
Applicability of Progressive Web
Apps in Mobile Development

Tjarco Kerssens
tjarco.kerssens@student.uva.nl

June 2019, 54 pages

Thesis Supervisor:

Host Organization:

Host Supervisor:

Dr. Adam Belloum A.S.Z.Belloum@uva.nl

KPMG, Digital Enablement

Lie Yen Cheung, Cheung.LeiYen@kpmg.nl

Faculty of Science
MSc Software Engineering

Master thesis
The Netherlands
Science Park 904

1098 XH Amsterdam

Abstract

Since there exists much fragmentation in mobile platforms, developers have
searched for alternatives in cross-platform development. One new methodol-
ogy called Progressive Web Apps (PWAs) aims to unify the web and native
approaches by combining the best principles of both, hence bridging the gap.
This research aims to analyze the applicability of PWAs as an alternative to
traditional native and web app development, in order to provide developers
with arguments for the consideration of a development approach and to fill the
knowledge gap in academic literature concerning mobile development. By com-
paring the performance and energy consumption of a PWA to native and web
app implementations on iOS and Android, we found that the PWA version per-
formed similar in most cases, better in some and only worse in launch time on
iOS. Hence, the methodology seems to become a viable alternative for mobile
development in the context of performance and energy consumption

Keywords: Progressive Web Apps, Native Apps, Web Apps, Mobile Develop-
ment, Performance, Energy Consumption

Preface

The basis for this research stemmed from my passion for mobile development
and advancements in this technological age. Exciting new things are happening
and the world is moving forward at a fast pace. New technologies like Progressive
Web Apps are contenders to shape the future of mobile development, hence my
motivation to add to the scientific knowledge of this subject. This motivation
and passion came together with the opportunity provided by KPMG to execute
this research at their premises, with their help and advice.

Acknowledgements

This research could not have been performed without the support of multiple
people. First of all, my academic supervisor Adam Belloum, who has given me
a lot of advice and help with the process. Also, Lie Yen Cheung has helped
me a lot with advice and daily supervision at the office of KPMG. Not only
for the thesis but also more generally with my growth to become a professional.
Furthermore, all the colleagues at the Digital Enablement department at KPMG
are to be mentioned for creating a comfortable work environment and advising
and challenging me. Morover, Ivano Malavolta has given me great advice on the
subject and has lent me additional devices to support my research. Last but not
least, Ana Oprescu from the Software Engineering department at the UvA has
given structure to the process and has also taught me a lot about performing
research. Thank you all.

1

Contents

Preface 1

1 Introduction 4

1.1 Research Questions . 5

1.2 Contributions . 5

1.3 Outline . 6

2 Background 7

2.1 Native Applications . 7

2.2 Cross-Platform Approaches . 8

2.3 Progressive Web Apps . 8

2.4 Status Quo of PWA adaption . 10

2.5 Problem Analysis . 11

2.5.1 Performance . 11

2.5.2 Energy Consumption . 11

2.6 Limitations . 12

3 Method 13

3.1 Performance . 13

3.1.1 Measurements . 14

3.2 Energy Consumption . 16

3.3 Mobile devices . 17

2

3.4 Application Design . 18

3.5 Experimental setup . 18

3.6 Analysis . 19

4 Related Work 21

4.1 Mobile Performance . 21

4.2 Mobile Energy Consumption . 23

4.3 Industry implementations . 24

5 Results 26

5.1 Performance . 26

5.1.1 Android . 26

5.1.2 iOS . 32

5.2 Energy Consumption . 34

5.2.1 Android . 34

5.2.2 iOS . 37

6 Discussion 42

6.1 Android . 42

6.1.1 Performance . 42

6.1.2 Energy Consumption . 43

6.2 iOS . 44

6.2.1 Performance . 44

6.2.2 Energy Consumption . 45

6.3 Applicability . 46

6.3.1 Possible Improvements . 46

7 Conclusion 47

7.1 Future Work . 48

3

Chapter 1

Introduction

Due to high fragmentation in the mobile world, the costs of creating a mobile
application with the natural, native approach, could become very high [1, 2].
With this classic approach, developers need to develop, test and maintain for
all the different platforms and devices, which is a time-consuming and therefore
costly process [3, 4]. Therefore, developers and service providers have searched
for ways to simplify the process of deploying their applications to the end-user
[5].

On the other hand, mobile usage has been rising [6–8], meaning that the mar-
ket’s potential is also rising. Because of this, many companies could see a po-
tentially big rise in the number of users if it were to implement its service as a
mobile application. This observation, combined with the large costs in develop-
ing an application for each separate platform, makes it increasingly important
to create a mobile application that runs on multiple platforms, the so-called
cross-platform development approach [8].

Several approaches for cross-platform development as an alternative to native
development have been established over the years [9]. These approaches can be
broadly divided into Web, Hybrid, interpreted and compiled approaches, which
will be explained in more detail in the background [2].

However, in recent years, a new approach called Progressive Web Apps has been
created in order to bridge the gap between the web and native applications
[9, 10]. The potential to create one application that runs on all devices with
a browser, while circumventing the need to install and to depend on an app
marketplace like the App or Play Store and being always up to date [10] seems
promising. However, the Progressive Web App could still be installed and work
offline, use native capabilities and would feel like a native application [11]. This
is how the technology bridges the gap between native and web, it aims to take
the best of both worlds [10]. This research aims to establish whether these
Progressive Web Apps are a viable alternative to native applications and web
applications.

4

adambelloum1
Highlight

adambelloum1
Highlight

1.1 Research Questions

This research is focused on identifying the current state of the Progressive Web
App methodology and establishing whether it can be a viable alternative to the
traditional native and web approaches. While the technology seems promising
in theory, the question remains how it practically compares to other approaches.

In this thesis, the following research questions will be answered.

RQ: Are Progressive Web Apps a viable alternative to native and web app ap-
proaches in mobile development?

In order to answer this question, multiple concepts have been identified as being
related to the viability of a mobile development approach. The motivation for
these principles will be explained in the background section. These related
concepts resulted in the following sub-questions:

• RQ 1.1: Do PWAs and traditional web apps differ in performance?

• RQ 1.2: Do PWAs and traditional native apps differ in performance?

• RQ 1.3: Do PWAs and traditional native apps differ in energy consump-
tion?

As far as we know, these questions have not yet been answered by scientific
research. Answering these questions will further contribute to the state of the
art in the field of mobile development, as outlined in the next section.

1.2 Contributions

Since not much research has been done into the subject of Progressive Web Apps
[9], this research might help developers make a decision about the adaption of
this methodology in their services. The existing work suggests that there are
promising advantages of adopting the technology, for example a decrease in
installation size and fewer development hours. However, the current state of
the art is mainly focused on comparing the PWA with other cross-platform
alternatives, rather than the true native approach. Therefore, this research
contributes to the knowledge gap in determining a development approach for
mobile development.

Also, no other research concerning the energy consumption differences between
Native and PWA implementations is known. Establishing this knowledge will
further contribute to the consideration of mobile development approaches. The
importance of this energy consumption will be further explained in the back-
ground section.

Furthermore, to our knowledge, no research has yet been performed concern-
ing PWA for iOS, while iOS support is important for the adaption of a cross-

5

platform development approach [2, 9]. Therefore, this research includes this
platform in order to be able to answer the main research question more com-
pletely.

1.3 Outline

This thesis continues with a background in chapter 2, where the central con-
cepts are explained and motives for the research questions are presented. It
also reports an analysis of the problem and the status quo of the adaption of
Progressive Web Apps. In chapter 3, Method, an overview of the measurements,
tools, devices, setup and analysis is given. After that, a summary of methods
and results of relevant research is presented in chapter 4, Related work. In
chapter 5, the results of our experiments are presented. The discussion and
conclusion in chapter 6 and chapter 7 conclude this thesis with answers to the
research questions and add suggestions for future work.

6

Chapter 2

Background

In this chapter, the terminology and concepts, such as Native, Cross-platform
and Progressive Web Applications related to this research are explained in the
first sections. After that, the current state of adaption of the Progressive Web
App approach is explored in section 2.4. Furthermore, an exploration and ar-
gumentation for the research direction is provided in the problem analysis in
section 2.5. Finally, limitations in the research are identified in section 2.6.

2.1 Native Applications

Naturally, mobile development would be done using a native approach. The
vendor of the platform provides a native developer kit that allows developers
to create an application specifically tailored for that platform [9]. This means
that this application will only run on the platform it was specifically created
for, with no opportunities for code reuse in other platforms.

Furthermore, the different platforms require specific in-depth knowledge of the
tools involved in order to develop a Native application for said platform. De-
velopers also need to take the certain costs and restrictions into account when
taking the native development approach, such as needing an Apple developer
license and approval to distribute the application via the App Store [12]. This
approval requires that the application meets the guidelines provided by Apple.

Native applications tend to be fast and reliable [12] since the platform it runs
on is optimized for the Native approach and the vendor of the platform provides
support for the development. Also, each vendor has its own guidelines for user
interface design, meaning that there are differences in how the application is
supposed to look and feel. With a Native approach, it is easier to follow these
guidelines for each specific platform.

Furthermore, developers of Native applications can leverage the deployment
services provided by the platform. Applications can be distributed via the

7

application stores that the platforms provide and the selling options can be
exploited to monetize the app.

Each platform has its own toolset and usually has only a few programming
languages available for writing the application. In the case of iOS, the Swift
programming language is the language Apple propagates as the default language
for app development [13]. Furthermore, the platform that is used for developing
and publishing the application is Xcode [14]. For Android, the language was
traditionally Java, but since recently, Google promotes Kotlin as the main pro-
gramming language for Android applications [15]. The Integrated Development
Environment that is recommended for Android development is Android Studio
[16]

2.2 Cross-Platform Approaches

Multiple other cross-platform approaches exist as alternatives for mobile devel-
opment besides Progressive Web Apps. This section will shortly give an overview
of these approaches. This research does not focus on these approaches, but they
are interesting to take into account in the discussion.

Hybrid Approach
With the hybrid approach, the application is developed using web languages and
ran inside a web view, rendering it as a native application. Native functionalities
are exposed to the application through an abstraction layer [17]. Examples of
Hybrid Approach frameworks are Cordova, PhoneGap, and Ionic, but these
have been criticized for delivering sub-par performance [2].

Interpreted Approach
With the interpretation approach, a dedicated engine translates the source code
of an application in real-time to an executable program [17]. Frameworks that
use this approach include React Native and NativeScript [2].

Cross-Compiled Approach
The Cross-Compiled approach consists of compiling a single codebase to multiple
native binaries for different platforms [17]. Rather than being dependent on an
interpreter or web view, native binaries can be distributed. One example of a
Cross-Compiled approach Framework is Xamarin [2].

2.3 Progressive Web Apps

The term Progressive Web App was firstly coined by Russell in 2015 [10]. The
characteristics he identified then, are still advocated as being relevant for PWAs
today:

• Responsive: To fit any form factor, i.e. any screen.

8

• Connectivity independent: Progressively-enhanced with Service Work-
ers to let them work offline.

• App-like-interactions: Adopt a Shell + Content application model to
create native app like navigation and interaction.

• Fresh: Always up-to-date via the Service Worker update process

• Safe: Served via TLS (a Service Worker requirement) to prevent snooping.

• Discoverable: PWAs are identifiable as “applications” thanks to W3C
Manifests and Service Worker registration scope allowing search engines
to find them.

• Re-engageable: A PWA can access the re-engagement UIs of the OS,
for example, push notifications.

• Installable: Save the app on the home screen through browser-provided
prompts, allowing users to “keep” apps they find most useful without the
hassle of an app store.

• Linkable: Meaning that Progressive Web Apps do not require installation
and are easy to share.

The term Progressive in Progressive Web Apps relates to taking advantage of
enhancements that are available in the environment, rather than having fixed
requirements [18]. In other words: continuously being able to add to the ap-
plication when the browser allows it. Progressive also relates to not making an
immediate choice about whether to install the app, it can progressively become
an application rather than being just a website. [10]

Furthermore, Russell defined in a later article that Progressive Web Apps should
feel and act more like a native app, rather than a web app which you can save to
your home screen [11]. He also defines more characteristics that a Progressive
Web App should have:

• Work without default browser environment: the application should load
without a URL bar.

• Device independent: the application should work across browsers and de-
vices.

• Near instant loading and fluid animations: this would make the application
feel more like a native application.

Web App Manifest
The Web App Manifest is a JSON file that is used to configure the Progressive
Web App [2]. It defines application metadata like icons, application name, and
the base URL [19]. W3C further defines the manifest as being able to restrict
the application to a single URL for security reasons. Furthermore, events are
defined for several installation events [20].

9

Service Worker
The service worker allows the application to actually become a Progressive Web
App, by providing features to enable the background operation separate from
the rest of the website [2]. They provide the technical foundation to implement
the app-like features such as an offline experience, background sync and push
notifications [21].

Service workers are not able to directly access the DOM, but will rather act as
an API for your application. It works asynchronous and event-driven in order
to avoid blocking the application [2].

Application Shell
The Application shell is the first interface that a Progressive Web App renders.
It allows for a user experience where the launching feels more native by loading
a cached shell that allows for immediate interaction [2].

Google Web Fundamentals group describes the following benefits of using an
application shell, which enable some of the Progressive Web App characteristics
described above [22]:

• Reliable performance that is consistently fast.

• Native-like interactions such as offline support.

• Minimal data usage by caching the seldom changing shell.

2.4 Status Quo of PWA adaption

Scientific coverage of the concepts of PWAs is still low [9]. However, several
companies seem to adopt these concepts in their products. During the Google
I/O 2017, a developer conference hosted by Google, several initiatives and statis-
tics related to Progressive Web Apps were presented [23]. In the talk, several
companies are presented that have reported increased usage of their services
and reduces application sizes after converting their applications to a Progres-
sive Web App. These are companies such as Twitter, Financial Times, Lyft,
AliExpress, Forbes, Flipkart, Expedia, Flipkart, Tinder, and Housing.com.

Furthermore, in the Google I/O conference of 2018, more adaption of the PWA
methodology has been presented. Companies like Starbucks, Spotify, Editora
Globo, and 1-800 Flowers have also reported successes after implementing a
PWA [24]. Google also implements PWA functionalities in many of its own
applications, for example, Search, Bulletin, Maps, and Gmail [24].

In chapter 4 we further explore the adaption of PWAs by several companies.

10

2.5 Problem Analysis

This section provides a motivation for the research questions established in
the introduction. It explores two important characteristics for the adaption
of Progressive Web Apps as a viable approach in mobile development, namely
performance and energy consumption. The next sections will give motivation for
these characteristics. There are still other characteristics relevant for a complete
comparison, which are, due to time constraints, left as future work suggestions
in chapter 7.

2.5.1 Performance

It has been stated that performance is important for the user experience and
that user experience is critical for having a successful mobile application [25].
Consequently, an important part of this user experience and thus the success
of the mobile application is the response and launch time [6, 26]. Even more,
it has been established that the quality of the mobile experience can have an
influence on the customer’s opinion of the brand [1].

For websites, it has been shown that the threshold for acceptable load time is
between 2-3 seconds. Longer load times lead to users leaving the web page [27].
Therefore, it will be interesting to find out whether PWAs can have a positive
influence on the load times and increase the engagement with the users of the
service.

Furthermore, it has been shown that a smaller app size can have a positive
influence on the user adaption of the application [9]. It has been shown that
Progressive Web Apps have a much smaller application size than native apps or
other approaches like hybrid and interpreted applications on Android devices
[2]. It is unclear if this is also the case for the iOS platform.

Since performance is closely related to user experience and user experience is
related to the success of the mobile application, it is interesting to research how
the performance of a Progressive Web App relates to native applications and
traditional web applications.

2.5.2 Energy Consumption

While there are many technical improvements in smartphones, trends indicate
that the ability of batteries will not have significant improvements anytime soon
[28]. It has been established that energy is one of the most limited resources
available on a smartphones [19], while research suggests that users will reject
mobile applications that have a large impact on the battery life [29].

Even more, experiments have shown that advances in network connectivity,
such as the transition from 3G to 4G LTE, can also have a negative impact on

11

battery life [30]. Thus, since progress in battery life is unlikely, it is important
that mobile applications make efficient use of the available power [3, 28, 30].

It has been shown that network connectivity can take up to 70% of power
usage on mobile devices when the screen is off [31, 32], or up to 40% when the
screen is on [33]. This indicates that saving on network requests can have a
positive impact on power usage. Indeed, Dutta et al. have shown that caching
approaches to reduce network requests can decrease battery usage [30]. Since
caching resources is in the nature of a PWA, the energy consumption might be
similar to a native implementation.

Since energy consumption is clearly an important characteristic in the field of
mobile development, the viability of a Progressive Web App is probably related
to its energy efficiency. It has already been established by Malavolta et al. that
service workers do not have a negative impact on battery life [19], hence, there
are no energy consumption problems when compared to Web Apps.

2.6 Limitations

As with all research, this research does not come without its limitations. First of
all, the measurement of energy consumption on iOS is not as straightforward as
it is for Android. For the Android OS, measurement tools have been developed
and validated with scientific research. For iOS, measurements are to be done
with Apple’s own Instruments tool, which has no scientific reporting on its
accuracy.

Furthermore, the research is conducted with a single mobile device for iOS and
with a single application. This is to have as little differences between the im-
plementations as possible, which would not be the case when multiple existing
applications would have been used rather than an application specifically devel-
oped for this research. For Android, we use three devices, which is still not a
lot.

Finally, this research does not take all the factors involved in mobile development
into account for answering the question of whether Progressive Web Apps are a
viable alternative to traditional counterparts. Effects of for example security im-
plications, development effort, user adaption, and long-time maintenance effort
could also be factors for choosing an approach in mobile development. These
characteristics are described in the future work section in chapter 7.

12

Chapter 3

Method

In this chapter, the method of the research is described, as well as all the relevant
variables and tools.

Most existing research in Progressive Web Apps is focused solely on Android,
but it has been argued that for the adoption of PWAs as a true cross-platform
approach, the technology should also work on iOS [9, 19]. Therefore, this re-
search will be focused on both iOS and Android.

Comparisons will not be made between the different platforms since this is
not possible due to the many differences in devices and platforms. Since the
hardware and the platform of the devices are different, no useful data can be
obtained for comparing mobile development approaches. Also, it is not relevant
to the research question to compare between devices, since that would effectively
be a study to compare platforms, rather than a comparison between the different
methodologies of mobile development.

3.1 Performance

Most of the research concerning performance in mobile applications is focused on
characteristics such as launch time, size of the installed application, time from
app-icon to toolbar render and memory usage [2, 6, 25, 34]. Other research has
taken scalability into account, studying the influence of the increase in users on
performance [35].

Several methods have been proposed to make these kinds of measurements.
Corral et al. measured within the application itself, by printing time-stamps
before and after an operation [25]. Biørn-Hansen et al. used the Android Debug
Bridge and a digital stopwatch to measure activity launch time and app icon to
toolbar render respectively. [2].

Other research into the performance of web applications made use of the web

13

Platform Measurement App type Method

iOS

First Paint

PWA Safari Web Inspector

Native Run Script

Web Safari Web Inspector

Install size

PWA Safari Web Inspector

Native iOS reported

Web Not applicable

Android

First Paint

PWA Debug Bridge

Native Android reported

Web Debug Bridge

Install size

PWA Android Reported

Native Android Reported

Web Not applicable

Table 3.1: Measurements for performance

development tools from a browser, i.e. Chrome, Firefox or Safari in order to test
the performance. Furthermore, Lighthouse can be used to analyze a Progressive
Web App [34].

It is hypothesized that caching and reloading, which can be enabled by service
workers, will ensure a reliable and instant user experience [19]. Therefore, it is
interesting to see whether the launch time of a cached progressive web app is
lower than with a traditional web application.

3.1.1 Measurements

The properties that will be measured on each device, as well as the method of
measurement, are presented in table 3.1.

Since recently there exists a Performance Timeline API, which currently has
the working draft status at W3C. With this API, it is possible to retrieve high-
resolution performance metric data. Furthermore, it contains methods to re-
trieve timing information about the first paint metric [36]. This allows for more
accurate measurement on Chrome for Android. However, Safari for iOS cur-
rently does not support this API. Therefore, the web inspector will be used to
measure the first paint for the iOS version of the PWA and Web App [37].

First Paint

The First Paint is defined as the time it takes from starting the launch of
the application until the first pixel is drawn on the screen. This metric gives
insight into the time until the application can be perceived as useful since it
can provide information when it can draw to the screen. The initial launch

14

of the application has been shown to be important for user acceptance of the
application [6] and is, therefore, a useful metric for determining the viability of
a PWA as an alternative to other approaches.

Furthermore, this metric will give insight into the influence of the caching pro-
vided by the service worker on the loading time of the PWA when compared to
the traditional Web App. It is expected that the PWA loads faster since it is
already cached locally on the device. In order to further test this hypothesis,
the same test will also be performed on a simulated, throttled 3G network. The
expectation is that the difference in launch time between the Web App and the
PWA will be even larger.

For all implementations, this metric will be measured 50 times. In the next
paragraphs, the different approaches for performing the measurements are de-
scribed.

iOS measurements
For the iOS native application to measure the first paint, two parts of the
launching process need to be measured. First, we need to measure how much
time it takes from the initiation of the launch to the point where the application
code gets the control. This pre-main stage, referring to the calling of the first
method, the main method, can be measured by setting a run-time variable:
DYLD PRINT STATISTICS = 1 [38]. Secondly, we need to measure the time
from loading the application to actually painting the first screen. Therefore,
we immediately make a time-stamp of when the application is launched and
compare this to the moment the view is actually visible, in the lifecycle method
viewDidAppear of the first screen [39]. This will be referred to as the post-main
time. Hence, the actual first paint for the native iOS application is defined as
pre-main + post-main.

The measurements for the iOS native application can be automated, by using a
running script that installs the application on the device, runs it and parses the
output to a file. This procedure can then be called inside a loop for repetition,
hence automating the measurement progress. The running script writes two
values per launch, the pre-main and post-main timestamps. Therefore, these
values need to be added when processing the data.

The measurements for the PWA and the Web App on the iOS device, are per-
formed in Safari since Apple only supports PWAs in its own browser. Further-
more, since the Performance Timeline API described above is not yet supported,
the measurements will be performed using the Safari Web Inspector. The net-
work tab shows the time when the first layout rendering takes place. This is
a manual process, performed by connecting the iPhone to a MacBook which is
running the Safari Web Inspector for remote debugging.

Android Measurements
For Android, the time to paint is reported to the console when running the
application [40]. This makes it possible to create a script that runs the appli-
cation, parses the output and saves the time to paint to a file. This procedure
can then be run in a loop to collect measurements.

15

The measurements for the PWA and the Web App on the Android device
are done using Chrome on Android and the remote debugging functionality
of Chrome for Mac OS. With this setup, we can use the Performance Timeline
API to print the first paint metric to the console.

Installation size

Many companies have attributed successes of conversion to a Progressive Web
App partly on installation size [9, 23, 24]. Since the research has mainly been
focused on Android, it will be interesting to see how the size relates to native
applications on iOS. Validation of the reported successes with installtion size
on Android is also done in this research.

The installation size for the native applications is reported by the operating
system. For the PWA on Android, the installation size of the PWA is also re-
ported. For iOS, we measure the installation size by using the remote debugging
tool in Safari and calculating the size of the resources stored locally.

Lighthouse

Lighthouse is a tool for analyzing the quality of web pages. Furthermore, it has
support for analyzing the quality of a Progressive Web App. It is integrated
into the Chrome Development tools and is able to measure several metrics [41].
In this research, it will be used to make sure that the PWA that is developed is
of decent quality. The goal is to develop a PWA that has a score of at least 90
out of 100, since that is considered to be in the highest quality scale.

3.2 Energy Consumption

The method of measurements differs for Android and iOS. These differences are
described below. For both platforms, twenty measurements are made for the
Native App and the PWA. Each measurement will be done with a timeframe of
30 minutes.

Android measurements
Extensive research has been performed into measuring energy consumption on
Android devices, where a software-based tool called Trepn Power Profiler has
been reported to be sufficiently accurate [42]. The reported error margin for this
tool is 99%. This method should be sufficient for measuring energy consumption
on Android devices when enough data is collected. It can be used to measure
the native Android application as well as the PWA running on the Android
device.

iOS measurements
For iOS, Apple provides a tool called Instruments, which includes a energy con-

16

Figure 3.1: A single measurement in the instruments tool by Apple

sumption module which can be used to analyze energy consumption [43]. This
tool will be used to measure the energy consumption of the applications running
on the iPhone. The tool reports a value between 0 and 20, where a higher value
indicates more energy usage. However, no known validation of the accuracy of
this method is provided. However, other research has been performed using this
method of measuring energy consumption [44]. Also, Kwete has performed a
study into energy measurement for iOS and lists only a few options, where the
measurements using Instruments seems to be the best [45]. Other options are
noting the battery percentage difference and noting the time it takes to com-
pletely drain a device [45]. The research lists an accuracy of 5%, but no source
is given, hence it can not be said whether this is true. To give an indication
of how this measurement looks like, figure 3.1 shows a single measurement in
instruments.

3.3 Mobile devices

The devices used for this research, are the OnePlus X running Android and the
iPhone 7 running iOS. The details of these devices can be found in table 3.2.
The devices both run the latest stable version of their corresponding operating
system, meaning they should be representative for the near future.

iPhone 7 OnePlus X

OS iOS 12.2 Android 9

Chipset A10 fusion (16nm) Qualcomm Snapdragon 801 (28nm)

CPU Quad-core 2.34 GHz Quad-core 2.3 GHz

Battery 1960 mAh 2525 mAh

Memory 2GB 3GB

Resolution 750x1334 1080x1920

Screen size 4.7 inch 5 inch

Table 3.2: Hardware details of the devices used in the research. The specifica-
tions are retrieved from GSMArena [46, 47].

Validation Devices
Two other Android devices are used to validate the results of this research,
namely the Samsung Galaxy J7 Duo and the LG Nexus 5X. The details of these
devices can be found in table 3.3.

17

Samsung Galaxy J7 LG Nexus 5X

OS Android 8 Android 8

Chipset Exynos 7885 (14nm) Qualcomm Snapdragon 808 (20nm)

CPU 2x2.2GHz 6x1.6GHz 2x1.8GHz 4x1.4GHz

Battery 3000 mAh 2700 mAh

Memory 4GB 2GB

Resolution 720x1280 1080x1920

Screen size 5.5 inch 5.2 inch

Table 3.3: Hardware details of the devices used to validate the results for An-
droid in this research. The specifications are retrieved from GSMArena [48,
49]

3.4 Application Design

A total of four mobile applications will be developed for this experiment, 1) a
native iOS application, 2) a native Android application, 3) a web app and 4) a
PWA version of the web app. Since networking can have a large influence on
battery life [30], it would be an interesting feature to have in the application.
Also, accessing lower hardware like a GPU might differ between the applications,
so graphical processing is also an interesting feature to include. Finally, access-
ing the location of the device is an interesting feature to have in the comparison
since it has been reported to consume relatively much energy [50] and might be
subjected to optimizations that are only available to native applications.

Therefore, Each application consists of a single screen that fetches a new, un-
cached image every five seconds, after which it inverts the colors, applies a
contrast filter and draws it on the screen alongside the original image. Further-
more, the current location of the device is being followed continuously and is
updated and shown on the screen. The code for the application can be found
on GitHub 1. Figure 3.2 shows screenshots of the implementations.

3.5 Experimental setup

For each measurement, the following steps are taken in order to ensure that the
least amount of variance will occur between the measurements:

• Ensure that no other applications are running in the background.

• Have the device fully charged and have no energy saving mode enabled.

• Have the screen brightness set to the minimum value.

• Disconnect from the power source just before the measurement.

1https://github.com/TjarcoKerssens/thesis-pwa

18

(a) PWA on iOS (b) Native on iOS (c) Native on Android

Figure 3.2: Screenshots of the implementations

• Disable options that turn off the screen automatically.

• Disable Bluetooth and cellular connections. Only WiFi is needed.

• Connect to the same WiFi endpoint every time.

After this, the measurement is performed as described above.

3.6 Analysis

In order to establish meaningful insights from the results, multiple things are to
be considered when analyzing the data. The first thing that needs to be shown
is whether the data follows a normal distribution since this influences what test
of comparison can be used. A Shapiro-Wilk test will be used to gain information
about the normality of the distribution since this test has been shown to give a
valid insight into normality [51]. Furthermore, QQ-plots are drawn for the data
and visually analysed to support the assesment of normality.

If the collected data does seem to follow a normal distribution, the t-test can be
used to analyze the differences in the means of the data. It has been argued by
Ruxtan that an unequal variance t-test is better in many cases since it does not
require the assumption that the variance of the data is equal [52]. Therefore,
the Welch t-test will be used to analyze the data when it seems to be normally
distributed. It has been shown by Skovlund and Fenstad that this test performs

19

better than the student’s t-test and Mann Whitney U test when the variance
in the data is unequal [53]. The null hypothesis of this test is that the mean
of the underlying data is similar. If the p-value is smaller than the significance
level 0.01, we can reject this hypothesis and assume that there is a difference
in the mean of the underlying data. Otherwise, the test adds support to the
hypothesis that the means are similar.

Otherwise, if the data does not seem to follow a normal distribution, the Mann
Whitney U test will be used to be able to analyze similarity in the data. This
is a test that does not make any assumptions about the distribution of the
underlying data. The null hypothesis with this test is that the two samples
come from the same population, i.e. are similar. When the p-value is smaller
than the significance level 0.01, we can quite confidently reject this hypothesis
and accept that there is a difference in the underlying data. Otherwise, there is
a strong indication that the data is actually similar, which adds support to the
hypothesis that the underlying data is similar[54]. Additional support of the
hypothesis is given by using the Komogorov-Smirnov test, which tests whether
the two data sets are from the same continuous distribution [55].

It has been argued that failing to reject the null hypothesis does not inherently
mean that we can accept the null hypothesis as being true [56]. However, it does
give support for this to be the case. With a still low p-value, while larger than
the significance level 0.01, this support is thin. In order to increase the strength
of the support, a reverse test can be used in order to be able the reject the null
hypothesis [56]. One way of doing that is making use of the two one-sided t-test
(TOST) [57]. This test operates with two null-hypotheses, one that the true
mean is lower or equal and one that the true mean is larger or equal than the
true mean of the other data set. Rejecting both these hypotheses allows us to
accept that the true means of the data sets are equal. However, this test can
only be used for normally distributed data since it is using the t-test.

20

Chapter 4

Related Work

This chapter gives an overview of existing work in the field related to the perfor-
mance and energy efficiency of mobile development approaches and summarizes
the methods and results of these. This literature search forms the basis of the
goals of this thesis, as well as giving an indication of answering the question of
whether PWAs are similar in performance and energy consumption to other ap-
proaches. Furthermore, some cases of PWA implementation from the industry
are presented.

4.1 Mobile Performance

Bjørn-Hansen et al. have compared Progressive Web Apps to Hybrid and Inter-
preted mobile applications on the Android operating system. In the research,
performance is measured using the metrics size of the installation, activity
launch time, and Time From App-icon Tap to Toolbar Render [2]. They found
that PWAs have a much smaller installation size compared to both Hybrid and
Interpreted apps, 157 times smaller than the Interpreted app made with React
Native and 43 times smaller than the Hybrid implementation in the Ionic frame-
work. The launch time of the PWA was similar to the Interpreted application,
while it was faster than the Hybrid application. However, the time to toolbar
render was shorter for the Interpreted application compared to the PWA, while
the Hybrid application was the slowest. The research concludes there is a lot
of potential in PWAs as a methodology for bridging the gap between native
and web development. This indicates that the concept of a PWA might be con-
sidered as a viable alternative to native development [2]. The researches also
encourage more research into the subject of Progressive Web Apps, since they
concluded that the lack of academic involvement indicates a knowledge gap be-
tween the industry and academic community [2]. Finally, the research concludes
that for adoption of Progressive Web Apps as a true alternative to other mobile
development approaches, iOS needs to support the underlying techniques [2].
Since this support in iOS is currently available, although limited, this thesis

21

aims to include this platform in the experiment.

Research by Majchrzak et al. from 2018 discusses that PWAs seem to be a
promising alternative to traditional approaches, due to the properties that make
it native-like while still remaining cross-platform and web-based. The study
compares the features and performance of several approaches, namely Native,
Hybrid, Interpreted, Cross-compiled and PWA. The researchers conclude it is
too soon to establish whether it will actually become a definite approach to
cross-platform development since the technology is not mature and not much
research has been performed. However, the results indicate that the PWA ver-
sion actually launches faster than all other approaches and that the time to
render the toolbar is also faster. Furthermore, it is noted that iOS support is
vital for the adoption of PWAs as an alternative to other cross-platform ap-
proaches [9].

Research by Johannsen concludes that the added complexity of transforming a
Web Application to a PWA is low [58]. This indicates that the added costs of
enhancing a Web Application with PWA capabilities are low and therefore a
small hurdle in transforming an existing Web Application to a PWA.

Corral et al. have investigated the performance differences between a Native
Android Application and a web-language based multi-platform framework called
Cordova. The experiment is performed by logging the time difference between
starting and finishing a function, hence assessing performance by analyzing ex-
ecution time. The execution time is measured over multiple functionalities, like
for example I/O operations, GPS requests, and network information requests.
The research concludes that the performance of the web-based implementation
in Cordova was worse and that the performance differences should be taken into
account when making a decision for an approach for the sake of user experience
[25].

In research by Gambhir and Raj, a Progressive Web App is compared to a
native Android application on the metrics input latency and first meaningful
paint. The research shows that the PWA was actually faster than the native
Android implementation on these metrics. The caching process has a positive
influence on the performance of the PWA since it reduces the number of network
requests and therefore the load times [35]. It will be interesting to find whether
these results indicate an outcome in favor of PWAs in this thesis. However,
in a thesis by Yberg, it was found that the performance of a native Android
application was better than the PWA implementation [34]. The comparison
was, however, made by measuring the metrics for the PWA on a laptop rather
than on a mobile device.

Pande et al. created a framework for inserting a Service worker into an existing
web application, in order to improve the performance by adding a local cache.
They found that their framework reduced the unnecessary data transfer between
server and client, therefore improving the performance [4]. This is an interesting
indication that the launch time of a Progressive Web App might be lower than
the launch time of a traditional web app.

22

4.2 Mobile Energy Consumption

Malavolta et al. analyzed the impact of service workers on the energy consump-
tion of multiple Progressive Web Apps, compared to their web app counterpart
on the Android operating system. The research was performed using seven ex-
isting PWA implementations with either service workers turned on or off. It
was found that service workers do not have a negative impact on the energy
consumption of the application [19]. Even more, with service workers turned
off, the medium of consumed energy was consistently lower than with service
workers turned on. On the low-end testing device, the difference was 8.9 Joules
in favor of the PWA, while on the high-end device the difference gets minimal
with only 0.42 Joules [19].

In research by Ciman and Gaggi, a native application is compared to cross-
platform approaches in terms of energy consumption. The native application
was compared to multiple approaches, namely web, Hybrid, Interpreted and
Cross-Compiled implementations, on both iOS and Android. For the measure-
ment of energy consumption, a Monsoon PowerMonitor was used, which directly
measures energy consumption at the hardware level. The results seem to in-
dicate that adoption of a cross-platform approach will result in an increase in
energy usage [3]. It will be interesting to see whether the Progressive Web App
approach also increases energy consumption.

Since networking is an expensive operation in terms of energy consumption [31,
33], Dutta and VanderMeer hypothesized that device-level caching could reduce
the energy consumption of mobile applications. The research was performed on
the Android operating system. The authors found that local caching can reduce
energy consumption related to network activity by up to 45% [30].

Metri et al. have published research where they measured the energy con-
sumption of various background tasks. An interesting thing to note about this
research is the fact that the measurements are also performed on an iPhone,
rather than only an Android device as most research does [44]. In order to mea-
sure energy consumption, the Energy Profiler in the Instruments tool shipped
with Xcode is used. This is the same method that will be used in this research.
Deducting from the results, the measurements are about thirty minutes every
time[44], which is also the running time in our method. However, they seem to
only have done the measurement once, rather than multiple times.

Research by Li et al. has shown how optimizing HTTP requests can have
a positive impact on energy consumption. Since HTTP requests have such
an impact on energy consumption, this feature is included in our application.
They conclude that energy is critical for mobile devices and that they are able
to reduce energy consumption by 38% by optimizing the HTTP requests [59].

23

4.3 Industry implementations

Several companies have already leveraged the advantages of using a Progressive
Web App and have reported successes in blog posts. A collection of success
stories is maintained at pwastats.com [60]. Table 4.1 shows an overview of some
of these stories.

24

Company Description Result

Twitter [61] Twitter transformed the
website ta a Progressive
Web App, using The React
Framework

Twitter has realized a sig-
nificant improvement in en-
gagement and reduction of
data usage. There has been
a 75% increase in Tweets
sent

AliBaba [62] The online trading platform
AliBaba published a case
study about the implemen-
tation of a PWA.

An increase of 76% in con-
version rates is reported.

FlipKart [63] A large e-commerce website
in India, which converted
its web app to a PWA, pub-
lished a case study.

FlipKart reports an in-
crease of three times as
much time spent in the app,
as well as three times lower
data usage

AliExpress [64] A global online retailer that
has published a case study
of converting their website
to a PWA.

AliExpress reports an in-
crease in the conversion
rate of 104% and an in-
crease of 74% of the time
spent in the application.

Uber [65] Uber implemented a PWA
and published a case study.

A minimal installation size
of 50kb and a load time of
maximal 3 seconds on slow
2G networks is reported

Pinterest [63] A social media website
that published a case study
where they compared their
PWA implementation to
their old mobile web app
and the native applications
for iOS and Android.

Pinterest reports an in-
crease in time spent of 40%
and an increase in user-
generated revenue of 44%
when compared to the old
mobile web app. Further-
more, users spent 5% more
time in the PWA imple-
mentation when compared
to the native variant. Also,
the installation size of the
PWA is reported to be
much smaller than the in-
stallation size of the native
applications

Table 4.1: An overview of Progressive Web app implementations in the industry

25

Chapter 5

Results

This chapter presents the collected data and the statistics and graphs represent-
ing meaning in the underlying data. The data is collected as presented in the
method chapter and the analysis performed as described in the analysis section.

The quality of the PWA is analyzed using the Lighthouse tool, as described
in the method chapter. We determined that the score should be at least 90,
in order to make sure that the implementation is of good quality. The final
implementation of the PWA has the highest possible score of 100, as can be
seen in figure 5.1.

5.1 Performance

Performance is measured with the metrics first paint and installation size, as
described in the method in chapter 3. In the next sections, the results for
Android and iOS are presented. The statistics are computed in R and the code
is available in the GitHub repository for this research 1.

5.1.1 Android

First Paint

In order to determine what test to use for the comparison of the data, we
first need to establish whether the underlying data seems to follow a normal
distribution. This is done by combining a Shapiro-Wilk test with an analysis of
a Q-Q plot in R. Table 5.5 shows the results of these tests. Since all p-values
of the test, except the value for the native app and the Web App on 3G, are
lower than the significance level 0.01, we can reject the null hypothesis that the

1https://github.com/TjarcoKerssens/thesis-pwa

26

Figure 5.1: The quality of the PWA is audited using Lighthouse and given a
perfect score

Statistic p-value

Shapiro-Wilk Native p-value 0.044054

Shapiro-Wilk Web p-value 0.005125

Shapiro-Wilk Web 3G p-value 0.408082

Shapiro-Wilk PWA p-value 0.000346

Shapiro-Wilk PWA 3G p-value 0.000875

Mann-Whitney U Native - PWA <2.2e-16

Mann-Whitney U Web - PWA <2.2e-16

Mann-Whitney U 3G Web - PWA <2.2e-16

Table 5.1: First Paint results Android

data is normally distributed. When looking at the Q-Q plots in figure 5.2, we
see that the data sets tend to approach a normal distribution, but does deviate
often. Based on these observations, we will use the Mann-Whitney U test to
analyze the data.

The p-values for the Mann-Whitney U tests for comparing the PWA to the
Native and Web App implementations are presented in table 5.1. The test
operates under the null hypothesis H0 that the underlying data sets come from
the same class, or the same data set. Since all the p-values are below the
significance level of 0.01, we can reject H0 and conclude that there is a significant
difference in the data. The box plots in figure 5.3 indicate that the PWA
launches faster than the Native and Web App implementations. Due to the
caching of the resources in the PWA by the service worker, the difference in
first paint times between the PWA and Web App becomes even larger on a
slower 3G network.

The first paint time might be influenced by the installation size since a smaller
installation size requires fewer resources to be loaded into memory. The next
section shows that the PWA is much smaller than the Native implementation,

27

(a) Native (b) PWA

(c) PWA 3G (d) Web App

(e) Web App 3G

Figure 5.2: Q-Q plots to assess normality in paint time data for Native, PWA
and Web App implementations on Android

28

Statistic p-value

Shapiro-Wilk Native p-value 1.073e-07

Shapiro-Wilk PWA p-value 0.041503

Shapiro-Wilk Web p-value 0.152083

Mann-Whitney U Native - PWA 4.41e-15

Mann-Whitney U Web - PWA <2.2e-16

Table 5.2: First Paint results on the Samsung Galaxy J device

Statistic p-value

Shapiro-Wilk Native p-value 5.165e-12

Shapiro-Wilk PWA p-value 0.000346

Shapiro-Wilk Web p-value 0.005480

Mann-Whitney U Native - PWA <2.2e-16

Mann-Whitney U Web - PWA <2.2e-16

Table 5.3: First Paint results on the Nexus 5X device

which might influence the observation that the PWA launches faster. We test
this hypothesis by increasing the PWA size by adding a very large image and
caching this image with the service worker. The total size of the PWA then
becomes 8.1 MB, roughly the same as the native implementation. Next, the
first paint time is measured twenty times and analyzed using the same method
as above. We found that for this larger installation size, the Mann-Whitney U
test confirms the hypothesis that the size influences the launch time. With a
p-value of 0.146799, we can not reject the null hypothesis that the underlying
launch times differ and we accept that they are similar. Figure 5.4 shows the
box plot of the larger PWA and the Native implementation.

The first paint measurements were also performed on two other devices in order
to validate the results. The results of the analysis of the measurements can be
found in table 5.2 for the Samsung Galaxy J and in table 5.3 for the Nexus 5X.

The validation experiments have the same results as the initial experiment,
validating the result that the PWA launches faster on Android. The box plots
in figure 5.5 show the first paint times for the PWA and Native implementation
on the Samsung Galaxy J device. The box plots in figure 5.6 show the results
for the Nexus 5X.

Installation size

Table 5.4 shows the installation sizes for the PWA and Native implementations
of the application. The Web App cannot be installed and is therefore not in
the results. The PWA implementation is much smaller in installation size, as
expected.

29

(a) Native and PWA (b) Web App and PWA

(c) 3G Web App and PWA

Figure 5.3: Box plots of the first paint times on Android in milliseconds

Native PWA

8.73 MB 0.30 MB

Table 5.4: Installation sizes for the PWA and Native app on Android

30

Figure 5.4: Box plot showing the first paint time on Android for the Native and
larger PWA implementation. The PWA has been made bigger by adding large
images.

(a) Native and PWA (b) Web App and PWA

Figure 5.5: Box plots showing the first paint time on the Samsung Galaxy J7.

31

(a) Native and PWA (b) Web App and PWA

Figure 5.6: Box plots showing the first paint time on the Nexus 5X

Statistic p-value

Shapiro-Wilk Native p-value 0.007179

Shapiro-Wilk Web p-value 0.000609

Shapiro-Wilk Web 3G p-value 0.000306

Shapiro-Wilk PWA p-value 0.007978

Shapiro-Wilk PWA 3G p-value 0.107025

Mann-Whitney U Native - PWA <2.2e-16

Mann-Whitney U Web - PWA <2.2e-16

Mann-Whitney U 3G Web - PWA <2.2e-16

Table 5.5: First Paint results iOS

5.1.2 iOS

First Paint

First, the Shapiro-Wilk test is used to gain insight into the distribution of the
data. The null hypothesis is that the underlying data is normally distributed,
which can be rejected when the p-value is lower than the significance level 0.01.
The results for the Shapiro-Wilk tests for the different data sets can be found
in table 5.5. For all measurements, except for the PWA under 3G simulation,
the p-value of the Shapiro-Wilk test is smaller than 0.01. Therefore, we can
say that the data is likely not normally distributed. Figure 5.7 shows the Q-Q
plots for the first paint data, which also shows that there can not be enough
confidence in the normality of the underlying data.

Since we can not assume that the underlying data is normally distributed, the

32

(a) Native (b) PWA

(c) PWA 3G (d) Web App

(e) Web App 3G

Figure 5.7: Q-Q plots to assess normality in paint time data for Native, PWA
and Web App implementations

33

Native PWA

2.10 MB 0.56 MB

Table 5.6: Installation sizes for the PWA and Native app on iOS

assessment of similarity is performed by using the Mann-Whitney U test. The
resulting p-values of the comparisons are reported in table 5.5. Under the null
hypothesis, the underlying data is collected from the same class of data, mean-
ing that the launch time of the compared implementations is similar. Since the
p-value is lower than the significance level 0.01, We reject the null hypothesis
and accept that there is a difference in the first paint times between all imple-
mentations. More specifically, when analyzing the box-plots presented in figure
5.8, we find that the native implementation launches faster than the PWA im-
plementation and that the PWA implementation launches faster than the Web
App implementation. This result is even more apparent on slow networks, where
the caching of the PWA gives a bigger advantage over the Web App.

Installation Size

On iOS, the installation sizes for the Native App and PWA also differ. However,
the difference is smaller. The installation sizes for both the implementations are
presented in table 5.6.

5.2 Energy Consumption

The next sections will present the results for the measurements in energy con-
sumption for Android as well as iOS. The statistics are computed in R and the
code is available in the GitHub repository for this research 2.

5.2.1 Android

First, the Shapiro-Wilk test is used to establish whether the data is normally
distributed. The null hypothesis H0 is that the underlying data is normally
distributed, hence with a p-value lower than the significance level 0.01, we will
reject H0 and conclude that the underlying data is not normally distributed.
The Shapiro-Wilk test resulted in a p-value of 0.258585 for the energy con-
sumption data of the native implementation and a p-value of 0.290080 for the
PWA implementation. This means we can not reject H0, however, the p-value
is quite low and hence concluding that the data is normally distributed might
be a risk to validity. Therefore, we compute the t-test statistic as well as the
Mann-Whitney U statistic to see whether we obtain a similar result.

2https://github.com/TjarcoKerssens/thesis-pwa

34

(a) Native and PWA (b) Web App and PWA

(c) 3G Web App and PWA

Figure 5.8: Box plots of the first paint times on iOS in milliseconds.

35

Furthermore, the normality of the data can be graphically represented with
the drawing of a Q-Q plot. As shown in 5.10, the data seems to be normally
distributed since most data points are near the expected line.

With the t-test, we have the null hypothesis H0 that the means of the underlying
data sets are the same. Hence, with a p-value of lower than the significance level
0.01, we can reject H0 and conclude that the means do differ. The t-test resulted
in a p-value of 0.014620, meaning that we can not reject H0 and that we have
support that there is not a significant difference in the Energy Consumption
of the PWA and Native implementations. However, the p-value is very low,
making the support poor.

When using the Mann-Whitney U test, we have the null hypothesis H0 that
the underlying data comes from the same data set, which can, in this case, be
interpreted as the set of similar energy consumption values. The test resulted
in the p-value of 0.003534, meaning that we can reject H0 and conclude that
the energy consumption values are in a different class. Hence, we have a slightly
different result with the t-test and Mann-Whitney U test. The p-value of the
Mann-Whitney U test is however still quite close to the significance level 0.01.

In order to increase support for the hypothesis that energy consumption is
similar, the Kolmogorov-Smirnov statistic is calculated [55]. The test is also
performed using R and operates under the null hypothesis that both data sets
are drawn from the same continuous distribution [66]. The test resulted in a
p-value of 0.012299, which is larger than the significance level 0.01, meaning
that we can not reject the null hypothesis and that we find support for the
hypothesis that the energy consumption is similar. However, the p-value is, just
as with the other tests, very close to the significance level 0.01and the support
is therefore not very strong.

Parkhurst argues that failing to reject a null hypothesis does not give strong
support to accept the null hypothesis and that further testing with a reverse
test is needed. That is, a test where the null hypothesis is that the mean of
the underlying data is unequal rather than equal [56]. One way of analyzing
this hypothesis is by making use of the two one-sided t-tests (TOST), which
tests both the hypotheses that the true mean is lower or equal and that the
true mean is higher or equal when comparing two data sets [57]. Rejecting both
these hypotheses leads to accepting that the true means of the data sets are
equal.

The first one-sided t-test tests whether the true mean of the energy consumption
of the Native implementation is larger than the true mean of the energy con-
sumption of the PWA. The null hypothesis is that the true mean is not greater
or equal, hence we can reject H0 and accept that the mean is greater or equal
for a p-value smaller than the significance level 0.01. The test gives a p-value of
0.007310, which is smaller than the significance level 0.01, allowing us to reject
H0 and accept that the energy consumption of the native implementation is
larger.

The second one-sided t-test test whether the true mean of the energy consump-

36

tion of the Native implementation is smaller than the true mean of the energy
consumption of the PWA. The null hypothesis is that the true mean is not
smaller or equal, hence we can reject H0 and accept that the true mean is
smaller or equal for a p-value smaller than the significance level 0.01. We found
a p-value of 0.992690, meaning we can not reject H0. Since the p-value is quite
high, it gives strong support for the alternative hypothesis that energy con-
sumption of the Native implementation is higher than the energy consumption
of the PWA.

Since we can only reject one hypothesis of the two one-sided t-tests, we can not
conclude that the true mean is equal. All tests combined give strong support for
concluding that there is a significant difference in energy consumption between
the Native and PWA implementation. The average energy consumption of the
PWA implementation is 2.287084 kilojoule, which is slightly lower than the
average energy consumption of the Native implementation, which is 2.328142
kilojoule.

Table 5.7 gives an overview of the results for the energy consumption on the
OnePlus X running Android. The box plot in figure 5.9 also indicates that
the average energy consumption of the PWA implementation is lower than the
energy consumption of the Native implementation on Android.

Since the results for the energy consumption on Android is not as expected,
additional experiments are needed. We hypothesize that the difference in energy
consumption might be caused by an incorrect assessment of the measurement
tool what consumption of energy actually belongs to the PWA. It might be
possible that some consumption is done by the browser engine, which would
not be measured with the application specific measurement. Therefore, we
perform additional measurements where the whole system’s energy consumption
is measured.

The results of these extra tests can be found in table 5.8. For all statistical tests,
the p-value is slightly bigger than the significance level 0.01. Therefore, can not
reject the null hypothesis that the energy consumption is similar. While support
is thin, we can not conclude that there is a difference in energy consumption,
contrary to the app-level measurements. A box plot for the results of these tests
is shown in figure 5.11.

The other Android devices did not report values for energy consumption after
performing several measurements. It seems to be the case that the Trepn profiler
does not support energy measurements on these devices.

5.2.2 iOS

The same method will be applied to the energy consumption data from the
iOS platform. However, the data is quite different, since we could only obtain
abstract energy consumption scores rather than direct values as with Android.
The Shapiro-Wilk test on the iOS data results in a p-value of 0.001507 for the
Native implementation and a p-value of 0.000205 for the PWA implementation,

37

Figure 5.9: Boxplot showing energy consumption data for Native and PWA on
Android

Property Value

Shapiro-Wilk Native p-value 0.258585

Shapiro-Wilk PWA p-value 0.290080

T-test p-value 0.014620

Mann-Whitney U test p-value 0.003534

Kolmogorov-Smirnov p-value 0.012299

Mean energy consumption Native 2.328142 kJ

Mean energy consumption PWA 2.287084 kJ

Table 5.7: Results for energy consumption on Android, measured on a OnePlus
X

Property Value

Shapiro-Wilk Native p-value 0.746166

Shapiro-Wilk PWA p-value 0.111150

T-test p-value 0.202099

Mann-Whitney U test p-value 0.217600

Kolmogorov-Smirnov p-value 0.167821

Mean energy consumption Native 2.354426 kJ

Mean energy consumption PWA 2.327175 kJ

Table 5.8: Whole system energy consumption results for Android, measured on
a OnePlus X.

38

(a) Native (b) PWA

Figure 5.10: Q-Q plots to assess normality for PWA and Native implementations
for Android

Figure 5.11: Box plot showing energy consumption data for Native and PWA
on Android, while measuring the whole system’s energy consumption.

39

Figure 5.12: Boxplot showing energy consumption data for Native and PWA
implementations on iOS

Property Value

Shapiro-Wilk Native p-value 0.231147

Shapiro-Wilk PWA p-value 0.289544

Mann-Whitney U test p-value 0.003534

Kolmogorov-Smirnov p-value 0.004716

Table 5.9: Results for iOS

meaning we can reject the null hypothesis that the data is normally distributed.
This can also be found by examining the Q-Q plots of the data, presented in
figure 5.13. Hence, we can not use the t-test to assess similarity in the underlying
data and the Mann-Whitney U test will be used.

The Mann-Whitney U test gives a p-value of 0.006792, meaning we can reject
the null hypothesis that the data for energy consumption comes from the same
class. When looking at the box-plot of the data in figure 5.12, it seems to be
the case that the PWA implementation has lower energy consumption than the
Native implementation.

In order to further test the hypothesis that the energy consumption is similar,
the Kolmogorov-Smirnov statistic is calculated, just as with the Android version.
The null hypothesis is that the data sets are drawn from the same continuous
distribution. The test gives a p-value of 0.004716, which is lower than the
significance level 0.01, allowing us to reject the null hypothesis.

Table 5.9 shows the results of the tests for the Native and PWA implementations
on iOS

40

(a) Native (b) PWA

Figure 5.13: Q-Q plots to assess normality for PWA and Native implementations
for iOS

41

Chapter 6

Discussion

This chapter explains the results described in chapter 5 and puts them in context
of the state-of-the art in mobile development. It is divided into sections for iOS
and Android

6.1 Android

6.1.1 Performance

First Paint

Since we could not establish the normality of the data with enough confidence,
the data was analyzed with the Mann-Whitney U test. It is interesting to see
that there actually is a difference in performance for the Native and PWA imple-
mentation and that the PWA implementation seems to launch slightly faster.
These results are complementary to the work published by Bjørn-Hansen et
al. [2], where the interpreted implementation of the same app was found to
launch slightly slower than the PWA implementation. However, an interpreted
implementation is different from a pure native implementation and it is inter-
esting to see that the PWA also launches slightly faster than the purely native
implementation, contrary to our hypothesis that the PWA would be slightly
slower.

The first paint results also seem to be in line with the results from the study
by Majchrzak et al. [9], where the PWA was found to launch faster than the
Hybrid and Interpreted implementation. The study also found that the time to
render the toolbar, the same launch metric used as in the research by Bjørn-
Hansen et al. [2], was faster with the PWA implementation than the Hybrid
implementation, and only slightly slower than the Interpreted version [9].

42

These results are also in line with the work by Gambhir and Raj [35], which also
concludes that the PWA implementation is faster on the metric first meaningful
paint. The only related work that seems to favor the Native implementation
in terms of launch time, is the thesis done by Yberg [34]. The fact that this
research was not done on mobile devices, makes it fundamentally different from
this research and the related work discussed.

One reason why the PWA actually launch faster might be that the size of the
application is a lot smaller, as shown in the next section. This would mean that
it would take less time for the app to be loaded from the storage into memory
and that this would actually be a bottleneck in the launch process. This size
difference is also apparent from the related work described in chapter 4. We
have tested this hypothesis, as described in the results section, and found that
the first paint time was actually similar when the size of the PWA was increased
to be the same as the native implementation. Therefore, it seems to be the case
that installation size has an influence on the launch time.

The data also indicates that the PWA launches faster than the Web App version,
which makes sense since the PWA is installed locally rather than fetched via
the network. The differences become even more apparent when the network was
throttled to a 3G connection, where the Web App launched a lot slower than
the PWA. This means that on slow networks, a PWA will have a huge gain in
launch time over traditional Web Apps.

It is interesting to see that the results combined with the related work seem to
indicate that the PWA implementation will launch faster than the Native im-
plementation of the same app. This will be an important aspect of establishing
whether a PWA is a good approach to developing a mobile application.

Installation Size

The installation size of the PWA implementation is 29.1 times smaller than the
installation size of the Native application on Android. This result is in line
with all the related work and the reported successes from the companies also
discussed in chapter 4.

6.1.2 Energy Consumption

The results seem to indicate that there is a slight difference in energy con-
sumption between the PWA and Native implementations. The average energy
consumption of the PWA version seems to be lower than the average energy
consumption of the Native implementation.

Since research by Ciman and Caggi has shown that the energy consumption of
other cross-platform approaches is worse than the consumption of the native
implementation on Android [3], the result that the PWA actually consumes
slightly less energy is promising. Since it has been shown that HTTP requests

43

have a large impact on energy consumption while they are also made often in
mobile apps [59], our prototyping app performs many HTTP requests. Web
engines that run the PWA might be more optimized to perform these requests
in a more efficient manner than the native libraries provided by the OS. We
could not find any research supporting this hypothesis, hence we have tested
this assumption by measuring energy consumption of the whole system during a
run of the application, rather than the consumption of the isolated application.
We found that with the measurement of the whole system, the consumption does
not significantly differ, while the box plots indicate a slightly lower consumption
for the PWA version.

In any case, the results are promising for the future of the PWA methodology.
Worse energy consumption might be an important hurdle in the adaption of
the technology as an alternative to traditional approaches [29] and these results
seem to indicate that this will not be a problem for the PWA approach.

6.2 iOS

6.2.1 Performance

First Paint

On iOS, the Mann-Whitney U test and the plots seem to indicate that there
is a significant difference in the first paint times between the Native and PWA
implementations. The data shows that the Native implementation of the same
app launches slightly faster than the PWA version. This is contrary to the first
paint time on Android, where the PWA actually launches faster. It could be
the case that Native Apps on iOS are more optimized than Native Apps on
Android since the platform is less fragmented and therefore apps can be more
fine-grained for the specific devices.

Another possible explanation is that Android is further ahead in terms of PWA
support. iOS has only recently started to support PWAs, which could indicate
that the support is not fully optimized. Furthermore, the size difference of
the applications is much larger on Android than on iOS. We hypothesized for
Android that the size might be related to the launch time since loading the
application into memory would take less time for small app sizes. If this is
true then it would make sense that a smaller difference in size would reduce the
influence of the size on the time it takes to launch the application. This could
also be a reason for the different results for Android and iOS.

The PWA implementation does launch a lot faster than the Web version, which
can be explained by the fact that the PWA is launched from the local installation
and the Web App version needs to be fetched over the network first. Throttling
the network to a 3G connection makes this property more apparent since the
differences in launch times become larger.

44

It is interesting to see that on iOS, the Native App still launches faster than the
PWA implementation. Whether this is due to more efficient Native development
or less efficient PWA support, is yet to be seen. The launch times of both
implementations seem rather low, only about a fifth of a second. Whether a
user would actually perceive such a difference between the PWA and Native
implementation, remains an open question.

Installation Size

As with the Android version and the literature for the Android version, the
PWA implementation also has a smaller installation size on iOS, when com-
pared to the Native implementation. However, the difference is much smaller.
The native application already is quite small, with only 2.05 MB. The PWA im-
plementation has a larger installation size on iOS when compared to the same
PWA on Android, but it is still smaller than the installation size of the Native
app on iOS.

Since the PWA is 3.57 times smaller than the Native app on iOS, the results
seem to support the hypothesis that the installation size is smaller on iOS as
well. However, while this seems like a large reduction, it would be a smaller
reduction than expected. One possible explanation is that Apple has introduced
optimization’s in Swift 5 that reduce the installation size by not including the
dynamically linked libraries from the Swift library in the application [67] in
combination with the still not mature support for PWAs on the platform.

6.2.2 Energy Consumption

Interpreting the results for the energy consumption values on iOS indicates that
there is a significant difference in the energy consumption between the Native
and PWA approaches. However, we have to be careful in making statements
about these results, since the values provided by the instruments tool are rather
abstract, quite varying and not backed by scientific validation of the tool. On
the other side, we have performed many and long measurements in order to get
this data, which reduces these risks to validity.

One important thing to notice is that from looking at the Q-Q plot in figure
5.13 and the Shapiro-Wilk test for normality, the data is far from normally
distributed. This makes it more difficult to make statements about the actual
differences in energy consumption. When we look at the box plots for the
energy consumption on iOS in figure 5.12, we find that the difference in energy
consumption does not seem to differ that much, but that the data is in favor of
the PWA implementation. This result is similar to the results we obtained for
the energy consumption in Android.

For now, we can say that the energy consumption of the PWA is at least not
significantly worse than the Native version and that the results seem to indicate
that energy consumption is even slightly less.

45

6.3 Applicability

The only issue that the results seem to indicate in relation to the applicability
of the PWA technology as an alternative to traditional approaches is a slower
launch time on iOS.

Since little was known about the behavior of PWAs on the iOS platform, this
research gives insight into the general applicability of the PWA methodology as
an alternative to traditional approaches for cross-platform development. Also,
strong support is given for the applicability on Android with the validation of
previous performance results with a different application and the addition of
the energy consumption knowledge. Gaining insight into these differences will
hopefully help future consideration for a mobile development approach.

Furthermore, the trend in support for PWAs on iOS seems to indicate that
Apple is willing to embrace the technology. At this time, it is unclear what iOS
13 will bring as improvements for PWA support, but it might be that it will
improve and that the results of the experiments in this research will be different
for this next version of iOS.

6.3.1 Possible Improvements

There are several promising advancements in web development that might in-
crease the performance of Web Apps and Progressive Web Apps even more.
One of these techniques is WebAssembly, a programming language for the web
that aims to be safe, fast, portable and compact [68]. The research by Haas
et al. shows that the performance of WebAssembly code is much faster than
the JavaScript implementation and that the resulting WebAssembly code is also
smaller [68]. Low-level code like this might give rise to more complex applica-
tions for the web, like games or other heavy computing implementations. With
the gaming engine Unity already supporting WebAssembly [69], it becomes more
realistic for the near future to have games be implemented as PWAs rather than
as Native Apps.

Another interesting development is that of static site generators like GatsbyJS
that make it easier to create a PWA from existing data sources. It applies
all the latest web standards by default, making it convenient to have fast and
optimized applications without too much trouble [70]. It will be interesting to
see whether developments like this will influence the rise of PWAs as a more
widely used alternative to traditional approaches.

Even more, PWAs take the cross-platform approach to the next level by also
becoming desktop applications. Of course, the Web App could be used on any
device running a browser, but support for making the app feel like a native
application on a desktop computer is also starting to take off. Google already
introduced this with Chrome, with the PWA running in its own screen and
context [71].

46

Chapter 7

Conclusion

This chapter concludes the work done is this research. First, we relate the work
to the research questions, after which we provide several opportunities for future
research into the subject of Progressive Web Apps.

This research was performed in order to contribute to the knowledge in the field
of mobile development, specifically the field of Progressive Web Apps. Since
little scientific research is done in this field, we believe that it is important to
provide the community with the information needed to make informed deci-
sions about an approach for mobile development. Therefore, we formulated the
main research question whether Progressive Web Apps can be a viable alterna-
tive to the traditional approaches of Native and Web Apps in mobile develop-
ment. Next, we scoped the research by assessing the viability with the questions
whether there are differences in performance and energy consumption between
the approaches, since these characteristics have been shown to be important in
mobile development.

We have found that there are differences, but often in favor of the PWA imple-
mentation. For answering RQ 1.1, the performance differences between PWAs
and Web Apps, we can clearly see that the PWA actually launches faster than
the same application without the PWA functionalities. Most likely, this is due
to the local installation of the app resources using the service worker, rather
than fetching the whole website from a remote source every time. Since loading
from storage is faster than loading from a network, this result was to be ex-
pected. Hence, we can answer this question with yes, in this research, there is
a difference in performance between the web app and PWA approach and this
is in favor of the PWA implementation on both iOS and Android.

Another research question this research was set up for to answer was whether
there is a difference in performance between Native implementations on iOS and
Android and the PWA (RQ 1.2). We have presented the somewhat surprising
result that the PWA actually launches faster than the Native implementation
on the Android platform. This seems to be due to the installation size of the
application, meaning that a similar sized PWA would launch with similar speed

47

as the Native implementation. We tested this hypothesis and found this to be
the case. Since we have established that performance is an important aspect
of the viability of a mobile development approach, this conclusion gives strong
support for a positive answer to the main research question. For iOS, the
native application still launches slightly faster than the PWA. Whether this can
be attributed to the limited support for PWAs or better optimization for the
native implementation, remains an open question.

Finally, we aimed to find whether there are differences in energy consumption
between the native implementation on iOS and Android and the PWA (RQ 1.3).
We found that there is a slight difference for both iOS and Android, although
small. For both platforms, it seems to be the case that the PWA implementation
consumes slightly less energy. While it can be argued that the significance
of the results is not strong enough to conclude that energy consumption of a
PWA is less than energy consumption of a native application, we can say at
least that based on the results in this research the energy consumption of the
PWA implementation is not worse than that of the Native implementation.
Since we have established that energy consumption is an important factor in
the acceptance of a mobile development approach, this conclusion gives some
support for a positive answer to the main research question.

We have shown that the performance and energy consumption of a PWA is at
least similar or even slightly better when compared to the traditional approaches
of Native and Web in mobile development. Since these factors have been shown
to be important for the adaption of a mobile development approach, the results
in our research seem to support a positive answer to the main research question.
Based on our measurements on the applications created for this research, we can
say that the PWA approach seems to be a viable alternative to native and web
app implementations in the context of performance and energy consumption.
This is a promising conclusion for the adaption of PWAs in the industry.

7.1 Future Work

There are several more questions that are of relevance for the adaption of PWAs
as an alternative to other approaches that are beyond the scope of this research
due to time constraints. One of these is the question willing users are to adapt
to the PWA technology. It would be interesting to know whether users are just
as likely to engage with the application when it is implemented as a PWA rather
than as an application from the app or play store.

Another open question is whether the security of a PWA can be warranted
for sensitive applications. While a PWA is by default served over HTTPS,
without research it can not be said indefinitely that a PWA is secure. For more
sensitive information, it is of course important that this information can not be
compromised. Were it to be the case that PWAs are inherently less safe than
native or web apps, than

Furthermore, the performance of a PWA compared to another approach can

48

also be measured using other metrics. For example the execution time of heavy
tasks, or the efficiency of rendering. Since this research was, due to limitations
in time, not able to measure everything that can be measured about an applica-
tion, future research might aim to extend on the knowledge established in this
research and further add support for the viability of PWAs as alternative to
native and web app implementations

For iOS, the launch time of the native application was slightly faster than the
launch time of the PWA implementation. It might be possible that the support
for PWAs is going to be improved in future iOS versions, which might make the
launch time similar. Future research can be performed to contradict the results
in this thesis by performing an analysis with a newer iOS version.

Also, energy consumption can be done more accurately with the help of an
external hardware power monitor, like the Monsoon Power monitor used by
Ciman and Gaggi [3]. This could also validate the results from this research.

Finally, the development and maintenance effort could be an important factor
to decide for an approach in mobile development. It would be interesting to
research the effort developers have to take to implement their application as
a PWA rather than another approach and how this implementation could be
maintained over time.

49

Bibliography

[1] Peggy Anne Salz. “Monitoring mobile app performance”. In: Journal of
Direct, Data and Digital Marketing Practice 15.3 (2014), pp. 219–221.

[2] Andreas Biørn-Hansen, Tim A Majchrzak, and Tor-Morten Grønli. “Pro-
gressive web apps for the unified development of mobile applications”. In:
International Conference on Web Information Systems and Technologies.
Springer. 2017, pp. 64–86.

[3] Matteo Ciman and Ombretta Gaggi. “An empirical analysis of energy
consumption of cross-platform frameworks for mobile development”. In:
Pervasive and Mobile Computing 39 (2017), pp. 214–230.

[4] Neha Pande et al. “Enhanced Web Application and Browsing Performance
through Service-Worker Infusion Framework”. In: 2018 IEEE Interna-
tional Conference on Web Services (ICWS). IEEE. 2018, pp. 195–202.

[5] Isabelle Dalmasso et al. “Survey, comparison and evaluation of cross plat-
form mobile application development tools”. In: 2013 9th International
Wireless Communications and Mobile Computing Conference (IWCMC).
IEEE. 2013, pp. 323–328.

[6] WeiMin Zhang et al. “Research on the user time difference threshold
during the mobile terminal app launch process”. In: 2018 International
Conference on Computer, Information and Telecommunication Systems
(CITS). IEEE. 2018, pp. 1–5.

[7] Meiyappan Nagappan and Emad Shihab. “Future trends in software engi-
neering research for mobile apps”. In: 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER).
Vol. 5. IEEE. 2016, pp. 21–32.

[8] Lamia Gaouar, Abdelkrim Benamar, and Fethi Tarik Bendimerad. “Model
driven approaches to cross platform mobile development”. In: Proceedings
of the International Conference on Intelligent Information Processing, Se-
curity and Advanced Communication. ACM. 2015, p. 19.

[9] Tim A Majchrzak, Andreas Biørn-Hansen, and Tor-Morten Grønli. “Pro-
gressive web apps: the definite approach to Cross-Platform development?”
In: (2018).

[10] Alex Russell. Progressive Web Apps: Escaping Tabs Without Losing Our
Soul. June 15, 2015. url: https : / / infrequently . org / 2015 / 06 /

progressive-apps-escaping-tabs-without-losing-our-soul/.

50

https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

[11] Alex Russell. What, Exactly, Makes Something A Progressive Web App?
Sept. 12, 2016. url: https : / / infrequently . org / 2016 / 09 / what -

exactly-makes-something-a-progressive-web-app/.

[12] Pavel Smutnỳ. “Mobile development tools and cross-platform solutions”.
In: Proceedings of the 13th International Carpathian Control Conference
(ICCC). IEEE. 2012, pp. 653–656.

[13] Apple. Swift: The Powerful programming language that is easy to learn.
url: https://developer.apple.com/swift/ (visited on 04/04/2019).

[14] Apple. Xcode 10. url: https://developer.apple.com/xcode/ (visited
on 04/04/2019).

[15] Google. Develop Android apps with Kotlin. url: https://developer.
android.com/kotlin (visited on 04/04/2019).

[16] Google. Android Studio. url: https://developer.android.com/studio
(visited on 04/04/2019).

[17] Wafaa S El-Kassas et al. “Taxonomy of cross-platform mobile applications
development approaches”. In: Ain Shams Engineering Journal 8.2 (2017),
pp. 163–190.

[18] Bob Frankston. “Progressive Web Apps”. In: IEEE Consumer Electronics
Magazine (Mar. 2018).

[19] Ivano Malavolta et al. “Assessing the impact of service workers on the en-
ergy efficiency of progressive web apps”. In: Proceedings of the 4th Inter-
national Conference on Mobile Software Engineering and Systems. IEEE
Press. 2017, pp. 35–45.

[20] Marcos Caceres et al. Web App Manifest. Dec. 12, 2018. url: https:

//www.w3.org/TR/appmanifest/ (visited on 04/08/2019).

[21] Matt Gaunt. Service Workers: an Introduction. Feb. 12, 2019. url: https:
//developers.google.com/web/fundamentals/primers/service-

workers/ (visited on 04/08/2019).

[22] Addy Osmani. The App Shell Model. Feb. 12, 2019. url: https : / /

developers . google . com / web / fundamentals / architecture / app -

shell (visited on 04/08/2019).

[23] Rahul Roy-chowdhury. The Modern Mobile Web: State of the Union.
May 18, 2017. url: https : / / developers . googleblog . com / 2017 /

05 / the - modern - mobile - web - state - of - union . html (visited on
08/08/2019).

[24] Ben Galbraith. The web: state of the union (Google I/O 2018). May 8,
2018. (Visited on 04/08/2019).

[25] Luis Corral, Andrea Janes, and Tadas Remencius. “Potential advantages
and disadvantages of multiplatform development frameworks–A vision on
mobile environments”. In: Procedia Computer Science 10 (2012), pp. 1202–
1207.

[26] Compuware. Mobile Apps: What Consumers Really Need and Want, A
Global Study of Consumers’ Expectations and Experiences of Mobile Ap-
plications. Mar. 2013.

51

https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://developer.apple.com/swift/
https://developer.apple.com/xcode/
https://developer.android.com/kotlin
https://developer.android.com/kotlin
https://developer.android.com/studio
https://www.w3.org/TR/appmanifest/
https://www.w3.org/TR/appmanifest/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/architecture/app-shell
https://developers.google.com/web/fundamentals/architecture/app-shell
https://developers.google.com/web/fundamentals/architecture/app-shell
https://developers.googleblog.com/2017/05/the-modern-mobile-web-state-of-union.html
https://developers.googleblog.com/2017/05/the-modern-mobile-web-state-of-union.html

[27] Tammy Everts. “Rules for mobile performance optimization”. In: Com-
munications of the ACM 56.8 (2013), pp. 52–59.

[28] Jingtian Wang, Xiaoquan Wu, Jun Wei, et al. “Detect and optimize the
energy consumption of mobile app through static analysis: an initial re-
search”. In: Proceedings of the Fourth Asia-Pacific Symposium on Inter-
netware. ACM. 2012, p. 22.

[29] Claas Wilke et al. “Energy consumption and efficiency in mobile applica-
tions: A user feedback study”. In: 2013 IEEE International Conference on
Green Computing and Communications and IEEE Internet of Things and
IEEE Cyber, Physical and Social Computing. IEEE. 2013, pp. 134–141.

[30] Kaushik Dutta and Debra Vandermeer. “Caching to reduce mobile app
energy consumption”. In: ACM Transactions on the Web (TWEB) 12.1
(2018), p. 5.

[31] Igor Crk et al. “Understanding energy consumption of sensor enabled
applications on mobile phones”. In: 2009 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society. IEEE. 2009,
pp. 6885–6888.

[32] Trevor Pering et al. “Coolspots: reducing the power consumption of wire-
less mobile devices with multiple radio interfaces”. In: Proceedings of the
4th international conference on Mobile systems, applications and services.
ACM. 2006, pp. 220–232.

[33] H. Yan et al. “Client-Centered, Energy-Efficient Wireless Communication
on IEEE 802.11b Networks”. In: IEEE Transactions on Mobile Computing
5.11 (2006).

[34] Viktor Yberg. “Native-like Performance and User Experience with Pro-
gressive Web Apps”. MA thesis. KTH Royal Institute of Technology,
School of Electrical Engineering and Computer Science, 2018.

[35] Abhi Gambhir and Gaurav Raj. “Analysis of Cache in Service Worker
and Performance Scoring of Progressive Web Application”. In: 2018 In-
ternational Conference on Advances in Computing and Communication
Engineering (ICACCE). IEEE. 2018, pp. 294–299.

[36] Shubhie Panicker. Paint Timing 1. W3C Working Draft. https://www.w3.org/TR/2017/WD-
paint-timing-20170907/. W3C, Sept. 2017.

[37] Mozilla. PerformancePaintTiming. Mar. 23, 2019. url: https://developer.
mozilla.org/en-US/docs/Web/API/PerformancePaintTiming (visited
on 05/13/2019).

[38] Apple. Logging Dynamic Loader Events. July 23, 2012. url: https://
developer.apple.com/library/archive/documentation/DeveloperTools/

Conceptual/DynamicLibraries/100-Articles/LoggingDynamicLoaderEvents.

html (visited on 05/10/2019).

[39] Apple. UIViewController: An object that manages a view hierarchy for
your UIKit app. url: https://developer.apple.com/documentation/
uikit/uiviewcontroller (visited on 05/10/2019).

[40] Android. App startup time. url: https://developer.android.com/

topic/performance/vitals/launch-time (visited on 05/10/2019).

52

https://developer.mozilla.org/en-US/docs/Web/API/PerformancePaintTiming
https://developer.mozilla.org/en-US/docs/Web/API/PerformancePaintTiming
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/LoggingDynamicLoaderEvents.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/LoggingDynamicLoaderEvents.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/LoggingDynamicLoaderEvents.html
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/100-Articles/LoggingDynamicLoaderEvents.html
https://developer.apple.com/documentation/uikit/uiviewcontroller
https://developer.apple.com/documentation/uikit/uiviewcontroller
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time

[41] Google. Lighthouse. Aug. 21, 2018. (Visited on 04/16/2019).

[42] Mohammad Ashraful Hoque et al. “Modeling, profiling, and debugging
the energy consumption of mobile devices”. In: ACM Computing Surveys
(CSUR) 48.3 (2016), p. 39.

[43] Measure Energy Impact with Instruments. Sept. 13, 2016. url: https://
developer.apple.com/library/archive/documentation/Performance/

Conceptual/EnergyGuide-iOS/MonitorEnergyWithInstruments.html

(visited on 04/09/2019).

[44] Grace Metri et al. “What is eating up battery life on my SmartPhone:
A case study”. In: 2012 International Conference on Energy Aware Com-
puting. IEEE. 2012, pp. 1–6.

[45] Yannick Mingashanga Kwete. Power Consumption Testing for iOS. 2013.

[46] GSMArena. OnePlus X full Phone specification. url: https : / / www .

gsmarena.com/oneplus_x-7630.php (visited on 04/11/2019).

[47] GSMArena. Apple iPhone 7 full Phone specification. url: https://www.
gsmarena.com/apple_iphone_7-8064.php (visited on 04/11/2019).

[48] GSMArena. Samsung Galaxy J7 Duo full Phone specification. url: https:
//www.gsmarena.com/samsung_galaxy_j7_duo-9153.php (visited on
06/18/2019).

[49] GSMArena. LG Nexus 5X full Phone specification. url: https://www.
gsmarena.com/lg_nexus_5x-7556.php (visited on 06/18/2019).

[50] Jeongyeup Paek, Joongheon Kim, and Ramesh Govindan. “Energy-efficient
rate-adaptive GPS-based positioning for smartphones”. In: Proceedings of
the 8th international conference on Mobile systems, applications, and ser-
vices. ACM. 2010, pp. 299–314.

[51] J Patrick Royston. “An extension of Shapiro and Wilk’s W test for normal-
ity to large samples”. In: Journal of the Royal Statistical Society: Series
C (Applied Statistics) 31.2 (1982), pp. 115–124.

[52] Graeme D Ruxton. “The unequal variance t-test is an underused alter-
native to Student’s t-test and the Mann–Whitney U test”. In: Behavioral
Ecology 17.4 (2006), pp. 688–690.

[53] Eva Skovlund and Grete U Fenstad. “Should we always choose a nonpara-
metric test when comparing two apparently nonnormal distributions?” In:
Journal of clinical epidemiology 54.1 (2001), pp. 86–92.

[54] Patrick E McKnight and Julius Najab. “Mann-Whitney U Test”. In: The
Corsini encyclopedia of psychology (2010), pp. 1–1.

[55] Frank J Massey Jr. “The Kolmogorov-Smirnov test for goodness of fit”.
In: Journal of the American statistical Association 46.253 (1951), pp. 68–
78.

[56] David F Parkhurst. “Statistical Significance Tests: Equivalence and Re-
verse Tests Should Reduce Misinterpretation: Equivalence tests improve
the logic of significance testing when demonstrating similarity is impor-
tant, and reverse tests can help show that failure to reject a null hypothesis
does not support that hypothesis”. In: Bioscience 51.12 (2001), pp. 1051–
1057.

53

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/MonitorEnergyWithInstruments.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/MonitorEnergyWithInstruments.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/MonitorEnergyWithInstruments.html
https://www.gsmarena.com/oneplus_x-7630.php
https://www.gsmarena.com/oneplus_x-7630.php
https://www.gsmarena.com/apple_iphone_7-8064.php
https://www.gsmarena.com/apple_iphone_7-8064.php
https://www.gsmarena.com/samsung_galaxy_j7_duo-9153.php
https://www.gsmarena.com/samsung_galaxy_j7_duo-9153.php
https://www.gsmarena.com/lg_nexus_5x-7556.php
https://www.gsmarena.com/lg_nexus_5x-7556.php

[57] Donald J Schuirmann. “A comparison of the two one-sided tests proce-
dure and the power approach for assessing the equivalence of average
bioavailability”. In: Journal of pharmacokinetics and biopharmaceutics
15.6 (1987), pp. 657–680.

[58] Fabian Johannsen. “Progressive Web Applications and Code Complexity”.
MA thesis. Linköping University, 2018.

[59] Ding Li et al. “Automated energy optimization of http requests for mo-
bile applications”. In: Proceedings of the 38th international conference on
software engineering. ACM. 2016, pp. 249–260.

[60] Cloud Four. PWA Stats. url: https://www.pwastats.com (visited on
04/03/2019).

[61] Paul Armstrong. Twitter Lite and High Performance React Progressive
Web Apps at Scale. Apr. 11, 2017. url: https://medium.com/@paularmstrong/
twitter- lite- and- high- performance- react- progressive- web-

apps-at-scale-d28a00e780a3 (visited on 04/18/2019).

[62] Google. Alibaba. June 23, 2017. url: https://developers.google.com/
web/showcase/2016/alibaba (visited on 04/18/2019).

[63] Google. Flipkart triples time-on-site with Progressive Web App. Feb. 9,
2017. url: https://developers.google.com/web/showcase/2016/
flipkart (visited on 04/18/2019).

[64] Google. AliExpress. Feb. 9, 2017. url: https://developers.google.
com/web/showcase/2016/aliexpress (visited on 04/18/2019).

[65] Angus Croll. Building m.uber: Engineering a High-Performance Web App
for the Global Market. June 27, 2017. (Visited on 04/18/2019).

[66] The R Foundation. Kolmogorov-Smirnov Tests. url: https : / / stat .

ethz.ch/R-manual/R-patched/library/stats/html/ks.test.html

(visited on 06/07/2019).

[67] Apple. Swift 5 Release Notes for Xcode 10.2. url: https://developer.
apple . com / documentation / xcode _ release _ notes / xcode _ 10 _ 2 _

release_notes/swift_5_release_notes_for_xcode_10_2?language=

objc (visited on 06/03/2019).

[68] Andreas Haas et al. “Bringing the web up to speed with WebAssembly”.
In: ACM SIGPLAN Notices. Vol. 52. 6. ACM. 2017, pp. 185–200.

[69] Marco Trivellato. WebAssembly is here! Aug. 15, 2018. url: https://
blogs.unity3d.com/2018/08/15/webassembly-is-here/ (visited on
07/04/2019).

[70] Ajay NS. Why you should use GatsbyJS to build static sites. Dec. 4,
2018. url: https://www.freecodecamp.org/news/why-you-should-
use-gatsbyjs-to-build-static-sites-4f90eb6d1a7b/ (visited on
07/04/2019).

[71] Pete LePage. Desktop Progressive Web Apps. May 29, 2019. url: https:
//developers.google.com/web/progressive- web- apps/desktop

(visited on 06/04/2019).

54

https://www.pwastats.com
https://medium.com/@paularmstrong/twitter-lite-and-high-performance-react-progressive-web-apps-at-scale-d28a00e780a3
https://medium.com/@paularmstrong/twitter-lite-and-high-performance-react-progressive-web-apps-at-scale-d28a00e780a3
https://medium.com/@paularmstrong/twitter-lite-and-high-performance-react-progressive-web-apps-at-scale-d28a00e780a3
https://developers.google.com/web/showcase/2016/alibaba
https://developers.google.com/web/showcase/2016/alibaba
https://developers.google.com/web/showcase/2016/flipkart
https://developers.google.com/web/showcase/2016/flipkart
https://developers.google.com/web/showcase/2016/aliexpress
https://developers.google.com/web/showcase/2016/aliexpress
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/ks.test.html
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/ks.test.html
https://developer.apple.com/documentation/xcode_release_notes/xcode_10_2_release_notes/swift_5_release_notes_for_xcode_10_2?language=objc
https://developer.apple.com/documentation/xcode_release_notes/xcode_10_2_release_notes/swift_5_release_notes_for_xcode_10_2?language=objc
https://developer.apple.com/documentation/xcode_release_notes/xcode_10_2_release_notes/swift_5_release_notes_for_xcode_10_2?language=objc
https://developer.apple.com/documentation/xcode_release_notes/xcode_10_2_release_notes/swift_5_release_notes_for_xcode_10_2?language=objc
https://blogs.unity3d.com/2018/08/15/webassembly-is-here/
https://blogs.unity3d.com/2018/08/15/webassembly-is-here/
https://www.freecodecamp.org/news/why-you-should-use-gatsbyjs-to-build-static-sites-4f90eb6d1a7b/
https://www.freecodecamp.org/news/why-you-should-use-gatsbyjs-to-build-static-sites-4f90eb6d1a7b/
https://developers.google.com/web/progressive-web-apps/desktop
https://developers.google.com/web/progressive-web-apps/desktop

	Preface
	Introduction
	Research Questions
	Contributions
	Outline

	Background
	Native Applications
	Cross-Platform Approaches
	Progressive Web Apps
	Status Quo of PWA adaption
	Problem Analysis
	Performance
	Energy Consumption

	Limitations

	Method
	Performance
	Measurements

	Energy Consumption
	Mobile devices
	Application Design
	Experimental setup
	Analysis

	Related Work
	Mobile Performance
	Mobile Energy Consumption
	Industry implementations

	Results
	Performance
	Android
	iOS

	Energy Consumption
	Android
	iOS

	Discussion
	Android
	Performance
	Energy Consumption

	iOS
	Performance
	Energy Consumption

	Applicability
	Possible Improvements

	Conclusion
	Future Work

