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Abstract

Asphyxia is defined as the sudden and extensive oxygen shortage and reduced cerebral blood flow caused
by birth abnormalities. The oxygen shortage primarily affects how blood is distributed to vital organs.
As an outcome of this whole situation, newborn babies have to deal with neurological disorders in their
future lives such as seizures. Asphyxia manifests itself in both the Netherlands and all around the world
up to 23% of infant mortality rate. In this research, we tried to identify whether or not we can predict
the outcome of asphyxiated babies using the observations taken at 6 hours to 4 days after birth. By
the time this thesis is published, no prior similar research which aims to directly identify the problem
using measurements over a set of continuous variables is seen in the literature. However, there are
closely related researches that can be used to gain a more in-depth understanding of the issue. They are
explained in detail in section 6. We tried 2 different approaches to tackle the problem. We failed on the
first approach, however, this approach revealed a lot of information about the characteristics of the data
and helped us succeed in the next one.

We developed a modified version of the advanced neural network structure AlexNet and fed the net-
work with the generated recurrence plots. We achieved an average of 93.3% accuracy. Each observation
is evaluated individually and hence the detailed evaluation metrics are provided separately, in section 4.
Our study concludes that it is possible to aid doctors with machine learning models in their diagnosis
of asphyxiated patients without waiting for the (Magnetic Resonance Imaging) MRI Scores. We also
provided at which point the patient’s severity level starts to change. Identifying these time points can be
valuable for clinicians, as it helps in understanding the temporal patterns and making informed decisions
about patient management and treatment strategies.
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Chapter 1

Introduction

1.1 What is Asphyxia and Its Current Treatment

Asphyxia is defined as the sudden and extensive oxygen shortage and reduced cerebral blood flow caused
by birth abnormalities [43]. The oxygen shortage primarily affects how blood is distributed to vital
organs. To compensate for this situation, a newborn baby’s body releases excitatory molecules with
water into the cerebral cells causing inflammation and leading to permanent damage and dysfunction.
This process is named as acidosis which can be described as an increase in acidic concentration in blood
and tissues [33]. After the primary energy failure, the baby’s blood flow is restored and it experiences
a short recovery period allowing the clinicians to start the therapeutic treatment. The only known
treatment for the disease is therapeutic hypothermia which has to be applied as early as the first six-
hour window after birth to be effective since the next energy failure occurs after six to forty-eight hours
after the primary failure. According to the paper [56] as an outcome of this whole situation, newborn
babies have to deal with neurological disorders in their future lives such as seizures.

1.2 Global Rates of the Asphyxia Cases

The calculated percentage of child deaths with an age lower than 1 year within a thousand samples is
defined as the infant mortality rate (IMR) [66]. According to the paper [56], deaths related to asphyxia
correspond to 23% of the overall global IMR. The ratio of IMR associated with asphyxia is higher in
the less developed countries by 78% when compared to high-income countries that have only 2% of
IMR. High IMR in less developed countries is due to poor conditions like complications during birth
and malnutrition. Moreover, although 2% is considerably low in developed countries, about 20% of this
number further develops hypoxemic injury and there are over 400,000 children globally facing long-term
disability due to this birth complication. According to the paper [43], neurological disorders originating
from asphyxia in neonatal patients ranked in second place all around the world with an 8.5% IMR.
Considering these numbers asphyxia can be considered as a significant global concern.

1.3 Manifestation of the Problem in the Netherlands

According to the paper [32] which represents the findings from ”Perinatal Registery”, out of approxi-
mately 180 thousand births in a year in the Netherlands, around 200 of those babies experienced asphyxia.
Moreover, Flanders, from the same study [32], also showed an interesting result with around 65 thousand
annual births including 75 of them being severely affected by the outcome of asphyxia. Moreover, studies
reveal that the chances of survival increase, and the risk of developing a neurological disorder decreases
with hypothermic treatment. The paper [32] shows a study between 2018 and 2021 in the Netherlands,
and Flanders, which identifies the neurological differences between thermic and non-thermic patients.
The study does not contain neonatal babies who are born with congenital disorders or who experience
metabolic problems. The mortality rate concerning the patients who are selected from the sample satis-
fying these conditions was 31.8%. The survivors were not so lucky as well since out of those remaining
patients 21 of them experienced cerebral palsy and 19 had developmental issues after 2 years and two of
them unfortunately lost their hearing. The surprising part was not limited by this, out of 308 samples
the ratio which covers severe neurological disorders and death was 45.5%.
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CHAPTER 1. INTRODUCTION

Furthermore in the following combined study [84] carried out by VUMC and Wilhelmina Children’s
Hospital in Utrecht, there was a significant difference between patients who had developmental problems
who had undergone hypothermic treatment and not. The study included a questionnaire testing skills
in different domains such as problem-solving capacity, emotional and communication skills, and motor
abilities. The information is collected for 4 years starting in 2018. This showed researchers that the
observations collected from asphyxiated patients require further investigation.

1.4 Long and Short-Term Outcomes of the Disease

More than 50% of newborns who needed to take the hypothermic treatment and had to undergo resus-
citation at birth showed a fast recovery and had no significant signs of encephalopathy. The observed
outcome and functioning of the mentioned children were normal concerning their peers. This is the main
reason why doctors still find it appropriate to perform neuroprotective treatments for patients suffering
from moderate to severe asphyxia. However recent studies published by the time this thesis is written
showed that, even though these patients did not develop neurological disorders like encephalopathy, their
results were not good and clear. In the long term, these patients showed an incremented risk of learning
difficulties in school-age at around 8 years. It is important to investigate this issue in more depth since
it raises concerns about the potential risk of more subtle disabilities [5] such as:

• Problems in motor skills such as cerebral palsy, irritability, or explosiveness.

• Blindness or deafness.

• Problems in cognitive skills such as autism and learning/remembering difficulties.

• Problems in IQ Levels

• Problems in neuro-psychology

• In more severe cases death, encephalopathy, or seizures. These are usually experienced in a shorter
term.

1.5 Clinical Biomarkers Used in The Detection of Asphyxia

There is no single biomarker that will provide an accurate detection of asphyxia. Below you will find the
most popular bio-markers used in industry to detect the occurrence of this disease [56, 77, 31, 16].

1.5.1 The Apgar Score

Neonatal patients with an Apgar score of below 3.5 carry a high risk of death and severe disability
increasing in a non-uniform manner. The paper [77] also shows that 1 out of 3 surviving patients with a
0 Apgar score had shown normal developments after their period in the intensive care unit. It takes only
10 minutes to get the Apgar results and they are used pretty commonly to qualify a neonatal patient for
hypothermia treatment.

1.5.2 The Sarnat Scale

The Sarnat scale is used to detect the severity level of asphyxia in neonatal patients. The scale provides
3 severity levels: Mild, Moderate, and Severe, which will also form our classes in this research. An EEG
is used periodically to access continuous variables. Three electrodes are placed on the baby’s head. This
way continuous variables are accessed. The main advantage is that it is easy to perform and information
is accessed in real-time. An abnormal EEG at 48 hours after birth is an indication of a problem with
the baby’s development. A severely abnormal EEG at 36 hours and 48 hours after birth indicates a
severe injury. The score obtained is also used for the qualification of neonatal patients for hypothermia
treatment. The paper [77] notes that patients with symptoms of moderate severity level for less than 5
days developed normally while patients with moderate level for more than a week resulted in disabilities
or death.

1.5.3 Blood Tests

Acid-base balance test is commonly used since a process called metabolic acidosis is an important qual-
ification for neonatal patients to undergo hypothermia treatment. Although the level of lactacidemia
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indicates the severity of asphyxia, it alone does not give accurate information on the duration of asphyxia.
Therefore the results of this test are combined with the following blood test results:

• Low arterial cord PH is also a strong indication of neonatal mortality.

• Liver enzymes like myoglobin and creatine kinase-Mb are important for the diagnosis of asphyxia.

• Aspartate transaminase (AST) and alanine transaminase (ALT), alkaline phosphatase and ammo-
nia levels also give useful information on the severity of asphyxia [77]. The main advantage of using
these enzymes is that they are relatively cheap and accessible globally.

Recent studies also light up some biomarkers that can be used to predict asphyxia in patients.
Such markers are; plasma neurofilament light protein, interferon, sercetoneurin, osteopontin, monocyte
chemotactic protein-1, macrophage inflammatory protein 1a, vascular endothelial growth factor (VEGF),
leptin, adiponectin, and erythropoietin.

1.5.4 Magnetic Resonance Imaging (MRI)

MRI provides a way to detect hemorrhage and calcification. Around 38% of patients who have undergone
hypothermia treatment have intracranial hemorrhage (ICH) and therefore MRI scans are important to
take into account.

Our study will be using MRI Scores as patient labels for the time series information. The labels are
extracted using a novel MRI Scoring form [80], which will be further detailed in the later sections.

1.6 Biomarkers Used to Predict Short-Term Outcome of Neonates
After Asphyxia

1.6.1 Neuron Specific Enolase in Serum

The paper [10] explains a study conducted on 50 patients to reveal the relationship between neuron-
specific enolase [NSE], which can be found in the serum, and the brain damage and long-term outcome
of infants who have undergone asphyxia. The results of the study suggest that when compared with the
control group, Apgar scores and arterial cord blood PH were lower and serum NSE and arterial cord
blood base deficit were higher in asphyxia patients, which indicates the existence of the relationship.

1.6.2 Thompson Scoring

The paper [13] describes a study performed on 145 post-asphyxiated patients with low-Apgar scores
combined with a low, moderate, and severe Thompson Score on days 1, 3, and 7. The results of the
study indicate that there is a correlation between the outcome of the post-asphyxiated patients and the
day 1 Thompson Score, which is convenient and practical in terms of assigning the patients a direct
numeric score instead of putting them into categories.

1.6.3 Human Umbilical Cord Blood CD34-Positive Cells

According to the paper [35] which conducted a study on 45 patients of which 20 experienced asphyxia
(11 of them were stage 1 and 9 of them were in stage 2 and stage 3 based on the Sarnat Scale) and the
remaining 25 kept as a control group, it is found that the absolute CD34+ cell count (p=0.02), relative
CD34+ cell count (CD34+%) (p¡0.001), TLC (p=0.01), and NRBC count (p=0.02) were significantly
higher in asphyxia patients than in healthy control group patients. The mentioned metrics have a strong
correlation with the mortality and the degree of severity of the patients in terms of prognosis of the
short-term outcome of asphyxia within a 1-4 week period.

1.6.4 Amplitude Integrated Electroencephalography (aEEG) Patterns

The study in the article [30] is performed on a subgroup of asphyxia patients who are enrolled in the
hypothermia treatment. The outcome is classified as good if the assessment of cognitive and physical
development, key indices for growth and progress, is above 70 and poor if otherwise. The study confirms
that aEEG patterns that have recovered within the first 24-hour window evaluate a normal outcome and
can be used as a prognostic value.
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How Will These BioMarkers Contribute?
According to the articles [71, 6] a combination of both pre-clinical variables and MRI results provide

the most accurate results. The accuracy of MRI scores raises from 85% to 90% when combined with
clinical variables.

1.7 Research Question

To tackle the issue presented in the earlier sections, we tried to answer the following research question:
Can we predict the outcome of Asphyxia patients between 6 hours and 6 days after birth (with intervals

of 2 hours) based on continuous data?
The outcome of the project is defined when compared with an MRI at around day 6 depending on

the condition of the neonatal patient. The usage of the developed tool is not yet to steer treatment,
but instead to give parents a more accurate prognosis before the MRI. The project in the future can be
expanded to also steer treatment with e.g. expensive stem cell therapy.

Since the diagnosis is already made, the longer monitoring window will enable the parents of patients
to have a clear decision on what percentage of the family should proceed with the treatment, what are
the chances of success and what is the rate of failure, and if it is worth of it to go under that intense
and expensive treatment. This will also give the patient a chance to try less intense treatment options
before moving on with the hypothermia treatment if the outcome is not as severe. This outcome will be
obtained in a much faster manner with the use of AI tools without waiting for the MRI.

1.8 Research method

In this section, the current approach to be followed will be explained, what kind of relevant information is
necessary as an outcome of our literature study to achieve this goal and an overview of the time required
for the successful completion of the project will be provided.

Previous approaches related to the topic are analyzed to gain an understanding of what possible
solutions exist and how a novel approach can be proposed for the solution of the problem at hand. Since
there was no previous research done on this specific topic, two novel methods are initially thought to be
suitable for the solution of this problem. These two methods belong to the class of

• Generative Techniques

• Discriminative Techniques

When the original dataset was first received, its initial analysis showed us that it requires augmenta-
tion for optimal training. To apply data augmentation to time series data, where the label information
may change at any point in time, it seems it would be suitable to develop a generative adversarial net-
work for the regeneration and classification of signals in the dataset. A generative adversarial neural
network (GAN) is constructed with CNN-based generative and discriminative components. Our initial
guess was that it will allow us to both increase the sample size and accuracy of the built model. Ac-
cording to the articles mentioned in sections 3.3 and 3.4, all the possible bio-markers are collected and
considered as input variables to build the model from data provided by the University Medical Center
Utrecht. The received dataset was not preprocessed so the preprocessing, feature selection, and optimal
data representation techniques are applied and explained in detail in this thesis. We decided to do this
process manually to have higher control over the information, avoid bias and make it easier and faster.
The dataset used in our research consists of 187 patients and it is appended with metavision parameters
and clinical annotations of the EEG. Since the GAN model did not achieve satisfactory accuracy for
short-duration time series data and had convergence problems due to large input sizes for long-duration
time series data, we changed our direction to discriminative methods and, due to demonstrated success
of CNNs for the classification of two-dimensional image data, the time series signal in the dataset are
converted into 2D images. Since temporal differences of sample points are the most important features
in time series data, recurrence plots are found to be the most appropriate conversion method for this
purpose. Successful results over experimental evaluations exhibited the suitability of this approach as
illustrated in the experimental works section. Consequently, AlexNet which is shown to be a successful
image classification architecture in competitions is selected to be the deep learning model to be applied
in our project also. This model is later used to predict the outcome of the patients. Our results are
validated by comparing the outcome with the MRI of the patient on day 6. The achieved results will
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provide us with information on the classification of Asphyxia patients based on measurements between 6
hours and 6 days after birth (with intervals of 2 hours) based on continuous data. This way the patients
do not have to wait for the MRI result and the parents will have a clear vision and a clear future plan on
whether they should proceed with the treatment or go for alternative options. Overall the completion of
the project took around 3.5 months, which you can find a more detailed plan in the later sections.

1.9 Expected Results of Project

With the use of this data modeling tool, we aim to help clinicians foresee the severity level of the
diagnosed disease and predict the probability of losing the patient before it happens. This way we can
help the families and the clinicians with the decision of determining appropriate treatment.

1.10 Required expertise for this project

In the below table, you can find information on the expertise that is needed for the successful completion
of this project. Next to each expertise, you can also find the current level of proficiency I have.

Expertise Needed Level Of Proficiency

None Low Moderate High

Python Programming x

AI Tools for Data Modelling and Prediction x

Data Preprocessing x

Feature Extraction From MRI Images x

Good Clinical Practice(GCP) Training x

Table 1.1: Required Expertise For The Project vs My Current Proficiency Level

1.11 Risks

Below you can find a list of risks and limitations for the project:

• The capability of AI Tools for appropriate modeling can be limited.

• The amount of data may not be enough for appropriate modeling and prediction.

• The project may exceed the foreseen deadline.

• Capabilities of computational tools (both in hardware and in software) to handle large amounts of
training data. (Ex: Storage Space, etc)

• Different devices may be affected by different events at the time of the measurement which may
introduce some bias or inconsistency to the sensor values.

• When dealing with multimodal signals, it is almost inevitable to receive a complete sample set with
no missing values. The existence of such deficiencies may reduce the quality of datasets.

• Complex interactions between different modes of data representation give rise to variations and dis-
parities, possibly caused by inconsistencies between training and testing datasets. Representing the
multimodal datasets, with their inherent heterogeneity, poses a significant challenge in effectively
utilizing the complementary and overlapping information across various modalities.

1.12 Contributions

The main difference in our approach will be the bio-markers used and the interval of collected continuous
data. Although most of the studies mentioned in the previous sections are working with high accuracy
they are done between 0-6 hour window and developed mainly for detection of the disease while our study
will take place between 6 hours and 6 days after birth with intervals of 2 hours and it will be used to
predict the outcome of Asphyxia patients after they are cooled down to reveal neurological abnormalities
that may show itself in later ages of the patient.
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1.13 Project Timeline

Below you can see the detailed project timeline :

Figure 1.1: Figure displaying the milestones and goals I have set throughout the project
on a weekly basis.

I have reported my findings throughout the whole project duration, which is why I spent a relatively
small amount of time on additional reporting activities. I achieved the pre-set milestones and deadlines
with +4-5 days for all defined phases. In terms of project planning and scheduling, we can conclude that
the project succeed.

1.14 Outline

The thesis format follows the below scheme:

• Section 2 provides the necessary background information needed to be able to understand the
context of the thesis and the technical terms used.

• Section 3 provides information about my research and the following Section 4 shows the outcomes
I have obtained as a result of the completed research.

• Section 5 highlights the important points I learned from this study.

• Section 6 provides information about different previous approaches which tried to tackle a similar
problem.

• Section 7 provides information about my conclusions and prepares the report for future work to be
done.
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Chapter 2

Background

This chapter will prepare the readers with the required background information to be able to follow
the application details, reasoning, and technical terms referred to in this thesis. Information presented
in this chapter will cover all terminology and the definitions used throughout the thesis, however, the
context of information will be generic. Application and content-specific information will be provided
in the Research chapter to present a more understandable link between state-of-the-art practices and
presented in this thesis.

2.1 Preprocessing

2.1.1 Data Mining and Importance of Data Representation

As the complexity of a system increases, the importance of data representation becomes at least as signifi-
cant as the structure of the trained neural network. Many studies [18] focus on performance optimization
and generalization of models, but in reality, the highest contributor to the success of a machine learning
application lies within the preprocessing and encoding phase. These stages are generally application de-
pendent and come with their challenges like the curse of dimensionality. The curse of Dimensionality can
be described as the unstable nature of increasing data dimensions and respectively increasing computa-
tional power in an exponential manner which causes challenges in processing and analysis. Theoretically,
as the data dimensions increase, the information embedded in the data also increases. However, this also
increases noise and redundancy in data, which makes the remaining computational processes practically
challenging.
Hughes [36] explained this phenomenon with the following words:

With a consistent number of training data, classifiers demonstrate an initial increase in the foreseen
power as the number of dimensions expands. However, once a specific threshold of dimensions is sur-
passed, the performance of the classifiers starts to decrement. As a consequence of this explanation, this
concept is known as the Hughes phenomenon.
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Figure 2.1: Figure displaying Hughes Principle: Curse of Dimensionality. Image From:
[42]

Therefore feature selection is important both for time and space complexity, particularly when it
comes to time series concerning multiple variables.

Many machine learning models expect uniform input representation which is homogeneous and has
component values between 0 and 1. In an ideal situation where the dataset contains homogeneous
samples within the same scale, this would cause no problems. However, in a real-world scenario, data
is most of the time heterogeneous with outliers and incomplete sample values, introducing some form of
diversity. Outliers must be determined and cleaned while the incomplete sample values be replaced by an
appropriate interpolation method. In more complicated cases, the variables may have dependencies on
each other which might not be clear to see in the first look. The datasets prepared for medical applications
can be given as an example. Like in our case, generally include heterogeneous variables. This means
that both numeric and categorical information exists at the same time. The most basic example of
this can be given from Age, which is specified in integer format, and Gender, which is represented in
a symbolic format. Feeding a neural network with this dataset as it is will not cause any compilation
problems since neural networks can tolerate the variance and diversity in feature types via automated
scaling properties. However, this usually results in longer train time and lowered generalization abilities.
These issues may not be so obvious in smaller networks however, becomes significant as the network size
increases and brings the necessity to apply some form of normalization in the preprocessing. According
to an estimate provided in the paper by Maharana [45], the pre-processing phase often constitutes a
significant portion, ranging from 50% to 80%, of the whole classification steps. This emphasizes the
crucial role of pre-processing in model construction.

Data preprocessing can be defined as the initial formatting, cleaning, and scaling of the original
dataset to optimize the model outcome. The input and the output of a preprocessing step must also obey
some standards. Assuming that we are dealing with a transformation, T, from an original, unmodified
sample set A to a formatted, modified new sample set B, [45], the transformation T must preserve the
characteristics of each sample in the two sets. The transformation should be in the format but not in
the meaning. This can be formulated as follows:

𝐵𝑖𝑗 = 𝑇𝐴𝑖𝑘 (2.1)

Moreover, we can derive that the set A must not be equal to set B. This means that the transformation
must be able to remove at least 1 of the related issues seen in the original set. We should also end up
with a more helpful sample space after the transformation. It should make everything more smoothly,
not more challenging.

2.1.2 Data Augmentation in Medical Applications

In many cases where the researchers face performance issues, the first thing they try to improve is the
number of samples in their train dataset. As a rule of thumb in machine learning, the increase in the
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sample space usually means an increase in the learning abilities of the model. Many researchers developed
several data augmentation techniques for different kinds of data from natural language to images, to
tackle the problem, which are still popularly in use today. Data augmentation can be described as the
method of creating additional data originating from the existing data which follows the characteristics
and the behavior of the source. The augmentation can be as simple as rotating and cropping images to
more advanced techniques like applying transformations and adding noise to existing samples in machine
learning-related applications such as image recognition. Natural language processing also commonly
requires data augmentation. In NLP applications data augmentation is transferred to a more advanced
level since the order of samples plays a critical role in the meaning of the word. In simpler words, our
essential goal when opting for data augmentation is to be able to introduce diversity to the train set,
hoping that the model learns more variations of the sample space and adjusts to a more generalized state.
In this section, some popular data augmentation techniques that are also employed in this research work
will be introduced.

Note: This concept is referred to in section 3 in the generic preprocessing
discussion.

2.1.2.1 Borderline SMOTE

During the development of prediction models, there are instances when datasets contain unbalanced class
variables. To address the class imbalance in such datasets, the Synthetic Minority Over Sampling Tech-
nique (SMOTE) is proposed. SMOTE generates synthetic samples by leveraging the nearest neighbors,
thereby illustrating minority scenarios. This widely used technique is often employed for data augmen-
tation in classification problems. The proposed technique showcased herein demonstrates a system that
combines regression and data augmentation. Synthetic data is produced from the original dataset by
randomly selecting nearest neighbors, depending on the desired level of oversampling [9].

One of the limitations of SMOTE is that it fails to consider the spatial arrangement of neighboring
majority class data when synthesizing minority class data, which can result in overlapping class samples.
To overcome this challenge, researchers have focused on selectively performing oversampling or reinforcing
the borderlines and their adjacent vicinity within the minority class. The typical steps involved in
SMOTE are as follows:

Firstly, the m closest neighbors are identified among the samples belonging to the minority class.
Following that, a set called ”DANGER” is constructed by selecting more than half of these m neighbors,
especially including the samples from the minority class that corresponds to the majority class. Following
that, the algorithm identifies the s nearest neighbors from the elements in the DANGER set. The values
of these neighbors are subsequently multiplied by the space between the sample and its closest neighbor.
To further modify the result, a random number in the range of 0 to 1 is introduced as a scaling factor.
The adjusted values are then added to the original sample. Lastly, the synthetic samples are generated
using [17]:

synthetic𝑗 = 𝑝𝑗 + 𝑟*𝑗 𝑑𝑖𝑓𝑗 , j=1,2...,s (2.2)

where p corresponds to the DANGER set, r provides a random number between 0 and 1, dif is for the
difference in length for the s nearest neighbors of the selected sample. The final state of the sample set
contains a balanced number of samples from each class and provides a possible solution to the imbalanced
learning problem.

2.1.2.2 Image Transformations

Several widely used techniques for augmenting image data include applying transformations that map the
image pixels to different positions or manipulating the intensity values. This process involves selecting
one image from the original dataset, performing the transformation, and returning the modified image
to the dataset to increment its total size. These methods are straightforward to apply, yet effective, in
improving the performance of trained models. Among the 149 articles reviewed in the paper [19], 93
applied a basic augmentation approach.

The following are commonly employed image augmentation techniques:

• Geometric transformations: encompass a range of techniques that often maintain parallel rela-
tionships within an image. These transformations include scaling, translation, rotation, reflection,
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shearing and perspective transforms, such as skewing. When an image contains contours, these
geometric transformations are also applied to the associated contours. The parameters for these
transformations can either be predefined or randomly sampled, offering flexibility in adjusting the
transformation effects.

• Cropping: involves randomly selecting patches from an original image and reintroducing them into
the dataset, thereby augmenting its size. This technique is commonly employed to tackle class
imbalances by generating patches from under-represented classes, thus promoting a more balanced
distribution within the dataset.

• Occlusion: In a manner related to cropping, this technique involves the removal of patches from
an image to generate an augmented version with altered content.

• Intensity operations: These operations manipulate pixel/voxel values within an image, enabling ad-
justments in brightness or contrast. Popular methods encompass gamma correction, linear contrast
adjustment, and histogram equalization.

• Noise injection: The augmentation of noisy images involves the addition of Gaussian noise, where
image intensities are randomly sampled from a Gaussian distribution. Other types of noise, such
as uniform noise from a uniform distribution, and salt and pepper noise, where pixels are randomly
set to black or white, are also employed.

• Filtering: By applying convolution with a specialized kernel, intensities within an image can be
adjusted based on the values of neighboring pixels. This process allows for image sharpening,
blurring, or smoothing, while also enhancing the edges of objects within the image.

2.1.2.3 GAN-based Augmentation

GAN-based image synthesis presents several key challenges, particularly to ensure training stability
and generate images of exceptional quality, clarity, and high resolution. To overcome these hurdles,
researchers have introduced numerous GAN variants with improved network architectures and refined
mathematical optimization techniques. These advanced GAN networks facilitate domain adaptation,
empowering trained models to effectively transfer and adapt knowledge from one data source to an-
other. This capability allows for the creation of new data while preserving the model’s ability to embed
adaptations and shifts between different sources of data [19].

2.1.3 Data Augmentation of Time Series and Why It is Different Than Oth-
ers

Utilization of data augmentation [28] in deep neural networks is a valuable technique that involves gener-
ating artificial data. This process effectively reduces classifier variance and minimizes errors, contributing
to improved model performance. This technique has proven effective in enhancing the generalization ca-
pabilities of deep neural networks across various computer vision tasks, including image recognition and
object localization. While deep learning thrives on large training sets, obtaining such extensive data may
not always be feasible in real-life scenarios.

One well-established approach to data augmentation is the generation of synthetic data. For instance,
slight rotations can be applied to images without altering their representative feature information. Ad-
ditional techniques encompass injecting random noise, performing slicing or cropping, applying scaling
transformations, introducing temporal warping, and employing frequency warping. While these methods
work well for image augmentation, they do not yield satisfactory results when applied to time series
datasets. The main challenge lies in the difficulty of assessing the impact of ad-hoc transformations on
the nature of a time series, as it is not as visually apparent as in images.

To address this issue, generative models provide an alternative approach by leveraging feature dis-
tributions within the sample space to form new patterns [39]. To fulfill this objective, researchers have
suggested plenty of techniques, which include a variety of statistical models such as Gaussian trees, as
well as handcrafted mathematical models. The popularity of generative models for time series aug-
mentation has been on the rise, with notable examples being Generative Adversarial Networks (GANs).
Another approach involves decomposition methods, which extract features such as trend components and
independent components from the dataset and generate new patterns based on these extracted features.
The advantage of these methods lies in their ability to preserve the underlying distribution of time series
data, unlike random transformations that may inadvertently alter the distribution.
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Note: This concept is referred to in section 3 within an specific to preprocessing
discussion.

2.2 Related Artificial Intelligence Techniques

Artificial Intelligence (AI) refers to the ability of machinery to exhibit expertise in specific tasks. The
realm of AI encompasses a wide array of examples, real-time translation of natural languages, automated
financial trading systems, and the development of self-driving cars. Any technique capable of emulating
human intelligence can be classified as part of AI. It has many subclasses which can be seen in the
following figure:

Figure 2.2: Figure showing the relationship between different artificial intelligent sub-
classes. Image Retrieved from: [1]

2.2.1 Machine Learning

Machine learning [12] can be described as a subfield of AI dealing with the development of computational
algorithms to learn from the surroundings to achieve a set of design goals within a utility framework.
There is more than one definition of machine learning. According to the author of the paper [46], Arthur
Samuel, machine learning can be expressed as ” the field of study that empowers computers to acquire
knowledge and enhance their performance without explicit programming instructions”. The methods
employed in this field can be applied to many other fields such as :

• Pattern Recognition

• Finance

• Healthcare

• Computer Vision

• Entertainment . . .

It is a very problem-specific field and the algorithms developed highly vary depending on the issue
targeted, the variables of the problem, the models that may better fit than the others, etc. These
algorithms can change and adapt their architecture by gaining experience via repeatedly performing the
same tasks to fit better to the specified goal. This process is called training that may be implemented
in two commonly known ways, namely supervised and unsupervised learning. In supervised learning,
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the model is allowed to see samples with their labeled outcomes. In other words, a supervisor informs
us about the correct labels of data samples in the training dataset. In unsupervised learning, class
labels of data samples are unknown initially and they are determined by spatial distribution of data
samples concerning each other. Consequently, any learning algorithm as a result adapts itself not only
to understand the architecture of training samples but also to generalize its configuration for the unseen
data to achieve the desired outcome. Training a model with machine learning offers two key advantages
:

• It can replace the workload required by humans by automating the repetition required in training.

• It can learn complex structures in the sample space in a better way than what a human observer
can do.

Supervised Learning
Supervised learning can be described as one of the machine learning tasks which links an input

sample to an output label considering the provided relation between the two by learning a function.
These algorithms require external assistance, just like being supervised by a teacher, that is why they
are referred to as ”supervised” learning algorithms. The input samples are usually split into two sets by
some ratio. Some popular algorithms use 70:30 or 80:20. The larger set is used for training where the
labels of data samples are expected to be predicted and the success is measured according to predefined
performance metrics. The other set is used for testing. The discriminative learning model that is
explained in detail in the coming sections also falls under this category.

Unsupervised Learning
Unlike supervised learning described above, there are no correct labels for data samples and there is no
teacher. The models try to form clusters or groups that behave similarly to the input samples without
having any access to the output labels. These labels are left to be discovered by the algorithms. The
unseen data is classified by comparison to the previously learned features and it is placed to the most
resembling class.

Semi-Supervised Learning
This approach is a mixture of the two previously mentioned approaches: Supervised and Unsupervised
Techniques. It is a good option to select in cases where there are unlabeled samples and extracting the
labels is tiresome work. Some of the generative deep learning methods fall under this category.

2.2.2 Basic Deep Learning Architectures

Note: This concept is referred to in sections 3. 6 and 4 within the employed
machine learning model and along with discussions on already published ap-
proaches.

Deep learning [64] is a subfield of machine learning that aims to capture intricate data abstrac-
tions through the use of multi-layered neural networks. These networks comprise complex structures
or nonlinear transformations and are capable of modeling high-level abstractions of the sample space.
Deep learning involves the employment of advanced architectures and mostly non-linear transformations
within these multi-layered networks, resulting in a neural network with a substantial number of layers
and parameters. Commonly, deep learning methods utilize neural network architectures, that contain
specialized units for filtering the input data at different scales and a classification unit that determines
the class labels based on the filtered features. In summary, deep learning harnesses a series of cascading
layers of nonlinear processing units to extract and transform features from the data.

Deep learning, is a specialized field within machine learning, that focuses on constructing models with
multiple layers of neurons. These layered structures enable the modeling of complex data abstractions
and facilitate non-linear transformations. Neural networks are simple models of learning and information
processing procedures inside a human brain through constructing and remembering the links and relations
between input samples. The term ”artificial neuron” describes a simple model of its counterpart, the
organic neuron. Neural networks modify the values of their architectural elements, such as connection
weights and filter parameters to model the alterations in the input and the availability of highly successful
optimization algorithms for adjustment of model parameters makes it possible to provide the best fitting
solutions. It usually takes 3 layers to construct a basic neural network.

• The input layer receives the input data.
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• The hidden layer(s) process the input through various computations.

• The output layer transmits the computed output.

Figure 2.3: Figure showing the structure of a neural network. Image From: [8]

Deep learning networks typically consist of five or more layers, adhering to the following structure:

• An initial input layer is designed to feed the input data into the network.

• Three or more hidden layers that specialize in learning representations from the input data. Among
the various types of hidden layers, Dense layers are particularly popular due to their versatility. In
Dense layers, the neurons are considered to be fully connected, enabling unidirectional information
flow. Neurons in higher layers receive data from the preceding layers.

• A final output layer is devoted to the values or predictions generated by the network.

As mentioned previously, the level of abstraction increases as the number of layers increases. With
this increment non-linear recombinations received from lower layers are represented in a more and more
abstract manner.

2.2.3 Deep Learning in the Context of Machine Vision

Computer vision [25] can be described as a field of machine learning specific to images and video. This
field teaches machines to visually understand and interpret information by translating visuals through,
extracting features and other important characteristics of the data learned during the training phase.
This capability empowers models to analyze images and videos and leverage those interpretations for
predictive or decision-making purposes. When contrasting deep learning with conventional machine
vision techniques, the most significant difference arises in the context of feature extraction.

In traditional methods [21], it is the responsibility of the vision engineer to determine the specific
features to seek to detect a particular object within an image. Moreover, they must identify the appro-
priate set of features for each class. However, this approach becomes impractical when dealing with a
large number of classes. The information we look for, such as edge and texture information, most of the
time must be fine-tuned by the data specialist. As a solution, deep learning methods provide a technique
known as ”End to End Learning” where the algorithm taught what to search for within the given classes.
During the training phase, it identifies what are the most significant and prominent features in each class.

2.2.3.1 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GANs) [23] are a cutting-edge approach that holds promise for both
semi-supervised and unsupervised learning. Their main strength lies in their ability to implicitly model
high-dimensional data distributions. In its simplest form, GANs contain two networks, namely the
generator and the discriminator, designed to compete with one another. A simple example from the
paper [23] explains the concept more visually:
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In the context of art, one of the networks can be expressed as an ”Art Fraud” trying to create
realistically fake products. In the context of GANs, this is known as a generator, G, trying to create
almost real fake data samples. On the other hand, in the context of art, the other network can be
expressed as an ”Art Expert” trying to identify and discriminate between real and fake products. In
the context of GANs, this network is referred to as a discriminator, D, which accepts both fake and
authentic data samples and tries to separate them. They are trained at the same time and compete
with each other. The discriminator has both fake and real samples, however, the generator does not
know anything about the real images and the only way it can fake the behavior of authentic data is by
its communication with the discriminator. The performance of the discriminator is hence obtained via
an error signal which is generated by considering whether the image is coming from a real or synthetic
stack. The same error signal, via the discriminator, can be used to train the generator, leading it toward
being able to produce forgeries of better quality.

If we express the behavior of the generator as a link between some representative space, called a
latent space, to the input sample space, then we can formalize the behavior of the generator as follows:

G: 𝐺(𝑧)→ 𝑅|𝑥| where z 𝜀𝑅|𝑧| (2.3)

is a sample from the latent space,
x 𝜀𝑅|𝑥| (2.4)

is an image and
|.| (2.5)

denotes the number of dimensions. The discriminator, D, can be described as a function computing
a probability on the supplied image, resulting in whether or not it is authentic or not as its output is
close to one or close to zero:

D: 𝐷(𝑥)→ (0, 1) (2.6)

Since these two models are competing with each other, at some point in the training when the
discriminator reaches its optimal performance, it can be stopped and the generator can be given a
competitive advantage by training it more. This is to lower the accuracy of the discriminator to prevent
overfitting. Similarly, if the generator reaches its optimal performance, meaning that it can generate real-
like samples, this will confuse the discriminator causing it to provide predictions with lower accuracies.
The cost of training is evaluated using a value function,

𝐷𝑚𝑎𝑥𝐺𝑚𝑖𝑛𝑉 (𝐺,𝐷) (2.7)

that depends on both the generator and the discriminator. Here, this definition describes the objective
of maximizing the discriminator’s success while minimizing the generator’s performance by faking the
discriminator. The training involves solving this equation where,

𝑉 (𝐺,𝐷) = 𝐸𝑝𝑑𝑎𝑡𝑎(𝑥)
𝑙𝑜𝑔𝐷(𝑥) + 𝐸𝑝𝑔(𝑥)

𝑙𝑜𝑔(1−𝐷(𝑥)) (2.8)

where 𝐸𝑝𝑑𝑎𝑡𝑎(𝑐) stands for the expected probability of the real data samples 𝑥, 𝐷(𝑥) stands for the dis-
criminator’s success for real data samples 𝑥, 𝐸𝑝𝑔(𝑥)

stands for the expected probability of the generator’s
success on generating real-like fake samples, and (1−𝐷(𝑥) is the failure rate of discriminator due to the
fake samples of the generator.

We can prove that for a fixed generator, there is a unique optimal discriminator,

𝐷*(𝑥) = 𝑝𝑑𝑎𝑡𝑎(𝑥)/(𝑝𝑔(𝑥) + 𝑝𝑑𝑎𝑡𝑎(𝑥)) (2.9)

and the generator, G, is optimal when
𝑝𝑔(𝑥) = 𝑝𝑑𝑎𝑡𝑎(𝑥) (2.10)

causing discriminator confusion and resulting in lower discrimination accuracy. In an ideal situation,
we would like to train the discriminator to an optimal point comparing it to the performance of the
generator but this may not be applicable in practice as explained below.

Training a Generative Adversarial Network (GAN) poses several challenges:

• Ensuring convergence of the model pairs.

• Preventing the generative model from ”collapsing” and producing similar samples for different
inputs.

19



CHAPTER 2. BACKGROUND

• Avoiding the discriminator loss from quickly converging to zero, which results in sending in gradient
inaccurate updates to the generator.

To address these issues, heuristic approaches can be employed to deal with these difficulties. GANs
[78] play a significant role in the advancement of generative models. GANs, known as a potent category
of generative techniques, excel in the task of producing data that can be easily comprehended and
interpreted. They are particularly suitable for high-dimensional feature space, as the generator model
architecture is not limited to any specific dimension. The flexibility of GANs allows developers to
incorporate various structures and loss functions, greatly enhancing the degree of freedom in model
design. By employing adversarial training, GANs facilitate the production of varied and meaningful
data, steering clear of direct replication or simplistic averaging of real data. In essence, GANs offer a
promising solution for generating data that is not only creative but also holds significance for human
interpretation. A figure illustrating the architecture of a GAN is given below.

Figure 2.4: Structure of a generative adversarial network (GAN). Image From: [76]

2.2.3.2 Convolutional Neural Networks (CNN)

Convolutional neural networks (CNNs) belong to the category of feed-forward artificial neural networks,
distinguished by their utilization of convolution operations in one or more of their layers. These oper-
ations play a crucial role in extracting and capturing meaningful features from the input data. They
draw inspiration from biological neural networks and combine neural network architectures with discrete
convolution structures to automate feature extraction. As a result, CNNs are specifically designed for
recognizing and analyzing two-dimensional data such as images and videos.

When the input data for a CNN is flattened into one-dimensional vectors to serve as inputs, this
flattening process leads to a significant loss of meaningful visual image structure. Another consideration
is the increase in computational complexity when applying this process.

On the other hand, when dealing with moderately sized images, such as a 200x200-pixel full-color
RGB image, the number of parameters to be optimized dramatically increases. For instance, each neuron
in a dense layer would have 120,000 parameters when considering three color channels and 40,000 pixels.
If we include an average number of neurons, such as 64, this results in an astonishing 8,000,000 variables
in just the first layer of the network. When dealing with multiple data points in a full image, this naive
approach usually results in low accuracy scores due to a very large number of variables as input to the
gradient-descent-based optimization algorithms.

Convolutional layers in CNNs consist of sets of kernels or filters that examine the image in smaller
patches. This process, known as filter convolving, involves weights within the kernels being learned
through a gradient-descent-based backpropagation algorithm. Typically, kernels have a size of 3x3. In
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the context of full-color RGB images, a kernel that spans the same number of pixels would entail three
times more weight variables. This arises from the fact that RGB images consist of three color channels
(red, green, and blue), necessitating additional weights to account for the information contained within
each channel. As the kernel traverses and convolves over the image, a weighted sum is calculated at each
position using the equation 𝑤𝑥 + 𝑏. The resulting value, denoted as 𝑧, is passed through an activation
function such as 𝑡𝑎𝑛ℎ or 𝑅𝑒𝐿𝑈 to obtain the final activation value, 𝑎.

Unlike fully connected layers, convolutional kernels have shared weights across all inputs. This weight
sharing reduces the number of weights in a convolutional layer significantly compared to a fully connected
layer. As a result, a convolutional layer can possess significantly fewer weights, often differing by orders
of magnitude.

In most networks, there are multiple filters in a convolutional layer. Each filter allows the network to
identify representative features at a given layer. These filters scan the image, detecting specific patterns,
shapes, and colors they are tuned to recognize. The outcome of the filtering process is referred to as an
activation map. The activation maps generated by the preceding convolutional layers are passed on as
inputs to the subsequent convolutional layers. By adding more layers and deepening the network, the
degree of abstraction and the number of extracted complex features and patterns increase. These features
can range from simple lines, colors, and textures to whole objects as the network becomes deeper.

The number of filters within a convolutional layer, just like the neuron count in a dense layer, is
a configurable hyperparameter that can be fine-tuned to enhance the network’s effectiveness. Consid-
erations when determining the number of filters include the complexity of the data and the problem
being solved. It should be noted that the appropriate number of kernels for a particular layer can vary
considerably. In the initial layers, the focus is on recognizing basic features, while in subsequent layers,
the emphasis shifts to detecting more complex compositions and patterns formed by these features. As a
rule of thumb, later convolutional layers tend to have more kernels relative to early convolutional layers
in machine vision applications.

Figure 2.5: The structure of a convolutional neural network. Image from: [68]

2.2.4 Recurrent Neural Network Architectures

Natural Language Processing (NLP) [26] is a field of study that explores the application of computers
to comprehend and process human languages, enabling them to perform various tasks. The objective
of NLP, from a scientific standpoint, is to model the cognitive processes involved in understanding
and generating human languages. By developing computational models, NLP seeks to unravel the
underlying mechanisms behind human language comprehension and production. On the other hand
from an engineering point of view, NLP deals with human-computer interaction and the construction of
such algorithms to facilitate this process. Some popular application areas of NLP contains:

• Machine Translation

• Sentiment Analysis
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• Lexical Analysis

• Social Computing . . .

Natural language is a symbolic and discrete system meticulously designed to communicate meaning or
semantics. By its inherent nature, it is constructed to convey information through symbols and discrete
units, enabling the exchange of complex thoughts and ideas between individuals. The physical form of
natural language which we interact with also referred to as ”text”, is always in a symbolic representation.
”Speech” on the other hand, is a continuous latent holding the linguistic characteristics of NL, just like
text. Machine learning applications employed by traditional methods need human expertise when it
comes to designing feature spaces and this causes a significant bottleneck for the engineers. Additionally,
the formed models usually are insufficient to successfully achieve an abstraction that would decompose
complex descriptive features in the symbolic language data and hence limited computational power in
terms of representation. One possible solution to tackle this could be increasing the depth of neural
networks via deep learning, taking advantage of its layered structure. Deep learning has made notable
strides in the field of natural language processing (NLP) with two key innovations: sequence-to-sequence
learning and attention modeling. These advancements have significantly improved the performance and
capabilities of NLP systems, enabling more accurate and effective language processing tasks.

Sequence-to-sequence learning, also known as seq2seq, is introduced to solve complex language prob-
lems where the model receives a sequence of samples and outputs a sequence of samples. This approach
presents the concept of recurrent nets to perform encoding and decoding with an end-to-end mode. On
the other hand attention modeling tries to divide the complex problem into sub-problems, also known
as areas of attention, and identifies each of them sequentially. The main goal is to resolve the prob-
lems coming along with the encoding of long sequences. The advancements in both approaches allowed
researchers to employ the best systems based on statistical learning and local visualizations of words
through distributed embedding translations and optimized network performances. This allowed them to
achieve accuracy levels almost as good as humans, if not better. However, they need a lot more training
samples and computational power needs than what humans require.

2.2.4.1 Recurring Neural Networks (RNN)

Recurring Neural Networks (RNNs) [34] fall under the class where the input sample to be processed
is in sequential form. In a convolutional neural network, which we explained in the above section,
the processing starts at the input layer, flows in between the hidden layers, and finally exits through
the output layer. The neurons at the same level do not communicate or send or receive information
with each other. This brings limitations on specific cases where the input samples have relations with
themselves. For example, the words in an average sentence are linked with each other and we require the
earlier words to predict the later words. Since the words are not independent of each other, they require
a network structure like RNNs. By leveraging the concept of recurrence, recurrent neural networks
(RNNs) incorporate the output from the previous time step into the computation of the current output.
Consequently, the input of the network encompasses not only the data from the input layer but also the
output of the hidden layers derived from the preceding time step. This recursive nature empowers RNNs
to effectively capture temporal dependencies and handle sequential data.
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Figure 2.6: The structure of a recurrent neural network. Image From: [22]

As opposed to CNNs, the parameters at different layers in RNN are shared. They are not discrete
and different in each layer. This means that as we move along in the RNN hierarchy, we see the same
processing operation performed using different inputs. This way the network no longer has to spend an
additional effort on relearning the parameters.

A gradient [20] can be described in terms of partial derivatives of a function concerning its free
variables, and also can be thought of as a slope function, concerning the given inputs. It calculates the
degree of change in the function value concerning the changing inputs. As the gradient increases, the
slope becomes more upright and the trained model starts to learn quicker. A slope of zero indicates
that the model has stopped learning. Hence, in a machine learning context gradient can be expressed
as a function that calculates the change in model weights in correspondence to the change in error.
Unfortunately, RNNs face some gradient issues. The gradient issue occurs when the value reaches the
minimal and maximal extremes during training, making it very hard for the model to learn. As a result,
the following challenges arise:

• Sub-optimal performance

• Reduced accuracy

• Lengthy training duration

If the gradient values become too big, exceeding the foreseen safe limits, the calculated slope will start
to increase in an exponential behavior resulting in the exploding gradient problem. This issue is usually
because of giving way too much importance to the weights. These issues can be addressed through the
implementation of the following techniques:

• Identity initialization: Initializing weights to resemble an identity mapping for stable training.

• Truncated back-propagation: Limiting back-propagation to address gradient issues in recurrent
neural networks.

• Gradient clipping: Scaling down gradients to prevent large values and stabilize training.

Another issue is the vanishing gradient. Opposed to the exploding gradient problem, the values of a
gradient fall below the safe limits, and the model stops learning or takes way too much time to process
information. These issues can be addressed through the implementation of the following techniques:

• Weight initialization

• Selection of appropriate activation function

23



CHAPTER 2. BACKGROUND

• Utilizing LSTM (Long Short-Term Memory) networks to mitigate the vanishing gradient problem.

2.2.4.2 Long Short-Term Memory (LSTM)

LSTM (Long Short-Term Memory) [34] is a widely adopted technique in addressing the limitations of
traditional RNNs. While RNNs are effective in capturing relationships and dependencies within input
data, they often struggle with long-term dependencies. LSTM is specifically designed to tackle this issue
by introducing specialized components known as blocks.

Within each LSTM block, there is a cell that serves as a memory unit, capable of retaining informa-
tion from all the input data. Additionally, a component called the ”forget gate” is employed to selectively
discard irrelevant information from the cell, ensuring that only important information is retained and uti-
lized during processing. This enables LSTM to effectively preserve and leverage long-term dependencies
in the data.

The flow of information is stored and identified with the existence of additional gates in the LSTM.
These gates try to identify whether received information holds important features and should be stored
for future use or should be removed completely. In an LSTM, there are three important types of gates:
input, output and forget gate. The first two gates’ work is similar to the previous models. The forget
gate is dedicated to identifying unimportant data and eliminating it from the neurons. This increases
the network performance. The structure of this gate contains two inputs, received from the earlier cells
and the current cell. The bias and model weights are calculated and the resulting value is supplied to
the sigmoid function. This result will tell us whether or not to keep the information (1) or remove it (0).

In its simplest form, the input gate is used to add information to neurons. It prepares the information,
puts them in an array format, and uses activation functions, like the sigmoid function we mentioned
earlier to act just like a filter and regulate the flow, to determine whether information should be fed to
the network or not. The preparation phase uses an activation function named tan hyperbolic (𝑡𝑎𝑛ℎ).
This function generates results between -1 and 1.

Finally, the output gate in a recurrent neural network (RNN) is responsible for selecting relevant
information from the current cell and presenting it as the output. It controls the flow of information
from the hidden state to the final output, allowing the network to focus on important information for
downstream tasks. It uses the 𝑡𝑎𝑛ℎ activation function with the earlier outputs and current inputs to
filter and regulate which outputs should be forwarded as an outcome of the network.
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Figure 2.7: The structure of a long short-term memory (lstm) model. Image From: [27]

2.2.5 Ensemble Learning

Ensemble learning is a powerful approach in computational intelligence, where multiple models or clas-
sifiers are strategically generated and combined to address a specific problem. This thesis also employs
ensemble learning by developing a separate model for each measured observation and relying on their
combined decision. Researchers often turn to ensemble learning for several reasons:

• Improved Model Performance: Ensemble learning has been proven to enhance the overall perfor-
mance of the models involved. By combining the predictions or decisions of multiple models, the
ensemble can leverage the strengths of each model, leading to more accurate and robust results.

• Mitigation of Poor Model Selection: Ensemble learning helps mitigate the risk of selecting a single
poor model that may struggle to identify or generalize well in real-life scenarios. By combining
different models, the ensemble can compensate for individual model weaknesses and provide a more
reliable solution.

Ensemble learning finds applications in various domains, including:

• Assigning Confidence to Model Decisions: Ensembles can estimate the confidence or reliability of
their decisions, providing valuable insights into the uncertainty of predictions.

• Optimal Feature Set Selection: Ensembles can assist in selecting the most informative and relevant
features from a large feature set, enhancing the efficiency and effectiveness of the learning process.

• Data Fusion: Ensembles excel in integrating information from diverse sources or modalities, result-
ing in a more comprehensive and accurate representation of the underlying data.

• Error Correction: Ensembles can identify and correct errors made by individual models, leading to
improved overall performance and more reliable predictions.

• Ensemble learning encompasses many other applications and techniques, making it a versatile and
widely adopted approach in machine learning.
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2.2.6 Image Encoding Techniques For Time Series

Note: This concept is referred to in detail in section 3 when presenting the
recurrence plots.

Time-series [11] data show different characteristics than discrete and stable samples. It provides
important features which describe the changes in the given sample space and the variations involved
in the process. When we observe how quickly these changes occur, we obtain many insights about the
evolution of the event. When the degree of change is too granular, it becomes extremely hard for the
researchers to develop models that can represent such sample spaces. Additionally, in an ideal scenario,
we expect the observations of a time series to be taken at equally separated intervals but this is often
not the case in real life. The successive observations are not measured in equal intervals and further
processing has to be applied to normalize the space. This problem is also seen in our dataset which we
have used in this thesis work.

On the other hand, measurements presented in time series format are usually in very long real-valued
vector forms. When the measurements are taken from multiple sources, the dataset to be processed
constitutes several long vectors, with possibly annotation labels, to be processed and classified accurately.
Considering the processing of these long vectors as inputs to deep learning models, accuracy drops rapidly
due to a very large number of network parameters to optimize and due to the lack of representing
consecutive data dependencies when a whole time series is considered as one single block of signal values.

One potential solution to address this problem is to encode time series data as images, enabling
machines to visually recognize, discriminate, and understand intricate structures and patterns at a
more granular level. This transformation leverages the power of image processing techniques to extract
meaningful features from the time series data, facilitating improved analysis and decision-making by
machine learning models. Transformation of features of such series to visual representations and building
network architectures for inspection and reformulation of distance measures are gaining more and more
popularity in machine learning-related applications [79].

Deep learning approaches for multi-variable classification problems involving a sample space consisting
of time series information can be classified into two main types: generative models and discriminative
models. Generative models aim to capture the underlying probability distribution of the data and
generate new samples, and discriminative models focus on learning the decision boundaries between
different classes to enable accurate classification.

Generative models, also referred to as model-based classifiers, try to find a good formulation of the
given input space to train an unsupervised model for classification purposes. Oppose to that discrim-
inative models employ feature engineering and try to find a link between provided inputs and related
labels via tuning. In the following section 3, we will delve into the explanation of a discriminative deep
learning model that utilizes an image-based representation of time series data [81].

In this research, the following time series to image transformation technique will be used and its
appropriateness within the context of this study will be explained in detail.

2.2.6.1 Recurrence Plots

Recurrence plots (RP) are a two-dimensional representation of a time series in phase space, providing
insights into periodicity, chaos, and non-stationarity. It reveals the internal structure of the data and
offers prior knowledge about similarity, information, and predictability. RP is particularly useful for time
series data since it aims to represent consecutive variations between data samples. The encoding process
of RPs involves the following steps:

Time-delay embedding: The time series

𝑋 = [𝑋1, 𝑋2, 𝑋3, ..., 𝑋𝑁 ] (2.11)

is reconstructed in a two-dimensional phase space using the time-delay embedding method. The state of
the phase space with a time delay of 1 is expressed as

𝑆1 = (𝑋1, 𝑋2), 𝑆2 = (𝑋2, 𝑋3), ...., 𝑆𝑁−1 = (𝑋𝑁−1, 𝑋𝑁 ) (2.12)

.
Phase space state representation: If the embedding dimension is denoted as 𝑚 and the time delay as

𝑑, the state of the phase space is represented as
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𝑆𝑚
𝑖 = (𝑋𝑖, 𝑋𝑖+𝑑, 𝑋𝑖+2𝑑, ..., 𝑋𝑖+(𝑚−1)𝑑)) (2.13)

Recurrence plot generation: The recurrence plot

𝑅𝑖,𝑗 = Θ(𝜖− |𝑠𝑖 − 𝑠𝑗 |) (2.14)

is constructed based on the distances between pairs of embedded vectors.
Rij is calculated using the Heaviside function, comparing the distance between 𝑠𝑖 and 𝑠𝑗 to a threshold

value of 𝜖. The resulting recurrence plot is a rectangular array of pixels, where the color of each pixel
corresponds to the magnitude of data values.

Thresholding: The critical radius 𝜖 is used to determine whether a point is plotted as a darkened
pixel in the recurrence plot. Only distances below or equal to epsilon are represented as darkened pixels.

To retain more image details through color transformation, the Heaviside function is usually not used.
Different norms, such as the infinite norm, can be employed to calculate the distances. Additionally, an
un-thresholded recurrence plot (UTRP) can be obtained by using the maximum value of the distance
instead of thresholding.

𝑅𝑖,𝑗 = 𝜖−𝑚𝑎𝑥1≤𝑘≤𝑚

⃒⃒
𝑋𝑖+(𝑘−1)𝑑) −𝑋𝑗+(𝑘−1)𝑑)

⃒⃒
(2.15)

This corresponds to the unthresholded RP(UTRP).
To further analyze the data, a thresholded recurrence plot (TRP) matrix 𝐵 is generated by applying

a threshold corridor
[𝛿𝑙; 𝛿ℎ] (2.16)

. This is done by generating a thresholded recurrence (TRP) matrix 𝐵:

𝐵𝑖,𝑗 = 1 if𝛿𝑙 ≤ 𝐷(𝑦𝑖, 𝑦𝑗) ≤ 𝛿ℎ (2.17)

= 0, otherwise (2.18)

. The TRP is obtained by darkening the pixels

(𝑖, 𝑗)

corresponding to nonzero entries in matrix 𝐵. The choice of the threshold corridor is crucial, as a corridor
that is too large may result in saturation of the TRP, while a narrow corridor may not provide sufficient
points for subsequent analyses.

Figure 2.8: Examples of different recurrence plots. Image From: [2]
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2.2.7 Model Metrics

In this section, different metrics used to help and boost the performance of machine learning models will
be introduced.

Note: This concept is referred to in section 3 where we discuss how we con-
structed and optimized our models and their parameters.

2.2.7.1 Optimizers

An optimizer can be defined in terms of a function of parameters, such as connection weights, and method-
dependent parameters, such as the learning rate, that is used to reduce training loss and increase overall
accuracy. The optimizers can be fine-tuned with different settings or Hyperparameters such as learning
rate (𝑙𝑟), momentum, decay rate, etc. The optimizers can work pretty efficiently alone however, when
tuned through their method-specific parameters, like 𝑙𝑟, they boost the performance metrics of the model
under training. Below are some of the most popular optimizers:

• Stochastic Gradient Descent (SGD) [59] is a popular optimization algorithm used in machine
learning. It is based on the concept of gradient descent, which involves computing the derivative
of the loss metric concerning the model parameters and updating them in the direction of the
negative gradient. This process allows the model to adapt its parameters during training. While
gradient descent is straightforward to implement, it can be slow to converge when the loss function
has many local minima. To mitigate this, stochastic gradient descent introduces stochasticity by
randomly selecting a subset of training examples (called a mini-batch) to compute the gradients
at each iteration. This randomness helps in escaping local minima and leads to faster convergence.
The SGD algorithm involves the following steps:

– Obtain the number of training examples.

– Iterate over a fixed number of iterations.

– At each iteration:

∗ Make predictions using the current model parameters.

∗ Calculate gradients using the provided model and the selected mini-batch of training
examples.

∗ Update the model parameters by taking a step in the direction of the negative gradient,
scaled by a learning rate.

By repeating this process for multiple iterations and gradually adjusting the model parameters,
SGD aims to minimize the loss function and improve the model’s performance on the training
data. SGD is a subcategory of gradient descent algorithms and hence the parameters inside the
model are not adjusted in every epoch but with every individual batch. This way the model
achieves a considerably quicker convergence however, it also introduces a level of instability to the
optimization. This optimization method is very popular among problems involving large datasets.
The mechanism with which SGD updates model parameters can be described with the following
equation.

Θ = Θ− 𝛼∆𝐽(Θ;𝑥(𝑖); 𝑦(𝑖)),where x(i) ,y(i) are the training examples. (2.19)

• Adaptive Moment Estimation (Adam): Adam [59] is another very popular optimizer. It tries to
utilize the benefits coming with SGD. The learning rate (𝑙𝑟) is adjusted based on the first two
moments of the gradients. Adam optimizer is particularly suitable for domains that involve a
large number of parameters, as it has relatively lower memory requirements compared to other
optimizers. The primary objective of the Adam optimizer is not to converge quickly, but rather
to find a local minimum and gradually decrease the search speed, allowing for a more refined
optimization process. One key aspect of Adam is that it maintains two averaged values from
previously calculated gradients: 𝑀(𝑡), which represents the first moment (mean) of the gradients,
and 𝑉 (𝑡), which represents the second moment (uncentered variance) of the gradients. These values
help in estimating the momentum and scaling of the optimization process. By storing and utilizing
the averaged values of gradients, the Adam optimizer provides a more effective and efficient search
for the optimal solution. It strikes a balance between exploration and exploitation, allowing for
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a smoother optimization process and enabling the model to converge towards a local minimum
effectively. The way through which the Adam optimizer adjusts the model parameters is given in
the following equations.

𝑚−
𝑡 =

𝑚𝑡

(1− 𝛽𝑡
1))

(2.20)

𝑣−𝑡 =
𝑣𝑡

(1− 𝛽𝑡
2))

(2.21)

𝜃−𝑡+1 = 𝜃𝑡 −
𝜂

(𝑠𝑞𝑟𝑡(𝑣−𝑡 ) + 𝜀)
𝑚−

𝑡 (2.22)

• Adagrad [61]: Adagrad is an optimization algorithm that adjusts the learning rate on a per-feature
basis. This means that each weight in the model can have a different learning rate, allowing the
algorithm to adapt and prioritize updates based on the importance of each feature. By individually
adapting the learning rates, Adagrad can effectively handle sparse features and focus more on
infrequent or informative ones during the training process. Adagrad is an excellent selection when
the dataset in hand contains a lot of lost and incomplete entries. The biggest disadvantage of
Adagrad is originated from its biggest advantage. Over time, the learning rate is decremented so
much that the training progresses so slowly. One way of overcoming this issue is to store the sum
of squared gradients during optimization (g). To adjust the model parameters, Adagrad follows
the equations listed below.

𝑔0 = 0 (2.23)

𝑔𝑡+1 ← 𝑔𝑡 +∆Θ𝜄Θ
2 (2.24)

Θ𝑗 ← Θ𝑗 − 𝜀
∆Θ𝜄√

𝑔𝑡+1 + 𝜖−5
(2.25)

The paper [61] explains the following equation in more depth: To understand the rationale behind
AdaGrad, let’s consider a two-dimensional space with a loss function. In this scenario, one direction
may have a very small gradient, while the other direction exhibits a significantly higher gradient.
When we sum up the gradients along the axis with small gradients, the squared sum of these
gradients becomes even smaller. By dividing the current gradient by a small sum of squared
gradients ”𝑔” during the update step, the resulting division yields a larger value for the axis with
small gradients and a smaller value for the axis with high gradients. Consequently, the algorithm
ensures that updates are made proportionately in all directions, accelerating the update process
along the axis with small gradients by increasing the gradient and slightly slowing down updates
along the axis with large gradients.

However, there is a drawback to this optimization algorithm. Over time, as training progresses,
the sum of squared gradients can become larger. Dividing the current gradient by this larger value
leads to very small update steps for the weights. This situation resembles using an extremely low
learning rate that diminishes further as training continues. In the worst-case scenario, AdaGrad
could cause the training process to become stuck indefinitely.

• RMSprop: [61] RMSprop is a special version of Adagrad developed by Professor Geoffrey Hinton.
To tackle with some of the drawbacks of Adagrad, RMSprop tries to store only the gradients within
a specified frame instead of summing up all the momentums.

2.2.7.2 Regularization

Regularizers [69] penalize the model and reflects these penalties on the loss function to prevent the
model to overfit and achieve generalization. Regularizers play a crucial role in ensuring that a model
generalizes well without overfitting. These regularization techniques are applied on a per-layer basis,
allowing for better control over the model’s complexity and preventing it from memorizing the training
data excessively. By applying the regularizers appropriately, the model can strike a balance between
fitting the training data and generalizing well to unseen examples, ultimately improving its overall
performance.

When a large value is assigned to the regularizer, the optimization process tends to choose a hyper-
plane with a smaller margin if it leads to better classification of the training points. This encourages
a more conservative decision boundary, reducing the risk of overfitting. Conversely, if a lower value is
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selected for regularization, the optimizer will prioritize exploring larger distances in search of a hyper-
plane, even if it results in misclassifications. This can lead to a wider separation between classes in the
hyperplane. Regularizers can be applied in different forms, such as:

• Kernel regularizer: This penalty is applied to the layer’s kernel, encouraging smoother and more
regular patterns in the learned representations.

• Bias regularizer: This penalty is applied to the layer’s bias, discouraging overly large biases that
could lead to overfitting.

• Activity regularizer: This penalty is applied to the layer’s output, promoting sparsity and prevent-
ing excessive activation of the neurons.

Below are some of the most popular regularizers:

• The L1 regularization [74] is calculated with the following equation:

𝑙𝑜𝑠𝑠 = 𝑙1 * 𝑟𝑒𝑑𝑢𝑐𝑒𝑠𝑢𝑚(𝑎𝑏𝑠(𝑥)) (2.26)

Problems concerning a lot of features may benefit more from L1 regularization since it offers a
relatively reduced number of solutions. This also provides an advantage over computational power
since the features having zero coefficients do have a critical effect on the model. The regression
model that uses the L1 regularization technique is called Lasso Regression.

• The L2 regularization [74] can be formalized as :

𝑙𝑜𝑠𝑠 = 𝑙2 * 𝑟𝑒𝑑𝑢𝑐𝑒𝑠𝑢𝑚(𝑠𝑞𝑢𝑎𝑟𝑒(𝑥)) (2.27)

This regularizer punishes the model considering the squared values of model parameters. As a
result, the model is forced to use the same values with a reduction in size, making it simpler and
more general. This regularization is also referred to as Ridge Regression. To compare L1 and L2
regularizers, as we mention earlier L1 tries to decrease the coefficients of the parameters close to
zero whereas the L2 regularizer tries to decrease and separate the parameters evenly. As the paper
[74] mentions : The L1 regularization technique is beneficial for feature selection as it allows us to
identify and discard variables associated with coefficients that become zero. On the other hand,
L2 regularization is particularly useful when dealing with collinear or codependent features, as it
helps mitigate the effects of multicollinearity.

• Dropout [48]: Dropout is a regularization technique that randomly drops or ignores some output
units of a layer during training. This effectively changes the architecture of the layer, as it ap-
pears to have a different number of nodes and connections to the preceding layer. By introducing
this randomness, dropout prevents the network layers from relying too heavily on each other and
encourages the model to learn more robust and generalized representations. It can be applied to
individual layers in the network, including convolutional and recurrent layers. Dropout can be used
on hidden layers as well as the visible/input layer.

• Batch normalization [65] is another regularization technique that normalizes the activations within
a layer. It computes the average of the activations in a batch and divides each activation by the
standard deviation of the corresponding batch. This normalization process helps in stabilizing
the learning process by reducing internal covariate shifts, allowing for smoother and more effi-
cient training. Batch normalization is commonly used in combination with standardization as a
preprocessing step for pixel values in various computer vision tasks.

2.2.7.3 Activation Functions

An activation function can be used to determine the degree of signal strength for a neuron to be activated
or not. Through a functional description, an activation computes the output of a neuron as a function
of the accumulated strength of its inputs. Hence, activation functions have a huge impact on the neural
network’s performance. Let’s keep in mind that, we would like the model to do more than just learning
and providing a linear function that represents the problem. We would like it to perform more complex
tasks than modeling. Some of the well-known activation functions which we also included in this research
include the following:

• ReLu [63]: In this activation function, only a selection of neurons are activated at a given time.
This implies that a neuron will be deactivated or set to zero if and only if the output of the linear
transformation is zero.

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.28)
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• Sigmoid [63]: It provides outputs in the range [0,1]. It is mostly used in binary classification
problems. The sigmoid function is not symmetric around the origin, it has an S-shape curve,
meaning that the signs of all outputs are the same.

𝑓(𝑥) = 1/𝑒−𝑥 (2.29)

• Linear [63]: This activation function uses the received input without a gradient adjustment. It is
not very popular since it is not possible to improve the error due to the zero gradient problem.

𝐹 (𝑥) = 𝑎𝑥 (2.30)

• Tanh [63]: It is similar to the Sigmoid function, however, it is symmetric around the origin, meaning
that the signs of outputs may differ. The values change in the range [-1,1]

𝑓(𝑥) = 2𝑠𝑖𝑔𝑚𝑜𝑖𝑑(2𝑥)− 1 (2.31)

• Softmax [63]: The softmax function is composed of multiple sigmoid functions. While a sigmoid
function produces values between 0 and 1, which can be interpreted as probabilities for binary
classification, the softmax function is specifically designed for multiclass classification problems. It
computes the probabilities for each data point across all individual classes, providing the probability
distribution for the classes. It can be expressed as:

Figure 2.9: The formula of softmax function.

2.2.7.4 Learning Rate and Momentum

Learning rate and momentum [40] are two important metrics that impact model performance drastically.
The function of the learning rate is to define a lower bound for the step size for the loss calculation when
considering the gradient. On the other hand, the function of momentum is to consider adjustments
in the weight while the model updates itself. Although these metric values do not follow the standard
backpropagation theory, the usage of both variables in collaboration with each other is a common practice
for the optimization of the model training process. While the model is under training, for each node in
the network an error for the corresponding weight is estimated by the backpropagation and this value
is used to scale the weights up or down, via the learning rate, instead of the full amount. In more
simple words, a learning rate of 0.1 would correspond to a scaling on the network weights by a factor of
0.1*(estimated weight error) or 10% of the estimated weight error each time the weights are updated. In
this sense, the learning rate [14] hyperparameter controls the rate or speed at which the model learns.
This is because the learning rate is responsible for the shared error that the model weights have with each
update at the batches of the training. When the learning rate is appropriately configured, the model can
effectively approximate the desired function using the available resources, such as the number of layers
and the number of nodes per layer. If the learning rate selected is larger than optimal, the model will
learn quicker, however, the final weights of the model will end up below the optimal selection. Selecting
a minor learning rate will let the model achieve almost optimal or may even succeed to reach global
optimal weight selection but it will increase the training time and may slow down the learning process.
In some cases, the training performance may exhibit oscillations as a result of learning rate selection. If
an extremely large 𝑙𝑟 is selected, the model performance will start to oscillate since the updates on the
model will become equally as large. Oscillating performance in a model can be originated from divergent
weights, where the weights keep moving away from the optimal values. When the learning rate is too
small, the model may struggle to converge or become trapped in sub-optimal solutions.

Momentum [40] on the other hand, is an adjustment on SGD based on a weighted average of previously
calculated updates. This forces future updates to proceed in the same direction as the earlier updates.
Momentum may make the model training faster for the cases where the weights of the model include
structures that may misguide the SGD algorithm due to their high dimensionality. Momentum can slow
down the rate of updates, preventing oscillations that we explained earlier and smoothing the whole
optimization process. Configuring the learning rate is not directly influenced by momentum. The step
size and momentum are independent of each other. However, momentum can enhance the optimization
process by working together with the step size to accelerate the search for better weight values. This
can lead to the discovery of improved weights in a shorter number of training epochs.
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2.3 Evaluation Measures

There are very well-known and trusted methods to evaluate a machine learning model. Since our problem
is a classification problem, evaluation metrics related to the classification problems will be detailed in
this section.

Note: This concept is referred to in section 4 when results and discussion are
presented.

There are four possible outcomes out of a classification model and almost all metrics are calculated
based on these base variables. These outcomes include:

• True positives: True Positives are the outcomes where the model we develop predicts that a given
sample belongs to class ”A” and the sample, in reality, belongs to class ”A”.

• True negatives: True Negatives are the outcomes where the model we develop predicts that a given
sample does not belong to the class ”A” and the sample, in reality, belongs to some other class
such as ”B” or ”C” but does not belong to the class ”A”.

• False positives: False Positives are the outcomes where the model we develop predicts that a given
sample belongs to class ”A” and the sample, in reality, does not belong to the class ”A” but to
some other class ”B” or ”C”.

• False negatives: False Negatives are the outcomes where the model we develop predicts that a given
sample does not belong to the class ”A” and the sample, in reality, does belong to the class ”A”.

2.3.1 Confusion Matrix

A confusion matrix is a table consisting of the base metrics we mentioned: True Positives, False Positives,
True Negatives, and False Negatives. It is widely used on classification problems to drive statistical
information for the model under testing by comparing the predicted and real values. It is especially
useful when the classification problem contains two or more classes.

Figure 2.10: Figure showing the confusion matrix. Image from: [49]

2.3.2 Accuracy

An accuracy metric is employed to evaluate the algorithm’s performance in a comprehensible manner
[67]. Accuracy is expressed as a percentage and indicates the degree to which the model’s predictions
align with the actual labels. It quantifies the accuracy of the model’s predictions relative to the true
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data.

(True Positives + True Negatives)

(True Positives + True Negatives + False Positives + +False Negatives)
(2.32)

2.3.3 Precision

Precision, as defined in [24], assesses the precision or accuracy of a model when predicting positive labels.
It measures the model’s ability to correctly identify true positives, reflecting the precision of its positive
predictions. It tries to identify from the number of positive predictions, how much of it was positive.
It gives a percentage of how relevant the predictions of your model are. Prediction is especially a good
option to consider calculating when the price of false positives is on the high edge and the damage caused
by false negatives is on the low edge. In situations where the cost of false negatives is significantly high, it
is recommended to utilize recall as an evaluation metric. Recall measures the model’s ability to correctly
identify positive instances, emphasizing the model’s sensitivity in capturing all relevant positive cases.
The formula for precision is below:

True Positives

(True Positives + False Positive)
(2.33)

2.3.4 Recall (Sensitivity)

Recall, as defined by [24], quantifies the proportion of true positives correctly identified by a model. It
measures the model’s effectiveness in capturing actual positive instances. Recall becomes particularly
crucial when the consequences of a false negative are significant, making it essential to prioritize the
identification of all relevant positive cases. The formula for the recall is below:

True Positives

(True Positives + False Negative)
(2.34)

Opposed to the other metrics having a high recall measurement does not always let us conclude that
we have a good model. For example, the model we build our case may predict that out of 100 patients
all will have neurological disorders within two years. If we were to calculate the recall for this, we would
end up with almost a flawless measurement. However in reality we would end up with a lot of false
positives which would mean that a lot of people will be identified as unhealthy when they are perfectly
healthy.

2.3.5 F1 Score

The F1 score is calculated by feeding the precision and recall through a harmonic mean function. We
usually aim to get a high F1 score, which would mean that we will get a high precision and a high recall.
If we take a look at the formula of the F1 function, we can see that there is a multiplication of the
two metrics. This means that any change in any of those two metrics will significantly affect the F1
score. A model achieves a high F1 score when it accurately identifies positive instances (precision) and
avoids misclassifying positive cases as negative (recall). It strikes a balance between these two measures,
ensuring that the model doesn’t miss positive instances while also minimizing false positives. [54]. The
mathematical definition of the F1 score is as follows:

𝐹𝛽 =
(2 * 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙)

(2.35)

Another thing to consider here is that the formula gives the same weight to both metrics. In reality,
we may need to provide more importance on one of those metrics than the other. This may cause the
F1 score to be less effective in calculations. Therefore either a weighted F1 score or seeing the PR or
ROC curve can help.

2.3.6 F Score (Weighted F1 Score)

To provide a single evaluation metric for machine learning models, it is common to combine precision
and recall into a single score. This combined metric is called the F-score. The F-score captures both
precision and recall and provides a comprehensive assessment of the model’s performance. By considering
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both precision and recall, the F-score offers a balanced measure that reflects the model’s effectiveness
in handling positive instances while minimizing false positives.[41]. The definition of an F score is given
below:

𝐹𝛽 = (1 + 𝛽2) * 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙
(𝛽2 * 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙

(2.36)

The 𝛽 parameter allows us to control the trade-off between precision and recall.

𝛽 < 1 focuses more on precision (2.37)

while
𝛽 > 1 focuses more on recall. (2.38)

2.3.7 Loss Functions

A loss function [67] is another building block for the optimization process of the models under training.
It is a calculation which shows how badly the model miscalculated the predictions it failed to hit. It is
calculated as a summation of error values both for train sets and validation sets. It provides a penalty
score for those missed estimates.

Figure 2.11: Figure showing the loss of predictions made for 2 models. The blue line
represents the predictions and the arrows are representing the losses. The first graph is
showing a bigger loss since the predictions made have larger errors and the second graph
is showing a smaller loss since the predictions made have smaller errors, even when the
number of predictions made is fixed and their truth values are the same. Image From: [52]

There are different loss function calculations based on the needs of the developer. For classification
problems, cross-entropy is one of the most popular methods.

2.3.7.1 Binary Classification

It is used when there are only two class labels in the sample space. This provides only one output value
between -1 and 1 [3].

Figure 2.12: The binary cross entropy function.

For binary classification tasks with a single output, it is common to use the sigmoid function as the
activation function. The sigmoid function produces a vector of values in the range of (0, 1) and is applied
element-wise to each output element. The sigmoid function is also referred to as the logistic function
[52].
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Figure 2.13: The formula of the sigmoid function.

2.3.7.2 Multi-Class Single-Label Classification

When dealing with classification problems where each sample can belong to one of the multiple classes,
we have two options to calculate the loss: Categorical Cross-Entropy (CCE) and Sparse Categorical
Cross-Entropy (SCCE) [3]. The main difference between these two metrics can be explained as follows:

• Categorical Cross-Entropy (CCE) produces a one-hot array that represents the predicted proba-
bilities for each category. This means that the output of the model will be a vector with the same
length as the number of classes, and each element of the vector represents the probability of the
corresponding class.

• Sparse Categorical Cross-Entropy (SCCE) produces a single category index that represents the
class with the highest predicted probability from a list of categories. Instead of returning a one-hot
array, it directly provides the index of the most probable class.

Both CCE and SCCE are commonly used loss functions in multiclass classification tasks, and the
choice between them depends on the specific requirements of the problem and the desired output format.

Figure 2.14: The categorical cross entropy function.

There are cases where you may prefer to use sparse categorical cross entropy function, including:

• when your classes are mutually exclusive, and you do not want to know how close your prediction
is to other probable classes.

• the case where the number of categories becomes large and the prediction output becomes over-
whelming.

Recalling the definition of the Softmax activation function presented earlier, we can also define a
softmax loss. It is a combination of softmax activation function and cross-entropy loss. It produces an
outcome between [0,1]. The summation of vector values equals 1. Each of the vector values corresponds
to a class probability. Since the softmax function depends on all elements of the vector [52], applying it
alone to individual elements is not possible. For a given class, the Softmax function can be computed as:

Figure 2.15: The formula of softmax function.
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Figure 2.16: The difference of the behavior of sigmoid and softmax functions. Image From:
[53]

2.3.8 Receiver Operating Characteristic Curve

The Receiver Operating Characteristic Curve (ROC) Curve and the ROC AUC (Area Under Curve)
scores are mainly adopted for binary classification problems however, they can be extended for multi-
class classification problems. They reveal fruitful information about the evaluated model. They indicate
how well our model separates the class by taking into account all possible threshold values. This gives
information on the classification abilities of our model [72].

Figure 2.17: Different ROC curves. Image From: [70]

On the plots given above in Figure 3.2, the green line indicates the threshold value where the true
positive rate is equal to the false positive rate. The blue line indicates the computed ROC curve of our
model. If the green line and the blue line are positioned on top of each other, meaning that our model
has the same TPR and FPR, it has a 50% chance to correctly classify a class. It is almost equivalent to
flipping a coin. The first figure represents a similar scenario to what we just explained, which is not a
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preferred view. The last figure represents an opposite scenario where the blue line is close to the (0,1)
coordinate forming an elbow shape. This is an excellent classifier which is not realistic in many cases.
The middle figure is somewhere in between the two other classifiers, which is considered to be good and
realistic.

Mathematically, we can formulate this comparison of curves by The AUROC Curve (Area Under the
ROC Curve). If we were to consider the green line, the area under that curve will give us a score of 0.5.
If our model was to achieve 100% accuracy the area under the curve would give us a value of 1. In a
realistic scenario, we would try to achieve a value as close to 1.

As we mentioned earlier, the ROC curve is a binary classification metric. To utilize this in our multi
class multi-label problem, we have to choose one of the possible solutions [73] given below:

• OvR : OvR is an abbreviation for One vs Rest. In this approach, you would have separately
compared each class with the remaining classes. To give an example: Let’s assume you have three
classes; A, B, and C. You would first select Class A and label it as the positive class. All other
remaining classes, B and C, would be labeled as the negative class. This way we easily convert
our multi-class classification problem to a multiple binary classification problem. This should be
repeated for all remaining classes. So for a three-class multi-class problem, you would end up with
three different ”One vs Rest” scores. You can take finally take the average of all scores to come up
with a single score.

• OvO : OvO is an abbreviation for One vs One. In this approach, you would compute all possible
pair combinations of classes and compute the AUC score for each of them separately. To give the
same example: With a three-class multi-classification problem, you would first choose Class A and
Class B and discard the other classes. You would label Class A as positive and Class B as negative.
You need to pay attention that A vs B is not the same as B vs A since the labeling is different.
That is why both cases should be considered when evaluating. This is why, if we were to have a
three-class classification problem we would get six class OvO scores:

– A vs B

– A vs C

– B vs C

– B vs A

– C vs A

– C vs B

As in OvR, we can average all the OvO scores to get a final OvO model score.
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Research

3.1 Pre-Processing of the Datasets

In this section, specific details of preprocessing phases applied within this thesis study will be introduced.
There are two inputs received in this phase that will be further investigated in later sections. These inputs
are namely:

• Patient Observations Dataset

• MRI Score Dataset

3.1.1 Pre-Processing of Patient Observations

The patient observations included in the dataset are Heart Rate Frequency, Oxygen Saturation, Blood
Pressure, Critical Temperature, Five-Minute Apgar Score, Ten-Minute Apgar Score, Gestational Age,
Cooled Temperature, and HI Lactated Ring Score. These observations are received as multiple CSV files.
First, they are loaded into the development environment and converted to data frames using Python’s
pandas library functions. Each data frame is later converted to a dictionary using the patient IDs as
key attribute and the remaining columns as value attribute. The main goal of this conversion is to
provide a better link and to relate individual patients and their observations. This way we converted the
table structure to a linked list structure using dictionaries. This also allowed us to view the time series
characteristics of individual observations. For ease of calculations, the patient IDs are cast as string
data type, and time attribute and Observation attributes are cast as float data types. From each data
frame, values equivalent to 0 are removed. The main reason behind this is to overcome challenges that
may result from sensor faults, patient or doctor intervention on the sensor value, and any other thing
that may introduce a level of bias or cause our system performance to degrade. After removing the 0
values, the data frames are sorted based on the time attribute so that a time series is formed from the
moment the patients are first admitted to the hospital to the moment their treatment is considered to
be over. Any ”NaN” value, meaning that the observation at that point in time is missing, is dropped
from individual observations. The measurements are not taken with equally spaced intervals. In an ideal
situation, we would expect to see all measurements to be equally distant from each other, like beats per
minute. However, in real-life cases, this is not the case which brings the necessity of imputation. The files
are structured as time series. This means the information is not a point in time but a curvature in time.
Therefore the NaN values are imputed with spline interpolation, which estimates values that minimize
overall curvature, thus obtaining a smooth surface passing through the input points. The remaining
NaN values, usually the very first and very last rows, are imputed with forward and backward linear
interpolation. Duplicated rows are removed since it does not make any sense to have multiple values at
a given point in time. Only the last observation taken at that time is added to the evaluation.

The observations are given in different units. For example, heart rate frequency is measured in beats
per minute while oxygen saturation is given in percentages. Those differences will have a considerable
impact on our model’s performance, therefore the data frames are normalized using the Min-Max Scaler.

A bias may be introduced to the model fitting phase because parameters stored in various scales
involved in the training provide an unbalanced and unequal contribution.

Min-Max Scaler is a possible solution to this problem since it introduces a feature-based normalization
scheme before the training phase. This type of normalization is beneficial when we observe a non-
Gaussian distribution or when the data is restricted to upper and lower bounds. To give a simple
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example, in images, the pixel value usually has a lower bound of 0 and an upper bound of 255. By
applying Min-Max Scaler to these values, we make sure that the portion of which they contribute to
overall model fitting is balanced. Min-Max Scaler transforms a data sample 𝑥 into a scaled sample 𝑥′ as
follows:

𝑥
′
= 𝑎+

(𝑥−𝑚𝑖𝑛(𝑥))(𝑏− 𝑎)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
(3.1)

Since we are working with young patients, the severity of the outcome will be affected by gestational
age. The younger the patient, the longer they stay in the hospital. Keeping this in mind, we removed
patients with gestational age lower than 36 weeks from our dataset to preserve a sample space far
from bias. Out of the included features, an optimal feature set that best represents the outcome must
be selected. To do that, Multiple meetings were conducted with the experts in UMC Utrecht. Also, a
simple CNN model is constructed to be able to see whether or not in practice this selection will optimally
reflect our actual results. Our goal with this step was to see how these metrics work with each other
and individually. The following table illustrates the accuracies and loss values achieved by a simple CNN
(input+ Three Hidden Layer+Flattened Output Layer) on individual time series signals.

Apgar Score 5 min(6) + Apgar Score 10 min(7) : loss: 0.5460 - accuracy: 0.6977 - val loss: 0.6331 - val accuracy: 0.7027

Heart Rate Frequency (5) + Oxygen Saturation(3): loss: 0.3015 - accuracy: 0.8372 - val loss: 0.7025 - val accuracy: 0.6757

Apgar Score 5 min + Heart Rate Frequency: loss: 0.5895 - accuracy: 0.7093 - val loss: 0.6315 - val accuracy: 0.7297

Apgar Score 10 min + Heart Rate Frequency: loss: 0.5838 - accuracy: 0.7209 - val loss: 0.5900 - val accuracy: 0.7297

Apgar Score 5 min + Oxygen Saturation: loss: 0.6015 - accuracy: 0.6977 - val loss: 0.5713 - val accuracy: 0.7027

Apgar Score 10 min + Oxygen Saturation: loss: 0.5644 - accuracy: 0.6977 - val loss: 0.5907 - val accuracy: 0.7027

Apgar Score 5 min + Local Temperature (4) loss: 0.5711 - accuracy: 0.6977 - val loss: 0.5722 - val accuracy: 0.7027

Apgar Score 10 min + Local Temperature: loss: 0.4997 - accuracy: 0.7674 - val loss: 0.6995 - val accuracy: 0.6216

Apgar Score 5 min + Blood Pressure loss: 0.4344 - accuracy: 0.8023 - val loss: 0.7043 - val accuracy: 0.7027

Apgar Score 10 min +Blood Pressure: loss: 0.4324 - accuracy: 0.8140 - val loss: 0.5989 - val accuracy: 0.7297

Apgar Score 5 min + Heart Rate Frequency + Oxygen Saturation: loss: 0.5772 - accuracy: 0.7093 - val loss: 0.5613 - val accuracy: 0.7027

Apgar Score 5 min + Heart Rate Frequency + Local Temperature: loss: 0.5883 - accuracy: 0.6977 - val loss: 0.5853 - val accuracy: 0.7027

Apgar Score 5 min + Heart Rate Frequency + Blood Pressure:: loss: 0.4785 - accuracy: 0.7791 - val loss: 0.5711 - val accuracy: 0.7027

Apgar Score 5 min + Oxygen Saturation + Local Temperature: loss: 0.5824 - accuracy: 0.7442 - val loss: 0.6079 - val accuracy: 0.7297

Apgar Score 5 min + Oxygen Saturation + Blood Pressure: loss: 0.4648 - accuracy: 0.7674 - val loss: 0.5714 - val accuracy: 0.7568

Apgar Score 5 min + Blood Pressure + Local Temperature: loss: 0.4729 - accuracy: 0.8023 - val loss: 0.5164 - val accuracy: 0.7568

Apgar Score 10 min + Heart Rate Frequency + Oxygen Saturation: loss: 0.5654 - accuracy: 0.7093 - val loss: 0.6256 - val accuracy: 0.7027

Apgar Score 10 min + Heart Rate Frequency + Local Temperature: loss: 0.5910 - accuracy: 0.7209 - val loss: 0.5796 - val accuracy: 0.7027

Apgar Score 10 min + Heart Rate Frequency + Blood Pressure:: loss: 0.5027 - accuracy: 0.8023 - val loss: 0.5085 - val accuracy: 0.8108

Apgar Score 10 min + Oxygen Saturation + Local Temperature: loss: 0.5704 - accuracy: 0.7093 - val loss: 0.5573 - val accuracy: 0.7297

Apgar Score 10 min + Oxygen Saturation + Blood Pressure: loss: 0.3918 - accuracy: 0.8488 - val loss: 0.7234 - val accuracy: 0.6486

Apgar Score 10 min + Blood Pressure + Local Temperature: loss: 0.4591 - accuracy: 0.7791 - val loss: 0.6081 - val accuracy: 0.7297

Heart Rate Frequency + Oxygen Saturation + Local Temperature: loss: 0.5688 - accuracy: 0.6977 - val loss: 0.6074 - val accuracy: 0.7027

Heart Rate Frequency + Oxygen Saturation + Blood Pressure: loss: 0.4515 - accuracy: 0.7907 - val loss: 0.5161 - val accuracy: 0.7568

Oxygen Saturation + Local Temperature + Blood Pressure: loss: 0.4982 - accuracy: 0.7791 - val loss: 0.5033 - val accuracy: 0.7568

Apgar Score 5 min + Heart Rate Frequency + Oxygen Saturation + Blood Pressure: loss: 0.4824 - accuracy: 0.7791 - val loss: 0.5477 - val accuracy: 0.7838

Apgar Score 5 min + Heart Rate Frequency + Oxygen Saturation + Local Temperature: loss: 0.5896 - accuracy: 0.7209 - val loss: 0.5643 - val accuracy: 0.7027

Apgar Score 5 min + Heart Rate Frequency + Oxygen Saturation + Apgar Score 10 min : loss: 0.5812 - accuracy: 0.7093 - val loss: 0.5438 - val accuracy: 0.7027

Apgar Score 5 min + Oxygen Saturation + Blood Pressure + Local Temperature: loss: 0.5081 - accuracy: 0.7442 - val loss: 0.5311 - val accuracy: 0.7297

Apgar Score 5 min + Oxygen Saturation + Blood Pressure + Apgar Score 10 min: loss: 0.4767 - accuracy: 0.7791 - val loss: 0.5371 - val accuracy: 0.7027

Apgar Score 5 min + Blood Pressure + Local Temperature + Heart Rate Frequency: loss: 0.5172 - accuracy: 0.7907 - val loss: 0.4993 - val accuracy: 0.7838

Apgar Score 5 min + Blood Pressure + Local Temperature + Apgar Score 10 min: loss: 0.4514 - accuracy: 0.7907 - val loss: 0.7492 - val accuracy: 0.7027

Apgar Score 5 min + Local Temperature + Heart Rate Frequency + Blood Pressure: loss: 0.4940 - accuracy: 0.7558 - val loss: 0.5737 - val accuracy: 0.7838

Apgar Score 5 min + Local Temperature + Heart Rate Frequency + Apgar Score 10 min: loss: 0.4741 - accuracy: 0.7674 - val loss: 0.6056 - val accuracy: 0.7297

Blood Pressure + Local Temperature + Heart Rate Frequency + Oxygen Saturation: loss: 0.5555 - accuracy: 0.7093 - val loss: 0.7113 - val accuracy: 0.6486

Blood Pressure + Local Temperature + Heart Rate Frequency +Apgar Score 10 min: loss: 0.4634 - accuracy: 0.8023 - val loss: 0.5645 - val accuracy: 0.7568

Blood Pressure + Heart Rate Frequency + Oxygen Saturation + Apgar Score 10 min: loss: 0.3902 - accuracy: 0.7791 - val loss: 0.9879 - val accuracy: 0.7297

Heart Rate Frequency + Oxygen Saturation + Local Temperature + Apgar Score 10 min: loss: 0.5298 - accuracy: 0.7326 - val loss: 0.5542 - val accuracy: 0.7027

Heart Rate Frequency + Blood Pressure + Apgar Score 5 min + Apgar Score 10 min: loss: 0.4823 - accuracy: 0.8140 - val loss: 0.6808 - val accuracy: 0.6757

Table 3.1: The accuracies and loss values of training and testing samples for the basic CNN
model with three convolutional layers and the effect of selecting different feature sets.

From the results illustrated above, we decided on using five metrics: Heart Rate Saturation, Blood
Pressure, Local Temperature, Apgar Score and later we also added Respiration Frequency based on
experimentation. We also need to mention that the values shown here are the ”RAW” values. These
values are the ones used before the employed CNN Model is placed inside the experimental framework
we prepared. The details of this framework are provided in the coming chapters. After these initial pre-
processing steps, preprocessing phases specific phases are followed. Each of these phases are introduced
in this section and the output of this phase is used as an input to the remaining phases.
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3.1.1.1 Preprocessing Based on Generative Methods

In this research, we have followed two different approaches. Each of those approaches requires specific
computational needs.

Each of the data structures we mentioned in Section 3.1.1 is divided into features. This means we
would have five different feature sets: Heart Rate Frequency, Oxygen Saturation, Respiration Frequency,
Blood Pressure, and Temperature. Each feature represents an observation. Each feature is then further
divided into three classes. These classes are extracted from the MRI Labels, which are explained in
Section 3.1.2. The possible classes these samples may end up in include Class 0, meaning the lowest
severity level, Class 1, meaning the moderate severity level, and Class 2, meaning the highest severity
level. Each Class is later divided into a subset of days (first day, first two days, first three days, first four
days, first five days, and finally first six days).

3.1.1.2 Preprocessing Based on Discriminative Methods

For the second approach, We have applied the following additional processing steps. Each of the data
structures we mentioned in section 3.1.1 is divided into features. Each feature is then divided into three
classes as described above. Each feature is divided into different patient arrays (containing 1440 obser-
vations, observations taken every two hours for six days) considering the class information. Each patient
array is also segmented into 120 (two days) consecutive overlapping blocks. ([0,120],[1,121],[2,122]...).
From each block, a unique array is generated and exported in .npz format.

3.1.1.3 Our Goal With Additional PreProcessing

The idea behind these divisions is :

• To be able to further augment the data.

• To be able to reduce future space complexity.

• To be able to preserve the critical information between the transitions.

• To be able to see which days are the most critical days for the prediction.

• To be able to build a committee of models to vote for the final decision.

3.1.2 Pre-Processing of Magnetic Resonance Imaging (MRI) Scores

The MRI Dataset consists of grey matter and white matter-related measurements like cerebellum score,
stroke, BGT result, DAG result, etc. The dataset is delivered as a separate CSV file and loaded to our
development environment using the pandas library of Python. The loaded dataset is converted to a data
frame and the observations are cast as float data type for the ease and accuracy of our calculations. The
”NA” values are removed which may cause any bias on our model. The MRI Scores are designed to be
used for our labeling. Each row in the given structure falls under a category. Therefore the paper [38]
suggested by the clinicians is used to calculate and divide the measured MRI scores into three categories.
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Figure 3.1: Figure showing the MRI Scoring From from the paper [38]. As you can see from
the above figure, we can classify the patients into three different severity levels based on the
provided thresholds. Each of the rows provides a different measurement related to the brain
region affected by the disease. Based on the threshold values, the generated recurrence
plots are labeled as either class 0 (lowest severity level), class 1(moderate severity level),
and class 2 (highest severity level). To give a simple example, if we were to take the PLIC
Myelination score and if the patient showed a normal or no diffusion it would be labeled
as 0, partial myelination as 1, and absent/extensive myelination as 2. Depending on the
final condition of the patient on the day the MRI score is measured, the recurrence plots
are generated labeled reflecting the final day outcome on earlier days.

The paper [38] shows that there is a great relation between the outcome and grey matter subscore.
The degree column in the MRI Scoring Form reveals information on how the patients are divided into
severity levels.
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Figure 3.2: Figure showing the predicted probability of death or impairment about grey
matter score from the paper [38]. This proves that the given MRI scores can be used as
labels from a medical point of view.

3.2 Reasons Why a Regression Model Would Fail to Solve This
Problem

Regression for time series data can be useful for modeling and predicting future values based on historical
patterns. However, it is important to note that traditional regression techniques assume that the data
points are independent and identically distributed (i.i.d.), which may not hold for time series data.

Time series data often exhibit temporal dependencies, such as trends, seasonality, and autocorrelation,
which violate the assumptions of traditional regression models. Therefore, specialized time series analysis
techniques are typically employed to capture these dependencies and make accurate predictions. While
regression techniques for time series data are designed to handle dependencies and patterns, they may
not explicitly assume that the data follows a fixed distribution. The distributional assumptions can
vary depending on the specific modeling technique used (e.g., Gaussian distribution in ARIMA), but
the primary focus is on capturing the temporal dependencies rather than assuming a fixed distribution
for the data. To practically show the failure of the issue, We have contracted a regression model as the
following:

We have constructed a regression model with four dense layers with 512,256,128 and 64 weights
respectively. We added an initial dropout of 0.5 and batch normalization in between layers to ensure
the model does not overfit. We used the softmax function as the activation function and categorical
cross-entropy as the loss function. We also used the GridSearch hyperparameter optimization technique
to ensure the most optimal parameters are selected for the model training. We have inputted generated
enhanced recurrence plots to the regression model for each observation separately. On average the results
achieved were suboptimal due to the above-explained issue:

loss: 0.6895 - accuracy: 0.7590 - val loss: 0.7256 - val accuracy: 0.7489
This proves that we need a more advanced structure like convolutional layers for this problem. Convo-

lutional layers in deep learning models are specifically designed to learn spatial and consecutive features
from input data. Convolutional neural networks (CNNs) leverage the convolution operation to extract
relevant features from images, time series data, and other forms of structured data. In the context of im-
ages, convolutional layers are capable of capturing spatial features by applying filters (kernels) across the
input image. These filters slide over the image, performing element-wise multiplications and summations
to generate feature maps. Each filter learns to detect specific patterns or features such as edges, corners,
or textures, which are spatially encoded in the resulting feature maps. For time series or sequential data,
convolutional layers can learn consecutive features by applying 1D convolutions. In this case, the filters
slide along the temporal dimension of the input, capturing patterns and dependencies across neighboring
data points. This allows the network to recognize local patterns and extract relevant information from
the sequential input. By stacking multiple convolutional layers, CNNs can learn hierarchical representa-
tions of features, starting from low-level features (e.g., edges) and gradually progressing to higher-level
features (e.g., shapes or objects). The subsequent layers in a CNN can then further process these learned
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features to make predictions or perform specific tasks. The ability of convolutional layers to learn spatial
and consecutive features makes them particularly effective for tasks such as image classification, object
detection, semantic segmentation, and time series analysis. These layers can automatically learn and ex-
tract meaningful features from the data, reducing the need for manual feature engineering and enhancing
the model’s performance.

3.3 Research Based on Generative Methods

3.3.1 Generative Adversarial Network

We have trained a generator and a discriminator for each class separately (three generators and three
discriminators in total for Mild, Severe, and Healthy classes). Each model is an expert in his/her class.
Therefore the test data will be given to all three models and in return the models will tell us if that test
data belongs to their class or not. The generator will generate nearly real fake data. The discriminator
will get our training set and the data generated by the generator and try to differentiate between real data
and fake data. Over time, the generator will become good at generating fake data and the discriminator
will be good at discriminating data. Overall we have a training dataset collected from 123 patients. We
were hoping that using a GAN will allow us to augment this number, by taking into account the class
changes that may occur over time in a time series data.

In the below code, you can view how the discriminators and generators are created and interact with
each other.

def train(dataset, epochs, dim)

def train_step(real_asph, dim):

We have two main functions acting in the training phase. The train function is associated with the
flow of training, where the inputs and outputs of discriminators and generators are fed into each other.
The train step function on the other hand controls what happens in each step of training procedures.
The details of each method are like the following:

The function train step(real asph, dim) receives real asphyxiated samples and a dim variable con-
cerning the dimensions.

A noise function is computed taking the dimension of the original sample into account. In our case,
we selected to go with a normal distribution.

noise = tf.random.normal(dim)

The generator model is trained with the noise vector. Initially, the generator will make a lot of
errors, because the noise function is not yet updated and the element values are not representing the
real samples.

genResult = generator(noise, training=True)

The discriminator model is trained with real asphyxiated samples.

discResultReal = discriminator(real_asph, training=True)

To test the ability of the discriminator to discriminate the real and fraud samples, we also train it
with the generated samples.

discResultFake= discriminator(genResult, training=True)

gradientsGen = gen_tape.gradient(genLoss, generator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradientsGen, generator.trainable_variables))

Later we use the optimizers to update and optimize the gradient values for the next step of the
training phase. To Summarize: Once our models are generated, the generator is initialized with random
noise. The discriminator is trained with the first batch of real samples. Later, the generator input is
combined with the rest of the batches and provided to the discriminator. Losses and accuracies are
calculated. Both model states are updated and the whole process is repeated until they converge.
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3.3.2 Discriminator Characteristics

The Discriminator [83] is a binary classifier that takes inputs x or G(z) and outputs discrimination
results (Real or Fake). Its purpose is to accurately discriminate between x and G(z). The Discriminator
is trained with the Back propagation algorithm (BP algorithm) to calculate the objective function and
update the network weights.

Upon receiving input x, the Discriminator aims to classify it as a ”Genuine” instance (labeled as
1). Conversely, when presented with G(z) as input, the Discriminator is anticipated to classify it as a
”Fraud” instance (labeled as 0). However, the Generator aims to ”cheat” the Discriminator by generating
outputs that can fool it. This creates a competitive and adversarial relationship between the Generator
and Discriminator.

The Discriminator’s output is a value D that indicates how close the generated image is to a real
image. The goal is for the Discriminator to effectively discriminate between authentic images and fraud-
ulently generated images by the Generator. The cross-entropy function is commonly used to measure the
loss 𝑝.𝑙𝑜𝑔(𝑞) in this process. This function evaluates the performance of a classification model, working
well for this task because the loss increases as the predicted probability deviates further from the true
label.

Below, you can view the code for the Discriminator. Since we used a CNN GAN, the network char-
acteristics are similar to a CNN architecture we have explained in detail in section 2

model = tf.keras.Sequential()

We created a Sequential Model. The Sequential model allows you to create a neural network by
simply adding layers one by one. Each layer in the model performs a specific operation on the input
data and passes the output to the next layer in the sequence.

model.add(layers.Input(shape=(5,1919)))

model.add(layers.Permute((2, 1)))

model.add(layers.Conv1D(filters=32, kernel_size=16, strides=1, padding=’same’))

We received 5 observations with size 1919 for the first day measurements. The received observa-
tions contained Heart Rate frequency, Oxygen Saturation, Blood Pressure, Respiration Frequency, and
Temperature as we described in the preprocessing phase of the generative approach. We provided the
𝑝𝑒𝑟𝑚𝑢𝑡𝑒 function to shuffle the training samples. During the training phase, shuffling the order of
training samples within each epoch can help avoid any potential bias that may arise from the original
ordering of the data. It ensures that the model sees a diverse range of samples during each training
iteration, preventing it from becoming biased toward specific patterns in the data. Later we provided a
one-dimensional convolutional neural network, which we tested separately for each observation. In total,
we added 4 convolutional layers with filter sizes 128,64,32 and 16 respectively.

model.add(layers.LeakyReLU())

model.add(layers.Dropout(0.4))

model.add(layers.MaxPool1D(pool_size=2))

We introduced the above structures to improve the generalizability of the model, as we described in
more detail in section 2.

model.add(layers.Flatten())

model.add(layers.Dense(1))

Finally, we flattened the model so that we reduced the model into a binary classification problem.
This way the model expert in one aspect of our system will tell us whether or not, the given sample
belongs to that model’s domain or not.

3.3.3 Generator Characteristics

Within the conventional GAN framework [83], the Generator and Discriminator are structured as Mul-
tilayer Perceptrons (MLPs). The primary objective of the Generator is to acquire knowledge about the
distribution of real samples, labeled as 𝑥, and subsequently produce synthesized samples, denoted as
𝐺(𝑧), that closely emulate the distribution of real samples.
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To achieve this, the Generator takes a basic random noise input, typically represented as 𝑧, which
adheres to a simplistic distribution, such as the Gaussian distribution. By utilizing random noise as
input, the Generator aims to introduce diversity and encompass the wide range of variations present in
the real sample distribution. The Generator’s output, 𝐺(𝑧), is a generated sample possessing the same
dimensions as the real samples, 𝑥. Through an adversarial learning process, wherein the Generator and
Discriminator compete, the Generator gradually learns to generate samples that exhibit a remarkable
resemblance to the real samples, effectively capturing the intricate nature of the underlying distribution.

In essence, the Generator component, operating within the GAN model, leverages an MLP archi-
tecture to generate synthetic samples, 𝐺(𝑧), leveraging a random noise input, 𝑧, to approximate the
distribution characteristics observed in the real samples, 𝑥.

Below, you can view the code for the Generator. The details of the CNN and LSTM architectures
can be found in details in section 2

model = tf.keras.Sequential()

The generator model is sequential just like the discriminator model.

model.add(layers.Input(shape=(88,9595,)))

model.add(layers.Bidirectional(layers.LSTM(64, return_sequences=True)))

It will accept the remaining samples and build an LSTM model on top of those samples. A bidirectional
LSTM is a type of recurrent neural network architecture that processes input sequences in both forward
and backward directions. It combines the information from past and future time steps, enabling the
model to capture dependencies in both directions.

model.add(layers.Conv1D(filters=128, kernel_size=16, strides=1, padding=’same’))

Similar to the discriminator we added 4 convolutional layers, with filters 128,64,32 and 16 respectively.

model.add(layers.LeakyReLU())

model.add(layers.Permute((2, 1)))

We also added activation functions and permutations for hyperparameter optimization purposes.

3.3.4 Problems With Generative Adversarial Network and Directives Which
Lead us to Apply the Second Approach

In contrast to alternative generative models [83], GAN exhibits several distinctive advantages. Firstly,
GAN’s computational processing solely relies on the BP algorithm to calculate gradients. As a result,
GAN exhibits faster computational speed and does not necessitate approximate reasoning during the
learning process. Secondly, GANs lack a variational lower bound and can generate clear, unbiased
images. Thirdly, GAN can generate data samples in parallel, significantly reducing the time required for
sample generation. Lastly, GAN’s Generators have no limitations on input data size and can effectively
train various generative networks within a flexible framework.

On the other hand, Generative Adversarial Networks come with certain drawbacks. The first dis-
advantage lies in achieving convergence, which is particularly challenging outside the scope of convex
functions. Although stochastic gradient descent (SGD) can be utilized to efficiently convex cases, simul-
taneous training of the Discriminator and Generator remains a daunting task. The second drawback
is mode collapse, where the Generator’s learning capability declines and the generated samples lack
diversity when it becomes proficient at generating real-like samples under specific parameters. The
third challenge is gradient disappearance, occurring when the Discriminator consistently distinguishes
real samples from generated ones, leading to zero gradients and preventing the Generator from further
learning the real sample distribution. The fourth limitation is the uncontrollable nature of GAN. In the
standard GAN model, the Generator relies solely on random noise as input, and the model cannot be
constrained by specific conditions for generating samples with desired characteristics. In our case, we
experienced the following:

• Even though the discriminator works around 97% accuracy, the Granularity of differences in the
data makes it hard for the generator to achieve optimal accuracy. After some time the genera-
tor does not recognize and generate the required differences because the differences are not very
significant in magnitude.
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• To verify our experimental conclusion, we tried to train GAN with sinusoidal signals, and I have
observed that as the length signal gets larger, generator accuracy approaches to 0. That is generator
becomes unable to represent small differences in signal amplitudes.

• The length of features makes it computationally complex when the values taken into account
increase.

3.4 Research Based on Discriminative Methods

In this section, we will be explaining the final successful approach we took to solve the problem. This
section tries to identify a solution that resolves the problems faced in earlier trials.

3.4.1 Recurrence Plots

The .𝑛𝑝𝑦 files obtained in the preprocessing phase, are one by one fed into our recurrence plot generation
function. The specific method details are explained in section 2. For each of the images generated with
this logic, we also applied an additional elimination step where we eliminate images with a standard de-
viation below 0.01. This further processing was required to eliminate stable intervals where the standard
deviation falls below 0.01. This indicates that there are no significant increments or decrements that
may benefit our model. Our main goal is to successfully identify the sudden increments and decrements
in the patient observations. That is why we are trying to identify the existence of these changes, not
when they occur. Eliminating these stable intervals will not have an adverse effect on our evaluation.
The images are also reshaped to 32x32. This value is selected based on experimentation based on two
criteria: To reduce computational complexity and to preserve critical information.

Some of the generated plots are presented below to give the readers a better understanding of the
outcome. In the below images, the highlighted portions are where the sudden increments are decrements
that occur at a granular level:

Figure 3.3: Figure showing the generated recurrence plot for patient 0 class 0 Heart Rate
Block 1.

As mentioned earlier, the time series information is divided into consecutive overlapping periods of
2 hours. Each of these blocks are then processed using the mathematical information we provided in
section 2. The generated recurrence plots give us information on where the descriptive information
lies. The color changes in the recurrence plots give us information about the sudden increments and
decrements. The changes in variance both in location over the image and color depth give how significant
the change is and how frequently it occurred. If we were to look at the plot, we can see that for class 0,
the changes are accumulated mainly in the right bottom and left top corners and the degree of change
is more observable on the upper left corner.
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Figure 3.4: Figure showing the generated recurrence plot for patient 0 class 1 Heart Rate
Block 6.

If we were to look at the plot, we can see that for class 1, the changes are accumulated differently
than class 0. This is not possible to observe with bare eyes, because these differences are very small in
magnitude in their raw form and won’t make sense to the human eye or the trained model. That’s why
recurrence plots are needed to enhance those differences.

3.4.2 Advanced Network Architecture Building: AlexNet

AlexNet is a large network structure with 60 million parameters and 650,000 neurons. The network
begins with a convolutional layer followed by a rectified linear unit (ReLU) activation function, which
introduces non-linearity. Max pooling layers are then used to downsample the feature maps. This is
followed by more convolutional layers, ReLU activations, and max pooling. The final layers are fully
connected layers that map the learned features to the desired number of output classes. AlexNet utilizes
dropout and local response normalization techniques to prevent overfitting. The table from the paper
[44] provides a visual explanation of the generic architecture of Alexnet as the following :

1. Input: The input to the network is a 32x32 RGB image.

2. Conv1: The first layer is a convolutional layer with 96 filters of size 5x5x3, using a stride of 1 and
padding of 0. ReLU activation is applied.

3. Pool1: Max pooling is applied with a filter size of 2x2, a stride of 2, and padding of 0.

4. Conv2: The second layer is a convolutional layer with 256 filters of size 5x5x96, using a stride of 1
and padding of 2. ReLU activation is applied.

5. Pool2: Max pooling is applied with a filter size of 2x2, a stride of 2, and padding of 0.

6. Conv3: The third layer is a convolutional layer with 384 filters of size 3x3x256, using a stride of 1
and padding of 1. ReLU activation is applied.

7. Conv4: The fourth layer is a convolutional layer with 384 filters of size 3x3x384, using a stride of
1 and padding of 1. ReLU activation is applied.

8. Conv5: The fifth layer is a convolutional layer with 256 filters of size 3x3x384, using a stride of 1
and padding of 1. ReLU activation is applied.

9. Pool5: Max pooling is applied with a filter size of 2x2, a stride of 2, and padding of 0.

10. FC6: A fully connected layer with 4096 neurons is added. ReLU activation is applied.

11. FC7: Another fully connected layer with 4096 neurons is added. ReLU activation is applied.

12. FC8: The final fully connected layer consists of 1000 neurons, corresponding to the 1000 classes in
the dataset.

13. Softmax: A softmax activation function is applied to obtain class probabilities.

14. Output: The output layer represents the classification output, using cross-entropy loss with the
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class information.

We used this described logic and constructed an AlexNet architecture separately for each patient
observation. An example code for ”Heart Rate” Observation is given below:

In our model, we started by constructing a sequential base by using the Sequential() function from
keras. We used two-dimensional convolutional neural networks with an activation function ”relu”. Our
images had the input shape (32,32,3). They were in 32x32 size and had 3 dimensions each since they are
colored RGB images. In total, we introduced 3 convolutional blocks. Within each block, we employed
batch normalization and max-pooling with pool size (2,2) to enhance generalizability. The convolutional
block filters were 128, 64, and 128 respectively. In the last dense layers, we introduced dropouts and
used the 𝑡𝑎𝑛ℎ activation function, which is different than the explained table. We modified the generic
architecture so that it fits our specific problem. Later we used the softmax function to provide the final
predictions. Since we are dealing with a multi-class classification problem, we used a categorical cross-
entropy function for the loss calculation. We also used Adam optimizer with learning 1e6. We selected
these by experimenting with the dataset.

3.4.3 K-Fold Cross-Validation

Ensuring the reliability and robustness of validation procedures is a crucial step in model development,
particularly when it comes to predicting known outcomes and classifying response variables [47]. Vali-
dation, distinct from calibration which assesses how well a model fits a specific dataset, involves testing
the model against an independent dataset that was not used during the initial construction and param-
eterization of the model. Various validation methods exist, including bootstrapping, jackknifing, and
cross-validation, each serving to assess the model’s performance in novel situations. Cross-validation, in
particular, offers insights into the model’s accuracy and classification success when confronted with new
or unfamiliar scenarios. It also helps identify overfitting, a situation where the model performs well on
the calibration data but poorly on new data.

A widely employed form of model validation is k-fold cross-validation. In this approach, the dataset,
consisting of n cases with covariate and response variable values, is divided into k equal segments.
The model is trained and tested iteratively on different combinations of these segments, measuring
classification error rates against known outcomes. The value of k can vary from 2 to n-1, with k=2
representing a simple splitting of the dataset in half, and k=n-1 known as the ”leave one out” (LOO)
approach, where the model is trained on n-1 cases and evaluated on each case. However, LOO can be
computationally expensive and may not provide additional validation benefits compared to lower values
of k, potentially leading to high variance and overfitting.

Validation tests for each k subset involve calculating classification accuracy, bias, and variance in error
rates. As k increases from 2 to n-1, bias decreases while variance in error rates increases, accompanied by
longer computation times. Additionally, bias and model classification error tend to be inversely related.
It’s important to note that when k=1, the validation results pertain to model calibration rather than
validation since there are no subsets of the dataset.

In the case of our training using the AlexNet architecture, we utilized k-fold cross-validation with
a value of k=15, determined through experimentation. After completing the folds, we selected the
best-performing model with high accuracy and low loss, representing our problem domain effectively.

3.5 Model Committee Building and Majority Voting

After constructing individual models for each observation separately, We saved those models and designed
the full flow of the application. The idea is to create a script that will accept an individual CSV file
containing patient observations for a single patient that is taken in between one to six days. This gives
the doctors the flexibility to view the patient’s condition at any point in time before the six days.

The received .𝑐𝑠𝑣 file first passes through the explained preprocessing phases, the same phases which
we applied before we trained our model so that the image blocks for each observation are created and
the differences in the consecutive image blocks are enhanced. These image blocks for different patient
observations are fed into 5 different models (for each patient observation separately):

Model Loading Phase:

heartmodel = keras.models.load_model("HeartRate/HeartRateModel")

bloodmodel = keras.models.load_model(BloodPress/BloodPressureModel")

oxygenmodel = keras.models.load_model("OxygenSat/OxygenSaturationModel")
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respfreqmodel = keras.models.load_model("RespFreq/RespirationFrequencyModel")

tempmodel = keras.models.load_model(Temp/TemperatureModel")

Example Model Prediction For Respiration Frequency:

if observation_name=="RespFreq":

image_folder=f"C:/Users/acans/Desktop/RecurrencePlotsCleaned/{observation_name}"

# Get a list of all image files in the folder

image_files = [f for f in os.listdir(image_folder) if os.path.isfile(os.path.join(image_folder, f))]

# Load each image using Pillow

images = []

for image_file in image_files:

image_path = os.path.join(image_folder, image_file)

image = Image.open(image_path)

image_array = np.array(image)

image_tensor = tf.convert_to_tensor(image_array)

images.append(image_tensor)

images=np.array(images)

# Reshape the whole image data

images = images.reshape(len(images),3,32,32)

#print("Shape after reshape and before transpose:", images.shape)

# Transpose the whole data

images = images.transpose(0,2,3,1)

res=respfreqmodel.predict(images)

print("Labels For Respiration Frequency Corresponding to Images:")

print(np.argmax(res,axis=1))

lst=list(np.argmax(res,axis=1))

After the predictions are made for all five models, the committee is gathered to evaluate the final
results. The final predictions are presented in terms of a curve. This also allows the clinicians to view
at which point in time, the patient started to move from a lower severity class to a higher severity class.
This will provide them a better chance to identify what they referred to as the ”surprise” cases, where
the patient looks healthy but unexpectedly shows really bad MRI scores. Below you can see an example
of how the prediction looks for oxygen saturation, respiration frequency, and blood pressure observations:

Figure 3.5: Figure showing the predicted class values for each observation separately. You
can also view at which interval the patient started to change class information. This also
explains why the ”surprise” cases are so unexpected.

Later, the expert models will show what they provide as an output, and a final curve showing the
patient’s final situation is provided:
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Below you can see an example of how the prediction looks for combined observations:

Figure 3.6: Figure showing the predicted class values for combined patient observations
using weighted average method taking into account the model accuracy and severity levels
for a given time interval of all observations.

3.6 Final Prognosis

Time final prognosis for the patient under consideration, is provided via a time-weighted averaging
operation. The list representation could be too technical for the doctors and a single prognosis would
be a better option. Therefore, taking into account the accuracy results of the models, we divided the
weights of each model accordingly to the list representation. The final weighted list which is formed
from the final lists provided by each model separately, contains a list of classes assigned to each time
slot (every two hours for the number of days the doctor decides to take into account), we have provided
a time-weighted average, which gives higher weight to the most recent observation.

Figure 3.7: The final prognosis of a patient.

To make everything look less technical and visually more understandable for the doctors, we convert
the list of information to a graph like the following:

Figure 3.8: The final prognosis of a patient.
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Results

In this chapter, we present the results of our experiment(s) based on evaluation metrics. To better
understand what the numbers represent in these results, we will be providing a patient inclusion flowchart:

Figure 4.1: The patient inclusion flowchart displays the number of included patients in this
study.
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4.1 Training Results

In this section, I will be presenting a detailed analysis of the model performance on the training data.
I used 90% of the original dataset for training purposes. After the successful completion of the training
phase, I tested my model using multiple metrics and plots with the remaining dataset. I have provided
both the before and after standard deviation calculation and cleaning of recurrence plots accordingly,
with accurate results. This is because I would like to emphasize the importance of this step in the
model performance. Overall in both of the training issues, I achieved above-average performance when
compared with other related approaches. I also need to mention that there is no previous study that
tries to tackle this exact problem. By the term related approaches, I try to refer to the approaches
which try to find a solution to a similar problem. The most affected observation by this operation is
oxygen saturation and I think this is because doctors continuously provide supplements to the patients
to preserve vital signals which have a considerable impact on the model.

Table 4.1: Accuracy Results for AlexNet

Metric Before Standard Deviation After Standard Deviation

Heart Rate 85% 97%

Oxygen Saturation 40% 90%

Blood Pressure 85% 96%

Temperature 84% 90%

Respiration Frequency 81% 93%

4.2 Testing Results

In this section, we will be presenting a detailed analysis of the model performance on the testing data.
We reserved 10% of the original dataset for testing purposes. After the successful completion of the
training phase, We have tested my model using multiple metrics and plots, which you can find more
information on the calculation information in Section 2:

4.2.1 Blood Pressure Results

Below are the calculated testing metric results for the Blood Pressure model :

Table 4.2: Testing Metrics for the Blood Pressure Model

Metric Value

Accuracy 0.9283995186522263

Categorical cross-entropy loss 0.3194803767184765

Precision 0.93

Recall 0.93

F1 Score 0.93

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure 4.2: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Blood Pressure Observation. The numbers you see here represent the number of match-
ing blocks generated following the logic I have explained for recurrence plots in Section 3.

ROC Curve:

Figure 4.3

The area under the curve score below represents the probability that a random positive sample is
positioned to the right of a random negative sample. We chose to use the 1 vs rest approach to get a
more in-depth idea of how each class separately performed vs the others. As you can see the AUC scores
range between 0 and 1, and the higher the score the better the result is. A more detailed explanation
can be found in section 2 . The above results are pretty close to 1, meaning that we achieved almost
ideal results for Blood Pressure measurements.

4.2.1.1 Evaluation of the Results

The results related to the Blood Pressure model were very satisfactory. Because other related approaches
achieved an average of 85% accuracy, the model showed an amazing performance. We also need to
mention that there is no previous study that tries to tackle this exact problem. By the term related
approaches, We try to refer to the approaches which try to find a solution to a similar problem. The loss
value is also at a good level. This means that our model does not make huge mistakes, in other words,
the misclassified patients are somewhere near to their true classes. To give an example, if the patient’s
true class is 2 and if the model were to misclassify this patient, it would probably select 1 instead of 0,
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which will make the margin of error a lot smaller. Precision, Recall, and F1 score values are all above
90% which is also higher than the average 87.5% of the analyzed previous approaches. The confusion
matrix gives us a very clear view of the statistical measurements of the true positives, true negatives, false
positives, and false negatives. These values indicate that there are significantly fewer false predictions
than true predictions. If we were to analyze the values in the confusion matrix: For Class 0, out of 1662
samples only 60 false positives and 53 false negatives exist. For Class 1, out of 1662 samples, 17 false
positives and 47 false negatives exist. For Class 2, out of 1662 samples, only 42 false positives and 19
false negatives exist. When we compare the ROC Curve of our model with the mentioned optimal ROC
Curve in Section 2, you will be able to see that our model achieved an almost optimal area under the
curve result.

4.2.2 Heart Rate

Below are the calculated testing metric results for the Heart Rate model :

Table 4.3: Testing Metrics For Heart Rate

Metric Value

Accuracy 0.97

Categorical cross-entropy loss 0.19664617908228593

Precision 0.94

Recall 0.96

F1 Score 0.95

Confusion Matrix:

(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure 4.4: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Heart Rate Observation. The numbers you see here represent the number of matching
blocks generated following the logic I have explained for recurrence plots in Section 3.

ROC Curve:
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Figure 4.5

A more detailed explanation of how to evaluate the AUC scores can be found in section 2 . The
above results are pretty close to 1 similar to the Blood Pressure scores, meaning that we achieved almost
ideal results for Heart Rate measurements as well. These indicate that Heart Rate and Blood Pressure
Measurements alone are good identifiers of the disease outcome.

4.2.2.1 Evaluation of the Results

The results related to the Heart Rate model were even better than the blood pressure model. Considering
the fact that other related approaches achieved an average of 85% accuracy, the model showed an
outstanding performance. The loss value is at a very satisfactory level, especially when compared with the
blood pressure model. We can conclude that the margin of error for the heart rate model is considerably
small. Precision, Recall, and F1 score values are all almost above 95% which is also higher than the
average 87.5% of the analyzed previous approaches. The confusion matrix values are very nice. If we were
to analyze the values in the confusion matrix: For Class 0, out of 1950 samples only 18 false positives
and 34 false negatives exist. For Class 1, out of 1950 samples, 19 false positives and 2 false negatives
exist. For Class 2, out of 1950 samples, only 21 false positives and 22 false negatives exist. When we
compare the ROC Curve of our model with the mentioned optimal ROC Curve in Section 2, you will be
able to see that our model achieved an almost optimal area under the curve result.

4.2.3 Oxygen Saturation

Below are the calculated testing metric results for the Oxygen Saturation model :

Table 4.4: Testing Metrics for Oxygen Saturation

Metric Value

Precision 0.90

Categorical cross-entropy loss 0.39308049931580896

Precision 0.93

Recall 0.88

F1 Score 0.90

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure 4.6: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Oxygen Saturation Observation. The numbers you see here represent the number
of matching blocks generated following the logic I have explained for recurrence plots in
Section 3.

ROC Curve:

Figure 4.7

The above results are slightly lower than what we have achieved with the Heart Rate Scores and
Blood Pressure scores. The main reason for this difference can be found in the below evaluation of the
results section. These indicate that the Oxygen Saturation identifier should be supported with other
identifiers to provide a more accurate outcome of the disease.

4.2.3.1 Evaluation of the Results

The results related to the Oxygen Saturation model were at an average level as the previous approaches.
The other models achieved a better performance than the oxygen saturation level. The main reason for
this difference is that oxygen saturation is the first thing affected by this disease. Hence, the doctors
usually give oxygen treatments to the patients as a supplement, which may introduce some sort of bias
to the measurements and may affect the model performance. Considering the fact that other related
approaches achieved an average of 85% accuracy, the model still showed a nice performance. The loss
value is considerably increased, especially when compared with the blood pressure and heart rate model.
This is also due to the explained issue. Precision, Recall, and F1 score values are all above 90% which
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is also higher than the average 87.5% of the analyzed previous approaches. The confusion matrix values
are very nice. If we were to analyze the values in the confusion matrix: For Class 0, out of 1880 samples
only 11 false positives and 202 false negatives exist. For Class 1, out of 1880 samples, 26 false positives
and 9 false negatives exist. For Class 2, out of 1880 samples, only 131 false positives and 7 false negatives
exist. As you can see the error number also increased. When we compare the ROC Curve of our model
with the mentioned optimal ROC Curve in Section 2, you will be able to see that our model degraded a
little bit however it still is close to that ”elbow” structure. In Conclusion, although this model achieved a
lower performance than the other models, I still believe that it performs better than the other approaches
and hence should be included in the committee.

4.2.4 Temperature

Below are the calculated testing metric results for the Temperature model :

Table 4.5: Testing Metrics

Metric Value

Precision 0.90

Categorical cross-entropy loss 0.5009483694195901

Precision 0.96

Recall 0.90

F1 Score 0.92

Confusion Matrix:

(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure 4.8: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Temperature Observation. The numbers you see here represent the number of matching
blocks generated following the logic I have explained for recurrence plots in Section 3.

ROC Curve:
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Figure 4.9

The above results are very similar to the Oxygen Saturation scores, because of the same reasons.
The main reason for this difference can be found in the below evaluation of the results section. These
indicate that Oxygen Saturation and Temperature, although providing approximately 80% accuracy and
can be considered good identifiers, these identifiers should be supported with other identifiers to provide
a more accurate outcome of the disease.

4.2.4.1 Evaluation of the Results

The results related to the Temperature model show a similar scenario to the Oxygen Saturation model.
The other models achieved a better performance than these models. The main reason for this difference is
that just like oxygen saturation, temperature is affected by this disease at a very early stage. Hence, the
doctors usually try to lower the patient’s temperature via external interventions, which may introduce
some sort of bias to the measurements and may affect the model performance. Considering the fact that
other related approaches achieved an average of 85% accuracy, the model still showed a nice performance.
The loss value is considerably increased, especially when compared with the blood pressure and heart
rate model. This is also due to the explained issue. Precision, Recall, and F1 score values are all above
90% which is also higher than the average 87.5% of the analyzed previous approaches. The confusion
matrix values are very nice. If we were to analyze the values in the confusion matrix: For Class 0, out
of 432 samples 0 false positives and 43 false negatives exist. For Class 1, out of 432 samples, 18 false
positives and 0 false negatives exist. For Class 2, out of 432 samples, only 25 false positives and 0 false
negatives exist. These values are interesting because as you can see, for some classifications the model
provided 0 false positives, meaning that it never misclassified these groups. When we compare the ROC
Curve of our model with the mentioned optimal ROC Curve in Section 2, you will be able to see that our
model degraded a little bit however it still is close to that ”elbow” structure. In Conclusion, although
this model achieved a lower performance than the other models, I still believe that it performs better
than the other approaches and hence should be included in the committee.

4.2.5 Respiration Frequency

Below are the calculated testing metric results for the Respiration Frequency model :
Confusion Matrix:
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Table 4.6: Testing Metrics

Metric Value

Accuracy 0.93

Categorical cross-entropy loss 0.3122747810775202

Precision 0.93

Recall 0.91

F1 Score 0.92

(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure 4.10: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Respiration Frequency Observation. The numbers you see here represent the number
of matching blocks generated following the logic I have explained for recurrence plots in
Section 3.

ROC Curve:

Figure 4.11

The above results are very similar to what we have achieved with the Heart Rate Scores and Blood
Pressure scores. These indicate that the Respiration Frequency identifier can also be used alone to
provide accurate results.
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4.2.5.1 Evaluation of the Results

The results related to the Respiration Frequency model were outstanding. Considering the fact that other
related approaches achieved an average of 85% accuracy, the model showed an amazing performance.
This model is very similar to the heart model when the metrics are compared. The loss value is also at
a good level. This means that our model does not make huge mistakes, in other words, the misclassified
patients are somewhere near to their true classes. Precision, Recall, and F1 score values are all above
90% which is also higher than the average 87.5% of the analyzed previous approaches. The confusion
matrix gives us a very clear view of the statistical measurements of the true positives, true negatives, false
positives, and false negatives. These values indicate that there are significantly fewer false predictions
than true predictions. If we were to analyze the values in the confusion matrix: For Class 0, out of 1834
samples only 34 false positives and 124 false negatives exist. For Class 1, out of 1834 samples, 46 false
positives and 12 false negatives exist. For Class 2, out of 1834 samples, only 81 false positives and 23
false negatives exist. When we compare the ROC Curve of our model with the mentioned optimal ROC
Curve in Section 2, you will be able to see that our model achieved an almost optimal area under the
curve result.

We analyzed the progression of the metric values day by day starting from day 1 observations up to
day 6 observations since our main goal is to identify whether or not it is possible to give a prognosis
before the MRI Scan. My results indicate that the accuracy, precision, recall, f-1, ROC, and loss metrics
show high performance on all days. This indicates that the results are trustable even in the earlier days
of the treatment. I also observed that the metric performances increased as we introduce more data as
the days pass. You can also check the progression of the metric values for each section in the Appendix
7.1
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Discussion

In this chapter, we will be highlighting the important outcomes of our analysis from the results section.

Finding 1: The patient’s observations can be enhanced using recurrence plots, which can not
be done solely using generative approaches.

The findings from Finding 1 revealed the following to us:
Recurrence plots, as described in section 2, are valuable tools in analyzing and visualizing complex
time series data. They provide insights into the dynamic behavior and patterns within the data by
highlighting recurrent states and the temporal relationships between them. By constructing recurrence
plots, we can identify and analyze the presence of recurrent patterns, periodicities, or irregularities in
the observed data. Generative approaches, on the other hand, are methods that aim to model and
simulate data based on learned patterns or statistical properties. While generative models can be useful
in generating synthetic data that resembles the observed data, they may not capture the intricate and
nonlinear dynamics present in the original time series. This limitation makes generative approaches less
effective in capturing and enhancing the specific patterns and recurrence characteristics that recurrence
plots can reveal. This issue led us to change our approach. By using recurrence plots, we can directly
visualize the recurrence patterns within the time series data, enabling them to identify important features
and characteristics that may not be captured by generative models alone. Recurrence plots provide a
comprehensive and intuitive representation of the temporal dependencies, self-similarity, and complex
behaviors present in the observed data.

Finding 2: An advanced technique like AlexNet can be employed to perform accurate predic-
tions on patient outcomes.

The findings from Finding 2 revealed the following to us:
AlexNet is a deep convolutional neural network (CNN) architecture that has been widely used in image
classification tasks. By leveraging its deep architecture and a large number of learnable parameters,
it can effectively extract meaningful features from medical images or other relevant data and make
accurate predictions. This can be particularly valuable in healthcare scenarios where precise predictions
are crucial for determining patient outcomes like ours. Accurate predictions of patient outcomes can have
significant clinical implications. By leveraging advanced techniques like AlexNet, healthcare providers
can make more informed decisions, personalize treatments, identify high-risk patients, and potentially
improve overall patient care and outcomes.

Finding 3: The outcomes do not only reveal severity information but also show at which time
points those class changes occur.

The findings from Finding 3 revealed the following to us:
One of the unique aspects of healthcare data is its temporal nature. Patient data, such as vital signs,
measurements, or symptoms, is often collected over time. With our AlexNet model, it is possible to
analyze how the predicted classes change over different time points. This temporal analysis allows for
a deeper understanding of the dynamics and progression of the condition being studied. This informa-
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tion can provide insights into critical events, transitions between different stages or conditions, or the
effectiveness of interventions. Identifying these time points can be valuable for clinicians, as it helps
in understanding the temporal patterns and making informed decisions about patient management and
treatment strategies.

5.1 Threats to validity

In this section, we will be explaining different types of threats to validity, sourcing from the paper [7]
and their relation with our research:

5.1.1 Conclusion validity

The concept of ”statistical conclusion validity,” initially referred to as the degree to which conclusions
drawn from collected data are reasonable, focuses on the reasonableness of conclusions regarding relation-
ships between factors. The presence of researcher bias presents a potential threat to conclusion validity
as it can significantly influence the reached conclusions. Additionally, weak statistical analysis results
can be subject to various interpretations based on the researcher’s bias, leading to incorrect conclusions.
In this thesis, we have consulted the experts in the field, data scientists, and doctors who are working
in neonatal care at University Medical Center Utrecht. Our conclusions are reevaluated multiple times,
therefore I do not think there is any bias toward our conclusion. However, there is always a potential for
the application to generate inaccurate or misleading conclusions due to factors like flawed data input. In
this sense, we are narrowing our conclusions on the UMC Utrecht data sample specifically and putting
extra stress on the fact that we are focusing solely on this dataset. Introducing a dataset outside this
environment may introduce additional bias.

5.1.2 Internal validity

Internal validity, on the other hand, pertains to the examination of causal relationships. It seeks to
determine whether an experimental treatment or condition has a genuine impact and whether there
is sufficient evidence to support the claim being made. Assessing internal validity involves carefully
controlling variables, employing appropriate research designs, and minimizing confounding factors to
accurately attribute any observed effects to the intended cause. One potential threat is selection bias,
where the sample of patients or data used in the application may not be representative of the broader
population or may be biased in some way. This can introduce a confounding factor and affect the
generalizability of the application’s results. As we mentioned in Conclusion Validity, our scope only
covers the samples in UMC Utrecht and any external sample may introduce a threat to internal validity.
In terms of measurement bias, which can arise if the data collected or measurements taken by the software
are inaccurate or unreliable, we can start by mentioning that the samples taken are from a trustworthy
affiliation. Not only this, multiple preprocessing phases are performed on the data to ensure that this
bias is minimized. However, during the time this thesis is written, there may be confounding variables
or uncontrolled factors that influence the observed outcomes in the application. The causal relationships
which we didn’t take care of, which might be discovered later, may be introduced to the system to
minimize this thread.

5.1.3 Construct validity

Construct validity pertains to the extent to which a test or experiment accurately measures what it
claims to measure. It examines whether the researcher successfully captures the intended constructs or
variables of interest in their measurements. For example, in a diagnostic software application like the
one mentioned in our thesis, construct validity would involve evaluating whether the algorithms and
assessments accurately identify and measure the specific medical conditions they are designed to detect.
For this purpose, we employed several testing metrics to prove that we developed a reliable system. The
specific details are introduced in section 4.

5.1.4 External validity

External validity focuses on the extent to which research findings can be generalized or applied to
populations, settings, or contexts beyond the specific study. It addresses the question of whether the
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results hold and have relevance beyond the sample or case under investigation. In quantitative research,
the chosen sample size plays a critical role in assessing external validity. A larger and more diverse sample
increases the likelihood of generalizability, as it enhances the representation of the target population. We
employed multiple sampling techniques to increase generalizability, however, our samples all originated
from the UMC Utrecht which may introduce some form of external validity.
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Related work

In the following sections, we present insights into how existing scientific studies approached the current
problem. You will also find information on how our study will contribute and highlight the specified
scientific gap and answer the mentioned research question.

6.1 Previous Solutions

In the following sections, we present 4 common approaches that are previously developed for this scientific
research area. We have to mention that as an outcome of our literature study, we observed that there
is no prior research that tries to identify the outcome of asphyxiated patients directly. In that sense,
our research is a novelty from a medical perspective. Therefore we tried to analyze related works which
try to employ machine learning techniques to tackle problems in the same medical field. The remaining
papers are collected under categories of different approaches:

6.1.1 Approach 1

The following approaches try to diagnose asphyxiated patients, mostly before birth. Below are the related
papers with the specified technique:

6.1.1.1 Unveiling Neonatal Encephalopathy Patterns from Electronic Health Records

The study utilized a dataset [29] derived from the Electronic Health Records (EHR) system at VUMC,
encompassing a vast collection of over 2.5 million patient records spanning 29 years, as approved by
Vanderbilt IRB. Focusing on predicting Neonatal Encephalopathy (NE) before delivery, the dataset
consisted of EHRs about both mothers and their newborns. To construct NE prediction models, relevant
variables were extracted from the mothers’ EHRs, and a combination of regularized logistic regression
and Long Short-Term Memory (LSTM) models were employed, yielding an impressive accuracy of 89%
and sensitivity of 82%.

6.1.1.2 Combining Methods of Deep Learning and Supervised Machine Learning for En-
hanced Predictive Fetal Monitoring”

The paper [33] addresses the problem of extracting features from the CTG which monitors the baby
inside the pregnant woman for fetal heart rate and uterine activity. They used a software package
called SISPORTO [15] which is a program for automated analysis of cardiotocograms to evaluate uterine
contractions and classification of decelerations. The classification is done in a hybrid way using neural
networks, support vector machine, and k-means clustering which successfully classified 14 out of 24
samples. The extracted features are later fed into the developed application to be used in the prediction
of umbilical cord pH level and acidosis which are important bio-markers for asphyxia. In Python, using
the Keras library, two distinct LSTM models were created for each CTG data sample. The mentioned
algorithm works with 85% accuracy.
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6.1.1.3 Utilizion of Locally Embedded-Reduced Mel Frequency Cepstrum Coefficient (MFCC)
Features and Autoencoders for Infant Asphyxia Detection

In this study [82], they investigated the utilization of autoencoders, a type of deep learning paradigm,
for diagnosing infant asphyxia. Autoencoders, trained through unsupervised learning using the back-
propagation algorithm, have been widely employed for feature extraction and reduction. Unlike other
neural networks with distinct inputs and targets, autoencoders train themselves to approximate the in-
puts by employing a constrained number of hidden units. This constraint forces the network to capture
the essential structure and distinctive features of the inputs, resulting in a compressed representation
akin to Principal Component Analysis (PCA). Extensive experimentation reveals that the most effective
autoencoder network achieves a classification accuracy of 92.82%.

6.1.1.4 Discrimination of Asphyxia Fetuses: Machine Learning Models Utilizing Clinical
Indices and Cardiotocographic Features

In the study by Ribeiro et al. [60], a univariable Binary Logistic Regression (BLR) analysis was conducted
on all independent variables, yielding odds ratios (ORs), 95% confidence intervals (CIs), and p-values.
Spearman correlation coefficient was used to identify and eliminate redundant variables, selecting the
one with the lowest significance value among variables with a correlation coefficient greater than 0.6.
For non-linear cardiotocographic (CTG) variables with p less than 0.2, both univariate BLR models
and Naive-Bayes models were developed using R, focusing on binomial logistic regression and the Naive
Bayes packages. A classification cut-off of 0.5 was employed in model construction. To ensure unbiased
evaluation, a two-fold cross-validation approach was utilized, with a training set (55%) and a testing set
(45%). Considering the imbalanced distribution of the asphyxia and no asphyxia groups, an oversampling
technique was applied in the training dataset to achieve a 0.3 probability of asphyxia, implemented using
the ROSE R package. The area under the receiver operating characteristic curve (AUC) and its confidence
interval were computed for the respective test set, demonstrating a sensitivity of 87% (13 out of 15) and
a specificity of 100%.

6.1.1.5 A Machine Learning Approach for the Classification of Foetal Distress and Hy-
poxia

This study [4] explores the application of machine-learning techniques for diagnosing and detecting intra-
partum foetal hypoxia by analyzing foetal clinical data. The research utilizes an open-source database
provided by Physionet, consisting of signal and clinical data collected between 2010 and 2012 at the
university hospital in Brno, Czech Republic. The dataset includes neonatal outcomes and potential
risk factors. Experimental results reveal that the Random Forest model performs as the most accurate
classifier, achieving a high area under the curve quality measure (0.95). The Neural Network (NN)
model ranks second, demonstrating a predictive ability of 0.91 for both accuracy (ACC) and area under
the curve (AUC). The simulation results also highlight the high AUC (0.94) of the Gradient Boosting
Machine (GBM) model, albeit with slightly lower accuracy (0.88). While both RF and GBM show
the ability to detect true positive cases (pathological) with a sensitivity of 0.87, GBM exhibits lower
specificity (0.89) in identifying true negative cases (normal). Additionally, the Support Vector Machine
(SVM) and GLMNET models demonstrate reasonable prediction abilities, achieving AUC values of 0.80
and 0.83, respectively. However, their overall accuracies are slightly lower (0.84 for SVM and 0.79 for
GLMNET) compared to other classifiers. Although the K-Nearest Neighbors (KNN) classifier performs
well in detecting true positive cases with a sensitivity value of 0.93, it displays lower overall accuracy
(0.77) and is the weakest classifier in identifying true negative cases (specificity of 0.67).

6.1.2 Approach 2

This approach tries to apply prediction after birth within the first energy failure (6-hour window) to see
whether or not the patients will develop HIE and need further treatment such as hypothermic treatment.
Below are the related papers with the specified technique:

6.1.2.1 Utilizing a Multimodal Deep Neural Network to Predict Neonatal Intensive Care
Unit Intubation Requirement within 3 Hours

In this study[37], the objective was to predict the potential need for intubation in neonatal patients within
the first 48 hours of life. The researchers utilized a multimodal neural network model, incorporating time-
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series datasets comprising demographic, physiological, and laboratory information. The model employed
a multilayer perceptron (MLP) architecture, where the flattened time variable x(t) and measurement
x(n) were processed through MLP blocks, including a fully connected layer, batch normalization, rectified
linear units, and dropout for regularization. The resulting vectors were concatenated and analyzed
using the final MLP block, which provided information about the probability of intubation. The model
demonstrated strong performance with an area under the curve of 0.917, sensitivity of 85.2%, and
specificity of 89.2%.

6.1.2.2 Enhancing Care for Neurologically Impaired Newborns through Artificial Intelli-
gence Assistance

In this research [55], the focus is on exploring the effectiveness of Artificial Intelligence-based prediction
systems in automating seizure diagnosis using newborns’ EEG waveforms. The study involves collecting
EEG data along with patient characteristics, which are then utilized as input for various classification
models. To enhance model performance, a Linear Series Decomposition Learner is employed as a pre-
processing step. The achieved accuracy reaches a peak of 93.5%, while the secondary analysis reveals a
maximum accuracy of 89.1% for predicting asphyxia.

6.1.2.3 Enhancing Neonatal Hypoxic-Ischemic Encephalopathy Prediction through the
Integration of Umbilical Cord Metabolites and Clinical Markers

Utilizing Logistic Regression with LASSO feature selection, a subset of metabolites essential for an
effective multivariable prediction model for hypoxic-ischemic encephalopathy (HIE) was determined.
LASSO, an algorithm for continuous subset selection, minimizes the impact of irrelevant predictors by
constraining the coefficients’ magnitude. Important predictors are retained, while less significant ones
shrink or are eliminated, resulting in an accurate model with minimal variables. To validate the logistic
regression results, complementary classification models were developed using the Random Forest (RF)
Algorithm, employing the same input variables. Robustness and generalizability were ensured through
10-fold cross-validation with 10 Monte Carlo repetitions. Receiver Operator Characteristic (ROC) curve
analyses were performed to evaluate the optimal classifier models. Additionally, the described feature
selection methods were compared and integrated with previously identified clinical markers for outcome
prediction. The integrated approach achieved an overall accuracy of 86%, an Area Under the Curve
(AUC) of 0.90 (95% CI, 0.84-0.94), a positive predictive value of 80%, a negative predictive value of
92%, a sensitivity of 92%, and a specificity of 80% [57].

6.1.2.4 Modeling the Risk of Hypoxic-Ischemic Encephalopathy after Perinatal Asphyxia
Using Predictive Methods

Another approach is in paper [51] ”Predictive modeling of hypoxic-ischaemic encephalopathy risk fol-
lowing perinatal asphyxia”. The paper mentions that the 40% of patients who are not qualified for the
treatment with the clinicians were actually eligible for the treatment and even when correctly classified
around 20% of the patients end up with brain injury because of the strict 6-hour window. The Apgar
score in 1, 5, and 10 minutes, postnatal blood gas values are collected and patients are periodically
monitored by EEGs continuously within the first 24-hour period. Their change gives strong information
on the prediction of the disease over the time period. Later the level of severity is determined by the
Sarnat score and finalized by a qualified professional. The dataset used was missing some parameters
which were filled by an R-package called ”mice” by mean matching. All the information is then fed into
a Random Forest algorithm continuously to achieve improved prediction within the 6-hour window. The
study achieved a 97.3% accuracy.

6.1.3 Approach 3

This approach mainly tries to tackle the problem in a non-invasive manner such as evaluating child cries
to understand whether or not babies need treatment. Below are the related papers with the specified
technique:

6.1.3.1 GPU-Accelerated Deep Learning for Asphyxia Detection in Newborns

In addition to the previous 2 approaches the third approach is a non-intrusive one. The paper [50]
suggests that the way babies cry gives various information on the status of the baby. If the acoustics
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are investigated via the collected cry signals this will help the researchers to predict the occurrence of a
disease. In this study, they trained a convolutional neural network with 3 different types of baby cries:
typical cry signals, cry signals from patients with hearing difficulties, and infants with asphyxia. They
achieved a 94% accuracy. The main advantage is that it doesn’t require blood drawls or scans and works
with high accuracy.

6.1.3.2 Utilizing Neural Transfer Learning for Diagnosis of Perinatal Asphyxia Based on
Infant Cry Analysis

[58] The correlation between crying and respiration in infants has long been recognized, as both processes
rely on the functionality of respiratory muscles and are coordinated by the same brain regions. Early
studies, such as the work by Michelsson et al. in the 1970s and 1980s, revealed distinct characteristics
in the cries of asphyxiated newborns, including shorter duration, lower amplitude, increased higher fun-
damental frequency, and a significant increase in the ”rising” melody type. In this study, the Chillanto
Infant Cry database was utilized to explore the application of statistical learning techniques in classifying
various conditions, including deafness, asphyxia, and pain. The authors employed audio representations
such as linear predictive coefficients (LPC) and Mel-frequency cepstral coefficients (MFCC), training a
time delay neural network as the classifier. Leveraging the effectiveness of Residual Neural Networks
(ResNets) in speech-related tasks, a consistent architecture with 6 residual blocks and additional convolu-
tional layers was adopted to ensure fair comparisons across source tasks and enable transfer learning. By
transforming the 2D MFCC representation of audio signals and extracting fixed dimension embeddings
through average pooling, the model achieved an accuracy of 72.7% and a recall of 68% in predicting the
classes of interest.

6.1.3.3 Leveraging GPU-Accelerated Deep Learning for Neonatal Asphyxia Detection

This project [62] employs the NVIDIA Deep Learning GPU Training System (DIGITS) to construct
and train a Deep Neural Network (DNN) for image classification and real-time object detection. The
Baby Chillanto Database, obtained from the National Institute of Astrophysics and Optical Electronics,
CONACYT, Mexico, consists of 340 asphyxiated and 1049 normal cry tests, partitioned as 60:20:20 for
preparation, cross-validation, and performance evaluation. The software was configured following the
author’s instructions, with the dataset split into 75% for training and 25% for validation. This approach
achieved an impressive accuracy of 92%

6.1.4 Approach 4

Studies concerning finding the optimal feature sets within the 24-hour window.

6.1.4.1 Analyzing Signals and Classifying Clinically Significant Parameters in Neonatal
Resuscitation

In this paper [75] they experimented on newborns who experienced birth asphyxia and tried to identify
the outcome of the baby using the features obtained after therapeutic interventions and observed their
response using machine learning frameworks. They evaluated the accuracy of their implementation
comparing the outcome of the baby after 24 hours of birth. All possible outcomes of such a scenario
include: normal, being placed in the neonatal care unit, and death. They used a nested cross-validation
scheme for classification and SMOTE Boost and RUS Boost for balancing out the dataset to avoid bias.
The experiments included the following: Utilizing all available features, this study focuses on identifying
neonatal outcomes within 24 hours of birth. Additionally, for newborns initially in poor condition, the
study investigates the identification of neonatal outcomes using all features and only initial and treatment
parameters. The results demonstrated a precision of 96% and a recall of 89% for normal outcomes, while
episodes ending in death showed a precision of 47% and a recall of 74%. These findings highlight the
potential of the extracted features in describing the 24-hour neonatal outcome.

6.1.5 Comparison Of The Existing Approaches

In the below table you will be able to find information on what kind of content is covered by the above-
mentioned four approaches (A1, A2, A3, and A4, respectively) and what should be our main concern
based on the unanswered gap:
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Contents Covered A1 A2 A3 A4

Prediction Of Asphxia within 0-6 hour window x x x

Prediction Of Outcome after the 6 hour window x

Use of Invasive BioMarkers Like Blood Tests x x x

Use of Non-Invasive BioMarkers Like Sound of Cry x

Use of Discrete Data For Prediction x x x

Use of Continous Data For Prediction x

Table 6.1: Comparison of The Contents For Previous Approaches

As you can see from the above table, based on my literature study, there is a research gap for the
cases using continuous data after 6 hours of birth for the prediction of the neurodevelopmental outcome
of asphyxiated and cooled-down patients.
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Conclusion

Asphyxia refers to a condition characterized by a sudden and severe lack of oxygen and reduced blood flow
to the brain, resulting from birth abnormalities. This oxygen deficiency primarily affects the distribution
of blood to vital organs. Consequently, newborn babies may face neurological disorders in their future,
such as seizures. This issue is prevalent not only in the Netherlands but also worldwide, contributing
to an infant mortality rate of up to 23%. The objective of our research was to determine whether
it is possible to predict the outcome of asphyxiated babies by analyzing observations taken between
6 hours and 4 days after birth. At the time of this thesis publication, no previous studies directly
addressed this specific problem. However, there are closely related research efforts that provide a more
comprehensive understanding of the issue, which are elaborated upon in section 6. To address this
research gap, we pursued various different approaches and compared their results to come up with an
optimal solution. Although the first approaches were unsuccessful, it provided valuable insights into
the data’s characteristics, ultimately aiding us in succeeding with the final approach.In the selected
approach, we developed a modified version of the advanced neural network structure known as AlexNet.
The network was trained using generated recurrence plots. Our approach achieved an impressive average
accuracy of 93.3%. Each observation was evaluated individually, and the detailed evaluation metrics are
provided separately in section 4. More details about the highlighted core sections in this report is also
provided in the Section 7.1 in Appendix.

Based on our study, we conclude that machine learning models can assist doctors in diagnosing the
outcomes of asphyxiated patients without relying solely on MRI scores. Furthermore, we identified the
time points at which the severity level of a patient begins to change. This information holds significant
value for clinicians, as it facilitates an understanding of temporal patterns and aids in making informed
decisions regarding patient management and treatment strategies.

7.1 Future work

As a result of our work, we can provide the following future contributions:

• Treatment Guidance: The method we have developed for predicting the outcomes of asphyxiated
babies has the potential to significantly impact the treatment of this condition in the future. One
avenue for future work is to explore how our predictions can be integrated into clinical practice
to guide treatment decisions. By combining our machine learning models with existing medical
protocols, clinicians may be able to personalize treatment plans for individual patients based on
their predicted outcomes. This could involve adjusting the intensity and duration of therapeutic
interventions, such as hypothermia therapy or oxygen supplementation, to optimize outcomes for
asphyxiated infants. Future research should focus on conducting clinical trials to evaluate the
effectiveness of incorporating our predictive models into the treatment decision-making process
and assess their impact on long-term outcomes.

• Advanced Analysis Techniques: While our current study utilized state-of-the-art machine learning
techniques, there is still room for further exploration and refinement of analysis methods. Fu-
ture work should aim to incorporate more advanced techniques to gain a deeper understanding of
the underlying patterns and mechanisms associated with asphyxia. For instance, exploring deep
learning architectures beyond AlexNet, such as convolutional neural networks (CNNs) or recur-
rent neural networks (RNNs), may reveal additional insights and potentially improve prediction
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accuracy. Additionally, employing advanced feature selection and extraction techniques, such as
transfer learning or autoencoders, could enhance the identification of relevant features and reduce
noise in the dataset. Investigating alternative methods for handling imbalanced datasets, such as
oversampling or undersampling techniques, may also be beneficial. By employing these advanced
analysis techniques, we can potentially uncover more nuanced relationships between the observed
variables and the outcomes of asphyxiated babies.

• Dataset Enhancement and Generalizability: In order to improve the generalizability of our pre-
dictive models, future studies should focus on enhancing the dataset used in this research. One
possible avenue is to augment the existing dataset with data from other hospitals and healthcare
centers across different countries. This would enable a more diverse representation of asphyxiated
infants, accounting for potential variations in demographics, healthcare practices, and genetic fac-
tors. Moreover, collecting longitudinal data spanning a longer timeframe would provide a more
comprehensive understanding of the temporal patterns and trajectories of asphyxia outcomes. It
would be valuable to assess the long-term effects and developmental outcomes of these infants
beyond the immediate post-birth period. Additionally, incorporating additional clinical variables,
such as gestational age, birth weight, and maternal health indicators, would enrich the dataset
and potentially improve the accuracy of predictions. Collaborative efforts and multi-center studies
should be undertaken to facilitate the collection and sharing of such data, ensuring a larger and
more representative sample for analysis.

• Prospective Validation and Clinical Integration: To validate the effectiveness and real-world ap-
plicability of our predictive models, future work should involve prospective validation studies con-
ducted in clinical settings. Collaborating with healthcare institutions and clinicians, researchers
can implement our models as decision support tools to aid in the management of asphyxiated
infants. By prospectively collecting data from newborns and evaluating the predictions made by
the models, we can assess their performance in real-time scenarios. This would provide valuable
feedback and insights into the strengths and limitations of our models, helping to refine and opti-
mize their performance. Moreover, conducting qualitative studies involving healthcare providers to
understand their perspectives on using these predictive models can offer insights into the barriers
and facilitators of implementation. Integration of the models into clinical workflows and assess-
ment of their impact on decision-making, patient outcomes, and resource allocation should also be
explored.

• Ethical Considerations and Interpretability: As with any implementation of machine learning in
healthcare, it is crucial to address ethical considerations and ensure transparency and interpretabil-
ity of the models. Future work should focus on developing explainable AI techniques to provide
clinicians with insights into the decision-making process of the models. This would aid in build-
ing trust and understanding among healthcare providers, enabling them to confidently utilize the
predictions in their clinical practice. Additionally, efforts should be made to ensure fairness and
equity in the deployment of these models, considering potential biases and disparities in healthcare
delivery. Ongoing monitoring and assessment of the models’ performance in real-world settings
should be conducted to detect and mitigate any unintended consequences or biases that may arise.

In conclusion, there are several promising avenues for future work to further advance the field of
predicting outcomes for asphyxiated infants. By integrating our predictive models into clinical practice,
exploring advanced analysis techniques, enhancing the dataset’s generalizability, conducting prospective
validation studies, and addressing ethical considerations, we can continue to improve the accuracy and
utility of these models. These efforts have the potential to revolutionize the treatment and care provided
to asphyxiated infants, ultimately improving their long-term outcomes and quality of life.
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Appendix

A.1 Progression of Results On Daily Basis Prior Day 6 (Before
The MRI Scan)

The main goal of the project is to provide a prognosis before the MRI score on day 6. In this sense, it
is also important to test the model performance given different days. Below you will be able to see the
progression of evaluation metrics for different observations for measurements taken on (Day 1), (Day 1
and 2), (Days 1,2 and 3), (Day 1,2,3 and 4), (Days 1,2,3,4 and 5) and finally (Days 1,2,3,4,5 and 6).
From the results we have obtained in this subsection, we can conclude that the results prior to the MRI
Scan, are accurate and confident enough to provide a final prognosis.

A.1.1 Heart Rate Frequency

Below you will be able to find measurements concerning the heart rate frequency on separate days.

A.1.1.1 Evaluation Results on Day 1 Measurements

Below are the calculated testing metric results for the Heart Rate model for measurements taken on Day
1 :

Table A.1: Testing Metrics

Metric Value

Accuracy 0.9476923076923077

Categorical cross-entropy loss 0.29401737019689556

Precision 0.92

Recall 0.92

F1 Score 0.91

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.1: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Heart Rate Frequency Observation based on Day 1 Measurements

ROC Curve:

Figure A.2

A.1.1.2 Evaluation Results on Day 1 and 2 Measurements

Below are the calculated testing metric results for the Heart Rate model for measurements taken on Day
1 and Day 2 :

Table A.2: Testing Metrics

Metric Value

Accuracy 0.9723076923076923

Categorical cross-entropy loss 0.18239515519149227

Precision 0.95

Recall 0.95

F1 Score 0.95

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.3: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Heart Rate Frequency Observation based on Day 1 Measurements

ROC Curve:

Figure A.4

A.1.1.3 Evaluation Results on Day 1, 2, and 3 Measurements

Below are the calculated testing metric results for the Heart Rate model for measurements taken on Day
1, Day 2, and Day 3 :

Table A.3: Testing Metrics

Metric Value

Accuracy 0.9641025641025641

Categorical cross-entropy loss 0.23993666138194616

Precision 0.97

Recall 0.96

F1 Score 0.96

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.5: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Heart Rate Frequency Observation based on Day 1 Measurements

ROC Curve:

Figure A.6

A.1.1.4 Evaluation Results on Day 1, 2, 3 and 4 Measurements

Below are the calculated testing metric results for the Heart Rate model for measurements taken on Day
1, Day 2, Day 3, and Day 4 :

Table A.4: Testing Metrics

Metric Value

Accuracy 0.96

Categorical cross-entropy loss 0.21793777588973345

Precision 0.96

Recall 0.96

F1 Score 0.96

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.7: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Heart Rate Frequency Observation based on Day 1 Measurements

ROC Curve:

Figure A.8

A.1.1.5 Evaluation Results on Day 1, 2, 3, 4 and 5 Measurements

Below are the calculated testing metric results for the Heart Rate model for measurements taken on Day
1, Day 2, Day 3, Day 4, and Day 5:

Table A.5: Testing Metrics

Metric Value

Accuracy 0.9636923076923077

Categorical cross-entropy loss 0.2036896813926578

Precision 0.96

Recall 0.96

F1 Score 0.96

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.9: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Heart Rate Frequency Observation based on Day 1 Measurements

ROC Curve:

Figure A.10

A.1.1.6 Progression Of Heart Rate Metrics

In the below graph, you will be able to see how the metric values progress over 6 days according to
various metrics:
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Figure A.11: Progression of Metrics over Different Threshold Values

As you can see from Figure A.63, the metrics performed best on Day 6. However, the metrics from
Day 1 to the end are all above 90% and provide a good enough prognosis. In the below graph you will
be able to see the progression of loss:
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Figure A.12: Progression of Loss over Different Threshold Values

Loss values are ranging between 0.3 and 0.15. The best loss was achieved on Day 2. After a spike on
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Day 3, the loss values continued to progressively become lower. In the below graph you will be able to
see how the ROC curve for Class0, Class1, and Class2 progress over time:
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Figure A.13: Progression of AUC Score For Class0,Class1 and Class2

The AUC Scores are also more or less the same with a drop on Day 3 and stabilization again on Day
4.

A.1.2 Oxygen Saturation

Below you will be able to find measurements concerning the oxygen saturation on separate days.

A.1.2.1 Evaluation Results on Day 1 Measurements

Below are the calculated testing metric results for the Oxygen Saturation model for measurements taken
on Day 1 :

Table A.6: Testing Metrics

Metric Value

Accuracy 0.8853503184713376

Categorical cross-entropy loss 0.3751741045391938

Precision 0.95

Recall 0.89

F1 Score 0.90

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.14: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Oxygen Saturation Observation based on Day 1 Measurements

ROC Curve:

Figure A.15

A.1.2.2 Evaluation Results on Day 1 and Day 2 Measurements

Below are the calculated testing metric results for the Oxygen Saturation model for measurements taken
on Day 1 and Day 2 :

Table A.7: Testing Metrics

Metric Value

Accuracy 0.8660287081339713

Categorical cross-entropy loss 0.442390907126446

Precision 0.94

Recall 0.87

F1 Score 0.89

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.16: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Oxygen Saturation Observation based on Day 1 and Day 2 Measurements

ROC Curve:

Figure A.17

A.1.2.3 Evaluation Results on Day 1, Day 2, and Day 3 Measurements

Below are the calculated testing metric results for the Oxygen Saturation model for measurements taken
on Day 1, Day 2and Day 3 :

Table A.8: Testing Metrics

Metric Value

Accuracy 0.8765957446808511

Categorical cross-entropy loss 0.3988981335507593

Precision 0.94

Recall 0.88

F1 Score 0.89

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.18: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Oxygen Saturation Observation based on Day 1, Day 2, and Day 3 Measurements

ROC Curve:

Figure A.19

A.1.2.4 Evaluation Results on Day 1, Day 2, Day 3, and Day 4 Measurements

Below are the calculated testing metric results for the Oxygen Saturation model for measurements taken
on Day 1, Day 2, Day 3, Day 4, and Day 5 :

Table A.9: Testing Metrics

Metric Value

Accuracy 0.8787878787878788

Categorical cross-entropy loss 0.38436080157820124

Precision 0.94

Recall 0.88

F1 Score 0.89

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.20: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for OxygenSaturation Observation based on Day 1, Day 2, Day 3, and Day 4 Measurements

ROC Curve:

Figure A.21

A.1.2.5 Evaluation Results on Day 1, Day 2, Day 3, Day 4, and Day 5 Measurements

Below are the calculated testing metric results for the Oxygen Saturation model for measurements taken
on Day 1, Day 2, Day 3, Day 4, and Day 5 :

Table A.10: Testing Metrics

Metric Value

Accuracy 0.8793873643905552

Categorical cross-entropy loss 0.3793660970814235

Precision 0.94

Recall 0.88

F1 Score 0.89

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.22: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Oxygen Saturation Observation based on Day 1, Day 2, Day 3, Day 4, and Day 5
Measurements

ROC Curve:

Figure A.23

A.1.2.6 Progression Of Metrics

In the below graph, you will be able to see how the metric values progress over 6 days according to
various metrics:

The performance metrics for Oxygen saturation remained almost constant throughout the whole
period. In the below graph, you will be able to see the progression of loss:

The same scenario we observed for accuracy, precision, recall, and f-1 score, applies to loss as well.
Other than a small increase on Day 2, the loss values are pretty much stable. In the below graph you
will be able to see how the ROC curve for Class0, Class1, and Class2 progress over time:
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Figure A.24: Progression of Metrics over Different Threshold Values
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Figure A.26: Progression of AUC Score For Class0,Class1 and Class2

The AUC Scores started from approximately 0.80 and progressively reached 0.90 over 6 days. The
rate of increase is constant except for Class 1, where a 0.5 jump is observed on Day 4, but again stabilized
on Day 5.
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Figure A.25: Progression of Loss over Different Threshold Values

A.1.3 Blood Pressure

Below you will be able to find measurements concerning the blood pressure on separate days.

A.1.3.1 Evaluation Results on Day 1 Measurements

Below are the calculated testing metric results for the Blood Pressure model for measurements taken on
Day 1 :

Table A.11: Testing Metrics

Metric Value

Accuracy 0.9350180505415162

Categorical cross-entropy loss 0.29492478769896224

Precision 0.94

Recall 0.94

F1 Score 0.93

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.27: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Blood Pressure Observation based on Day 1 Measurements

ROC Curve:

Figure A.28

A.1.3.2 Evaluation Results on Day 1 and Day 2 Measurements

Below are the calculated testing metric results for the Blood Pressure model for measurements taken on
Day 1 and Day 2:

Table A.12: Testing Metrics

Metric Value

Accuracy 0.9259927797833934

Categorical cross-entropy loss 0.3219503200849507

Precision 0.99

Recall 0.90

F1 Score 0.95

Confusion Matrix:

92



APPENDIX A. APPENDIX

(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.29: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Blood Pressure Observation based on Day 1 and Day 2 Measurements

ROC Curve:

Figure A.30

A.1.3.3 Evaluation Results on Day 1, Day 2, and Day 3 Measurements

Below are the calculated testing metric results for the Blood Pressure model for measurements taken on
Day 1, Day 2, and Day 3:

Table A.13: Testing Metrics

Metric Value

Accuracy 0.937424789410349

Categorical cross-entropy loss 0.315287687230861

Precision 0.94

Recall 0.94

F1 Score 0.94

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.31: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Blood Pressure Observation based on Day 1, Day 2, and Day 3 Measurements

ROC Curve:

Figure A.32

A.1.3.4 Evaluation Results on Day 1, Day 2, Day 3, and Day 4 Measurements

Below are the calculated testing metric results for the Blood Pressure model for measurements taken on
Day 1, Day 2, Day 3, and Day 4:

Table A.14: Testing Metrics

Metric Value

Accuracy 0.9296028880866426

Categorical cross-entropy loss 0.32192058750668245

Precision 0.93

Recall 0.93

F1 Score 0.93

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.33: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Blood Pressure Observation based on Day 1, Day 2, Day 3, and Day 4 Measurements

ROC Curve:

Figure A.34

A.1.3.5 Evaluation Results on Day 1, Day 2, Day 3, Day 4, and Day 5 Measurements

Below are the calculated testing metric results for the Blood Pressure model for measurements taken on
Day 1, Day 2, Day 3, Day 4, and Day 5:

Table A.15: Testing Metrics

Metric Value

Accuracy 0.9364620938628159

Categorical cross-entropy loss 0.3103668821072699

Precision 0.94

Recall 0.94

F1 Score 0.94

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.35: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Blood Pressure Observation based on Day 1, Day 2, Day 3, Day 4, and Day 5 Measure-
ments

ROC Curve:

Figure A.36

A.1.3.6 Progression Of Metrics

In the below graph, you will be able to see how the metric values progress over 6 days according to
various metrics:

The performance metrics for blood pressure moved in the range [0.90, 0.95]. It peaked around Day
6 and passed 0.95 but overall the results are pretty much stable over 6 day period. In the below graph
you will be able to see the progression of loss:

The loss value was constant over the 6 days. In the below graph you will be able to see how the ROC
curve for Class0, Class1, and Class2 progress over time:
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Figure A.37: Progression of Metrics over Different Threshold Values
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Figure A.39: Progression of AUC Score For Class0,Class1 and Class2

The AUC scores were again constant except for the Day 2 measurements. On Day 2, the Class 1
measurements experienced a sudden drop, and Class 0 measurements experienced a sudden increase,
while Class 2 measurements remained consistent. After Day 2, the metrics returned to the usual trend.
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Figure A.38: Progression of Loss over Different Threshold Values

A.1.4 Temperature

Below you will be able to find measurements concerning the temperature on separate days.

A.1.4.1 Evaluation Results on Day 1 Measurements

Below are the calculated testing metric results for the Temperature model for measurements taken on
Day 1 :

Table A.16: Testing Metrics

Metric Value

Accuracy 0.9166666666666666

Categorical cross-entropy loss 0.41507251105706344

Precision 0.97

Recall 0.92

F1 Score 0.94

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.40: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Temperature Observation based on Day 1 Measurements

ROC Curve:

Figure A.41

A.1.4.2 Evaluation Results on Day 1 and Day 2 Measurements

Below are the calculated testing metric results for the Temperature model for measurements taken on
Day 1 and Day 2:

Table A.17: Testing Metrics

Metric Value

Accuracy 0.9236111111111112

Categorical cross-entropy loss 0.42002248679837695

Precision 0.98

Recall 0.92

F1 Score 0.95

Confusion Matrix:

99



APPENDIX A. APPENDIX

(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.42: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Temperature Observation based on Day 1 and Day 2 Measurements

ROC Curve:

Figure A.43

A.1.4.3 Evaluation Results on Day 1, Day 2, and Day 3 Measurements

Below are the calculated testing metric results for the Temperature model for measurements taken on
Day 1, Day 2, and Day 3:

Table A.18: Testing Metrics

Metric Value

Accuracy 0.9166666666666666

Categorical cross-entropy loss 0.43903515021747724

Precision 0.97

Recall 0.92

F1 Score 0.94

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.44: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Temperature Observation based on Day 1, Day 2, and Day 3 Measurements

ROC Curve:

Figure A.45

A.1.4.4 Evaluation Results on Day 1, Day 2, Day 3, and Day 4 Measurements

Below are the calculated testing metric results for the Temperature model for measurements taken on
Day 1, Day 2, Day 3, and Day 4:

Table A.19: Testing Metrics

Metric Value

Accuracy 0.90625

Categorical cross-entropy loss 0.4774239293082604

Precision 0.98

Recall 0.91

F1 Score 0.93

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.46: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Temperature Observation based on Day 1, Day 2, Day 3, and Day 4 Measurements

ROC Curve:

Figure A.47

A.1.4.5 Evaluation Results on Day 1, Day 2, Day 3, Day 4, and Day 5 Measurements

Below are the calculated testing metric results for the Temperature model for measurements taken on
Day 1, Day 2, Day 3, Day 4, and Day 5:

Table A.20: Testing Metrics

Metric Value

Accuracy 0.9027777777777778

Categorical cross-entropy loss 0.4966367431580178

Precision 0.98

Recall 0.90

F1 Score 0.93

Confusion Matrix:
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(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.48: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Temperature Observation based on Day 1, Day 2, Day 3, Day 4, and Day 5 Measure-
ments

ROC Curve:

Figure A.49

A.1.4.6 Progression Of Metrics

In the below graph, you will be able to see how the metric values progress over 6 days according to
various metrics:

The metrics for the temperature measurement remained in their original range of +- 0.1 over the
whole period. In the below graph, you will be able to see the progression of loss:

The loss values increased over the 6 days. This is because the number of measurements we take into
account increased. Although the model started to make more accurate choices, the margin of error in
the misclassified samples also increased. In the below graph, you will be able to see how the ROC curve
for Class0, Class1, and Class2 progress over time:

Similar to the loss metric, the AUC scores also show a performance decrement.

A.1.5 Respiration Frequency

Below you will be able to find measurements concerning the respiration frequency on separate days.

103



APPENDIX A. APPENDIX

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold Values

M
et
ri
c
V
al
u
es

Acurracy Precision Recall F1-Score

Figure A.50: Progression of Metrics over Different Threshold Values

A.1.5.1 Evaluation Results on Day 1 Measurements

Below are the calculated testing metric results for the Respiration Frequency model for measurements
taken on Day 1 :

Table A.21: Testing Metrics

Metric Value

Accuracy 0.9389067524115756

Categorical cross-entropy loss 0.2941545378990318

Precision 0.95

Recall 0.94

F1 Score 0.94

Confusion Matrix:
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Figure A.51: Progression of Loss over Different Threshold Values

(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.53: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Respiration Frequency Observation based on Day 1 Measurements

ROC Curve:
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Figure A.52: Progression of AUC Score For Class0,Class1 and Class2

Figure A.54

A.1.5.2 Evaluation Results on Day 1 and Day 2 Measurements

Below are the calculated testing metric results for the Respiration Frequency model for measurements
taken on Day 1 and Day 2 :

Confusion Matrix:
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Table A.22: Testing Metrics

Metric Value

Accuracy 0.9017713365539453

Categorical cross-entropy loss 0.34345482048626136

Precision 0.92

Recall 0.90

F1 Score 0.91

(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.55: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Respiration Frequency Observation based on Day 1 and Day 2 Measurements

ROC Curve:

Figure A.56

A.1.5.3 Evaluation Results on Day 1, Day 2, and Day 3 Measurements

Below are the calculated testing metric results for the Respiration Frequency model for measurements
taken on Day 1, Day 2, and Day 3 :

Confusion Matrix:
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Table A.23: Testing Metrics

Metric Value

Accuracy 0.9055793991416309

Categorical cross-entropy loss 0.28494883076647914

Precision 0.92

Recall 0.91

F1 Score 0.91

(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.57: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Respiration Frequency Observation based on Day 1, Day 2, and Day 3 Measurements

ROC Curve:

Figure A.58

A.1.5.4 Evaluation Results on Day 1, Day 2, Day 3, and Day 4 Measurements

Below are the calculated testing metric results for the Respiration Frequency model for measurements
taken on Day 1, Day 2, Day 3, and Day 4:

Confusion Matrix:
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Table A.24: Testing Metrics

Metric Value

Accuracy 0.917940466613033

Categorical cross-entropy loss 0.28912195702461396

Precision 0.93

Recall 0.92

F1 Score 0.92

(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.59: Confusion Matrix results displaying statistics about Class0, Class1, and Class2
for Respiration Frequency Observation based on Day 1, Day 2, Day 3, and Day 4 Measure-
ments

ROC Curve:

Figure A.60

A.1.5.5 Evaluation Results on Day 1, Day 2, Day 3, Day 4, and Day 5 Measurements

Below are the calculated testing metric results for the Respiration Frequency model for measurements
taken on Days 1, 2,3,4, and 5 :
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Table A.25: Testing Metrics

Metric Value

Accuracy 0.9137153895685769

Categorical cross-entropy loss 0.2736852965928897

Precision 0.93

Recall 0.91

F1 Score 0.92

Confusion Matrix:

(a) TP, TN, FP, and FN for
Class 0

(b) TP, TN, FP, and FN for
Class 1

(c) TP, TN, FP, and FN for
Class 2

Figure A.61: Confusion Matrix results displaying statistics about Class0, Class1 and Class2
for Respiration Frequency Observation based on Day 1,2,3,4 and 5 Measurements

ROC Curve:

Figure A.62

A.1.5.6 Progression Of Metrics

In the below graph, you will be able to see how the metric values progress over 6 days according to
various metrics:
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Figure A.63: Progression of Metrics over Different Threshold Values

The performance metrics for the respiration frequency experienced a drop on Day 2 but stabilized
around Day 4. In the below graph, you will be able to see the progression of loss:
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Figure A.64: Progression of Loss over Different Threshold Values

The loss metric was almost stable, except for Day 2 where it first experienced a +0.5 change followed
by a - 0.8 change. The remaining values were stable. In the below graph you will be able to see how the
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ROC curve for Class0, Class1, and Class2 progress over time:
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Figure A.65: Progression of AUC Score For Class0,Class1 and Class2

The AUC Scores for Respiration Frequency were unsteady. Class 0 and Class 1 measurements expe-
rienced approximately +0.6 change while Class 2 experienced -0.3 change. After a day of stable period,
class 0 and Class 2 experienced a -0.2 while Class 1 measurements kept stable.
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