
Scalable Data Transfers for Web

Services

Spyridon Koulouzis

Faculty of Science

Universiteit van Amsterdam

A thesis submitted for the degree of

Master of Science (MSc) in Grid Computing

2009 September

mailto:S.Koulouzis@uva.nl
http://www.fnwi.uva.nl
http://www.uva.nl

Abstract

The work presented in this thesis address the problems web services face

when called to transfer large data sets within the e-Science context. e-

Science as a distributed research paradigm requires the sharing and co-

ordination of resources scattered around the globe. Web services as an

implementation of SOA offer the desired abstraction, interoperability, and

flexibility that will allow for the realization of these requirements.

Web services however face problems related to data transports, because

SOAP does not offer a scalable and fast way of transporting large data sets,

and/or because web services are used in orchestration workflows. Under this

type of workflow, SOAP messages passed to the service consumer before de-

livered to the appropriate service. Furthermore, in cases where web services

are used in data-centric workflows, and are developed with data transport

capabilities in mind, the most common approach is to provide these services

with the means of accessing remote locations (GridFTP, etc.). Although this

feature is desirable, it overlooks the fact that many temporary data are first

moved to a remote location before delivered to consuming services. This

practice may slow down workflow executions, and put unnecessary stress on

data resources. Additionally there is an abundance of deployed web services

restricted in using only SOAP while service consumers (clients, workflows

etc.) are stretching these services to produce and deliver large data sets.

This on one hand, results in non-scalable e-Science applications, while on

the other hand if these services are to be re-implemented, it will probably

make them unusable for exiting workflow implementations. Another rea-

son why these services cannot be re-implemented is simply the fact that

the source code is no longer available. Therefore, a significant challenge is

to find reliable and efficient methods to transfer large data between web

services.

To address these problems we introduce the ProxyWS, a data aware web

service that is not only able to coordinate the transportation of large data

volumes, but also provides support for large data transfers to existing web

services. The ProxyWS is implemented as a service itself, so that existing

service oriented applications can still use deployed services, with the added

functionality of large data transports. Another feature that the ProxyWS

is introducing, is direct data streaming between web services, a feature

that can speed up workflow execution, by creating a data pipeline between

services participating in that workflow.

Thus the goal of the ProxyWS is to provide scalable data transports for

both “legacy web services” and new web service implementations alike. In

doing so large scale SOA-based applications are promoted, which from the

backbone of e-Science applications.

iv

Acknowledgements

I would like to acknowledge the help support and encouragement of many

people during the time of completion of this thesis project, as well as the

time of my study in the University of Amsterdam. I thank Dr. Adam S.Z.

Belloum, my supervisor, for his valuable guidance during the completion

of this work, as well his support throughout my study period in the Grid

Computing master program. His support also encouraged me in developing

a critical mind and a research interest in Gird Computing and e-Science. My

co-supervisor Dr. M. Scott Marshall, for his helpful input in identifying the

problems and requirements of real-life SOA applications. I would also like

to thank all of my teachers in the University of Amsterdam, for providing

me with a stimulating study environment that expand my knowledge in the

field of computer science. For their help in coping with technical details,

providing valuable advice, and use cases presented in this work, I thank

Piter de Boer, Edgar Maij, Elena Zudilova-Seinstra, Vladimir Korkhov,

Dimitry Vasunin, and Marco Ross. I also would like to thank my family

for their support and understanding all these years, I have being abroad.

Finally yet importantly, I thank all my friends and people close to me in

Amsterdam. Without them Amsterdam would be much different.

Thank you all very much.

ii

Contents

List of Figures v

List of Tables ix

1 Introduction 1

1.1 e-Science . 1

1.1.1 Infrastructure . 3

1.2 Service Oriented Architecture . 7

1.3 Web Services . 8

1.4 Scientific Workflows . 11

1.5 Motivation and Goal . 12

1.6 Related Work . 14

2 Architecture for Scalable Data Transfers for Web Services 17

2.1 Design Requirements . 18

2.1.1 Flexibility . 19

2.1.2 Security . 19

2.1.3 Reliability and Scalability . 20

2.2 The ProxyWS . 20

2.2.1 Web Service, WSDL interface 21

2.2.2 Data Transport Context . 22

2.2.3 VRSServer . 22

2.2.4 Virtual Resource System . 23

2.2.5 Main Component interaction . 23

2.3 Design and Implementation Issues . 24

2.3.1 Proxy Call of a legacy web services 26

iii

CONTENTS

2.3.2 Using the ProxyWS as an API 28

3 Use Cases 31

3.1 Benchmarking . 33

3.2 Parallel Indexing . 41

3.3 Search & Name Entry Recognition . 46

3.4 Visualization WS . 52

3.5 The ProxyWS in Practice . 59

4 Discussion 61

4.1 Discussion . 61

4.2 Future work . 62

Bibliography 65

iv

List of Figures

1.1 e-Science . 2

1.2 The Grid . 5

1.3 SOA . 8

1.4 SOAP message . 9

1.5 Deployed Web service interaction . 10

1.6 Service Orchestration and Choreography. (Left) Service Orches-

tration — web service calls are always controlled by a workflow engine

and (right) Service Choreography — which describes the message ex-

change among interacting web services. 13

2.1 Data pipeline for data-centric workflows 18

2.2 VRS Architecture . 24

2.3 Main Component interaction . 25

2.4 The ProxyWS architecture . 27

2.5 The ProxyWS as an API . 30

3.1 SOAP workflow . 34

3.2 ProxyWS workflow (a) . 35

3.3 ProxyWS workflow (b, c) . 36

3.4 Streaming workflow . 37

v

LIST OF FIGURES

3.5 Benchmarking results. The graphs represent time measures for five

different workflow implementations. In the x-axis a measure of the data

produced by the producing web service is given, while the y-axis mea-

sures execution time of each workflow. In the top graph the results are

given for data up to 6MB, while in the bottom the measures where made

for up to 1GB. 39

3.6 Parallel Indexing workflow . 42

3.7 Execution time and Speedup of Indexing workflow. Execution

time and speedup for 1, 2, 4, 8, 16 indexing web services. For indexing

data sets of 29 and 119 MB and 8 hosts or more the execution time

increases, while speedup drops . 45

3.8 Efficiency of Indexing workflow . 46

3.9 Execution time break down. Execution time for indexing a data set

of 29MB (top) and 8.4GB (bottom), broken down in pre-stage, execution,

and post-stage time. It is obvious that the bottleneck is the coming from

the post-stage time. 47

3.10 Search and NER SOAP workflow . 49

3.11 Search and NER ProxyWS workflow . 49

3.12 Search and NER Streaming workflow . 50

3.13 Execution times for the Search and NER workflows. The first

column for each experiment is the execution time for the first workflow,

the second for the second workflow, and so on. The top graph represents

results for 100 to 1900 documents, and the bottom 2700 to 8300 documents 51

3.14 Visualization Pipeline workflow (a) . 53

3.15 Visualization Pipeline workflow (b) . 54

3.16 Execution time for the Search and NER workflow, for 2700 to 8300 doc-

uments . 54

3.17 Carotid artery . 56

3.18 Execution time for the visualization workflows 58

3.19 Rendered artery and flow field. Starting from the top left, the

stream line ratios used are 300, 150, 110, 50, and 30, while the last

image (bottom right), shows the artery with a ratio of 2. In this case it

becomes vary difficult to examine the diffraction point. 58

vi

LIST OF FIGURES

4.1 Multiple Data Streams Scenario . 63

vii

LIST OF FIGURES

viii

List of Tables

3.1 Use Cases. 32

3.2 Data sizes. 38

3.3 Data sizes for number of documents returned. 50

ix

LIST OF TABLES

x

1

Introduction

Scientific research, has often being the driving force behind the introduction of new

technologies, while it can also being said, that new technologies, have opened new

paths for scientific research. An example of this cycle is the introduction of the web,

where scientists used it to prompt the collaboration between them, but as scientific

research becomes more demanding in terms of collaboration, knowledge, and resource

sharing, it has pushed for the introduction and usage of new technologies and models. e-

Science is the next step that attempts to support the requirements of scientific research.

e-Science depends on Service Oriented Architecture (SOA), and web services as an

underling model that will realized goals of large scale coordination and collaboration,

through resource and knowledge sharing. For services however to be able to meet these

demands, they have to first address some issues, one of which is reliable and scalable

data transfers, as this new way of scientific research is producing and analyzing large

quantities of data. It is therefore desirable to introduce a mechanism that will be able

to address problems of data transports, for e-Science and SOA-applications.

1.1 e-Science

e-Science is the systematic science of collaborative research, employing computational-

intensive, data-intensive, and highly distributed methods. It is the evolution of the

scientific research, where virtual laboratories provide access to resources around the

globe, and knowledge sharing is made possible in a far more distributed, interactive, and

massive way. Thus e-Science is the effort of combining, and sharing resources including

1

1. INTRODUCTION

computing, network, data, human, etc. so that a research collaborative environment is

provided, or in other words (1):

“e-Science is about global collaboration in key areas of science and the next generation

of infrastructure that will enable it.”

The need for a more efficient, and collaborative environment comes from the chal-

lenges presented in modern science research, which has to face problems that are grow-

ing in complexity. Moreover, research objectives are not isolated, but are rather cross-

disciplinary and large-scaled, causing an overwhelming increase in data complexity and

volume, something that makes the need for communication, collaboration and coordi-

nation among scientists more apparent than ever. Currently the amount of resources

that could tackle these problems is available, but in order for researchers to use them

efficiently, a sharing and coordination model is needed. These resources include high-

speed networks, an abundance of computational power through HPC (High Perfor-

mance Computing), Grid, and Cloud Computing, and a large scale of scientific data.

Figure 1.1 shows the relationship between resources, applications, and the e-Science

environment.

Figure 1.1: e-Science - A layered structure of e-Science and the way applications, and
resources are related.

e-Science has emerged as a solution to challenges like cross disciplinary research,

coordination and cooperation, while its ultimate goal is to provide scientists with a

2

1.1 e-Science

more easy-to-use interface and to help them get access of distributed and heterogeneous

resources.

1.1.1 Infrastructure

As mentioned in Section 1.1, e-Science is trying to combine and share resources amongst

scientists. Although e-Science is about resource sharing, this notion, at least in the

context of e-Science describes practices, and frameworks. As seen from Figure 1.1,

e-Science uses some form of computing models to deliver a cooperative scientific en-

vironment. Very often these models, either depend, or implement Service Orientated

Architectures, in order to deliver specific resources to applications. In this Section we

will give a brief description of the most common technologies used to-date, in order to

provide computational, and storage resources.

Grid Computing One of the most known applications of Grid computing is found

in the LHC (2), where the four experiments (ALICE, ATLAS, CMS, LHCb (3; 4;

5; 6)) will produce approximately 15 petabytes of data annually. Apart from the

data potentially produced, each of the experiments before the actual collisions, has

being performing simulations of collisions with the use of various frameworks and tools

(7; 8; 9). The frameworks that will support these experiments are based on the Grid

computing paradigm.

Grid computing is the combination and sharing use of hundreds, or thousands, of

geographically and organizationally disperse and diverse resources (hardware or soft-

ware) in order to solve problems that require large computational power (10; 11). The

goal of Grid computing, or the “promise”, is to be able to provide unlimited computa-

tional power to its users regardless of location, or platform used. This “promise” gave

this model its name which is compared with the power grid, where users are able to

plug in to a socket any kind of device, and imitatively receive power.

One of the key elements of Grid computing is the Virtual Organization (VO), a

structure that enables the coordination and sharing of the available resources, whether

these are computers, software, or data. VOs are formed by individuals, organizations,

institutes, or any other entity that is contributing and/or using resources (11). For

example in the Large Hadron Collider (LHC) context each of the four experiments

mentioned previously also makes up a VO, which spans many institutes around the

3

1. INTRODUCTION

world. Regardless of setting up a VO, Grid Computing still needs to address a number

of important issues, some of which include:

• Portability, Interoperability, and Adaptability. In order to make full use of avail-

able resources, Grid applications should be able to use heterogeneous resources,

across different platforms, and configurations (12).

• Resource Discovery. Since Grid computing is comprised by large numbers of

resources scattered across different geographic locations and organizations, re-

sources should be easily and transparently discovered (13).

• Fault Tolerance. The Grid, as a large collection of distributed resources owned

by different organizations, is not able to guarantee the stability of individual

resources; instead, various mechanisms have to provide alternative resources in

order to cope with errors and resource failures.

• Security. The use of different resources, owned by different organizations raises

complicated security issues, which span from authorization, and authentication,

to data integrity and privacy, on large scale multi-user environments (14; 15).

• Monitoring. Monitoring covers almost every aspect that makes up this model.

Among others, it concerns resource monitoring, job execution and error reporting,

as well as security and access logs.

Grid Computing is facilitated by grid middlewere, which is a collection software

component that provides access to, distributed resources. In recent years grid mid-

dlewere is shifting towards Service Oriented Architectures, in order to realize the grid

“promise”. Under this architecture, services are used for providing resources virtual-

ization, information, etc. Figure 1.2, depicts a simplified view of the Grid, where a

hierarchical information service holds information about available resources. End-users

and job submission services consume this service for discovering resources (also avail-

able as services). End-users can submit and monitor jobs through the job submission

service and the notifications it receives from resource services.

4

1.1 e-Science

Figure 1.2: The Grid - A simplified view of the Grid. Each grid site registers its resources
to a hierarchical information service used by job submission service and end users.

Cloud Computing Cloud computing is emerging as a new paradigm that promises

to deliver infinite resources, under an easy access framework, that hides the complexity

of the system from the user. This paradigm shifts the location of resources to the

network, something that gave this paradigm its name since often the network is depicted

as a cloud in design diagrams.

As a new paradigm cloud computing has no commonly accepted definition, although

attempts to do so are made (16). In many cases Cloud computing seems to share

many features with Grid computing, since both attempt to utilize an abundance of

computational and storage resources. Perhaps one of the main differences that separate

the two paradigms is their origin and the notion of resource sharing. Cloud computing

was initially introduced for commercial usage, while Grid computing was introduced for

scientific research. Additionally cloud computing is not providing any form of resource

sharing. This does not stop Cloud computing from entering the scientific research

domain (17; 18). One of the benefits of using such a model, could be easing the steep

learning curve Grid computing seems to have. Apart from easy usage Cloud computing

promises “elastic” scaling of resources, by being able to add and remove them depending

on requirements, a feature mainly accomplished thought vitalization (19).

The majority of cloud computing infrastructure, consists of services interfacing

5

1. INTRODUCTION

different resources hosted in the provider’s infrastructure. This allows the Cloud to

appear as a single access point for all the computational needs of users. So Cloud

computing adopts an “as a service” approach, for offering resources to its users. As

such, Cloud computing currently offers the flowing resources as a service:

Infrastructure as a Service (IaaS) . This gives users the ability to request, control

and release instances of virtual machines, running on the providers infrastructure

(cluster, data centers, etc.). The most popular example of IaaS is Amazon Elastic

Computing Cloud (19), where users may request or upload instances of virtual

machines.

Platform as a Service (PaaS) . It is the delivery of an application-hosting platform

that enables deployment of web applications in the providers infrastructure. An

example of PaaS is offered by Google and its Application Engine which enables

deployment of scalable web applications (20).

Software as a Service (SaaS) . Is about delivering applications to users, through

the web. SaaS software vendors deliver on-demand application releasing users

from the need of updating, or purchasing applications. An example of a SaaS is

Google documents (21)

As it seems Cloud computing is not clearly defined probably because it is introduced

by vendors, each one providing its own implementations. Nevertheless Cloud computing

has some features that characterize it. These include:

• Delivery of non-shared resources.

• Aggregation of resources, possibly heterogeneous.

• virtualization of hardware and software platforms.

• Security through isolation of users.

• Scalability of resources (nodes, sites, hardware, software, etc.).

• Centralized control by providers.

• User friendliness.

6

1.2 Service Oriented Architecture

• Lack of standards.

Although in most definitions the utility aspect of Cloud computing is emphasized,

it is felt that it should not characterize this model. Billing for resources or services,

is something that is entirely up to providers. Instead, accounting is an aspect that

can include billing of usage, without isolating this paradigm to a commercial domain.

Despite the lack of an accepted definition, cloud computing is taking advantage of the

Service Oriented Architecture in order to deliver scalable, “elastic” and easy to used

resources.

1.2 Service Oriented Architecture

In recent years as networks are becoming faster, safer, and more reliable, there is a

clear trend for developing distributed applications that depend on standardization for

their successful deployment, usage and maintenance (22). Consequently, SOA (Service

Oriented Architecture) was emerged as an effort to provide a standardized description

for developing loosely coupled distributed applications. Thus, SOA refers to a style

of building reliable distributed systems that deliver functionality as services, with the

additional emphasis on loose coupling between interacting services. Furthermore SOA

refers to the design of a system, not to its implementation, and as an architectural style

it emphasizes the description of components as modular services that can be discovered

and used by clients (23). Furthermore, clients can use these services individually, or they

can integrate them in order to provide higher-level services. This approach promotes

re-use of existing functionality and dynamic compilation of distributed applications.

In order to do that, services communicate with their clients by exchanging messages,

which are usually defined in terms of requests and responses.

As mentioned previously services can be loosely coupled in order to provide a higher-

level service. This can be accomplish by organizing them in a workflow, where the

order in which individual services are used is controlled by the workflow definition

(24). Typically, service providers register their services in service registries where they

advertise their capabilities and usage in order for service consumers to use and/or

organized them in workflows. Clients can use this registry in order to discover services

that meet their demands. Figure 1.3, illustrates this interaction.

7

1. INTRODUCTION

Figure 1.3: SOA - An example of SOA

As mentioned earlier SOA describes loosely coupled services, which in essence means

that services participating in a workflow or a SOA application are unaware of each

others existence. This provides some benefits namely:

• Flexibility: A service may be deployed in any machine and relocated if necessary.

As long as that service updates its registry entry, clients will be able to discover

it.

• Scalability: Services can be added and removed in order to meet the demands of

the application.

• Replaceability: If services maintain a standard interface, new or updated im-

plementations, can be introduced, without disrupting the functionality of any

workflow or application.

• Fault tolerance: If a service becomes unavailable for any other reason, clients can

still query the registry for alternate services that offer the required functionality.

• Reusability: A service can be part of more than one workflow, as it can interact

with multiple clients.

1.3 Web Services

Web Services are a distributed computing technology, based on Service Oriented Ar-

chitecture principles that make up the building blocks for developing loosely coupled

8

1.3 Web Services

distributed applications. W3C defines them as: “a software system designed to support

interoperable machine-to-machine interaction over a network. It (a web service) has an

interface described in a machine-processable format (specifically WSDL). Other systems

interact with the Web service in a manner prescribed by its description using SOAP

messages, typically conveyed using HTTP with an XML serialization in conjunction

with other Web-related standards.” (25). Thus, web services interact by exchanging

SOAP messages while WSDL provides the description of their functionality.

The Simple Object Access Protocol (SOAP) is an XML-based protocol for exchang-

ing messages over decentralized, distributed environments. Web services can used it

over a variety of protocols although the most common transport protocol is HTTP(S).

SOAP forms the basic messaging framework upon which web services may communi-

cate, through several different types of messaging patterns. A SOAP message shown

in Figure 1.4 consists of three parts: i)a mandatory envelope element, which is the

top element of the XML document, ii) an optional SOAP Header that defines how

a recipient should process the message, and iii) a mandatory SOAP body element,

that contains the actual message. This message represents remote procedure calls and

responses.(26; 27).

Figure 1.4: SOAP message - An example of a SOAP message, and its three

In order to construct a SOAP message that will invoke the desired web service,

a description of the service is needed. This is accomplished through the Web Service

Description Language (WSDL), which describes the public interface of a web service. In

general, WSDL describes a web service into two levels: an abstract, and a concrete. At

9

1. INTRODUCTION

an abstract level, a WSDL document describes a web service in terms of the messages it

sends and receives, and the data types used in these messages. The description of these

data types found in WSDL, are typically provided by XML Schema (28). Additionally

at the abstract level, WSDL also defines the services ports, or a collection of supported

operations. At the concrete level, the WSDL defines the protocol and data format

specifications for particular port types.

Figure 1.5: Deployed Web service interaction - Typical web services are deployed
within a application server

Web services are usually deployed within application servers that use some commu-

nication protocol for sending and receiving responses and request. Figure 1.5 shows the

architecture of a web service implementation under an application server. On the top

level, the application server is responsible for sending and receiving messages with the

use of the underling protocol. These message are delivered to the appropriate appli-

cation, where in the case of web services is an SOAP engine (a SOAP implementation

according to the specifications proposed by W3C (26)). The SOAP engine is then re-

sponsible for instantiating requests from the SOAP message, and invoking the desired

web service. Therefore, when a client wants to invoke a web service, it connects to

an application server that provides the WSDL describing the service. The client can

then determine which methods are available by the web service. WSDL also describes

any special data types in the form of XML Schema. The client can then generate a

SOAP message to invoke one of the methods. When a SOAP message arrives at the

application server, it is first delivered to the SOAP engine which transforms network

level SOAP messages into something more tangible for applications to deal with (such

as domain-specific objects. Typically, the service generates some response that is then

fed back to the SOAP engine. The SOAP engine creates a SOAP message and passes

it to the application server, for delivery back to the client.

10

1.4 Scientific Workflows

The mechanisms described here enable web services to operate in a language in-

dependent manner. More importantly the when encapsulating the internal implemen-

tation within the service, and providing a standard interface of its methods and data

types to consumers, the owners of a service are free to evolve its internal structure over

time (for example improve performance, dependability etc.), without making changes

to the message exchange patterns used by existing web service clients. This encour-

ages loose coupling between consumers and service providers, which is important for

interoperability and language and platform independence, something that provides the

basses for large scale distributed applications.

1.4 Scientific Workflows

Researchers can create scientific applications and complex experiments with workflows.

Workflows combine and coordinate a set of services so that a more complex goal is met.

In other words, a workflow brings together services in a consistent manner in order to

provide a description of execution of a higher-level application. Providing a more formal

definition of a workflow: “the term workflow can be defined as the orchestration of a

set of activities to accomplish a larger and sophisticated goal, referred as a business

process” (29). Scientific workflows can be broken down in three different steps: design,

specification, execution and monitoring (30).

Workflow design determines how workflow components interact. A workflow is

composed by connecting multiple tasks according to their dependencies, while the

workflow structure indicates the relationship between tasks. In general, a workflow

can be represented as a Directed Acyclic Graph (DAG) or a non-DAG. In DAG-based

workflows, three structures can be identified: i) sequence, where one task starts after a

previous task has completed ii) parallelism, in which tasks are executed in parallel and

iii)choice, where a task is selected to execute at run-time if its conditions are satisfied.

Non-DAG workflows have the same structures as DAG-based, with the addition of an

iteration structure, in which tasks in a workflow are iterated according to some control

or conditions.

11

1. INTRODUCTION

Workflow Specification defines a workflow including the definition of tasks. There

are two types of workflow models namely: abstract and concrete. In the abstract

model, a workflow is described in an abstract form, in which the tasks of the workflow

are specified without referring to specific resources. On the other hand, the concrete

model binds tasks in a workflow to specific resources. Usually the concrete workflow

model is generated just before or during workflow execution, according to the status of

resources at execution time.

Workflow execution and Monitoring , takes place when the workflow is defined.

At this stage, the workflow instance is executed on specified resources. If these resources

provide status information, the workflow can monitor the execution of each task.(31).

In the case of web services two approaches exist in workflow implementation: Service

Orchestration and Service Choreography. Service Orchestration (shown in Figure 1.6)

describes how web services can interact at the message level, including the application

logic and execution order of the functionality exposed by the WSDL a web services

provides (32; 33). In orchestration, the process is always controlled by a workflow

engine, so all invocations (and replies) are made by (and to) that workflow. On the other

hand, choreography (shown in Figure 1.6) is more collaborative, because it describes

the message, exchange among interacting — yet independent — web services (34).

Regardless which architecture is chosen, any data driven workflow execution can be

effectively reduced into three stages: (i) generating or obtaining data, (ii) processing

that data, and (iii) transferring or storing the results. Usually individual services

perform these three stages. Thus, it is apparent that data transport in SOA and e-

Science applications play an important role.

1.5 Motivation and Goal

SOA has emerged as an appealing paradigm for developing applications by providing

interoperability and flexibility in large scale distributed environments which make up

the e-Science infrastructure (i.e. clusters, computational grids, clouds, etc)(35; 36).

In order to take advantage of these features, e-Science applications tend to adopt this

paradigm and more specifically implementing SOA-based applications by developing

and using web services that seem to gain acceptance, not only in the scientific domain

12

1.5 Motivation and Goal

Figure 1.6: Service Orchestration and Choreography. (Left) Service Orchestra-
tion — web service calls are always controlled by a workflow engine and (right) Service
Choreography — which describes the message exchange among interacting web services.

but also in the commercial(37; 38; 39; 40). Another reason why web services are used

in e-Science applications, is the fact that they can be easily coupled in workflows, which

forms the bases of the design and execution of scientific experiments (41). Moreover

scientific experiments such as medical, and meteorological (39; 40), are data driven,

something that shows that Scientific applications require analyses of distributed data

from a variety of resources managed in diverse regional, national and global repositories

(42; 43; 44).

Although Web services provide a SOA implementation they suffer from “data isola-

tion”, since SOAP does not offer a scalable and fast way of transporting large data sets

to and from web services (45; 46). Additionally there is an abundance of deployed web

services restricted in using only SOAP while service consumers (clients, workflows etc.)

are stretching these services to produce and deliver large data sets. This on one hand,

results in non-scalable distributed applications, while on the other hand if these services

are to be re-implemented, it will probably make them unusable for exiting workflow

implementations. Another reason why these services cannot be re-implemented is sim-

ply the fact that the source code is no longer available. Furthermore, in orchestration

workflows, any call to a data producing web service results in a reply back to the work-

flow engine, which then needs to transfer the data to a consuming web service. This

results in unnecessary “data hops” between the web service and workflow engine.

Under such environments a challenge that arises is how to enable the scientists

to harvest on-line data for executing data driven workflows that are made up from

13

1. INTRODUCTION

services. To address these problems we introduce the ProxyWS, a web service that is

not only able to coordinate the transportation of large data volumes, but also provides

support for large data transfers to existing web services. The ProxyWS is implemented

as a service itself, so that existing service oriented applications can still use deployed

services, with the added functionality of large data transports. Therefore, if an existing

client wishes to use the functionality of both the ProxyWS and an existing service, the

only thing it needs to change is the address of the SOAP call, from the existing service,

to the ProxyWS. In doing so, the ProxyWS will make sure that the invocation will be

directed to the appropriate service, and data will not be returned via SOAP. Another

feature that the ProxyWS is introducing, is direct data streaming between web services,

a feature that can speed up workflow execution, by creating a data pipeline between

services participating in that workflow (47; 48).

Thus the goal of the ProxyWS is to provide scalable data transports for both “legacy

web services” and new web service implementations alike. In doing so large scale SOA-

based applications are promoted, which from the backbone of e-Science applications.

1.6 Related Work

Many different approaches have being introduced, in an attempt to address the “data

transport problem” faced by web services. One of them is proposed by the Styx Grid

Services (SGS) (49), a service implementation based on the Styx protocol (50) initially

developed for the Plan 9 (51) distributed OS. In this work, the authors identify the

benefits of SOA, as well as the drawbacks of web services when called to transport

data. The motivation behind the SGS, is to expose legacy command-line programs

as web services, while using a direct streaming approach for data exchange between

SGSs. An additional feature of SGS, is the fact that they can operate as a web service

or within the Web Service Resource Framework(WSRF) (52), something that means

it may send and receive SOAP messages, and expose the service functionality thought

WSDL. Although this work is very interesting, it is isolated in using the Styx protocol,

and does not provide services with alternative data resources access.

Taverna (53), a well-known workflow management system, faces one of the most

common problems known to workflow orchestration. That is large data are returned

inside SOAP messages to Taverna, which then has to redirect them to the appropriate

14

1.6 Related Work

service. Thus, large messages may potentially crash Taverna since it has to cope with

both control and data flow. To overcome this problem a Data Proxy web service

(54) has been introduced. This service wraps existing web services, and SOAP calls

are directed there instead of the target service. When the target service generates

a response the Data Proxy web service, references that response, and delivers back

an HTTP URL. Although this approach solves the problem of passing large data to

consuming services (without having to go through Taverna), it is not addressing the

case where data need to be stored or obtained from a remote location (i.e. GridFTP).

Additionally if a “legacy web service” is called to produce data that can’t be fitted in

SOAP, this approach will no prevent that service from crashing because the host run

out of memory trying to generate the SOAP massage.

A similar work is presented in (55) where its authors are addressing issues of orches-

trating data-centric workflows. Their approach is a hybrid workflow architecture that

is based on centralized control flow (orchestration), and distributed data flow. The key

component in realizing such a hybrid approach is a set of proxy web services, deployed

in the vicinity of the web services participating in a data centric workflow. According

to the authors, a centralized control flow has some advantages over the choreography

model, mainly in fault detection and error handling. Although this work addresses

the issues of orchestrating data-centric workflows, the proxy services exchange data via

SOAP. Moreover, services cannot access remote data resources for retrieving or storing

data.

Flex-SwA (56) is an implementation that extends the SOAP with Attachments

(SwA) specification (57). This work extends the abilities of web services in terms of data

transports while it preserves the interoperability of the existing SwA specification. More

specifically Flex-SwA attempts to increase the flexibility of bulk data transmissions

in service-oriented environments, as it allows the use of different protocols for data

transmission including TCP, GridFTP, RFT, and BitTorrent. In this work, the authors

take advantage of diverse protocols and do offer a flexible way of delivering data to web

services, but this implementation leaves out legacy web services that are no longer able

to cope with the data they need to transmit.

The authors of (47), present a framework to support distributed data streams, for

web services. Their approach relies on a messaging infrastructure (NaradaBrokering)

that adopts a publish/subscribe paradigm. Additionally in this work, the introduction

15

1. INTRODUCTION

of a Web Service Proxy (WSProxy) handles data streams on behalf of services, with

the use of NaradaBrokering. Although this work is consternated on data streams, and

does not provide access to remote data resources for web services (legacy or new), the

use of its WSProxy provides a good solution for handling large data that consuming

services need.

From the work described above, it seems that an efficient way of addressing the data

transport problem of both “legacy” and new web services is to deliver data directly to

services, thus tackling the problem orchestration seems to have as well as removing

the need for saving temporary data to remote locations. Additionally to overcome the

limitations presented by SOAP, as well as to take advantage of legacy services, we need

to create a data proxing mechanism that would be responsible for data transfers. In the

Sections that follow the specifics for the design and implementation of such a solution

will be presented.

16

2

Architecture for Scalable Data

Transfers for Web Services

The next generation of experiments and applications within the e-Science context is

expected to generate a “flood” of scientific data (10). Since web services seem to play

an important role in this environment, they would have to be able to cope with this

expected data explosion. Therefore an architecture that would provide data transfers

for web services, would have to scale with potentially enormous data sizes.

One step towards scaling data transfers for webs services, is to enable current imple-

mentations to go beyond what they can currently achieve. The main hurdle of “legacy”

web services comes from SOAP itself. So by providing alternative data path for existing

web services would enable existing implantations to scale with current data demands.

As noted from Section 1.6, one way of providing this alternative data path would be to

direct SOAP calls to an other services that can take care of data transfers.

Furthermore to be able to meet the data demands of todays and futures applications,

web services will also have to take advantage of existing data solutions. Grid Computing

has provided some implementations that promise an abundance of data storage. These

solutions mainly involve file storage and management, like LFC, SRM etc. It is therefore

apparent that a scalable and usable architecture would have to use existing solutions in

order to meet the demands of e-Science applications. These demands, mainly involve

access to scientific data located in remote data resources.

But to address the problem of enormous data transfers for web services, we should

also focus on how data produced by web services can be efficiently handled. An intuitive

17

2. ARCHITECTURE FOR SCALABLE DATA TRANSFERS FOR WEB
SERVICES

Figure 2.1: Data pipeline for data-centric workflows - In data-centric workflows,
creating data streams between web services can provide scalable data transfers.

approach, especially for data-centric workflows, is to deliver data directly to consuming

services. If these services are able to process data streams, then streaming can be

considered as a scalable solution. A data stream is generally considered as an infinite

stream of data, that is channeled in some consuming function or process (?). Under

this approach, data pipelines are created between web services, as presented in Figure

2.1, and by using the existing data resources, web services can access, process, and

store even larger amounts of data, making them a truly scalable solution for e-Science

applications.

2.1 Design Requirements

Since e-Science applications and in extension web services operate on diverse data

and complex execution environments, it is therefore expected from a data transport

mechanism used in these applications, to meet requirements of flexibility, security,

reliability, and scalability.

18

2.1 Design Requirements

2.1.1 Flexibility

First of all such a mechanism should be adaptive and extensible. As the e-Science

infrastructure grows from experimental to mature stable mechanisms, lots of imple-

mentations and designs change or even disappear in a short period of time. One day

data repositories are located in an SRB server (58), the next they are moved to LFC.

Moreover many applications use distributed data sources which might be fragmented

and not interoperable. Also datasets may vary in size, type, and format. This frag-

mentation and data distribution over different resources calls for a mechanism that will

provide uniform access to these resources. Furthermore some applications might need

specialized mechanisms for accessing specific data resources. If for example a medical

application provides data from an MRI scanner, a data transport mechanism for such

an applications should be easily extensible to meet these demands. Finally as hardware

infrastructures change, new software and services provide access to this sate-of the art

infrastructures. For example in the case of StarPlane, a set of services provides access

to a high performance phototonic network (59). If a data transport mechanism wishes

to take advantage of such infrastructure, it needs to be extensible, and provide a good

level of abstraction in order to cope with constantly changing environments.

2.1.2 Security

Another consideration for a data transport mechanism is security. Since e-Science

applications grow in sophistication and connectivity their data also becomes vulnerable

to tampering. Furthermore some applications, like medical might be using sensitive

data that needs to be kept private, or under strict accesses control (60). Security also

plays an important role for adopting the e-Science paradigm, because users will need

warranties for their data integrity and privacy. For example, although data coming

from the LHC will be open to anyone having a suitable Grid certificate, they must keep

their integrity in order to ensure sound scientific conclusions. Hence a data transport

architecture should consider the following issues:

1. Authentication and Authorization. Authentication refers not only to the identifi-

cation of users wishing to access a resource, but also to the identification of other

resources trying to access one-another. Thus some of the issues authentication

mechanisms have to cope with include: i) Interoperability across different systems

19

2. ARCHITECTURE FOR SCALABLE DATA TRANSFERS FOR WEB
SERVICES

and domains, for example when authenticating different resources. ii) Scalability

to large communities of users and models of multi-level authentication (14; 15).

Authentication mechanisms on the other hand grand access to users or resources

based on access control policies.

2.1.3 Reliability and Scalability

When designing a data transport mechanism for e-Science application, one has to ensure

that such a mechanism is reliable and can cope with large data sets.

Usually e-Science applications are described and executed through complex work-

flows which most of the times are characterized by their long execution times. Usually

the execution time can be distinguished in two parts: processing and data transport

time, since in a typical workflow execution one component processes data produced by

another (dataflow paradigm). Thus restarting data transfers due to failures is a luxury

such applications cannot afford since they will be incurred with even longer execution

times.

2.2 The ProxyWS

The ProxyWS architecture is designed with the requirements mentioned above in mind,

as well as the solutions proposed in Section 1.6. The ProxyWS is a web service that

focuses on two points: i) Deliver data from remote data resources to web services

(existing or new) and ii) Enable these services to deliver larger data-sets. Accessing

remote data resources in a uniform way is not mentioned in any of the work presented

in Section 1.6, but seems necessary for e-Science applications. On the other hand a

number of interesting approaches are presented in the same Section, and have being

adopted by the ProxyWS. One of these approached is the notion of proxing SOAP

calls, and managing data transport on behalf of web services. Thus by combining

the requirements presented in Section 2.1 and related work presented in Section 1.6,

the ProxyWS is designed to be a non-intrusive web service that can transport large

data sets to and from legacy web services, while taking care that results produced

are not returned via SOAP. Additionally by exploiting existing API’s the ProxyWS is

able to deliver data, from remote data resources (like LFC (61) or GridFTP (62)). This

functionality is delivered to existing web services, without having to change the services

20

2.2 The ProxyWS

them selves, or the underlying environment (application server). The second point is

to enable new service implementations to handle and transfer potentially enormous

data sets by using direct streaming between web services, thus creating data pipelines.

This is achieved by providing a simple API to web services that can either open data

streams to or from other web services or by providing a uniform access to remote data

resources.

To realize these goals, the ProxyWS is made up from modules, each one playing a

different role in the design. These modules are described in the following sections.

2.2.1 Web Service, WSDL interface

The WSDL interface is the front-end of the ProxyWS invoked via SOAP, an interface for

making proxy calls to legacy web services while resolving referenced data. Additionally

the web service provides the means of getting the transport URIs which the ProxyWS

uses to read and write data. This WSDL results from combing the solutions proposed

by (47; 55) and (54) (also mentioned in Section 1.6). More specifically the web service

provides the following methods:

• callService: This method receives as arguments the name of the target service

the name of its method and an array containing the necessary arguments. If the

call is successful this method will return a URI where the produced data may be

obtained.

• callServiceReturnObject: Sometimes it isn’t necessary to reference data, so

this method just returns the result as an object, while taking the same arguments

as the callService.

• asyncCallService: Similar with the callService this method makes the proxy

call but instead of waiting for the method to complete, it immediately returns

the URI back to the caller.

• asyncCallServiceReturnObject: When calling this method, the caller will re-

ceive a key, which can use to poll the service for the result.

• getReturnedValue: When using the asyncCallServiceReturnObject, the caller

can use this method to poll the service for a result.

21

2. ARCHITECTURE FOR SCALABLE DATA TRANSFERS FOR WEB
SERVICES

• getReturnedValueRef: Similar to the getReturnedValue this method returns a

value generated by a proxy call, but instead of the actual value the caller gets a

URI reference.

• setProxy: When accessing resources that require authentication and/or autho-

rization a caller must provide the ProxyWS with its proxy credentials.

• getUloadURI: Since the goal of the ProxyWS is to enable web services large data

transport, it also provides a method for obtaining an upload URI. The ProxyWS

may return a number of URI, depending on the implemented protocols, so a client

may decides which is more suitable.

• getResourceURI method, can reference any resource, local or remote, in any of

the available protocols (i.e. a local file or a data stream to an HTTP URL, or a

remote GridFTP file to an HTTP URL).

These methods presented here aim in providing clients, the means to invoke existing

web services that can now obtain and produce larger datasets, while not having to

change their implementations. Furthermore in an effort to keep the WSDL interface

simple, while at the same time covering the needs of proxy invocations, the number of

methods exposed by the WSDL, is kept low.

2.2.2 Data Transport Context

This component handles the communications and Grid credentials on behalf of the web

service. So if the web service has obtained a value from a proxy call, it uses the data

transport context to pass that value to the VRSServer or any other data resource. Ad-

ditionally when streaming is used the web service can obtain input/output streams to

any resource, including any VRSServer implementation via the Data Transport Con-

text. So this module can be seen as an effort to provide “data management” services,

for the web service, as well as to make a separation between control (legacy service

invocations), and data handling.

2.2.3 VRSServer

The VRSServer is a simple interface that enables web services to stream data to other

resources. An implementation of that is the HTTPTransport component, which from

22

2.2 The ProxyWS

the web service’s point of view only provides input and output streams to data re-

sources, or other web services. More specifically the HTTPTransport is able to directly

stream data produced by the ProxyWS or by a file, local or remote. In general this

module enables services to deliver data directly to consuming services, either by direct

streaming, or as files. In other words this module makes it possible for the web service,

and in extension legacy services, to deliver larger data to other resources (data or ser-

vices). Hence data pipelines are possible and workflow executions are more efficient, as

data don’t have to go through the workflow engine or remote storage locations.

2.2.4 Virtual Resource System

The Virtual Resource System (VRS) is a Java API that enables homogeneous access

to multiple resources (GridFTP, SRM, data streams, etc) and it is the API used by

the VBrowser, an intuitive GUI for browsing Grid resources (63). The API adopts

a layered architecture seen in Figure 2.2. According to that, the VRS on the top

level defines a resource abstraction which can be seen as a handler for referencing

resources like files and services. On the next level the VRS defines a virtual file system,

an HTTP, an OGSA and a web service resource. The Virtual file system includes

implementations that can handle physical files, like local file systems, SFTP, GridFTP,

etc. For abstracting HTTP resources, the VRS assumes that this kind of resources can

at least provide input and output streams. This layered implementation adopted by

the VRS enables a uniform access to multiple data resources just by providing their

URI. As for the service resource implementations, those are mainly used for accessing

storage managers and file catalogs. Finally an extension to the VRS is the VRSServer,

so that the ProxyWS can provide data streams from proxy calls or web service backend

implantations. This part of the implementation is one of the most crucial, as it enables

web services to uniformly access scientific data located in a variety of data resources.

2.2.5 Main Component interaction

Having given an overview of the main components that make up the ProxyWS design,

we can now describe the way they interact with each other. Figure 2.3 shows the

interaction between the main components.

When the web service interacts with a workflow engine or a client, it receives SOAP

invocations according to the methods described in Section 2.2.1, while it returns either

23

2. ARCHITECTURE FOR SCALABLE DATA TRANSFERS FOR WEB
SERVICES

Figure 2.2: VRS Architecture - The VRS architecture is designed in order to abstract
any resource

data objects or data references (contained with in SOAP messages). Next, the web

service may interact with a target service, where invocations result in data objects that

are not yet encased in a SOAP message.

The data context component may receive those data objects as a result of a web

service invocation or provide a data object received from the VRSServer to the web

service. Furthermore the data context is responsible for providing input and output

streams, that are provided by either the VRS, or the VRSServer1 to the web service.

Next the VRSServer might provide data objects, converted from input data streams

or the input streams themselves to the data context. The VRSServer is also serving

data requests for resources, whether those are file streams, or data coming from a proxy

call.

Finally the VRS is responsible for giving the design access to diverse data resources

by providing input, output streams or file handles, from remote locations.

2.3 Design and Implementation Issues

The most common framework for developing web services is Axis (64). It is essentially

a SOAP engine, which can be used for constructing SOAP processors such as clients

and servers. Nevertheless Axis also includes a simple stand-alone server, which can plug

into servlet engines, and Web Service Description Language (WSDL) support. Tomcat

on the other hand is a popular Java based web server that supports web applications

and servlets. Besides the stand-alone server, Axis may also be deployed under Tomcat.

1Currently the VRSServer is not part of the VRS, but it could be integrated so the VRS may also

provide stream producing entities.

24

2.3 Design and Implementation Issues

Figure 2.3: Main Component interaction - The web service is responsible for making
proxy calls to legacy services, while the data context and the VRSServer take care of data
transports

Taking advantage of these tools the ProxyWS implements a VRSServer as an HTTP

servlet that runs under Tomcat as its data transport mechanism. This choice was made

because developing an HTTP servlet requires minimum effort, while it doesn’t put big

demands on Tomcat. Additionally Tomcat is optimized for using HTTP, and as such

HTTP servlets are fast, light and reliable applications for streaming data via HTTP.

Furthermore the VRSServer is able to serve the flowing request:

• Web Services Streaming. This request calls the VRSServer to copy data coming

from the ProxyWS to its output data stream.

• Client Streaming. With the request, an HTTP client may upload data to the

VRSServer. This data stream is passed from the data context to the ProxyWS.

• Upload Files. When the client needs to upload files to the ProxyWS, it may use

this request. The VRSServer will open an input stream, save the incoming files

and pass a code of the transaction to the data context so the ProxyWS is able to

obtain the path of the uploaded files.

• Upload arguments. In the case that input arguments are large enough to fit in

a SOAP message, the client may use this request for uploading arguments that

will be kept in memory, until they are consumed by the ProxyWS through any

25

2. ARCHITECTURE FOR SCALABLE DATA TRANSFERS FOR WEB
SERVICES

proxy calls. Again similarly with the files, arguments also take a reference code,

so that they can be retrieved by the ProxyWS.

Security in data transport is enforced by the VRSServer implementations or the data

resources. In this case, HTTP was easy converted to HTTPS, to ensure the privacy of

data streams. However an issue that needs further attention is the privacy of the SOAP

communication, especially when a client or a workflow engine requests streaming URI

from the ProxyWS. In this case the response at least should be encrypted to prevent

any eavesdroppers from obtaining the URI that will stream sensitive data.

2.3.1 Proxy Call of a legacy web services

Calling a legacy web service requires from the ProxyWS to be deployed in the same con-

tainer as the target web services. This is because the ProxyWS instantiates any services

loaded into Axis classpath. So in order to call a legacy web service via the ProxyWS one

may use the methods: callService, callServiceReturnObject, asyncCallService

or asyncCallServiceReturnObject described in Section 2.2.1. More specifically these

methods take as arguments the name of the target service, the method of that ser-

vice and the service’s input arguments. In case that the target service need as input

arguments, files or data located in a remote location (file server, or VRSServer), the

arguments have to be passed as a URI reference. In this case the ProxyWS will re-

solve those arguments, fetch the remote data and pass them as arguments to the target

service; otherwise the input arguments are normally passed via the SOAP call. These

referenced arguments include:

1. Data uploaded via the VRSServer, and kept in memory.

2. Files uploaded in the local file system obtained via the VRSServer.

3. Data objects downloaded in memory from a remote location.

4. Files downloaded in the local file system from a remote location.

The referenced arguments presented here, try to cover the needs of making proxy

calls to target services, while the data needed for these calls, might be located anywhere

and under different formats.

26

2.3 Design and Implementation Issues

Figure 2.4: The ProxyWS architecture - With the use of the VRS and the VRSServer,
web services may access data from remote locations or other web services.

27

2. ARCHITECTURE FOR SCALABLE DATA TRANSFERS FOR WEB
SERVICES

Figure 2.4 shows the architecture of the ProxyWS, as well as the steps required in

order to make a proxy call to a legacy web service. Such a call takes the following steps:

1. The client invokes the ProxyWS via a SOAP call that contains the name of the

target service, its method and the required arguments. If for example the target

method takes two arguments, a file path and a string, the file path argument has to

be passed as a URI. This URI can take two forms i) wsdt://input.remote.files

/dummypath?scheme://host:port/path/filename, in the case where data are

located in a remote location, ii) wsdt://input.local.files/dummypath?key if

files are uploaded to the ProxyWS by the client before the call. If on the other

hand the an input argument is a large array unable to fit in a SOAP message the

client will have to upload it before hand, using a VRSClient, and passing in its

place the argument: wsdt://input.local.data/dummypath?key.

2. When receiving the call, the ProxyWS will resolve any referenced data. If these

include any remote data, files or data objects, the ProxyWS will use the VRS

to retrieve the data from the remote locations. After fetching or locating any

referenced data the ProxyWS will dereference them and replace with either local

paths, in the case of files, or with the data objects, in the case of uploaded data

objects.

3. The ProxyWS will locate the target service, create an instance of that service

and invoke its method.

4. As soon as the target service has returned the result, the ProxyWS will pass the

data either to a deployed VRSServer or a remote location.

5. The ProxyWS will return the URI referring to the data location.

6. The caller may pass that URI to a next ProxyWS, or fetch the result.

2.3.2 Using the ProxyWS as an API

Besides using the ProxyWS as a service for making proxy calls, one may use the de-

veloped code as an API for developing web services capable of exchanging large data

sets. The effort required for such a task is minimum as it only involves implementing

a method to obtain URI for data transfers, and fetching input and output streams

28

2.3 Design and Implementation Issues

provided by the data context. Figure 2.5 shows the architecture of such a web service,

together with the steps necessary for two services to crate a data pipeline. These steps

are:

1. The client creates an asynchronous SOAP call to the producing web service with

the remote location of some data resource.

2. The producing web service returns the URI where the data will be available.

3. The producing web service obtains a data stream to the remote data resource

with the use of the VRS and starts processing data coming from the remote data

resource.

4. The client creates a synchronous SOAP call to the consuming web services, with

the location of the produced data (the URI provided by the producing service).

5. The consuming web service obtains a data stream to the producing web service

and process it.

6. The consuming web services returns either the result or a URI reference to the

data.

When used as an API the ProxyWS, comes much closer in realizing the goal of

truly scalable web services, that exchange data through data pipelines as described

in Figure 2.1, as this approach, can consume and produce potentially infinite data

sizes. Nevertheless this approach might be isolated in specific applications that mainly

process audio, video, and images.

29

2. ARCHITECTURE FOR SCALABLE DATA TRANSFERS FOR WEB
SERVICES

Figure 2.5: The ProxyWS as an API - The ProxyWS and the VRS, can be used as
an API in order to develop stream enabled web services

30

3

Use Cases

Typical e-Science applications developed with the use of web services and workflows, can

be effectively broken down into two steps: i) produce or obtain data and ii) process data.

This section presents four different use cases that in essence follow these two steps. The

first use case is a set of simple benchmarking workflows, aiming to test the scalability

of the ProxyWS under increasing data transfers, while the rest are taken from existing

e-Science applications. For these use cases, a comparison is made between their original

implementations and the ProxyWS approach. In all the use cases the advantages of

using the ProxyWS is examined in terms of enabling “legacy web services” to scale

the data produced and consumed. Furthermore the advantage of using data streaming

between web services is measured mainly in terms of execution time, and data volume.

Additionally two of the use cases come from the information retrieval domain. The first

is used in order to determine if the ProxyWS can offer large data transfers solutions

for web services, while the second is there in order to investigate how the ProxyWS

can scale data transfers for legacy web services, as well as to determine the usability

and benefits of direct data streaming. For the last use case (visualization pipe line), we

primarily investigate the benefits of delivering data directly to consuming web services.

Table 3.1, provides a summary of each use case and their variations in terms of data

transfer characteristics.

31

3. USE CASES

Usecase Workflow Type Protocol Used for
Data Transfer

Data Flow

Benchmark
SOAP SOAP Orchestration
Proxy HTTP Distributed Massage

Based
Stream/API HTTP Distributed Stream

Based

Indexing Proxy HTTP Distributed File
Based

Search & NER
SOAP SOAP Orchestration
Proxy HTTP Distributed Massage

Based
Stream/API HTTP Distributed Stream

Based

VTK
SOAP GridFTP Centralized File

Based
Proxy GridFTP, HTTP Distributed File

Based

Table 3.1: Use Cases. - Summery of the use cases, in terms of data transfer character-
istics

32

3.1 Benchmarking

3.1 Benchmarking

Since the ProxyWS is trying to address data transport issues for web services, it should

be able to scale with the underling applications and also provide stability and scalability.

To ensure these properties, as well as to investigate any advantages over SOAP for

data transports, the ProxyWS has being tested against a set of simple but increasing

data intensive workflows, that demonstrate a common workflow setup for e-Science

applications. Under this set-up, a workflow engine invokes a data producing web service,

passes the data to a consuming web service that will process that data, and return its

results for archiving. Thus the workflows have three distinct modules: i) a workflow

engine that makes RPC calls to two web services, ii) a producing and ii)a consuming

web service, that generate and consume data respectively.

More specifically the producing web service generates a random string of increasing

size, that needs to be encoded by the consuming web service and finally return the result

back to the workflow engine for archiving. The first workflow, presented in Figure 3.1,

uses only SOAP, and goes through the flowing steps:

1. The workflow engine invokes the producing web service, to generate a random

string of a specified size.

2. The producing web service returns that string back to the workflow engine.

3. The workflow engine invokes the consuming web service to process the random

string.

4. The consuming web service, encodes the string (in base64), and returns it back

to the workflow engine.

5. Finally the workflow engine passes the data to a local module (a simple file writer),

for archiving.

Next the same process is repeated, but instead of making calls directly to the

producing and consuming web services, the calls are now directed to the ProxyWS, of

each container. This is implemented by the ProxyWS workflow (a) presented in Figure

3.2, and it includes the following steps:

1. The workflow engine, sends a proxy call to the ProxyWS of the producing side.

33

3. USE CASES

Figure 3.1: SOAP workflow - In this all communications are made through SOAP

2. The ProxyWS (of the producing side) instantiates, and invokes the producing

web service, passing as arguments the size of the string to be generated. After

the target service is done the ProxyWS obtains the result and references it.

3. The same ProxyWS passes the actual data to the VRSServer, and the URI ref-

erence to the workflow engine. In this case the reference is an HTTP URL in the

form of http://host:port?key.

4. The workflow engine invokes the ProxyWS of the consuming web service, passing

as argument the referenced data, a URI in the form of

wsdt://input.remote.data/dummypath?http://host:port?key.

5. The data URI is resolved, and passed to the VRS (of the consuming side).

6. The VRS obtains the data from the VRSServer of the producing side, and the

actual data are passed to the ProxyWS of the consuming side.

7. The ProxyWS, invokes the consuming web service, with data obtained directly

from the producing side.

8. The result is passed to the ProxyWS, which finally returns to the workflow engine

via SOAP.

34

3.1 Benchmarking

Figure 3.2: ProxyWS workflow (a) - In this workflow calls are directed to the Prox-
yWS, while results are returned to the workflow engine via SOAP.

The workflow described above amuses that the workflow engine, has no other means

of communication, other than SOAP. In the case where the workflow engine can obtain

data with the use of the VRS, the ProxyWS workflows (b, c) presented in Figure 3.3,

where used. These workflows follow the same steps as the previous workflows, except

that the ProxyWS of the consuming side returns a URL that refers to the result. Form

that point two variations were considered. In the first (ProxyWS workflow (b)), the

workflow engine passes the result URL to the archiving module, which first obtains the

data, and then writes them to a local file, while in the second (ProxyWS workflow (c)),

a stream is opened to a local file, and data are written to that file, as they are streamed

from the consuming side.

Finally direct streaming is implemented with the Streaming workflow presented

in Figure 3.4. In this workflow both the producing and consuming web services have

being implemented with the ProxyWS API. This provides both services with streaming

capabilities. The execution of that workflow is as follows:

1. The workflow engine makes an asynchronous call to the producing web service.

35

3. USE CASES

Figure 3.3: ProxyWS workflow (b, c) - In these workflows, calls are directed to the
ProxyWS, while results are returned to the workflow engine via a URL. The data archiving
is made by either obtaining the entire data and then saving it(b), or by opening a stream
to a file and copying the data from the consuming service (c)

2. The producing web service starts generating data, while passing them directly to

the VRSServer.

3. The producing web service returns the URL where the data may be streamed

from to the workflow engine.

4. The workflow engine, invokes the consuming web service, passing the URL as the

argument.

5. The consuming web service now needs to open a stream directly to the producing

side. This is done by passing the URL to the VRS.

6. The VRS contacts the VRSServer, on the consuming side and opens a stream

that provides the data.

7. This stream is passed to the consuming web service for processing and each pro-

cessed chunk of the data is re-streamed to the VRSServer.

8. At this point the consuming web service returns the URL back to the workflow

engine.

36

3.1 Benchmarking

9. Finally the workflow engine passes the URL to the archiving module, where it

opens a stream directly to a local file, copying incoming data coming from the

VRSServer.

Figure 3.4: Streaming workflow - In this workflow both the producing and consuming
services have being implemented with the ProxyWS API, which help in the creation of a
data pipeline

For all the workflows described above, the process is repeated for an increasing data

size, while measuring their execution time. Table 3.2 shows the data sizes returned from

the producing and consuming web services.

The top part of Figure 3.5 shows the results, for data sizes from 1 to 6 MB, and the

time needed to execute each workflow, thus the x-axis represents the data sizes returned

by the producing web service in MB, while in the y-axis represents time required to

execute each workflow, measured in msec. The first column for each experiment repre-

sents the SOAP workflow (Figure 3.1), the second the ProxyWS workflow (a) (Figure

3.14), the third and forth ProxyWS workflows (b, c) (Figure 3.3), and the last the

Streaming workflow (Figure 3.4).

As shown from these results, the SOAP workflow, failed to transfer data larger than

2 MB. This is attributed to the workflow engine running out of memory while trying

to obtain the SOAP response from the consuming web service (that is 4.01 MB). The

same happed with the ProxyWS workflow (a), while returning data to the workflow via

SOAP, but instead the workflow engine run out of memory while obtaining 5.34 MB

from the consuming web service. Although this looks like an increase in memory of

37

3. USE CASES

Random string
size (MB)

Encoded (base64)
string size (MB)

1 1.34

2 2.67

3 4.01

4 5.34

5 6.68

6 8.02

7 9.35

9 12.02

11 14.7

13 17.37

15 20.04

17 22.71

19 25.38

600 801.62

800 1068.83

1000 1336.1

Table 3.2: Data sizes. - Data sizes returned by the producing and consuming web
services

38

3.1 Benchmarking

Figure 3.5: Benchmarking results. The graphs represent time measures for five dif-
ferent workflow implementations. In the x-axis a measure of the data produced by the
producing web service is given, while the y-axis measures execution time of each workflow.
In the top graph the results are given for data up to 6MB, while in the bottom the measures
where made for up to 1GB.

39

3. USE CASES

around 1.3 MB in the workflow engine, in reality in both cases the workflow reaches the

limit of its available memory, which in the particular setup is below 5.34 MB since in

the first case the workflow engine tried to obtain 7.01 MB (3 + 4.01) while in the second

5.34 MB, which is the data returned from the consuming service. So this increase in

performance is made possible by just passing a data reference to the workflow engine,

instead of the data itself.

On the remaining data sizes, 4 to 6 MB, only the last two workflows (ProxyWS

workflow (b, c) and Streaming workflow) managed to cope with the data returned.

ProxyWS workflow (b) managed to get up to 6.68 MB, a fact that shows the overhead

introduced by SOAP. The reaming workflows managed to process and archive up to

8.02 MB.

The bottom part of Figure 3.5 shows time measures for data from 7MB up to 1GB.

From these results it can be seen that only direct streaming was able to cope with data

sizes from 600MB up to 1GB. This is because even when passing references from the

producing to the consuming web services, the services themselves are not able to hold

in memory the results generated. Thus when opening a stream from the producing to

the consuming web service, and from that to the workflow engine the application is

able to cope with potentiality infinite data sizes.

When looking at the execution times of each workflow, it is apparent that direct

streaming is faster than any other method. This is because data are processed as they

are generated from one module to the next, creating a data pipeline. For the rest of

the implementations SOAP was the second faster, while the slowest implementation

was the ProxyWS workflow (a), at least for sized up to 2MB. These time results are

expected, when taking into consideration the fact that when making proxy calls, the

ProxyWS has to instantiate the target service, as well as to communicate with the

VRSServer. So in terms of scalability, the ProxyWS can provide to legacy web services

same advantage, that although is not up to 600MB, it is considerable gain against

SOAP, where it reached it’s limit in 2MB, while the best performing ProxyWS scaled

up to 19MB.

40

3.2 Parallel Indexing

3.2 Parallel Indexing

After verifying that the ProxyWS is able to provide scalable data transfers for web

services, we consider an indexing use case. Indexing is the process of analyzing and

extracting content from a document, and it is applied in search engines. The contents

are stored in an index in order to optimize the speed and performance of finding docu-

ments relevant to a search query. Without an index, a search engine would have to scan

every document available to it, which would require considerable time and computing

power. Thus before any document set can be made searchable, it needs to be indexed.

For this use case, an indexing Java application was obtained from the Adaptive Infor-

mation Disclosure project. The Adaptive Information Disclosure project is part of the

VL-e project(65), that aims to create a Virtual Laboratory environment for e-science

for several application domains. The indexing applications is part of the Adaptive In-

formation Disclosure Application (AIDA) Toolkit, a generic set of components that can

perform a variety of tasks such as learn new pattern recognition models, specialized

search on resource collections, and store knowledge in a repository.

AIDA also provides a set of components which enable the indexing of medline doc-

uments, obtained from the Medline database (66). Medline provides a bibliographic

database produced and maintained by the U.S. National Library of Medicine (NLM),

which contains a collection of 17 million plus citations of bio-medical literature. These

documents encode richly structured data, in XML formats, about bio-medical pub-

lications which include authors, affiliations, titles, abstracts, grants, medical subject

headings etc. Medline releases approximately 5000 new citations per day, while each

year users can obtain the annual data set of documents. The 2009 medline, baseline

database contains 17,764,826 records and requires 63.9GB disk space (8.4 GB com-

pressed).

Since AIDA provides search and learning tools, it needs to provide an index where

learning and search applications can look for bio-medical information. For that reason

an indexing application was developed in Java, able to index medline files. In principle

this application is given a local path which contains medline files, it indexes these

documents, and reruns the path where the index may be found.

Considering the advantages of SOA, the indexing application provided by AIDA,

was service enabled to form the IndexerWS. In doing so, we provide the means for

41

3. USE CASES

Figure 3.6: Parallel Indexing workflow - In this workflow several web services are
used to speed up the indexing process of medline documents.

42

3.2 Parallel Indexing

flexible construction of new workflows that may add, delete, and modify documents.

But before this web service can index any documents, we need to transfer the documents

to the web service. While it takes minimum effort to turn a Java application into a

web service, this web service may be seen as a computational island, unable to get

data in or out. Although the IndexerWS could be implemented with the ProxyWS

API, it is kept as a separate web service allowing the distinction of the actual indexing

and data transport operations. Additionally, the indexing operation of the IndexerWS

is computationally and data intensive, e.g., in the case where it needs to index the

entire 2009 Medline data set. Keeping the two operations separate allows for more

modular approach, where the IndexerWS may be a front-end of a computing cluster or

Grid application that will allow for even grater scaling. In this use case to be able to

index large numbers of documents, the indexer web service together with the ProxyWS

is deployed on multiple nodes, thus enabling a parallel indexing operation. Figure

3.6 shows this parallel indexing operation, which although assumes that the workflow

engine has the entire set of documents for indexing, they can be located in any remote

location. So to index this data set, the workflow engine sends to each node a subset of

the documents location. Each node brings the data to the indexer web service location,

and starts indexing. When a node is finished indexing its subset of documents, it sends

its index to a master node that will merge all the sub indexes into the universal index.

More specifically the steps of this workflow are:

1. The workflow engine gets the URI where files can be uploaded on each node from

the ProxyWS. This URI may be an FTP server, or in this case an HTTP servlet

able to upload files.

2. The response is returned to an uploading module, which with the use of the VRS

will upload a subset of the files on each node.

3. The workflow engine will make a proxy call to the ProxyWS to start the indexing

operation, passing as argument the path the documents are located in.

4. The ProxyWS will resolve this path, and pass it to the indexer web service.

5. After the indexing operation is done the indexer web service will return the local

path where the index is located.

43

3. USE CASES

6. The ProxyWS will reference this local path into a URI (in this case a URL), and

rerun it to the workflow engine.

7. The workflow engine will now call the indexer web service to merge the sub index

into a universal index, with the use of the ProxyWS.

8. When the ProxyWS receives the merging proxy call, it will resolve the URI,

download the sub index from each node, and dereference the data into a local

path.

9. After the merging operation is over, the index web service will return the local

path where the universal index is located.

10. Finally the ProxyWS will reference and return the index location.

This workflow was measured in terms of execution time, speedup1 , and efficiency2,

while using document sets of 29, 119, 545 MB and finally the entire data set of 8.4 GB.

Figures 3.7, and 3.8, show the relevant results. When considering the speedup

results for 8 and 16 nodes, one can see that for 29 MB and 119 MB the performance

drops significantly, something that can be also verified by the efficiency results seen in

Figure 3.8. To identify the source of the bottleneck, a break down of the total execution

time for indexing a data set of 29MB, is presented in the top part of Figure 3.9. In this

graph, the total execution time is broken down in pre-stage time, the time needed to

upload the subset of files in the individual nodes, execution time, the time need to do

the actual indexing, and the post-stage time, the time needed to merge the sub-indexes

in to the universal index. These results clearly indicate the source of the bottleneck, is

the post stage time, which increases significantly for 8 and 16 hosts. The execution time

on the other hand is decreasing linearly, while the pre-stage time is almost negligible.

Next, in the bottom part Figure 3.9 shows the total execution time broken down in

pre-staging time, execution time and post-stage time while indexing the 8.4 GB data

set. From this graph it is obvious that the most time consuming step of the indexing

workflow is the post-stage part, which although less than the execution time when
1Speedup refers to how faster a parallel implementation is when compared with a sequential one,

and it is given by : Sp = T1/Tp, where T1 is the execution time of the sequential implementation, while

Tp is the execution time of the parallel implementation with p processors.
2Efficiency measures the utilization of processors, indicating the time spent on computation and

communication, and it is given by: Ep = Sp/p

44

3.2 Parallel Indexing

Figure 3.7: Execution time and Speedup of Indexing workflow. Execution time
and speedup for 1, 2, 4, 8, 16 indexing web services. For indexing data sets of 29 and 119
MB and 8 hosts or more the execution time increases, while speedup drops

using 4 nodes, it almost doubles each time we add more nodes. This dramatic drop of

performance is more evident when 32 nodes are used, where the pre-stage time makes

for almost the entire execution time.

45

3. USE CASES

Figure 3.8: Efficiency of Indexing workflow - Efficiency for 1, 2, 4, 8, 16 indexing
web services. From this graph it may be seen that the actual computation drops when
using 8, or more hosts, for data sets of 119 and 29 MB

3.3 Search & Name Entry Recognition

Having obtained an index representing a large set of documents is the first step to-

wards obtaining some useful knowledge from this set of documents. The index gen-

erated from the workflow described in Section 3.2, can be searched, with the use

of the searcher web service, given a query, the name of the index to be searched,

and the relevant filed (abstract, main text body, etc.) one wishes to get results

from. The results returned, are passed for Named Entity Recognition (NER) using

the NERcognizer service, in order to support knowledge extraction. NER aims to ex-

tract and classify information units in text such as names, biological species, temporal

expressions, organizations, numeric expressions including time, date, money, and per-

centages (67). So to support knowledge extraction the workflows shown in Figures

3.10, 3.11, 3.12 where evaluated in terms of execution time and scalability. These

workflow where based in the work presented in (68), and also in relevant workflows

located in myexperiment web site (http://www.myexperiment.org/workflows/72 and

http://www.myexperiment.org/workflows/74). The steps for the first workflow are:

1. The workflow engine invokes the searcher web service, passing as arguments the

46

3.3 Search & Name Entry Recognition

Figure 3.9: Execution time break down. Execution time for indexing a data set of
29MB (top) and 8.4GB (bottom), broken down in pre-stage, execution, and post-stage
time. It is obvious that the bottleneck is the coming from the post-stage time.

query, and the maximum number of documents returned.

2. The result is returned to the workflow engine, and from there to the NERcognizer

web service.

47

3. USE CASES

3. The NERcognizer web service identifies the entities, and returns the results for

archiving or further processing.

The next workflow shown in Figure 3.11, executes the same steps, but instead of

invoking the searcher and NERcognizer web services directly, the call is passed to the

ProxyWS, which provides the query results directly to the NERcognizer, instead of

passing them through the workflow engine. A third workflow, shown in Figure 3.12,

is implemented and it follows the some procedure as the one described previously, but

this time the two services are using the ProxyWS’s API to transfer data between them.

This workflow goes through the following steps:

1. The workflow engine invokes the searcher web service.

2. The searcher returns the data reference to the workflow engine.

3. The workflow engine invokes the NERcognizer service passing as argument the

data reference.

4. The NERcognizer service connects to the searcher web service, and starts stream-

ing the query results.

5. The identified entries are send back to the workflow engine via SOAP.

The process of the workflows described above, is repeated for 100 up to 8300 doc-

uments (that is the number of documents returned by the searcher web service), using

the same query. The relation of the number of documents and the size of the anno-

tated text returned by the NERcognizer web service may be seen in Table 3.3, while

the results obtained by the three workflows can be seen in Figures 3.13.

As seen from the results of these three workflows, SOAP failed to scale for more

than 1100 documents. This is because the workflow engine, could cope with the size

of the two returned SOAP messages (the query results and the NER). In Figure 3.13

(bottom) the results of the Streaming and ProxyWS workflows are presented. These

workflows managed to cope with the data requirements of 8300 documents. In terms

of execution time the ProxyWS workflow has clearly the advantage when retuning up

to 1100 documents, as the results don’t have to go through the workflow engine. When

comparing the performance between SOAP and Streaming workflows, one can see that

48

3.3 Search & Name Entry Recognition

Figure 3.10: Search and NER SOAP workflow - In this workflow a query is passed
to the searcher web service, while the query result is passed to the NERcognizer All the
communications are over SOAP

Figure 3.11: Search and NER ProxyWS workflow - In this workflow the ProxyWS
is used to pass data references to the NERcognizer web service

49

3. USE CASES

Figure 3.12: Search and NER Streaming workflow - In this workflow the two web
services are streaming data directly to each other

Number of Documents NER text (kbyte)

100 9.46

300 27.54

500 45.58

700 63.61

900 81.65

1100 99.68

1900 171.84

2700 244.07

3500 316.24

4300 388.35

5100 460.5

5900 532.62

6700 604.69

7500 676.65

8300 748.83

Table 3.3: Data sizes for number of documents returned. - The first column
represents the number of documents returned by the searcher web service, while the second
the size of the NER text returned by the NERcognizer

50

3.3 Search & Name Entry Recognition

Figure 3.13: Execution times for the Search and NER workflows. The first
column for each experiment is the execution time for the first workflow, the second for the
second workflow, and so on. The top graph represents results for 100 to 1900 documents,
and the bottom 2700 to 8300 documents

the overhead of stating a connection between the two services, is grater than passing

SOAP messages, at least when returning 100-300 documents. This advantage no longer

51

3. USE CASES

exists when processing more than 500 documents. When trying to process more than

4300 documents it is clear that Streaming workflow scales better than the ProxyWS

workflow, although the advantage gained, over the effort of developing the services

with streaming capabilities, is not significant. Nevertheless if the searcher returned

more than 8300 documents the execution time difference between the two methods

would be grater.

3.4 Visualization WS

Up to now all use cases presented, involve web services that had no means of trans-

ferring data from a producing to a consuming web service at least in their original

implementation. This use case is an implementation of a visualization pipeline based

on the work presented in (69) the workflow of which may be seen in Figure 3.14. This

workflow is compared against the one seen in Figure 3.15, to investigate time execu-

tion advantages, when files are not stored in remote locations, but instead are passed

directly from one service to the next.

A visualization pipeline, may be described as the process of turning data into a

visual representation. This process is divided into distinct steps, where every step

depends on the result of the previous. These steps are described below, while a pipeline

seen in Figure 3.16

1. Data acquisition. Input data are gathered from some source, like MRI-scanners,

some simulation, experiments, or some form of measurement.

2. Filtering. In this stage of the pipeline, data are filtered to more relevant, sets for

the problem at hand, for example extracting a scull from an MRI scan. In other

words in this stage one chooses what it wants to visualize.

3. Mapping. The filtered data are mapped into geometric primitives, like points,

lines, etc. At this point there are a number of primitives suitable for visualizing

the focused data. This poses a trade-off between expressiveness and effectiveness.

4. Rendering. Having all the necessary primitives it is now time to transform them

into images. Before turning the geometric primitives into images, they are as-

signed with visual properties, like color, opacity, or shadow. The goal here is not

photorealism, but rather information content.

52

3.4 Visualization WS

Figure 3.14: Visualization Pipeline workflow (a) - In this workflow intermediate
data are stored in a GridFTP location

The two workflows shown in Figures 3.14 3.15, are used for visualizing Lattice

Boltzmann data sets, with the use of VTK (70), a visualization toolkit that imple-

ments visualization pipelines. The lattice Boltzmann method (LBM) is a powerful

technique used for simulating fluid flow problems in complex geometries. It is a dis-

crete computational method based on the Boltzmann equation. According to that,

fluid is modeled by particles moving on a regular lattice, where each particle at a spe-

cific lattice point is assigned with a velocity according to a distribution function. The

original Boltzmann equation describes the dynamics of the one-particle distribution

function, f(r, v, t). This gives the probability of finding a particle at the position r

53

3. USE CASES

Figure 3.15: Visualization Pipeline workflow (b) - This workflow uses the ProxyWS
to pass data directly to the consuming services

Figure 3.16: Execution time for the Search and NER workflow, for 2700 to
8300 documents - The first column for each experiment

54

3.4 Visualization WS

with velocity v at time t. Discretizing the previous function one gets: fi(r, t), where

the velocity vector is mapped onto a discrete set of velocity vectors indexed by i. In

other words this function is the probability of finding a particle at the discrete lattice

site r at the discrete time t. So by using the discrete Boltzmann function, particles are

moved to their next location that is in a neighboring node in the lattice, also known

as the propagation phase. Next the particles are assigned with their new velocity by

also considering collisions. The results of simulating a fluid flow with LBM need to

be visualized, as this might provide a better insight for the given problem than simply

numerically analyzing the data. Another advantage provided by visualization is that

one may concentrate on a specific part of the simulation without loosing the general

perspective.

the data sets used for these workflows concern the blood flow in the common carotid

artery. This artery shown in Figure 3.17 is an artery that supplies oxygenated blood

to the head and neck. This artery divides in the neck (“bifurcates”) to form the

external and internal carotid arteries. At this location, a buildup of “atheroma” can

occur that obstructs the bloodstream to the brain. Visualizing the blood flow at the

bifurcation point, should reveal any anomalies in the course of one hart beat. This is

accomplished with the use of the services presented in (69). Using these services the

workflow of Figure 3.14 is created, and compared against the one presented in Figure

3.15, to investigate time execution advantages, when files are not stored in remote

storage systems, but instead are passed directly from one service to the next. The

services that make up these workflows are:

ReadVTK is responsible for reading and filtering raw data-sets.

StreamVTK maps filtered data-sets, so it may add streamlines to the flow fields.

RenderVTK renders the mapped and filtered data sets, producing the final image.

ProxyWS is present in the second workflow (ProxyWS workflow), and it is used to

deliver data directly to the VTK services.

To provide to the user a better control over the visualization process, the StreamVTK

service, enables the selection of the ratio of the stream line coverage of the flow field 1.
1This ratio controls is the number of stream lines added to the flow failed. So a ratio of 1 means

that the entire flow filed will be visualized by the added stream lines

55

3. USE CASES

This however creates a trade-off between speed and accuracy.

Figure 3.17: Carotid artery - The carotid artery supplies oxygenated blood to the head
and neck.

In order to execute this visualization pipeline, the workflow of Figure 3.14, executes

the steps given below:

1. The workflow engine invokes the first ReadVTK service to read the artery data

set from a remote location (a GridFTP server).

2. The first ReadVTK service, downloads filters and maps the artery, the location

of which is returned back to the workflow engine.

3. The workflow engine provides to the first ReadVTK service the remote URI (the

GridFTP server) where the results are uploaded.

4. The same procedure is flowed for the second ReadVTK service.

5. The workflow engine calls the StreamVTK web service, to add stream lines to

the flow data, by providing the URI of the remote server, where the flow data are

located.

56

3.4 Visualization WS

6. The result of the previous step is upload in the remote server.

7. Finally the workflow engine calls the rendering service by providing the URIs of

the artery, and the flow field. After the data are rendered the result image is

uploaded again in the remote server.

Alternatively, the workflow presented in Figure 3.15, uses the ProxyWS and the

VRS to deliver data directly to the consuming services, avoiding unnecessary data

hops to the remote server. More specifically this is done by flowing steps:

1. The workflow engine invokes the first ReadVTK service to read the artery data

set from a remote location (a GridFTP server).

2. The first ReadVTK service reruns the URI (local file system) where the result is

saved.

3. The same procedure is flowed for the second ReadVTK service.

4. Now we need to add streamlines to the flow filed data set. The workflow engine

Invokes the ProxyWS in StreamVTK service to obtain the data from the second

ReadVTK service, so the streamlines will be added.

5. After both data sets where read, filtered, and mapped, the workflow engine calls

ProxyWS of the RenderVTK service to obtain both data sets.

6. The ProxyWS now calls the RenderVTK to generate the image. After the image

is rendered, the workflow engine calls the RenderVTK service to upload the image

back to the remote server.

These two workflows where measured in terms total execution time, under differ-

ent configurations, and data sets. Figure 3.18, shows execution times under different

configurations. Starting from the top line, the set up of each experiment is as follows:

i) 66 MB flow vector data set, transferred via GridFTP from a remote location. ii)

66 MB flow vector data set, transferred via the ProxyWS to the consuming services.

iii) 30.1 MB flow vector data set, transferred via GridFTP from a remote location. vi)

30.1 MB flow vector data set, transferred via the ProxyWS to the consuming services,

and so on. For each experiment the ratio of the stream lines to be rendered (x-axis) is

57

3. USE CASES

Figure 3.18: Execution time for the visualization workflows - Execution times
under different configurations, for the two visualization workflows

Figure 3.19: Rendered artery and flow field. Starting from the top left, the stream
line ratios used are 300, 150, 110, 50, and 30, while the last image (bottom right), shows
the artery with a ratio of 2. In this case it becomes vary difficult to examine the diffraction
point.

58

3.5 The ProxyWS in Practice

set to 300, 150, 110, 50 and 30. Figure 3.19 show the different rendered images while

using the ratios mentioned.

When looking at the resulted obtained, from the different workflow setups, it is

clear that by transferring data directly to the consuming service, execution time can

be shorted. This is especially true, as data and computation become more intensive.

So in the case where the flow filed data set is 66MB and the stream line ratio is 30, the

time difference between the two methods (GridFTP, and ProxyWS) is in the order of

35.14 sec.

3.5 The ProxyWS in Practice

In the use cases presented here the ProxyWS has tested in benchmarking and real

life applications, in terms of data scaling, usability of the architecture, and workflow

execution time.

For the first use case it is clear that SOAP falls short when it’s called to transfer

data, while streaming proves to be the fastest and most scalable solution, as it manages

to transport 1GB of data. Proxing on the other hand falls somewhere in the middle.

It can scale more than SOAP, but it can’t reach streaming performance. Nevertheless

it is a solution for legacy web services, where with minimum effort it provides larger

data sets to these services.

The next use case (indexing) although not compared with any other variations, it

did prove that with a design like the ProxyWS, SOA based applications, can handle data

and computation intensive applications. The indexing application, required in total the

transfer of more than 19 GB (8.4GB the document set and approximately 11GB the

index generated) of data, which where all handled by the ProxyWS, while the indexing

and merging operations where performed with minimum modification of the original

application. Moreover the performance of the workflow was improved when we used 16

nodes for the indexing, but serious overhead problems appeared when attempting to

add more nodes. Nevertheless the total data moved by the ProxyWS proves that such

an approach can be used for SOA-based applications.

The search and NER application showed that the ProxyWS scaled exiting services

by just deploying it in the same container. When used as an API the ProxyWS didn’t

59

3. USE CASES

exactly follow the behavior of the benchmark tests. This can be attributed to the longer

processing times of NER, as well as to the smaller data sizes generated.

For the last use case, the problem was not data size scaling, but data delivery

efficiency. As the results show execution times can improve when data are delivered

directly to consuming services. This approach is more meaningful in the case where

lots of intermediate temporary data are created, as these temporary data would put

unnecessary stress to storage resources.

Overall the use cases presented here show that the ProxyWS can be used with legacy

services, in order to provide them with larger data consumption and/or production.

Additionally uniform access to data resources is one more contribution. Another feature

that the ProxyWS offers is direct data streaming. This feature however is not always

applicable. For example in the case of the indexing applications, direct streaming could

not have being used as the particular applications are file oriented. This seems to be

also the case for the visualization workflow, but conceptually a visualization pipeline

could be ideally fit into the creation of data pipelines. This however would require

adapting the VTK toolkit accordingly.

60

4

Discussion

4.1 Discussion

The next generation of scientific research puts forward demands for grater collaboration,

and coordination. These demands are presented by the fact that research can no longer

be isolated in one particular field. Instead it must cross and combine many disciplines,

in order to address and solve more complex problems.

In order to provide the tools and models that will aid scientific research, e-Science

is primarily focused in creating a collaborative research environment where resources

can be shared at a global scale. The infrastructure (Grids, HPC, Clouds, etc) e-Science

depends on is primarily made available through SOA. Thus it seems that SOA as

architecture is playing an important role in e-Science. Web services are a successful

implementation of SOA, and have being used to provide access, and virtualization to

resources. Web services however seem to have some shortcomings when used within the

e-Science context and more specifically in data centric workflows. These shortcomings

may be summarized in the following:

• SOAP is inefficient for data transports.

• Orchestration workflows move data through workflow engines.

• Third party data transfers to remote locations are not efficient, especially when

lots of temporary data are created.

• Direct data streaming is not fully exploited to increase data scalability.

61

4. DISCUSSION

• Web services don’t include mechanisms for accessing diverse data resources.

Previous work was being done to address most of the points mentioned, but each

suggestion seems to only address part of the problem. Leveraging existing work, we

have tried to address these problems with the introduction of a data-aware web ser-

vice, the ProxyWS. The ProxyWS distinguishes web service’s communication between

control and data flow. Control messages (SOAP), are allowed to be delivered to work-

flow engines, in order to have better control over the execution, while data flow is

redirected, and through referencing, and alternative transport channels, is delivered

directly to consuming web services, whether those are legacy or new implementations.

Additionally the ProxyWS, with the help of the VRS API, is able to provide uniform

access to diverse data resources.

The proposed ProxyWS has being tested against real life applications, and proved

that it can offer a solution to the problems mentioned earlier. First of all the life of

existing web services can be extended, as they can now access, process, produce and

consume larger data sets. Another contribution is that any web service is able to get

access to data resources, in a uniform way. Finally data flow can be targeted directly

to consuming web services, either through the use of massage based data delivery or

with the use of data streams. Another feature of the ProxyWS is that service providers

don’t have to change, or replace their environment in order to use the ProxyWS, since

it can be deployed as normal web service.

Considering those features, the ProxyWS supports scalable data transports for web

services. In doing so, e-Science applications can work with larger data sets, thus meet

the demands of the expected “data explosion”.

4.2 Future work

Although the ProxyWS was tested in a variety of applications, there might be some

scenarios that can’t be covered by the current design. One of them includes the need for

delivering data from one or more producing services to one or more consuming services.

Such a feature would make it easier for web services to consume and combine data from

different sources. If for example the visualization services could directly stream data

from one service to the next, and the images produced by RenderVTK service had

62

4.2 Future work

Figure 4.1: Multiple Data Streams Scenario - According to this scenario, a mech-
anism is needed if data streams need to be delivered on multiple resources at the same
time.

to be delivered to many resources, as presented in Figure 4.1 then there has to be a

mechanism that can make copies of data streams.

Furthermore, as seen from the results presented in Chapter 3, the size of the results

generated from proxy calls, although lager than SOAP, are limited to available memory

of the particular service container. This is because before the ProxyWS can obtain the

data from the proxy call the target service has to generate the entire result. So in other

words results have to stay in memory. A more efficient, and scalable technique, would

be to get access to memory, and stream the results, in a file or directly to the consuming

service, so that legacy web services can use the benefits of direct data streaming.

63

4. DISCUSSION

64

Bibliography

[1] J. Taylor. (2009, May) Defining e-science. [Online]. Available: http:

//www.nesc.ac.uk/nesc/define.html 2

[2] (2009, May) LHC web site. [Online]. Available: http://lhc.web.cern.ch/lhc/ 3

[3] (2009, May) ALICE web site. [Online]. Available: http://aliceinfo.cern.ch/

Collaboration/ 3

[4] (2009, May) ATLAS web site. [Online]. Available: http://atlas.ch/ 3

[5] (2009, May) CMS web site. [Online]. Available: http://cms.web.cern.ch/cms/

index.html 3

[6] (2009, May) LHCb web site. [Online]. Available: http://lhcb-public.web.cern.ch/

lhcb-public/ 3

[7] R. Brun, P. Buncic, F. Carminati, A. Morsch, F. Rademakers, and K. Safarik,

“Computing in alice,” Nuclear Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.

502, no. 2-3, pp. 339 – 346, 2003, proceedings of the VIII International Workshop

on Advanced Computing and Analysis Techniques in Physics Research. [Online].

Available: http://www.sciencedirect.com/science/article/B6TJM-4805T3S-1/2/

edefbd51675bf95d6d9f346cb56a3425 3

[8] P. Saiz, L. Aphecetche, P. Buncic, R. Piskac, J. E. Revsbech, and V. Sego,

http://www.nesc.ac.uk/nesc/define.html
http://www.nesc.ac.uk/nesc/define.html
http://lhc.web.cern.ch/lhc/
http://aliceinfo.cern.ch/Collaboration/
http://aliceinfo.cern.ch/Collaboration/
http://atlas.ch/
http://cms.web.cern.ch/cms/index.html
http://cms.web.cern.ch/cms/index.html
http://lhcb-public.web.cern.ch/lhcb-public/
http://lhcb-public.web.cern.ch/lhcb-public/
http://www.sciencedirect.com/science/article/B6TJM-4805T3S-1/2/edefbd51675bf95d6d9f346cb56a3425
http://www.sciencedirect.com/science/article/B6TJM-4805T3S-1/2/edefbd51675bf95d6d9f346cb56a3425

BIBLIOGRAPHY

Physics Research. [Online]. Available: http://www.sciencedirect.com/science/

article/B6TJM-480C1TX-13/2/5eb76d3bf340c5df764790cf56e96c38 3

[9] A. Fanfani, J. Andreeva, A. Anjum, T. Barrass, D. Bonacorsi, J. Bunn, M. Corvo,

N. Darmenov, N. De Filippis, F. Donno, G. Donvito, G. Eulisse, F. Fanzago, A. Fi-

line, C. Grandi, J. M. Hernndez, V. Innocente, A. Jan, S. Lacaprara, I. Legrand,

S. Metson, H. Newman, A. Pierro, L. Silvestris, C. Steenberg, H. Stockinger,

L. Taylor, M. Thomas, L. Tuura, F. Van Lingen, and T. Wildish, “Use of grid

tools to support cms distributed analysis,” CERN, Geneva, Tech. Rep. CMS-CR-

2004-057. CERN-CMS-CR-2004-057, Oct 2004. 3

[10] F. Berman, G. Fox, and A. J. G. Hey, Grid Computing: Making the Global Infras-

tructure a Reality. Wiley, 2003. 3, 17

[11] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid:

Enabling scalable virtual organizations,” International Jounral of Supercomputer

Applications, vol. 15, no. 3, 2001. [Online]. Available: http://citeseer.ist.psu.edu/

foster01anatomy.html 3

[12] P. Z. Kolano, “Facilitating the portability of user applications in grid environ-

ments,” in DAIS, 2003, pp. 73–85. 4

[13] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, “Grid information

services for distributed resource sharing,” 2001. [Online]. Available: http:

//citeseer.ist.psu.edu/czajkowski01grid.html 4

[14] I. F. Carl, C. Kesselman, G. Tsudik, and S. Tuecke, “A security architecture for

computational grids,” 1998. 4, 20

[15] B. Lang, I. Foster, F. Siebenlist, R. Ananthakrishnan, and T. Freeman, “A multi-

policy authorization framework for grid security,” Network Computing and Appli-

cations, IEEE International Symposium on, vol. 0, pp. 269–272, 2006. 4, 20

[16] J. Geelan. (2009, May) Twenty one experts define cloud computing. [Online].

Available: http://www.sys-con.com/node/612375 5

66

http://www.sciencedirect.com/science/article/B6TJM-480C1TX-13/2/5eb76d3bf340c5df764790cf56e96c38
http://www.sciencedirect.com/science/article/B6TJM-480C1TX-13/2/5eb76d3bf340c5df764790cf56e96c38
http://citeseer.ist.psu.edu/foster01anatomy.html
http://citeseer.ist.psu.edu/foster01anatomy.html
http://citeseer.ist.psu.edu/czajkowski01grid.html
http://citeseer.ist.psu.edu/czajkowski01grid.html
http://www.sys-con.com/node/612375

BIBLIOGRAPHY

[17] K. A. Delic and M. A. Walker, “Emergence of the academic computing

cloud,” ACM Ubiquity, vol. 9, no. 31, August 2008. [Online]. Available:

http://www.acm.org/ubiquity/volume 9/v9i31 delic.html 5

[18] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,

and D. Zagorodnov, “The eucalyptus open-source cloud-computing system,”

in Proceedings of Cloud Computing and Its Applications, October 2008. [Online].

Available: http://eucalyptus.cs.ucsb.edu/wiki/Presentations 5

[19] (2009, May) Amazon Elastic Compute Cloud (Amazon EC2). [Online]. Available:

http://aws.amazon.com/ec2/ 5, 6

[20] (2009, May) Google App Engine. [Online]. Available: http://code.google.com/

appengine/ 6

[21] (2009, May) Google Docs. [Online]. Available: http://docs.google.com/ 6

[22] A. Tsalgatidou and T. Pilioura, “An overview of standards and related technology

in web services,” Distrib. Parallel Databases, vol. 12, no. 2-3, pp. 135–162, 2002. 7

[23] K. Channabasavaiah, K. Holley, and J. Edward M. Tuggle, “Migrating

to a service-oriented architecture,” December 2003. [Online]. Available:

http://www.ibm.com/developerworks/library/ws-migratesoa/ 7

[24] H. He, “What is service-oriented architecture,” September 2003. [Online].

Available: http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html 7

[25] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, and D. O.

C. Ferris, “Web Services Architecture,” February 2004. [Online]. Available:

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ 9

[26] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar,

and Y. Lafon, “SOAP Version 1.2 Part 1: Messaging Framework (Second

Edition),” April 2007. [Online]. Available: http://www.w3.org/TR/soap12-part1/

9, 10

[27] A. Akram, R. Allan, and D. Meredith, “Best practices in web service style,

data binding and validation for use in data-centric scientific applications,”

67

http://www.acm.org/ubiquity/volume_9/v9i31_delic.html
http://eucalyptus.cs.ucsb.edu/wiki/Presentations
http://aws.amazon.com/ec2/
http://code.google.com/appengine/
http://code.google.com/appengine/
http://docs.google.com/
http://www.ibm.com/developerworks/library/ws-migratesoa/
http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/soap12-part1/

BIBLIOGRAPHY

in UK e-Science All Hands Meeting 2006, September 2006. [Online]. Available:

http://pubs.doc.ic.ac.uk/web-services-binding-data-styles/ 9

[28] D. C. Fallside and P. Walmsley, “Xml schema part 0: Primer second edition,”

October 2004. [Online]. Available: http://www.w3.org/TR/xmlschema-0/ 10

[29] G. von Laszewski, K. Amin, M. Hategan, N. Zaluzec, S. Hampton, and A. Rossi,

“Gridant: A client-controllable grid workflow system,” 2004. [Online]. Available:

citeseer.ist.psu.edu/vonlaszewski04gridant.html 11

[30] D. Hollingsworth, “Workflow management coalition the workflow reference

model,” January 1995. [Online]. Available: http://www.wfmc.org/standards/

docs/tc003v11.pdf 11

[31] H. Li, Y. Yang, and T. Y. Chen, “Resource constraints analysis of workflow spec-

ifications,” J. Syst. Softw., vol. 73, no. 2, pp. 271–285, 2004. 12

[32] A. Barker and J. van Hemert, “Scientific workflow: A survey and research direc-

tions,” in Proceedings of the Third Grid Applications and Middleware Workshop

(GAMW’2007), ser. LNCS, 2007, p. In press. 12

[33] C. Pelz, “Web Services Orchestration and Choreography,” Computer, vol. 36,

no. 10, pp. 46–52, Oct. 2003. 12

[34] (2009, May) Web Service Choreography Interface (WSCI) 1.0. [Online]. Available:

http://www.w3.org/TR/wsci/ 12

[35] M. A. Vouk, “Cloud computing: Issues, research and implementations,” in

Information Technology Interfaces, 2008. ITI 2008. 30th International Conference

on, 2008, pp. 31–40. [Online]. Available: http://dx.doi.org/10.1109/ITI.2008.

4588381 12

[36] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “Grid services for distributed

system integration,” Computer, vol. 35, no. 6, pp. 37–46, 2002. 12

[37] N. J. Brauer, B., “Extending Your SOA and Internal Applications Utilizing

Commercial Web Services: Integrating Externally Available On-Demand

Data and Functionality for Greater Productivity.” [Online]. Available: http:

//www.strikeiron.com 13

68

http://pubs.doc.ic.ac.uk/web-services-binding-data-styles/
http://www.w3.org/TR/xmlschema-0/
citeseer.ist.psu.edu/vonlaszewski04gridant.html
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.w3.org/TR/wsci/
http://dx.doi.org/10.1109/ITI.2008.4588381
http://dx.doi.org/10.1109/ITI.2008.4588381
http://www.strikeiron.com
http://www.strikeiron.com

BIBLIOGRAPHY

[38] J. R. Hill, “A management platform for commercial web services,” BT Technology

Journal, vol. 22, no. 1, pp. 52–62, 2004. 13

[39] S. Krishnan, K. K. Baldridge, J. P. Greenberg, B. Stearn, and K. Bhatia, “An end-

to-end web services-based infrastructure for biomedical applications,” in GRID ’05:

Proceedings of the 6th IEEE/ACM International Workshop on Grid Computing.

Washington, DC, USA: IEEE Computer Society, 2005, pp. 77–84. 13

[40] G. K. Slominski, D. Gannon, S. Krishnan, A. Slominski, and L. Fang, “Building

applications from a web service based component architecture,” 2005. 13

[41] S. Miles, P. Groth, M. Branco, and L. Moreau, “The requirements of using

provenance in e-science experiments,” Journal of Grid Computing, 2006. [Online].

Available: http://eprints.ecs.soton.ac.uk/13242/ 13

[42] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance in

e-science,” SIGMOD Rec., vol. 34, no. 3, pp. 31–36, September 2005. [Online].

Available: http://dx.doi.org/10.1145/1084805.1084812 13

[43] S. Vazhkudai, S. Tuecke, and I. Foster, “Replica selection in the globus data grid.”

IEEE Computer Society Press, 2001, pp. 106–113. 13

[44] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The data

grid: Towards an architecture for the distributed management and analysis of

large scientific datasets,” Journal of Network and Computer Applications, vol. 23,

no. 3, pp. 187 – 200, 2000. [Online]. Available: http://www.sciencedirect.com/

science/article/B6WKB-45F4XDK-5/2/977c18d8d008c500ebd0414d5f9d6a27 13

[45] R. van Engelen, “Pushing the soap envelope with web services for scientific com-

puting,” in ICWS, 2003. 13

[46] (2009, May) Three web services recommendations. [Online]. Available:

http://www.w3.org/2005/01/xmlp-pressrelease.html 13

[47] G. Fox, G. Aydin, H. Bulut, H. Gadgil, S. Pallickara, M. Pierce, and W. Wu,

“Management of real-time streaming data grid services: Research articles,” Con-

curr. Comput. : Pract. Exper., vol. 19, no. 7, pp. 983–998, 2007. 14, 15, 21

69

http://eprints.ecs.soton.ac.uk/13242/
http://dx.doi.org/10.1145/1084805.1084812
http://www.sciencedirect.com/science/article/B6WKB-45F4XDK-5/2/977c18d8d008c500ebd0414d5f9d6a27
http://www.sciencedirect.com/science/article/B6WKB-45F4XDK-5/2/977c18d8d008c500ebd0414d5f9d6a27
http://www.w3.org/2005/01/xmlp-pressrelease.html

BIBLIOGRAPHY

[48] S. Koulouzis, E. Meij, M. S. Marshall, and A. Belloum, “Enabling data trans-

port between web services through alternative protocols and streaming,” eScience,

IEEE International Conference on e-Science, vol. 0, pp. 400–401, 2008. 14

[49] J. D. Blower, A. B. Harrison, and K. Haines, “Styx grid services: Lightweight

middleware for efficient scientific workflows,” Sci. Program., vol. 14, no. 3,4, pp.

209–216, 2006. 14

[50] R. Pike and D. M. Ritchie, “The styx architecture for distributed systems,” Bell

Labs Technical Journal, vol. 4, no. 2, pp. 146–152, June 1999. [Online]. Available:

http://www.vitanuova.com/inferno/papers/styx.html 14

[51] R. Pike, D. Presotto, K. Thompson, and H. Trickey, “Plan 9 from bell labs,” in In

Proceedings of the Summer 1990 UKUUG Conference, 1990, pp. 1–9. 14

[52] “OASIS Web Services Resource Framework (WSRF),” April 2006. [Online]. Avail-

able: http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrf 14

[53] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and

T. Oinn, “Taverna: a tool for building and running workflows of services.”

Nucleic Acids Res, vol. 34, no. Web Server issue, July 2006. [Online]. Available:

http://dx.doi.org/10.1093/nar/gkl320 14

[54] “Webservice data proxy,” May 2009. [Online]. Available: http://www.cs.man.ac.

uk/∼sowen/data-proxy/guide.html 15, 21

[55] A. Barker, J. B. Weissman, and J. van Hemert, “Orchestrating data-

centric workflows,” in CCGRID, 2008, pp. 210–217. [Online]. Available:

http://www.adambarker.org/techreport barker.pdf 15, 21

[56] S. Heinzl, M. Mathes, T. Friese, M. Smith, and B. Freisleben, “Flex-swa: Flexible

exchange of binary data based on soap messages with attachments,” Web Services,

IEEE International Conference on, vol. 0, pp. 3–10, 2006. 15

[57] “SOAP Messages with Attachments,” May 2009. [Online]. Available: http:

//www.w3.org/TR/SOAP-attachments 15

70

http://www.vitanuova.com/inferno/papers/styx.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://dx.doi.org/10.1093/nar/gkl320
http://www.cs.man.ac.uk/~sowen/data-proxy/guide.html
http://www.cs.man.ac.uk/~sowen/data-proxy/guide.html
http://www.adambarker.org/techreport_barker.pdf
http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/SOAP-attachments

BIBLIOGRAPHY

[58] (2009, May) SDSC website. [Online]. Available: http://www.sdsc.edu/srb/index.

php/What is the SRB 19

[59] P. Grosso, D. Marchal, J. Maassen, E. Bernier, L. Xu, and C. de Laat, “Dy-

namic photonic lightpaths in the starplane network,” Future Gener. Comput. Syst.,

vol. 25, no. 2, pp. 132–136, 2009. 19

[60] G. van ’t Noordende, S. D. Olabarriaga, M. R. Koot, and C. T. A. M. de Laat,

“A trusted data storage infrastructure for grid-based medical applications.” in

CCGRID. IEEE Computer Society, 2008, pp. 627–632. [Online]. Available:

http://dblp.uni-trier.de/db/conf/ccgrid/ccgrid2008.html 19

[61] J.-P. Baud, J. Casey, S. Lemaitre, and C. Nicholson, “Performance analysis of a

file catalog for the lhc computing grid,” High-Performance Distributed Computing,

International Symposium on, vol. 0, pp. 91–99, 2005. 20

[62] J. Bresnahan, M. Link, G. Khanna, Z. Imani, R. Kettimuthu, and I. Foster,

“Globus GridFTP: what’s new in 2007,” in GridNets ’07, 2007. 20

[63] (2009, May) VBrowser web site. [Online]. Available: http://www.vl-e.nl/vbrowser

23

[64] (2009, May) Apache Axis web site. [Online]. Available: http://ws.apache.org/

axis/java/index.html 24

[65] (2009, May) VL-e web site. [Online]. Available: http://www.vl-e.nl 41

[66] May 2009. [Online]. Available: http://medline.cos.com/ 41

[67] Nadeau, David, Sekine, and Satoshi, “A survey of named entity recognition and

classification,” Linguisticae Investigationes, vol. 30, no. 1, pp. 3–26, January

2007. [Online]. Available: http://www.ingentaconnect.com/content/jbp/li/2007/

00000030/00000001/art00002 46

[68] M. Roos, M. S. Marshall, A. Gibson, and P. W. Adriaans, “Structuring mined

knowledge for the support of hypothesis generation in molecular biology,” Semantic

Web Applications and Tools for Life Sciences, 2008. 46

71

http://www.sdsc.edu/srb/index.php/What_is_the_SRB
http://www.sdsc.edu/srb/index.php/What_is_the_SRB
http://dblp.uni-trier.de/db/conf/ccgrid/ccgrid2008.html
http://www.vl-e.nl/vbrowser
http://ws.apache.org/axis/java/index.html
http://ws.apache.org/axis/java/index.html
http://www.vl-e.nl
http://medline.cos.com/
http://www.ingentaconnect.com/content/jbp/li/2007/00000030/00000001/art00002
http://www.ingentaconnect.com/content/jbp/li/2007/00000030/00000001/art00002

BIBLIOGRAPHY

[69] E. Zudilova-Seinstra, N. Yang, L. Axner, A. Wibisono, and D. Vasunin,

“Service-oriented visualization applied to medical data analysis,” Service Oriented

Computing and Applications. [Online]. Available: http://dx.doi.org/10.1007/

s11761-008-0031-6 52, 55

[70] (2009, May) VTK website. [Online]. Available: http://www.vtk.org 53

72

http://dx.doi.org/10.1007/s11761-008-0031-6
http://dx.doi.org/10.1007/s11761-008-0031-6
http://www.vtk.org

	List of Figures
	List of Tables
	1 Introduction
	1.1 e-Science
	1.1.1 Infrastructure

	1.2 Service Oriented Architecture
	1.3 Web Services
	1.4 Scientific Workflows
	1.5 Motivation and Goal
	1.6 Related Work

	2 Architecture for Scalable Data Transfers for Web Services
	2.1 Design Requirements
	2.1.1 Flexibility
	2.1.2 Security
	2.1.3 Reliability and Scalability

	2.2 The ProxyWS
	2.2.1 Web Service, WSDL interface
	2.2.2 Data Transport Context
	2.2.3 VRSServer
	2.2.4 Virtual Resource System
	2.2.5 Main Component interaction

	2.3 Design and Implementation Issues
	2.3.1 Proxy Call of a legacy web services
	2.3.2 Using the ProxyWS as an API

	3 Use Cases
	3.1 Benchmarking
	3.2 Parallel Indexing
	3.3 Search & Name Entry Recognition
	3.4 Visualization WS
	3.5 The ProxyWS in Practice

	4 Discussion
	4.1 Discussion
	4.2 Future work

	Bibliography

