to unlocking the full potential of scientific data; enabling multi-

disciplinary researchers to collaborate and work together in ways not otherwise possible.

And the growing adoption of e-science infrastructures, built on SOA principles, opens

new possibilities for data analysis as long as raw data is readily available. Yet, despite the

recognized value of data sharing, modern technology infrastructures have yet to provide

an easy-to-use data sharing solution. In order to provide such a data sharing solution,

three data sharing goals have been identified:

1. Ease the burden on data owners that want to share their data.

2. Enable data consumers to easily consume data in a format most conducive to

their needs.

3. Support the integrated data schema so that data can be readily consumed by

computation engines.

Web services have emerged as a standardized and interoperable data sharing mechanism

and several frameworks exist to ease implementation. However, utilizing them requires

non-trivial technology expertise; proving that the frameworks alone are not sufficient to

meet the data sharing goals. Further, operating a web service inventory in practice

requires additional effort, specifically version management.

The Automated Web Service Inventory Management Software application has been

designed and built to harness the power of web services while simultaneously lowering

the barrier of entry such that the data sharing goals of ease-of-use are met. AWSIMS

allows data owners to specify their data and data consumers to define their own web

services. The net result is neither party needs to write any code and version management

is greatly simplified; AWSIMS offers an ideal data sharing solution.

AWSIMS has been analyzed in the context of three case studies, each one showing how

implementing AWSIMS adds value as a data sharing solution versus the current

technology. AWSIMS offers a small non-technical team the means to easily share their

data and make it available to e-science infrastructures, it helps manage multiple

competing stakeholder requirements, and provides an ideal version management solution.

AWSIMS has been shown to have value for the bio-informatics community, such as

creating web service wrappers for legacy database, facilitating data integration and

aggregation. AWSIMS has been proven to be able to integrate with cutting edge projects

like VPH-Share, providing a data sharing solution for cloud based file systems.

59

In essence, AWSIMS highlights the advantages of a dedicated data sharing application to

meet the needs of modern science. Simplifying data sharing allows scientists, who would

not have otherwise been able, to make their research data available to the scientific

community unlocking the full power of their research and promoting collaboration.

However, despite what AWSIMS has achieved there is still much work that can be done

to improve its capacity for data sharing. A discussion on future work to enhance

AWSIMS is presented in the next section, section 4.1 Future Work.

4.1 Future Work
While the benefits of AWSIMS as a data sharing solution have been shown there is still

room for improvement. As AWSIMS has not yet been tested in a real world application,

doing so would offer tremendous value as scientists will certainly have requirements and

scenarios that have not been thought of during development. AWSIMS currently only

supports read-only operations and expanding the application to include full CRUD
36

support would expand its value as a data sharing solution, enabling web service

consumers to contribute additional data. Finally, the AWSIMS security model is currently

rather limited and expanding it to enable data owners to allow finer grained control over

which parties can access which parts of their data; empowering data owners with a greater

sense of control over their data and encouraging them to share non-public data.

4.1.1 User Review and Feedback

User feedback is valuable for any application and AWSIMS is no exception. Having

users navigate and use the application’s web interface would highlight flaws in the

navigation model and give users a chance to comment on recommended improvements to

streamline processes. Deployment in a live research project would generate usage

statistics to gauge performance bottlenecks and areas for improvement. Finally, having an

open dialogue with users is the ultimate forum to determine if AWSIMS meets the data

sharing needs of real-world research projects and is an avenue for discussing what product

enhancements can be made to improve the data sharing experience.

4.1.2 CRUD Support

AWSIMS currently only allows generated web services read-only access to data sources.

Expanding AWSIMS capabilities to support create, update and delete (CRUD) operations

would enhance its data sharing capabilities. Web service clients would be able to create

interfaces enabling them to contribute to a data source by adding, modifying or deleting

content. Additionally, e-Science infrastructures would be able to write results back

36

 http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

60

directly to a database as part of a workflow, making it easier for scientists to view results

and perform analysis.

Adding CRUD support would not be a trivial undertaking. Care must be given to ensure

data owners recognize the potential risks of allowing web service clients to modify their

data. Appropriate controls would need to be set in place to ensure data owners can have

finely grained control to indicate what parts of the data can be modified and by whom.

Additional auditing would likely need to be implemented as well so that data owners can

track data modifications.

4.1.3 Security

The current AWSIMS security model is extremely basic and needs to be expanded to

ensure AWSIMS can be securely used in a wide range of operating circumstances.

Security development needs to focus on two areas:

1. Providing data owners with greater tools to restrict which users can access which

portions of their data, ie Authorization.

2. Authenticating web service clients so that applicable security restrictions can be

enforced.

By empowering data owners the ability to restrict access to certain schema columns or

data sources allows them to share their data with the widest audience possible while still

enabling them to protect the integrity and privacy of their data. The greatest foreseen

challenge is designing a system to enable data owners to easily manage access control lists

(ACLs) without being overburdened. Data consumers could be organized into groups and

data owners could then provide restrictions based on group. Additionally, group

membership could be manually controlled or based on registered email. For example, all

data consumers who have an UvA email could be grouped together.

In order for AWSIMS to enforce restrictions put in place by data owners web service

clients will have to be authenticated. ASP.NET and IIS support a variety of authentication

mechanisms for web services including basic authentication, where a username and

password are sent with each request, and forms authentication, where clients are required

to authenticate and are then given a security token that will be sent with each request.

AWSIMS can make use of this built-in support and could support different authentication

mechanisms based on circumstances or data owner specification. However, further

research is required to ensure the most appropriate authentication mechanisms are

available for AWSIMS.

61

62

References
1. Hartrum, Thomas C., “Automated Code Generation Tools for Collaboration Systems,”

Proceedings of the 2007 International Symposium on Collaboration Technologies and

Systems (CTS 2007), May 21-25, 2007, Orlando, FL, pp. 183-190

2. Frank, D.; Linh Lam; Liana Fong; Ru Fang; Khangaonkar, M., "Using an Interface Proxy

to Host Versioned Web Services," Services Computing, IEEE International Conference

on, pp. 325-332, 2008 IEEE International Conference on Services Computing Vol. 2,

2008

3. (2012, May) Microsoft .NET Documentation. “Service Versioning” [Online] Available:

http://msdn.microsoft.com/en-us/library/ms731060.aspx

4. (2012, May) Microsoft .NET Documentation. " Best Practices: Data Contract Versioning”

[Online] Available: http://msdn.microsoft.com/en-us/library/ms733832.aspx

5. European Commission Information Society and Media. “Opportunities for Data Exchange

– Ten Tales of Drivers and Barriers in Data Sharing”

http://www.libereurope.eu/sites/default/files/ODE_10Stories_0.pdf

6. European Commission Information Society and Media. “Opportunities for Data Exchange

– Research Infrastructure” http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/ode.pdf

7. European Commission Information Society and Media. “Riding the Wave – How Europe

can Gain from the Rising Tide of Scientific Data”. http://cordis.europa.eu/fp7/ict/e-

infrastructure/docs/hlg-sdi-report.pdf

8. (2012, May) CERN web site. [Online]. Available:

http://public.web.cern.ch/public/en/lhc/Computing-en.html

9. Piotr Kaminski, Hausi Muller, and Marin Litoiu. 2006. A design for adaptive web service

evolution. In Proceedings of the 2006 international workshop on Self-adaptation and self-

managing systems (SEAMS '06). ACM, New York, NY, USA, 86-92.

10. (2012, June) Microsoft. NET Documentation “Synchronizing SQL Azure”. [Online].

Available: http://msdn.microsoft.com/en-us/library/ff928514(SQL.110).aspx

11. Lizhe Wang; Jie Tao; Kunze, M.; Castellanos, A.C.; Kramer, D.; Karl, W.;, "Scientific

Cloud Computing: Early Definition and Experience," High Performance Computing and

Communications, 2008. HPCC '08. 10th IEEE International Conference on , vol., no.,

pp.825-830, 25-27 Sept. 2008

http://msdn.microsoft.com/en-us/library/ms731060.aspx
http://msdn.microsoft.com/en-us/library/ms733832.aspx
http://www.libereurope.eu/sites/default/files/ODE_10Stories_0.pdf
http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/ode.pdf
http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/hlg-sdi-report.pdf
http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/hlg-sdi-report.pdf
http://public.web.cern.ch/public/en/lhc/Computing-en.html
http://msdn.microsoft.com/en-us/library/ff928514(SQL.110).aspx

63

12. Shengxian Luo; Xiaochuan Peng; Shengbo Fan; Peiyu Zhang; , "Study on Computing

Grid Distributed Middleware and Its Application," Information Technology and

Applications, 2009. IFITA '09. International Forum on , vol.3, no., pp.441-445, 15-17

May 2009

13. J. Yaylor. (2012, June) Defining e-science. [Online]. Available:

http://www.nesc.ac.uk/nesc/define.html

14. H. He, “What is service-oriented architecture" September 2003. [Online]. Available:

http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html

15. K. Channabasavaiah, K. Holley, and J. Edward M. Tuggle, “Migrating to a service-

oriented architecture.” December 2003. [Online]. Available:

http://www.ibm.com/developerworks/library/ws-migratesoa/

16. J. D. Blower, A. B. Harrison, and K. Haines. 2006. Styx Grid Services: Lightweight

middleware for efficient scientific workflows. Sci. Program. 14, 3,4 (December 2006),

209-216.

17. (2012, May) High Level Expert Group on Scientific Data. “Riding the Wave - How

Europe can Gain from the Rising Tide of Scientific Data” [Online]. Available:

http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/hlg-sdi-report.pdf

18. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, and D. O. C. Ferris. W3C.

“Web Services Architecture," February 2004. [Online]. Available:

http://www.w3.org/TR/ws-arch/

19. Curbera, F.; Duftler, M.; Khalaf, R.; Nagy, W.; Mukhi, N.; Weerawarana, S.; ,

"Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI," Internet

Computing, IEEE , vol.6, no.2, pp.86-93, March-April 2002

20. Turner, M.; Budgen, D.; Brereton, P.; , "Turning software into a service," Computer ,

vol.36, no.10, pp. 38- 44, Oct. 2003

21. M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar, and

Y. Lafon, “SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)," April

2007. [Online]. Available: http://www.w3.org/TR/soap12-part1/

22. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon “Web Service

Choreography Description Lanugage Version 1,” November 2005. [Online] Available:

http://www.w3.org/TR/ws-cdl-10/

http://www.nesc.ac.uk/nesc/define.html
http://www.ibm.com/developerworks/library/ws-migratesoa/
http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/hlg-sdi-report.pdf
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/ws-cdl-10/

64

23. (2012, June) ENFOS web site. “Web-Based Collaboration and Workflow”. [Online].

Available: http://www.enfos.com/www/productsSolutionsLab.php

24. Savage CJ, Vickers AJ (2009) Empirical Study of Data Sharing by Authors Publishing in

PLoS Journals. PLoS ONE 4(9)

25. (2012, June) Agnus Macdonald. “Installing OGSA-DAI 3.1 (A Rough Guide)”. [Online].

Available: http://blogs.cs.st-andrews.ac.uk/angus/2009/03/installing-ogsa-dai/

26. (2012, June) Worldwide LHC Computing Grid website. [Online]. Available: http://lcg-

archive.web.cern.ch/lcg-archive/public/

27. Escalante, L.G.; Castillo, A.B.; Ocana, L.B.; , "Automatic generation and publication of

Web services for the access and integration of distributed data sources," Computer

Science, 2005. ENC 2005. Sixth Mexican International Conference on , vol., no., pp. 96-

103, 26-30 Sept. 2005

28. (2012, June) cURL Manual Page. [Online]. Available:

http://curl.haxx.se/docs/manpage.html

29. Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe

Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, Raghvinder

Sangwan, Carolyn Seaman, Kevin Sullivan, and Nico Zazworka. 2010. Managing

technical debt in software-reliant systems. In Proceedings of the FSE/SDP workshop on

Future of software engineering research(FoSER '10). ACM, New York, NY, USA, 47-52.

30. (2012, June) Definition of ‘enterprise class’. PC Magazine. [Online]. Available:

http://www.pcmag.com/encyclopedia_term/0,1237,t=enterprise+class&i=42639,00.asp

31. Mike Volodarsky. IIS Team. “ASP.NET Integration with IIS 7," May 2010. [Online].

Available: http://learn.iis.net/page.aspx/243/aspnet-integration-with-iis/

32. (2012, June) IHttpHander Interface. Microsoft. [Online]. Available:

http://msdn.microsoft.com/en-us/library/system.web.ihttphandler(v=vs.100).aspx

33. (2012, June) WebServiceHandlerFactory Class. Microsoft. [Online]. Available:

http://msdn.microsoft.com/en-

us/library/system.web.services.protocols.webservicehandlerfactory.aspx

34. (2012, June) Managing, Tuning, and Configuring Application Pools in IIS 7.0. Microsoft.

[Online]. Available: http://technet.microsoft.com/en-us/library/cc745955.aspx

http://www.enfos.com/www/productsSolutionsLab.php
http://blogs.cs.st-andrews.ac.uk/angus/2009/03/installing-ogsa-dai/
http://lcg-archive.web.cern.ch/lcg-archive/public/
http://lcg-archive.web.cern.ch/lcg-archive/public/
http://curl.haxx.se/docs/manpage.html
http://www.pcmag.com/encyclopedia_term/0,1237,t=enterprise+class&i=42639,00.asp
http://learn.iis.net/page.aspx/243/aspnet-integration-with-iis/
http://msdn.microsoft.com/en-us/library/system.web.ihttphandler(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/system.web.services.protocols.webservicehandlerfactory.aspx
http://msdn.microsoft.com/en-us/library/system.web.services.protocols.webservicehandlerfactory.aspx
http://technet.microsoft.com/en-us/library/cc745955.aspx

65

35. Hey T, Stewart T, Tolle K: The Fourth Paradigm Data-Intensive Scientific Discovery.

Microsoft Research 2009.

36. Fujun Zhu, Mark Turner, Ioannis Kotsiopoulos, Keith Bennett, Michelle Russell, David

Budgen, Pearl Brereton, John Keane, Paul Layzell, Michael Rigby, and Jie Xu. 2004.

Dynamic Data Integration Using Web Services. In Proceedings of the IEEE International

Conference on Web Services (ICWS '04). IEEE Computer Society, Washington, DC,

USA, 262

37. E. Christensen, F. Curbera, G. Meredith, S. Weerawarna. “Web Services Description

Language (WSDL) 1.1,” March 2001. [Online] Available: http://www.w3.org/TR/wsdl

38. J. Evdemon, “Principles of Service Design: Service Versioning”,

http://msdn.microsoft.com/en-us/library/ms954726.aspx, 2005.

39. OASIS WSDM-MOWS 1.0 specification, Draft. http://www.oasis-

open.org/committees/download.php/5664/wd-wsdm-

mows_versioning_change_2.23.04a.doc

40. (June, 2012). VPH-Share Project web site. [Online] Available: http://www.vph-share.org

41. C. Larman. “Applying UML and Patterns”. Prentice Hall. 2005.

42. (June, 2012). The Nuclear Protein Database web site. [Online] Available:

http://npd.hgu.mrc.ac.uk/user/

43. (June, 2012). Accessing NPD content via web services. [Online] Available:

http://npd.hgu.mrc.ac.uk/user/services

44. (June, 2012). VPH-Share Analysis of the State of the Art; Work Package Defintion.

[Online] Available:

https://www.biomedtown.org/biomed_town/vphshare/reception/public_repository/delivera

bles/VPH-Share_D2.1_1v5.pdf?action=download

45. E. James Whitehead, Jr. and Yaron Y. Goland. 1999. WebDAV: a network protocol for

remote collaborative authoring on the Web. In Proceedings of the sixth conference on

European Conference on Computer Supported Cooperative Work (ECSCW'99). Kluwer

Academic Publishers, Norwell, MA, USA, 291-310.

http://www.w3.org/TR/wsdl
http://msdn.microsoft.com/en-us/library/ms954726.aspx
http://www.oasis-open.org/committees/download.php/5664/wd-wsdm-mows_versioning_change_2.23.04a.doc
http://www.oasis-open.org/committees/download.php/5664/wd-wsdm-mows_versioning_change_2.23.04a.doc
http://www.oasis-open.org/committees/download.php/5664/wd-wsdm-mows_versioning_change_2.23.04a.doc
http://www.vph-share.org/
http://npd.hgu.mrc.ac.uk/user/
http://npd.hgu.mrc.ac.uk/user/services
https://www.biomedtown.org/biomed_town/vphshare/reception/public_repository/deliverables/VPH-Share_D2.1_1v5.pdf?action=download
https://www.biomedtown.org/biomed_town/vphshare/reception/public_repository/deliverables/VPH-Share_D2.1_1v5.pdf?action=download

66

46. Koulouzis, S.; Cushing, R.; Karasavvas, K.A.; Belloum, A.; Bubak, M.; , "Enabling Web

Services to Consume and Produce Large Datasets,"Internet Computing, IEEE , vol.16,

no.1, pp.52-60, Jan.-Feb. 2012

47. Berners-Lee, T., James H., Or L. The Sematic Web, “Scientific American Magazine”,

May 2001.

48. S. Koulouzis, R. Cushing, A, Belloum, M. Bubak. Large Object Cloud Data Storage

Federation. Submitted to 8th IEEE International Conference on eScience 2012.

49. R. Strijkers, R. Cushing, D. Vasyunin, C. de Laat, A. Belloum, R. Meijer, Toward

Executable Scientific Publications, Procedia Computer Science, Volume 4, 2011, Pages

707-715.

67

Appendix A – A Quick User Guide to AWSIMS in the Cloud
This section shows the AWSIMS web site, available at www.awsims.com, in action. You can sign

up for an account and follow along. If you register with an UvA email address, your account will be

instantly approved and you’ll just need to respond to a confirmation email. Otherwise, your account

will need to be approved by an Administrator.

A.1 Sharing Data
Adam Scientists want to use AWSIMS to make some data he has in a spreadsheet available to Bob

Scientist in real time. To do so, he follows the following steps:

1. Adam Scientist logs into AWSIMS web site.

2. Adam Scientist navigates to the Data Sources section and clicks Add New Data Source.

http://www.awsims.com/

68

3. Adam Scientist selects the type of Data Source, in his case he wants to share a File System

Directory.

4. Adam Scientist fills in the necessary form.

69

5. Adam Scientist’s Data Source has been created, and he clicks Generate Schema to import

the Data

6. At this point Adam can see that his spreadsheet has been imported and his job is done.

A.2 Consuming Data
Bob Scientist wants to use Adam Scientist’s data via a web service. He’ll use AWSIMS to create

the web service.

70

1. Bob Scientist logs into the AWSIMS web site.

2. Bob Scientist navigates to Web Services and clicks Add New Web Service

3. Bob Scientist creates a new Web Service for himself.

71

4. Bob Scientist adds a method to his web service

5. Bob Scientist fills out the necessary form indicating that he wants to use the data source

Adam Scientist created.

72

6. Bob Scientist’s method has been created and he can click the Invoke button to preview the

data.

7. The XML data is previewed for Bob Scientist. This data stream can be easily consumed

by a software application, a Grid workflow, or even an Excel spreadsheet!

73

