
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

RFI Mitigation in Radio Astronomy Using
a Deep Learning-Based Method

Author: Saba Amiri (11980079)

1st supervisor: supervisor name
daily supervisor: supervisor name (company, if applicable)
2nd reader: supervisor name

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

April 13, 2020



“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley

ii



Abstract

RFI ABSTRACT



iv



Dedication

i



Acknowledgement

Ack...

Nack...

Handshake failed...

ii



Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.0.1 Linear Methods of RFI Mitigation . . . . . . . . . . . . . . 2

1.1.0.2 Statistical Methods of RFI Mitigation . . . . . . . . . . . . 2

1.1.0.3 ML-Based methods of RFI Mitigation . . . . . . . . . . . . 2

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 RQ-1: A performant deep learning-based solution to the problem of

RFI detection in LOFAR data . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Training and testing a potential deep learning-based RFI detection

model on real, non-synthetic data . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5

2.1 Radio Astronomy Basics and Introduction to LOFAR . . . . . . . . . . . . . 5

2.1.1 Introduction to LOw-Frequency ARray (LOFAR) . . . . . . . . . . . 6

2.2 Basics of RFI and RFI Mitigation in Radio Astronomy . . . . . . . . . . . . 8

2.3 Machine Learning in RFI Mitigation . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Basics of Machine Learning-Based Image Segmentation . . . . . . . . . . . . 11

2.4.1 Image Segmentation based on Deep Learning . . . . . . . . . . . . . 11

2.5 U-Net Deep Neural Network Building Blocks and Architecture . . . . . . . . 13

2.5.0.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.0.2 ReLU Activation Function . . . . . . . . . . . . . . . . . . 14

2.5.0.3 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . 14

2.5.0.4 Pooling Layers in CNNs . . . . . . . . . . . . . . . . . . . . 15

2.5.0.5 Drop-Outs in Deep Neural Networks . . . . . . . . . . . . . 16

iii



CONTENTS

2.5.1 U-Net Deep Neural Network Architecture . . . . . . . . . . . . . . . 17

2.5.1.1 Original U-Net Loss Function . . . . . . . . . . . . . . . . . 18

2.6 RFI Mitigation Based on Deep Learning . . . . . . . . . . . . . . . . . . . . 19

3 Method 21

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 U-Net Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Dataset and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Selecting Polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Resizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.4 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.5 Train-Test Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Pipeline and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Results and Discussion 27

4.1 Experiments History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Model Tuning and Improvements . . . . . . . . . . . . . . . . . . . . 27

4.1.1.1 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1.2 Mini-Batching . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Selection of Loss Measure . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2.1 Cross Entropy Loss Function . . . . . . . . . . . . . . . . . 28

4.1.2.2 Balanced Cross Entropy Loss Function . . . . . . . . . . . 29

4.1.2.3 Focal Loss Function . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2.4 Dice Loss Function . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2.5 Hybrid Loss Function Based on Dice Similarity and Cross

Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Model Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Performance Metrics Analysis . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2.1 Analysis of Precision and Recall . . . . . . . . . . . . . . . 32

4.2.2.2 Analysis of Accuracy, F-1 and F-2 Scores . . . . . . . . . . 32

4.2.2.3 Analysis of Dice Similarity . . . . . . . . . . . . . . . . . . 33

4.2.3 Comparison to Other Methods . . . . . . . . . . . . . . . . . . . . . 33

4.2.4 The Effect of Data Imbalance and the Impact of Loss Function . . . 34

4.3 Analysis of Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iv



CONTENTS

4.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

References 41

v



CONTENTS

vi



List of Figures

2.1 Basic radio two-telescope interferometer. ~B is the baseline vector separating

the two antennae (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 A 2011 aerial photograph of the Superterp, the heart of the LOFAR core.

Six core stations can be seen in the circular island, with three additional

LOFAR stations in three smaller islands in the lower-left and upper-right

corners of the photo(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 FCN architecture diagram by Long et al.(3). The FCN architecture produces

spatial heatmaps.This is possible by replacing the fully connected layer in

CNN with a convolutional layer. The upsampling is done by deconvolution

operators which enables per-pixel semantic labeling . . . . . . . . . . . . . . 13

2.4 U-Net architecture diagram by Ronneberger et al.(4). The input image size

is 572x572x3. Each blue unit represents a multi-channel feature map, with

the number of channels noted on top. The left path contracts the data,

while the right path expands the data through upsampling operations. The

arrows represent different operations. . . . . . . . . . . . . . . . . . . . . . . 18

3.1 The proposed U-Net architecture . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Model training and validation Dice loss diagram. The model converges at

epoch 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Model training and validation Cross Entropy loss diagram. The model con-

verges at epoch 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Model training and validation Cross Entropy loss diagram. The model con-

verges at epoch 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Original Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Predicted Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



LIST OF FIGURES

4.7 Classification Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8 Sample network output selected out of the bottom 25% of validation set

ordered by F-2 score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 Sample 1 - Original Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.10 Sample 1 - Classification Error . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.11 Sample 2 - Original Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.12 Sample 2 - Classification Error . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.13 Sample 3 - Original Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.14 Sample 3 - Classification Error . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.15 Sample 4 - Original Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.16 Sample 4 - Classification Error . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.17 Sample 5 - Original Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.18 Sample 5 - Classification Error . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.19 5 hand-picked sample network outputs selected out of the bottom 25% of

validation set ordered by F-2 score . . . . . . . . . . . . . . . . . . . . . . . 37

viii



List of Tables

3.1 LOFAR LTA Averaging Pipeline Measurement Set Structure. Data is related

to the project Epoch of Reionization (EoR), pipeline L548671 . . . . . . . . 26

4.1 Average values of performance metrics after 10 runs, each run with a ran-

domized, different training, validation and hold-out set. The results are

from the model’s prediction on the hold-out sets for each run . . . . . . . . 31

4.2 Comparison of the F1-Score values of similar works reported in the literature.

(5) report a considerable degradation in performance when moving to real

world data. The results reported by (6) are on synthetic data and belong

to narrowband, narrowband burst and brodband burst RFI types. . . . . . . . 33

4.3 Average values of performance metrics after 10 runs, each run with a ran-

domized, different training, validation and hold-out set for two models: The

final model and the model trained using only Cross Entropy as loss function.

The results are from the model’s prediction on the hold-out sets for each run 35

ix



LIST OF TABLES

x



1

Introduction

1.1 Context

Radio astronomy is the field of study concerning the analysis of radio-frequency radiation

originating from celestial bodies. In this field, measurements of stars, galaxies and other

astronomical sources are done by their radio frequency emissions. Almost the entire radio

frequency spectrum contains valuable information about the universe. Radio frequency ra-

diation comes mostly from non-thermal radiation due to synchrotron radiation or electronic

transition. This process of gathering radio signals from celestial bodies is susceptible to

interference resulting from proliferation of wireless communication technologies, satellites

and aircrafts, wind turbines, etc. Radio-frequency interference (RFI) is a electromagnetic

disturbance that occurs in the radio-frequency spectrum that causes the degradation of

signal quality in a system. These disturbances may be caused by both man-made and

natural sources and effect various electromagnetic systems such as radars, mobile phones,

etc. These strong radio signals vary in both time and frequency domains and disturb the

radio telescope outputs, therefore adding artifacts to the final readings. The difference in

the magnitude of the power received from RFI and the observed astronomical sources cause

corruptions in areas of the data that cannot be recovered. Although preventive measures

like constructing radio telescopes in remote locations, ground shielding and employment

of band-pass filters reduce RFI considerably(5), these methods do not prevent all RFI.

Therefore, methods to identify and mitigate interference are of high importance to the

radio astronomy communities.

There are a variety of methods available in the literature to deal with RFI. These methods

fall into three categories: Linear models, statistical methods and machine learning-based

methods.

1
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1. INTRODUCTION

1.1.0.1 Linear Methods of RFI Mitigation

In linear methods, techniques like Singular Vector Decomposition and Principal Component

Analysis are used to identify RFI (7, 8). These methods do not perform well on signals

with non-linear and stochastic characteristics.

1.1.0.2 Statistical Methods of RFI Mitigation

The second category of RFI detection methods is based on the assumption that the char-

acteristics of RFI in the time-frequency domain is different than that of the astronomical

signal. Typically, the recorded astronomical sources appear as smooth over longer dura-

tions of time, while RFI usually has much higher power and is localized in time-frequency

plane. One of the most notable methods in this area is AOFlagger (9). Assuming most RFI

are scale-invariant in time and/or frequency domain - meaning that a change in the input

scale will result the same change in output scale-, AOFlagger uses Scale-Invariant Rank

operator to identify interference. This method has been widely and successfully used to

identify and mitigate interference (10, 11). Nevertheless, due to variability of the structure

of particular RFI signals, creating an analytical model of them is a challenging task(12).

That’s why there have been an increased focus on machine learning-based methods as

viable methods of function approximation and modeling for RFI mitigation.

1.1.0.3 ML-Based methods of RFI Mitigation

In recent years, with the success of artificial intelligence and machine learning in classifica-

tion and pattern recognition tasks, a number of ML-based methods have been proposed to

address the RFI problem which will fall into the third category above. Especially with the

development of deep neural networks and deep learning methods, there has been a surge in

the performance and scale of certain pattern recognition and object detection tasks (13).

Certain types of deep neural networks like Convolutional Neural Networks, used for object

detection, don’t need prior knowledge of the target classes, which makes them especially

suitable to detect RFI signals from multiple sources. Therefore, it is not surprising that

there have been a number of methods presented in literature for RFI detection using deep

neural architectures(5, 6, 14).

In this research, we present our research on "RFI Mitigation in Radio Astronomy

Using a Deep Learning-Based Method". We propose a framework to identify RFI in

2
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1.2 Research Questions

LOFAR correlated data. Our framework defines the task of RFI mitigation as a two-class

image segmentation problem and incorporates U-Net deep neural network architecture(4)

to solve the aforementioned problem. The main contributions of this work are superior

performance compared to similar DL-based methods - covered in section 2.4 - and the use

of non-synthetic observation data obtained from LOFAR long time archive for training and

testing of the model. We use CPU and GPU resources of DAS-41 and SURFsara Lisa2

compute facilities to train out deep neural network. In convention with classification-based

research, this work is evaluated through the use of F1- and F2-scores, accuracy, recall and

precision as well as dice similarity index. We also argue about the feasibility of the proposed

system to be incorporated into available online workflows(15).

1.2 Research Questions

1.2.1 RQ-1: A performant deep learning-based solution to the problem
of RFI detection in LOFAR data

Considering the big strides in both development of deep learning models and their ap-

plication in various AI related tasks, it is only natural to look into their application in

the problem of RFI detection. Basically, RFI can be considered as an unwanted signal

artifact among observed signals by the radio telescopes. We can relate the problem of RFI

detection to the more general problem of detecting an "abnormal"-in case of binary states-

or "with specific characteristics" - in case of a multi-class space - set of "objects" in a

data sample. Examples of deep learning methods being applied for similar problems can

be found in noise detection (16, 17), signal detection (18, 19, 20) and artifact detection

in images (21, 22, 23). The immense power of deep learning methods in pattern recogni-

tion without the need for domain expertise and careful engineering of features (24) would

be especially helpful in the case of RFI detection since interference characteristics could

vary widely based on the nature of their source (25). Deep learning-based methods have

already been proposed in this area (5), but on top of some more fundamental differences,

the reported performance is poor when tested on real world samples. RQ-1 aims to find an

answer for the question of whether it is possible to detect RFI using a deep neural model.

1https://www.cs.vu.nl/das4/
2https://userinfo.surfsara.nl/systems/lisa
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1. INTRODUCTION

1.2.2 Training and testing a potential deep learning-based RFI detection
model on real, non-synthetic data

One important aspect of every machine learning-based system is its ability to be trained

and to generalize on real world data. Packages like HIDE & SEEK (11) have been used to

provide training data for machine learning-based RFI detection and mitigation methods

(5). The RQ-2 covers the challenge of training and testing the model on real world data

from LOFAR while maintaining an acceptable level of performance.

4
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2

Related Work

2.1 Radio Astronomy Basics and Introduction to LOFAR

Radio astronomy is the science of studying celestial objects using data gathered from

the radio portion of the electromagnetic spectrum. Astronomers use radio telescopes to

record and analyse radio waves originating from celestial bodies. Radio astronomers usually

analyse objects emitting radio waves with frequencies between 3KHz and 900 GHz. The

lower limit of the observed radio frequencies is dependant on the opacity of the ionosphere;

The higher end of the observable spectrum is limited by the absorption from oxygen and

water bands of the lower atmosphere (26).

As for the resolution of the radio astronomy readings, single dish antennae have a physi-

cal limitation. The largest steerable dishes today are Byrd Green Bank telescope in United

States with a diameter of 110x100 meters and Effelsberg telescope in Germany with a diam-

eter of 100 meters. The largest non-steerable dish in the world is at Arecibo, Puerto Rico,

with a diameter of 304.8 meters (27). Since the angular resolution of the dish is limited

by its diameter, much larger dishes are needed to achieve sub-arcsecond1 resolutions(for

comparison, the angular resolution of the Efeelsberg telescope for 21cm wavelength signals

is 7 arcmins.). To solve this problem, interferometers are used. An interferometer is an

array of antennae or telescopes, working together to provide a high resolution reading of

the sky equal to that of a single dish with a very large diameter. Separate signals from

participating telescopes are combined via a method called aperture synthesis (28). The

telescopes in an interferometers can be in different geographical locations with hundreds

and thousands of kilometers between them.

1an arcsecond is 1
206265

of a radian

5
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2. RELATED WORK

Figure 2.1 shows basic configuration of a two telescope radio interferometer(1). It shows

signals from different telescopes combined in a cross-correlator unit. A two-telescope in-

terferometer provides us with one baseline - that is the projected separation between two

antennae observed from the emission source). This setup still provides a small amount of

information about the source, unless we can constantly relocate the telescopes to change

the baseline and perform the observation again. Since this process is impractical, we can

instead put several telescopes along the baseline. Having /(N/) telescopes along the base-

line would yield N(N − 1) unique baselines, forming a synthesized beam. Each baseline

not only adds a Fourier component to the observation reading, but the sensitivity of the

whole interferometer also grows with the number of telescopes(1).

Figure 2.1: Basic radio two-telescope interferometer. ~B is the baseline vector separating the
two antennae (1)

2.1.1 Introduction to LOw-Frequency ARray (LOFAR)

LOFAR(Figure 2.2) is a radio interferometer constructed by ASTRON1 and located across

the Europe, including the Netherlands, Sweden, France, Poland, Latvia, Germany, UK

and Ireland. It was designed to make lowest frequencies in radio spectrum available to

1Netherlands Institute for Radio Astronomy (https://www.astron.nl/)

6
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2.1 Radio Astronomy Basics and Introduction to LOFAR

astrophysical researchers. Using a phase-array design, LOFAR covers low-frequency band-

width in the range 10-240MHz (corresponding to the wavelengths 30-1.2m). Lofar has 52

dipole antenna stations, spreading from its core at the village of Exloo, Drenthe in the

Netherlands. These stations, as of January 2020, include 24 core stations (stations located

withing a 2 km radius of the core), 14 remote stations and 14 international stations. The

stations have no moving parts, but the all-sky coverage of the dipole stations gives LOFAR

a large field-of-view (2).

Figure 2.2: A 2011 aerial photograph of the Superterp, the heart of the LOFAR core. Six
core stations can be seen in the circular island, with three additional LOFAR stations in three
smaller islands in the lower-left and upper-right corners of the photo(2)

LOFAR combines signal processing both at the station level and at the central facilities.

Thus, it is flexible at defining the frequency range, sub-bands and spectral channels. The

output of LOFAR antennae at each station will go through some processing steps. The

first step is to feed the siganl to Receiver Units(RCUs). The job of RCUs is to amplify and

convert the input voltage from antenna into sub-band frequencies. The sub-band selection

is done using a 12-bit Analogue to Digital converter and several band-pass filters. In the

next step, the digitized output of the RCUs is processed in the FPGA1-based Remote

1Field Programmable Gate Array

7
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2. RELATED WORK

Station Processing (RSP) units (29). Station-level processing will split the bandwidth of

the digitized signal into 512 sub-bands using the poly-phase filter, followed by a 1024-point

Fast Fourier Transformation (29). Each Measurement Set obtained from LOFAR Long

Time Archive (LOFAR LTA) contains data related to one sub-band of an observation (2).

2.2 Basics of RFI and RFI Mitigation in Radio Astronomy

The radio band has been subject of extreme interest in cosmology in recent years. Ex-

periments and surveys performed at Tianlai(30), SKA(31), EVLA(32), HERA(33) and

LOFAR(34) on large portions of the sky provide valuable information to the scientists

about our universe.

A big challenge in radio astronomy is Radio Frequency Interference (RFI). Contam-

ination from various sources such as cell phones, satellites and airplanes, long-distance

communications as well as natural phenomena adversely affects the readings of the radio

astronomy instruments(35, 36, 37). The expansion of the detection range of radio tele-

scopes has lead to an overlap between the observable range of the telescopes and the slices

of radio spectrum reserved for human-based radio activity such as communication. On the

other hand, the fast development of consumer technology reliant on long-distance wire-

less communications has lead to the expansion of their usage of previously-free frequency

bands. The differences in RFI sources lead to different characteristics of the resulting

signal in time and frequency domains, leading to the signal function being complex and

challenging to model(12, 38). Some passive measures like building the telescopes in less

populated areas, shielding the telescope buildings and utilization of band-pass filters could

minimize effects of some RFI, but negating all anthropogenic and natural RFI seems to

be an impossible task(39, 40). A RFI signal could potentially mask the desired signal and

render the contaminated part of the reading unrecoverable. Therefore methods to deal

with and mitigate RFI are highly sought after.

The RFI mitigation methods can be applied either pre- or post-correlation(7, 9). Pre-

correlation methods deal with data in its highest resolution form. Methods such as RFI

blanking(41) are very effective at mitigating RFI. On the other hand, due to the fact

that today’s radio telescope continuously produce vast amounts of high-resolution data,

the computational costs of online RFI mitigation via such methods are very high. Be-

cause of the limitation in both storage capacities and the data-transfer bandwidth, the

pre-correlation algorithms should be applied online and in a very short time, adding to

8
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2.2 Basics of RFI and RFI Mitigation in Radio Astronomy

the complexity of their infrastructure needs and rendering these methods even more de-

manding. Even with the proper compute infrastructure, the residual RFI artifacts need to

be flagged manually in the resulting signals. Due to the tremendous amount of generated

data, the manual process is unfeasible in real world scenarios. Therefore, development of

automated post-correlation methods are of utmost importance to the field of radio astron-

omy.

We can process the signals post-correlation, having to deal with lower-resolution, smaller

datasets that still maintain high level of accuracy. One way to deal with RFI is to mask the

contaminated parts of the reading. The goal of this procedure would be to mask the parts

containing interference while keeping the resulting data loss to the minimum. One basic

assumption for RFI masking is the essential differences between RFI and celestial signals

in time and frequency(9, 42); While astronomical signals are usually broad-band and have

smooth variations over time, RFI often manifests as high intensity areas and appears in

short bursts on time axis, either in a periodic manner or sporadic over time, depending on

the nature of RFI source.

For RFI signals with low-complexity, linear modeling methods perform well. Linear ap-

proaches like correlation-based detection(43), Surface Fitting(7), Singular Value Decomposition(7)

and Double Principal Component Analysis(8) are of the notable example of this family of

RFI mitigation methods. These methods would perform well in situations where the RFI

signal exhibits linear, periodic patterns in frequency-time plane, but are generally unable

to model non-linear RFI of a more stochastic nature.

Threshold based methods for RFI detection are low-complexity methods with a no-

table performance in RFI mitigation. Methods such as CUMSUM(44), Kurtosis-based(45),

Scale-Invariant Operator-based RFI tagging algorithm(9), the SumThreshold method(7)

and Amplitude Thresholding(46) all fall under the threshold-based filtering category. Com-

binatory thresholding methods extend the threshold-based methods by adding more dy-

namicity to the data frames(7).

In recent years, with the advent of Artificial Intelligence and Machine Learning-based

methods for a wide variety of tasks, particularly pattern recognition tasks similar to RFI

mitigation, a number of methods have been proposed for ML-based RFI mitigation. The

proven robustness of ML-based techniques for modeling complex signals and systems in use-

cases such as medical applications, self-driving cars, industrial control systems and image

processing, all dependant on various forms of pattern recognition and accurate distinction

and modeling different mathematical functions in the input data, make them a viable

solution for the problem of RFI mitigation. In the next section, we will give an overview
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of different ML-based methods of RFI mitigation and provide the theoretical basis for the

method and pipeline proposed in this research.

2.3 Machine Learning in RFI Mitigation

The problem of RFI mitigation, as defined in section 2.1 shows promises of being solvable by

employing machine learning-based techniques. The nature of the problem - segmentation

and separation of several existing signals, each with their own characteristics, which are

theoretically definable by a set of mathematical functions - lends itself to various machine

learning-based solutions. In this section we will go over different ML-based methods of

RFI mitigation.

An obvious choice for ML-based RFI mitigation are supervised learning methods. The

fully supervised learning paradigm, which requires a training dataset with known value of

target function for each input sample can be applied for the problem of RFI mitigation

due to abundance of available data. Methods such as Naive Bayes(47), Gaussian Mixture

Models(48), Random Forests(49), Multi-class SVM(50), Multi-Batch K-Means(50) and K-

Nearest Neighbors(38) are supervised learning methods of note. One important aspect in

traditional supervised learning models is the curation of feature vector. In most cases,

the success or failure of a model depends on the careful engineering of the feature vector

as much as model selection and parameter tuning. In Wolfaardt et al.(48), for example,

the authors use two different feature vectors, a reduced feature set vector and a feature

vector augmented with delta frames for training. Mosiane et al. in (49) create their feature

vector using a slide window of the size 8 second and extracting statistical features from each

window for each baseline. Designing these feature sets requires careful experiments with

the set of available data, in many cases the transformation of data into different planes,

and in some cases feature extraction and generation of new, more efficient features from

the initial set.

In recent years, deep neural networks have shown tremendous success, outperforming

most "classical" machine learning models in a variety of tasks including natural language

processing(51), time series classification(52) and a variety of image processing related

tasks(53, 54, 55), including image segmentation(56, 57, 58, 59).

In the next sections in this chapter, we provide a high-level overview of the image seg-

mentation task as a viable way to formulate the problem of RFI mitigation in the context

of ML/DL. Next, we review recent methods focused on RFI mitigation using deep learning-
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2.4 Basics of Machine Learning-Based Image Segmentation

based methods, and finally we will introduce the U-Net deep neural architecture which is

used in this research for the task of RFI mitigation.

2.4 Basics of Machine Learning-Based Image Segmentation

Image segmentation is one of the classification tasks in machine learning. Considering an

image as a tensor and assuming that there are several semantically-different entities in that

image, the task of the segmentation task is to label each pixel in the tensor with a label

corresponding to a specific class. From self-driving vehicles(60) to medical imaging(61), it

has been extensively researched in the previous years(62, 63).

In its simplest form, we can define the segmentation task as simple Image Classification.

We gain no knowledge about the objects inside the image and there will be no labels pro-

duced. Instead, the ML algorithm, given proper training dataset and accurate modelling,

will assign a class label to the input images, identifying the main object in that sample(64).

Localized Image Classification performs the same classification task as Image Classification,

but in addition to the image label, it will also localize the main detected object, provid-

ing us with a bounding box containing the object itself(65). Extending on the previous

branches of image segmentation, the aim of Object Detection family of methods is to detect

and label each object in an input image, e.g. cars, humans, tumors. Furthermore, the al-

gorithm is expected to localize each object and provide the bounding boxes corresponding

to them(66). In Semantic Segmentation methods, we try to not to provide the localized

objects through their boundaries but to label each pixel with the corresponding object’s

label(59). The focus of this section henceforth will be on Semantic Image Segmentation

due to relevance of this task to the problem of RFI mitigation. The case for the foundations

of the mentioned connection will be laid out in the next chapter.

Similar to the algorithmic needs discussed in section 2.3, the need for careful design

of features relevant for each image segmentation task, especially semantic segmentation,

which usually requires domain expertise, engineering and extraction of new features makes

these tasks technically challenging. Therefore, deep learning-based methods with their

capability to detect and classify patterns without any a priori knowledge about the feature

space makes them a viable choice for semantic image segmentation tasks.

2.4.1 Image Segmentation based on Deep Learning

Before the advancement of deep neural networks and their increased application in this

research area, there have been numerous methods dealing with the problem of semantic
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image segmentation with various levels of success(67, 68, 69, 70). These methods include

the use of morphological methods(71).

The success of deep neural architectures in solving similar problems such as DL-based

image classification and object detection(72, 73) lead the way for research into their ap-

plication for the semantic image segmentation. As mentioned before, the ability of such

methods to extract and learn feature vectors without the need for domain knowledge and

engineering a curated set of features makes them extremely attractive for this type of tasks.

There are several famous deep architectures, designed for various use-cases, with perfor-

mances so extraordinary they have become standard building blocks and benchmarks for

many similar tasks. AlexNet(72), ResNet(74) and GoogLeNet(75) are some of the note-

worthy examples of such famous networks. Since the architecture we use in this research

is based on the Fully Convolutional Neural Network architecture, we’re going to describe

the details of GoogLeNet, which is based on a Convolutional Neural Network architecture.

The GoogLeNet, introduced by Szegdey et al., is a convolutional neural network archi-

tecture with 22 layers. The number of parameters is almost 12 times less than AlexNet,

making its computational load lighter and its convergence time shorter. An inception unit

is introduced in this architecture, which contain a Network in Network (NiN) module, a

pooling unit, and two high-res and low-res convolutional layers. The inception module tries

to cover a larger area while maintaining the higher-resolution, smaller-sized windows to

preserve the fine-grained information in the image. This unit convolves the more accurate

window and the less accurate one in parallel. A series of trainable Gabor filters make this

possible.

A very successful extension of this CNN-based architecture, Fully Convolutional Network

(FCN), has been proposed by Long et al.(3). Long et al. used the available standard ar-

chitectures and replaced the fully connected layers with convolutional layers. This allowed

for the output of these layers to be spatial maps and not classification metric values. This

lead to learning of hierarchical features, adding another dimension to the already-powerful

mechanism of feature extraction in the available CNN-based architectures. The resulting

spatial maps would then be upsampled using deconvolution operators which in turn pro-

vided dense layers of labeled pixels. Figure 2.3 depicts the innerworkings of the CNN- and

FCN-based semantic segmentation.

The FCN architecture, despite its powerful features and noticeable improvements over

existing architectures has several short comings. It can’t encode global context because of

the spatial invariance in its design. The model is not instance-aware, the computational

load is still too high for real world scenarios in presence of high resolution images and
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2.5 U-Net Deep Neural Network Building Blocks and Architecture

Figure 2.3: FCN architecture diagram by Long et al.(3). The FCN architecture produces
spatial heatmaps.This is possible by replacing the fully connected layer in CNN with a con-
volutional layer. The upsampling is done by deconvolution operators which enables per-pixel
semantic labeling

it doesn’t perform well for sequence processing. There have been numerous methods pre-

sented in the literature that provide solutions for one or several of the FCN’s shortcomings,

e.g. (76, 77, 78, 79).

2.5 U-Net Deep Neural Network Building Blocks and Archi-
tecture

U-Net is a specific DNN architecture proposed by Ronneberger et al.(4) to perform image

segmentation on biomedical imagery. This section defines the building blocks of U-Net

DNN and then reviews the original U-Net architecture.
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2.5.0.1 Convolution

Convolution layer is the main building block of Fully Convolutional Neural Networks which

are used extensively for image segmentation tasks and the U-Net architecture is based upon

them. The convolution layer makes use of convolution operator by applying different filters

to the input data through the said operation. In convolution layer, the convolution operator

is applied to the input data using a convolution filter (or kernel) of specific size(e.g. 3x3,

5x5) and produces a feature map. The convolution filter will slide over the input data in a

number of steps that cover the whole input data and in each step a matrix multiplication

operation is performed. The result of each multiplication operator is a scalar number which

is inserted in the feature map. The sliding window operation has a stride parameters that

determines how many pixels should the kernel move at each step, with bigger strides leading

to less overlap. At each layer, different filters can be applied to the input data, resulting

in a 3d feature map of the input sample.

2.5.0.2 ReLU Activation Function

An activation function is a mathematical function that determines the output of each neu-

ron in the neural network. The input of the activation function is the weighted input of

the neuron inputs. Based on the output of the activation function, the neuron state will

be set to active or inactive. Activation functions are usually computationally inexpensive,

since they need to be calculated many times on a large number of neurons in the neural

network - especially the case in deep neural networks. One of the main roles of the activa-

tion function is to regularize the output of the neurons. Certain activation functions also

have been used to introduce non-linear properties to the network. The Rectified Linear

Unit (ReLU) activation function(80), defined as

f(x) = max(0, x)

is one of the most popular activation functions in deep learning settings(81). It is scale

invariant and computationally efficient. Its linearity means that its slope doesn’t saturate

in presence of large inputs and allows the network to converge quickly. It also has a

derivative function and allows for backpropagation through the network.

2.5.0.3 Batch Normalization

One of the problems that arise during the training of a deep neural network is that even

if you normalize your input data, as the information goes through different layers the
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neuron outputs will not be in the same range and could possibly blow out because their

distribution is changing during the training phase. This will lead to slow down of network

convergence since each layer would try to adapt to its new distribution resulting from its

activation function outputs. This phenomenon is called internal covariate shift problem.

To address this problem, we use batch normalization(82) in each layer of the deep neural

network. At each training step, the batch normalization layer calculates the mean and

variance of the layer inputs as

µ =
1

n

n∑
i=1

xli

σ2 =
1

n

n∑
i=1

(xli − µ)2

in which µ and σ2 are respectively mean and variance of the layer inputs, n is the number

of inputs and xl represents the input value.

Next, the batch normalization layer normalizes the input values using the previously

calculated statistics as

xli =
xli − µ√
σ2 + ε

where xli is the normalized value of each input and ε is a constant added for numerical

stability.

The problem with this operation is, this simple act of normalization might change what

the layer actually represents. To address this problem and make sure that this transfor-

mation represents the identify transform, the outputs of the layer - the activations - are

scaled and shifted using parameters γ and β through the following transformation

yi = γxli + β

in which yi is the output value corresponding to the normalized input value xli . γ and β

are learned during the Stochastic Gradient Descent process.

2.5.0.4 Pooling Layers in CNNs

Pooling is one of the important aspects of CNNs. During the learning phase of a CNN,

different areas of the network inputs are encoded into a feature map. Each level in the

CNN uses the feature maps from previous layers to learn higher level features of the

data. This process will make the features learned in the higher layers susceptible to the

position of the features in the feature map. This dependency on the location will reduce
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the generalization capabilities of the network. Instead, what we want is spatial invariance,

meaning the network can detect features in the input data under different transformations,

e.g. rotation and skewing. To solve this issue, pooling layers(83) are placed after each

convolutional layer.

The main job of pooling layer is to reduce the resolution of the feature map. The pooling

layers performs a non-linear downsampling operation by partitioning the input data into

windows and returning one value per window. This operation reduces the resolution of

the feature map and increasing the generalization capabilities of the higher levels in the

network to detect features by making them more reliant on relative position of features

rather than their exact position in the input data. The pooling operation also reduces the

training costs of the network, e.g. memory needs and computational overhead.

There are different pooling strategies used for different applications of CNNs. Here we

introduce max-pooling(83), which is simply reporting the maximum activation value in the

pooling window. A max-pooling layer has a Stride Size, which determines the size of the

non-overlapping square partitions the input data is split into.

2.5.0.5 Drop-Outs in Deep Neural Networks

One of the main pitfalls of trying to fit a machine learning model to training data is

overfitting. Overfitting means training and fine tuning the model on the training dataset

to the point that it performs very well on the training dataset, but its generalization

capabilities are hindered. In this case, the model has learned the statistical noise in the

data and will assume it is also part of the function we are trying to approximate.

To deal with overfitting, regularization methods have been introduced for a variety of dif-

ferent machine learning paradigms. In neural networks, the regularization schemes should

also deal with co-adaptation. Co-adaptation is the situation in which some neurons in a

neural network have more predictive influence than the others. In a co-adaptation, as the

training progresses some neural links become more powerful to the point that only a small

fraction of the network nodes will be actively participating the the rest would become

irrelevant because of their weak links. This will lead to ineffectiveness of expanding the

size of the network and capping the capabilities of neural networks. To resolve this issue

in neural networks drop-outs were proposed.

Drop-out(84, 85) regularizes the network by randomly turning off or "dropping out"

some of the neurons during each training phase. The effect of drop-out is that the network

cannot rely on a subset of learning units to perform the prediction and all the units are

involved in the process. This closely simulates having an ensemble of smaller, weaker
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classifiers trained on the data and then using their collective results. The drop-out is done

with a drop-out value which determines the probability of each node dropping-out during

each training phase.

2.5.1 U-Net Deep Neural Network Architecture

The U-net DNN, an FCN based architecture, was first proposed by Ronneberger et al.

for biomedical image segmentation. The U-Net architecture has two symmetric paths:

Encoder and Decoder.

The encoder path, also known as the contraction path, is designed to capture the context

in the input image - that is, shallow, low-level information about the image feature maps

in latent space. It is comprised of convolutional and max-pooling layers stacked on top

of each other. U-Net precomputes a weight map for the categorical cross entropy loss

during the encoding stage. This operation is done by a stack of units, each comprised of

two 3x3 unpadded convolutions, followed by a rectified linear unit(ReLU) and an output

downsampling stage implemented by a max-pooling unit of the size 2x2 with the stride 2.

Each downsampling layer doubles the feature channels.

The decoder path, also called expansion path, enables us to localize the features in a

precise manner using deconvolution operators. In contrast to contraction path, operations

in this path is done by employment of upsampling units. Each upsampling unit is followed

by a 2x2 deconvolution that cuts the number of feature channels by half. The deconvolution

segment is followed by a concatenation with the corresponding cropped feature map from

the contraction path. Cropping is done in each convolution due to the loss of border

pixels. The last stage is two convolutions of the size 3x3, each followed by a rectified linear

unit. Putting these two paths together gives us an end-to-end fully convolutional network,

consisting of only convolutional layers and no dense layers. This allows the architecture

to accept input data of any dimension size. The final layer is a 1x1 convolution. It allows

mapping of each of feature vector - of the size 64 - to the predefined number of classes.

There are 23 convolutional layers in total in the U-Net architecture.

Figure 2.4 shows the U-Net architecture proposed in (4). The input image size should be

selected in a way that allows 2x2 max-pooling operations. That means rectangular-shaped

input with equal x- and y-sizes.

In the section 2.5.1.1 we will discuss the loss function of the original U-Net design.

It is imperative to understand the loss function of the original paper in order to better

understand the choice of loss function for this research, described in the next chapter.
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Figure 2.4: U-Net architecture diagram by Ronneberger et al.(4). The input image size
is 572x572x3. Each blue unit represents a multi-channel feature map, with the number of
channels noted on top. The left path contracts the data, while the right path expands the
data through upsampling operations. The arrows represent different operations.

2.5.1.1 Original U-Net Loss Function

The loss function of the original U-Net is a pixel-wise soft-max over the final feature map

combined with cross entropy. The soft-max is defined as

pk(x) = eak(x)/(
K∑
k′=1

eak′ (x))

in which the number of channels is K, pk(x) is the approximated minimum function and

ak(x) is the activation in feature channel k at the pixel position x ⊂ Ω given x ⊂ Z2. The

cross entropy function, denoted as

E =
∑
x∈Ω

w(x)log(pl(x)(x))

is used to penalize the deviation of plx(x) from 1. In cross entropy formula the class label

is defined as l : Ω 7→ {1, ...,K}. l is assigned to each pixel. w : Ω 7→ R is the weight map

introduced to give more importance to some pixels over the others.
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2.6 RFI Mitigation Based on Deep Learning

2.6 RFI Mitigation Based on Deep Learning

Due to the attraction of deep learning-based methods for pattern recognition tasks, several

deep learning-based methods have already been proposed in the context of RFI mitigation.

Akeret et al. in (5) propose a U-Net deep neural network for RFI mitigation. The basic

network architecture is the same as the original scheme proposed by Ronneberger et al.(4).

Different number of layers(3,4,5) and features(16, 64) have been tested for the proposed

U-Net. The network is trained using synthetic data from HIDE & SEEK package(11)

which simulates radio data with burst RFI contamination. Using this dataset, the network

reports an Area-Under-the-Curve (AUC) score of 0.96 and a F-1 score of 0.85, com-

pared to the 0.75 score of the same measure by SEEK package’s SumThreshold function.

The trained network is then tested on the data from Bleien Observatory. The results of

this simulation are not reported, but the ROC and precision-recall charts show inferior

performance compared to the SumThreshold method for Bleien dataset.

Burd et al. (14) have employed a Long Term Short Memory Recurrent Neural Network

(LSTM RNN) for RFI mitigation. The network is trained using RFI-contaminated data

from Giant Metre-Wave Radio Telescope (GMRT). GMRT records data at 610MHz in

a bandwidth of 33KHz divided into 256 channels. The data comes from 30 antennas

leading to 435 baselines. The LSTM model, due to its temporal nature(86) is trained

using sequences of data, with each block having the format:

[TimeStamp, Polarization,Baseline]

The proposed RNN architecture consists of 1024 LSTM cells(87), with a sigmoidal ac-

tivation function. The cost function for each cell is Sigmoid Cross Entropy with Logits,

minimized using Adam optimized. The reported F-1 score is 0.17.

In (6), Kerrigan et al. use an FCN architecture for RFI mitigation using synthetic

amplitude and phase data from HERA(33) using a Hera simulator, namely hera_sim 1. The

network architecture is very similar to U-Net, with a fully connected convolutional layer

after the downsampling feature construction layer and an upsampling stage for per-pixel

class label assignment. The deviation from U-Net architecture here is that the uniformity

of number of feature layers for each convolutional layer is broken and instead, an image

pyramid approach is used with the number of features increasing as it it nears the fully
1https://github.com/HERA-Team/hera_sim
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connected convolutional layer and decreases along the path towards the label prediction

layer. The authors report F-1 scores of 0.90, 0.70 and 0.28 for narrowband, narrowband

burst and broadband burst types of RFI in simulated data respectively.

Yang et al.(88) propose a modified U-Net based architecture called RFI-Net to detect

RFI in input signals. They modify the standard U-Net by increasing the depth of the

network on both encoding and decoding paths. Also, they add residual units to their

network. Residual units(89, 90) help prevent a deep neural network’s degeneration; That

is, during the training process, after reaching a certain threshold in training accuracy

with training errors increasing afterwards. These errors are inherent to the deep neural

network because of biased calculations done by many layers of the network(91). Two types

of residual units have been designed for this architecture: upsampling residual units and

downsampling residual units. The residual units connect three layers of the network as one

unit. The authors claim this connection stabilizes the network’s update process and the

process of gradient disappearance, caused by the inability of the middle layers to update

their parameters effectively, is slowed down.

The authors use simulated data generated by HIDE(11) to train their network. The

Five-hundred-meter Aperture Spherical radio Telescope (FAST)(92) is mentioned as their

target site for RFI detection, but the only real data they use if from Bleien observatory.

There is no indication of the characteristics of the data/RFI generated for training or the

real data used for testing. Regardless, the authors report F-1 score of 0.93 for the test of

their model on real data from Bleien.
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3

Method

In the previous chapters we presented the RFI mitigation problem, gave an overview of

different families of methods to deal with it, and focused on ML-based methods for RFI

mitigation. We especially focused on deep learning-based methods and summarized the

state of the art in literature. We also provided some context about the task of image

segmentation, with special emphasis on semantic image segmentation. We also provided

the theoretical basis for the U-Net deep neural networks.

In this chapter, based on the context provided previously we will formulate the RFI

mitigation problem as a form of semantic segmentation and present our solution based on

the U-Net architecture and the modifications we have done to the original scheme.

3.1 Problem Formulation

The Semantic Image Segmentation problem, as described in the previous chapter, deals

with identifying classes of objects in an n-dimensional tensor and labelling each pixel with

the corresponding class denominator. In an image processing task, the input data would

be a tensor of the size M xN xC, where M and N are the length and width of the image

and C is the number of channels in the image, i.e. 3 for an RGB image. Theoretically,

we can extend any of the dimensions and even add more dimensions; The segmentation

algorithm would still be able to detect the artifact in the n-dimensional space. This makes

it perfect for our RFI detection problem.

The input data is in the shape of an n-dimensional tensor, each dimension representing

one semantic aspect of the data. Based on this perspective on data and algorithms, defining

the RFI detection and tagging then becomes a binary semantic segmentation problem.

We’d have two classes: non-RFI pixels and RFI-contaminated pixels. The job of the
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algorithm would be to label each pixel with the corresponding label. Each "pixel" in our

data sample would be a smaller tensor containing data from the smallest unit of resolution

in any reading.

Image segmentation algorithms might forego some general morphological preprocessing

steps to help algorithm make better classifications of pixels, but since the input data is

not in the form of an "image", the assumptions and domain knowledge about them are

irrelevant and no image-specific preprocessing steps will be taken for the input data.

3.2 U-Net Architecture

We use the basic U-Net architecture described in (4) and make necessary adjustments.

The input is a 160x3072 tensor. The network has an encoding and a decoding path, with

convolution and deconvolution operators with the filter size of 3x3.

In contraction path, each convolution operator is follower by a batch normalization unit.

The batch normalization segment is followed by a ReLU activation and dropout. Last,

we downsample the unit input by using a 2x2 max-pooling operator with the stride of the

length 2. As with the original architecture, each downsampling step doubles the number

of filters.

The expansive path, which mirrors the contracting path, contains upsampling units

followed by a 2x2 deconvolution operator. The deconvolution operator halves the number

of feature channels. The results will be then concatenated with feature map from the

parallel unit in the encoding path. Next, two 3x3 convolution operators followed by batch

normalization units, drop outs and a ReLU unit would follow. In the final layer, as in

original architecture, a 1x1 convolution operator maps the feature vector to our binary

classes.

Total number of parameters for our network is 2,164,305, of which 2,161,361 are trainable.

Figure 3.1 shows the general architecture of our U-Net network.

3.3 Dataset and Preprocessing

The training and test datasets have been obtained from averaging pipeline of LOFAR

Long Time Archive (LTA)1. Data from the project Epoch of Reionization (EoR)2 was

selected for this work. 107 measurement sets related to different consecutive sub bands
1https://lta.lofar.eu/
2http://www.lofar.org/astronomy/eor-ksp/epoch-reionization.html
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3.3 Dataset and Preprocessing

Figure 3.1: The proposed U-Net architecture

from observation L548671 were obtained from LOFAR LTA for training and validation. 107

separate measurement sets were obtained as the holdout set to measure the performance

of the model. Table 3.1 contains the high level structure of the measurement sets obtained

from LOFAR LTA.

We use columns "Data", "Flag", "ANTENNA1" and "ANTENNA2" for this work. The

"Data" column contains the data from each reading. The "Flags" column contains the RFI

flags for each "pixel" in the "DATA" column. Since each measurement set contains corre-

lations between two antenna pairs, we use columns "ANTENNA1" and "ANTENNA2" to

get the list of antennas in each measurement set and differentiate between them. "DATA"

and "FLAG" column have the shape 329439x15x4 and "ANTENNA1" and "ANTENNA2"

columns have the shape 329439x1. There are 2211 unique (ANTENNA1, ANTENNA2)

pairs, each with 149 data points; Thus, the shape of the sample associated to each antenna

pair would be 149x4x15. The first dimension is the number of the data points per readings

for the current antenna pair, second dimension indicates the number of polarizations and

the third dimension indicates the number of channels.

3.3.1 Selecting Polarizations

Since most of the RFI is found in the first polarization, we’re going to use only the data from

the first polarization. This will reduce both the volume of the data going through our deep

neural network and the computational load of training the network. For each measurement

set, we obtain a list of unique antenna pairs from "ANTENNA1" and "ANTENNA2" and
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3. METHOD

for each antenna pair, we will keep the first polarization and drop the rest. That will leave

us with a data array of the shape 149x15x1. It should be noted that since the underlying

DNN framework we’re using(Keras1 on TensorFlow2) doesn’t support complex numbers,

we take the absolute value of the complex values of data and use it as the input.

3.3.2 Resizing

Since in the encoding path of the U-Net, the pooling units have a stride of 2, the dimensions

of the network should be divisible by two, and since we have four max-pooling operation

during the encoding path, each dimension should be divisible by 16. Thus, because our

dimensions are 149x15x1, we need to resize our input accordingly. After trying several

different resizing schemes, we decided to choose the size 160x32x1. It ensures the divisibility

by 16 without losing information in the process. After the resize operation, the number of

pixels change from 2235 to 5120.

3.3.3 Stacking

The next step in our data preparation phase is stacking, in which we concatenate data

from different channels of observation. For each unique antenna pair, we perform the

previously described operations and then concatenate the newly processed sample to the

already existing array of samples along the data dimension. For example after processing

10 antenna pairs(16032x1), the stacked array of baselines would have the shape 160x320x1.

3.3.4 Normalization

To normalize the data, we tried two different strategies: to normalize the data after the

resizing stage and before concatenation; and after concatenation as a one-time operation

on the whole array. We opted to normalize the data using first approach, since the second

approach in our tests resulted in inaccurate, heavily biased classifiers. We believe this is

because when we normalize the whole array, if a small number of samples have extremely

high values in their data - due to RFI - then normalizing over all of them results in a very

skewed dataset. On the other hand, normalizing over each sample results in a more smooth

data distribution over sample data, and a much more accurate classifier.

1https://www.tensorflow.org/guide/keras
2https://www.tensorflow.org/
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3.4 Pipeline and Experiments

3.3.5 Train-Test Split

After applying all of the above-mentioned data for all of the obtained measurement sets,

we do split the samples randomly into train, test and validation(hold-out) datasets with a

70%-20%-10% ratio respectively.

3.4 Pipeline and Experiments

The pipeline for this work was implemented using Python 3.7. The pipeline was built

on top of Tensorflow 2-GPU(93) and Keras(94). The U-Net was coded manually using

building blocks of Keras/TF. The Casacore library(95) was used to process measurement

set data from LOFAR LTA. Image resize was done using scikit-image library(96) with

linear method without employing Gaussian anti-aliasing.

The initial experiments were done on normal CPU-nodes on DAS-4 with two quad-core

processors of 2.4 GHz frequency and 24 gigabytes of RAM. The jobs were submitted to

the SLURM batch queuing system.

In later stages, for the training of the deep neural network on data obtained from LOFAR

LTA we moved our workload to Lisa GPU cluster of SURFsara. On the LISA, we reserved

nodes with four Titan-V GPUs, each having 12 gigabytes of RAM. The nodes have quad-

core 1.7 GHz CPUs and 256 gigabytes of RAM. The jobs were sent to the batch processing

system of LISA and the test stage on hold-out data was timed. At any time during the

experiments, as per specifications of the LISA system, there were no other jobs running on

the reserved machine, making the time-measurements more accurate.

The final network was trained 5 times, each time with a differently randomized data

split. The reported results in the next chapter are the average of the 5 runs. The plots are

taken from the last run.
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3. METHOD

Column Name Description
UVW Vector with uvw coordinates (in meters)
FLAG_CATEGORY The flag category, NUMCATflagsforeachdatum

WEIGHT Weight for each polarization spectrum
SIGMA Estimated rms noise for channel with unity bandpass response
ANTENNA1 ID of first antenna in interferometer
ANTENNA2 ID of second antenna in interferometer
ARRAY_ID ID of array or subarray
DATA_DESC_ID The data description table index
EXPOSURE The effective integration time
FEED1 The feed index for ANTENNA1
FEED2 The feed index for ANTENNA2
FIELD_ID Unique id for this pointing
FLAG_ROW Row flag - flag all data in this row if True
INTERVAL The sampling interval
OBSERVATIONID ID for this observation, index in OBSERVATION table
PROCESSOR_ID Id for backend processor, index in PROCESSOR table
SCAN_NUMBER Sequential scan number from on-line system
STATE_ID ID for this observing state
TIME Modified Julian Day
TIME_CENTROID Modified Julian Day
DATA The data column
FLAG The data flags, array of bools with same shape as data
LOFAR_FULL_RES_FLAG flags in original full resolution
WEIGHT_SPECTRUM weight per corr/chan

Table 3.1: LOFAR LTA Averaging Pipeline Measurement Set Structure. Data is related to
the project Epoch of Reionization (EoR), pipeline L548671
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4

Results and Discussion

4.1 Experiments History

Before presenting the results from the final model, this section presents some important

parts of the research process of this work and tries to rationalize the choices made for final

the model.

4.1.1 Model Tuning and Improvements

Numerous experiments were done on datasets with different sizes to evaluate the perfor-

mance of the original U-Net model for the use-case of this work. Based on the results, a

number of modifications have been done to the original architecture which result in higher

performance of the model.

4.1.1.1 Batch Normalization

The first modification is in the contraction path: After each convolutional unit, a batch

normalization unit was added. To increase the generalization capabilities of the network,

we tried higher learning rates to compensate for the noise in the Gradient Descent over our

loss function, but the results were not satisfactory; Thus, we added a batch normalization

method which not only allowed the training to be faster via reducing the number of epochs

necessary to converge, but also by keeping the activation values in check - reducing the

covariance shift of the hidden unit values - it allowed us to increase the learning rate and

achieve better generalization when testing the network with real, unsynthetic data(97).

Coupled with the dropout segment-with a low value, based on model performance under

different experiments-, it also adds some perturbation to the activations of its correspond-
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4. RESULTS AND DISCUSSION

ing layer. This process of adding perturbations to the layer activations will lead to less

overfitting and better generalization of the model without losing too much information.

4.1.1.2 Mini-Batching

Our aim is to have a model that is both accurate in semantic classification of pixels and

has a low enough computational load-both during training and inference, so that we can

potentially plug it into an online learning pipeline. Therefore, we resort to using mini-batch

stochastic gradient descent in our model. This method will reduce the computational load

and training time considerably.

Mini-batching, along with all the advantages it brings, creates a big problem for our use-

case: since our dataset is skewed and we have class imbalance, mini-batching will result in

a strong bias in the model; Because most mini-batches will contain very few or no RFI-

contaminated pixels, the model will converge after a few epochs and classifies every pixel

as non-RFI.

To solve this problem, we tried different loss functions and came up with a combination

of Dice Similarity and Cross Entropy. Section 4.1.2 describes the selection process.

4.1.2 Selection of Loss Measure

One of the most challenging aspects of this project was the selection of the loss measure.

Due to the class imbalance in our data, a classifier that classifies every pixel as non-RFI

contaminated would achieve a very high level of accuracy, but wouldn’t be useful. In

this section, the original loss measure used in the U-Net paper will be examined and the

rationale and details of our proposed loss function are explained.

4.1.2.1 Cross Entropy Loss Function

Given

P =

{
p Y = 0

1− p Y = 1

with P being the cumulative distribution function of our binary classes and Y as our

class denominator, the predictions can be defined as the sigmoid function P̂:

P̂ =

{
p̂ = 1

1+e−x Ŷ = 0

1− p̂ Ŷ = 1

with x being the input and Ŷ as the predicted class. Then, the Cross Entropy of p and

p̂ can be defined as
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4.1 Experiments History

(p− 1)log(1− p̂)− plog(p̂).

This logistic definition of Cross Entropy has been widely used as loss function for a

variety of tasks. But in the case of unbalanced data, it leads to biased classifiers(98, 99).

Our experiments began by using this definition of loss and we indeed had a very biased

classifier, which would leave the RFI-contaminated pixels undetected.

4.1.2.2 Balanced Cross Entropy Loss Function

There are ways to compensate for the skewness of the class distribution in the data. One

way would be to use balanced Cross Entropy(98) by adding a weight factor γ for positive

classes and 1− γ for negative classes to our sigmoidal Cross Entropy:

(p− 1)(1− γ)log(1− p̂)− γplog(p̂).

The downside of balanced Cross Entropy is the fact that the weight vector has to be set

manually and although several strategies have been proposed, finding the optimum value

for that factor is another challenge in and of itself. We tried to replace the Cross Entropy

with balanced Cross Entropy and tried to optimize the weight factor, but still in different

experiments with random data selection for input, test and validation the performance still

fluctuated more than expected.

4.1.2.3 Focal Loss Function

Our next experiment was to use Focal Loss(99) as our loss function. The focal loss function

will set the weight for each sample in a way that more common samples would get less

weight and the more rare samples would get more weight. This strategy will punish the

model more severely for misclassification of uncommon samples, e.g. RFI-contaminated

pixels. Focal loss is defined as an extension of balanced Cross Entropy:

α(p̂− 1)γplog(p̂) + (α− 1)p̂γ(1− p)log(1− p̂)

We had with focal loss the same problem we had with balanced Cross Entropy, albeit

with less severity.
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4. RESULTS AND DISCUSSION

4.1.2.4 Dice Loss Function

The problems manifesting with previously mentioned loss functions showed that to have an

effective semantic segmentation method for RFI detection, a loss measure is needed that

can take into account the performance at object level and not just pixel level. Therefore,

after careful review of the literature we tested Dice Loss(100) and chose it as the basis of our

loss function. Because of its performance advantages for imbalanced classes and its ability

to distinguish between objects in the image, using Dice loss lead to better segmentation.

We define our logistic Dice loss function as

p + p̂− 2pp̂

p + p̂+ 1

4.1.2.5 Hybrid Loss Function Based on Dice Similarity and Cross Entropy

Using Dice loss lead to better overall segmentation performance and a more stable output

in different experiments. But using Dice loss, we were losing pixel level accuracy and there

were lots of small pixelated misclassifications in the smooth areas of data. Therefore, since

we were losing pixel-level accuracy of Cross Entropy, we combined these two loss measures

to take advantage of both. In out implementation, for each minibatch we add the scalar

value of the Dice loss to the tensor returned from Cross Entropy which will regulate the

Cross Entropy on minibatch level. Using this formula lead to a high level of accuracy and

a stable performance throughout different experiments.

4.2 Analysis of Results

The performance of the proposed method is measured using usual metrics of accuracy, F-1

and F-2 scores, and Dice index. Dice index let’s us look at the model’s performance not

only on pixel level - measures like F-scores do - but also on the object level too, measuring

apart from the accuracy on pixel level, how well can we detect connected bodies of RFI

artifacts in our data.

4.2.1 Model Loss

Figures 4.1 and 4.2 show the Dice loss and Cross Entropy loss of the model during the

training phase, both on training and validation sets. As can be seen, the model converges

at epoch 50 based on Dice loss training error. The model reaches the Dice index of 82%

on our point of convergence.
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4.2 Analysis of Results

Figure 4.1: Model training and validation Dice loss diagram. The model converges at epoch
50.

4.2.2 Performance Metrics Analysis

Table 4.1 shows the performance metrics of the model while predicting on hold-out dataset.

Average values of performance metrics after 10 runs are reported as our final result. In

each run, the network was trained with a randomized training, validation and hold-out set

out of our collected measurement sets. The results are from the model’s prediction on the

hold-out sets for each run.

Performance Metric Value
Precision 0.931
Recall 0.825
Accuracy 0.995
F1-Score 0.874
F2-Score 0.844
Dice Index 0.89

Table 4.1: Average values of performance metrics after 10 runs, each run with a randomized,
different training, validation and hold-out set. The results are from the model’s prediction on
the hold-out sets for each run
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4. RESULTS AND DISCUSSION

Figure 4.2: Model training and validation Cross Entropy loss diagram. The model converges
at epoch 50.

4.2.2.1 Analysis of Precision and Recall

The high precision rate shows the accuracy of the model in predicting RFI areas, which is

very high. It is expected, given the powerful model architecture used, the tuning performed

on the network and the loss function, and the skewed nature of the dataset which pushed

the model towards a maximum precision-zero recall state.

The recall is lower than precision, but that is expected behaviour; Because of the skewness

of our dataset, the loss function is designed to heavily penalize the False Positives. But

still, the recall rate indicates a rather low rate of false negatives.

4.2.2.2 Analysis of Accuracy, F-1 and F-2 Scores

The accuracy of the model is very high, but it can be a bit misleading since our dataset

is skewed with most of the pixels being marked and not having RFI contamination and

therefore a model with heavy bias would still achieve a high level of accuracy.

The F-1 and F-2 scores are a more reliable measure of the model’s performance. In

our case F-2 score is an even more balanced performance measure that F-1 score, since

it gives a higher weight to recall compared to precision which will reveal more about the

segmentation performance of our model given the class imbalance in our data.
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4.2 Analysis of Results

As can be seen, both reported F1- and F2-scores are high which indicate good perfor-

mance of the model.

4.2.2.3 Analysis of Dice Similarity

Last, we report a Dice similarity index of the model, which reports on the overlap between

the RFI contaminated areas in ground truth and predicted segments. As mentioned in

section 4.3.2.2, we see a high level of similarity between the hold-out RFI masks and the

predicted masks. The reported Dice loss values from the model training phase show an

increase in the model’s performance and then a steady performance which leads to model

convergence.

4.2.3 Comparison to Other Methods

Table 4.3 presents F1-scores reported in the literature for similar DL-based methods. The

most similar method, (5) reports an F1-score of 0.85 on synthetic data, with the perfor-

mance degrading rapidly when they shift to real world data - their actual F-1 score is not

reported for real data, but they provide ROC graphs which show a massive degradation in

performance. Another similar method, proposed by (14) reports an F1-score of only 0.17.

Finally, (6) report F1-scores of 0.90, 0.70 and 0.28 for narrowband, narrowband burst and

brodband burst RFI types in synthetic data, which overall can be considered inferior to the

proposed method, both in terms of the use of synthetic data and the performance.

Method F1-Score
(5) 0.85 (synthetic)
(14) 0.17
(6) 0.90, 0.70, 0.28
(88) 0.93
This research 0.841

Table 4.2: Comparison of the F1-Score values of similar works reported in the literature.
(5) report a considerable degradation in performance when moving to real world data. The
results reported by (6) are on synthetic data and belong to narrowband, narrowband burst and
brodband burst RFI types.

It should be strongly emphasized that although the F-1 score numbers could provide a

rough basis to compare the methods, the results are essentially un-comparable unless all

the models are trained on exactly the same data under the same conditions. In most of the

reviewed methods, the training data is either synthetic or from a very specific source(Belien
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Observatory), while all of the data used for this project is real data coming from LOFAR.

On the other hand, due to the flexibility of synthetic data generation synthetic data could

potentially contain a broader range of RFI types; In this work, on the other hand, due to

computational and practical limitations we only use data from one observation. The fact

that this observation has been done during a specific time period and might not contain

certain kinds of RFI - which could be present at other times not recorded by our selected

observation - could be both a limiting factor and a barrier against comparison of this

method with other similar ones. Even among methods that use synthetic data from the

same source (the HIDE package), some sources (for example, (88)) do not mention the

specifics of their data generation and therefore we still can not compare their results with

other similar methods or even claim the superiority of their method.

4.2.4 The Effect of Data Imbalance and the Impact of Loss Function

Figure 4.3: Model training and validation Cross Entropy loss diagram. The model converges
at epoch 50.

In this section we present the analysis of our best performing model using only Cross

Entropy loss function and compare the results to our final model which uses the Cross

Entropy - Dice Loss combination loss metric. Figure 4.3 shows the training and validation

loss of the model. As can be seen, unlike the final model which converged after 90 epochs,

the model using the Cross Entropy loss function converges after 25 epochs. The validation
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error starts very low and its curve flattens out around epoch 5 and stabilizes after epoch

15. This shows the effect of dataset imbalance, in which although the performance of the

model based on our metrics is excellent, the model is unable to mark RFI in the input

data accurately.

Table 4.3 compares the F-1 and F-2 score of the final model and the model with Cross

Entropy loss. As can be observed, although the loss value of the Cross Entropy-based

model is quite lower than what has been reported by the final model, in terms of F-1 and

F-2 scores the performance of final model is superior since the model with Cross Entropy

loss function fails to detect many of the RFI areas in the data.

Performance Metric Final Model Model with CE Loss
F1-Score 0.874 0.749
F2-Score 0.844 0.723

Table 4.3: Average values of performance metrics after 10 runs, each run with a randomized,
different training, validation and hold-out set for two models: The final model and the model
trained using only Cross Entropy as loss function. The results are from the model’s prediction
on the hold-out sets for each run

4.3 Analysis of Model Results

Figure 4.8 shows a sample output of the model from the hold-out dataset. The data is

depicted in Figure 4.9. Next, the original RFI mask provided by the measurement set

package from LOFAR LTA is plotted in Figure 4.10. The light pixels denote presence of

RFI. Predicted Mask band in Figure 4.11 visualizes the actual values predicted for each

pixel. The Figure 4.18 shows the classification error for this sample by plotting the absolute

value of the subtraction of original values and predicted RFI mask values.

Numerous model outputs were analyzed to find out where the model’s weakness in re-

gards to detection of RFI lies which leads to lower recall values compared to our high

precision level. We tried to measure the model’s performance in presence of narrow-band

RFI, wide-band RFI and sporadic RFI. One advantage of using synthetic data would have

been that we would know exactly which kind of RFI we’d have in each data sample and

measure the model’s performance accurately. But since we don’t have pixel-level classifi-

cation of RFI types and there is a lot of overlap between different types of RFI, we resort

to visual inspection.

Figure 4.19 shows several masks with different RFI types and the proposed system’s

classification error in presence of each. The samples have been selected from the lowest
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Figure 4.4: Data

Figure 4.5: Original Mask

Figure 4.6: Predicted Mask

Figure 4.7: Classification Error

Figure 4.8: Sample network output selected out of the bottom 25% of validation set ordered
by F-2 score

25% of the validation set, sorted by F-2 score. The analysis shows that the system is

detecting narrow-band RFI and wide-band RFI much more accurately than sporadic RFI

that happen in bursts. Also, the system is sensitive to both the duration of RFI and its

frequency bandwidth. For example, in Sample 1 the wide-band burst of RFI (seen as a

horizontal line is not detected by the system). All the samples show the difficulties the

system is having in detecting both burst RFI of either narrow or wide-band. They also

show the system struggling with very narrow, sporadic RFI even if its time window is

rather wide. The RFI that happens in narrow bands and in very short time windows is

the hardest for the network to detect and visual inspection shows that many instances of

classification error from our network belong to the sporadic types of RFI. It should be

noted that the ground truth provided here is itself the result of statistical analysis on the

reading data done using AOFlagger; although it needs further analysis both by an expert

and by using ground truth data labeled and hand-curated by domain experts, we could also

entertain the possibility of our proposed system detecting fluctuations in the input data

which are actually RFI and have been overlooked by the statistical methods employed.

Either way, this will be an interesting subject for future works.
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4.3 Analysis of Model Results

Figure 4.9: Sample 1 - Original Mask

Figure 4.10: Sample 1 - Classification Error

Figure 4.11: Sample 2 - Original Mask

Figure 4.12: Sample 2 - Classification Error

Figure 4.13: Sample 3 - Original Mask

Figure 4.14: Sample 3 - Classification Error

Figure 4.15: Sample 4 - Original Mask

Figure 4.16: Sample 4 - Classification Error

Figure 4.17: Sample 5 - Original Mask

Figure 4.18: Sample 5 - Classification Error

Figure 4.19: 5 hand-picked sample network outputs selected out of the bottom 25% of
validation set ordered by F-2 score 37
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4. RESULTS AND DISCUSSION

4.4 Future Work

In this research, we showcased a deep-learning based approach to identify RFI in radioas-

tronomy. We used real-world data from LOFAR LTA to train and validate the network’s

performance and we show here highly accurate results, comparable and/or superior to

available methods.

One obvious improvement over this work would be to test newer state of the art seman-

tic segmentation methods and compare the results to see which model is more accurate.

Intuitively, more refined approaches to this family of problems are under development and

would perform better at predicting RFI in radioastronomy data.

Another extension of this work would be in the area of performance. As performant

as the model is, if it can not perform the segmentation in a timely fashion - under cir-

cumstances dictated by the LOFAR online data processing pipeline - it would lose part

of its applicability. We couldn’t compare the performance of the model to the methods

performed in ASTRON since going over the details of those methods and replicating the

data processing environment was outside of the scope of this research. Therefore one av-

enue of extension on this work would be to research the methods currently in use to detect

RFI at ASTRON and define metrics that would accurately measure the performance of

those methods. This potential research would comprehensively compare the results of these

methods with our proposed model to see how this DL-based model fares against non DL-

based methods in terms of performance. This would include checking on the performance

advantages of different python interpreters and Linux kernels, DL frameworks and possible

improvements to the existing pipeline.

One of the first decisions that we made for this project was to take the absolute values

of the complex data from readings provided by LOFAR an. While that provides certain

advantages in terms of simplicity and computational costs, and we have proved that even

under this assumption that would lead to the loss of information we’re still able to accu-

rately detect RFI in radio astronomy data, one area of improvement to this research would

be to come up with possible transformations or redesign of the pipeline so that we can use

the reading data in their complex form.

On computational costs of the training phase of the model, we have to assume that at

some point in time, due to changes in RFI sources, the current model would be deprecated

and we need to retrain our model on new data. Figuring out when we should actually

retrain the model and accept the costs of this process instead of relying on human expertise

or a non-dynamic approach, e.g. a fixed interval, would be beneficial to this research.
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4.4 Future Work

Lastly, in this research we’re not considering the temporal aspects of the RFI. Intuitively

we can argue that some RFI sources would have identifiable temporal characteristics. Fur-

thermore, there is already a body of research on temporal semantic segmentation available

in literature. Therefore, it would be worth investigation to see if we can add the time ele-

ment to this pipeline and make the predictions more accurate. This research topic would

include investigating the possibility of forming A Priori knowledge about the RFI-free state

of different areas of the sky, and detect changes in the behavior of the RFI sources, which

might indicate the deprecation of the trained model itself.
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