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“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley
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Abstract

Privacy-preserving has been a popular concern in the field of blockchain due to

the broad need for anonymity and confidentiality during transactions. The goal

of this thesis is to investigate the performance impact of using zero-knowledge

proof (ZKP) on two mainstream blockchain frameworks for asset lending man-

agement systems and incidentally, exploring viable solutions for measuring the

performance of blockchain under privacy-preserving settings. The study focuses

on evaluating the scalability, efficiency, and security of various blockchain plat-

forms that incorporate ZKP technology. Through extensive experimentation

and analysis, the research finds that the use of ZKP in blockchain frameworks

results in worse performance in terms of transaction rate and latency, while

maintaining the privacy of user personal information. The results of this re-

search have significant ramifications for asset lending management systems built

on blockchain platforms, as well as their design and implementation. The find-

ings of this research point to the inclusion of ZKP technology as a potential

means of resolving the problems with existing blockchain-based asset lending

systems’ ability to protect user privacy, but at the expense of blockchain per-

formance.

Keywords: Blockchain, Privacy-Preserving, Anonymity, Performance Evalu-

ation, Hyperledger Fabric, Ethereum
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1

Introduction

Today’s decentralisation applications, in particular those based on the Ethereum frame-

work, have emerged with a large number of them every year, which have also become a

pillar of the Web3 world. The motivation behind this phenomenon is the more advanced

and mature Blockchain technology, which acts as a backbone, has been validated by the

academic community and recognised by the industry (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13).

People have realised its potential through its adoption in various fields, including but not

limited to digital currency, anonymous voting and property management, where the tra-

ditional centralised issues such as lack of privacy, opaque market and cost fees can be

mitigated by blockchain due to its decentralised and immutable nature (14).

Given the vast market and opportunity, many researchers are concerned with improving

the security and privacy of existing blockchain frameworks, which will store countless trans-

action records and personal data in ledgers and frequently exchange digital assets between

participants (15). And this is where zero-knowledge proof (ZKP), which can make transac-

tions unlinkable and provide anonymous transactions for privacy concerns, is gaining more

attention. However, although several mainstream blockchain frameworks have proposed

relevant solutions, for example Hyperledger Fabric offers Idemix to encrypt transactions

using ZKP and Ethereum has Zokrates, it has rarely been applied and evaluated in real-

world scenarios (16, 17). Furthermore, a few studies try to find out the impact of ZKP

on blockchain in specific systems, which only focus on comparing the performance differ-

ence of blockchain frameworks. Therefore, it’s essential to understand the cost of applying

privacy-preserving solutions on blockchain frameworks, especially since ZKP is a compu-

tationally intensive workload that could consume additional computational resources for

each transaction, it’s crucial to find out whether ZKP will affect the overall performance

of the blockchain and make it less attractive to the industry.
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1. INTRODUCTION

As a result, we choose a system for managing asset lending as our test case. This is

because there are a lot of businesses need to keep track of the equipment belonging to the

company that employees borrow, such as laptops, tablets, smartphone, VR headsets, or

even bicycles. Since each lease record is a transaction containing the asset’s information,

owner, transfer record, and damage report, which is maintained in the ledger and cannot be

changed by anybody, every new transaction must be based on the most recent transaction

record. By doing this, the business can manage its assets with ease and determine who is

liable for any damaged or missing assets.

We explore this niche by deploying ZKP on two popular blockchain frameworks, creating

a control and experimental group to observe several key performance metrics to see if ZKP

negatively affects blockchain performance. Finally, there will be a conclusion on the basis

of quantitative results.

This thesis investigates and describes the performance impact of the privacy-preserving

technique, ZKP, on two mainstream blockchain frameworks that are being tested in the

asset management system scenario. The rest of the thesis is structured as follows: Chapter

2 first introduces the basic blockchain background and two tested blockchain frameworks,

then explains the principle, advantages and challenges in ZKP, in addition, the real sce-

nario design is also explained, and finally we state the problems encountered and research

questions. Chapter 3 presents the design of the solution to integrate the ZKP technique

into blockchain frameworks, and the workflow of benchmarking the blockchain with and

without ZKP. Chapter 4 details the implementation of the blockchain-based asset man-

agement system and the solution for benchmarking the blockchain frameworks, including

two types of benchmark architectures for different frameworks, how to integrate Apache

JMetric 1 with Fabric-SDK-Java 2, etc. Chapter 5 discusses the experiments, comparison

results and evaluation. Finally, Chapter 6 presents the discussion, answers to the research

questions, and future work.

1https://jmeter.apache.org/
2https://github.com/hyperledger/fabric-sdk-java
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2

Background

Chapter 2 provides an introduction to the basic background of blockchain technology and

presents two commonly used blockchain frameworks. The chapter then delves into the

principle, advantages, and challenges of zero-knowledge proof (ZKP) and its applications

in real-world scenarios. The chapter concludes by highlighting the problems encountered

in implementing ZKP and the research questions that will be addressed in the subsequent

chapters.

2.1 Blockchain

2.1.1 Overview

Blockchain arose from the classic problem of how to make it easier for users to quickly

create a verifiable time stamp on digital documents, given the low cost of counterfeiting

(18). In addition, the real-world scenario is a distributed network of users who also need

methods to repeatedly create and verify timestamps. Stuart Haber and Scott Stornetta

initially came up with a native solution that required the documentation’s x hash value

to be calculated y=hash(x), then sent y to a third-party provider called a time-stamping

service (TSS), which appends a timestamp. By comparing the documentation to the TSS

copy and adding a signature and date, users may verify that TSS got the hash and that

the information has not been changed.

In the meanwhile, the authors noted that this system depends on a centralised TSS, which

is difficult to trust. Given the dispersed network, the authors suggest using a network of

computers to timestamp the document so that ensure the network integrity. Overall, this

decades-old research provides today’s blockchain with a sound theoretical foundation, in

particular, it defines the nature of blockchain as a chronological chain of hashed data

3



2. BACKGROUND

and maintained by all nodes in the network. Whereas, another key concept is consensus,

as multiple transactions need to submit changes simultaneously, requiring a consensus

mechanism to determine the order of submission. PoW and PoS are the most widely used

techniques. The previous is referred to as mining, and it calls on all nodes to solve a

problem; the one who does so the quickest gets to submit the transaction first, and so on.

While the latter is a PoW alternative where validators are selected based on the amount

of stake they possess in the network rather than mining to validate transactions. Bitcoin

continues to employ PoW, but Ethereum has switched to PoS due to PoW’s excessive

energy usage (19).

Figure 2.1: Major steps of submitting a transaction to the blockchain.

Figure 2.1 shows blockchain transactions to illustrate how its components interact, first,

a transaction can be created by an individual who signs the transaction with a private key.

Then, the transaction will be packaged to a block with other transactions and broadcast

to all members in the blockchain network. Upon receiving the incoming block, other

user can verify and consensus to decide whether it can be approved and added to the

blockchain. If approved, the blockchain gets updated and all distributed ledger also will be

updated with the latest block. Blockchain transactions record value exchanges like bitcoin

transfers or asset transfers. Adding a blockchain transaction usually involves these steps:

The sender produces a digital signature using their private key to identify and authorise

4



2.1 Blockchain

the transaction. The sender then composes a digital message with the recipient’s address,

the amount of bitcoin or other assets to be transferred, and their digital signature for

confirmation. The sender must publish the transaction to the blockchain network for all

nodes to acknowledge it. Logging onto a network node, using a wallet, or using network-

connected apps can do this. After receiving the transaction, these nodes validate it by

verifying the sender’s digital signature and funds. After validation, nodes must agree to

accept the transaction.

2.1.2 Category

While making transaction public and transparent is what people strives for and the essence

of blockchain, it becomes the noticeable obstacle to adoption for those people or organiza-

tions who care about their user personal privacy. Therefore, the development of blockchain

is gradually evolving into two categories today: Permissionless blockchain and Permissioned

blockchain:

• Permissionless blockchain frameworks. Also known as public blockchain, are

open to anyone and do not require any form of authentication or authorization to par-

ticipate in the network. The most well-known example of a permissionless blockchain

is Bitcoin and Ethereum. In these networks, anyone can participate as a node, vali-

date transactions and create blocks.

• Permissioned blockchain frameworks. As opposite to permissionless framework,

known as private blockchain, are restricted networks where access is controlled by a

central authority(CA) or a group of authorized participants. In these networks, only

authorized participants are allowed to participate as nodes and validate transactions.

Permissioned blockchains are often used for enterprise use cases, where a closed group

of participants need to share sensitive data and need to be sure of who is accessing

the network. Examples of permissioned blockchain include Hyperledger.

2.1.3 Hyperledger Fabric

Hyperledger Fabric 1 is an open source blockchain platform designed for enterprise use

cases. It is one of the Hyperledger projects hosted by the Linux Foundation. One of its

biggest advantages is that it provides a modular architecture, which allows for flexibility

and customisation in the implementation of blockchain-based decentralised applications
1https://www.hyperledger.org/use/fabric
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2. BACKGROUND

(dAPP). In addition, it is a permissionless blockchain framework with a membership service

provider (MSP) mechanism, which allows only users or organisations that have permission

to access the blockchain and perform transactions - it’s like a shop that only accepts credit

cards from a few banks.

It is composed of six key components:

• Channels: Hyperledger Fabric channels protect transactions. Channels enable a

set of people to trade without other network members seeing the specifics unless

authorised.

• Smart Contracts (Chaincode): Smart contracts govern the network transactions.

Chaincode that can be implemented in Go, Node.js, or Java, is used to implement

business logic, access control, and more sophisticated operations.

• Membership Services Provider (MSP): Membership services providers manage

network participants’ identities. MSPs authenticate and authorise subscribers to use

the network.

• Ledger: The distributed ledger contains all transactions and network status. The

ledger is copied to all network nodes to provide everyone a consistent representation

of the network.

• Node Types: Hyperledger Fabric supports various types of nodes, including peers,

ordering services and certificate authorities (CAs).

• Consensus: A consensus mechanism ensures that all nodes in Hyperledger Fab-

ric agree on the ledger state. The platform offers pluggable consensus algorithms

including Kafka-based, Raft-based and more.

2.1.4 Ethereum

Ethereum 1, another open-source proposed by Vitalik Buterin in 2013 and started in 2015,

decentralised blockchain system, supports smart contracts and dApps. It is a world com-

puter means that it executes code on a wide-range of nodes spreading the world. Unlike

Hyperledger Fabric, Ethereum is a permissionless network and anybody may observe and

access the blockchain network without restriction.

It consists of seven key components:
1https://ethereum.org/en/
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2.1 Blockchain

• Ethereum Virtual Machine (EVM): All Ethereum nodes run the EVM. It exe-

cutes smart contracts and maintains the Ethereum blockchain.

• Smart Contracts: Smart contracts of Ethereum are self-executing agreements with

terms encoded directly into the code. However, compared to Hyperledegr Fabric’s

highly customisable development environment, Ethereum only supports Solidity 1.

• Gas: Everything takes price, and Ethereum has no exception. Gas is an internal

exchange for executing smart contracts on the Ethereum network. Each operation

performed on-chain requires a certain amount of Gas to be paid in terms of Ether as

long as it updates EVM states, which can effectively prevent malicious hacking.

• Ether (ETH): Ether is the cryptocurrency used to pay for the execution of smart

contracts and transactions on the Ethereum network.

• Dapps: Dapps are Ethereum network-based, decentralized applications. They are

constructed on top of smart contracts and have a wide range of uses, including as in

social media, gaming, and banking.

• Solidity: The Ethereum network uses the computer language Solidity to create

smart contracts. For developers with experience in object-oriented programming, it

is comparable to JavaScript and is intended to be simple to learn.

• Consensus: Ethereum adopted a consensus algorithm Proof of Work (PoW) in

the past, a computationally demanding consensus process that forces miners to solve

challenging mathematical problems in order to validate transactions and produce new

blocks, was the consensus mechanism that Ethereum formerly employed. Because

PoS is a more energy-efficient mechanism, Ethereum switched from PoW to PoS as

its consensus method. With PoS, validators are selected to construct blocks based

on the amount of bitcoin they have "staked," or locked up as collateral. As a result,

validators have a financial interest in the network and an incentive to behave honestly.

It is anticipated that the switch to PoS would make it more ecologically friendly.

1https://docs.soliditylang.org/en/latest/
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2. BACKGROUND

(a) Hyperledger Fabric (20) assigns dif-
ferent duties to different nodes.

(b) Ethereum is a monolithic design in
which all functionalities are hosted in
the Ethereum virtual machine.

Figure 2.2: Comparison of Hyperledger Fabric and Ethereum architecture

2.2 Privacy-Preserving Technique - Zero-knowledge Proof

A major issue in the blockchain sector is privacy. The need to secure sensitive personal

and financial data from unauthorized access and exploitation grows as more sensitive data

is being kept on blockchain networks. However, owing to the public nature of transaction

data on the blockchain, the usage of conventional blockchain systems might leave people

and organizations open to data breaches.

We therefore explore a more intriguing privacy-preserving mechanism called Zero-Knowledge

proof that is crucial in addressing these issues. This section provides the background for

the later part, which introduces ZKP and explains how it can be used to enhance the

privacy and security of blockchain-based systems.

2.2.1 Definition

ZKP is a method of proving the possession of some information, such as a private key,

without revealing the actual information (21). It allows one party (the prover) to prove

to another party (the verifier) that a statement is true without revealing any additional

information. Specifically, it has a formal definition. Let’s say there are two participants,

prover P and verifier V. V is able to check if the result computed by P’s program C is

correct, which can be represented as y=C(x), it must fulfil two properties:

• completeness: P must prove the result y to V. If y is true, V can always believe it.

8



2.2 Privacy-Preserving Technique - Zero-knowledge Proof

• Soundness: P cannot prove the result to V as long as y is false, except for small

probability events.

2.2.2 Application

ZKP is utilized in the blockchain to give transactions anonymity and secrecy. All trans-

actions on a public blockchain like Ethereum are accessible on the ledger, making it chal-

lenging to protect the privacy of sensitive data. Without disclosing the specifics of the

transaction, ZKP can be used to demonstrate the authenticity of a transaction. This may

be helpful when a user has to demonstrate their identification without disclosing any per-

sonal information, for example. We then explore two cryptography toolkits designed for

blockchain frameworks:

• Idemix:

Overview: Identity Mixer is an anonymous certificate solution proposed by IBM

in 2009 that implements the underlying ZKP. The motivation behind this is that

traditional X.509 adopted by Hyperledger is prone to the issue of over-exposure

of all attributes, which can lead to the information leakage, because users have to

present all attributes on the certificate during authentication. Therefore, anonymous

authentication techniques are needed to minimise the exposure of user attributes.

Idemix can solve the problem of over-exposure of information when the user presents

the certificate in the traditional solution by allowing the user to selectively present

the attribute information in the certificate (22).

How Idemix works: As shown in Figure 2.3, the Idemix process requires three

participants, namely the issuer, the user and the verifier. In the begining, the user or

peer will generate a request for certificate and send it to issuer. Issuer then returns

a certificate in form of Idemix credential containing user’s attributes to user. If the

verifier requires the user to present the certificate of attribute 1, the user can convert

the certificate into a valid unlinkable token of any pseudonym of the user, containing

only attribute 1 of the original credential and hiding other attributes. Verifying the

token can be achieved through leveraging the CA’s public key to check token validity.

Architecture: MSPs from trustworthy authorities like CAs or tool idemixgen may

validate a person or organization’s identification in the Idemix architecture. MSPs

employ features like organisation and position to build a unique digital identity for

9



2. BACKGROUND

CA (Issuer)

strategy: only reveal attr 1

User Verifier

cert (attr's 1,2,3,4)

private key

public key

public key

cert (attr 1) Verifier

CA (Issuer)

cert (attr 1)

Figure 2.3: Idemix Overview

the person or organisation. These digital identities validate blockchain transactions

without disclosing personal information.

Limitation: The limitation of Idemix, however, is that it is currently only available

on the Hyperledger blockchain platform and is only supported by a specific Java

SDK, making it incompatible with other blockchain networks.

• Zokrates:

Overview: Zokrates is an open source toolbox including a language and related tools

for instantiating ZKP on Ethereum. It allows developers to create zero-knowledge

smart contracts on Ethereum that can perform computations on private inputs with-

out revealing them.

How Zokrates works: As shown in Figure 5.2, In the first step, the programmer

uses the Zokrates language to encode an off-chain calculation. The program is com-

piled and produces a binary file that needs to be used with Zokrates CLI to generate

the proof key and verification key. The next step is to use the CLI command to

generate a Solidity verification smart contract, which contains the verification key

that was generated earlier. In addition, the contract contains a verification function

that receives the proof and returns the result of whether the proof is true or false.As

a result, this contract can be used to validate users’ proof but conceal the real value.

More detailed explanation is discussed in Appendix 8.1.

10



2.3 Asset Lending Management System

Figure 2.4: Major steps of Zokrates to generate the ZKP proof and witness and verification
smart contract.

Architecture: Zokrates has a built-in language used to build a proof of computation

that is confirmed on the Ethereum blockchain (23). ZKP technology lets Zokrates

verify data without disclosing it. Hence, transactions and identities may be verified

without violating privacy.

Limitation: The limitation of Zokrates is that it consumes extra computation re-

source, which leads to the increasing cost of ZKP off and on the blockchain.

2.3 Asset Lending Management System

We choose asset lending system as our underlying scenario because corporations often

involve lending valuable assets, such as smartphones, laptops, hololenses and rasberries, to

employees for business reasons. To protect company’s benefit reducing the loss of public

properties, an asset lending system is inevitable useful for employers to keep track of the

asset status and find the responsible person in case happening unpleasant situations such

as damaged or loss assets. The system should provide a safe and dependable capability to

track and manage firm assets. However, compared to classic database-based management

system, utilising blockchain technology can be an up-to-date alternative. Since the assets’

status could be real-time updated and maintained by smart contracts that store them

in a distributed ledger equally owned by every participants in the blockchain network.

And credited to blockchain’s immutable trait, committed transaction data could hardly

be modify arbitrarily, instead, any modifications is permanently saved the ledger. Thus,

company can safely monitor and check out who are are the owners of lent assets and what is

the asset condition. The high-level view of our system architecture is illustrated in Figure

2.5, the back-end of the system can be powered by a various blockchain frameworks, while
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2. BACKGROUND

the front-end operates as an API-gateway that receives and processes transaction requests

before passing them on to the blockchain. Additionally, it is responsible for managing

user identities. The communication between both sides is based on the gRPC 1 protocol

that can allow components developed by different tech-stacks to exchange information

seamlessly. Build API gateway is to simplify gRPC endpoints offered by the blockchain.

API
Gateway

REST /asset

REST /report-damage

REST /reservation

REST /api-docs

MongoDB

Admin
Identity

User Identity

Blockchain Network

gRPC
server

gRPC
stub

contractForAsset.evaluateTransaction(
"QueryAllAssets");

contractForAsset.evaluateTransaction(
"QueryAllDamageReports", assetKey);

ontractForReservation.evaluateTransaction(
"QueryAllReservations");

Figure 2.5: The asset-lending management system is mainly consisted of two parts, back-end
and front-end.

2.4 Problem Statements

The implementation of ZKP in blockchain-based applications (dAPP) is gaining momen-

tum, owing to the elevated security and privacy it offers. Yet, the ramifications of ZKP

on the functioning of dAPP remain largely obscure, inciting the skepticism regarding to

the optimal utilization of ZKP in blockchain-based systems. With the intent to bridge

this knowledge gap, this research endeavors to shed light on the impact of ZKP on the

performance among two mainstream blockchain frameworks — Hyperledger Fabric and

Ethereum. By delving into the intricacies of how it affects the performance of various

blockchain frameworks, the study aims to provide organizations and developers with generic

but insightful information to make informed decisions on the deployment of ZKP in their

systems, ensuring maximum performance and security.

1https://grpc.io/
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2.5 Research Questions

According to the problems encountered with performance impact of ZKP on blockchain

framework in terms of asset lending management system, the research questions defined

are described as follows:

• RQ 1: Does ZKP have significant impact on the performance of a blockchain-based

application?

- The aim of this question is to probe into the influence of ZKP on the functioning of

blockchain-based applications, as the integration of ZKP into blockchain frameworks

is rapidly gaining popularity that incubates a number of cryptography tools such

as Idemix, Zokrates, and Bulletproofs (24), credited to the heightened security and

privacy it guarantees. Yet, the relationship between ZKP and the blockchain per-

formance remains somewhat of a mystery due to lacking of a comparison of various

frameworks to conclude a generic conclusion, leading to indecision about the best

utilization of ZKP in these systems.

• RQ 2: Which blockchain framework has better performance with ZKP enabled?

- The purpose of this question is to conduct a comparison of the performance dif-

ferences between Hyperledger Fabric and Ethereum with ZKP enabled to see how

the off-chain and on-chain operations will take effect. This study aims to determine

which framework is more suitable for incorporating ZKP.

13
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Related Work

This chapter provides a thorough summary of earlier research on the use of ZKP ap-

proaches, including a wide range of blockchain framework modifications. The objective

is to comprehend how implementing ZKP would affect crucial performance indicators in-

cluding transaction throughput, latency, and resource use. We can learn more about the

trade-offs associated with deploying ZKP in blockchain systems as well as the possible

effects on the overall functionality of blockchain-based apps by analyzing these indicators.

By doing this, we offer a useful resource for academics and programmers exploring the area

where blockchain technology and ZKP converge.

3.1 Hyperledger-Based Solutions

Li et al. introduce a blockchain-based ZKP technique-based identity verification system

for ride-sharing platforms. The platform is built by the authors using Hyperledger Fabric,

while the ZKP module is implemented using Hyperledger Ursa 1, which is developed using

Rust and provides a set of APIs for use. By confirming users’ identities without disclosing

their personal information to the platform or other users, the proposed solution aims

to increase ride-sharing safety and address trust and privacy issues. The authors assess

the system’s performance and demonstrate that Proof generation takes place off-chain

on average in 39 ms while Proof verification takes place on-chain on average in 239 ms.

Regular operation and ZKP verification cause an average transaction latency of 500 ms.

Although the authors show how effective and secure the suggested method is, they do

not directly compare it to other identity verification systems’ performance. ZKP’s effect

on system performance may therefore rarely be inferred directly. Overall, the authors
1https://www.hyperledger.org/use/ursa
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demonstrate the potential of ZKP in protecting privacy and enhancing the security of

such platforms, which is an important contribution to the field of identity verification in

ride-sharing systems (25, 26).

Similarly, Bai et al. propose a ZKP-based healthcare identity system called Health-

zkIDM, built on the Hyperledger Fabric framework, to protect the identities of patients

in various healthcare fields. The authors opt for client-chaincode separation, off-chain

computation and on-chain verification paradigm, in the ZKP implementation with Go-

snark, a low-cost computation-based zk-SNARK, to generate and verify the proof. The

evaluation results show that the system provides efficient identity verification with an

average verification time of 2.11 seconds and a total time of 3.16 seconds (27).

In general, the authors aim to measure the performance of the proposed system with

ZKP feature enabled, where the different phase of ZKP computation time is measured and

the average throughput with different transaction send rate is measured. However, due

to the different implementation of the blockchain network with ZKP libraries, where the

authors adopt an off-chain computation and on-chain verification paradigm that is contrast

to our Hyperledger solution taking place all ZKP operations on-chain. Therefore, it is not

the objective to make a direct comparison between two results, but we can draw a common

empirical conclusion from both our studies that the overhead of ZKP is typically more than

500 ms.

3.2 Ethereum-Based Solutions

Gabay et al. present a privacy-preserving authentication scheme for connected electric

vehicles (EV) using blockchain and ZKP. The authors aim to address the privacy con-

cerns associated with sharing personal information in traditional centralised authentication

schemes for electric vehicles. To do so, the proposed scheme uses blockchain to securely

store EV data and ZKP to verify the authenticity of the data without revealing it to the

authenticating entity. The evaluation results show that the proposed scheme is computa-

tionally efficient and outperforms traditional authentication methods in terms of privacy

protection. The authors used Ethereum as the blockchain framework and Zokrates to gen-

erate witnesses and proofs. All operations except verification were performed off-chain,

and the total time overhead was 37.60 seconds. The authors also measured the benchmark

gas, cost fee, and time to compute the witness and generate the proof. The proof was

generated using SHA256 and took 15 seconds (28). Given that real-world EV charging is
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not a heavy workload scenario, the authors conclude that the cost of ZKP is affordable

and can be used effectively to protect privacy in connected vehicle networks.

Another study tries to address privacy issues with conventional digital identity man-

agement system (DIMS), Yang et al. introduce a blockchain-and-zero-knowledge proof

based DIMS (BZDIMS). The suggested system also implements ZKP procedures through

Zokrates on the Ethereum to enable users to authenticate their identity without disclos-

ing their personal information to authorized parties. The approach enables secure and

effective digital identity management, according to the authors’ security, efficiency, and

privacy evaluations. On the private blockchain, the scheme was estimated to have a veri-

fication proof function throughput of about 170 TPS, compared to 15 TPS on the public

blockchain, where the lower throughput is caused by the consensus process. According to

the authors, the effectiveness of Zokrates is not satisfactory, but the overall performance

of the proposed scheme is still feasible (29).

Overall, the existing studies of Ethereum-based applications with ZKP are adapted to

low-load scenarios, such as EV charging and DIMS, the additional computational overhead

of ZKP is under-tolerated. Moreover, since most Ethereum studies rely on Zokrates to

implement anonymous and unlinkable transactions, where the part of ZKP pressure is

distributed to clients, it is helpful to reduce the blockchain network load. In our study, we

also benchmark the Ethereum network with ZKP under high pressure, while only measuring

on-chain performance metrics, which also show a similar tendency that smart contract

functions with the proof verification function aren’t affected.
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Design

In this chapter, we present a high-level design logic behind the blockchain-based asset lend-

ing management system and the benchmark workflow. As the research aims to investigate

a general impact of ZKP on blockchain frameworks, we implement the same application

context on two mainstream frameworks, namely Hyperledger and Ethereum. Because the

constraints and different underlying infrastructure frameworks, we need a separate design

for each. In addition, the derivative tools and development ecology, such as the benchmark

tool, software development kit (SDK) and documentation, are maintained by different

communities, which also requires us to choose different tools and languages to implement

benchmark workflows.

4.1 Blockchain Network Design

4.1.1 Hyperledger Fabric

We have set up a Hyperledger network consisting of two separate organisations, which can

be seen in Figure 4.1. Each organisation has two peer nodes, two Certificate Authority

(CA) nodes, and two CouchDB nodes to store the ledger data generated by the peer nodes.

The network also includes an ordering node and a command line interface (CLI) node that

receives and executes user transactions and commands. In addition, a chaincode node,

responsible for executing and maintaining the smart contract logic, is created on-the-fly

via the CLI node.

By having a network with two organisations, we have simulated a scenario where only

users with identities from the owning organisation have access to the blockchain. This

protects ledger transactions and data. The CouchDB nodes ensure that the ledger data is

stored persistently and is readily available for querying. The ordering node helps maintain
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CA_Org0

CouchDB

Org0
Peer1

Chaincode

Ledger

CouchDB

Peer0
Chaincode

Ledger

CA_Org1

CouchDB

Peer0
Chaincode

Ledger

CouchDB

Peer1
Chaincode

Ledger
Channel Org1

CA_Orderer

Orderer

CLI

Orderer
Org

Org1.MSP
Orderer.MSP

MSPs

Org0.MSP
Org0Idemix.MSP

Figure 4.1: The topology of a 2-organisations (the orderer organisation is not included)
Hyperledger Fabric network

the order of transactions, and the CLI node provides an interface for users to interact with

the network and deploy chaincode.

4.1.2 Ethereum

In our study, we choose to build a single node private Ethereum network with clique con-

sensus mechanism, which is shown in Figure 4.2. In contrast to the very free configuration

of Hyperledger, which requires the user to assign and maintain peer, cli, orderer, chaincode

and DB nodes in the network, the configuration of Ethereum only needs to deal with an

execution client called geth 1. This client, acting as an Ethereum node, combines the main

functionalities of the various Hyperledger nodes mentioned above, such as transaction han-

dling and gossip, state management and support for the EVM. In addition, geth provides

1https://geth.ethereum.org/
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RPC methods so that users are able to query and perform transactions using libraries

such as Web3.js 1. Since the study focuses on security and privacy, we switch to a private

Ethereum network that doesn’t connect to the main network and uses a rather special

consensus mechanism called Clique (30), a proof-of-authority (PoA) algorithm where only

verified signers can create new blocks, and the signer can also be replaced by other users

through voting. Therefore, it requires less resource consumption compared to PoW and is

suitable for private and test networks.

Geth Client

genesis.
json

ethereum/client-go

Geth

Docker

Figure 4.2: The topology of a 1-node private Ethereum network

4.2 Benchmark Workflow Design

4.2.1 Hyperledger Fabric

To effectively benchmark the performance of the Hyperledger Fabric framework, we de-

signed a benchmark workflow consisting of three main components: a load generator using

JMeter 2, a Fabric client implemented using Fabric-SDK, and a backend blockchain net-

work containing the chaincode and ledger.

The load generator, JMeter, will simulate transactions and send them to the Fabric client.

To evaluate the performance of the system, we added synchronous listeners to JMeter to

monitor key metrics such as average response time, standard deviation of metrics, and
1https://web3js.readthedocs.io/en/v1.8.2/
2https://jmeter.apache.org/
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transaction throughput. In addition, JMeter supports third-party plug-ins 1 that allow

us to collect resource usage data from the host machine during the experiment, including

CPU and memory usage. This data will allow us to determine the impact of ZKP on

blockchain performance.

The Fabric client is a critical component of the benchmark workflow, as it provides two

important functions. Firstly, it enables the registration and enrolment of new users and

administrators to the blockchain, which is necessary to grant permissions to access the

blockchain and process ZKP transactions. Second, the Fabric client abstracts the logic of

the blockchain and provides simplified backend APIs for front-end users to interact with.

4.2.2 Ethereum

We will utilize Caliper 2, an open-source tool that offers a standardized way to test the

performance of various blockchain systems, to benchmark the performance of a single-node

private Ethereum network. Caliper works by submitting a set amount of transactions to the

blockchain and tracking how long it takes for those transactions to be completed. The goal

of Caliper is to simulate a real-world scenario and use that simulation to gauge a blockchain

network’s performance. Three input files—a benchmark configuration, a network configu-

ration, and a workload configuration—must be given to Caliper before an experiment may

be executed. These files specify the quantity of transactions to transmit, their size, and

the amount of time between transactions, as well as the topology and network certification

necessary for the tool to generate the load and gain access to the blockchain. Caliper

will connect to the geth container and publish the required amount of transactions to the

network in our single node private Ethereum network. The time it takes to complete each

transaction will then be measured by Caliper, which will also offer important performance

data including transaction throughput, latency, and resource use. Caliper offers extensive

statistics on the network’s behavior in addition to these performance indicators, including

the typical processing time per transaction and the typical resource usage.

1https://github.com/undera/perfmon-agent
2https://hyperledger.github.io/caliper/
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Implementation

In this chapter, we present a thorough implementation of the benchmark procedures de-

scribed in Chapter 4. Our approach concentrates on the supporting infrastructure’s under-

pinning elements, such as transaction processing and application context. We go over the

application’s setting and implementation. We also describe two approaches to deploying

and configuring ZKP in two different blockchain frameworks. Additionally, we discuss the

benchmarking tools we have selected and the setup process. Lastly, we introduce the as-

sembling of the benchmarking tool, blockchain middleware, and blockchain network. This

chapter contains a workflow implementation guide and process component justifications.

5.1 Infrastructure

5.1.1 Hyperledger Fabric

We create a shell script to automatically launch the Hyperledger network. The script starts

by building a docker image named fabrichost_sample from the official Golang image.

This image acts as the host for the network and downloads the necessary Hyperledger

binaries and images from the official repository and registry. As shown Figure 5.1, the

sequence workflow demonstrates the main steps of the script:

• The script generates crypto files using the cryptogen binary for the CA and organi-

zation,

• It launches the CA node to generate Idemix keys for ZKP and creates channel arti-

facts using configtxgen.

• The script uses a docker-compose file to start peer, CA, CLI, orderer, and database

nodes.
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• After waiting 3 seconds for the containers to start, it invokes the CLI node to create

the channel, install and instantiate the chaincode on the channel.

launch DB containers

launch Orderer containers

launch Peer containers

launch CA containers

fabrichost

cryptogen
generate
crypto files

configtxgen create
channel artifacts:
genesis block,
channel and anchor peer

Script

save container 
crypto files to
local

save IssuerPublicKey
and IssuerRevocationPublicKey
to local

CA

generate
IssuerPublicKey
and
IssuerRevocationPublicKey

CLI Peer Orderer DB

launch fabric
 container

launch CA container

execute
another
script

execute docker-compose

execute another script
create channel
and instantiate chaincode

Figure 5.1: The sequence flow of the script to launch Hyperldger Fabric network

5.1.2 Ethereum

Compared to the complex setup of Hyperledger, creating an Ethereum network is much

simpler. We leverage docker-compose to bring the network to life and also create a Dock-

erfile to build the network image. The image is based on the official Ethereum client-go

image 1, which includes an execution client geth and all the necessary dependencies and

environment. The Dockerfile also sets the options for geth to start the network with a

specific configuration, where we are going to create a one-node private network. For ef-

ficiency and energy consumption consideration, the configuration adopts the Clique PoA
1https://hub.docker.com/r/ethereum/client-go
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consensus mechanism and sets up a pre-defined account to sign new blocks (30). Finally,

the docker-compose file starts a container running geth, which exposes a port to interact

with the private Ethereum network.

5.2 Zero-Knowledge Proof

5.2.1 Idemix in Fabric

Because Hyperledger Fabric natively supports ZKP during authentication to prevent trans-

actors from overly exposing their personal attributes when signing transactions with tradi-

tional X509 (31) authentication, which exposes all attributes to other users, we only need

to take additional steps during Fabric network configuration to enable ZKP. Hyperledger

implements ZKP through a cryptographic protocol suite called Idemix, as introduced in

the Chapter 2. To enable ZKP, we simply need to add an Idemix MSP configuration of an

organisation that needs to hide its identity to configtx.yaml, which will take effect when

the blockchain network is spun up. In our experiment, we enable Organisation 0 to issue

an anomynous transaction to Organisation 1, where the Org0Idemix MSP verifies the ZKP

proof sent by Organisation 0. To register and enroll an Idemix user identity, the developer

only needs to use a single API provided by the fabric-sdk-java, which can store the cre-

dential and interact with the Fabric network. In addition to the Idemix MSP, Chaincode

can also act as a verifier by checking the attributes of the credential. Since only the Idemix

credential can support checking the specified attributes, using x509Enrollment to propose

a transaction will otherwise fail. We provide a detailed code example and configtx.yaml

configuration in Appendix 8.2.

5.2.2 Zokrates in Ethereum

We implement ZKP on the Ethereum network through Zokrates, which allows only legiti-

mate users to generate proofs. Zokrates is a tool for creating zkSNARKs, a type of ZKP

that offers several advantages over traditional implementations, such as constant verifi-

cation time, a constant-size proof regardless of the complexity of the problem, and the

ability for the prover to prove knowledge with a single message. Compared to Idemix’s

high-level abstraction, Zokrates furnishes a finer control to generate witness and proof. As

a result, implementing ZKP in Ethereum requires more work, which is depicted in Figure

5.2. To generate a proof of knowledge for a secret function using Zokrates, we first create

a .zok file that describes the question and data to be hidden. The function checks if a
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Figure 5.2: Major steps of Zokrates to generate the ZKP proof and witness and verification
smart contract.

given ID belongs to a company or organization by verifying the prefix and suffix against

a hash value. The function returns a boolean value based on the condition. The next

step is to compile the .zok file to get an executable binary that can be used to compute a

witness for the compiled program. The witness is a proof of the prover’s knowledge of the

secret function. Zokrates generates a proof key and a verification key, which are stored in

verification.key for later use. Then, we provide the witness and proof key as parameters to

Zokrates, which generates a proof.json consisting of two parts, proof and input. Zokrates

also outputs a verification smart contract written in Solidity, which can be deployed on

Ethereum to verify the truth of the proof.

5.3 Benchmark Setup

5.3.1 Hyperledger Fabric

5.3.1.1 Component Justifications

Initially, we found that benchmarking a Hyperledger network was more challenging than we

first thought. Specifically, we were using Caliper, but it does not support the fabric-sdk-java,

only the fabric-sdk-node, the only SDK that can support Idemix features. To overcome

this limitation, we turned to Apache JMeter, which supports benchmarking for most lan-

guages and frameworks. We wanted to build a REST API server with fabric-gateway-java
1 as a client to communicate with JMeter. Unfortunately, a more serious problem with

fabric-gateway-java is that it does not support storing Idemix credentials in the wallet

that the gateway instance relies on during initiation to establish connection with the Fabric
1https://github.com/hyperledger/fabric-gateway-java
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network. Therefore, we decided to implement a gPRC API server instead, as the gRPC

protocol underlying fabric-sdk-java allows the Fabric client to interact directly with the

blockchain, such as creating a transaction proposal request and sending the request to the

blockchain.

Feature fabric-gateway-java fabric-sdk-java

Purpose
High-level API for interacting
with Hyperledger Fabric network

Low-level API for building blockchain-based applications and
interacting with Hyperledger Fabric network

Abstraction
Abstraction of network communication,
transaction committing and event listening

Low-level interfaces for direct communication with a Hyperledger
Fabric network

Ease of use Easy to use Requires more code to perform the same actions
Flexibility Limited flexibility due to high level abstractions Greater flexibility and control over network

Table 5.1: Compare fabric-gateway-java and fabric-sdk-java

To do this, we abandon the fabric-gateway-java library instead of using fabric-sdk-java.

The difference between them, as shown in Table 5.1, is that the former is can be regarded

as a subset of the latter and offers higher abstraction of Fabric with simple configurations,

capable of maintaining the user’s identity and reading from the local or in-memory wallet to

create a gateway instance to constantly connect to the network, which the developer can call

from anywhere in the application. In contrast, the latter gives developers more flexibility

and control over how they interact with the Fabric network, and doesn’t rely on the wallet

to maintain and import the user identity, which can bypass the fabric-gateway-java

restriction and create transactions directly with Idemix credentials. Lastly, since we re-

quire the fabric client to constantly listen to JMeter’s external gRPC requests, we need

a host environment with both a fabric client and a gRPC server to relay the workload to

the client. Finally, we construct middleware using Spring Boot 1, which is a popular Java

framework used to simplify the development process.

5.3.1.2 Solution

As shown in Figure 5.3, our benchmark workflow consists of three parts, the JMeter is

responsible for generating the workload, the middleware is a Fabric client hosted in the

Spring Boot framework, and our backend is a two organisations Fabric network.

To allow gRPC requests in JMeter, we must install a third-party plugin named jmeter-

grpc-request2. The plugin can test any gPRC server including our middleware, the request

will be issued from the gRPC stub. Then we create a test plan in JMeter and add a

1https://spring.io/
2https://github.com/zalopay-oss/jmeter-grpc-request
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fabric-sdk-java: 1.4.4
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Figure 5.3: Hyperledger Fabric Benchmark Workflow

thread group specifying the number of agents to simulate users sending requests and further

configuration. Next, we add a sampler with the type of gPRC request to the thread

group that will generate the real workload. To capture key metrics such as latency and

throughput, we add listeners to the sampler, which will listen and format the results.

Furthermore, the underlying elements of the gRPC protocol are service and message,

which are generic schemes that define the function passed to the request body and the

structure of the request and response bodies. Therefore, in order for the gPRC sampler

to successfully produce a workload, we need to specify the directory of a .proto file that

defines the service and message. The code can be found in Appendix 8.2.

According to the definition, the RPC method QueryBlockchain appears in both the stub

and the server, taking as parameter a BlockchainRequest message containing a AppUser

message from the stub and receiving a BlockchainResponse message from the server.

Next, we use the proto compiler protoc, which takes the proto definition and the specified

language (Java, which we used in this study) as input, to generate code containing classes

and methods that correspond to the messages and services defined in the .proto file. We

can then use these generated files in our middleware application along with the gRPC

library to implement the server components for communicating using gRPC.

5.3.2 Ethereum

Because Zokrates, which we use in Ethereum, generates witness and zero-knowledge proofs

off-chain, integrating it into our application does not affect the original code dependencies,

and there is no need to change the architecture of the code to accommodate it. We were

therefore able to use Caliper to measure the performance of the blockchain network. As
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shown in Figure 5.4, the workflow consists of two components: the Caliper itself and the

Ethereum network. The Caliper is an easy-to-use tool that requires three configuration

files, after which it can automatically run the experiment and output a benchmark report.

Ethereum Blockchain

Monitor

Workloading

benchmark
config

network
config

workload
module

Benchmark Report

Caliper

Figure 5.4: Ethereum Benchmark Workflow

First, we need to implement a networkconfig.json, which is processed by Caliper and

shown in Appendix 8.2, where we define not only the network configurations that allow

Caliper to start and connect, but also the account and smart contract references that give

Caliper access to interact with the blockchain. This is also the entry point for Caliper to

run a benchmark, as we run the command npx caliper launch manager followed by the

config files, the Caliper would invoke the docker-compose binary to launch the single node

Ethereum private network locally, and invoke the other docker-compose file to terminate

the whole network when finished. Then the caliper connects to Ethereum via the provided

URL and ports and account to generate the workloads defined in benmarkconfig.yaml,

which acts as a coordinator that specifies the number of workers issuing workloads in

parallel to the network to simulate real user behaviour, and defines the execution order

and rate. This file can be used to design fine-tuned experiments.
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Experiment

In this chapter, we describe the experimental strategy and the findings. Given the different

types of blockchain frameworks we used and the concurrently supported benchmark tools

that provide different performance metrics, we therefore conduct groups of control exper-

iments separately to evaluate the impact of ZKP on the performance of blockchain-based

applications and observe which framework representative. To obtain the performance im-

pact of ZKP, we need to design a simulated workload for both frameworks. We also need

to fine-tune the parameters for the benchmark tools separately, in order to properly utilise

the resources of the host machine. The evaluation of blockchain performance is embodied

in a variety of factors, so we need effective metrics to quantify the performance impact of

the two types of ZKP tools. The two group outcomes must be compared after the control

experiments.

6.1 Design of Experiment

6.1.1 Setup

6.1.1.1 Hyperledger Fabric & JMeter

The environment for the experiment is set up by installing and configuring a 2 organisations

Hyperledger Fabric network with and without Idemix and JMeter on the same machine,

but hosted in different Docker containers to ensure resource isolation, which is shown

in Figure 6.1. The configuration is shown in Table 6.2, where the Average Latency and

Transaction Throughput performance metrics are measured under the same load conditions

as the Summary Report and Transactions per Second metrics. JMeter monitors configured

with 5 Threads to simulate users at maximum send rate and 200 Loop Count to limit the

thread to initiate 200 transactions, thereby JMeter will send a total of 1000 transactions

28



6.1 Design of Experiment

to the blockchain for each function. To avoid overloading the system, we set a 1 second

ramp-up time for the thread group so that there is a time gap between each thread when

it is cold started, giving it time to gradually increase the load and ensuring that the

performance measurements are accurate. The data collected is analysed and compared to

observe the impact of ZKP on network performance.
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Figure 6.1: 2 Organisation Hyperledger Fabric network container overview

In addition to transaction performance, we also collect resource usage during the exper-

iment to investigate the system load situation, using the JMeter plugin PerfMon (Server

Performance Monitoring) 1 to set up two monitors to collect CPU and memory metrics. We

select two commonly used functions, createAsset and queryAllAssets, from the smart

contract to benchmark their performance. Since we are conducting a control experiment as

shown in Table 6.1, we keep all the variable factors except for the identity credential being

the same, which is used to create and issue transaction requests from the Fabric client. The

independent variable thus can be either X509 credentials or Idemix credentials introduced

in Chapter 2.2.2 to observe the performance effect of ZKP. Idemix automatically hides the

identity of the actor, and verifies the required attributes at the Idexmi MSP, all in the

background as long as the Idemix credential is used. We thus can control the variable

easily.

6.1.1.2 Ethereum & Caliper

This experimental setup uses Caliper to benchmark Ethereum. The goal is to measure the

performance of Ethereum under the same workload conditions as the Hyperledger Fabric

experiment, by running two rounds of tests with 1000 transactions for each round. To
1https://github.com/undera/perfmon-agent
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6. EXPERIMENT

Group Independent Variable Dependent Variables

Control
Issue transactions
with Idemix credential

JMeter configuration,
underlying infrastructure

Experimental
Issue transactions
with x509 credential

JMeter configuration,
underlying infrastructure

Table 6.1: Hyperledger Fabric control experiments setup

Parameter Value Description
Number of Threads 5 #simulated user

Ramp-up-Time 1s
Time gap between each thread
while starting to avoid a spick

Loop Count 200 Maximum #transaction per thread

Listener
TPS, Summary Report,
PerMon Metrics Collector

Measure needed metrics: throughout,
avg latency, cpu and memory

Table 6.2: JMeter Configuration

control the independent variable, we keep all variable factors constant while creating two

workload configuration files that not only specify the experiment specification, but also

pass the proof and witness parameters to the test functions to enable the ZKP feature.

The experiment follows control experiment settings in Section 6.1.1.1, where we use 5

worker processes and design 2 test rounds, each benchmarks a single function:

• 1st round executes 1k transactions using the createAsset gRPC method with a max-

imum rate load control, and leave transaction rate to 100 at the start, ramping up

to a maximum rate of 20 transactions per second, we also let sampleInterval to 1

second to ensure that the transaction rate increases steadily.

• 2nd round runs the queryAllAssets gRPC method with the same rate control config-

uration with 1st round.

Finally, we enable the Docker monitoring module in Caliper to collect Geth container

resource usage, which includes average memory and average CPU. The complete list of

Caliper configurations can be found in Table 6.3.

6.1.2 Evaluation Metrics

In order to assess the impact of ZKP on the performance of blockchain frameworks, it is

necessary to measure various metrics and statistical indicators to evaluate the functioning
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6.1 Design of Experiment

Label Description Transactions Rate Control Workload

create
Asset

create a new asset
through the
deployed contract

1000
tps: 100
step: 20
sampleInterval: 1

benchmarks/scenario/simple/create.js

query
All Asset

query all assets
through the
deployed contract

1000
tps: 100
step: 20
sampleInterval: 1

benchmarks/scenario/simple/queryAll.js
with arguments numberOfAsset: 1000

Table 6.3: Caliper Configuration

of each blockchain system in question. Table 6.4 shows that latency is a crucial statistic

for measuring blockchain transaction processing time. It determines blockchain network

responsiveness and efficiency.

Metric Unit Descriptive Statistics
latency millisecond mean, standard deviation

throughput
# transactions
per second

mean, standard deviation

error rate percentage mean
CPU user percentage average, maximum
memory megabyte average, maximum

Table 6.4: Evaluation metrics and descriptive statistics

Under most circumstances, lower latency means quicker transaction processing. For com-

parison between control and experimental groups, latency is evaluated in milliseconds with

metrics of mean and standard deviation. Throughput, another important metric, measures

the number of transactions processed per unit of time and provides valuable information

about the capacity of the blockchain network. A higher throughput value is preferable in

most use cases, as it indicates a higher transaction processing rate. Throughput is typically

measured in transactions per second, with its mean and standard deviation calculated. The

error rate metric measures the percentage of transactions that are not processed correctly.

Lower error rate values indicate a more reliable blockchain network. Error rate is typically

measured as a percentage, with the mean calculated.

CPU usage shows how efficiently the blockchain network uses CPU resources. Calcu-

late average and maximum CPU utilisation percentages. Memory consumption, on the

other side, measures the blockchain network’s memory usage and efficiency. Megabyte

memory consumption averages and maxes. By calculating and analysing these metrics for
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6. EXPERIMENT

comparison between the control and experimental groups, it becomes possible to evalu-

ate the impact of ZKP on the performance of the blockchain frameworks and identify the

framework that outperforms the others under the ZKP function. The mean and standard

deviation of each metric must be calculated and compared between the control experi-

ment (without ZKP enabled) and the experimental group (with ZKP enabled) for both

Hyperledger and Ethereum.

6.2 Experiment Result

6.2.1 Hyperledger Fabric

The experiments were conducted to evaluate the impact of ZKP on the performance of the

Hyperledger Fabric blockchain framework. Four different operations were tested: query

without Idemix credential, query with Idemix credential, add without Idemix credential,

and add with Idemix credential. The results showed in Table 6.5, where two different sce-

narios: with and without ZKP for two functions: queryAllAssets and addAsset are placed.

we could obeserve that the ZKP feature had a significant impact on the performance of

Hyperledger Fabric.

Label # Sample Avg Min Max Std. Dev Err % Throughput Recvd KB/sec Avg Bytes
queryAllAssets_no_zkp 1000 82 37 168 20.43 0.00 55.87 127.73 2341.00
queryAllAssets_with_zkp 1000 591 0 1003 153.68 0.04 8.00 17.52 2241.83
add_no_zkp 1000 23 11 80 8.91 0.00 158.28 9.12 59.00
add_with_zkp 1000 341 0 1005 332.97 0.45 9.90 0.68 70.81

Table 6.5: The results of a control experiment for Hyperledger Fabric benchmark with
descriptive statistics.

As operations with ZKP had significantly higher latencies and lower throughputs com-

pared to the operations without ZKP. The query operation with ZKP had an average

latency of 591 ms, while the query operation without ZKP had an average latency of 82

ms, which is 7 times higher. The add operation with ZKP had an average latency of 341

ms, while the contrary operation had an average latency of 23 ms.

For the throughput of the query operation with ZKP, it was much lower at 8 transactions

per second compared to 55.87 transactions per second for the one with ZKP. Meanwhile, the

add operation with ZKP had a lower throughput of 9.9 transactions per second compared

to 158.28 transactions per second for the add operation without ZKP, hence we notice

that the average difference is 7 to 15 times. Finally, the error rate of all operations was

low, with the query operation with ZKP having the highest error rate of 0.04% that is
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6.2 Experiment Result

negligible. Therefore, these results indicate that the operations without ZKP outperformed

the operations with ZKP.

We can also see Figure 6.2 (a) and (b), which are two scatter plots illustrating the

comparison of Transaction Processing Speed (TPS) over elapsed time between two series:

red with ZKP and blue without, with 1000 total transactions in the control experiment.

With the ZKP function enabled, it is evident that both scenarios take longer to send the

same number of transactions. Additionally, we can observe that createAsset takes nearly

10 minutes compared to 1 minute and 20 seconds spent by queryAllAssets. This is because

creating an asset involves a more computation-intensive operation in blockchain, which

requires writing operations to create new blocks and update ledgers every time. Despite

this, it is noteworthy that enabling the ZKP feature would result in a performance loss

ranging from 30% to 87.5%. Similarly, Figure 6.2 (c) and (d) are two area charts, which

show the comparison of resource consumption over time of the same functions with and

without ZKP, different colours representing different metrics. We can see a similar trend

that the group without ZKP saves more resource consumption by finishing earlier.

6.2.2 Ethereum

The objective was to test Ethereum’s performance and resource usage with and without

ZKP, just as earlier studies. Tables 6.6 and 6.7 show Ethereum benchmarking results. In

terms of performance, we can see that the throughput of the create operation with and

without ZKP is almost the same, while the query operation with ZKP shows a reduction

of less than 24 percent. The three latency matrices of Ethereum with and without ZKP,

however, barely differ from one another. Table 6.7 demonstrates that Ethereum with ZKP

(createAsset_zkp and queryAllAssets_zkp) consumes a little bit more CPU and memory

than Ethereum without ZKP (createAsset_no_zkp and queryAllAssets_no_zkp). The

additional calculation necessary to verify ZKP could be the cause of the increase in CPU

and memory usage. Therefore, due to the separation computation design of Zokrates that

only verification is handled on-chain, the performance impact of ZKP on the Ethereum

could be negligible.
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Figure 6.2: Control experiment results of Hyperledger Fabric

Name Succ Fail
Send Rate
(TPS)

Max Latency
(s)

Min Latency
(s)

Avg Latency
(s)

Throughput
(TPS)

createAsset_no_zkp 1000 0 92.2 41.34 1.18 20.67 20.1
createAsset_zkp 1000 0 90.5 38.48 0.79 17.43 21.5
queryAllAssets_no_zkp 1000 0 124.3 0.02 0 0 124.3
queryAllAssets_zkp 1000 0 94.5 0.04 0 0 94.5

Table 6.6: Descriptive Statistics of Ethreum Benchmark
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6.2 Experiment Result

Name CPU%(max) CPU%(avg) Memory(max) [MB] Memory(avg) [MB]
createAsset_no_zkp 0.7 0.7 360 360
createAsset_zkp 0.81 0.81 387 387
queryAllAssets_no_zkp 0.17 0.17 440 440
queryAllAssets_zkp 1.14 1.14 448 448

Table 6.7: Descriptive Statistics of Resource Consumption During Ethereum Benchmark
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Discussion

In this chapter, we summarise the experimental results under that context of asset-lending

management system, meanwhile, we reflect the limitations of the proposed benchmark

solution in this study and describe the aspects that can be improved in the future work.

7.1 Discussion of Experiment Results Within the Context

The trials’ findings lead us to the conclusion that the performance of the blockchain-

based application may be significantly impacted by the adaptation of ZKP. In the case

of Hyperledger Fabric, for instance, the query all assets and add a new asset activities

with ZKP had a much greater latency and poorer throughput than the operations without

ZKP, showing that the usage of ZKP might possibly slow the system down. The studies

with Ethereum, on the other hand, demonstrated that ZKP had a negligible effect on

performance and resource utilization and that the extra processing needed to produce the

ZKP proof and witness could be handled off-chain. Therefore, if the client side is not

taken into account, we may argue that ZKP’s performance effect on the Ethereum asset

loan management system may be minimal.

However, if the burden of the asset-lending management system is taken into account,

it’s not heavy, and users might not always lend and transfer an asset regularly and seek a

quick user experience. Users are ready to wait for a longer transaction response from the

blockchain when they lend assets. ZKP may thus have a significant performance impact on

blockchain-based applications, although this impact could still be acceptable in the context

of an asset lending management system. When considering whether to incorporate ZKP

into other situations that call for high performance and huge scale, it is still crucial to take

the trade-offs between security and performance into account. While ZKP may offer an

36



7.2 Limitations and Future Works

extra layer of protection to conceal the user’s identity, it may also slow down throughput

and increase processing times for transactions.

In conclusion, the design of the system and the particular blockchain-based application

will determine the influence of ZKP on performance. According to the results of the control

experiments in Chapter 6.2, while ZKP may have little impact on Ethereum, it may have

a significant impact on Hyperledger Fabric. When considering whether to include ZKP

into a blockchain-based application, it’s also important to take into account the system’s

workload and user expectations. To choose the best way to employ ZKP, security and

performance trade-offs must be carefully considered.

7.2 Limitations and Future Works

Although the results of our experiments provide valuable insights, there are still limitations

and areas for improvement. First, the test functions we used may not be sufficient to cover

all use cases and scenarios that can happen in the asset-lending management system.

Therefore, we need to set up more test cases that simulate real-world complex scenarios

requiring the execution of multiple functions in a specific order or number of times to

emulate the spur of traffic.

Another limitation is that we did not measure the off-chain Zokrates operations, such

as computing ZKP proof and witness. These operations require significant time and com-

puting resources (28), which could impact the user experience, especially when users are

performing intensive workload computations on various terminal devices. In the future, we

could leverage virtual machines to simulate terminal devices used by users and measure

the time spent on off-chain calculations.

Moreover, the use of different benchmark tools, Caliper for testing Ethereum and JMeter

for testing Hyperledger Fabric, may have introduced inconsistencies into the benchmark

results, making it challenging to compare the performance of the two frameworks on the

same baseline. Therefore, in future studies, we can use a new and improved Caliper that

supports Idemix credentials and enables us to use the same group of test cases and settings

to benchmark two different blockchain frameworks.
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Conclusion

In this study, we conduct an empirical study to investigate the performance impact of

ZKP on a blockchain-based asset management system, in order to determine the cost of

anonymous transactions in the blockchain. To achieve this goal, we not only design and

conduct a series of control experiments, but also implement benchmark workflows for two

popular frameworks, Hyperledger Fabric and Ethereum. Finally, we conclude a general

conditional result from the experiments that ZKP has a noticeable performance impact

on Hyperledger Fabric than on Ethereum due to the different implementation of ZKP. We

then draw reasonable conclusions about two proposed research questions:

• RQ 1: Does ZKP have significant impact on the performance of a blockchain-based

application?

- Based on the results of our benchmark experiments, we can confirm that ZKP

has a performance impact on blockchain-based applications. However, the impact

varies depending on the framework used and the type of ZKP cryptosuit employed,

which can be categorized as either fully on-chain or partially on-chain. We observed

that fully on-chain ZKP calculations had a more significant performance impact

than partially on-chain ZKP calculations due to the heavy computational load in-

volved in generating the witness and proof and uploading them to the blockchain

for verification. Nonetheless, not all application scenarios require high-performance

transactions. In the case of asset-lending management, which is a low-throughput

system, the performance impact of ZKP is acceptable.

• RQ 2: Which blockchain framework has better performance with ZKP enabled?

- Based on our experiments, we could not determine which blockchain framework has

better performance with ZKP enabled. This is due to the different experiment setups
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and measurements, with Hyperledger Fabric using its native Idemix feature to realize

ZKP on-chain, and Ethereum relying on the external toolbox Zokrates to generate

and upload ZKP proof and verify contracts to the blockchain indirectly. Thereby, we

could only deduce that Ethereum is less volatile and more stable than Hyperledger

Fabric when it comes to ZKP on-chain performance. Also, it is worth noting that our

experiments did not take off-chain ZKP operations into consideration for Ethereum,

such as generating ZKP witness and calculating proofs, which could exert significant

impact on the overall performance of Ethereum-based application.
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Appendix

8.1 Explanation of Zokrates Program

Let’s assume a scenario, prover P needs to show his social security number to verifier V

who likes a company without revealing the real number. Then P can choose to encrypt the

value y=H(x) and send y to V and prove x with the knowledge of y. The hash calculation

can be implemented using the Zokrates language, as shown in Listing 1, which is a SHA-

256 calculation. Because Zokrates defines the size of a field to be only 128 bits, we need

4 fields totaling 512 bits to realise the SHA-256 calculation. The fields a, b, c, d in the

method signature are four private fields that coincide with P’s secret value. The method

returns two hashed values. P only needs to compute a ZK proof of a, b, c, d.

import "hashes/sha256/512bitPacked" as sha256packed;

def main(private field a, private field b, private field c, private field d, field h0,
field h1) -> field[2] {↪→

field[2] h = sha256packed([a, b, c, d]);
asserts(h[0]==h0);
asserts(h[1]==h1);
return h;

}

Listing 1: ZoKrates Program Computing SHA-256-Hash

A mathematical demonstration that the calculation carried out by a program is accurate

is known as a proof of computation. The proof is generated using a technique called ZK-

SNARKs (zero-knowledge succinct non-interactive argument of knowledge). This technique

allows the prover (the party who generated the proof) to prove that he has knowledge of a

particular proposition without revealing any information about the proposition itself (32).

In the case of Zokrates, the proposition being proved is that the computation performed

in the program is correct.
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The calculated piece of information also known as proof, which can be validated on-chain

through invoking the verification function. A smart contract running on the blockchain is

implemented with a such function to perform the verification process.

In contrast, the proof of computation is generated off-chain, meaning it is generated

outside the Ethereum blockchain. This is done by running the Zokrates toolbox, which

takes the program and inputs as input and generates the proof. The proof is then sent

on-chain.

8.2 Configuration of 2-organisations Hyperledger Fabric Net-
work with Idemix Feature Enabled

To enable ZKP, we first need to copy and store the ‘IssuerPublicKey‘ and ‘IssuerRevo-

cationPublicKey‘ provided by the CA during startup.This is used by the Verifier (MSP)

to verify the user’s Idemix credential, as it is signed by the issuer’s secret key. The con-

figuration of the Verifier MSP is shown in Listing 2, the ‘MSPDir‘ property specifies the

location of ‘IssuerPublicKey‘ and ‘IssuerRevocationPublicKey‘, and the type of MSP is

idemix, indicating that Org1Idemix is responsible for verifying the proof contained in the

Idemix credential that signs the transaction.

1 - &Org1Idemix
2 Name: idemixMSP1
3 ID: idemixMSPID1
4 msptype: idemix
5 MSPDir: crypto-config/peerOrganizations/idemix-config
6 Policies:
7 Readers:
8 Type: Signature
9 Rule: "OR('idemixMSPID1.client')"

10 Writers:
11 Type: Signature
12 Rule: "OR('idemixMSPID1.client')"

Listing 2: Idemix Verifier MSP Configuration in configtx.yaml

As shown in Listing 3. This method must take the user’s ‘x509Enrollment‘ object as

input in order to hide all its sensitive attributes, and produces an ‘idemixEnrollment‘ ob-

ject that automatically provides ZKP procedures and guarantees that the user’s privacy

is anonymous and unlinkable, as only limited attributes can be revealed in ‘idemixEnroll-
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Idemix Feature Enabled

ment‘, such as the user’s role and organisational unit, which can’t be traced back to the

original transactor identity.

1 public HFClient getClient(AppUser appUser, boolean isIdemix) throws Exception {
2 if (isIdemix) {
3 AppUser newAppUser = new AppUser(
4 appUser.getName(),
5 appUser.getAffiliation(),
6 appUser.getMspId(),
7 caClient.idemixEnroll(appUser.getEnrollment(), mspIdemix)
8 );
9 return getClient(newAppUser);

10 }
11 return getClient(appUser);
12 }

Listing 3: Enroll Idemix Credential with fabric-sdk-java

As shown in the code in Listing 4.

1 def main(private Id) return (bool result)
2 hash_prefix = getPrefix(Id)
3 hash_postfix = getPostfix(Id)
4 if
5 hash_prefix == 1adbc6fcbb71cf6ce97c358aa21e41ab60ccbfd41d95759e941ff1ce9e6fec7e

and↪→

6 hash_postfix == 5d5dce8b8b874329276826c50744fd4afd1aa5ecf9aaa1c5695d1685835a1b46
7 return true
8 else
9 return false

10 terminate

Listing 4: Secret Function with Zokrates

As shown in Listing 5, we import the verifier contract previously generated by Zokrates

into the asset contract, as we want to verify the user identity via ZKP before querying the

blockchain. The user must not only pass the asset id, but also provide proofs and inputs

from proof.json.

Therefore, in order for the gPRC sampler to successfully produce a workload, we need

to specify the directory of a .proto file that defines the service and message, as shown in

the listing 6.

Chaincode verify Idemix attributes
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1 pragma solidity ^0.8.0;
2 import "./verifier.sol";
3

4 contract asset {
5 mapping(string => int) private assets;
6 Verifier public ve = new Verifier();
7 function queryAsset(string memory asset_id, Verifier.Proof memory proof, uint[2]

memory input) public view returns (Asset asset) {↪→

8 ve.verifyTx(proof, input);
9 asset = assets[asset_id];

10 }
11 // ...
12 }

Listing 5: Use verifyTx in Application Smart Contract

1 syntax = "proto3";
2

3 package mypackage;
4

5 service BlockchainService {
6 rpc QueryBlockchain (BlockchainRequest) returns (BlockchainResponse) {}
7 }
8

9 message BlockchainRequest {
10 AppUser appUser = 1;
11 bool isIdemix = 2;
12 string function = 3;
13 repeated string args = 4;
14 }
15

16 message BlockchainResponse {
17 string response = 1;
18 }
19

20 message AppUser {
21 string name = 1;
22 string mspid = 2;
23 bytes cert = 3;
24 bytes privateKey = 4;
25 }
26

Listing 6: The .proto File That Defines a gRPC Service With a Method to Query the
Blockchain
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8.2 Configuration of 2-organisations Hyperledger Fabric Network with
Idemix Feature Enabled

1 {
2 "caliper": {
3 "blockchain": "ethereum",
4 },
5 "ethereum": {
6 "url": "ws://localhost:8546",
7 "contractDeployerAddress": "0xc0A8e4D217eB85b812aeb1226fAb6F588943C2C2",
8 "contractDeployerAddressPassword": "password",
9 "fromAddress": "0xc0A8e4D217eB85b812aeb1226fAb6F588943C2C2",

10 "fromAddressPassword": "password",
11 "transactionConfirmationBlocks": 2,
12 "contracts": {
13 "simple": {
14 "path": "./src/ethereum/simple/simple_zkp.json",
15 "estimateGas": true,
16 "gas": {
17 "queryAllAssets": 100000,
18 "createAsset": 70000
19 }
20 }
21 }
22 }
23 }
24

25

Listing 7: The Network Config Json That Defines the Ethereum Blockchain Configuration

1 func (s *SmartContract) queryAssetsIdemix(APIstub shim.ChaincodeStubInterface)
sc.Response {↪→

2

3 ou, found, err := cid.GetAttributeValue(APIstub, "ou")
4 if err != nil {
5 return shim.Error("Failed to get attribute 'ou'")
6 }
7 if !found {
8 return shim.Error("attribute 'ou' not found")
9 }

10 logger.Infof("Organizational unit: '%s'", ou)
11

12 // ... query operations
13 }

Listing 8: Chaincode Gets Transactor’s Attrubutes While Using Idemix Credential to Sign
Transctions
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