
Universiteit van Amsterdam

Datafluo:
A Scientific Workflow Engine

A thesis submitted to the Board of Examiners in partial

fulfillment of the requirement of the degree of Master of

Science in Grid Computing

Author:

Reginald Cushing

Supervisor:

Dr. Adam S.Z. Belloum

October 12, 2010

Contents

1 Introduction 1

1.1 Motivation . 2

2 Background 4

2.1 Scientific Workflows . 4

2.1.1 Scientific Workflow Life Cycle 5

2.1.2 Models of Computation . 6

2.1.3 Farming and Parameter Sweeps 8

2.1.4 Task Scheduling . 9

2.2 Computing Paradigms . 11

2.3 Coordination Patterns . 12

2.4 Grid Task Management . 14

2.5 State of The Art in SWMS . 15

2.5.1 Kepler . 16

2.5.2 Taverna . 17

2.5.3 Triana . 17

2.5.4 Pegasus . 17

2.5.5 Karajan . 18

2.5.6 GWES . 18

2.5.7 ASKALON . 18

2.6 Current WS-VLAM Architecture 19

2.7 Freefluo . 21

3 Datafluo Architecture 23

3.1 Enactment Engine . 23

3.1.1 Task Farming . 26

3.2 Message Exchange . 28

3.3 Job Submission . 29

3.4 Reactor Server . 31

3.5 Heartbeat Monitor . 31

3.6 Task Harness . 32

3.7 Concurrency . 32

i

4 Datafluo Implementation 33

4.1 Enactment Engine . 33

4.2 Message Exchange . 39

4.3 Task Submission . 39

4.4 Reactor Server . 41

4.5 Task Harness . 42

5 Applications and Results 50

5.1 SigWin-detector . 51

5.1.1 Results . 53

5.2 Wave . 54

5.2.1 Results . 55

5.3 HistogramDifference . 55

5.3.1 Results . 57

6 Conclusions and Future Work 63

6.1 Future Work . 63

6.2 Conclusions . 65

A Extra Results 66

A.1 SigWin-detector . 66

A.2 HistogramDifference - Bucket . 68

A.3 HistogramDifference - RoundRobin 72

ii

Abstract

A scientific workflow management system can be considered as a binding agent

which brings together scientists and distributed resources. A workflow graph plays

the central role in such a system as it is the component understood by both scien-

tist and machine. Making sense out of a scientific workflow graphs is undoubtedly,

the first and foremost responsibility of a workflow management system. Typical

systems include an orchestration engine which models a workflow and schedules

individual components onto distributed resources. As part of the WS-VLAM, we

present an alternative orchestration engine which takes a different stand on inter-

preting the workflow graph. Whilst the current engine in WS-VLAM models the

graph as a process network where components are tightly coupled through com-

munication channels, the Datafluo engine models the graph as a dataflow network

with farming capabilities. In this dissertation, we present the Datafluo architecture

followed by a prototype implementation. The prototype is taken through its passes

using scientific workflow applications where the generated results demonstrate the

orchestration features. Through our results, we show how dataflow techniques re-

duce queue waiting times whilst farming techniques circumvent common workflow

bottlenecks.

iii

Chapter 1

Introduction

O
ver the past few decades the computer has proven to be an instru-

mental tool for scientists and their respective research, so much so

that computational science branches have been introduced within

different scientific domains. Through the new in silico paradigm of

carrying out research, old frontiers were broken and new ones are being set. Break-

ing new frontiers is, amongst others, a matter of enhanced Science (e-Science)

which can be defined as:

“e-Science is about global collaboration in key areas of science, and the

next generation of infrastructure that will enable it.” - John Taylor [5]

Scientific Workflow Management Systems (SWMS) have become part of the

science infrastructure in realising e-Science due to their intuitive approach in

prototyping experiments while concealing underlying middleware complexities.

SWMS are also instrumental in research collaboration since knowledge about ex-

periments and data is easily shared through systems such as myExperiment [4].

This paradigm of designing, executing and sharing experiments enables scien-

tists to focus on problem solving within their domain whilst intricate knowledge

about underlying resources and workflow execution is hidden behind the SWMS.

In essence, SWMS strive to bridge the knowledge gap between computational

sciences and the myriad of distributed computing technologies. To date, many

workflow systems have come to fruition and vary considerably in their workflow

modelling, scheduling and targeted resources. The central component in a SWMS

is the workflow. A workflow can be described as a connected graph which ab-

stractly represents the flow of an experiment whereby the vertices represent the

activities and the edges represent the dependencies between activities.

1

1.1 Motivation

WS-VLAM [40] is an e-Science Workflow Management System (SWMS) de-

signed to orchestrate workflows using Grid environments. This system combines

the ability to take advantage of the underlying Grid infrastructure and a flexi-

ble high-level rapid prototyping environment. From a high level perspective, a

distributed application is composed of a data driven workflow where each compo-

nent represents a process or a service on the Grid. WS-VLAM is being used for

various scientific experiments including: SigWin-detector [36], Wave [10], and in

elaboration of molecular models [19]. Thus, WS-VLAM is an asset which is con-

tinuously improved upon to meet the demands of the scientific community. Our

practical experience in using WS-VLAM on Grid systems has led us to identify

architectural areas that can benefit from enhancements to better accommodate

multidisciplinary scientific workflows. Such areas include: the Model of Computa-

tion (MoC), the job submission management, and the component communication.

The current MoC models a stream-based process network represented by a

directed acyclic graph (DAG). This type of model assumes that both parties of

a streaming channel are able to synchronise on the channel thus communicating

parties need to be active at the same time. In essence this couples the components

in time which also has a domino effect on the rest of the workflow. For instance, if

in a 3 component workflow (A, B, C) A is synchronised to B and the latter is also

synchronised to C then A is inexplicitly synchronised to C as well. This model

forces the internal system to schedule all workflow components at the same time.

Such strong requirements encourage inefficient resource usage as tasks may lay

idle while waiting for data. This is particularly evident with workflows composed

of coarse grained tasks where a considerable amount of time is taken before data

is produced on the output channels.

The current communication library is based on streaming peer-to-peer com-

munication model. This further emphasizes the need for co-allocating all workflow

tasks as no intermediary is available to buffer the communication. The current

architecture is well suited for fine grained streaming workflows on single clusters

where communication throughput is of utmost importance. In case of coarse

grained scientific workflows running on the vast distributed resources such as

Grids, guaranteeing co-allocation for large number of tasks is hard to achieve

[20]. Also, since individual tasks are course grained, even if the co-allocation is

assured, the time quantum allocated for tasks would probably elapse before leaf

tasks start receiving data.

2

In this thesis, we describe the Datafluo engine for WS-VLAM. Datafluo is

a dataflow approach with weaker scheduling constraints whereby each workflow

task is scheduled dependant on data availability and hence alleviates co-allocation

and encourages better resource usage. Since tasks are scheduled solely on the

data availability, Datafluo does not impose any explicit task execution ordering

and hence tasks are ordered at runtime according to the data. In our Datafluo

approach, communication is decoupled in time through a messaging system. Tasks

communicate through message exchange server hence alleviating the need for tasks

to co-exist in order to communicate. Although such a messaging system will

impose an extra communication overhead, we believe that the benefits such a

system brings, namely, no need for co-allocation and ability for inter cluster task

communication, are well worth the trade-off.

3

Chapter 2

Background

T
he e-Science term describes computational and data-intensive sci-

ence. It has become a complementary experiment paradigm alongside

the traditional in vivo and in vitro experiment paradigms. e-Science

opens new doors for scientists and with it, it exposes a number of

challenges such as how to organise huge datasets and coordinate distributed ex-

ecution. For these challenges, a plethora of technologies and innovations have

come together to enable e-Science. The following are some of the technologies and

concepts aimed at e-Science.

2.1 Scientific Workflows

The knowledge gap between different scientific domains and computer science

impedes the full exploitation of the distributed resources by scientific applications.

For this reason high-level application tools are invaluable for scientists as they tend

to abstract most underlying technological intricacies and let scientists focus on

their problem domain. Scientific Workflow Management Systems are such tools.

Workflows have been described as:

“The automation of the processes, which involves the orchestration of

a set of grid services, agents and actors that must be combined together

to solve a problem or to define a new service.” - [27]

In other words a scientific workflow is a formal description of a process for

accomplishing a scientific objective which is expressed in terms of tasks and their

dependencies [44]. Such scientific workflows can be part of any of the scientific

life-cycle, be it hypothesis formulation, experiment design, execution and data

analyses. Most often scientific workflow tasks are either computational or data

intensive which makes them ideal candidates for distributed architectures as a

single computer may prove to be infeasible to execute such workflows. The design

and execution of a scientific workflow is the responsibility of a SWMS. The act

of executing a workflow is commonly referred to as workflow orchestration and is

4

done by the SWMS engine, the main component in typical SWMS. Thus the main

goal of a SWMS is to automate the workflow execution as well as provide support

for design, monitoring, verification and collaboration.

2.1.1 Scientific Workflow Life Cycle

The scientific workflow life cycle describes the steps and phases which are

supported by many SWMS. These steps are analogous to the traditional scien-

tific methodology of carrying out experiments and can be categorised in Design,

Resource Planning, Execution, Analysis, and Dissemination.

• Design and Composition: A scientist starts by defining the requirements

for the experiment. Such requirements describe the major tasks that make

up the experiment. Most SWMS include libraries of readily available work-

flows and tasks so the scientist would typically search a semantically an-

notated database for workflows and tasks to re-use within his experiment.

Designing the new experiment involves either reusing or extending an exist-

ing workflow or creating a new workflow from scratch where tasks can be

chosen from a library or developed specifically for the experiment. The resul-

tant abstract workflow defines the processes involved and the dependencies

between such processes. Common dependencies are data dependencies and

control dependencies.

• Resource Planning: At this stage the scientist is allowed to perform ad-

ditional steps on the workflow. These steps may include validation (e.g.

type checking and loop detection in DAGs), graph optimisations (e.g. loop

unrolling), resource binding, scheduling strategies (e.g. choosing between

process network and dataflow models), data to be staged in and out, and

parameter settings. After this stage the abstract workflow becomes a con-

crete, executable one which can be executed by a workflow engine.

• Execution: As for the SWMS, the execution stage forms the core part of

the management system where the executable workflow is automated by the

system. The main responsibilities for the execution engine are: staging in

and staging out data, provide a communication substrate for task commu-

nication, execute tasks in accordance to the specified model of computa-

tion, monitor the execution, provide means of fault tolerance such as retry,

and capture provenance information. Provenance information describes the

workflow execution in a manner that the experiment can be repeated and

5

the same results obtained. Such information would include tasks executed,

data consumed and produced, data dependencies, parameter settings and

hardware information.

• Analysis: After the execution, the scientist would typically analyse the

data so as to verify the results. Erroneous results could occur due to SWMS

related execution errors, hardware related (e.g. floating point precision)

and logical workflow errors. At this stage the scientist can opt to refine

the experiment hypothesis and rerun the experiment to address the logical

workflow errors.

• Dissemination: Dissemination involves sharing the results, workflows and

metadata for further use and verification by the scientific community. Peer

scientists should be able to rerun the experiment and verify the results.

Efforts such as myExperiment [4] allow such collaboration.

2.1.2 Models of Computation

The Model of Computation (MoC) of a workflow system can be described as

the logic behind interpreting the workflow graph and is a core part of SWMS

execution engine. More formally, if we consider a directed workflow graph W

which is composed of actors (vertices) and dependencies (edges), p the parameter

set, x be the input data set, and y be the output data set, then the MoC M defines

how to execute the workflow Wp on x input data to obtain y output data. Hence

the MoC is the mapping M : W×P ×X → Y for which a workflow W ∈ W with

parameters p ∈ P and data input x ∈ X determines the output set y ∈ Y . Thus

the output data set, y, is defined as y = M(Wp(x)) [44].

In many SWMS workflow graphs are Directed Acyclic Graphs (DAG) based.

DAGs are graphs with unidirectional edges and no direct or indirect cycles. Such

graphs are well suited to describe loosely coupled processes with data dependencies

but are not expressive enough to describe control flow such as iterations where cy-

cles are needed. For this reason some SWMS extend the DAG semantics to include

explicit control structures which enable computation steering through conditional

branching and iterations. Furthermore, the DAG model can be extended to in-

clude concurrency constructs such as parallel branches and task joins. The graph

semantics coupled with its interpretation leads to the model of computation by a

workflow system. The following are some common MoCs:

6

• Process Networks: In a Kahn process network[42, 39], sequential pro-

cesses communicate through unbounded one-way First-In-First-Out (FIFO)

channels. Channels carry an infinite stream of data objects or tokens. Tokens

are only produced once and consumed only once. Writes to a FIFO channel

are non-blocking while reads are blocked hence consumers will block until

tokens are available for input. In a Kahn network, processes are said to be

monotonic and continuous [42]. Monotonicity defines a process as being a

streaming process where a process can act immediately on the input data

without waiting for all the data before processing can start. Continuous

defines a process that can continuously send data with respect to the input

data. A Kahn process network is said to be deterministic although practi-

cal implementations tend to include non-determinism by allowing multiple

processes to consume tokens from the same channel, multiple processes to

produce tokens to the same channel, processes to share variables and imple-

menting processes in a non-deterministic way.

• Dataflow Networks: Dataflow networks are a subset of Kahn process

networks [42] which, in turn, are a computational model whereby concurrent

processes communicate through unidirectional FIFO channels. In the Kahn

model, writes are non-blocking, while reads on empty channels are blocking.

In addition to this process network, a dataflow network adds the notion of

actors, tokens and firing rules. An actor can be defined as a quantum of

computation, a token represents a data parcel or message between actors and

firing is the event that leads to the execution of an actor. FIFO channels

are used to pass tokens between actors. Actor may fire only if tokens are

present on every input port. Thus computation steering is dependent on the

flow of data. Two common variants of the dataflow model are: synchronous

dataflow (SDF), and dynamic dataflow (DDF). In SDF the actor firing rules

are static and so allow fast implementations due to lack of decision making.

On the other hand, in DDF, the firing rules are deduced at runtime. A major

difference between the two is that in SDF, deadlock and communication

buffer boundedness are decidable while in DDF they are not [30]. Classical

dataflow modelling on grid infrastructures are particularly challenging since

repeated task firing would result in repeated job submission which induces

excessive overhead.

• Discrete Events: This model is a variant of a dataflow model. In discrete

events, tokens are associated with a time stamp. Actors are not simply

7

executed when data is available but instead the coordinator sorts those actors

according to the queued data age where actors having old data are given high

priority. This will implement data fairness in a way that the oldest data gets

to be processed first.

• Synchronous/Reactive: This model controls actors through a simulated

global clock. On every clock tick all actors fire which, in turn will observe

input values and assert output values. This model is analogous to processor

architectures where functional units perform action on clock cycle edges.

• Finite State Machines: In an FSM, actors represent states. The coor-

dinator stars with an initial state. States may have refinements in which

case these are fired and evaluate guards on all output transitions. If any

guard evaluates to true, the transition is taken and the state of the new

actor becomes the new current state.

• Demand Driven: In this model execution starts from the leave nodes in

the graph. The leave nodes will immediately block until all its parents are

recursively initiated and start producing tokens. This model is well suited for

large graphs with many end actors as only a sub-graph needs to be activated

to produce results.

• Petri-nets: Petri-nets differ from DAG-based by modelling control flow

and, most importantly, model state through the use of token transitions.

Furthermore, Petri-nets’ well understood properties such as deadlock and

conflict can aid in model analysis and optimization.

2.1.3 Farming and Parameter Sweeps

Farming deals with splitting data n-wise amongst n identical tasks. This tech-

nique speeds up data processing especially when dealing with independent tasks.

Farming can make better use of the resource by elastically replicating tasks to

reduce empty resource slots while reducing the workflow makespan. If we consider

data D to take time T1 to process on one node and Tn on n nodes when dividing

D amongst the n nodes, the ideal speedup is n and is defined as T1

Tn
. A close to

ideal speedup can be achieved when assuming independent tasks with negligible

communication overhead.

BOINC [38] is a task farming, CPU scavenging framework which has been

popularised by SETI@home. BOINC is a centralised architecture where clients

8

log into servers asking for work. The BOINC system harnesses a wider distributed

system through volunteer computing whereby any user on the Internet can take

part in the system by donating computation and storage to be used by BOINC.

Applications running on the BOINC system are largely independent and hence

can scale quite well on such architectures.

Parameter sweeps are a special kind of task farming with the difference that

the data being split amongst the task pool is the set of parameters. Parameter

Sweep Applications (PSA) are characterised by an embarrassingly parallel applica-

tion which is an application that can be decomposed into many independent tasks

with little or no synchronisation or data dependencies. Parameter sweep model is

a simple yet powerful concept used by many scientific application such as those

in: computational fluid dynamics, bio-informatics, particle physics, discrete event

simulation and computer graphics [14]. In a PSA, data is replicated to all col-

laborating tasks while each task is given a set of different parameters where each

task in a PSA works on identical data. Since PSAs are intrinsically independent

they can tolerate network latency and therefore scale to large distributed architec-

ture. Additionally, they are amenable to simple fault tolerance mechanisms such

as retries [14].

Nimord/G [11] is a system which aims at scheduling parameter sweep studies on

grid architectures (Globus). Nimrod provides a declarative language for describing

parametrised experiments. The core part of the architecture is a parameter engine

which is responsible for parametrising the experiment, creating jobs and mapping

tasks to the resources through a schedule advisor. The scheduling approach in

Nimrod/G is based on grid economy with deadlines. This tries to achieve trade-

offs between performance and cost [14]. Another similar application is AppLeS

[14, 15], which focuses on the scheduling problem and provides various solutions

such as self-scheduled work-queue and adaptive scheduling with heuristics.

Other parameter sweep efforts focus on extending known systems such as

Kelper [44] to include parameter sweep capabilities. One such attempt proposes

a master-slave architecture for the Kelper system [61]. The architecture targets

networked computing resources. A master node initiates the workflow execution

that manages a swarm of slave nodes to execute sub-workflows. Through this

architecture slave nodes are able to run concurrently and process different data.

2.1.4 Task Scheduling

As with many SWMS that employ late resource binding techniques, the enact-

ment engine is also responsibility for mapping the tasks to the suitable resources.

9

In such late binding systems, the MoC phase merely serves as ticking tasks as

runnable. Mapping tasks to resources boils down to a scheduling problem. Find-

ing an optimal solution for a schedule is a “NP-complete” problem and hence

searching for the optimal solution for huge scheduling problems is infeasible. Most

solutions incorporate other techniques such as heuristics, to find a near-optimal

solutions. Some of the most common graph scheduling techniques developed over

the years are: list scheduling [9], clustering [51], and task duplication [9].

List scheduling is a two step process: first, each node in the graph is assigned a

priority which could be derived from heuristics. The nodes are ordered according

to their priority. The node with the highest priority is made runnable. The

second step involves choosing the best possible resource which allows the earliest

start time [9]. Task duplication aims at better resource utilisation and involves

transforming graph forks into parallel sub-graphs where the parent is duplicated

for each child. This schedule has the effect of reducing waiting time by filling

resource time slots with duplicates which also reduce the total execution time [9].

Clustering is yet another directed acyclic graph scheduling technique. It is

known to be a “NP-hard” problem [51]. Clustering graph techniques are mostly

based on weighted directed acyclic graphs for which each node and edge carries

a corresponding weight. Node weights represent an execution metric while edge

weight represents the communication metric. The clustering technique aims at

optimising locality since it assumes that closer tasks incur less communication

overhead. Close proximity tasks would generally mean that tasks execute on

the same local network or local machine hence can exploit fast messaging fabric.

Clustering can also include other techniques such as duplication which produce

schedules with shorter makespan.

If we consider scheduling as a multiple space search problem, then most al-

gorithms try to optimise one space such as time, cost or load. Most algorithms

focus on time optimisation where the schedule tries to minimise the total workflow

execution time or makespan. Such algorithms include the Heterogeneous Earliest

Finish Time (HEFT)[64] which orders workflow tasks by ranking them against

the predicted execution time and data transfer time. The ordered list is then

mapped to the appropriate resources. Other simple schedulers are Least Used Re-

source which maps successive tasks to the least used resource, Round Robin which

optimises the resource load by distributing the tasks evenly on all resources, and

myopic Just In Time (JIT) schedulers which simply schedule tasks with little or no

optimisation. Complex scheduling algorithms such as genetic algorithms tend to

optimise multi-dimension search spaces by applying the principle of evolution[67].

10

Genetic algorithms maintain a population of solutions. Each solution is referred

to as a chromosome. On every iteration the solutions are filtered through a fitness

function and the best are combined together to form the new, better population.

The iterations continue until the fitness function selects a suitable solution or an

iteration counter threshold has been met.

A distinction is made between static and dynamic scheduling within the context

of distributed architectures [28]. In dynamic scheduling tasks are scheduled at a

late stage and decisions are usually taken on a per task bases. This strategy

is most effective with dynamic workloads and volatile environments where the

future workload is unknown and the environment is characterised by a high churn

rate. On the other hand, when resources are stable, static scheduling can produce

optimised efficient schedules since little decisions are taken at runtime.

2.2 Computing Paradigms

The exponential Internet growth rate coupled with advances in network tech-

nologies have made resources (e.g. computation, storage and special hardware)

accessible around the world. Efforts to harness such distributed resources have

lead to different yet overlapping paradigms.

• Grid Computing: grid computing paradigm [23] deals with globally

dispersed, heterogeneous, loosely coupled resources. Resources in a grid

architecture belong to different administrative domains and are managed

separately. Resources and users are grouped together into Virtual Organi-

sations (VO) where institutions within a VO share resources amongst each

other. Resources in a grid architecture are made available through middle-

wares that specifically expose the resources to be shared while also handling

communication, data management and security context. Middlewares such

as Globus and gLite are a set of tools that manage job submission, moni-

toring, fault tolerance, data movement, and security. These tools implement

the Infrastructure as a Service (IaaS) model where computing hardware is

directly shared. Service oriented architectures within the grid such as Web

Services Resource Framework (WSRF) services implement a Software as a

Service (SaaS) model where software services are exposed. Enabling Grids

for E-sciencE (EGEE) is one of the largest grid architectures based on gLite

middleware. To date, EGEE [1] resource pool include 92,000 CPU cores and

several Petabytes of storage. The resources are grouped in over 200 different

virtual organisations and are used on a daily basis by thousands of scientists.

11

• Volunteer Computing: Volunteer can be considered as the desktop

lightweight grid. In volunteer computing users decide to donate their idle

processing power (CPU, GPU) and excess storage to distributed projects

such as SETI@home and Folding@home. The most widely used middleware

for volunteer computing is the BIONIC system which is a centralised system

for CPU scavenging. Client report in for work at a central server which

in turn distributes the workload amongst the clients. Applications for such

environments are usually characterised as being farmed or parameter sweep

types.

• Utility Computing: With utility computing organisations do not manage

their in-house clusters but instead subscribe to a service provider and pay

only for the hardware and software they use. Service providers are able to sell

some of their computing power since most resources will be over-provisioned

to deal with peak demands. Utility computing targets the Platform as a

Service (PaaS) [23].

• Cloud Computing: Cloud computing paradigm overlaps utility comput-

ing but in cloud computing the focus is on the Software as a Service (SaaS)

[23]. This allows programs to exist in the cloud as opposed to one’s personal

computer. The advantages for such a paradigm include: service outsourcing

such as mail service, fault tolerance, and better security.

• Edge Computing: In edge computing [43], the aim is to push core services

out to the network fringe. Having content and services accessible closer to

the user will reduce network load and latency. The challenge in many edge

technologies is the data coherency model where data replication techniques

across distributed caches play a vital role to keep the data view consistent.

2.3 Coordination Patterns

An important aspect of any distributed system is the communication model it

supports since distributed tasks will eventually rely on communication to synchro-

nise and coordinate execution. Inter process communication on single machines

is made simple through signals and shared memory where latency and bandwidth

are relatively negligible. On the other hand communication between distributed

process is a breed apart since communication relies on networking technologies

12

which is characterised by relatively high latencies and low bandwidth. Further-

more, distributed processes, often, act on private local data and hence challenges

arise to maintain a data consistency model between distributed processes.

Distributed process communication models may vary considerably. Common

models such as remote procedure call (RPC) aim at abstracting the low level com-

munication layer by implementing a RPC API where remote procedures are called

as if they are local to the system. Another common model is message passing in-

terface (MPI) which encapsulates communication into messages and disseminates

them amongst processes. At a lower level, communication may employ additional

systems to enforce quality of service (QoS) since common protocols such as TCP

and UDP do not guarantee.

Communication in distributed systems goes beyond data exchange as it also

plays a role in coordinating the execution of the whole system. Coordination

models can be broadly divided into four categories [56] as shown in figure 2.1.

The models are organised according to their temporal and referential coupling.

In temporal coupling both communicating parties need to be active during com-

munication while referential coupling means that communicating parties know

beforehand with whom they are communicating. The strictest category is a cou-

pling in time and reference as would be with direct TCP/IP communication where

both parties need to be active during communication and are addressable through

IP addresses. Transient message passing and direct peer-2-peer systems fall within

this category.

Decoupling communication in time would have the effect of allowing processes

to communicate at any time independent of the execution time. This characteristic

is analogous to a mailbox system where processes leave messages in a mailbox

which are later picked up by other processes. Mail messages are addressable hence

this communication model is coupled in reference since communicating processes

need to address mail messages to a particular process or a set of processes.

Decoupling communication referentially means that processes do not know

beforehand who will read the messages. Communicating parties are coupled in

time so processes need to be active and running during communication. The

model is analogous to an event based system where processes fire events which in

turn interrupt other processes. The listening processes need to be running at the

time of the events hence the time coupling.

Decoupling communication referentially as well as in time results in generative

communication which does not depend on processes being active at a certain

time and communicating parties also need not know explicitly to whom they are

13

Figure 2.1: A taxonomy of coordination models [56]

communicating. These types of communications are exemplified through tuple

space communication such as publish/subscribe systems where processes write

data to a tuple irrespective of who will read it and when it will be read. Tuple

spaces where popularised with the Linda model [62]. Linda implements tuple

spaces as a global associative memory with basic operations such as: in which

reads and removes tuples, rd which only reads tuples, and out which writes new

tuples.

2.4 Grid Task Management

Grid architectures are commonly described as an abstract layered architecture

[26] as depicted in figure 2.2. The layered architecture is somewhat comparable

to the Internet protocol stack where the top three layers map to the Internet

application layer while the connectivity and fabric layers map to the transport,

Internet, and link layers. Task scheduling and management in grid architectures

is usually a two step procedure and takes place at the collective layer and resource

layer.

The collective layer task scheduling is a super scheduler and deals with mul-

tiple grid site scheduling. Such a scheduler is the gLite’s Workload Management

Service (WMS) [21]. The main components in the WMS are: the task queue,

the information supermarket which is a database of resource information such as

load, architecture and installed libraries, the matchmaker which uses the informa-

tion to match tasks to resources, and the actual job submission and monitoring

component. The matchmaking component takes decisions depending on many fac-

tors including: resource availability, specific user requirements such as the number

of processors and software libraries needed, and grid site utilisation policies im-

posed by the local site administrators. Furthermore, the WMS can adopt different

matchmaking strategies such as eager scheduling where the task is matched to a

14

resource as soon as possible and sent for execution immediately, and lazy schedul-

ing where the scheduler waits for the resources to become available which are then

matched against the list of tasks. The best matched task is then submitted to the

resource.

Whilst the collective layer scheduler has a bird’s eye view of the whole grid

resources, the local resource layer scheduler is specifically aimed at optimising

the schedule on the local cluster. Schedulers such as Maui [3] include extensive

scheduling features such as multi task prioritisation, advance reservation, task

Quality of Service (QoS), and backfill scheduling techniques which can start lower

priority tasks in an Out-of-Order (OoO) fashion without interfering with the high

priority tasks. Another popular cluster workload manager is the Sun Grid Engine

(SGE) which implements similar functionality to Maui.

As the critical path of a job submission takes it through two different sched-

ulers, it is to no surprise that queue waiting times play a role in overall grid job

execution time and performance. For this reason a number of tools aim to allevi-

ate the queue waiting time through the notion of pilot job submission. The idea

of pilot job submission is simple yet effective. Pilot jobs are special jobs that,

when submitted and eventually run on the resource, they will pull the actual job

for execution. This paradigm offers some advantages: by priming the grid with

such pilot jobs, one can hide the queue waiting time since a number of pilot jobs

would be available to immediately pull and execute a task. The pilot job can also

perform some initialisation routines such as check the node environment and can

accept jobs only if the node is validated hence increasing the job success rate.

A networked collection of smart pilot jobs can build a virtual grid dedicated to

one user and can provide additional features such as job monitoring. Common

pilot-based systems are DIRAC [59] and Glide-WMS [54].

2.5 State of The Art in SWMS

In order to benefit from previous experiences in the field of scientific workflow

management systems, we conduct a review of existing popular SWMS to gain

insight on workflow enactment engines. Several well-known systems have been

reviewed include: ASKALON [24][53][18], GridNexus [37], GWES [34], Karajan

[60][18], Kepler [44][22] , Pegasus [13][18], Taverna [50][18] and Triana [57][58][31].

15

Figure 2.2: Layered grid Architecture analogous to the Internet protocol stack[26].

The fabric layer deals with the actual resources such as computation and storage.

The connectivity layer defines communication and authentication protocols for

grid specific network transactions. The resource layer defines protocols for resource

management on single resource. The collective layer deals with multiple resources.

The application layer describes user application grid interfacing such as APIs.

2.5.1 Kepler

Kepler [44] provides a graphical workflow composer whereby workflow com-

ponents are actors. The scientist builds workflows by either reusing components

or by composing the workflow from scratch. The designed workflow can be di-

rectly executed from within the GUI or else exported to an XML format(MoML)

which could be passed to the Kepler execution system without the presence of

the GUI. Kepler system is actively adapted and extended by the community. Ke-

pler was extended to support dynamic component embedding by introducing a

frame actor which is a dumb actor that gets embedded at runtime [47]. Dur-

ing execution stage, Kepler actors can be tagged as compute intensive. These

actors are distributed across remote computation resources which include Kepler

peers or Kepler slaves. Kepler execution engines determines the dataflow sched-

ule and job execution based on the abstract workflow schedule. During design

stage the scientist can indicate different Models of Computation (MoC) through

different directors. Such common MoC are: Process Network, Dataflow, Discrete

Events, and Synchronous/Reactive. Kepler includes a provenance recorder which

can record data for all actors or just a subset. A provenance query API is then

used to query the current workflow provenance store hence enabling monitoring

whilst also allowing authorised users to query past provenance data.

16

2.5.2 Taverna

In Taverna [50], users compose hierarchical workflows in a graphical composer.

The workflow nodes represent web services while edges represent the dataflow be-

tween the web services. The graphical representation is synthesised to an XML-

based DAG format language, SCUFL. Execution in Taverna depends on the user

mapping each workflow graph node to an available web service or set of web ser-

vices. The latter allows for an alternate scenario when dealing with fault tolerance.

Fault tolerance is also handled with retries whereby the task is retied a number of

times upon failure.

2.5.3 Triana

As in other systems, Triana provides a graphical workflow composer. Triana in-

terfaces to a different execution environments through GAT and GAP. The former

is used to interface task oriented workflows to grid middleware such a Globus by

using GRAM, GRMS or Condor. GAP is used for web service oriented workflows

by binding to WSRF, Web and P2P services.

2.5.4 Pegasus

Pegasus [13] has no real graphical user interface. Pegasus can be considered

as an execution engine which excepts XML (DAX) workflow specifications and

executes them. DAX can be composed by separate user interfaces such as Wings.

Pegasus workflow management system is a three part system composed of the Pe-

gasus mapper, DAGMan execution engine and the Condor task manager. The

mapper maps the workflow on resources managed by different managers such

as PBS, LSF, Condor and individual machines. The mapper produces and ex-

ecutes workflows with directives to DAGMan on how to execute the workflow

components. Directives include remote job execution, data movement and data

registration. DAGMan is responsible for scheduling the components for execu-

tion. Depending on the input task graph, it submits jobs to Condor or Condor-G.

Condor-G enables Pegasus to interface to Globus. DAGMan is also responsible for

task-level fault tolerance whereby it retries failed jobs and creates rescue DAGs.

The rescue DAG contains the portion of the original workflow which had not been

executed. Pegasus captures provenance during execution which includes informa-

tion such as host, runtime and environment variables.

17

2.5.5 Karajan

Karajan [60] is a Java based workflow management system which evolved

through GridAnt. The basic system components are a visualisation, check-pointing

and execution subsystems. Workflows are described in an XML-based language.

Components are composed in a hierarchical fashion using a DAG model with ex-

tended primitives. Primitives provide generic sequential and parallel execution,

sequential and parallel iterations (non-DAG), conditional execution and functional

abstraction. Karajan interfaces to different grid middlewares through an abstrac-

tion API. It also supports late binding hence deferring the decision of how a task

should be executed until the task is actually mapped to a resource. The system

provides user directed and global fault tolerance. A noteworthy feature in this sys-

tem is the fact that Karajan can be extended through parametrised user-defined

workflow elements or by implementing new workflow elements.

2.5.6 GWES

GWESmodels grid workflows using Petri-net-based graphical modelling. Petri-

net modelling differ from the commonly used DAG modelling in control flow and

state. Petri-nets can model loops while pure DAGs do not. Control flow mod-

elling in DAG is usually achieved by extending the model. Also, Petri-nets model

graph/net state through token transitions on the other hand DAGs only describe

the behaviour of the graph and do not capture state. Petri-net’s well understood

properties such as deadlock and conflict can aid in model analyses and optimisa-

tion.

2.5.7 ASKALON

ASKALON uses an XML based language Abstract Grid Workflow Language

(AGWL) to describe the workflow graph. AGWL models DAGs with control

structures such as sequences, loops, conditionals and advanced constructs such as

parallel and collection constructs. The language also supports modularisation and

reuse by defining sub-workflows. A core component of this workflow system is the

scheduler. The scheduler consists of three sub-components; workflow converter,

scheduling engine and event generator. The workflow converter is responsible for

converting the abstract workflow into a simple DAG workflow by unrolling loops.

The simple DAG can then be scheduled using graph scheduling algorithms. The

scheduling engine maps the actual simple DAG to the underlying resources. The

18

scheduler has three different algorithms namely; Heterogeneous Earliest Finish

Time (HEFT), a genetic algorithm and myopic Just In Time (JIT) algorithm.

The events generator is responsible for monitoring the workflow execution. Fault

tolerance is achieved at three different levels; activity-level by means of retry and

replication, control flow level through check-pointing and migration, workflow-level

through alternate task, redundancy and check-pointing.

2.6 Current WS-VLAM Architecture

The current WS-VLAM architecture is composed mainly of two parts, the WS-

VLAM composer implemented as a client application and a set of WSRF services

deployed in GT4 Container. The service part of WS-VLAM architecture consists

of a number of WSRF services. Some of them are standard services provided by

GT4 Toolkit such as the Delegation Service, and a set of WSRF services developed

in the VL-e project namely: the Workflow Components Repository (WCR), the

Resource Manager (RM), the Runtime System Manager (RTSM).

Modules are the core composition entities for WS-VLAM. They represent tasks

to be executed on the grid and are represented as vertices in the workflow graph.

Tasks can be applications specifically written for WS-VALM, web services or legacy

applications. Modules have input and output ports which interconnect the whole

graph. Web services and legacy applications are supported through a system

of wrappers which are specialised components aimed at integrating third party

applications.

The execution engine is wrapped as a Run Time System Manager (RTSM)

Service. This engine consists of two parts: RTSM Factory Service and RTSM

Instance Service. The factory is a persistent service which instantiates a transient

RTSM Instance service whenever a user submits a workflow execution. The RTSM

is a super component composed of three sub-components: module launcher, mod-

ule connector, and module controller. The module launcher initiates the workflow

execution after parsing the WS-VLAM DAG XML description. Modules are sub-

mitted through a GT3 launcher. The module connector is responsible for setting

up the data channels between the submitted modules. For each data channel the

connector selects a TCP port and sends commands to the communicating par-

ties which in turn setup the connection. The communication protocol is set to

the GridFTP protocol which is a reliable transfer protocol suitable for large data

transfers. The module controller monitors the executing module and reports back

any events as well as state changes. WS-VLAM models a process network model

19

of computation where modules are initiated simultaneously and block on reading

empty channels.

Module communication is maintained by the libvlport library which en-

ables stream data communication between different modules on different nodes.

Implementation-wise, modules implement a vlmain interface function which rep-

resents the computational logic. The vlmain function gets called by the API to

initiate the module. The life-cycle of a typical module is as follows:-

• Module Initialisation: RTSM submits a module to grid-enabled resource

using GRAM protocol or to the local node. Initialisation takes care of setting

up the environment.

• Port Creation: Module input and output ports are created to allow module

communication.

• Registration: Upon startup modules register themselves to the RTSM.

Keep-alive messages are sent to the module during runtime to assert the

modules lifelines. If no acknowledgements are sent back, the module is

deemed dead.

• Module connection: The RTSM connects module output ports to input

ports which in essence build the workflow graph at runtime.

• Scheduling: RTSM schedules the module for execution by calling the

vlmain function on the module. This implements the actual module sci-

entific logic.

• Execution: Modules read data from input ports, process the data and

output onto the output ports. Typically modules will loop on input ports

until the data stream is exhausted.

• Termination: Upon termination, the module exits the vlmain function,

ports are closed, buffers are flushed and the module unregistered itself from

the RTSM registry.

WS-VLAM supports parameter sweeps at a workflow level. A range of param-

eters can be set which would in turn initiate multiple workflow instances for each

parameter. As a matter of scalability the RTSM engine supports distributed hier-

archical execution engines. Workflow modules can be composed of either atomic

modules or composite. A composite module describes a sub workflow which is

20

managed and executed by a separate RTSM instance. This allows instances to co-

ordinate sub workflows as opposed to one engine responsible for the whole workflow

execution.

2.7 Freefluo

Freefluo [2] is a flexible Java workflow orchestration tool aimed at web service

workflows. It was part of the Taverna [35] workflow system’s orchestration engine.

Freefluo is not tied to any specific workflow language or execution architecture,

instead it provides a set of tools that enable extensions for specific workflow lan-

guages and execution models. Freefluo defines two major objects: a flow, and a

task. A flow represents the workflow graph and is a collection of tasks (vertices)

and connections (edges). Tasks are organised into three sets: the start tasks set,

the end tasks set, and the set of all tasks.

The flow and task objects have associated state machines. The state transitions

are illustrated in figures 2.3(a) and 2.3(b). Freefluo models state transitions as

events. Each flow and task object have an associated state object which track

the objects state changes. Objects interested in state changes implement a state

listener which is a callback function called by the flow or task on every state

changed. Thus a flow engine listens for state changes on each task to coordinate

the flow execution. The Freefluo enactment engine models a DAG workflow. Upon

startup, the engine invokes simultaneously the tasks in the start set. The start

set is the set of tasks with no inputs. Running a task involves: changing the

task state, and calling the run method on the task object. Upon completion,

the task updates its state to a complete one which in turn triggers the engine to

run the respective dependent tasks. This procedure continues until all tasks in

the end task set complete and hence the whole workflow completes. The core of

the enactment engine contained inside a workflow instance is decoupled from the

actual invocation mechanism. This allows the engine to orchestrate a workflow in

a generic way, while making it possible for tasks to invoke a variety of resources

(from local processes to grid jobs).

21

(a) Freefluo flow model state machine

(b) Freefluo task model state machine

Figure 2.3: State machines for Freefluo major object models: flow, and task.

22

Chapter 3

Datafluo Architecture

T
his chapter describes the proposed Datafluo architecture. The archi-

tecture is a new engine for WS-VLAM and intended to work side by

side the current RTSM engine. Datafluo name is a corruption of the

term dataflow and the Freefluo [2] workflow engine on which Datafluo

is based. Figure 3.1 illustrates a high-level overview of the Datafluo server and

client side architectures.

3.1 Enactment Engine

The Datafluo enactment engine is the entry point and pivotal component in

the whole system. It accepts a WS-VLAM DAG XML workflow representation,

generated by the graphical workflow composer. The WS-VLAM XML work-

flow describes the workflow graph in full and contains information such as: task

names (vertices), connections (edges), task parameters, and user defined connec-

tion types. At this stage the DAG is interpreted and a Datafluo object representa-

tion is generated. This representation dictates the MoC for the entire system. We

define our MoC as a pipelined dynamic dataflow process network. As described

in section 2.1.2, dataflow networks are based around the notion of actors, tokens

and firing rules. In our architecture, actors are analogous to tasks, components

or modules, tokens represent communication in the form of messages, and firing-

rules are the events within the enactment engine that orchestration the workflow.

Modelling a pure dataflow model on a distributed architecture would mean that

actors are destroyed and re-scheduled on every respective firing event. This will

undoubtedly incur excessive overhead due to the time taken to re-schedule a task

on the resource. For this reason, we included pipelining in the model and deviated

from the pure dataflow model so as to mitigate this problem.

In our Datafluo model we combine the concept of pipelining to the dataflow

model by setting up a pipelined process network using a dataflow model. In

pipeline terminology, pipeline stages correspond to workflow tasks while instruc-

tions correspond to messages. Thus, with a simple linear workflow it will take

23

Figure 3.1: Datafluo Run Time System: illustrates the main components mak-

ing up the server side of the Datafluo architecture. The main component is the

enactment engine. Task Harness: is the workflow module harness which get sub-

mitted to the resource and hosts the module. Task Dynamic Module: is the actual

component where the scientific logic resides. The components are pluggable into

the harness. Dynamic Loadable Communication: are the communication plug-

in libraries which allow message data to be communicated in different ways for

example to a gsiftp server. Distributed Resources: are the actual resources on

which tasks execute. The resource information service publishes queue loads to

the Datafluo server.

24

Figure 3.2: Simple linear pipeline stage demonstration. The pipeline depicts a

simple 4 task linear workflow. The coloured boxes depict the flow of messages

from one stage to the next while the grey and white boxes show idling times.

n− 1 messages communication to fill up the pipe where n is the number of tasks

in the workflow. If each message takes time t to process, the simple workflow

will take (n − 1)t time before all tasks are processing data. Similarly it will take

(n− 1)t time to drain the pipe. In the current architecture the pipe startup cost,

depicted as the grey boxes in figure 3.2, is an added overhead since tasks have

to wait for data to propagate down the pipe. Tasks at the end of the workflow

graph have to wait a considerable amount of time before data is received as each

task will, typically, have to wait (k − 1)t time where k is the task position in

the pipe. The pipe drain phase depicted by the white boxes in figure 3.2 is the

opposite to the startup phase. It can incur overhead in cases where completed

workflow components have to stay alive until dependant components terminate.

This might be the case when communication channels between components need

to stay active until all parties terminate. As with instruction pipelining in pro-

cessor architectures as a way to increase throughput, workflow pipelining overlaps

task computation thus reducing the workflow makespan. Since all workflow com-

ponents take different times to process messages, it is difficult if not impossible to

ensure a fully pipelined system as pipeline bubbles are easily created. Bubbles are

created when tasks produce messages at a much slower rate than consuming tasks

are able to process hence the consumer has to idle between messages waiting for

data. This could be lessened, though not fully eliminated, by initiating multiple

copies of the producer which would ideally produce multiple messages at a time.

25

The Datafluo engine eliminates the startup phase idling time for each task

by scheduling tasks only when data is available. Drain-phase idling time is also

eliminated through our architecture since communication is decoupled in time and

hence tasks can safely terminate without message data loss. The dataflow charac-

teristics allows on-demand process network composition since only actors having

work to do will start execution. In essence, this characteristic reduces grid resource

footprint in two ways: resources are only occupied when work is available, and

graph branches can be systematically disabled through selective channel writing

within a task. Individual dataflow tasks can act as conditional branching by de-

ciding, on some internal condition, to which port data is written. Once actors fire

and materialize into real computation they act as streaming tasks whereby they

continue consuming and producing messages until they either decide to exit or all

input channels are exhausted. Termination occurs in a cascading effect whereby

initial tasks terminate, prompting dependent tasks to terminate once the last mes-

sage has been consumed. In grids and typical cluster architectures, applications

compete for computation time slots hence an idling task will use-up a resource

slot while not producing any useful work. This is contrast to a single computer

where typical operating systems are able to context switch processes hence idling

tasks do not steal computation. Our Datafluo model is resource friendly whereby

it only occupies resources when work needs to be done.

3.1.1 Task Farming

The total work to be done in our workflow architecture can be described as a

function of the total messages consumed and produced by the workflow compo-

nents. Messages in a workflow system are generally bound to some computation

hence each message consumed has a respective computation time associated with

it. In an ideal scenario, all workflow components take the same time to process

each message hence tasks would never have a backlog of messages to process. In

practice this is never the case since tasks are isolated programs with their own

logic complexities thus message backlog and an eventual bottleneck are common

scenarios in a workflow pipelined system. By allowing a backlogged task to repli-

cate itself we can circumvent the workflow bottleneck. This task replication is

what we call task farming.

The enactment engine has built-in support for task farming and parameter

sweeps. These are common methods used to exploit concurrency in embarrassingly

parallel applications. Such applications can be split in many tasks with little or

no synchronization between them. Typical scenario for farming is the processing

26

of large data sets, where each identical task can process different parts of the

data. Parameter sweeping is a special kind of farming where the identical tasks

act on the same data but with different parameter settings. Farming in Datafluo is

achieved through cloning, whereby tasks can be cloned as many times as needed.

A clone is an almost identical copy of the parent with some subtle differences such

as the inability to clone itself and that ports are shared with those of the parent.

Clones are not visible outside the scope of the parent task and hence the workflow

system as a whole does not know about clones. Each parent manages its own

set of clones and hence avoids changing the semantics of the original workflow.

Clones share the same logical ports as the parent and so whatever the parent

receives can be accessed by its clones. A task is only allowed to have one farmed

port. A farmed port is such a port that the data received on the port can be split

between the farmed task pool. Having more than one port would create a data

consistency problem. If we have a task with two ports designated as farmed, port

1 has queued a set of messages (X1...Xn) and port 2 has the set (Y1...Yn) then

we want to guarantee that a clone that receives message X1 on port 1 will also

receive Y1 on port 2 since there might exist a casual dependency between both

messages. This is not feasible as it incurs excessive synchronisation overhead and

can be circumvented by designing a task where ports 1 and 2 are merged into

one port and messages Xn and Yn are merged into one message Zn. Farming in

Datafluo supports three different strategies:

• Auto-Farming: In auto-farming, the parent task within the enactment

engine is responsible for initiating clones depending on the apparent task

load. This is done by gauging the tasks’ farmed input port against a pre-set

threshold. Since each message is associated with a computation, the Mes-

sage Interval Time (MTT) of a port (i.e. the time taken between message

requests) is an approximate of how long the task took to process the message

and thus the message queue size coupled with the MIT is an approximate

load on the port. The port load is calculated on every message read and

is a function (Stn)Ln−1

2
where S is the message queue size, tn is nth message

processing time and Ln−1 is the previous calculated load. The function cal-

culates the load as the message queue size multiplied by the time quantum

between message requests. In order to smooth out spikes in the load graph

we factor in the previous calculated load and take the average. This gives

an indication on the time needed to process the data and hence also allows

to approximately predict how many clones are needed to process the data

27

within a certain time frame. The auto-farming further emphasises the sin-

gle farmed-port restriction since with more than one farmed port it would

not be clear which port should be chosen and monitored to initiated task

duplication. This auto-farming strategy is best suited for large queues with

relatively low message processing time since the load is only calculated after

the first message has been processed. In the case where the load is high due

to high message processing time and a short queue, the system would have

to wait until the first message is processed before it starts cloning. This is

a weakness in the system and can be alleviated by pre-emptively taking an

auto-farming decision before the first message has been processed in cases

where the message takes a long time to process.

• One-to-One: This type of farming allows for new clones to be submitted

for every message received on the farmed port. This type is particularly

useful in parameter sweeps, where each parameter is given an associated

clone. Through this system, actors become parameter sweep engines as they

are responsible for generating parameter messages to be used by clones. This

is in contrast to other systems such as Nimrod [11] where the system itself

is a parameter engine. Parametrized tasks would typically include one or

more data ports. The engine ensures that all clones, no matter when they

join the farm, have a consistent identical view of the data. Thus a latecomer

sees the exact same data and ordering as others that have already consumed

parts of the data stream. The parent must also buffer the data messages

indefinitely to guarantee that any new clone gets access to all the data.

• Fixed-Farming: This is a static farming type whereby the user decides

beforehand on the number of clones that should be initiated for a given

task. Whereas a one-to-one model, tasks consume only one message off the

shared queue, in a fixed farm tasks typically come back for more messages

and continue processing messages until the shared queue is exhausted. This

gives rise to farming in a service oriented way where tasks are long lived and

continuously consume messages. Such a scenario would be a parameter set

of 100 and the user decides to initiate 5 clones whereby each clone would

consume 20 parameters.

3.2 Message Exchange

In a typical grid environment tasks have to percolate through a number of

scheduling queues before reaching actual resource. This tends to fragment the

28

workflow as some tasks might get through the queues while others get stuck waiting

for their turn. Some grid middleware systems implement advance reservation

systems to tackle the co-allocation problem and guarantee that a number of tasks

can be scheduled simultaneously. Reservations are known to degrade the system

due to increased wait time [20]. The problem is exacerbated when co-allocating

many tasks across grid sites, as in the case of a farmed task.

In our Datafluo model we make a weak assumption about task communication.

Tasks are allowed to be scheduled out-of-sync and out-of-order, hence communica-

tion is not synchronised but buffered which, in essence, decouples task communica-

tion in time. This allows tasks to be scheduled without the need for co-allocation.

Communication buffering is achieved through the message exchange component.

The message exchange binds tasks’ input and output ports to message queue and

is responsible for routing messages between queues.

The Message exchange aids the enactment engine in achieving the farming

capabilities. Clones for a particular task share the same input farm queue and

output queues. Every clone picks up and removes the next message in the queue,

hence no two clones get the same message. On the other hand, clones having

multiple input ports need different treatment since it must be ensured that all

clones get exactly the same data. This is achieved by using shadow queues on the

parent task. When a clone is initiated, its input data queues are attached to the

parent shadow queues. The shadow queue acts as a persistent buffer and hence a

new clone can grab all the data that has been received by the parent. Termination

of a farmed task can only happen once all clones and their parent have terminated.

The message exchange component plays a secondary role in the orchestration

of a Datafluo graph. It provides data flow information to the enactment engine,

which needs to determine the actor firing events. When a task produces messages

on its output ports, the message exchange routes the message to all connected

ports which will in turn signal the enactment engine about the new data. The

enactment engine will register the data reception on the port. Once a task has

data on all its input ports, the enactment engine will proceed to fire the task.

3.3 Job Submission

The architecture exposes a scheduler and submitter interface. The scheduler

interface is intended for implementing specialized schedulers whilst the submitter

interface is the resource abstraction layer. The scheduler can manage multiple

submitters and is able to distribute the workflow on multiple resources.

29

(a) Round Robin Scheduler (b) Bucket Scheduler

Figure 3.3: Two simple scheduler implemented for the Datafluo architectures. In

(a) the scheduler fills unequal queues evenly by calculating the fill ratio. In this

case 4 queues with 20, 15, 10, and 5 free slots are filled at a ratio of 4:3:2:1 which

fills the queues evenly. In (b) the scheduler focuses on locality. the free slots are

represented as buckets and the scheduler fills the largest bucket first and overflow

the extra load onto the next largest bucket.

A simple scheduler setup is a Round Robin scheduler with a number of cluster

submitters. This scheduler aims at load balancing tasks across multiple cluster

sites by submitting tasks to submitters in a circular fashion. The Round Robin

scheduler takes into consideration different sized queues hence three queues having

15, 10, 5 free slots will have a submission ratio of 3:2:1 respectively. That is, the

first queue with 15 slots will get 3 tasks, the second with 10 free slots will get 2

tasks and the last queue will get 1 task. This ratio ensures the queues fill up at

the same rate. The ratio is calculated by selecting the smallest queue and dividing

all the queues by the smallest queue size.

A second scheduler is the bucket scheduler. This scheduler aims at optimising

locality by grouping as many tasks as possible onto one resource. The submitters

are ordered according to their queue size. The available queue slots represents the

submitters’ bucket. The scheduler starts by filling up the largest bucket and when

full, it overflows tasks to the second largest bucket. Once slots become available

in a larger bucket, the scheduler tries to fill it up again by scheduling next tasks

into this bucket. Optimising task locality aims at improving communication since

tasks are geared to produce data on the closest available data storage.

Although the above scheduler take automatic decisions, one can imagine a

scenario where a user wants to manipulate the resource priorities at runtime thus

disabling a resource completely or giving it higher priority. Such decisions might

allow a user to include a Cloud resource (which has an associated monetary cost)

at runtime when the other resources become clogged. For such a scenario we have

30

an interactive scheduler where the user can set priorities for each resource. Before

every submission the resources are sorted and the highest priority resource with

available slots is chosen.

Schedulers such as the round robin and bucket scheduler need resource infor-

mation so as to make a better decision. The queue monitor server component

is responsible for listening for queue statistics such as queue size and queue free

slots. Resource information services on the resources such as cluster head node

send queue information to the server. The queue monitor will update the sub-

mitters’ data which in turn can be used by the schedulers to take an informed

decision.

Submitters can be of any kind such as Sun grid Engine (SGE), Globus, Gmin-

ion, and local. Submitters are entrusted with setting up all necessary config-

urations for the actual submission which may include staging in/out files and

redirecting stout/stderr. Tasks can be bound to a particular submitter through

parameter settings hence forcing the scheduler to submit the task on the specified

resource.

3.4 Reactor Server

All communication between the tasks and Datafluo is handled through a com-

mand server which accepts commands for checking mail, posting mail, and heart-

beat messages. The server works in a passive mode and never initiates a connection

to a task. This is due to the inherent inbound communication restriction between

cluster sites. Tasks are responsible for pulling message and pushing new messages.

So, as not to inundate the server with check mail requests, tasks implement an

exponential back-off en

(n+1)
where n is the check mail attempt counter. The back-off

is capped at a threshold and reset to 0 when a new message is received.

3.5 Heartbeat Monitor

The heartbeat monitor is a simple mechanism to detect unexpected task fail-

ures and issue resubmissions. The monitor iterates through the workflow task list

at pre-set intervals and checks the last received heartbeat for every task. A task is

resubmitted if it abruptly stops sending heartbeats. In case of resubmission, tasks

are resubmitted to the same submitter hence bypassing the scheduling algorithms.

31

3.6 Task Harness

The second part of the architecture depicted in figure 3.1 illustrates a 2-input 1-

output port task as, the executable submitted to the resources. The architecture

is based on a plug-in model whereby the task and communication modules are

dynamically loadable into a harness program. The harness has three main parts:

a logging system, a reactor client, and the message fabric. The crux of the harness

is the message fabric which binds loadable communication libraries to the task

input/output ports through a system of message queues. The message fabric sets

up message queues for every port on the task module. These queues are bound

to queues exposed by the communication library. The communication libraries

implement user defined protocols. A user defined protocol such as gsiftp would

read and write binary message data to gsiftp servers while pgsiftp would get a

file from a gsiftp server and pass a pointer to the local file up to the task. The

pgsiftp library is useful for legacy and third party software that expect files as

input as opposed to raw binary data. When tasks are initialised on the resource

they first contact the reactor server for configurations. The configuration includes

the ports setup and the list of available servers for publishing messages. The

task selects the best server depending on the ping round trip time. Part of the

configuration includes the protocols available for a particular server (e.g.gsiftp

). This information would be used to load the appropriate communication library.

The messaging fabric allows component developers to focus on the scientific logic

as communication is hidden behind the harness.

3.7 Concurrency

Having described the whole system we can point out three levels of concurrency

achieved through this architecture: task level concurrency, pipeline concurrency,

and farming concurrency. Task level concurrency is achieved through the inher-

ent nature of dataflow process networks as multiple tasks can fire simultaneously.

Computational overlap between pipelined tasks achieves a finer level of concur-

rency dependent on the frequency of message passing between tasks. The higher

the message frequency the greater the computational overlap while lower frequen-

cies tend to produce more pipeline bubbles. Farming achieves data concurrency

between independent tasks by splitting data n-wise between n identical tasks run-

ning concurrently.

32

Chapter 4

Datafluo Implementation

T
he following describes implementation issues regarding the described

architecture. The implementation is split into two main sections: the

server side, and the client harness side. The server side implementa-

tion is written in Java. The main objects depicted in figure 3.1 map

to the main Java packages. The architecture objects are mostly decoupled and

can be easily swapped out for other implementations.

4.1 Enactment Engine

The Datafluo enactment engine is based on the Freefluo [2] engine. As de-

scribed in section 2.7, Freefluo is a flexible Java workflow orchestration tool aimed

at web services. Freefluo orchestrates a workflow in a DAG fashion, that is, it

will only fire tasks once parent tasks have been completed and not when parent

tasks produce data. Thus Freefluo has no notion of a task port and only repre-

sents dependencies between tasks without defining what kind of dependency exists

between tasks.

In our prototype we extended the Freefluo implementation to model our data-

flow model. A new port object was included to model actors having ports.

(a) Freefluo workflow (b) Datafluo workflow

Figure 4.1: Freefluo workflow representation vs the Datafluo workflow representa-

tion which includes ports which distinguish between dependencies.

33

Figure 4.2: Datafluo port state machine. An Active state denotes that a port has

sent or received at least one message. The port remains in an Active state until

its either destroyed or disabled.

Figure4.1 depicts the difference between the Freefluo workflow representation in

4.1(a) and a possible Datafluo similar representation in 4.1(b). In Freefluo, tasks

2, 3, 4 all depend the same way on task 1 hence once task 1 terminates all other

tasks commence. In the Datafluo example, task 2 and 3 depend on port 1 of task

1 while task 4 depends on port 2 of task 1 therefore once task 1 produces data on

port 1, task 2 and 3 start simultaneously while task 4 still waits for data to be

produced on port 2.

Tasks have a list of input ports and output ports. Dependencies are created

between ports and not between tasks. A port is a state machine and is illustrated

in figure 4.2. This state machine is implemented in a similar fashion to the task and

flow state machines described in section 2.7. When the first message is received

by a port, its state is changed from Enabled to Active. Tasks listen for port state

changes and will fire when all input ports have been elected to the Active state.

A port becomes Actvie on the first message and remains so until it is destroyed at

the end of the message stream.

The state machine for the flow, task, and port objects are implemented in

a similar way. The objects are composed of three main objects. One is the

object itself such as Port. The second object is the abstract state object such

as PortState which all other state (New, Enabled, Active, Disabled, Destroyed)

must implement and the third is the state event object which carries the event

data. The event object carries important information such as the source object and

the new state. The port object implements the port logic which includes managing

34

an array of connections to other ports, setting the direction of a port (a port is

unidirectional so it can only be set to input or output), and managing the array

of state listeners. Any object interested in the port state changes must register

itself to the port through addPortStateListener. This ensures the any changes

to the port propagates to the registered listeners. One important port listener

is the task to whom the port belongs. The port (task and flow alike) includes a

PortState object which implements the state transitions. A state object is an

abstract object which defines the possible state transitions as methods though it

does not implement any of the methods. Each state object must implement the

abstract state class and implement the relevant state transitions hence the New

state will implement the Enable, Disable, Destroy transitions since those are the

only allowed transitions from a New state. If any other transition is made from

the New state it will try to execute the abstract state method which will throw an

IllegalStateException. Every state transition within a state object performs

the same basic functionality which includes changing the internal state and calling

a callback method (e.g.portStateChanged) on the relevant object which passes

the state event object in this case PortStateChangedEvent. This callback will

in turn call the callback methods on all the registered state listeners.

The Datafluo enactment engine implements several Freefluo interface classes

namely, the Engine, WorkflowParser, WorkflowInstance, Task, and Port.

The new implemented objects implement Datafluo specific logic. The Vlam-

Engine which inherits the Freefluo Engine overrides the compile method

which takes the WS-VLAM XML graph. This calls the VlamWFParser which

is responsible for parsing the actual XML file and generate a Datafluo representa-

tion. The parser will first create a list of VlamDatafluoTask and then proceeds

to generate a list of VlamDatafluoPort. A VlamDatafluoTask is given a Uni-

versally Unique IDentifier (UUID) and parameters such as farming and host are

extracted from the XML file and set in the task object. The port objects are it-

eratively connected to each other so as to represent the networked graph. Whilst

generating the port connects, message queue objects are also created for each

port. A VlamDatafluoPort extend the Freefluo Port and adds a message

queue object associated with the port and a queueRaisedEvent method which

listens on the message queue object for messages being received or consumed.

The VlamDatafluoTask extends the Freefluo Task and adds quite some

functionality. The VlamDatafluoTask overrides the handleRun method which

is called by Freefluo when a task is ready to fire. The new handleRun will

basically add the task on the Datafluo’s scheduler runnable queue through add-

35

RunnableTask . This will be picked up by the designated scheduler and submit-

ted using one of the selected submitters. Other important functionality with the

VlamDatafluoTask object is the cloning mechanism. The task listens on the

port for messages. When a message is received the portReceivedMessage is

called and can take 3 possible actions. If the port on which a message has been

received is earmarked for farming then the task can be cloned if the conditions for

fixed-farming or one-to-one-farming are met. The fixed-farming will create a fixed

number of clones which would have been defined by the user beforehand and then

farming is disabled for the port so no further cloning can take place. With one-

to-one-farming, a new clone is created for every message that has been received.

If the message belongs to a normal port, that is not farmed, no further action is

taken. Cloning is also restricted to tasks that do not have any dangling clones.

A dangling clone is one which has been submitted but has not yet reported in as

alive.

Cloned tasks are identical to the base or parent class with some important

differences. A clone has a new UUID, the cloned task cannot clone itself, the

designated farmed port queue and output port queues are shared amongst parent

and all clones while new queues are created for input data ports (data ports are

those ports that are not farmed so messages on the parent data port must be

replicated on the data ports of all clones). The latter procedure is needed since

all clones must receive the same data on the data input ports as the parent which

would not be the case with shared ports since messages read by one clone is

removed and not accessible by any other clone. Furthermore clones may join the

farm at a later stage when the parent has already consumed messages from the

data ports and hence the clone would not see all the data but a part of it. To

guarantee data consistency across all clones, the parent sets up shadow queues as

depicted in figure 4.3 for each of its data input queue (not famed queue). The

shadow queue acts as a persistent buffer for messages being received. The parent

can consume messages normally from its live data input queue. Once a clone

is made, new input queues are setup for the clone and attached to the parents

shadow queues. This allows the clone to receive all the messages that have been

received on the parent queue irrelevant of the time the clone joined the farm.

All input ports irrespective of cloned tasks or not have an associated reserve

port. This port keeps track of the last message consumed by the port. Datafluo

will re-insert this last message at the end of the queue in the eventuality that a

task has crashed and is re-submitted. The reserve port ensures that the messages

consumed during a task crash can be replayed. All clones and parent output

36

Figure 4.3: The figure illustrates the cloning queue strategy. The image show a

parent task and two clones. The tasks have 3 input ports one of which is a farmed

port (yellow) and 2 output ports (blue). The yellow parts illustrate the farmed

port and its associated queue. The red parts illustrate the input ports and their

queues while the grey queues depict the shadow input queues. The blue parts

show the output ports and their queues. All the clones including the parent share

the same farmed port queue and output queues while data input queues (red) are

attached to shadow queues (grey) on the parent task. The shadow queues act as

persistent buffers for the clones. All input ports have an associated reserve port

which always keep the last message consumed. This ensures that no messages are

lost in case of resubmission.

37

messages to the same output queue. This might cause data hazard issues with

application sensitive to message ordering such as a mean-shift tracker 1. The

solution to this problem, although not implemented, lies in ordering messages

according to the message header sequence number. Typically the first messages to

enter the workflow are given a sequence number. This number could be tracked

through the system to order any new messages generated on the bases of the

input message so any messages generated by processing input message 1 should

be queued before any new messages generated by processing input message 2.

As for task completion, a task cannot be safely marked as completed before all

clones have terminated. For this reason a task never explicitly completes but tries

to complete through the tryComplete. The tryComplete method first checks if

the terminating task is a clone and, if so, it will simply remove the clone from

the parent’s clone queue. If the terminating clone was the last clone and the

parent is already in a terminating state then the parent can proceed to terminate

successfully. If the terminating task happens to be the parent then, if there are

no clones, the parent will just terminate. If clones still need to terminate then the

parent will signal it has terminated without actually completing and wait until all

clones have terminated. This procedure ensures that all clones join on the parent

task.

Auto-farming occurs on a consumed message as opposed to a received mes-

sage. Every time the task pulls a message from its input queues the port-

ConsumedMessage method is called. This determines if the task should be farmed

or not. Auto farming works within a set of limits set beforehand. These thresholds

are in place so as not to allow over farming of the task. The loadThreshold is a

fixed threshold which is compared to the load function result and would not farm

unless the threshold has been met. The time between cloning the task and the

actual execution of the tasks is a grey zone since during this time the load remains

high but clones have already been sent out. To limit cloning during this grey

zone we only allow cloning on tasks that do not have dangling clones. The result

of the load calculation which predicts the number of clones needed to satisfy the

loadThreshold may be too high for the resources to handle. For this reason we

define the maxCloneBurst threshold which limits each cloning attempt to this

threshold. If after submitting the clones the load remains high, auto farming can

opt to resubmit a further clone pool. This procedure continues until the apparent

load in the farmed input port remains below the loadThreshold limit.

1A system for tracking objects in an video stream

38

4.2 Message Exchange

The message exchange core classes implement the actual message routing be-

tween tasks an allow the enactment engine to orchestrate the workflow graph. The

core logic of the message exchange is implemented in the MessageExchange ob-

ject which exposes methods to create new queues through createMessageQueue

and create links between queues through createLink . The actual message

routing takes place within queueRaisedEvent which is called whenever a new

message is received on a queue. The routing procedure distinguishes between a

shadow queue and a normal queue. With a normal queue messages are removed

once routed to connected queues while with a shadow queue messages are routed,

the queue cursor is advanced and the message is left on the queue. This allows later

clones to retrieve all the messages received by the parent. The Queue object

implements the message queue as a linked list. Each queue is identified by a key

which is defined as the combination of the message exchange id, task id, and port

id. The Queue implements functionality to add and remove messages as well as

maintain a shadow queue cursor. The Queue also implements the load function

by recording the time taken between message retrieval. This time quantum is

then used in calcLoad to calculate the queue load as function of the queue size

and time quantum as described in section 3.1.1. Queue messages are Message

objects which contain a header and the message data represented as a string.

The message exchange exposes queue events through the IQueueEventListener

whereby interested objects such as Port listen for such events. In the case of

Port object, the port informs its task that a message is received or consumed and

hence the task can activate the port which allows the enactment engine to orches-

trate the dataflow model by invoking tasks which have all input ports activated.

Hence in our architecture the message exchange has a dual role: that of message

routing and that of providing events for the enactment engine. One can conceive

of other modules that can spoof on the message exchange such as a provenance

module which would store the messages in persistent database and later be used

for fault tolerance or display the data transformations from start to finish.

4.3 Task Submission

The submission core classes deal with the actual job submission and can be

categorised into two main objects: the Scheduler and the ISubmitter objects.

The Scheduler is a super class which all schedulers must extend to submit jobs.

The scheduler is threaded hence it runs in parallel to the enactment engine and

39

exposes the run method which must be implemented by inheriting schedulers.

The basic setup of all schedulers is a vector run-queue which tasks use to add

themselves through addRunnableTask . The scheduler will then run an infinite

loop reading tasks from the run-queue and submitting them according the schedul-

ing algorithm. The run-queue is synchronised through a semaphore which allows

the scheduler to block when the run-queue is empty. The queue is also protected

through a mutex so that the scheduler and enactment engine do not access the

run-queue concurrently as this would otherwise corrupt the queue.

As described in section 3.3, the system implements three different sched-

ulers: the RoundRobinScheduler, the BucketScheduler, and an Interactive-

Scheduler. All have similar implementation although the logic varies as described

in the architecture. The round-robin and bucket schedulers are at best O(1) and

at worst O(n) as the worst case the schedulers need to iterate through the list

of submitters to find a suitable one. The interactive scheduler depends on the

Java inbuilt sorting complexity which, for small lists, uses insertion sort which is

O(n2) at worst. Thus the worst case for the interactive scheduler is O(n3). The

schedulers depend on resource information from the submitters and will initially

block until all submitters report their queue statistics which includes the queue

size and their free slots. Once all information has been gathered the submitters

are ordered according the scheduler’s logic and the best submitter is chosen for

the task. The tasks can bypass the scheduling mechanism by setting their host

variable which is then used to bind the tasks to a specific resource.

The actual task submission is done through one of the submitters. All sub-

mitters must implement the ISbumitter interface which exposes methods such

as submit and other methods related to the the queue information such as

getAvailableSlots . Since submitters can take some time to actually submit

the task, submitters are threaded. The SGE DAS3 submitter is done through

the SimpleGramSubmitter and SimpleGramSubmitterThread which basi-

cally builds a Resource Specification Language (RSL) XML file that includes the

harness executable location, the server IP and port to contact, the task UUID,

the stderr/stdout file redirections, and the security credentials. The RSL file

is then submitted using the globusrun-ws command which submits the job to

a specified resource chosen by the scheduler.

Most schedulers would require some form of resource load statistics to take a

better scheduling decision. For this reason, the submission core includes a passive

server that listens for resource loads such as the queue size and available free slots.

This is done through the QueueMonitorServer and its worker thread Queue-

40

MonitorWorker. The server will match the submitter with the telemetric data

received and update the submitters’ slots and freeSlots variables which can be

accessed by the schedulers so as to order the submitters.

As part of the submission core, the architecture also includes a heartbeat mon-

itor which is implemented in HeartbeatMonitor object. The heartbeat monitor

is a threaded infinite loop which iterates over all tasks at intervals of 60 seconds

and checks each tasks’ last heartbeat through the getLastHeartBeat method. If

the time difference between the last heartbeat is beyond the threshold, the task is

resubmitted. Resubmission involves queueing the task back onto the run-queue.

4.4 Reactor Server

As described in section 3.4, the architecture implements a command server, the

ReactorServer. The server decouples all network traffic from the Datafluo core

objects. It is a threaded server which, by default, listens on port 5555. The server

is threaded hence running concurrently to other Datafluo core threads. Since each

connection opens a new thread and each task can open many connections during

its lifetime, the server resources can be easily exhausted by opening many threads

at once. For this reason threads are managed through a fixed thread pool and

are recycled once a connection has terminated. The thread logic is spread across

two classes: the WorkerRunnable, and CommandHandler. The WorkerRunnable

implements the server threads and acts as a switch for the incoming commands.

The first byte of each byte-stream denotes the command type. The Worker-

Runnable reads the first byte of the stream and switches accordingly. Control

is passed to the CommandHandler which handles the commands and generates a

response where applicable. Commands include:

• CHECK MAIL (0x7E): The command string includes the queue ID which is

associated to a port. The CommandHandler looks up the queue using the

ID. The handler can take 3 possible actions: if the queue has messages it

will send the next message and reply with a SENDING MAIL command, if

the queue is empty it will just reply with NO MAIL command, and if the

port has been destroyed by the task, the handler replies by PORT DESTROYED

command. A destroyed port may still contain queued messages hence the

PORT DESTROYED is only sent once the queue is empty.

• POST MAIL (0x7D): In a post mail command the stream is read and queue

ID is extracted, the queue is looked-up and the message is added to the

queue. The message exchange will then handle the message.

41

• GET CONFIG (0x7B): Submitted tasks need to ask for configurations upon

initialisation. This is done through the GET CONFIG command. The configu-

ration contains 3 main types of configuration entries: Module which include

module configuration such as module name and parameters, Queue which

contains queue to port binding information such as queue ID, port name,

port direction, and parameters, and Server which contains a list of servers

used for storing intermediate message data.

• HEART BEAT (0x7A): The heartbeat command handler calls the heartBeat

method on the task which updates the lastHeartBeat variable.

• COMPLETE (0x70): This command signals the end of a task and calls the

tasks’ tryComplete method.

The server and the harness task do not attempt to keep the connection alive

hence once a command has been served the connection is severed from both sides.

Although opening a new connection every time is a communication overhead, the

architecture assumes the resources are unstable and can not rely on stable open

connections. Furthermore the open connections would limit the number of tasks

the server can handle. Some optimisations can be implemented to reduce the

communication overhead by allowing the connection to remain open for a short

period of time hence reusing the connection during burst communication.

4.5 Task Harness

The task harness implementation revolves around the idea of a pluggable ar-

chitecture which as described in section 3.6 enables the complete decoupling of

the scientific logic from the rest of the system including the harness itself and

the underlying communication libraries. The harness system is implemented in

C/C++ using extensively the Standard Template Library (STL) for data struc-

tures such as vectors and lists. The pluggable components communicate between

each other using a system of message queues which have nothing to do with the

messaging done by the server. The implementation is mainly split up into 5 parts:

the message queue (MessageQueue), the reactor client (ReactorClient), the mes-

sage fabric (vlport2), the communication pluggable modules and the scientific

pluggable workflow module.

The MessageQueue is the binder for the whole system. It basically binds the

workflow module to the harness and the communication libraries to the harness

42

as well. The object implements a list as its queue structure and exposes function-

ality to manipulate the list. Apart from the obvious Read and Write functions,

the message queue implements two synchronisation functions: Signal, and Wait.

These functions act as a semaphore and are used to synchronise the consumer

and producer. The Read and Write have separate synchronisation to guard the

actual queue structure from concurrent access. The MessageQueue also carries a

state variable which is primarily used to signal events between the producer and

consumer. A typical usage of the state is by the consumer to alert the producer

that it will not read any more messages and hence its safe to abandon the queue.

The ReactorClient is responsible for communicating with the Datafluo server.

The commands flowing to and from the server are described in section 4.4. The

functions exposed through the ReactorClient allow the harness to communicate

to the Datafluo engine through functions such as CheckMail, PostMail, and Send-

Complete.

The scientific logic is captured with the workflow module part of the harness.

The modules are self contained and pluggable, that is they can be programmed out-

side the scope of the harness whilst the harness code can change and evolve whilst

the modules need not be recompiled. This allows flexibility in the programming

paradigm. All modules have to follow the IModule interface and implement the

module’s constructor, destructor and three virtual functions which will be called

by the harness. These functions are: init which gets called after the constructor

to perform initialisation routines such as loading parameters that are passed as

arguments to the init function, the start function which is the actual start of the

scientific execution, and stop which implements implements termination routines

before the destructor. The module constructor is where the ports are created and

special environment variables can be set. Program 4.2 shows a typical template

implementation which simulates a two-input, one-output workflow module. The

constructor initiates the ports and maps the input (RX) and output (TX) ports to

a name (lines 7-9). The name is used by the harness to bind the port to a queue at

the message exchange. An optional init function (line 12) can be implemented to

parse any passed parameters. In this template example, the start function at line

15 implements an infinite loop to read the input ports sequentially at lines 17-18.

READ PORT is a macro which returns the next message on the queue identified by

its index number. If any of the messages are NULL, the loop will exit and the

whole module exits. After successfully reading input messages from both ports,

the scientific logic replaces line 23 where the messages are processed and eventu-

ally some data is ready for transmission. At line 25 a new message is created an

43

the data length and reference to the data is set. The output data is finally sent

out of the module through WRITE PORT. The message will be picked up by the

harness and taken care of. The module must signal the harness to retrieve the

next messages for the input ports. This is done with SIGNAL RX PORT which takes

the port index as an argument. Finally once the loop exists, a NULL message is

written to all output ports hence signalling the harness that the ports have been

closed.

In the template implementation, the scientific programmer does not need to

handle underlying communication, data is read and written to queues which ade-

quately abstracts the underlying system of getting messages between components.

The REGISTER MODULE at line 38 is the self registration macro[49] shown in pro-

gram 4.1 which gets called for when the compiled object is dynamically loaded.

The macro consists of a factory function which returns an instance of the Template

and a proxy class whereby the constructor of the proxy class inserts a pointer to

the factory function (line 7) in a shared hash table, gModuleFactory, between the

harness and the module.

Program 4.1 Module Self Registration

1 #de f i n e REGISTERMODULE(NAME)

2 extern ”C” {
3 IModule ∗maker (){ return new NAME; }
4 class proxy {
5 public :

6 proxy () {
7 gModuleFactory[#NAME] = maker ;

8 }
9 } ;

10 proxy p ;

11 }

The implementation of communication libraries work on the same principle as

the workflow modules. The libraries have to follow an IComm interface. The main

difference between a workflow module template and a communication template is

the fact the a communication module will only implement one queue. Similar to a

workflow module, the communication module also has an init, a start and a stop

function as well as the constructor and destructor. The communication modules

are split up into two separate libraries for each protocol: one that handles the input

and the other for handling output so for the gsiftp protocol one would expect two

libraries: InputGsiFtp and OutPutGsiFtp. Upon calling the start on an input

module, the module would typically read the parameters which would include a file

URL and host-name in the case of a gsiftp protocol. The module would continue

44

Program 4.2 Workflow Module Template

1 #inc lude ”IModule . h”

2

3 class Template : public IModule {
4 public :

5 Template (){
6 INIT PORTS () ;

7 MAPRX PORT(1 , input 1) ;

8 MAPRX PORT(2 , input 2) ;

9 MAP TX PORT(1 , output) ;

10 }
11 ˜Template (){}
12 void i n i t (vector<s t r i ng >∗ rParam){
13 //Read rParams

14 }
15 void s t a r t () {
16 while (1){
17 MessageQueue : : Message∗ im1 = READPORT(1) ;

18 MessageQueue : : Message∗ im2 = READPORT(2) ;

19

20 i f ((im1 == NULL) | | (im2 == NULL))

21 break ;

22

23 //Process im1 and im2

24

25 MessageQueue : : Message∗ om1 = new MessageQueue : : Message () ;

26 om1−>mDataLength = [data l ength] ;

27 om1−>mpData = [po in t e r to data] ;

28

29 WRITE PORT(1 ,om1) ;

30 SIGNAL RX PORT(1) ;

31 SIGNAL RX PORT(2) ;

32 }
33 WRITE PORT(1 ,NULL) ;

34 }
35 void stop (){}
36 } ;
37

38 REGISTERMODULE(Template) ;

45

and retrieve the file from the server using globus-url-copy. The file is read and

a message is created with the file data being the message data. The message is

queued on the local module queue which is later picked up by the harness and

swung onto the workflow module’s bound input queue. On the other hand, the

output communication module would immediately block on its local queue waiting

for messages to arrive. Once a message is retrieved (in the case of gsiftp), the

module will extract the message data onto a local file and copy it to the GsiFtp

server. As with the workflow modules, the communication modules are also self

registering and are registered inside the harness in a hash table gCommFactory.

Although we have created communication libraries to handle the gsiftp protocol,

communication can take any form. In fact we have written pipe, TCP/IP and

file communication libraries for debugging purposes that do not use intermediary

servers. Although our Datafluo relies on messages to orchestrate the workflow,

one could conceive a communication library that works on a peer-2-peer fashion

for frequently communicating tasks on a cluster. In this case, Datafluo messages

would merely contain configuration messages as how to setup the network. If we

have two tasks that want to communicate directly then we could have this typical

scenario: the Datafluo engine submits the first task which generates an output

message containing its IP and port. After receiving the message on the exchange,

Datafluo will fire the next task which will read the configuration message and

setup a connection directly to the other task. In this case Datafluo would be

unaware about the communication going on behind the scene and hence cannot

provide any support.

The crux of the implementation lies within the vlport2 which we refer to as

the harness. During initialisation, the harness first sets up the working environ-

ment such as creating working directories. It will then proceed to contact the

Datafluo reactor server for configurations using the GET CONFIG command. This

configuration contains information about the scientific module to load, the queues

and available data servers. The harness also initiates the heartbeat thread which

sends a heartbeat every 30 to 45 seconds. The 15 second discrepancy is so to elim-

inate the possibility that many tasks send a heartbeat simultaneously although

this would still be unlikely since other circumstances such as queue wait times

would have already offset tasks significantly. The last 15 seconds are calculated

randomly.

The scientific workflow module is loaded through the module startup func-

tion. Using the configuration information, the harness tries to locate and load

the dynamically linked shared object library (SO). Upon loading the SO file, the

46

module auto registers itself to a module hash-table in the harness whereby the key

is the module name itself. Thus the harness can then create an instance of the

module object. Since all workflow modules must conform to an interface virtual

class, the harness knows what functions can be called on the module. Using the

parameters extracted from the configuration, the harness calls the module’s init

function passing the parameters as arguments. The module’s init function would

be typically implemented by a scientific programmer and would include module

specific environment setup such as environment variables and module port setup.

Once the module is loaded, the harness can access its public variables and func-

tions thus it will iterate through the module’s ports (message-queues) and register

references to them within the harness data structures. The actual scientific com-

putation starts once the module’s start function is called. This is done by the

harness on a separate thread hence the harness and the actual scientific execution

are executed concurrently.

After the module has started, the harness proceeds to initialise and bind the

module’s ports to the message queues on the Datafluo server side. This is done

through name binding where the name of the port must match the queue name on

the server. For each input port, a thread, mailbox listener, is initiated. This is

responsible for handling the module’s input. The mailbox listener thread is an

infinite loop with the following steps: the ReactorServer is contacted to check

for messages, if no messages are available the thread will sleep. The sleep time

increases exponentially as described in section 3.6. If a message is retrieved, the

message data is parsed and the protocol extracted (e.g. gsiftp). The harness

looks up the appropriate library to deal with the protocol. The library is loaded

and the message is tokenised and passed as parameters to the communication

module. The thread will block waiting on the communication module’s queue.

Once the communication module writes data to its queue, the harness picks up

the message and swings it to the module’s bound input queue. The harness will

then block on the queue using Wait until the workflow module signals (Signal)

that the next message can be retrieved from the Datafluo server. This synchro-

nisation is needed since we do not want the harness to retrieve all the messages

instantaneously from the server as this will make load balancing futile. Further-

more, the module may decide to exit and hence the retrieved messages that have

not yet been consumed by the module would be lost. If a PORT DESTROYED reply

is retrieved from the server the module is notified of the port’s destruction and

the infinite loop is exited which also exits the mailbox listener thread.

Whilst the mailbox listener deals with handling the module’s input, the

47

Figure 4.4: Binding the workflow module ports to the communication libraries

through message queues. The example depicted here consists of a workflow mod-

ule with two input queues (green), one output queue (yellow), and five commu-

nication queues three of which (red) are input queues. Communication modules

put messages on the input queues (red) and pull messages from the output queues

(blue). The message fabric routes messages between the modules queues and the

communication libraries queues.

48

module output listener is the thread that deals with module’s output. Before

outputting any data, the harness has to decide which server is best for communica-

tion this is done through get best server which iterates the server list and finds

the one with the least ping time. The module ouput listener thread blocks on a

queue Read waiting for the module to write data on its output port. Once data has

been written, the harness will proceed to send the data by checking the protocols

supported by the server and choosing the appropriate library for communication.

Each server entry in the configuration contains the supported protocol (e.g gsiftp

or ftp). This information is used by the harness to load the communication li-

brary. The library is loaded in the same fashion as with the input communication

libraries. The message is written on the communication queue for subsequent

transmission. A mail message is then constructed and sent as a POST MAIL com-

mand to the Datafluo message exchange through the ReactorServer. The module

can signal the task harness that its output has terminated by writing a NULL mes-

sage to it output queue. This will force the module ouput listener to break out

of the loop and exit the thread.

49

Chapter 5

Applications and Results

F
or the purpose of testing our Datafluo architecture we made use of

three different applications which took the system through its paces.

Two of the applications: SigWin-detector and Wave have been ported

from the current WS-VLAM architecture while a third HistogramD-

ifference is a synthetic application built from scratch tailored at exploiting the

various features implemented by the Datafluo system.

The following sections describe the applications used and show various results

obtained from running the applications within the Datafluo system. Our test bed

is the DAS3 cluster which is composed of 5 clusters located at: University of Ams-

terdam (UvA), Multimedia lab in UvA (Mult-UvA), Vrije University (VU), Tech-

nical University in Delft (TUDelft), and Leiden Institute of Advanced Computer

Science (Liacs). At the time of writing, the clusters where composed of: 28 nodes

for UvA, 41 nodes for Mult-UvA, 79 nodes for VU, 64 nodes for TUDelft, and 23

nodes at Liacs (235 in all). We rarely had absolute access to all the cluster nodes

since the clusters are used by other researchers at the different institutes hence our

results are relative to the resource load at the time the tests were run. Each cluster

has a head node which also acts as a GridFtp file server. Jobs are submitted using

the Globus which is installed on all the head nodes. Globus, in turn, uses the

internal Sun Grid Engine to submit jobs to the cluster nodes. With Globus we are

able to submit cross cluster jobs while also delegating the necessary credentials so

that tasks can use grid resources such as the GridFtp servers. For our testing we

ran the Datafluo engine on the UvA head node fs2.das3.science.uva.nl which

then distributed the jobs to other clusters.

So as to illustrate the Datafluo enactment engine in work we illustrate three

types of graphs: a resource load graph, a module graph and cluster distribution

graph. The resource load graph shows the real load on the resources during our

execution which also includes the load imposed by other users. The load is a

percentage of the used slots with regards to the actual available slots hence a

load of 100% means the resource is full, and a load which is greater than 100%

50

means the resource has queued tasks waiting for execution. The module graph

shows the actual module execution start time, run time and waiting time. The

waiting time is the time between the Datafluo engine event to fire the task and

the time the actual task starts executing on the resource and is represented as

the thin line preceding the bar on the graph. The actual run time of a task is

the colour coded bar where the start of the bar states the start of execution and

similarly the end of the bar states the completion. The bars are colour coded to

distinguish between different tasks. The cluster distribution graph is an identical

copy of the module graph but the colour coding represents the resource on which

the task was scheduled. Since the execution time is heavily dependant on the load

on the resources at the time of execution, execution time may vary considerably

between runs for which case an average runtime by itself does not say much. For

this reason we also present the standard deviation for the sample set execution.

5.1 SigWin-detector

The SigWin-detector [36] workflow application stems from the biology camp.

The aim of the application is for analysing ordered sequence of values such as gene

expression data but can even be used for other data such as local time series of

temperature. Data is analysed in SigWin-detector so as to identify regions in the

sequence where the median value is higher than would be expected by chance if

data ordering is not relevant [40]. In gene expressions it identifies highly expressed

genes while in time series of temperatures it can identify abnormal periods such as

a heat wave. The core algorithm will basically slide a window of a given size over

the input sequence and calculate the median for the windows. Windows for which

the median deviates from some expected value are considered to be significant

windows.

Figure 5.1 illustrates the SigWin-detector experiment workflow. The Local-

FileReader simply reads the data sequence from file and outputs the file as mes-

sage data. ColumnReader reads the input sequence by selecting a column from

the multi-column data input. The Rank module, ranks the input and outputs the

rank structure on port 1, the sorted rank vector on port 2, and the sorted rank

vector without duplicates on port 3. SWMedian computes the moving medians of

specified window sizes and outputs parameters to the slide window structure on

port 1 and the computed medians on port 2. SWMedianProb computes a theoret-

ical probability density for sliding window median data. Sample2Freq generates

frequency count from sliding window data. FDRThreshold computes the high

or low thresholds for each window size by applying false discovery rate (FDR)

51

Figure 5.1: SigWin-detector base workflow

procedure that compares the frequency count from Sample2Freq with the the-

oretical probability from SWMedianProb. SigWindow selects significant windows

which are above the FDR threshold. SigWinPlotGrace generates a plot file while

the LocalFileWriter writes the output to local file.

The SigWin-detector was implemented from the ground up for the current WS-

VLAM architecture. Communication in the current WS-VLAM modules is based

on streams and messages as with our system hence the SigWin-detector modules

had to be ported to match the template described in section 4.5. Much effort

was taken so as not to change the scietific logic whilst porting the application.

Since the current communication model is based on network streams we converted

the network streams to in-memory streams and hence the modules would write

to the streams as if they were network streams. The modules were then made

to conform to the template by extracting reference to the data from the memory

stream and generate messages. The nature of the modules is so that modules

only start working once all the data has been received as in a file based approach

which does not expose any computation overlap that would have been achieved

from a pipeline model. Although the application is a good example for a dataflow

approach since individual modules can take a considerable amount of time, it does

not exploit other features available in the Datafluo systems such as farming and

pipelining through messaging.

52

5.1.1 Results

The nature of the SigWin-detector is so that modules only produce output

once when all computation has finished hence the workflow cannot exploit concur-

rency through computation overlap since the end of one module signals the start

of the next modules. The concurrency achieved is through pure data flow where

SWMedianProb and Sample2Freq modules are able to run concurrently. The mod-

ules typically consume one message per port and produce one message per output

port hence farming based on messages is also restricted. For our simulation we used

sample temperature data provided by the application itself. Since the workflow

consists of only 10 tasks with no farming capabilities and infrequent message com-

munication we chose to demonstrate the execution using just the bucket scheduler.

We tested the workflow over 15 separate runs. Due to the relative small workflow,

the resource load has no apparent impact on the workflow enactment. For this

reason we do not display the resource load graphs. All workflows were clustered

onto one cluster site hence the cluster distribution graph is also omitted.

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

LocalFileReader
ColumnReader

Rank
SWMedian

SWMedianProb
Sample2Freq

FDRThreshold
SigWinSelect

SigWinPlotGrace
LocalFileWriter

Figure 5.2: Sample run for SigWin-detector workflow

The results in figure 5.1.1 show the actual workflow enactment. As can be seen

through the illustration, the modules are enacted modelling the dataflow approach

where modules are scheduled for execution when data is readily available. The

start module, LocalFileReader triggers the execution of the whole workflow. Due

53

to the nature of the application there is no actual computational overlap. This

gives rise to the stair execution profile where tasks commence when others ter-

minate. The slight overlap depicted between the different modules is the time a

module takes to terminate after producing a result on the output port as opposed

to actual computation overlap. Since the workflow only takes up a relative small

resource pool, waiting times for most modules is negligible. The figure illustrates

the concurrency captured through the workflow whereby both Sample2Freq (yel-

low) and SWMedianProb (light blue) execute concurrently. The average execution

time for all the 15 samples is 204 seconds with a standard deviation of 29.1.

5.2 Wave

The Wave application deals with modelling blood flow in large vessels [10]. The

application is a classic parameter study using a legacy application. The simple

workflow is split into three modules as shown in figure 5.3. The WaveParameters

act as the parameter engine for the application as it generates the parameter

messages needed by the Wave64 module. The latter module wraps around the

Wave legacy application by gathering and creating the environment for wave to

execute. The wrapper collects the legacy wave output and sends them in the

form of messages to the WaveCollector which stores the output at a predefined

location.

Figure 5.3: Wave

The Wave64 is set to fixed-farming where each instance is capable of acting as

a service by successively consuming parameters until, either no more parameters

are available or the task has exceeded its scheduled time slot on the resource.

Thus the module is said to be greedy as it hangs on an acquired resource as long

as possible.

54

5.2.1 Results

00:00:00

00:30:00

01:00:00

01:30:00

02:00:00

02:30:00

03:00:00

03:30:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

T
im

e

Jobs

WaveParameters Wave64 WaveCollector

Figure 5.4: Sample Wave with farming

Figure 5.2.1 depicts the simple long running workflow enactment using fixed

farming strategy. The workflow is a parameter study which covers a range of 100

parameters. The Wave64 farm was pre-set by the user to 30 and cluster was also set

to UvA so the workflow ran only on one cluster. Since the cluster at that time had

only 28 working nodes, 2 Wave64 had to wait on the queue until some resource was

freed. Due to the greedy nature of the application, a resource was only freed once

all parameters were exhausted so when the queue Wave64 tasks finally executed,

they had nothing to do and terminated immediately. The waiting time for tasks

13 to 29 correspond to the limited resources due to other applications running on

the cluster at that time.

5.3 HistogramDifference

The HistogramDifference workflow application is a synthetic application

built solely for testing the features implemented by the Datafluo architecture

namely farming and parameter sweeping. The aim of the application is to calculate

the euclidean distance between generated histograms of different colour spaces for

the same image. An image histogram partitions the image colour space into bins

55

and groups all the pixels into one of the bins depending on the colour value hence

the histogram shows the colour distribution of an image. Figure 5.5 shows the

workflow layout. DirectoryReader recursively reads a directory and creates mes-

sages for each image file which is passed on to the RGB2rgb module. This module

converts the raw RGB channels to a normalised form which eliminates intensity

information from RGB and makes the image invariant to illumination intensity,

shadows and shading. rgb2c1c2c3 and rgb2I1I2I3 are yet another two colour

space converters. The outputs from these colour space converters is taken as input

to the HistogramDifference which, coupled with the Parameters, calculates the

euclidean distance between the histograms of both colour spaces. The Parameters

module acts as the parameter sweep engine where the output is the histogram’s

bin size. Thus the HistogramDifference can calculate the euclidean distance for

different histogram bin settings. The ImageCollectors act as intermediate data

captures where the output from the image converters is kept for further analyses.

Finally the Results module captured the workflow results.

Figure 5.5: Histogram Difference

The implementation of the core modules, that is RGB2rgb, rgb2c1c2c3, rgb2-

I1I2I3, and HitogramDiffernece are examples of including third party software

as part of a workflow system. The modules make use of GNU Octave numer-

ical computation tool to manipulate images in through matrix transformations.

The actual logic is implemented in a number of Octave functions. The template

described in section 4.5 is used to wrap around the GNU Octave where the file

names extracted from the messages are passed as parameters to the implemented

56

Octave functions. Although each Octave function has its unique wrapper, one can

conceive a generic Octave wrapper which can be used for most functions. The ap-

plication is intended to expose most Datafluo features within one workflow. The

rgb2c1c2c3 and rgb2I1I2I3 are set to auto-farming hence they are able to clone

themselves depending on the number of input images and the time it takes to

process each image. So as to make the experiment more realistic, the rgb2c1c2c3

modules has an induced overhead which increases the granularity of the pro-

cess. The ImageCollectors are set to fixed-farming where each instance can

clone itself once hence resulting in four ImageCollectors. HistogramDifference

is set to one2one-farming where the farmed port is set to the Paramters port

hence for every message received from the Parameters module a new instance

of HistogramDifference is created. Module computation is overlapped through

message pipelining. Once an image has been processed the result is sent immedi-

ately.

5.3.1 Results

The nature of the application is one that allows for computation overlap

through message pipelining and different types of task farming. The communica-

tion patterns within this workflow is relatively high which is also a good test for

the whole system. The workflow input dataset is a list of 390 image files obtained

from the Amsterdam Library of Object Images (ALOI) and three parameters. The

message pattern is so that the workflow generates 5463 messages from which 4920

are actual images and the remainder 1173 are text messages containing param-

eters and results. The workflow was tested under the different conditions: no

farming, farming enabled with RoundRobin scheduler, and farming enabled with

Bucket scheduler. The farming scenarios where each executed 15 times to get

a good sample of the execution patterns while the non-farmed scenario was run

3 times due to its time consuming execution and little variance in the execution

pattern. The mean runtime for the non-farmed scenario is 54 minutes. The execu-

tion pattern can be illustrated in figure 5.3.1. Although the modules rgb2c1c2c3,

ImageCollector, HistogramDifference and Results all take over 50 minutes of

processing time, the actual bottleneck is rgb2c1c2c3 which takes long to process

each image due to a purposely induced 5 second delay per image hence with 390

images the delay by itself already consumes 32.5 minutes. The other modules are

the dependant modules which, after receiving the first message, have to wait for

rgb2c1c2c3 to produce messages. This results in a bottleneck.

57

00:00:00

00:05:00

00:10:00

00:15:00

00:20:00

00:25:00

00:30:00

00:35:00

00:40:00

00:45:00

00:50:00

00:55:00

01:00:00

 0 2 4 6 8 10

T
im

e

Jobs

DirectoryReader
RGB2rgb

Parameters

rgb2I1I2I3
rgb2c1c2c3

ImageCollector

HistogramDifference
Results

Figure 5.6: Sample HistogramDifference without farming

One way to tackle such workflow bottlenecks is through task farming where

the load can be distributed amongst a farm of replicated task. These farming

capabilities are shown in the following scenarios where the workflow execution

time was reduced almost 10 fold. The farming scenario is further tested under the

different scheduling strategies mentioned above. The mean runtime for the Bucket

scheduler was 342 seconds with a standard deviation of 22 seconds while for the

RoundRobin the mean time was 394 seconds with a standard deviation of 19

seconds. The Bucket scheduler proves to be slightly faster than the RoundRobin

as a result of localised communication since most tasks are grouped locally hence

less images are sent between cluster sites.

Figures 5.8(a) to 5.8(c) illustrate the enactment of the HistogramDifference

workflow using the Bucket scheduler. Figure 5.8(a) illustrates the module en-

actment where each colour represents a workflow module. The latter exhibits

the farming capabilities where the bottleneck task rgb2c1c2c3 is now replicated

34 times hence better dealing with the access load. The farm profile is so be-

cause the auto-farming incrementally issues new clones hence successive clones

have less work to do. The rgb2I1I2I3 module was also set to auto-farming but

since it was fast enough to consume the messages no farming was needed. The

ImageCollector is duplicated once for each instance hence having 4 in total.

The ImageCollector is an example of fixed farming where the user indicates

58

how many clones should be initiated. The HistogramDifference task is set to

one2one-farming hence it is replicated for each parameter message received which

happen to be 3. All in all, the different farming techniques expanded the original 9

task workflow into 46 task workflow. Figure 5.8(b) illustrates the task distribution

on the different clusters. Since the scheduler was set to the Bucket, all tasks got

scheduled on one resource at TU Delft. The tasks scheduled on the UvA cluster

are intentionally bound by the user since the input data resides on the cluster

while the output location is also on the specified cluster. Figure 5.8(c) shows the

resource queue loads during our execution which clearly depicts the TU Delft spike

due to the Bucket scheduler.

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

(a)

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e

Jobs

(b)

Figure 5.7: HistogramDifference Orchestration

As with the Bucket scheduler example, figures 5.9(a) to 5.9(c) show the same

HistogramDifference workflow under the RoundRobin scheduler. From figure

5.9(a), the module execution pattern is not much different than that described

using the Bucket scheduler.

In this particular execution the rgb2c1c2c3 farm consisted of 28 clones. One

can also notice that rgb2I1I2I3 task was also cloned. Looking at the resource

distribution on figure 5.9(b) we notice that the first instance of rgb2I1I2I3 was

scheduled on the Liacs cluster. A possible explanation for this sporadic cloning

could be that the communication overhead between cluster sites at that particular

time triggered the extra clones to be scheduled. In this particular scenario the

calculated task submission ratio for the RoundRobin scheduler was 1:1:1:2:1 for

VU, Liacs, UvA, TU Delft, and Mult-UvA respectively hence each resource gets

1 task on every round of submissions except TU Delft which gets 2 tasks on

every round. This strategy is illustrated in figure 5.9(b) where TU Delft (in

blue) gets two tasks at the same time. The UvA resource is a special case where

some tasks are purposely bound to the resource. Figure 5.9(c) show the load on

all clusters during execution. From the figure we can notice that most clusters

59

already had some load before our execution such as VU which was at 50% load at

start time. One can notice that the load imposed by our scheduler is spread out

across the different resources. The access load on the UvA resource is due to the

DirectoryReader, Parameters, ImageCollector and Results task binding.

Figures 5.7(a) and 5.7(b) depict the effect of resource exhaustion on the work-

flow enactment. We can notice the in both figures several jobs (ImageCollector

and Results) are stuck waiting. This is due to not having enough computing

nodes to schedule the workflow. In figure 5.7(a) we can notice that the Results

module takes a relatively small execution time. The reason for this is that by the

time the module gets to start execution all the result messages are ready waiting

on the queue hence the module has no idling time and can consume all the results

messages immediately. The same effect can be noticed with the ImageCollector

module in figure 5.7(b). In addition since the ImageCollector is farmed and one

of the farmed instances got scheduled on the resource, the running instance of-

floaded the waiting instance hence once the waiting module got scheduled it had

much less work to do.

60

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

T
im

e

Jobs

DirectoryReader
RGB2rgb

Parameters

rgb2I1I2I3
rgb2c1c2c3

ImageCollector

HistogramDifference
Results

(a)

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

T
im

e

Jobs

UvA TU Delft

(b)

 0

 10

 20

 30

 40

 50

 60

 70

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30

Lo
ad

 %

Time

Liacs
UvA

TU Delft
Mult UvA

VU

(c)

Figure 5.8: Sample HistogramDifference with Bucket scheduler.

61

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e

Jobs

DirectoryReader
RGB2rgb

Parameters

rgb2I1I2I3
rgb2c1c2c3

ImageCollector

HistogramDifference
Results

(a)

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e

Jobs

Liacs UvA TU Delft Mult UvA VU

(b)

 0

 10

 20

 30

 40

 50

 60

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00

Lo
ad

 %

Time

Liacs
UvA

TU Delft
Mult UvA

VU

(c)

Figure 5.9: Sample HistogramDifference with RoundRobin scheduler.

62

Chapter 6

Conclusions and Future Work

6.1 Future Work

As for the architecture, Datafluo still lacks some important features such as a

concrete fault tolerance system and provenance system. The current fault toler-

ance system is based on task resubmission in the event that the task terminates

unexpectedly. The architecture does not capture state hence once a task is resub-

mitted all state is lost. One idea of integrating state information into the system is

to implement special input and output state ports as depicted at the top layer in

figure 6.1. The output state port can be used by the task to send state information

which can be considered as checkpoint information. Every time a task is initiated

its state port is checked in which case state information is retrieved and the task

can continue from where it ended. Having such a feature will not only facilitate

fault tolerance but also opens the door to implement new features into the archi-

tecture such as a migration system where Datafluo can pre-empt tasks and decide

to migrate them to other resources. This could be beneficial in situations where

tasks can be migrated closer to the data or cluster tasks together at runtime.

Typical middleware scheduling systems allocate a time quantum for each task

with the aim of giving a fair opportunity to all tasks on the queue. This time

quantum poses a challenge since tasks that have exhausted their allocated time

slot would pre-emptively be terminated by the scheduler. To better handle the

allocated time, a task can be made self aware of its allocated time and before

starting to process a message decides if it has enough time to do so or not in

which case it will gracefully exit and signal the Datafluo server to re-submit the

task. The assumption in this scenario is that tasks take the same approximate

time to process each message hence they can predict if there is enough time to

continue processing new messages.

Datafluo architecture could also benefit from control flow. As it is difficult to

express iteration with a dataflow model, control flow can be superimposed onto the

data flow layer. In this scenario, the control blocks represent dataflow graphs and

63

the control system merely coordinates the sub dataflow blocks such as allowing

dataflow iterations. This is illustrated at the middle layer in figure 6.1.

Figure 6.1: The bottom layer represent the current data flow implementation.

The second layer represents a control flow layer where segregated workflows are

joined together through control structures. The top layer represents module state

management at a workflow level where each module can write its state to the

WFMS and thus allow for better fault tolerance and scheduling through migration.

The Datafluo architecture also lacks hierarchical workflow composition which

facilitates complex workflow composition whilst also aiding in a distributed co-

ordinating system where each node in the hierarchy could be coordinated by a

separate Datafluo instances. In this case the message exchange would act as

the message router between different Datafluo instances hence allowing tasks to

communicate on a distributed coordinated system. Since message communication

can overwhelm the Datafluo server system, the architecture could benefit from a

system where messages from tasks on a local cluster are aggregated and sent to

the server as opposed to the situation where every task communicates directly to

the server. In this scenario, a group of tasks on a local cluster elect a task that

coordinates all communication with the server.

As it is, the message exchange system keeps messages in memory which is not

ideal for long running workflows that produce many messages hence a message

back-end would be beneficial where messages can be stored in a persistent storage.

64

A provenance system can be also attached to the message exchange since messages

represent the state of the workflow at a particular time.

The architecture is intended to employ many forms of distributed resources,

thus not restricting the WFMS to work solely on DAS3. As long as a submitter can

be written for some resource, Datafluo can be made to mix-and-match modules to

different resources. Ongoing work is currently being done to use Cloud resources

alongside the DAS3 clusters also, GMinion, a job management system for produc-

tion grids is currently being integrated as another resource. Another possibility is

to integrate volunteer computing such as BIONIC into Datafluo. With volunteer

computing, one can conceive of a scheduler with prioritise computation intensive

tasks to be scheduled on the volunteer resources while frequent communicating

tasks are kept close together on other resources.

6.2 Conclusions

In this dissertation we showed how applying dataflow, pipeline and farming

concepts to a scientific workflow system on grid architectures can be advantageous

for common scientific problems characterised by long running embarrassingly par-

allel tasks. These concepts were the building blocks for our Datafluo architecture.

The results show how task startup idling time is eliminated by scheduling tasks

with a dataflow model. The results also show how decoupling task communication

can ease the task schedule. In scenarios such as the HistogramDifference work-

flow we showed how farming concepts can drastically reduce the execution time

by replicating relatively slow tasks so as to increase the message throughput. The

workflow also illustrates how farming techniques are used in parameter sweeping

applications where a workflow component acts as a parameter engine as opposed

to having a one-size-fits-all central parameter engine.

Although our Datafluo architecture implementation is a working prototype

it still lacks important features such as a reliable fault tolerance system and a

provenance system. Other features such as control flow and state management,

we believe, will ameliorate the overall architecture.

65

Appendix A

Extra Results

A.1 SigWin-detector

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10

T
im

e

Jobs

LocalFileReader
ColumnReader

Rank
SWMedian

SWMedianProb
Sample2Freq

FDRThreshold
SigWinSelect

SigWinPlotGrace
LocalFileWriter

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

LocalFileReader
ColumnReader

Rank
SWMedian

SWMedianProb
Sample2Freq

FDRThreshold
SigWinSelect

SigWinPlotGrace
LocalFileWriter

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

66

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

LocalFileReader
ColumnReader

Rank
SWMedian

SWMedianProb
Sample2Freq

FDRThreshold
SigWinSelect

SigWinPlotGrace
LocalFileWriter

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

 0 2 4 6 8 10

T
im

e

Jobs

LocalFileReader
ColumnReader

Rank
SWMedian

SWMedianProb
Sample2Freq

FDRThreshold
SigWinSelect

SigWinPlotGrace
LocalFileWriter

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 0 2 4 6 8 10

T
im

e

Jobs

67

A.2 HistogramDifference - Bucket

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

DirectoryReader
RGB2rgb

Parameters

rgb2I1I2I3
rgb2c1c2c3

ImageCollector

HistogramDifference
Results

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

UvA TU Delft

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Ti
m

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Ti
m

e

Jobs

68

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e

Jobs

DirectoryReader
RGB2rgb

Parameters

rgb2I1I2I3
rgb2c1c2c3

ImageCollector

HistogramDifference
Results

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e

Jobs

UvA TU Delft

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e

Jobs

69

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

DirectoryReader
RGB2rgb

Parameters

rgb2I1I2I3
rgb2c1c2c3

ImageCollector

HistogramDifference
Results

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

UvA TU Delft

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

T
im

e

Jobs

70

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

DirectoryReader
RGB2rgb

Parameters

rgb2I1I2I3
rgb2c1c2c3

ImageCollector

HistogramDifference
Results

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

UvA TU Delft

71

A.3 HistogramDifference - RoundRobin

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e

Jobs

DirectoryReader
RGB2rgb

Parameters

rgb2I1I2I3
rgb2c1c2c3

ImageCollector

HistogramDifference
Results

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e

Jobs

Liacs UvA TU Delft Mult UvA VU

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Ti
m

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Ti
m

e

Jobs

72

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

DirectoryReader
RGB2rgb

Parameters

rgb2I1I2I3
rgb2c1c2c3

ImageCollector

HistogramDifference
Results

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

Liacs UvA TU Delft Mult UvA VU

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e

Jobs

73

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

T
im

e

Jobs

DirectoryReader
RGB2rgb

Parameters

rgb2I1I2I3
rgb2c1c2c3

ImageCollector

HistogramDifference
Results

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

T
im

e

Jobs

Liacs UvA TU Delft Mult UvA VU

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

T
im

e

Jobs

74

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

DirectoryReader
RGB2rgb

Parameters

rgb2I1I2I3
rgb2c1c2c3

ImageCollector

HistogramDifference
Results

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

Liacs UvA TU Delft Mult UvA VU

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e

Jobs

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

T
im

e

Jobs

75

Bibliography

[1] Enabling Grids for E-sciencE (EGEE). http://eu-egee.com.

[2] Freefluo Workflow Enactor. http://freefluo.sourceforge.net.

[3] Maui cluster scheduler. http://www.clusterresources.com/products/

maui-cluster-scheduler.php.

[4] myExperiment. http://www.myexperiment.org/.

[5] National e-Science Centre Uk. http://www.nesc.ac.uk/nesc/define.

html.

[6] H. Abbasi, M. Wolf, K. Schwan, G. Eisenhauer, and A. Hilton. Xchange:

coupling parallel applications in a dynamic environment. Cluster Computing,

IEEE International Conference on, 0:471–480, 2004.

[7] David Abramson, Blair Bethwaite, Colin Enticott, Slavisa Garic, Tom

Peachey, Anushka Michailova, Saleh Amirriazi, and Ramya Chitters. Ro-

bust workflows for science and engineering. In MTAGS ’09: Proceedings of

the 2nd Workshop on Many-Task Computing on Grids and Supercomputers,

pages 1–9, New York, NY, USA, 2009. ACM.

[8] M Addis, J Ferris, M Greenwood, P Li, D Marvin, T Oinn, and A Wipat.

Experiences with e-science workflow specification and enactment in bioinfor-

matics. In S.J. Cox, editor, e-Science All Hands Meeting 2003, pages 459–466,

2003.

[9] Ishfaq Ahmad and Yu kwong Kwok. On exploiting task duplication in parallel

program scheduling, 1998.

[10] D. Bessems, M. Rutten, and F. N. van de Vosse. A wave propagation model

of blood flow in large vessels using an approximate velocity profile function.

J. Fluid Mech., 580:145–168, 2007.

[11] Rajkumar Buyya, David Abramson, and Jonathan Giddy. Nimrod/g: An

architecture for a resource management and scheduling system in a global

computational grid. pages 283–289. IEEE Computer Society Press, 2000.

76

[12] Manuel Caeiro-Rodriguez, Thierry Priol, and Zsolt Németh. Dynamicity in

scientific workflows. Technical Report TR-0162, Institute on Grid Informa-

tion, Resource and Workflow Monitoring Services , CoreGRID - Network of

Excellence, August 2008.

[13] Scott Callaghan, Ewa Deelman, Dan Gunter, Gideon Juve, Philip Maech-

ling, Christopher Brooks, Karan Vahi, Kevin Milner, Robert Graves, Edward

Field, David Okaya, and Thomas Jordan. Scaling up workflow-based applica-

tions. Journal of Computer and System Sciences, In Press, Corrected Proof:–,

2009.

[14] Henri Casanova and Fran Berman. Concurrency: Pract. exper. 2002; param-

eter sweeps on the grid with apst, 2002.

[15] Henri Casanova, Graziano Obertelli, Francine Berman, and Richard Wolski.

The AppLeS Parameter Sweep Template: User-Level Middleware for the

Grid, 2000.

[16] David Churches, Gabor Gombas, Andrew Harrison, Jason Maassen, Craig

Robinson, Matthew Shields, Ian J. Taylor, and Ian Wang. Programming

scientific and distributed workflow with triana services. Concurrency and

Computation: Practice and Experience, 18(10):1021–1037, August 2006.

[17] Ewa Deelman, James Blythe, A Gil, Carl Kesselman, Gaurang Mehta, Sonal

Patil, Mei hui Su, Karan Vahi, and Miron Livny. Pegasus: Mapping scientific

workflows onto the grid. pages 11–20, 2004.

[18] Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor. Workflows

and e-science: An overview of workflow system features and capabilities. Fu-

ture Generation Computer Systems, 25(5):528 – 540, 2009.

[19] Hans-Joachim Bungartz Ekaterina Elts and Jadran Vrabec. Fast elaboration

of molecular models using Grid workflows. Joint Session of the ProcessNet

Working Party Molecular Modelling and Simulation for Process and Product

Design and the EFCE Working Party on Thermodynamics and Transport

Properties, 2010.

[20] Erik Elmroth, Francisco Hernandez, and Johan Tordsson. Three fundamen-

tal dimensions of scientific workflow interoperability: Model of computation,

language, and execution environment. Future Generation Computer Systems,

26(2):245 – 256, 2010.

77

[21] Fabrizio Pacini et al. EGEE WMS Service. https://edms.cern.ch/

document/572489/1, 2006.

[22] I. Altintas et al. Kepler: an extensible system for design and execution of

scientific workflows. Scientific and Statistical Database Management, 2004.

Proceedings. 16th International Conference on, pages 423–424, 2004.

[23] Martin Adolph et al. Distributed Computing: Utilities, Grids & Clouds.

Technical report, International Telecommunication Union, 2009.

[24] T. Fahringer et al. Askalon: A grid application development and computing

environment. In GRID ’05: Proceedings of the 6th IEEE/ACM International

Workshop on Grid Computing, pages 122–131, Washington, DC, USA, 2005.

IEEE Computer Society.

[25] Martin Feller, Ian Foster, and Stuart Martin. Gt4 gram: A functionality and

performance study, 2007.

[26] Ian T. Foster. The anatomy of the grid: Enabling scalable virtual organiza-

tions. In Proc. First IEEE International Symposium on Cluster Computing

and the Grid (1st CCGRID’01), pages 6–7, Brisbane, Australia, May 2001.

IEEE Computer Society (Los Alamitos, CA).

[27] Geoffrey Fox and Dennis Gannon. Workflow in grid systems, February 06

2008.

[28] Matthieu Gallet, Loris Marchal, and Frdric Vivien. Efficient scheduling of

task graph collections on heterogeneous resources.

[29] Dennis Gannon, Sriram Krishnan, Liang Fang, Gopi Kandaswamy, Yogesh

Simmhan, and Aleksander Slominski. On building parallel & grid applica-

tions: Component technology and distributed services. Cluster Computing,

8(4):271–277, 2005.

[30] Antoon Goderis, Christopher Brooks, Ilkay Altintas, Edward A. Lee, and Ca-

role A. Goble. Heterogeneous composition of models of computation. Future

Generation Comp. Syst, 25(5):552–560, 2009.

[31] Andrew Harrison, Ian Taylor, Ian Wang, and Matthew Shields. Ws-rf work-

flow in triana. Int. J. High Perform. Comput. Appl., 22(3):268–283, 2008.

78

[32] Thomas Heinis, Cesare Pautasso, and Gustavo Alonso. Design and evaluation

of an autonomic workflow engine. In ICAC, pages 27–38. IEEE Computer

Society, 2005.

[33] Andreas Hoheisel. Grid workflow execution service - user manual, 2006.

[34] Andreas Hoheisel. User tools and languages for graph-based grid workflows:

Research articles. Concurr. Comput. : Pract. Exper., 18(10):1101–1113, 2006.

[35] D Hull and M Pocock. Taverna a tool for building and running workflows of

services, January 01 2006.

[36] Marcia Inda, Marinus van Batenburg, Marco Roos, Adam Belloum, Dmitry

Vasunin, Adianto Wibisono, Antoine van Kampen, and Timo Breit. Sigwin-

detector: a grid-enabled workflow for discovering enriched windows of ge-

nomic features related to dna sequences. BMC Research Notes, 1(1):63, 2008.

[37] Thomas C. Hudson Ann E. Stapleton Ronald J. Vetter Tristan Carland An-

drew Martin Jerry Martin Allen Rawls William J. Shipman Jeffrey L. Brown,

Clayton S. Ferner and Michael Wood. GridNexus: A Grid Services Scientific

Workflow System. In International Journal of Computer Information Science

(IJCIS), Vol 6, No 2, pages 72–82, June 20 2005.

[38] Ian J.Taylor and Andrew Harrison. From P2P and Grids to Web Services on

the Web. Springer, 2 edition edition, 2009.

[39] G. Kahn. The semantics of a simple language for parallel programming. In

J. L. Rosenfeld, editor, Information Processing ’74: Proceedings of the IFIP

Congress, pages 471–475. North-Holland, New York, NY, 1974.

[40] V. Korkhov, A. Wibisono, D. Vasyunin, and A.S.Z. Belloum et al. Vlam-g:

Interactive data driven workflow engine for grid-enabled resources. Scientific

Programming, 15(3):173–188, 2007.

[41] Vladimir Korkhov, Dmitry Vasyunin, Adianto Wibisono, Victor Guevara-

Masis, Adam Belloum, Cees de Laat, Pieter Adriaans, and L.O. Hertzberger.

Ws-vlam: towards a scalable workflow system on the grid. In WORKS ’07:

Proceedings of the 2nd workshop on Workflows in support of large-scale sci-

ence, pages 63–68, New York, NY, USA, 2007. ACM.

[42] Edward A. Lee and Thomas Parks. Dataflow process networks. In Proceed-

ings of the IEEE, pages 773–799, 1995.

79

[43] Yi Lin, Bettina Kemme, Marta Patio-martnez, and Ricardo Jimnez-peris.

Enhancing edge computing with database replication.

[44] Bertram Ludäscher, Ilkay Altintas, Shawn Bowers, Julian Cummings, Ter-

ence Critchlow, Ewa Deelman, David De Roure, Juliana Freire, Carole Goble,

Matthew Jones, Scott Klasky, Timothy McPhillips, Norbert Podhorszki,

Claudio Silva, Ian Taylor, and Mladen Vouk. Scientific process automation

and workflow management. In Arie Shoshani and Doron Rotem, editors, Sci-

entific Data Management, Computational Science Series, chapter 13. Chap-

man & Hall, 2009.

[45] T Maeno. Panda: distributed production and distributed analysis system for

atlas. Journal of Physics: Conference Series, 119(6):062036 (4pp), 2008.

[46] Elton Mathias, Françoise Baude, and Vincent Cave. A gcm-based runtime

support for parallel grid applications. In CBHPC ’08: Proceedings of the 2008

compFrame/HPC-GECO workshop on Component based high performance,

pages 1–10, New York, NY, USA, 2008. ACM.

[47] Anne H. H. Ngu, Shawn Bowers, Nicholas Haasch, Timothy M. McPhillips,

and Terence Critchlow. Flexible scientific workflow modeling using frames,

templates, and dynamic embedding. In Bertram Ludscher and Nikos

Mamoulis, editors, SSDBM, volume 5069 of Lecture Notes in Computer Sci-

ence, pages 566–572. Springer, 2008.

[48] P Nilsson. Experience from a pilot based system for atlas. Journal of Physics:

Conference Series, 119(6):062038 (6pp), 2008.

[49] James Norton. Dynamic class loading for C++ on Linux. http://www.

linuxjournal.com/article/3687, May 2000. from Linux Journal issue 73.

[50] T. Oinn, M. Greenwood, M. J. Addis, M. Nedim Alpdemir, J. Ferris,

K. Glover, C. Goble, A. Goderis, D. Hull, D. J. Marvin, P. Li, P. Lord,

M. R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe. Taverna:

Lessons in creating a workflow environment for the life sciences. JOURNAL

OF CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERI-

ENCE, 2002.

[51] Michael A. Palis, Jing-Chiou Liou, and David S.L. Wei. Task clustering and

scheduling for distributed memory parallel architectures. IEEE Transactions

on Parallel and Distributed Systems, 7:46–55, 1996.

80

[52] S K Paterson and A Tsaregorodtsev. Dirac optimized workload management.

Journal of Physics: Conference Series, 119(6):062040 (9pp), 2008.

[53] Jun Qin, Thomas Fahringer, and Sabri Pllana. UML Based Grid Work-

flow Modeling under ASKALON. In Proceedings of 6th Austrian-Hungarian

Workshop on Distributed and Parallel Systems, Innsbruck, Austria, Septem-

ber 21-23 2006. Springer-Verlag.

[54] I Sfiligoi. glideinwms—a generic pilot-based workload management

system. Journal of Physics: Conference Series, 119(6):062044 (9pp), 2008.

[55] Warren Smith, Ian Foster, and Valerie Taylor. Scheduling with advanced

reservations. IEEE Int. Par. and, 2000.

[56] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and

Paradigms. Prentice Hall, 2002.

[57] Ian Taylor. Triana generations. In E-SCIENCE ’06: Proceedings of the

Second IEEE International Conference on e-Science and Grid Computing,

page 143, Washington, DC, USA, 2006. IEEE Computer Society.

[58] Ian Taylor, Ian Wang, Matthew Shields, and Shalil Majithia. Distributed

computing with triana on the grid: Research articles. Concurr. Comput. :

Pract. Exper., 17(9):1197–1214, 2005.

[59] A Tsaregorodtsev, M Bargiotti, N Brook, A C Ramo, G Castellani, P Char-

pentier, C Cioffi, J Closier, R G Diaz, G Kuznetsov, Y Y Li, R Nandaku-

mar, S Paterson, R Santinelli, A C Smith, M S Miguelez, and S G Jimenez.

Dirac: a community grid solution. Journal of Physics: Conference Series,

119(6):062048 (12pp), 2008.

[60] Gregor von Laszewski and Mihael Hategan. Workflow Concepts of the Java

CoG Kit. J. Grid Comput., 3(3-4):239–258, 2005.

[61] Jianwu Wang, Ilkay Altintas, Parviez R. Hosseini, Derik Barseghian, Daniel

Crawl, Chad Berkley, and Matthew B. Jones. Accelerating parameter sweep

workflows by utilizing ad-hoc network computing resources: An ecological

example. Services, IEEE Congress on, 0:267–274, 2009.

[62] George Wells. Coordination languages: Back to the future with linda. In

Proceedings of WCAT05, pages 87–98, 2005.

81

[63] Adianto Wibisono, Dmitry Vasunin, Vladimir Korkhov, Zhiming Zhao, Adam

Belloum, Cees de Laat, Pieter W. Adriaans, and Bob Hertzberger. WS-

VLAM: A GT4 based workflow management system. In Yong Shi, G. Dick

van Albada, Jack Dongarra, and Peter M. A. Sloot, editors, Computational

Science - ICCS 2007, 7th International Conference, Beijing, China, May 27

- 30, 2007, Proceedings, Part III, volume 4489 of Lecture Notes in Computer

Science, pages 191–198. Springer, 2007.

[64] Marek Wieczorek, Radu Prodan, and Thomas Fahringer. Scheduling of scien-

tific workflows in the askalon grid environment. SIGMOD Rec., 34(3):56–62,

2005.

[65] Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow systems for

grid computing. SIGMOD Rec., 34(3):44–49, 2005.

[66] Jia Yu and Rajkumar Buyya. A Taxonomy of Workflow Management Sys-

tems for Grid Computing. J. Grid Comput, 3(3-4):171–200, 2005.

[67] Jia Yu and Rajkumar Buyya. Scheduling scientific workflow applications

with deadline and budget constraints using genetic algorithms. Sci. Program.,

14(3,4):217–230, 2006.

[68] Daniel Zinn, Shawn Bowers, Timothy McPhillips, and Bertram Ludäscher.

Scientific workflow design with data assembly lines. In WORKS ’09: Pro-

ceedings of the 4th Workshop on Workflows in Support of Large-Scale Science,

pages 1–10, New York, NY, USA, 2009. ACM.

82

