

Collaboration in the Virtual Laboratory for e-Sciences

Alexander de Ridder

adridder@science.uva.nl

October 2003 / October 2004

Supervisor

Adam Belloum

adam@science.uva.nl

 2

Abstract

The Virtual Laboratory for e-Sciences seeks to provide users with a collaborative environment in

which they will be able to work together across time and space while using Grid technology. In

this paper we will define the requirements for collaboration in the VL-e. An in depth study of the

Userlist, Instant Messenger and Telepointer has been done and a Grid Service based architecture

has been designed for the first two. The architecture consists of three Grid Services and a Client.

The Services have been built using the Globus Toolkit in combination with the Java Shared Data

Toolkit. The architecture has been partially implemented and some test runs will be shown.

 3

Index

1 Introduction...4

2 Introduction to the Virtual Laboratory...6

2.1 Enhanced Science ...6

2.2 Grid-based Virtual Laboratory of AMsterdam ..6

2.3 The Virtual Laboratory for e-Sciences ..8

3 Collaboration in General ...9

3.1 Collaboration ..9

3.2 Failure of Collaborative Systems ..11

3.3 Current work...14

4 Requirements ..15

4.1 Requirements ..15

4.2 In Depth Analysis ...17

5 Toolkits ...31

5.1 Toolkits...31

5.2 Toolkit for VL-e..36

6 Architecture ..38

6.1 Designing the Architecture..38

6.2 Using the Architecture ..46

7 Results ..50

7.1 What has been implemented?..50

7.2 Results ..51

7.3 Problems encountered ...54

8 Conclusion ..56

8.1 Short Summary ...56

8.2 Discussion...57

8.3 Future Work..58

Bibliography ..59

Appendix A: Use Cases..61

 5

Fortunately, the job of the software developer is made easier by the availability of collaborative

toolkits. These toolkits provide the developer with a set of components that can be used to

implement collaborative software.

In this report we will develop part of the VL-e’s collaborative environment. In Chapter 2 a short

introduction to the Virtual Laboratory will be given. Chapter 3 will give a general introduction to

collaboration. The requirements of the Collaborative System will be defined and an depth

analysis of some particular components will be done in Chapter 4. Chapter 5 will explore

collaborative toolkits found on the Internet. In Chapter 6 the requirements will be turned into an

architecture and its results will be shown in Chapter 7. Finally we will draw a conclusion and

shed some light on future work in Chapter 8.

 6

Chapter 2 Introduction to the Virtual Laboratory
In this chapter we will give a short introduction to both the Grid-based Virtual Laboratory of

AMsterdam (VLAM-G) and to its follow-up project the Virtual Laboratory of e-Science (VL-e).

2.1 Enhanced Science

Networked R&D has lead to a new paradigm in scientific research called (digitally) enhanced

science or e-Science. In 2001 John Taylor [24] defined it as:

"e-Science is about global collaboration in key areas of science, and the next generation

of infrastructure that will enable it”

This global collaboration can come in many forms. At its best people from all over the world

share equipment, resources and databases while performing experiments, sharing results,

discussing insights, and so forth. However, people may not be that keen on sharing their data and

institutions may be unwilling to share expensive equipment or cutting edge technologies,

especially if significant money is involved.

An infrastructure that allows global sharing of resources is the Grid. It allows, for example, users

to submit CPU intensive jobs with the calculation being distributed over multiple processors.

Grid technology is available through toolkits that offer a collection of services, such as data

management, security, etc. These toolkits are, however, concerned with low-level details,

making them unusable to the average scientist.

2.2 Grid-based Virtual Laboratory of Amsterdam

Based on the Globus toolkit the VLAM-G provides a layer between the applications level and

the grid-service layer, thus harnessing the strength of Grid technology for a wide variety of

applications and making it available to a wider public. The VLAM-G provides a scientific portal

for remote experiment control and collaborative, Grid-based distributed analysis in applied

sciences [1]. It differs from other work in this area in that it seeks to provide a solution for

multiple classes of applications instead of for just one. For technical information about VLAM-

G toolkit, the reader is referred to [1, 6]. Here we shall give a short overview of how a scientist

can use the Virtual Lab.

A study in the Virtual Lab is a formalized series of steps (workflow), intended to solve a

particular problem in a particular domain. This workflow is represented by a Process Flow

Template (PFT). The content of a process step in the PFT represents an experiment executed

either by human intervention or by an automatic process. PFTs are defined through the PFT

editor and are stored in a database for later use.

 7

Figure 2: PFT Viewer

When a user wants to perform an experiment he selects a previously defined PFT from the

database. As the template itself cannot be changed, an instance, the Process Flow Instance (PFI),

is created for him to work with (Figure 2).

Figure 3: Topology Editor

Each PFI contains at least one operational step, which is further defined by using the Topology

Editor (Figure 3). Here the experiment topology is created by drag-and-dropping modules into

the work area and connecting them together using directed data flows. These modules can range

from input to operational to output and visualization components. Because of its modular

 8

architecture new components can easily be added, making it suitable for a vast amount of

applications. An instance of the topology is sent to the Run-Time-System for execution.

2.3 The Virtual Laboratory for e-Sciences

The VLAM-G project officially ended in September 2003 (?). The number of interested parties

had grown spectacularly over time and green light was given for the follow-up project, the

Virtual Lab for e-Sciences (VL-e). It will extend the features of the VLAM-G where possible,

but, unlike the VLAM-G, the VL-e will have a service-oriented architecture. This has some

important consequences. For one, individual components can be addressed only via their

published interface, which is made available to the network. This allows for decoupling between

individual components, as the only connections between them is via these interfaces.

Furthermore services and multiple instances of a single service can be located on different

machines. When a machine goes down, the same service may still be available on another

machine. This gives greater overall stability. To achieve location transparency, applications

search for services in a directory after which they connect to them dynamically at run-time. This

allows for code mobility, as the client does not care where the service is located [27].

Grid technology allows for a special kind of services: Grid Services. Grid Services are basically

Web Services with enhanced capabilities, including notifications (events between client and

server), lifecycle management, and statefulness. The latter allows storage of information on the

server side. This has led to the availability of Factories that create instances, which can be

accessed by multiple users at the same time, allowing them to work on the same data.

Where the VLAM-G supports global collaboration through resource sharing, the VL-e

additionally seeks to provide more fine-grained global collaboration. It seeks to provide its users

with a shared workspace environment, allowing them to conduct experiments together. Means

must be provided for them to communicate. However, it is important to first understand

collaboration.

 9

Chapter 3 Collaboration in General
Before we can focus on collaboration for the VL-e, it is important to get a clear picture on

collaboration in general. In this chapter we will explain the concept of collaboration and its

importance and we will use research done by others before us to explore why collaborative

applications have a tendency to fail.

3.1 Collaboration

Not a day in our lives goes by without us collaborating. Collaboration is about two or more

people working together towards a joint goal. It differs from cooperation in that with

collaboration all sides benefit from working together and that it is on an equal basis. Cooperation

on the other hand can also benefit only one side and is often more connected to hierarchy. A

police-officer would, for example, ask a criminal to cooperate and not to collaborate.

One important aspect of collaboration is communication. When two people engage in verbal

communication they exchange words, but a lot more is involved: intonation, body-language,

body odor, etc. Even simply being there and saying nothing is communicating something to the

other person. All such elements give extra information about a person’s character and mood and

provide better insight on how to proceed in the discussion; the more information, the better.

Furthermore, interaction with the artifacts in the environment, like someone tearing up a piece of

paper, provides extra information and so are part of the collaborative process. Face-to-face

communication is incredibly complex and effective.

Unfortunately, direct face-to-face collaboration is not always possible. When, for example,

working on a project with people located at several different locations it may be possible to meet

every now and then, but often not on a daily basis. The expenses are simply too high and it is

much too time consuming. Luckily, technologies are available which allow us to collaborate

over distances. One of the best known and widely used technologies is teleconferencing, where

two or more people meet via the telephone. Though it works, it comes at the cost of information:

it does provide intonation but removes any physical communication. Sending a message by mail

has even more problems. It removes intonation, physical information and does not allow for

instantaneous communication. With video conferencing video images of people in one room are

transmitted to other participants in rooms at distant sites. In the simplest case, only an image of

the entire room is transmitted. More complex scenarios would have a single screen for every

participant. Video conferencing captures some physical information as well as audio. Though

one would expect video to be an incredible advantage, it seems to fall far short of expectations

[8].

Computers provide us with even more possibilities for collaboration. Computer Supported

Cooperative Work (CSCW) is the field that focuses on the design, adoption, use and social

implications of collaborative systems, or groupware. Though people use the term groupware for

 10

any multi-user piece of software which supports groupwork, there is ongoing debate on what the

actual definition of groupware is [2]. One issue is whether it applies strictly to soft-, or hardware,

or whether it also applies to group techniques. Another issue is whether the emphasis is on

“group” or on “ware”. Those emphasizing “group” place emphasis on the group process, while

those emphasizing “ware” are more focused on the technological part. One of the most widely

used definitions of groupware is the original one by Peter and Trudy Johnson-Lenz [20]:

"The combination of intentionally chosen group processes and procedures plus the

computer software to support them."

Even though there is no definition on which all are agreed, the fact remains that computers can

be used for collaborative purposes. For the purpose of this paper we will think of groupware as

computer based systems which allow for collaboration.

Dimensions of Groupware

Groupware technologies are typically categorized along two dimensions: the dimensions “time”

and “place”. “Time” is split into synchronous and asynchronous groupware. In the first, also

often referred to as “realtime” groupware, people are working together at the same time. In the

latter time can be different. Some well known asynchronous groupware applications include

email, message boards, newsgroups and electronic calendars. Well known synchronous

groupware includes instant messengers, video communications, shared whiteboards, etc.

The amount of distance between collaborators matters. The “place” dimension makes a

distinction between whether people are working at the same place or at different places. Mark

Brader’s research [8] has shown that an increased distance initially has a negative effect on

cooperation, though after a longer period of interaction cooperation improves. Furthermore,

people are more likely to give deceptive (positive) portrayals about themselves to, and are less

easily persuaded by, a person whom they believe to be farther away. This study, as the authors

themselves note, has several limitations, including the fact they conducted their research in the

context of a laboratory rather than in a context of the workplace. Furthermore the individuals in

the experiment were unacquainted, whereas in the workplace this is not necessarily the case.

Nevertheless, this research has shown that distance does matter.

Shared Workspace Environments

One important class of systems, and the one we will be focusing one, is that of applications that

support realtime, distant collaboration through a shared workspace. A group of users share the

same workspace, with the same objects, allowing them to work synchronously on the same

project. Analogously to WYSIWYG (What You See Is What You Get), shared workspaces have

WYSIWIS (What You See Is What I See). WYSIWIS comes in two versions: relaxed and strict.

In strict WYSIWIS, all users have the same viewport. It is easier to create than its strict

counterpart and provides a better sense of awareness of what other users are doing, as everything

happens in sight. Relaxed WYSIWIS provides greater freedom, allowing users to scroll around

 11

the workspace freely. Not only is it harder to create but, as users can work outside someone’s

view, workspace awareness is less.

3.2 Failure of Collaborative Systems

Collaborative systems tend to fail, or at least fall short far of expectations. There are many

reasons for this high rate of failure including social differences between collaborators, difficulty

of testing groupware and organizational culture. Grudin [18] points out that in order for an

application to succeed it has to be beneficial to all its users. For example, a schedule in which a

manager can look up the agendas of all other employees is destined to fail, as the manager is the

only one who will benefit from it. Email on the other hand is beneficial to all users and is an

incredible success. Therefore an application has to appear beneficial to all who have to use it.

The VL-e is an application which should be beneficial to its users, as it allows them to make use

of the power of the Grid.

Greenberg and Gutwin [4] believe that problems with groupware are often caused by a failure to

support basic necessities. They introduced the Mechanics of Collaboration, the things groups

have to do in shared workspaces, over and above what an individual has to do, in order to carry

out a task. They have combined these Mechanics with Nielsen’s Usability Heuristics to create

heuristics for groupware [17]. They are meant for validating the quality of software but can also

be used to aid in defining the requirements of our collaborative system, as we shall see in

Chapter 4.

Heuristics based on The Mechanics of Collaboration

Heuristic 1: Provide the means for intentional and appropriate verbal communication

When two or more people communicate, words are exchanged. During such verbal exchanges

there are three ways in which information is picked up [17]:

1. Explicit conversation between two people

2. Overhearing a conversation between others

3. Overhearing commentary that others produce alongside their actions

The first is relatively easy to support in groupware. Most of the communicative applications are

meant to support explicit communication. The second item can be supported if the conversation

between two people is taking place in a shared space to which the entire group has access, like a

group message space. Overhearing commentary is harder, as people will generally not type the

commentary they are producing alongside their actions. To support overhearing commentary

would require for example a webcam or an audio device, always turned on. People generally

dislike such monitoring as they feel it is an intrusion to their privacy.

Some typical examples of groupware supplying verbal communication are instant messengers,

black/white boards, digital audio communication, video, etc.

 12

Heuristic 2: Provide the means for intentional and appropriate gestural communication

A large portion of the actions during collaboration are intentional gestures. People use

intentional gestures to support the conversation. Intentional gestures take many forms [17].

1. Speech can be used as illustration. For example, when showing a gap between one’s hand

and the floor to illustrate height.

2. Words can be replaced by actions. For example thumbs up, as a replacement for “okay”.

3. People can reference objects with a combination of intentional gestures and

communication. For example requesting “that pencil” while pointing at it.

The simplest form of embodiment in a shared workspace is a telepointer. A telepointer is a

normal pointer except that it is visible to everyone inside the workspace. Telepointers can be

used to gesture and point at objects. They also provide gaze awareness, as it is likely a person is

gazing near his pointer. If means for intentional communication is also provided, the third item

is taken care off. The second item can be provided if the telepointer can take varying shapes, like

changing into a pen when someone is writing. Illustration, the first item, is also possible by

providing a white board. This allows users to make simple drawings to illustrate their meaning.

Heuristic 3: Provide consequential communication of an individual’s embodiment

Some signals are not intentionally given off by people, but can be picked up by the perceiver

nonetheless. Consequential communication of an individual’s embodiment can be split into two

categories [17].

1. Actions coupled with the workspace, such as seeing someone’s gaze

2. Actions coupled to conversation, such as facial expressions, eye contact, intonation,

pauses

Capturing this in groupware is hard. A telepointer, for example, does give some indication of

what the person is looking at, but it is no guarantee. Avatars can capture the gaze direction, but

still many consequential gestures are not captured. Video should be able to provide

conversational awareness, but so far is falling short of expectations.

Heuristic 4: Provide consequential communication of shared artifacts (feedthrough)

When an artifact is manipulated, it gives off information. For example, when typing on a

keyboard, there is the sound of the keyboard itself. Other who hear this sound, know someone is

typing. By seeing and hearing an artifact as it is manipulated, people can easily determine what

others are doing with it.

Artifacts can provide two types of communication [17].

1. Feedback, which is the information the user receives when he is manipulating the

artifact

2. Feedthrough, which is the information the others who are watching receive

 13

Feedthrough has to be supported for other users to understand how the objects are changing.

This can be provided by, for example, adding a history of how the artifact was manipulated.

Feedback is often automatically provided, for example by displaying what a user is typing.

Heuristic 5: Provide protection

In a shared workspace users can access the same artifacts at the same time. If no protection is

provided, it is possible for people to edit a single object simultaneously. This may cause

conflicting situations with users committing changes which are immediately overwritten by

others who are also committing the same object. If enough workspace awareness is provided,

natural collaboration will remove many conflicts, as it is considered to be rude to start making

changes to something while someone else is editing it. In some cases conflicts may even be

acceptable, but for most applications protection must be provided to prevent people from altering

or destroying work that others have done.

Groupware often provides access control, concurrency control, undo, version control, etc. to

assist with social protocols.

Heuristic 6: Management of tightly and loosely-coupled collaboration

During group projects, people continuously shift between individual and groupwork. After a

certain amount of individual work, coordination is necessary between the team members, after

which the individual work will continue. The amount of work people have to do before they

require contact with another person is known as coupling. To be able to switch between group

and individual work requires the ability to focus on different parts of the workspace. Shifting

focus can, however, lead in loss of awareness of the overall picture, especially in relaxed

WYSIWIS environments. Therefore the entire workspace should be provided in a small

secondary window. These can come in many forms, like overviews, radar views (overview with

telepointers shown), detail views, etc.

Heuristic 7: Allow people to coordinate their actions

In group projects it is necessary for people to be able to coordinate their actions to make sure

that actions happen in the right order, at the right time. Many of the previously described

heuristics are required to allow for this. It requires awareness features, as coordination requires

overall knowledge of a project. Furthermore, collaborators have to be able to communicate

verbally.

Heuristic 8: Facilitate finding collaborators and establishing contact

Users of a groupware application can be distributed across time and space. In order to be able to

collaborate with other users, it is necessary to know who is available. After that, many problems

can still arise while trying to initiate contact, such as incompatible software, lack of hardware

(e.g. a webcam), etc.

 14

Checking availability and initiating contact must be possible with minimal effort. A simple

solution is the one provided by instant messengers; a userlist shows the availability of people.

3.3 Current work

The CSCW field is rapidly evolving and many interesting applications are being developed. One

interesting project has succeeded in the 3-D reconstruction of a remote collaborator into the

scene of the user [23]. The user views the world via a head-mounted display with a small

security camera attached to the front. To create a realistic model of the remote collaborator, he is

surrounded by fifteen cameras. By calculating the geometrical relationship between the user’s

camera and a marker, the appropriate view of the distant collaborator is displayed in the user’s

scene. Due to its high performance the system gives the impression that the distant person really

is part of the scene.

Another project is Microsoft Research’s Sideshow, an application which desires to provide users

with peripheral awareness of important information [9]. They provide a sidebar which can be

filled with tickets. These tickets hold small up-to-date information about an application. For

example, an e-mail ticket would display whether a new message has arrived, an e-bay ticket

would keep track of an auction, etc. Users can add and remove tickets to and from their sidebars,

change the size each tickets takes, etc. Microsoft has tested their sidebar and concluded that

users were willing to sacrifice a small part of their workspace in exchange for awareness. The

tickets have to be individually customizable.

 15

Chapter 4 Requirements
In this chapter we will explore the requirements for collaboration in the Virtual Laboratory for e-

Science. Furthermore we will explore the importance of awareness and data consistency

algorithms and do an in depth analysis of the Instant Messenger, Userlist and Telepointer.

4.1 Requirements

As stated in Chapter 2 the VL-e will be a shared workspace environment. The Mechanics of

Collaboration, described in Chapter 3, are therefore valid for our project. Based on these as well

as on other sources, such as [25], our requirements can be defined. They have been split into

groups, beginning with the ones crucial for the collaborative environment while ending with

optional enhancements.

Requirements 1

The first set of requirements should allow for minimal collaboration in a single workspace.

Minimal collaboration should allow users to discuss existing studies. This requires users to be

able to enter a study, navigate through it, find other users, initiate contact and communicate with

them. This gives the following set of requirements:

• Session control: decides who gets to go in. Includes finding out what sessions

are available, determining who can enter and exit the session, and when and

how.

• Exploration of the space or of a set of artifacts: this allows for the analysis of

artifacts and for movement around the workspace.

• Means for intentional and appropriate gestural communication 1: a simple

telepointer to allow for simple gestural communication.

• Finding collaborators and establishing contact: a simple user list to know who is

active in the workspace and which allows establishing contact.

• Means for intentional and appropriate verbal communication 1: a simple

messenger to allow for simple text communication.

These features allow limited collaboration on an existing project: starting a session, finding

collaborators and communicating with them, analyzing artifacts and ending the session. As

artifacts are merely read there is no need for data consistency algorithms yet.

Requirements 2

The next set of requirements should provide the means to allow for creation and alteration of

objects in a collaborative session. As now the artifacts are not merely read, but also written, there

is need for data consistency management.

 16

• Creation of new artifacts: allows the creation of new artifacts in the shared

workspace

• Organization of existing artifacts: allows for changing existing artifacts

• Provide protection 1: in order to prevent multiple users from changing an

artifact at the same time, data consistency mechanisms have to be provided.

A natural next step is to allow for customization of access to artifacts to protect them from

unwanted alteration. Additionally, critical information has to be secure even against aggressive

attempts to obtain the information

• Provide protection 2: provide workspace control to limit access to components.

• Provide protection 3: protect critical information.

In a shared-workspace environment, especially in a relaxed WYSIWIS, it is hard to remain

aware of the actions of other users. Awareness is crucial for the success of a collaborative

system.

• Management of tightly and loosely-coupled collaboration: adding workspace

awareness by providing a radar / birds-eye view of the workspace. The pointers

of the other users are shown herein.

With multiple users altering the project simultaneously, there is now need for fault tolerance in

case of an abnormal termination

• Provide protection 4: protect in case of abnormal termination by adding fault

tolerance

A system which has all the previous features, should allow for users to work together in a

convenient way.

Requirements 3

Additional protective features can be added, such as undo/redo and merging. Asynchronous

communication will allow more convenient communication across time and has the additional

benefit of storing previous communication. Feedback and feedthrough of artifacts provides

additional awareness.

• Means for intentional and appropriate verbal communication 2: allow for

communication across time by providing asynchronous communication, such as

a message board.

• Provide consequential communication of shared artifacts: providing the user

with artifact feedback, thus providing information on artifact evolution.

 17

• Provide protection 3: add additional protective features such as undo/redo and

merging.

Requirements 4

Adding audio as a communicative device can be an enormous improvement. It allows users to

use their natural language, which, in many cases, is far more efficient than having to type a

message. Also, the ability to convey emotion is important.

• Means for intentional and appropriate verbal communication 3: adding audio to

improve communication

Allowing for the construction of larger objects from component pieces not only reduces the

chaos on the workspace, but may also make the entire component reusable.

• Construction of larger objects from component pieces

• The management of an autonomous system represented in the workspace

Requirements 5

The potential of video as a collaborative device is still uncertain. As Sellen [8] discovered, video

does not appear to be an improvement compared to high quality audio and therefore should be

considered ultimately.

• Means for intentional and appropriate verbal communication 4: adding video

Optional Requirements

The Mechanics of Collaboration described in the previous chapter suggest additionally adding:

• Means for intentional and appropriate gestural communication 2: adding

avatars, video images, etc.

• Provide consequential communication of an individual's embodiment: adding

for example talking heads, a mapping of your face to a 3D head.

Even though these features may help collaboration, it is questionable whether it is realistic to

propose them as a requirement for the VL-e.

4.2 In Depth Analysis

Since we are extending an existing system, some features may already (partially) exist or may be

closely related to work which will be done by other VL-e developers. Two of the five points

described as first basic necessities are not solely collaborative features. The first one, Session

control, is related to the VL-e’s access control, as those who are allowed to enter a specific study

are also those who are allowed to participate in a collaborative activity. The second feature,

navigating the workspace, is also a feature which is related to other VL-e components as the

graphics are provided by the VL-e components themselves. In this report we shall focus on the

 18

three remaining requirements. Furthermore we will touch the subjects of data consistency

management and management of loosely-coupled collaboration.

In Depth Analysis: Shared-Workspace Awareness

In shared workspace environments it is important to remain aware of other people’s actions.

According to Gutwin and Greenberg [15], awareness plays a key role in the fluidity and

naturalness of collaboration. They define workspace awareness as:

“The up-to-the-moment understanding of another person’s interaction with the shared

workspace. “

This emphasizes the importance of awareness of interaction between people and the workspace.

A shared workspace environment should provide the means to answer basic questions, such as:

• Is anyone here?

• Who is that?

• Who is manipulating that artifact?

• What is happening?

• Where is he working?

• Where is he looking?

• What can he see / manipulate?

Such questions can be answered in varying ways. A userlist, for example, can answer the first

question. A telepointer can, if properly designed, answer all of them, but only if it remains inside

the current view. By providing an overview of the entire workspace in a secondary window,

showing Telepointers and objects, it is possible to expand the awareness beyond the point of

focus. Adding view rectangles around the Telepointers in the secondary view will enhance the

awareness even further, as users can see what other users can see and manipulate. However,

when too many users are active awareness will decrease as it will be hard to get a clear view of

what people are doing. The view rectangles will overlap, messing up the radar view. As Johnson

noted in [21], requirements for architectures supporting “collaboration-in-the-small” are

fundamentally different from those supporting “collaboration-in-the-large”, such as the WWW.

In Depth Analysis: Data Consistency Management

Just like in normal distributed systems, collaborative systems require data to be kept consistent.

However, with collaborative systems when events are handled out of order displays may become

inconsistent, causing confusion amongst the collaborators. The activity of coordinating

potentially interfering actions of processes that operate in parallel is known as concurrency

control [13].

 19

One such concurrency control method is synchronization. A non-optimistic synchronization

policy ensures that all events are handled in order. The scheduler delays events until all its

predecessors have arrived. This can make the policy slow, but it does guarantee consistency.

Optimistic synchronization policies assume that conflicts rarely occur and therefore that events

will rarely arrive out of order. Events are handled as soon as they arrive, making execution a lot

more efficient. However, when a conflict does occur, it will have to be repaired. The algorithms

needed to repair conflicts are often complex and even then not all actions are repairable.

Concurrency can also be managed through the use of locking mechanisms. Here, a user requests

a lock to an object after which, if approved, he is granted privileged access to it for a certain

amount of time. Non-optimistic locking forces a user to wait until the lock is granted before he is

allowed to edit the desired object. Optimistic locking allows a user to immediately start altering

the object; if the lock request is denied, the object has to be returned to its old state. Optimistic

locking is divided into two main groups, fully-optimistic and semi-optimistic locking. In semi-

optimistic locking the user cannot start editing another object until the lock request for the

previous one has been answered (either denied or accepted). Fully-optimistic locking, on the

other hand, allows users to start editing other objects, perhaps even based on the state of an

object whose change has not yet been approved. When the first lock is denied, this can therefore

require very complex undo mechanisms.

The grainsize of locking is also an important issue. For example, are the locks on entire objects,

on a single property of an object, or on a single character which defines a property? Different

grainsizes give a different feel.

The proper scheme for the VL-e will have to be considered carefully. Non-optimistic schemes

will guarantee that no conflicts occur, but may cause irritating delays. Optimistic schemes may

cause irrational behavior when an error is corrected, for example an object suddenly jumping

back to an old position in the workspace. If sufficient awareness is provided, making it is clear

that someone else is changing that object, natural collaboration should make conflicts rare

though, as it is obviously rude to change alter and object while someone else is working on it.

Another issue is the network. In high latency networks waiting times will increase and

performance will suffer too much. In such a case an optimistic policy has to be provided. If

latencies are low, there is less reason to implement optimistic policies.

A final consideration is resources. Optimistic policies require much more resources than their

non-optimistic counterparts.

In Depth Analysis: Instant Messenger and Userlist

Background

Instant Messengers (IMs) are communicative applications which allow users to type and send

messages to other users. Contacts of users are kept on buddy-, or userlists. By opening a

 20

message window to one of the contacts, text messages can be exchanged with that user. The

message window provide a space to type a message and space in which messages are displayed.

Given the popularity of MSN, ICQ, AOL, Trillian and other such applications, they have proven

their worth as a communicative device, though this does not necessarily make them an effective

collaborative device.

IMs are an interesting form of communication. They are extremely useful for informal

communication and allow for complex collaboration, such as joint problem solving,

coordination, social bonding, and social learning [22]. Since IMs are so informal, users have to

spend less time on formalities, allowing for quick questions and equally informal and quick

answers. Another big advantage of IMs is the message windows remaining open until closed by

the user. If a user receives a message while not being around, on return to his computer he’ll find

the message, still allowing him to respond. This makes IMs a tool for synchronous as well as

asynchronous communication. An additional effect is that IMs allows for plausible deniability

about one’s presence [22]. As a sender is unaware whether the receiver is actually their or not,

the receiver can easily ignore the message and answer it when he sees fit. The sender will not be

offended, as he presumes the receiver was simply away. IMs thus provide recipients with control

in deciding whether and when to respond to a message.

On some occasions an IM will not suffice, as some problems are too hard to describe with text

messages. Furthermore IMs’ lack of emotional representation can lead to confusion on both

sides. Though many messengers provide small icons to express emotion (emoticons), this is not

nearly enough to simulate real emotions. On occasions where an IM does not suffice, switching

media is necessary and the IM can be used to determine whether the other user is available and

has time for, for example, a phone call.

Handel and Herbsleb [19] point out that IMs have many disadvantages. The often used pop-up

window when a message is received is a distraction for the receiver. Lack of emotion and texts

which have been given too little thought can spark online arguments. Instead of using an IM,

they suggest using a public chat space. In a public chat space, everyone in the group reads and

writes to the same persistent window. As this is by far more public than an IM, conversation will

more focused on work and users will be less likely to gossip, flame, etc. An important

advantages of group chat over IM, is that it is less intrusive. It is simply always there and people

will respond when they feel like it. The main disadvantage is that someone may miss things

addressed to him, simply because he is not paying attention. This can be fixed by, for example,

allowing someone to produce a beep to alert someone else, but this will be distraction for the

receiver. The balance between distraction and chance of missing an important message must be

carefully considered with public chat spaces as well as with IMs.

As stated before, IMs make use of buddy-, or userlists. These contain the names of the people

with whom the user wishes to keep in touch and also gives information about users’ availability.

 21

It can also be used for many other things, such as inviting people to join a conversation, starting

a video conference, initiating an audio connection, sms-ing, etc. It can be the very basis of the

communicative part of the collaborative system.

Design: Userlist

In designing the concept of the userlist, several questions require answering:

• Who are on the userlist?

• How can contacts be added?

• Who are the contacts?

• How are the contacts organized?

• Is a user available?

• What other functionalities does the userlist provide?

Who are on the userlist?

Studies in the VL-e will in general have a fixed group of people. As collaboration should take

place primarily amongst those people, it makes sense to have those people on the userlist. When

a user logs into the study, the study will provide him with the study’s userlist
1
, which will then

be added to the user’s userlist.

Users can be part of more than one study at a time, but are not necessarily active in all of them.

For example, when a study is performing massive calculations the user may well decide to check

back on them later. We believe that when a user logs into a study the accesslists of all his

running studies (online studies in which he participates, but in which he is not necessarily active

at the time) should be part of the userlist. This will allow him to communicate with all of the

users of his running studies and vice versa. If something important comes up a user can easily be

contacted, enhancing collaboration.

Collaboration can be further enhanced by allowing users to keep Personal Contacts. For

example, when two brain surgeons are discussing a 3D model of a brain, if one of them has

befriended another surgeon, it may be useful to invite him to join the study, even though he is

not part of the accesslist. Having someone in a personal userlist is far better than having to look

that person up. Not only does it save time, but it also allows the user to determine the other’s

availability. Furthermore is allows users to keep in touch. Even though this may prove to be

distracting, it will improve collaboration; people are more willing to help someone they know.

How can contacts be added?

The content of the userlist is primarily defined by the studies in which the user participates. By

joining a new study, the userlist is automatically updated with the study’s accesslist. Personal

1
 From now on, we shall refer to a study’s userlist as accesslist. This will decrease confusion with the user’s userlist.

Furthermore, since access to a study is indeed limited to the users on the accesslist, it is an accurate description.

 22

contacts can be added by either searching a database for a user, or by adding them from the

accesslist. Being able to search for contacts is also important when looking for experts to invite

temporarily to a session. As this issue overlaps with adding users to a study’s accesslist when a

study is created, this issue will have to be discussed with the rest of the VL-e developers.

Who are the contacts?

In a highly secure workspace such as the VL-e, personal information must be available. As Grid

credentials are used to identify a person, there is no doubt whether a person is who he claims to

be. By making personal information available anonymity is removed, making everyone

responsible for their actions and behavior. The amount of misuse should therefore decrease

dramatically. A pop-up menu should provide users with the option to read a person’s personal

information.

How are contacts organized?

As stated previously, users should be able to communicate with the users of all their running

studies. It does make sense to display the studies in which the user is currently active on top in

the userlist, as communication will most likely take place within a user’s active sessions.

Is a user available?

By providing states which reflect a user’s availability and displaying this on the userlist,

availability can easily be determined. A user will be able to be in several states: “online”, “online

in other”, “offline”, “do not disturb” and “away”. When a user logs into a study, he will be

“online” that study. In his running studies, he will appear as “online in other”. When he logs out

again, his state will revert to “offline”. A user who does not want to be disturbed can set his state

to “do not disturb”. The “away” state is slightly more complex. Not only should the user be able

to change his state to this mode, but it should also automatically go into this mode if a user does

not use his mouse or keyboard for some time.

Unfortunately states are often misused. For example, setting a status to “away”, while simply

sitting behind one’s desk. A solution would be not to allow the user to change his state to

“away”, but to let the system handle it. If, for example, the user does not use his mouse for 30

seconds, the mode changes to “inactive” and after another 30 seconds to “away”. A user trying

to send a message will receive a warning that the receiver is away after which he may decide

whether to send the message or cancel it. Unfortunately there is no such solution for “do not

disturb”, as it is impossible for the system to determine whether someone truly does not wish to

be disturbed. A solution is partially presented by social protocols. By providing the sender with a

warning that the user does not want to be disturbed unless it is urgent a user may think twice

about sending the message. Still, if the mode is too often misused (e.g. someone always being in

“do not disturb” mode but always answering and chatting), such warnings will lose potential.

The effectiveness is therefore largely dependent on the reactions on the receiver side. If someone

 23

truly does not want to be disturbed when he is in that mode, users contacting that person for idle

chatter will learn that quickly.

Another matter is that managers, project leaders, etc. want some way to entirely block incoming

messages. Since such mechanisms disturb collaboration, it is questionable whether such an

option should be provided to all the users, or should be limited to specific groups. We are

currently exploring the possibilities of the latter by providing users with a collaborative level

based on which they have more (or less) options available to them.

What other functionalities does the userlist provide?

Besides providing awareness, the userlist can be integrated with the instant messenger.

Furthermore it can be used to invite people to join sessions, start audio conferences and video

conferences, and to send sms messages.

Visual Representation

We have something in mind which looks like Figure 4.

Figure 4: Userlist Concept

Discussion

The suggested userlist has advantages as well as disadvantages. We expect that the way it is

presented will give users a clear sight of who is available and who is not, thus effectively

providing some awareness. Furthermore it is possible to expand and contract the accesslists,

allowing users to focus on the ones that are of interest. This may also reduce network traffic, as

 24

it is unnecessary to receive updates on states in which the user is not interested. A minor

disadvantage is that when a user logs into a study, it will have to be moved in the userlist.

First Version

The first version will be a very basic userlist. It will allow only one accesslist and will support a

variety of states, though all of them will be handled manually. Blocking incoming messages will

not yet possible.

Design: Instant Messenger

The IM has the user list as a basis. A number of issues have to be taken care of:

• How can users send messages?

• How are users made aware of received messages?

• How do user states (defined by the userlist) effect the messenger?

• How can users chat with multiple users?

• What happens when a user destroys his message window?

• What other functionalities does the Instant Messenger provide?

How can users send messages?

By clicking on a user name from the userlist a message window will open. Each conversation

has its own message window. The user can type a message, followed by pressing either enter or

clicking the “send” button. As soon as the user has sent his message, the message will be

displayed on the sending as well as on the receiving side’s message window. If no message

window for the conversation exists at the receiving side (it is either the first message, or the

receiver has killed the previous window) a new message window will be created. The receiving

side can thereafter send messages in the same fashion as the sender.

How are users made aware of received messages?

As stated previously, the balance between awareness and disturbance has to be considered. For

example, playing a sound when a message is received will make the person aware of the

message, but it is highly disturbing and often annoying. On the other hand, if no feedback at all

is provided, users will not be aware of messages. Tolerance to disturbance is user dependent and

the disturbance/awareness balance should therefore be made customizable. Naturally a minimum

level of awareness should be provided, perhaps something similar to Microsoft’s Sideshow,

displaying a small part of the message near the username on the userlist.

How do user states affect messages?

The states a user can be in should have some effect on the messenger. Someone who is “online”

will be able to receive messages normally. Both “do not disturb” and “away” should provide the

 25

sender with a warning. Users who are “offline” are, of course, unable to receive messages. This

will be changed once offline messaging is added for asynchronous communication. Offline

messaging will simply store a message somewhere and when the user logs in, he will receive the

message.

How can users chat with multiple users?

Users can address messages to multiple users in two ways. The first will allow them to drag a

username into an existing message window, adding the user to the conversation.

The second way will be from inside the message window. A menu item will be provided which

will allow a user to add someone to the conversation by selecting someone from his userlist or

searching a database. The selected user is added to the conversation.

Additionally it is possible to add a feature which will allow users to send a message to all users

in the study. This would allow for easily talking to all within the study.

What happens when a user destroys his message window?

The message window will be terminated and the user leaves the conversation. In a one-on-one

conversation, if the user who did not close his window sends another message, a new message

window will open at the receiver side. If the user who destroyed his window opens a new

window to the same user sends a message, it should arrive in the other user’s old window.

Figure 5: Message Window Concept

What other functionalities does the Instant Messenger provide?

 26

File transfer may be an interesting feature for the message window as it would allow multiple

users to receive the same file.

Visual Representation

The Instant Messenger should look something like Figure 5.

Discussion

The one point of discussion concerns our choice for IM instead of group chat. The main reason

for this is that with group chat all communication would take place inside the study’s group chat

space. If a user is active in multiple studies, he would have to keep an eye on all the separate

chat spaces. Furthermore contacting someone outside of the session would in this case require

adding that user to the group chat space. For what we need for VL-e, IM is better suited.

First Version

The first version of the Instant Messenger should simply allow two users to send messages to

each other.

In Depth Analysis: Telepointer

Background

Telepointers are mouse pointers which are visible to all users within the shared workspace. They

are simple and computationally inexpensive. They provide embodiment, gestures and a means of

coordination.

In strict WYSIWIS constructing a telepointer is fairly easy: simply map the coordinates of the

pointers to the same coordinates on all displays. Relaxing WYSIWIS makes matters more

complex. In workspaces which provide a simple form of relaxed WYSIWIS telepointer mapping

can be done by using world coordinates. As these are the same for every user, the mapping itself

poses no problem. However, due to the relaxed WYSIWIS it is possible for a user’s telepointer

to reside outside another user’s view, thereby decreasing workspace awareness. Another problem

is that textual reference of objects can refer to different objects. For example, “the object at the

top” can refer to two different objects for two different views.

Greenberg, Gutwin and Roseman describe two more relaxed-WYSIWIS styles [14]. In the first

style the view size itself is customizable, for example by resizing the window. As they point out,

a problem arises if the application reorders the objects to fit in the resized space. In this situation

the world coordinates are no longer similar and cannot be used to map the telepointers. Mapping

occurs by mapping pointer position to the underlying application objects. Though the mapping

itself occurs correctly, telepointer movement may become erratic. Moving the pointer from the

new line to the above line will be a fluent motion in the new window, but will seem jump from

the end of the line to the beginning in the original window. Similar oddities will happen with

gestures which span more than one line.

 27

The second style makes matters more complex by allowing objects to alter the views. As an

example consider an expandable tree, which expands on the view of the user who desires it, but

not on all others. This may lead to a situation where someone is working on, talking about, and

gesturing at some object which is not even visible to the others. Furthermore mapping becomes

problematic, as the object to which the telepointer is mapped, may not be there in a different

view.

Mouse pointers are often overloaded, providing information of the current state of the system,

the user or help messages. For example, in windows when the system is busy, the user is made

aware of this by transforming the pointer into an hourglass. This overloading can also be used in

groupware to help provide understanding of what a user is doing, for instance by changing a

cursor into a flywheel when a user is editing an object. Another important use of overloading

telepointers is to provide awareness of the identity of a user. Examples include color coding,

displaying a name or picture below the pointer, and changing the pointer into a symbol which

represents the user.

Telepointers are a streaming media. A constant flow of x and y coordinates is required to achieve

the necessary performance. A big enough disruption in the flow can cause stuttering or jumps.

This not only looks bad, but is devastating for gestural communication. Three network effects

can cause problems [11]:

• Latency, which is the delay between the sending and the receiving of a message.

The user might not notice it, as all movement will be delayed equally (assuming

no jitter). However, when a second media is used to support the telepointer, they

will be out of synch.

• Jitter, which is the variance in transmission time. Messages arrive irregularly,

some on time, some too late, due to congestion of the network. This will cause

stuttery movement.

• Loss, which is complete loss of a message during the transmission. As losses

often come in bursts, this will cause jumps.

According to Dyck, Gutwin, Subramanian, and Fedak [11], most of the currently existing

telepointer implementations can only function on high-bandwidth networks, but fail on slower

ones, which have far more problems with network performance. They have developed a

telepointer which can function under bad circumstances. A number of techniques were used to

improve performance, the most important ones being compression and adaptive rate control.

Compression decreases the message size and therefore the amount of data to be sent, thus

achieving better performance on slower networks. Adaptive rate control sends messages on a

timer instead of using an event based system. The adaptation ensures that adjusting the send rate

based on network conditions. Another interesting conclusion is the unsuitability of TCP/IP.

Instead the more light-weight UDP protocol should be used.

 28

The effects of jitter can be decreased by adding telepointer traces. A telepointer trace is a visual

effect which provides feedback on the previous positions of the pointer. The visual effect must

be carefully designed, lest it be distracting. Gutwin and Penner [16] discovered that “relatively

short, low-contrast, fading motion lines showed motion well, but did not add undue clutter to the

display”. Adding a trace decreases many negative effects of jitter. By allowing people to

customize the time to fade, contrast, etc. of the trace, users limit cluttering to an extent which

they find acceptable.

Design: Telepointer

Telepointers are less customizable than an IM and userlist. Performance is an important aspect

and the suggestions given above should be taken into account during its implementation. Due to

a lack of time the Telepointer has not been fully designed. There are a number of issues which

still require answering and some which have already been answered.

• How can the owner of the Telepointer be recognized?

• How will the Telepointer be mapped?

o What will happen when a user edits an object?

o What will happen when a user moves his pointer to a different layer?

o What will happen when a user switches to a different study?

How can the owner of the Telepointer be recognized?

By providing names with the pointers, it should nearly always be clear to whom the specific

pointer belongs. These named pointers should also be shown in the secondary view.

How will the Telepointer be mapped?

Since the VL-e will not reorder objects when a window is resized and will not have expandable

items, world coordinates should allow proper telepointer mapping.

When a Telepointer moves to a different layer (e.g. a pop-up window, the drag and drop list of

the Topology Editor) there are two possibilities. Either map the Telepointer to the different layer,

or don’t map it. In case of a pop-up window, mapping it to that layer will not work unless the

pop-up is visible for every user. Showing a full-scale pop-up on every screen every time

someone triggers one is obviously a bad idea. Not showing anything may be a bad idea as well

as it may provide awareness. The best solution in case of a pop-up would be to show a miniature

version of it on all other workspaces, located at the position of the Telepointer of the user who

triggered it, and map the user’s Telepointer to it. In case of the drag and drop list, the Telepointer

leaves the shared workspace. Furthermore, as can be seen in Figure 3 on page 7, the position of

the list is a separate window and its position is therefore customizable. Not mapping the

Telepointer to that layer will either freeze it on the position where it was prior to switching to the

other layer or removed it from the workspace entirely since the Telepointer is no longer on the

 29

workspace. Mapping the Telepointer may cause erratic jumps, as the layer’s position is

customizable. Once again, providing a miniature on the place where the Telepointer changed to a

different layer might be the best solution, as this will provide feedback but prevents erratic

Telepointer movement.

When a user edits an object, he will be editing its properties. As can be seen in Figure 3 on page

7 these properties are located on the down-left side of the screen. This may be a problem, as

altering these properties will require the mouse moving to that portion of the screen and then

switch between layers. Not only are the same problems present as with the drag and drop list, but

now the position of the Telepointer no longer properly reflects the user’s action. A solution

might be to visually freeze the Telepointer to an object while it has been selected, while letting

the user move his mouse around freely. Unfortunately, this would require a user to deselect the

object before his Telepointer becomes visible again. It is more likely that people will select an

object, read its properties, navigate around the workspace and select a different object.

Deselecting is an extra action people will generally not do.

When a user switches to a different study, the most obvious option would be to let the

Telepointer simply disappear from the workspace. This should work fine in most cases. Color

coding for objects which are locked may have to be provided though, as it may otherwise be

unclear why a user may not alter an object even though no pointer is near it.

Different Telepointer

One option we are considering is to limit the amount of Telepointers available in a workspace.

Instead of giving every user a Telepointer, one can be requested by clicking on a button. Once

the user has received the pointer he can use it for a certain period of time or can release it

beforehand. Furthermore only Telepointers are able to use the drag and drop list and to alter

objects.

The advantage of this scheme is that it will lessen the chaos in the workspace. Data consistency

management will become easier, as conflicts are less likely to occur. The downside is that

awareness will drop as it is uncertain where other users are gazing. Furthermore the effectiveness

is largely dependent on whether users will collaborate to discuss results or to build a study. If a

lot has to be built, limiting the amount of Telepointers will slow down the progress. If results

have to be discussed, limiting the amount of Telepointers will improve the discussion as users

have to focus on fewer pointers.

By providing a customizable timer as well as a button-based release mechanism and by allowing

the project leader to customize the amount of Telepointers the system should reflect the needs of

any group. By making the release mechanism customizable, project leaders can make a tradeoff

between starvation (someone refuses to push the release button) and annoyance (someone loses

the telepointer in mid-discussion). By making the amount of Telepointers customizable the

project leader can better customize his study.

 30

 31

Chapter 5 Toolkits
A huge number of collaborative toolkits exist which should improve the life of the implementer.

In this chapter we shall first give a list with many of the toolkits we found on the internet. We

shall give short descriptions of them, as given by the sites from which they were taken, and we

shall give the status of the toolkits. We will conclude this chapter by explaining which toolkit we

selected for our work and illuminate some of its advantages and disadvantages.

5.1 Toolkits

Toolkit Name &

 Info URL

Short Description (taken from the respective sites) Status

COAST

www.opencoast.org

The COAST framework reduces the load of development

of groupware applications to a level of single user

application. The COAST framework offers data

description mechanisms to specify the (shared) domain

model, provides mechanisms for synchronous

manipulation of the shared domain model by a set of

users, keeps the shared model and their visualizations at a

consistent state, supports the provision of clues about

activities performed by other users (group awareness),

includes a pre-defined extensible model of users and their

work environments, and assists the developers in

modeling user interaction and collaborative sessions.

Last

Update:

2003

Collabrary

grouplab.cpsc.ucalgary.ca/

 collabrary/

The Collabrary is a library of COM objects for rapidly

prototyping collaborative multimedia applications.

Example applications include: media spaces, synchronous

real-time groupware, community information spaces,

computer vision applications, scripted image and video

manipulation.

Alive

DistView

www.eecs.umich.edu/distview

DistView is a prototype multicast middleware service for

building collaborative applications. Written entirely in the

Java programming language, DistView provides group

communication services that meet the various shared state

management needs of collaborative environments. It

provides a rich interface for group and session

management, the ability to ensure totally ordered message

delivery, a lock-based distributed synchronization

mechanism, and support for selective window sharing.

Alive

 32

Collaborative Toolkit

For Diverse

www.sv.vt.edu/future/cave/

 software/D_collabtools

There are two main parts to this collaborative toolkit. The

first part is providing avatar support to your virtual world.

The second part is item manipulation in the virtual world.

Diverse is a cross-platform, open source, API for

developing virtual reality applications that can run almost

anywhere. The goal of Diverse is to enable developers to

quickly build applications that will run on the desktop as

well as various immersive systems.

Alive

DreamTeam

dreamteam.fernuni-hagen.de/

 dreamteam/

DreamTeam is an environment for developing,

synchronous shared applications. The DreamTeam

environment allows the developer co-operative

applications like single user applications, without

struggling with network details, synchronization

algorithms etc. A DreamTeam add-on, called

DreamObjects, simplifies the management of shared data.

It extends the DreamTeam runtime and development

environment and offers a variety of shared data services.

DreamTeam is entirely written in Java, thus runnable on

many systems

Alive

Egret

www2.ics.hawaii.edu/ftp/

 pub/csdl/egret

Egret is a groupwork environment that defines both a data

and a process model along with supporting analysis

techniques for exploratory collaboration, such as software

development and document generation. Egret is an Emac-

based toolkit which provides both low and high level

storage and communication facilities for the development

of (primarily textual) cooperative work applications.

Alive

GroupKit

www.groupkit.org

With GroupKit programmers build applications for real-

time, distributed computer-based conferencing. Groupkit

is based on the Berkeley's Tcl/Tk language. GroupKit

facilities include shared data structures, flexible session

management, remote procedure calls, concurrency

controls and multi-user shared interfaces. It is possible to

integrate computer-based media space systems with

GroupKit, so that starting a GroupKit conference also

starts the media-space system.

Alive

 33

Habanero

sunsite.bilkent.edu.tr/pub/SDG/

 Software/Habanero/

Habanero is a collaborative framework and set of

applications. Using Habanero you can create and work in

shared applications from remote locations over the

Internet. The Habanero framework, or API, enables

developers of groupware applications to build powerful

collaborative software in a reduced amount of time. The

Habanero framework provides the necessary methods

developers can use to create or convert existing

applications into collaborative applications. Habanero is

written in Java, it will run under any operating system that

supports JDK 1.1.6. The Habanero environment consists

of a client, a server and a variety of tools.

Last

Update:

1998

Jabber

www.jabber.org

Jabber is a set of streaming XML protocols and

technologies that enable any two entities on the Internet to

exchange messages, presence, and other structured

information in close to real time. The first Jabber

application is an instant messaging (IM) network that

offers functionality similar to legacy IM services such as

AIM, ICQ, MSN, and Yahoo.

Alive

Java Shared Data

Toolkit

java.sun.com/products/

 java-media/jsdt/

The Java Shared Data Toolkit software is a development

library that allows developers to easily add collaboration

features to applets and applications written in the Java

programming language. Enterprise developers can use the

Java Shared Data Toolkit software to create network-

centric applications, such as shared whiteboards or chat

environments. It can also be used for remote

presentations, shared simulations, and to easily distribute

data for enhanced group workflow. The Java Shared Data

Toolkit complements Sun's rich suite of Java multimedia

technologies by allowing them to be incorporated into

"sessions" created and managed with the Java Shared Data

Toolkit.

Alive

MAUI (MUG)

hci.usask.ca/projects/maui.xml

This toolkit provides the first ever set of UI widgets that

are truly collaborative-aware. The MAUI toolkit includes

groupware versions of standard UI widgets, and also

provides specialized groupware components such as

telepointers and participant lists.

Alive

 34

OVAL

www.ickn.org/elements/hyper/

 cyb64.htm

Oval uses ideas from artificial intelligence and user

interface design to represent information in a way that can

be processed intelligently both by human beings and by

computational agents. It integrates ideas from the fields of

hypertext, object-oriented databases, electronic messaging

and rule-based intelligent agents. Its particular focus is on

the development of applications for cooperative work, but

most of the ideas can easily be applied to other domains.

Unknown

PREP

eserver.org/software/prep/

PREP is a Macintosh application that encourages and

facilitates collaboration in writing. PREP provides a

column-based interface where related information is

linked across columns. One use for PREP is as a word

processor that provides more than print margins -- it

provides an unlimited number of "virtual margins" that

collaborators can write in. PREP supports text, drawings

and voice within the document as content or annotation.

Dead

Prospero (Neuman)

www.isi.edu/gost/gost-group

 /products/prospero/

Prospero is a collection of protocols and embedded

software providing distributed directory services, file

access services, naming, maintenance of attributes,

indexing, caching, storage, for other network applications.

Last

Update:

1998

Prospero (Dourish)

www.cs.ucl.ac.uk/external/

 p.dourish/thesis.html

Prospero embodies a model of its own behavior (a

reflective model) which is causally-connected to the

behavior it describes. So the model can be used, not only

as a way for the system to introspect and reason about its

own configuration and action, but as a way for it to reach

in to the implementational structures which support it, and

modify them.

The application developer gains control over the strategies

used for data distribution, conflict resolution and interface

linkage. These are areas where the toolkit developer

would normally have to make implementation decisions

which would limit the applicability of the toolkit and

impact patterns of collaborative interaction for end-users.

The open implementation approach used in Prospero

allows these decisions to be revised later, when the needs

of particular application areas or groups become clear.

Dead

 35

Single Display

Groupware Toolkit

www..cpsc.ucalgary.ca/grouplab/

 software/SDGT/

The SDG Toolkit is a framework for designing single

display groupware applications. SDGT is a COM object

designed for managing multiple mice and keyboards.

Alive

Sonexis Audio and

Web Conferencing

www.sonexis.com

Sonexis, Inc. delivers an in-house, secure, integrated audio

and web conferencing system that helps businesses

improve business processes and communications while

significantly reducing the cost of conferencing.

Alive

Suite

ftp.cs.unc.edu/pub/users/

 dewan/suite

Suite Distributed Object Model is a Unix/X groupware

toolkit that can be used to extend the original Suite system

and offers a better support for building new classes of

applications in distributed fashion. It has been used to

investigate the issues of sharing abstractions, flexible

coupling, access control, merging and inheritance. Suite is

one example that indicates the benefit of the distributed

objects approach.

Last

Update:

1998

TeamWave Workplace

www.markroseman.com/

 teamwave/

In real life, teams use rooms to discuss matters, brainstorm

ideas, scribble diagrams on a whiteboard etc. They also

use rooms to store/display things (draft reports, drawings,

references etc.) for other members to look at/modify/add

to at any time. TeamWave Workplace is a cross platform

Internet-based software package which allows these sorts

of collaborations to take place over the Internet in a set of

virtual meeting rooms. Not only does this mean that

geographically isolated teams can work together but also

groups of school students and/or teachers can use the

virtual rooms as places to permanently store shared

resources.

Dead

Virtual Network

Computing

www.realvnc.com

VNC is remote control software which allows you to view

and interact with one computer (the "server") using a

simple program (the "viewer") on another computer

anywhere on the Internet. The two computers don't even

have to be the same type, so for example you can use

VNC to view an office Linux machine on your Windows

PC at home.

Alive

 36

5.2 Toolkit for VL-e

Many of the toolkits described above have a variety of problems which make them unsuitable

for our project. For one, some of them force the designers to use a specific architecture (e.g.

COAST, DistView). Since the VL-e itself has specific architectural requirements, using such a

toolkit will give an awkward end-product with an architecture inside an architecture.

Furthermore it is uncertain whether it is actually possible to use such a toolkit for the VL-e. A

telepointer mechanism may well be incompatible with the workspace which already exists in the

virtual lab. Another problem with using a tailored toolkit is that the components often cannot be

changed. Other toolkits are too limited to suit our needs (e.g. VNC), simply unsuitable for our

intentions (e.g. Suite), or dead (e.g. TeamWave).

We selected the Java Shared Data Toolkit to aid in our work. It has many advantages, the most

important one being its high customizability. Unlike many of the other toolkits which provide

entire components, JSDT provides small building blocks to create a component. Furthermore it

uses Java, which is what most of the VL is written in. By using Java functionality provided by

the Globus toolkit can be directly used, as the Globus has an API for Java. Furthermore, the

JSDT is alive, so it is still being improved.

JSDT: A Short Overview

The choice of the toolkit will have major influence on the design. Therefore it is necessary to

understand some of the functionality it provides [7].

Session

In the JSDT the initial meeting place is called a Session. A Session has a specific URL of the

form:

jsdt://<server>:<port>/<protocol>/Session/<name>

Here, <server> is the name or IP address of the server computer, <port> is the port number,

<protocol> can be socket, http, or lrmp, and <name> is the name of the Session. A Factory is

provided which can be used to create, join and destroy a Session. The first invocation of the

create method of the SessionFactory while providing a URL string causes the Session to be

created. Preceding calls with the same URL will give a reference to the existing Session.

Client

Any object that is going to participate in a Session has to implement the Client interface. One

important method of the Client is its authentication method. This method is used for

authentication purposes when the client tries to perform a privileged operation like, for example,

joining a Session. A special kind of Client can be created by using the ClientFactory. This

Factory assigns the Client with a URL, which can be used for invitation purposes. A Client

object can be the source and destination of the data which is being exchanged.

 37

Channel

A Channel is a communications path between Clients within a Session. Clients can add

Consumers to a Channel to receive data from it. Clients can send data over a Channel to all

Clients including themselves, excluding themselves, or to a single Client. The data sent over a

Channel is a specific object, the Data object. It includes the data, a priority, the name of the

sender and the Channel over which the data was sent.

ByteArray

The JSDT allows the creation of a shared object that is permanently available to Clients within a

Session. This object is a ByteArray and it can contain an array of bytes, a String object, or a

serializable Java object. Clients joining a ByteArray will be notified when someone changes the

object.

Manager

Access to Sessions, ByteArrays, Channels and Tokens can be controlled by adding a Manager to

it at creation time. The Manager issues a challenge to the Client who is trying a privileged

operation. The Client responds to the challenge and the Manager compares the response with the

response it was expecting.

Using the JSDT will allow us to create a Collaborative environment. As it works with Session

URLs, these Sessions can be located anywhere. By giving the Client a URL as well, it is possible

to use invitation mechanisms. Communication between Clients will have to take place via a

server. It is possible to create a Session on the Client side, but that will not provide a usable

solution. If the Client who created the Session decides to turn off his PC, the Session and

everything with it (Channels, ByteArrays, etc.) will go down with it. Obviously that is a bad

idea, as this will break off any ongoing conversation. Solutions which do not have these

problems include using predefined channels over which users can communicate and requesting

the server to create a channel. Since both solutions have the channels located on server-side, the

user’s availability is of no concern.

 38

Chapter 6 Architecture
In this chapter we will use the requirements defined in Chapter 4 to design our system by using

parts of the UML as described by [3] and [10]. We will present the architecture which supports

the Instant Messenger and userlist. As stated before, the Telepointer’s design has been postponed

due to a lack of time.

It is important to note, that the development process itself did not take place in the same order as

the items are presented here. Nor were they created as linearly.

6.1 Designing the Architecture

Requirements Revised

Besides the truly collaborative requirements described previously, the VL-e has additional

requirements, which influence the system design.

• Grid Service: as stated in Chapter 2, the VL-e is service oriented. This

influences our design by forcing a client-server architecture. Furthermore

services have to remain up and running, requiring persistence.

• Light-weight client: most of the processing has to be done at the server side.

• Linking of studies: this links collaborative environments together. It opens up a

new range of possibilities, such as communication outside of a study, inviting

someone to join, etc.

• Security: only people with access to a study are allowed to communicate over a

channel dedicated to the study.

If users from different studies are to communicate, the means has to be provided to allow them

to find each other. The Global Collaborative Manager (GM) is a Grid service which connects the

individual studies. Per VL-e setup there is only one instance of this service.

In order to create the light-weight client, nearly all processing will have to be done at the server

side. The Grid Service responsible for this is the Cross-Session Collaborative Manager (CSM).

Each client simply communicates with his CSM, who acts on his behalf on the server side. All

the client-side has to do is provide a GUI.

For communications to take place between two people, the above allows for two options. Users

can either communicate directly from one CSM to another CSM, or they can communicate via

the GM. As described in Chapter 5, the first one is not an option, due to problems when the

creator of a channel decides to leave. The second approach has other problems. All

communications between users would have to go via the central server. On slower networks with

many users (and perhaps in the future streaming media), performance will probably suffer

greatly. Furthermore, the Collaborative System will be greatly dependent on the GM. If it goes

down, communications are dead. To solve these and other problems, we decided on using a more

 39

distributed approach. A third Grid service, the Inner-Session Collaborative Manager (ISM), will

give each session its own collaborative environment. Users join channels made available by the

study’s ISM. The ISM knows how to contact the GM if a message needs to go outside a session.

As it is to be expected that nearly all communications will take place inside a session and very

little outside a session, using the distributed approach will decrease network load. Also, if the

GM goes down, users will simply be unable to send messages outside their running sessions. A

disadvantage of the distributed approach is that it is more complicated.

In conclusion, our system will have four main components: the Client, the Global Manager, the

Inner-Session Manager and the Cross-Session Manager.

Use Case Diagram

Use case diagrams help to determine the functionalities a system must offer to the outside world.

For this it is necessary to know who will interact with our system; the actors. Actors can include

persons, but also other components, like databases. For our system we found the following

actors.

- User: a person who uses the Collaborative System.

- Session Manager: the VL component responsible for the creation of a collaborative

session.

- Accesslist Provider: since it is currently unclear which actual VL component will

provide the access list, which we need to build the userlists, we will use this actor for

it.

- VIMCO: the VL component which can provide us with a collaborative level for a

user.

Join Collaborative

Session

Initiate Conversation

Add to Personal

Contacts

Remove from
Personal Contacts

Change Status

Invite to Join

Session Manager

Leave Collaborative

Session

Send Message

Add to Conversation

Drag and Drop

Add to Conversation

Menu

Leave Conversation

Accept Invitation to
Join Session Manager

Create Collaborative
Session

Destroy Collaborative

Session

User Session Manager

Figure 6: Use Case Diagram

 40

In the first set of use cases the Collaborative System will interact with the User, the Session

Manager and the Accesslist Provider. Using the requirements defined previously use cases

(Appendix A) and a use case diagram (Figure 6) were developed.

Conceptual Model

The conceptual model gives better insight on how the objects that emerge from the use cases are

related. As it is part of the analysis phase, implementation issues such as GUIs, network

communication, etc. are not represented.

In the use case “Create Collaborative Session”, a short description is given of how a

collaborative session is created. It is created by the Session Manager and only one will be

created per study. The object which is created matches the Inner-Session Manager. From the use

cases we can thus already determine some of the connections that the ISM is likely to have with

other components: the ISM will at least communicate with the Client, the SM and the

Authenticator. Furthermore, we already know that the ISM needs to connect to the Global

Manager to be able to send messages across sessions. Since the Client’s representative is the

Cross-Session Manager, the ISM will have to communicate with the CSM as well. The GM will

only communicate with ISMs so there are no further connections to represent for it.

Where the CSM is concerned, we already know that it will have to provide functionality for the

Userlist and MessageWindow, but we have not yet included these connections in the schema as

they need to be analyzed further; the class the user will interact with is not the same as the one

the CSM will interact with.

This leads to the conceptual model in Figure 7.

AccessList Provide AccessList

Authenticator

PersonalContacts

UserList

User MessageWindow MessageInnerSessionManagerGlobalManager

Session Manager

CrossSessionManager

1 1 *

1 1

*

1

1

1

1

1

*

1 * 1 ** 1..*1 *

*

1..*

1

1

1

1

*

*

1

1

Figure 7: Conceptual Model

 41

Finding Classes

Client Side

From the conceptual model we can derive several classes which will be located on the client

side. The resulting architecture is shown in Figure 8.

- User: responsible for information about the user

- MessageWindow: the window in which to type messages

- UserList: the list containing the contacts of this user

Using the Control pattern from the “General Responsibility Assignment Software Patterns”

(GRASP) [3], we learn that we should decouple the GUI from its functionalities. This implies

that both the MessageWindow and UserList class should be split into two separate classes.

- MessageWindowHandler: ensures that messages are displayed in the right GUI

- MessageWindowGUI: the graphical representation of the message window

- UserListHandler: the functional part of the userlist

- UserListGUI: the graphical part of the userlist

Each user coming from an accesslist has a name and a state which will have to be represented on

the userlist. Usernames can appear more than once on a userlist, simply because users can be in

more than one study together. To make this easily manageable and to have to store a user only

once per userlist on the userside a class should be created to keep track of users and their

information.

- UserInfo: stores user information, like a user’s state and his name

Since most of the actual work will be done by the CSM, we need some way to communicate

with this service. We will also need to be able communicate with the ISM.

- CommunicationsHandler: responsible for communications with the CSM

- UserManager: communication with ISMs

UserManager

User

MessageWindow
GUI

MessageWindow

Handler

UserList

Handler

UserList
GUI

Communications

Handler

UserInfo

TO ISM

TO CSM

Figure 8: Architecture Client Side

Server-Side

Cross-Session Collaborative Manager

 42

Some of the classes of the CSM are easily located, as they are reflecting the client side. Another

class easily found is the actual service.

- Cross-Session Collaborative Manager: the service, simply waiting for incoming

requests, which it forwards to the other classes. Also sends messages back to the

client (through notifications).

- MessageWindow: provides the functionality for the message window. For example,

when a user receives a message, this class ensures that the client side receives the

proper information to display the message in the right window.

- UserList: provides the functionality for the userlist. For example, when a user clicks

on a user’s name, this is the class responsible for finding out whether a new message

window has to be opened, or whether one already exists.

As can be seen in these last two classes, some administration has to be provided for the message

windows. Both UserList and MessageWindow have a need for such a class. Furthermore text

messages as well as userlist messages (messages concerning the change in state) are necessary.

- MessageWindowAdministration: responsible for keeping track of the message

windows; which users are part of them, where these people are located, over which

Channel to send the message, the ID of the window, etc.

- TextMessage: is the text-message to be sent.

- UserListMessage: userlist-message, concerning a change in state.

Since the JSDT is used to communicate between users, some other classes are necessary which

allow the sending and receiving of messages. To reduce coupling between components with and

those without JSDT a specific class between them was created.

- SenderReceiver: responsible for setting up the JSDT environment. Creates channels,

listeners, etc.

- MessageSender: sends messages over channels

- MessageReceiver: receives messages from channels by adding consumers to them

- MessageHandler: decides the actions to take with incoming messages and outgoing.

Reduces coupling.

As stated in Chapter 5, any object that is going to participate in a Session has to implement the

Client interface. Furthermore for a user to be able to be invited to a JSDT session and channel it

is required that the client is a specific kind of client: one with a URL.

- ClientCrossSession: special kind of client, required to allow for invitations.

In Chapter 4 it was mentioned that a possible way to provide users with varying availability

modes, would be to provide them a collaborative level. This level would have to be stored in a

database. Accessing this database gives us another class.

- VIMCOHandler: accesses the database where the collaborative levels are located

Finally, it turned out that the messages arriving via channels arrive faster than the CSM can

forward them to the client. The solution is introducing buffers at the server side.

- MessageWindowBuffer: buffer for incoming text-messages

 43

- UserListBuffer: buffer for incoming user-list messages

With all these components we get the architecture shown in Figure 9.

CrossSession
Collaborative Manager

Buffer
(UL/IM)

VIMCO
Handler

MessageWindowUserList
MessageWindow

Administration

MessageHandler

Message
(UL/IM)

FROM CSM FACTORY

TO CLIENT

MessageReceiver MessageSender

SenderReceiver

ClientCrossSession

TO VIMCO

Channel-Based
Communication

Figure 9: Architecture Cross-Session Collaborative Manager

Global Collaborative Manager

Like the CSM, the GM needs classes which allow the JSDT to function, as well as a service.

- Global Collaborative Manager: the service, waiting for incoming requests

- SenderReceiver / MessageSender / MessageReceiver / MessageHandler are where

functions are concerned similar to the ones described above.

- Client is a minimal client, required for the JSDT

Global

Collaborative Manager

SenderReceiver

TO CSM FACTORY

MessageReceiver MessageSender

MessageHandler

Client

Channel-Based
Communication

Figure 10: Architecture Global Collaborative Manager

 44

At this time there are no other classes which need to be described here. Later versions may

require other classes, for example if we would want to store offline messages. The GM’s

architecture can be seen in Figure 10.

Inner-Session Collaborative Manager

Once again some classes are required which allow the JSDT to function and an actual service is

required.

- Inner-Session Collaborative Manager: the service

- SenderReceiver / MessageSender / MessageReceiver / MessageHandler are similar to

the ones described before

- Client again is a simple client to allow the JSDT to function properly

The conceptual model reveals some other classes.

- Authenticator: access control for the ISM. Actually, as stated in Chapter xxx, the

JSDT allows us to create three types (Session, Channel and ByteArray), but for the

architecture we will use Authenticator.

- AccessList: contains the list with the users allowed to access the session

This results in the architecture of Figure 11.

InnerSession
Collaborative Manager

SenderReceiver

TO GM

MessageReceiver MessageSender

MessageHandler

Client

Channel-Based
Communication

Authenticator

AccessList

Channel-Based
Communication

FROM ACCESSLIST
PROVIDER

FROM ISM FACTORY

FROM
USERMANAGER

Figure 11: Architecture Inner-Session Collaborative Manager

Combining the architectures of Figures 8, 9, 10 and 11 and adding the factories for the services,

gives us the architecture shown in Figure 12.

 45

Figure 12: Architecture Complete

 46

6.2 Using the Architecture

With the architecture in place, we shall now show how several of the more interesting actions

can take place. Not all the details are shown.

Create Session

The creation of a session is initiated by the Session Manager. As can be seen in Figure 13, the

environment is set up, creating the necessities for the collaborative session. First, the SM

contacts the ISM Factory (1), which spawns a new instance (2). The SenderReceiver is created

(3), which creates the Accesslist (4), the Authenticator (6), the MessageSender (7), the

MessageReceiver and the MessageHandler (9). The Accesslist itself is retrieved from the

Accesslist provider. Finally the SenderReceiver joins the Global Manager (10).

SessionManager

InnerSession
ColManager Factory AccessList

SenderReceiver

Authenticator

MessageSender MessageReceiver

InnerSessionManager

MessageHandler

AccessListProvider

1: new InnerSessionManager

2: <spawns>

3: new SenderReceiver 10: joinGlobalManager

4: new AccessList

5: <retrieves>

6: new Authenticator

8: new MessageReceiver7: new MessageSender

9: new MessageHandler

Figure 13: Create Session

Get CSM Reference

In order to be able to contact a Service, either a URL or a Grid Service Handle to it is required.

Therefore if a user is to communicate with his Cross-Session Manager he has to acquire such a

reference. Figure 14 shows the current way to obtain it. The UserManager contacts the ISM and

requests a CSM reference (1). The ISM contacts the GM and request a CSM reference (2). The

GM contacts the CSM Factory (3), which spawns a new CSM (4). The reference is returned to

the user.

As can be seen the CSM is created via the ISM and GM. The GM creates the CSM, but since

users are not allowed to access the GM, obtaining the reference has to go via the ISM.

UserManager GlobalManagerInnerSessionManager

CrossSession
ColManager Factory

CrossSessionManager

1: getCSM 2: getCSM

4: <spawns>

3: new CrossSessionManager

Figure 14: Get CrossSessionManager Reference

Join Session

 47

This is more complex. When a user wants to join the Session Manager, he has to be able to

locate it (cf. the above). For now, let’s assume the user already has a reference to the SM. He

contacts this SM and requests the reference to this study’s ISM. This reference can now be used

to communicate with the ISM. In order to actually join the ISM, the client’s CSM has to join the

ISM.

As can be seen in Figure 15, the UserManager thus provides the ISM with the

ClientCrossSession URL (1). The ISM then asks the SenderReceiver to invite the

CrossSessionClient located at that URL (2). The CrossSession Client receives the invitation (3)

and calls one of the (CrossSession) SenderReceiver’s functions to notify him of the invitation

(4), as the SenderReceiver is responsible for setting up the connections. The SenderReceiver

tries to join (5) and is authenticated by the Authenticator (6), located at the ISM. Once he is

authenticated he continues the rest of the setup (7, 8, 9).

User

UserManager

ClientCrossSession

SenderReceiver Authenticator

MessageSender

MessageReceiver

InnerSessionManager

1: join

2: join(ClientCrossSession URL)

3: invite

7: authenticate

8: initialize

SenderReceiver

4: invite

5: joinSession

6: join

9: joinSession

10: joinSession

Cross-Session

Inner-Session

Figure 15: Join Session

Send Message

As can be seen in Figure 16, sending a message goes via a lot of steps. First the user types the

message and pushes send (1). The GUI then gives the message to the CommunicationsHandler

(2) which sends the message to the Cross-Session Manager (3). The functionality offered by the

message window is handled by the MessageWindow class, so the CSM sends the message to this

class (6). At this point we require additional information about this conversation. We know the

originating WindowID, which is sent by the Client side along with the text to send, but do not

know who are part of this conversation. Nor do we know over which channel we have to send

the message. Such information is in the MessageWindowAdminstration. We retrieve the

necessary information (5). Next we create the TextMessage (6) and give it to the

MessageHandler (7). The MessageHandler transforms it into a Data object, necessary for JSDT,

and tells the MessageSender to send the message (8). The message is sent over the correct

Channel.

The MessageReceiver’s consumer receives the incoming data and sends it on to the

MessageHandler (9). The MessageHandler transforms the data back to a message and after

 48

determining it is a TextMessage, sends it on to the MessageWindow (10). The MessageWindow

checks the MessageWindowAdministration whether this conversation already exists and if it

doesn’t the administration is created (11). Next, the message is added to the

MessageWindowBuffer (12). From the buffer it is sent to the CSM, which in turn notifies the

CommunicationsHandler and sends it on to the MessageWindowHandler (13, 14, 15). This class

checks whether a new GUI has to be created and does so if necessary. The message is given to

the appropriate GUI (16), which displays the message to the user (17).

UserA

MessageWindowGUI

MessageWindowAdministration

CrossSessionManager MessageWindow

MessageSender A

MessageReceiver B

CommunicationsHandler

1: sendMessage

9: receiveData

TextMessage

13: notify

MessageHandler

MessageHandler

MessageWindow

MessageWindowAdministration

MessageWindowBufferCrossSessionManagerMessageWindowHandler CommunicationsHandler

MessageWindowGUI

2: sendMessage 3: sendMessage 4: sendMessage
5: getNecessaryInfo

6: new TextMessage

7: sendMessageTo

8: sendMessageToClients

12: addMessageToBuffer 10: receiveTextMessage

11: checkAdministration

14: notify15: receiveMessage

16: showMessage

UserB

17: readMessage

Channel-Based
Communication

Figure 16: Send Message

Invite

We will not provide a diagram for invitations, as it hasn’t been thought through yet properly. As

its principle is quite easy to understand we will provide a sketchy description.

User A right-clicks on User B’s name in the userlist. A pop-up window opens and UserA selects

“invite user to join session…”. Next he is given a choice to which session User B should be

invited. User A makes the choice and the invitation is sent to User B, who can either accept or

decline the invitation. He accepts and User A provides him with a reference to the Session

Manager.

From here joining the Session Manager and joining the session ISM occurs normally.

Other interesting things

In Chapter 4 we stated that a user should join all his studies as soon as he logs into one. This

should be possible without too much trouble. It simply requires a broadcast via the GM that the

user has joined, after which the user’s other ISMs can invite him.

As we stated in the beginning of this Chapter, one of the main purposes of using the ISMs is that

communication will nearly never need to go via the GM. The GM is only needed for

communication purposes when

 49

a) A user logs into his first ISM. Besides getting him invited, it will make other users aware

of the user’s availability.

b) A user tries to contact a user who is not on his userlist or on his Personal Userlist. All

that is required is to obtain the user’s ClientCrossSession URL. As soon as that is

available, the user can simply be invited to join a specific channel, thus not requiring the

use of the GM. Even if the URL has to be received from the GM (at this time this is

unclear), the accesses to the GM will be few.

Another interesting aspect is that users from completely separate VL-e distributions can be

invited to join. All that is required is the ClientCrossSession URL.

 50

Chapter 7 Results
At present part of the system has indeed been implemented successfully. In this chapter we shall

describe what has been implemented, give some results and describe some of the problems

encountered.

7.1 What has been implemented?

As most functionality is offered by the CSM, most of the work has been done there. Nearly all of

the components at the CSM side have been implemented to some extent. The ISM is less

complete. Not all of the components have been implemented, as not all were required yet. The

invitation mechanism has been implemented and it is capable of inviting users to join its session

if the user’s JSDT URL is provided. The GM merely sets up the environment to allow ISMs to

join. Similar to the ISM, some of the components still have to be implemented.

As has been noted in the previous chapter there is need for the Session Manager as it is

responsible for creating the ISM. Since no operational Grid Service Session Manager currently

exists, we created one which suits our needs. Furthermore the accesslist of a study at this point is

statically created; it is simply a list of names.

The Collaborative System currently allows

• the SM to create an ISM (cf. Figure 13 in Chapter 6)

• the user to obtain his CSM reference (cf. Figure 14 in Chapter 6)

• the user to log into a ISM (cf. Figure 15 in Chapter 6)

• the user to send a message to another user (cf. Figure 16 in Chapter 6)

• the user to change his availability (very similar to sending a message)

And does not (yet) allow

• authentication

• the user to log into multiple sessions

• the user to communication outside of a Session

• the user to have a personal userlist

• the user to invite another user to join a Session

• multi-user chat

• the user to close a message window and reopen it to the same user

Obviously, the basis has been laid, but there is still a lot of work to be done. Some of the items

require little work, others are harder. The last point, for example, simply requires an update to

the MessageWindowAdminstration. The first point, authentication, is harder, though the

mechanisms have already been included.

 51

7.2 Results

The best way to give an impression of the system is to provide screenshots belonging to the use

cases for which the system was developed.

Test Case New Session

Initial Operation Create new Session Manager

Will Result in User joining the Session

Remark This is not one of the use cases as it appears in the Appendix, but a

combination of two, namely Create Collaborative Session (invoked by the

SM, which is invoked by the User) and Join Collaborative Session

Manager (invoked by the User). Furthermore not all of the actions

described by the use case take place. Since users currently cannot log into

more than one session, checking whether the user is logged into more than

one session does not happen.

Figure 17: Sjaak Creats New Session

The user, in this case Sjaak, creates a new session, DNAStudy. As can be seen in Figure 17, the

CS prints the Grid Service Handle of the Session Manager that has just been created by the user.

The second output line is the User’s JSDT ClientCrossSession URL, which is located at the

CSM and is used for invitations by the ISM. The third line shows that a GUI is being started,

which is the userlist. This occurs after the user has (automatically) provided his JSDT client

handle to the ISM. As stated before, the accesslist is provided by the system. As soon as the

CSM has successfully joined the ISM, the accesslist is received and transferred to the Client

side. As can be seen in Figure 18, the user has indeed joined the session. No other users are

currently online.

 52

Figure 18: UserListGUI, Sjaak has joined

Test Case User Joins

Initial Operation Join Session Manager

Will Result in User Joining the Session

Remark This is similar to the Join Collaborative Session from the previous test

case, but with a different initial operation. This time the user uses the

reference to the SM to receive the reference to the ISM. He then tries to

join the ISM by providing his JSDT URL.

Figure 19: Henk Joins

The user, in this case Henk, has received the reference to the Session Manager he wants to join.

He uses this to join the Session Manager (Figure 19). Similarly to the previous test case, the

userlist is started and after a successful join, the accesslist is added to the userlist. As can be seen

in Figures 20 and 21, both users are now aware of each other.

 53

Figure 20: Henk sees Sjaak as online

Figure 21: Sjaak sees Henk as online

Test Case Send a Message

Initial Operation Click on user name

Will result in 1) Opening a new message window on the receiver side

 2) Displaying the message in the corresponding message window

Remark This belongs to the use cases Initiate Conversation and Send Message

If one of the users, in this case Sjaak, clicks on the username of the other user, a message

window opens, as can be seen in Figure 22. Sjaak can type a message and send it to Henk. Henk

receives the message in either a new window or in the old one (Figure 23).

Figure 22: Sjaak Types Message

Figure 23: Henk Receives Message

Test Case Change Status

Initial Operation Select the status in the menu

Will result in All userlist updating the status

Remark This belongs to the Change Status use case.

 54

One of the users, in this case Sjaak, changes his status to away. He can do this by using the

menu, as can be seen in Figure 24. His status is changed accordingly and broadcasted to the

other users (Figure 25).

Figure 24: Sjaak Changes Status

Figure 25: UserLists are Updated

7.3 Problems encountered

During the implementation several problems were encountered and two of them are worth

mentioning.

Message lost without error

This was a rather weird problem. When a new user joins a new session, references are created at

the CSM side. Amongst those, references to channels which belong to the particular session are

created and, to be able to receive messages from these channels, consumers are added to them.

When a new consumer is added to a channel, all users already on the channel are immediately

aware of this. We had them respond by immediately sending their status to the new user.

Unfortunately the user was unable to receive the messages, even though no error occurred. More

interestingly, if we added a delay of perhaps one millisecond before sending their status,

everything went fine. We have no clear idea why the error occurred though perhaps it happened

because the Cross-Session side was still being set up. We corrected this problem by using an

entirely different method. The new user now sends a welcome message, after which the other

users respond with their status.

Grid-service problem

The second problem worth mentioning was already solved in the architecture displayed in the

previous chapter. The problem that occurred was that messages would arrive faster at the CSM

than that it could deliver them to the user. The Grid Service notification system notifies a client

 55

that some data has changed, after which the client retrieves this data. This is slower than the

channel based JSDT communications. To solve this problem we added buffers.

 56

Chapter 8 Conclusion

8.1 Short Summary

Grid technology allows its users to share resources, such as CPU power, storage and expensive

equipment. The Virtual Laboratory projects, both the VLAM-G and its follow-up the VL-e, seek

to provide a layer between the low-level services and the application level, harnessing the

strength of the Grid for a wide variety of applications and making the Grid available to a broader

public. Furthermore, conform the e-science paradigm the VL-e has to provide a collaborative

environment. It seeks to do so not just by global sharing, but also by providing a shared

workspace environment. However, creating usable collaborative applications is far from easy

and many projects tend fall far short of expectations or fail entirely. Reasons for this high rate of

failure include creating the wrong types of applications, social differences in the user-group and

failure to support the basic necessities of a collaborative environment.

We included these basic necessities in the requirements for the Collaborative System of the VL-e

and grouped our requirements by priority. As a first set to be developed we believe it is

necessary to:

• Provide session control

• Allow users to explore the workspace

• Provide a Userlist

• Provide an Instant Messenger

• Provide a Telepointer

The first two items are not solely collaborative features. Session control is closely related to

access control in the VL-e in general, as only the users allowed to enter a study may participate

in its collaborative activities. Exploring the shared workspace is related to the components which

provide the graphical output for the workspace. Our focus is therefore on the latter three items.

The Userlist plays an important role as it is the first step in finding other users and establishing

contact with them. It can be used as a bridge to many other applications, such as video- and

audio-conferencing. The first version of our Userlist should be able to show the list of users

belonging to a study, to respond to a click on a username by opening a message window and to

allow for a status change.

The Instant Messenger is a basic form of communication, allowing users to send simple text

messages to each other. Plausible deniability of availability and message windows remaining

open are important advantages of instant messengers, as they allow users to decide for

themselves when they wish to answer. The first version of the Instant Messenger should simply

allow two users to exchange messages.

A Telepointer is the simplest form of gestural representation. By making users’ mouse pointers

visible to everyone in the shared workspace, the pointers can be used to gesture and point at

 57

objects. Efficiency plays a crucial role with telepointers, lest their movement become erratic.

Due to a lack of time, the Telepointer’s development is postponed.

Two other very important aspects of shared workspace environments are workspace awareness

and data consistency management. Providing awareness is vital for collaborative work, as it is

crucial to know what team-members are doing. By providing a small version of the workspace in

a secondary window important awareness is provided. Data consistency management plays an

important role when it comes to multiple users accessing the same object in the shared

workspace. Finding a good consistency policy is far from easy, as care must be taken to provide

a sensible yet efficient method. Not allowing users to access objects simultaneously may prevent

conflicts, but the waiting times may be annoying for the users. Allowing users to access and

change everything simultaneously on the other hand, will require complex error-correcting

mechanisms. The proper policy for the VL-e will have to be considered carefully.

Many toolkits nowadays exist on the Internet to aid in the creation of collaborative applications.

Most of the toolkits are, unfortunately, unsuitable for our application. Some force its users to use

specific architectures, other are too limited or simply unsuitable. We decided to use the Java

Shared Data Toolkit, which gives more architectural freedom and does not provide complete

components, but provides the tools to create components. It is therefore highly customizable and

allows for a range of applications to be developed.

Combining the requirements of the Userlist and Instant Messenger with requirements specific for

the VL-e, such as having to be a Grid-service and providing a light-weight client, we used parts

of the UML to develop our architecture. It contains a client and three Grid Services: a Global

Collaborative Manager, a Cross-Session Collaborative Manager and an Inner-Session

Collaborative Manager. The first is the glue between separate studies. The second is the client,

but located on the server side, in order to provide a light-weight client. The third belongs to a

study and its distributed nature should make the system more fault-tolerant and should allow for

a decrease in network congestion.

Though it is far from finished, part of the architecture has been implemented successfully.

8.2 Discussion

Coupling

Using services decouples individual components, as communication can only take place via

interfaces. By using the JSDT’s channel based communication we reintroduce coupling. This

component dependence is only inside the system. The system itself is still a component which is

just another building block of the larger VL-e.

The necessity of the ISM

We introduced the ISM as it allows a distributed approach. We described many advantages to

this implementation. However, a version with only a GM and a CSM will also work and it may

 58

be easier to implement and maintain. It remains open to discussion whether having the ISM is

the better solution.

Expandability

We believe that the architecture we created can easily be expanded to include other media. It is

possible to use UDP to send data over Channels, which was also suggested as protocol for the

implementation of the Telepointers. The problem is that we do not know whether the Grid

service notifications between the CSM and the CommunicationsHandler will be able to keep up.

Latency

One of the requirements was to create a thin client, which resulted in the CSM. Since this is

another layer between two clients, latency will be higher than if the Client side had

communicated directly with the ISM. It may be possible that for the Instant Messaging this will

not prove to be a problem, however when streaming media, such as video and audio, are

concerned this will have to be properly tested. It the latency proves to be too much, the thin-

client may prove to be a liability.

8.3 Future Work

At this point our design and implementation have been focused on the Instant Messenger and the

Userlist. As we explained in Chapter 4, the Collaborative System has more than just these two

features. These requirements need further fleshing out so that they can be properly included in

the VL-e. As the field of CSCW is evolving rapidly many new research papers are appearing on

subjects relevant for our system. These developments should be monitored closely as they can

greatly help in identifying requirements for specific components, as well as in their design.

Where our current system is concerned, there is room for a lot of improvement. In the previous

Chapter we showed items which are yet to be included in our system. Furthermore, as we are

dealing with work in progress new question keep coming up: How will we deal with

conversations over a channel when that channel’s ISM is destroyed by the administrator? Should

the system be able to function without the GM, in a stand-alone version? Wouldn’t it be better to

let the CSM provide the ISM with the Client handle, instead of letting the client do that? Should

the status be shown of users who are “online in other”?

Nevertheless, now that we have proved the architecture has potential, we should make a stable,

usable version. However, the developments of the Globus Toolkit will have to be closely

monitored. Their switch from OGSI to WSRF will very likely make our current implementation

incompatible with the new toolkit, though they claim the effort required to change on OGSI-

based system to WSRF will be small. It is important to monitor the changes closely and change

to WSRF as soon as it is apparent that this will be their definite course and a new Globus Toolkit

becomes available.

 59

Bibliography

[1] Afsarmanesh, H., Belleman, R.G., Belloum, A. S. Z., Benabdelkader, A., van den Brand, J.

F. J., Eijkel, G. B., Frenkel, A., Garita, C., Groep, D. L., Heeren, R. M. A., Hendrikse, Z. W.,

Hertzberger, L. O., Kaandorp, J.A., Kaletas, E. C., Korkhov, V., de Laat, C.T.A.M., Sloot,

P.M.A., Vasunin, D., Visser, A., Yakali, H. H. (2002) VLAM-G: A Grid-Based Virtual

Laboratory

[2] Allen, C. http://www.alacrityventures.com/DoG.html (Definitions of Groupware)

[3] Ariane Training (2001) UML Applied Object Oriented Analysis and Design Using the

UML

[4] Baker, K., Greenberg, S. and Gutwin, C. (2001) Heuristic Evaluation of Groupware Based

on the Mechanics of Collaboration. In M.R. Little and L. Nigay (Eds)

[5] Belloum, A.S.Z. (2001) The Virtual Lab-AM Collaborative System

[6] Belloum, A.S.Z. VLAM-G user’s Guide Proposal

[7] Burridge, R. (1999) Java Shared Data Toolkit User Guide

[8] Bradner, E., Mark, G. (2002) Why Distance Matters: Effects on Cooperation, Persuasion

and Deception

[9] Cadiz, J.J., Venolia, G., Jancke, G., Gupta, A. (2002) Designing and Deploying an

Information Awareness Interface

[10] Bruegge, B., Dutoit, A.H. (200) Object-Oriented Software Engineering Conquering

Complex and Changing Systems

[11] Dyck, J., Gutwin, C., Subramanian, S., and Fedak, C. (2004) High-Performance

Telepointers

[12] The Globus Aliance http://www.globus.org

[13] Greenberg, S., Marwood, D. (1994) Real Time Groupware as a Distributed System:

Concurrency Control and its Effect on the Interface

[14] Greenberg, S. Gutwin, C., Roseman, M. (1996) Semantic Telepointers for Groupware

[15] Gutwin, C., and Greenberg, S. (2001) A Descriptive Framework of Workspace

Awareness for Real-Time Groupware

[16] Gutwin, C., Penner, R. (2002) Improving Interpretation of Remote Gestures with

Telepointer Traces

[17] Gutwin, C. and Greenberg, S. (2000). The Mechanics of Collaboration: Developing Low

Cost Usability Evaluation Methods for Shared Workspaces.

[18] Grudin, J. (1988) Why CSCW Applications Fail: Problems in the Design and

Evaluation of Organizational Interfaces

[19] Handel, M., Herbsleb, J.D. (2002) What is Chat Doing in the Workplace?

[20] Johnson-Lenz, P., Johnson-Lenz, T. (1998) Groupware: Coining and Defining It

[21] Johnson, P. (1996) State as an Organizing Principle for CSCW Architectures

 60

[22] Nardi, B.A., Whittaker, S., Bradner, E. (2000) Interaction and Outeraction: Instant

Messaging in Action

[23] Prince, S., Cheok, A.D., Farbiz, F., Williamson, T., Johnson, N., Billinghurst, M., Kato, H.

(2002) 3D Live: Real Time Captured Content For Mixed Reality

[24] Taylor, J. http://www.e-science.clrc.ac.uk/ (e-Science definition)

[25] Usability First http://www.usabilityfirst.com/groupware/index.txl (Groupware)

[26] WTCT NV (2003) Virtual Lab e-Science: Towards a new Science paradigm

[27] Stevens, M. http://www.developer.com/design/article.php/1010451 (Service-Oriented

Architecture Introduction)

 61

Appendix A: Use Cases

Userlist

Use case name Initiate Conversation

Participating actor Invoked by User

Entry condition User A clicks on User B’s name in the userlist

Main flow

1. The CS determines that a new message window has to be created

addressed to that user

Alternative flow User B is Busy / Away

1. User A receives a warning from the CS concerning User B’s state

2. Either <Main flow> or <Alternative flow: Window Exists>

Window Exists

1. The CS determines that the User already has an existing message

window towards the user. He uses the old one.

Exit condition A message window to User B is opened by the CS

Use case name Invite to Join Session Manager

Participating actor Invoked by User

Entry condition User A has selected User B from his Userlist and invoked the Invite to

Session function

Main flow

1. CS provides User A with a list of his active studies

2. User A selects a study from the list

3. CS provides User A with a confirmation request

4. User A confirms

5. CS sends the invitation to User B

Exit condition User B receives the invitation

Exception flow Cancel Invitation

1. CS provides User A with a list of his active studies

2. User A selects a study from the list

3. CS provides User A with a confirmation request

4. User A cancels

Use case name Accept Invitation to Join Session Manager

Participating actor Invoked by CS

Entry condition An invitation has been sent to User A

 62

Main flow

1. CS presents the invitation to User A

2. User A accepts the invitation

Exit condition User A has the information to try to join the Session Manager.

Exception flow Invitation Declined

1. CS presents the invitation to User A

2. User A declines the invitation

Note: The CS will merely provide User A with the means to join the Collaborative Session here.

See the “Join Collaborative Session” use case for more details on joining the Collaborative

Session.

Use case name Add to Personal Contacts

Participating actor Invoked by User

Description Allows the User to add another user to his personal contacts. The flows

have not yet been created for this use case, as it requires some discussion

with the rest of the group on where and how to find the users.

Use case name Remove from Personal Contacts

Participating actor Invoked by User

Entry condition The User selects a user and presses the “del” button

Main flow

1. The CS request confirmation

2. The User confirms

Exit condition The selected user is removed from the userlist

Exception flow Cancel Delete Operation

1. The CS requests confirmation

2. The User cancels

Illegal Delete Operation

1. The CS detects that the User has selected a user from his studies and

not from his Personal Contacts. The User is made aware that he cannot

delete the selected user.

Use case name Change Status

Participating actor Invoked by User

Entry condition The User changes his current status to something different (e.g. from

“online” to “away”)

Main flow

1. The CS broadcasts the changed status

 63

Exit condition The CS updates the userlists of the other users to reflect the change

Instant Messenger

Use case name Send Message

Participating actor Invoked by User

Entry condition User A presses send button in a message window

Main Flow

1. The CS delivers the message to whom the message window is

addressed

Alternative Flow First Message

1. The CS delivers the message to whom the message window is

addressed

2. The CS finds that the User(s) do not yet have an open message

window belonging to this conversation. He opens one.

Exit condition User B’s message window belonging to this conversation displays the

message.

Use case name Add to Conversation via Drag and Drop

Participating actor Invoked by User

Entry condition User A drags and drop User C from his userlist onto the message window

Main flow

Exit condition The CS adds User C to the conversation

Use case name Add to Conversation via Menu

Participating actor Invoked by User

Entry condition User A uses an option from the message window menu to add User C to

the message window

Main flow

Exit condition The CS adds User C to the conversation

Remark This requires discussion with the rest of the team, as it may require

searching the database.

Use case name Leave Conversation

Participating actor Invoked by User

Entry condition User A clicks on the kill button of the Message Window

Main flow

Exit condition The CS destroys the window and terminates the communications

 64

System

Use case name Join Collaborative Session

Participating actor Invoked by User

Entry condition User just joined the Session Manager

Main flow

1. User tries to join the CS

2. CS authenticates the User

3. Authentication succeeds and the User is allowed to join

4. The CS adds the User to this study’s communication channels

5. CS determines that this is the first Session the User has joined

6. All other Users in the system are made aware that the User has joined

Alternative flow Logged into a Second Study

1. User tries to join the CS

2. CS authenticates the User

3. Authentication succeeds and the User is allowed to join

4. The CS adds the User to this study’s communication channels

5. CS determines that the User is already logged into another Session

6. All User who are logged into this SM are made aware that the User has

joined

Exit condition The CS provides the User with the accesslist belonging to the study

Exception flow

1. User tries to join the CS

2. CS authenticates the user

3. Authentication fails and the user cannot join

Use case name Leave Collaborative Session

Participating actor Invoked by User

Entry condition User leaves the Collaborative Session

Main flow

1. CS determines that the User is not logged into another SM

2. CS removes the User from the communication channels

3. All users in the system are made aware that the User has left

Alternative flow Logged into a Second Study

1. CS determines that the User is still logged into a SM

2. CS removes the User from this study’s communication channels

3. The users inside this study are made aware that the User has left the

study

Exit condition The User’s userlist is updated; the study’s accesslist is removed

 65

Use case name Create Collaborative Session

Participating actor Invoked by Session Manager

 Communicates with Accesslist Provider

Entry condition SM has just been created and now needs to become part of the CS

Main flow

1. CS creates the environment for the SM, the Collaborative Session (e.g.

communication channels)

2. CS retrieves the accesslist from the AccessList Provider for

authentication purposes

Exit condition The SM is part of the CS

Use case name Destroy Collaborative Session

Participating actor Invoked by Session Manager

Entry condition SM is being terminated and needs to leave the CS

Main flow

 1. CS waits until communications have terminated

Exit condition The Collaborative Session environment is destroyed

Use case name Update Accesslist

Participating actor Accesslist Provider

Entry condition A change has occurred in the accesslist

Main flow

1. CS is notified of the change

Exit condition CS updates userlists to reflect the new accesslist

Many of the previously defined use cases have an additional Exception flow namely:

Exception flow User is offline

1. The CS displays a message that the User is offline

