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Abstract

With the ever increasing demands for sensitivity in radio astronomy, tele-
scopes have made a switch from large dishes to many smaller antennas. This
brings new issues to the field in combining the signals from the individual
antennas or stations. With the large number of antennas and stations, data
rates increase and processing becomes a challenge. We introduce the pro-
cessing that is performed on the LOFAR radio telescope to turn signals from
the antennas into an image. We explore two direction-dependent calibra-
tion and imaging pipelines, Factor and ddf-pipeline, that are used for this
purpose and the parallelism already found in these. We discuss how the
ddf-pipeline can be further parallelized to make use of multiple nodes. And
finally we discuss and test an implementation for the direction-dependent
calibration package in the ddf-pipeline, killMS.
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Chapter 1

Introduction

LOFAR[8] is a radio telescope that operates in the 10 to 240 MHz range. The
telescope consists of many small, static antennas grouped into stations. Two
antenna designs are employed. A low frequency design is used to capture
10 to 80 MHz (Figure 1.1a). The low frequency antennas are dominated
by sky noise. For the higher frequencies, from 120 to 240 MHz a different
design is used (Figure 1.1b). At the higher frequencies the sky noise is
less of a problem. The high frequency antennas are designed to reduce the
contributions of the electronics. The stations are spread around Europe,
with the core stations located in the northern part of the Netherlands. The
LOFAR radio telescope produces tens of terabytes of observations every day.

Traditional radio telescopes use large dishes as antennas. For LOFAR
the choice was made to use many smaller antennas, due to the frequencies
and sensitivity that are targeted with the project. As the sensitivity of a
radio telescope is dependent on the ratio of antenna size to frequency, the
low frequency and high sensitivity requirements would result in a very large
dish. This is problematic in terms of construction difficulty and cost [5].
The signals from the individual antennas are combined per station to form
a single antenna, comparable to a large dish antenna.

The LOFAR telescope is considered to be a pathfinder for the Square
Kilometer Array1, a next-generation radio telescope currently in develop-
ment. The use of a large number of simple antennas and the data handling
and processing challenges that accompany them form a good test-bed for
the technologies needed for the new telescope.

The observations from LOFAR are stored in terms of the correlation of
the signal between pairs of stations. This information is not directly usable
for science, further processing is needed. A full measurement consists of
an observation of the target field generally lasting eight to twelve hours,
with a short observation of a calibrator generally lasting five to ten minutes
before and after the main observation. A calibrator is a bright source which

1https://www.skatelescope.org/precursors-pathfinders-design-studies/

1

https://www.skatelescope.org/precursors-pathfinders-design-studies/


2 CHAPTER 1. INTRODUCTION

(a) LBA antenna1.
10 - 80 MHz.

(b) HBA antenna1.
120 - 240 MHz.

∆t

(c) Delay in reception of
the signal between differ-
ent antennas or stations.

Figure 1.1: LOFAR

has well known properties, in terms of brightness and shape. It is used to
estimate the characteristics of the instrument and the environment during
the observation of the target field. With the environment we mean any
external influences that change the observed signal. This includes factors
like the ionosphere (discussed next), and the temperature at the station [7].

Multiple sources contribute to the inaccuracies in the measurements
made by the telescope. One of the main contributing factors is the iono-
sphere. It causes unknown gain phase and amplitude changes [4] to the
signal. These differ from station to station and change over time as the
ionosphere changes. The sky can be divided into isoplanatic patches [11].
These are areas that have approximately the same ionospheric conditions.
Depending on the location of the antenna and the direction the signal is
coming from, the signal can pass through a different isoplanatic patch and
thus have different conditions affecting it. These are called the direction-
dependent effects, and are corrected for by modern calibration packages.

In the LOFAR design, the antennas do not have any moving parts, mean-
ing that the instrument can not physically be pointed at a source, instead
targeting happens in software by adjusting the delays at which signals from
stations are brought in to be correlated. The signal from the ’closer’ sta-
tions is delayed by the amount of extra time it takes the signal to reach
the ’further’ station (Figure 1.1c). For example: by delaying the signal from
stations in the east, a pointing towards the east is created. A signal traveling
from an eastern direction arrives first at the stations in the east and later at
the stations in the west. With the added delay to the eastern stations the
arrival times now line up and the signals from that direction are thus the
signals found with the highest correlation. The artificial delays compensate
for the delays introduced by the physical distance between stations.

This brings us to another source of inaccuracies, the pointing system.
The antennas have a particular beam shape. This generally means that

1Pictures from:
http://www.lofar.org/about-lofar/system/sensor-fields/sensor-fields

http://www.lofar.org/about-lofar/system/sensor-fields/sensor-fields
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the antennas are more sensitive to signals directly in front of the antenna
compared to signals coming in at an angle. Specifically for the LOFAR
antennas, this means that they are most sensitive for signals straight above
the antenna, coming from the zenith. As the pointing gets adjusted to keep
track of the target, different parts of the antenna beam are measured in
observing the target. This means that the sensitivity of the instrument
constantly changes. This needs to also be accounted for in calibration as it
would otherwise lead to a lower image quality.

Due to the large number of antennas and stations involved in LOFAR,
the processing of observations into images usable for astronomers is a com-
pute intensive task. Modern calibration packages have run-times in the
order of days or even weeks [14, 9] to process a single eight-hour observation
into an image. The ddf-pipeline specifically takes about four days to com-
plete such an observation [15], when performed on a single fat node2. Some
calibration packages allow for the use of multiple nodes to speed up the pro-
cessing (e.g. Factor [19]). For ddf-pipeline this is not yet possible. In this
thesis we look into the parallelization of ddf-pipeline from the perspective
of a computer scientist.

2These fat nodes have 24 physical ‘CPU cores and 512 GB ram
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Chapter 2

LOFAR architecture and
calibration

In this chapter we will give a general introduction to the data processing
happening in the LOFAR telescope and what steps are involved in the cali-
bration of observations. Additionally we discuss another calibration package,
Factor, that is also based on the facet calibration technique.

2.1 From antenna to archive

At the stations the signal from each antenna is fed into dedicated hardware
that performs analog to digital conversion, signal sampling, and filtering. For
each of the individual frequency bands, the signals from the antennas are
coherently summed to form the station subbands. This is known as beam-
forming. In the most common 8-bit mode, 488 subbands can be selected
for observation. These subbands can either all be used for one pointing, or
spread over multiple pointings. The combined signal is sent via 10 Gigabit
Ethernet connections to the central processing cluster located in Groningen
for further processing and storage [2].

Originally the central processing facility was implemented using various
iterations of a Blue Gene super computer. This was replaced in 2014 by gen-
eral purpose hardware in the form of COBALT [3]. At the cluster data from
each station is processed as it arrives. The data from stations is correlated
with the other stations, outlier data is flagged, and the resulting visibilities
are averaged in time and frequency to reduce data size to a manageable
level for the end user [10]. These first stages of processing are performed in
realtime on the COBALT system. Further processing can also be performed
as part of the LOFAR processing pipeline. This takes place on a separate
‘offline’ cluster. For example: additional steps to create images or source
catalogs can be included in the pipeline. The early designs for LOFAR al-
ready include the automatic processing pipelines, however they are still in

5
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development. Instead all data is processed manually by users. As we want
to process the data ourselves, we use the data that results from the Aver-
aging Pipeline. The averaged visibilities are stored in the archive to allow
new developments in calibration technology to be retroactively applied to
old observations.

The LTA currently consists of three sites in: Amsterdam (NL), Jülich
(DE), and Poznań (PL). These sites are accessible via GRID or, if the user
does not have a GRID certificate, via a HTTP proxy located at each of the
storage sites. Data is stored on tapes. When a request for data comes in,
the data is scheduled to be copied from the tapes to hard drive storage from
where it can be downloaded by the user.

2.2 Calibration

Once we have acquired the data from the LTA, it is time to start calibration.
When we directly image the data from the LTA we get an image dominated
by artifacts. To remove these artifacts we perform calibration. The gen-
eral idea of calibration is that we assume a certain sky, a model, based on
previous observations. Then we can calculate what the visibilities would
be if we observed that model. From the difference between the observed
and calculated visibilities we can derive how the signal is affected and what
transformations need to be applied to remove the artifacts from the image.

The changes that transform the signals coming from the sky can be
modeled using a so-called Measurement Equation. Each of the effects is
modeled as a 2 by 2 Jones matrix and is applied in the sequence in which
they affect the signal. Equation 2.1 gives an example of a measurement
equation with: G: Gain, K: Geometry, B: Beam, and I: Ionosphere.

V meas
pq = Gp · (

∫
sKp,s ·Bp,s · Ip,s ·Fs · FH

s ·IHq,s ·BH
q,s ·KH

q,sds) ·GH
q

Measured
Visibilities

Calibration Sky Calibration

?

(2.1)

The goal of the calibration is to minimize the difference between the pre-
dicted values from the model and the measured values from the observation.
The calibration processes uses a gradient descent algorithm.

Ongoing developments are aimed at reducing the solution space to speed
up calibration and to find more accurate solutions.
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Build a model Calibrate to match the data to the model

Apply calibration solutions to dataImage the data

Figure 2.1: Self-calibration

2.2.1 Self-calibration

Both the direction-independent and the direction-dependent calibration
make use of self-calibration in which the target is used to calibrate itself.
This works by calibrating for bright sources within the target field. Self-
calibration is an iterative process. It is illustrated in Figure 2.1. Each
iteration a model is generated. For the first iteration, the model is based
upon previous observations, or the dirty (uncorrected) image if no data is
available. In the later iterations, the model is created from an image of
the data with the corrections of the previous iteration applied. From the
model, visibilities are generated. Now the parameters of the measurement
equation are optimized to fit the generated visibilities to the observed visi-
bilities. The observed data is corrected with the found solutions and a new
model is generated from the corrected data. The loop repeats for a number
of iterations until the signal to noise ratio limits are hit, or convergence has
been reached.

2.2.2 Direction-independent calibration

Both ddf-pipeline and Factor only perform the direction-dependent calibra-
tion. The direction-independent calibration is performed by prefactor1.

The prefactor calibration is separated in a number of steps [19]. The
first step in the calibration consists of the flagging of RFI. In the LOFAR
frequency range there are a number of strong sources of RFI that need to
be filtered out.

Next, the contributions of bright sources are removed. This generally in-
cludes A-team sources, which are the brightest sources in the low frequency
radio sky. Even though the stations are not necessarily pointed in the di-
rection of these bright sources, via the sidelobes of the antenna beam these
can still have a significant contribution. This is followed by a calibration on
the calibrator.

The LOFAR core stations are all connected to a single clock for time
reference. The remote and international stations have independent clocks,
that are synchronized using the GPS signal. The synchronization is not
perfect, and thus timing differences are introduced. These are corrected for
in the next step.

1Source: https://github.com/lofar-astron/prefactor
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In the last steps, the solutions from the calibrator are transferred to the
target field and another round of calibration is performed, this time on the
target field. A solutions file is generated that contains the solutions for the
direction independent effects.

2.2.3 Direction-dependent calibration

Direction-dependent calibration primarily involves correcting for the iono-
sphere and the beam. Both Factor and ddf-pipeline perform calibration
using the faceting technique.

The corrections calculated as part of the direction-dependent calibration
process are only good for a single point in the sky, for example the image
center. If we only calibrate for a single point, then as we get further away
from that point, the image quality degrades. Ideally we would perform
the calibration for every source in the field. However, this is prohibitively
expensive. Instead only a subset of the sources are calibrated for.

An algorithm to solve this is peeling. Peeling is an iterative algorithm
where in each iteration the brightest problematic source is calibrated and
subtracted from the image.

Another solution is to split up into smaller sections called ‘facets’. In
Figure 2.2 an example of such a division can be seen. For each facet a
solution is calculated. These solutions are then smoothed over to prevent
sudden changes in the image across facet borders. The center point of each
facet is the brightest source or group of sources in the area. Together, the
facets form all the directions that the calibration is performed in. Faceting
is seen as an evolution of peeling.

Factor

Factor works by dividing the field of view into facets and solving the
direction-dependent corrections in each of them. Factor was designed to
be able to work in parallel, making use of a cluster to distribute the work
load over multiple nodes. Individual facets can be processed in parallel.

Factor has been designed from the ground up to be parallelized and
is build upon LOFAR Generic Pipeline framework. This is an extensible
framework for writing data processing applications, developed for the LO-
FAR project. It is designed to make it easier to run jobs on a cluster. It
handles the multiprocessing transparently. Factor assumes a shared filesys-
tem.

The majority of processing in Factor is done in operations [6]. These are
steps grouped together into pipelines. Some operations can run in parallel,
others can not. Factor defines the following operations: outlierpeel : In this
step sources that lie outside of the faceting region are removed. facetpeel :
The facet calibrator is removed, and the facet is imaged. facetselfcal : The
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Figure 2.2: checkfactor tool: showing the facets and their processing status.

calibrator in the facet is self calibrated, and an image is made with a sampled
subset of the full bandwidth. facetsub: The improved model from one of the
previous operations is used to subtract the facet. facetimage: An image is
created using the full bandwidth using the solutions from the self calibration
step. fieldmosaic: Combine the individual facet images together to create
the full image.

Once the processing is complete, we get two full images built up
from the individual facet images. The image with a filename ending in
correct mosaic.pbcor.fits is used for accurate source flux density measure-
ments. The image with a filename ending in correct mosaic.pbcut.fits is used
for source detection. Unlike the ‘pbcor’ image it has not been corrected for
the primary beam.
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ddf-pipeline

killMS DDFacet
direction-dependent calibration

using
Wirtinger Jacobian & Hessian

imaging and deconvolution
taking into account the Jones
matrices produced by killMS

Run multiple rounds of calibration and imaging using killMS and
DDFacet to produce high quality images

Figure 2.3: ddf-pipepline architecture with killMS and DDFacet

killMS

In the ddf-pipeline (Figure 2.3) calibration is performed by killMS. It can
perform direction-dependent self calibration based on a model or image. The
calibration in killMS is using the Wirtinger derivative to be able to take some
algorithmic shortcuts and simplify calibration [17]. It makes the calibration
problem antenna separable. Many of the calculations made in killMS are
embarrassingly parallel and can be performed in parallel for directions and
stations. These calculations are performed by worker pools working from a
job queue with each worker using a single core. The killMS code calls on
the DDFacet imager to perform the imaging during the calibration. killMS
(and also DDFacet) make use of shared memory for communication of data
and results between the different processes.

2.3 Imaging

Imaging is complementary to calibration. In calibration we calculate the
Jones Matrices given the measurements and sky model, whereas in imaging
we have values for the Jones Matrices and instead want to calculate the sky
map.

DDFacet is a facet-based imager that can integrate the killMS calibra-
tions into the imaging process. In Factor the calibrations are used to cor-
rect the visibilities and then those corrected visibilities are imaged. In ddf-
pipeline, the imager also gets the calibration solutions and can take these
into account during the imaging process. The majority of DDFacet is im-
plemented in Python, with a small subset of high-performance code written
in C.

In imaging the visibilities are decomposed into the constituent frequen-
cies using the Fast Fourier Transfer (FFT). The FFT requires the data to
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be aligned to a regular grid, and so the imaging process includes a step to
interpolate the visibilities onto a grid.

The direction-dependent effects can either be taken into account in the
Fourier domain using A-projection (used in AWImager), or in the image
domain using a facet approach (Factor & DDFacet). The advantage of cor-
recting in the Fourier domain is that the solutions correct the whole image,
while in the image domain the solution is only correct for the given direction.
However the corrections in the Fourier domain require the Jones Matrices to
be provided for the continuous image plane, while most calibration strategies
only calculate for a set of discrete directions [18].
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Chapter 3

Running calibration packages

We tested ddf-pipeline and Factor to get some experience with calibration
and evaluate the performance of the pipelines. The experiments have been
performed on a small scale on our local hardware and on the DAS-5[1] cluster
at Astron. At the cluster we have nodes available with up to 56 physical
cores and up to 512 GB of ram.

Note that we started our experiments with the version of ddf-pipeline
used for the first data-release of the LoTSS project. This was the latest
public release of DDF & kMS at that moment. In the mean time a new
release of both project is in progress as of writing this thesis. With this new
release the software has been used on data from a variety of telescopes and
has gained in robustness and reporting of potential issues with the data has
been added.

3.1 Data

Initially we were given an observation of the calibrator 3C295 from the LO-
FAR archive to start our experiments and see if we could run the pipeline.
With that, we decided to try and directly image the calibrator. As the
calibrator observation duration is very short and the calibrator model is al-
ready of high quality this should allow the calibration and imaging to finish
quickly. The dataset, L151880, is a 2 minute observation of the 3C 295 cal-
ibrator spanning 244 frequency bands, each in a separate MeasurementSet.
This dataset takes up 4.6 GB of storage and was acquired from the LTA.
After processing with prefactor and the averaging that it performs we are
left with 60 frequency bands.

When feeding those into ddf-pipeline we ran into issues at the bootstrap-
ping phase. In the bootstrapping phase of ddf-pipeline the flux density scale
is adjusted to fit the data to observations made with other telescopes. The
large number of frequency bands and the small duration of the observation
lead to small MeasurementSets. killMS processes each MeasurementSet in-

13
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dividually, and thus has very little data to work with. It crashes when it
does not find any sources in our data, not even the bright calibrator. So then
we decided that we better follow the normal processing pipeline and work
on the target field instead, to reduce the probability of further problems.

So now we need to find suitable data that represents a real workload
without needing terabytes of storage and days of runtime. Initially we se-
lected the LOFAR schools as a good source of datasets. The LOFAR schools
datasets are short observations designed specifically as an introduction to
the steps in processing observations into images. These observations are
designed to be simple as to allow for relatively quick processing during tuto-
rials, but still are real observations made using the telescope. However when
running one of these small observations through ddf-pipeline we ran into sim-
ilar issues as before, although in a different stage of the pipeline. In this
case the pipeline crashed at the start on during the direction-independent
imaging step with very low signal-to-noise ratios of the sources.

Then we came across the prefactor tutorial from the 2018 LOFAR school1

which uses a subset of the available subbands of a standard eight hour
observation. Here we are using L232873, a ten minute observation of the
calibrator 3C196 of which we use 100 subbands. And L232875, an eight hour
observation of the target field P23 of which we use 20 of the 237 available
subbands in the LTA. The data volume of these two observations together
takes up just over 250 GB in storage.

The tutorial discusses the data preparation and direction independent
calibration that is performed using prefactor. It ends at the point where one
would normally run Factor or ddf-pipeline.

With this dataset we have our first success. After solving various simple
problems in ddf-pipeline, bugs that had already been solved in the newer
versions, we manage to get our first images. We were also able to run version
2 of Factor on the same data. In Figure 3.1 we show the same region of the
image by both calibration packages. The self-calibration of a facet can be
seen in Figure 3.2. The direction-dependent calibration and imaging process
for both pipelines took approximately two days for ddf-pipeline and five days
for Factor on a single 56 core / 512 GB ram node.

For quick testing of our work we got our hands on a small simulated
dataset created using MSCreate (Figure 3.3). It contains nine point sources
aligned on a grid. This dataset contains two 10 MHz wide subbands and
takes up about 200MB. Processing is very quick with a round of calibration
with killMS taking about a minute per frequency band.

1http://www.astron.nl/lofarschool2018/Documents/Thursday/prefactor_

tutorial.pdf

http://www.astron.nl/lofarschool2018/Documents/Thursday/prefactor_tutorial.pdf
http://www.astron.nl/lofarschool2018/Documents/Thursday/prefactor_tutorial.pdf
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(a) The primary beam corrected image produced by Factor

(b) The image produced by ddf-pipeline

Figure 3.1: Images of the L232875 observation side by side. This is showing
a section from the center of the images.
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(a) Dir. Indep. (b) TEC (c) TEC

(d) TEC + Gain (e) TEC + Gain (f) TEC + Gain

Figure 3.2: Example of the self-calibration of a facet in Factor. The captions
describe the phase of calibration. Image (a) is made with only the direction
independent solutions. Image (b) and (c) show the image during the TEC
phase. TEC, Total Electron Content, is used to describe the ionospheric
turbulence. In images (d),(e) and (f) the direction-dependent gain solutions
are also included.

Figure 3.3: Artificial small test dataset with 9 sources aligned in a grid.
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3.1.1 Comparison of the images

We begin by measuring the noise level of both images. We do this by
selecting a region without any sources in our image viewer, DS9. We measure
the standard deviation of the same empty regions in both images. The
Factor images has a consistently lower noise level on this specific dataset
(Table 3.1),

Factor ddf-pipeline

Region 1 3.21 × 10−4 4.72 × 10−4

Region 2 3.02 × 10−4 4.19 × 10−4

Region 3 2.90 × 10−4 5.18 × 10−4

Table 3.1: Image noise level

When comparing the scale below the images we can see that the maxi-
mum values are similar, but the minimal values differ. For ddf-pipeline the
values go much deeper into the negatives, this can be seen as the dark areas
around sources in the image. It seems the cleaning has gone to deep in the
ddf-pipeline.

(a) Factor (b) ddf-pipeline

Figure 3.4: Pixel distribution for the images of L232875

We also include the pixel distribution, as we found an interesting dif-
ference in the values. There is a very bright source leading to the high
maximum flux in the ddf-pipeline image. For Factor this source is located
just outside of the cut off area, so it has been peeled from the image. This
explains the difference in the maximum values for both images. For the
minimum values we that Factor has a minimum value just below zero, but
the minimum value lays past minus one.

3.2 Containerization

As LOFAR is a path finder project, the calibration packages and the software
stack that they depend on are under active development. Additionally many
of these projects do not have a stable release schedule, or any guarantees of a
stable API. This makes it difficult to install many of the required packages.
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There are attempts to make the installation easier, for example trough
the KERN Suite[12]. However even that does not solve the issues, as cur-
rently the LOFAR offline software stack as published via the Astron SVN
service is still in the process of migrating from version 2 of the Casacore
library to version 3. Casacore is a widely used library for astronomical data
processing. For KERN suite version 5, the current release, the software
stack is using the newer version 3 of Casacore. This leads to the problem
that the LOFAR offline software stack can not be packaged in KERN suite,
as it does not compile with Casacore 3. Both factor and ddf-pipeline have a
dependency on the LOFAR software stack. We tried to run the ddf-pipeline
using KERN, and ran into this issue. The pipeline crashed because it was
missing the LOFAR beam model from the offline software stack. Since then
the LOFAR beam model has been separated from the main repository into
a separate package, allowing it to be build independently and included in
KERN.

The main method of using the software packages seems to be migrating
from native installation to running inside of containers. Many of the projects
now offer Docker templates to make it easier to run the software. In our
case we made use of the containerization technology Singularity. The images
and recipes we used and adjusted to fit our needs are provided on GitHub
and the Singularity Hub by Frits Sweijen2. The images are designed to work
with the newest releases of the ddf-pipeline. We have adjusted these to work
with Factor and the older, public, version of the ddf-pipeline. These changes
include patches to fix bugs and outdated code in the public version of the
ddf-pipeline.

2https://github.com/tikk3r/lofar-grid-hpccloud
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Architecture of the
ddf-pipeline

To create the final science-worthy image, ddf-pipeline uses two major com-
ponents: DDFacet and killMS. DDFacet performs the imaging. killMS per-
forms the direction-dependent calibration. The pipeline currently runs on a
single machine. We will now look more deeply into the architecture of both
software projects1.

4.1 DDFacet

DDFacet is an imaging and deconvolution framework. In the ideal case, the
visibilities are Nyquist sampled over the entire uv-plane during an observa-
tion. The uv-plane is the Fourier transform of the sky. Each pair of antennas
forms a baseline, and each baseline measures a single point on the uv-plane.
When performing Nyquist sampling of the visibilities there is enough infor-
mation captured to fully recover the original signal. The Fourier transfer of
these visibilities would produce an image of the sky. In practice the sampling
of the uv-plane is incomplete. Deconvolution is the process of finding the
‘true’ signal that is sent out by astronomical sources from the incomplete
visibilities.

4.1.1 Deconvolution

Deconvolution generally follows the following principle. The corrections to
point sources are captured in a PSF or dirty beam. The PSF, or point spread
function, is the Fourier transform of the sampling function. This sampling
function has a value of 1 where we measured the data in the uv-plane and a

1For a more visual explanation https://safe.nrao.edu/wiki/pub/Software/

Algorithms/CALIM2016Program/CALIM_2016_TASSE.pdf
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Figure 4.1: 1-dimensional (de)convolution example

value of 0 otherwise. The dirty image can be seen as the convolution of the
true image with the PSF.

For the deconvolution we start with the PSF and either an initial model
of the sources or the dirty image. If no model is available, bright points
in the dirty image are used as initial sources. For each found source, the
PSF gets scaled to match size and gets subtracted from the dirty image at
some percentage of the full brightness of the source. The resulting image
after subtractions is known as the residual image. In the next iteration,
the residual image is used to find sources. In the residual image we might
find new sources that were hidden in the sidelobes of brighter sources that
were subtracted in a previous iteration. Each iteration, the sources that
have been found are added to the model and are subtracted from the dirty
image. The result of these subtractions is called the residual image. When
the signal to noise ration of the residual falls below a threshold, or the
maximum number of iterations has been hit the process stops. Taking the
final residual and adding to that the model convolved with the clean beam
results in the final restored image. The dirty beam has sidelobes. For the
clean beam a Gaussian function is used, which has no sidelobes.

For deconvolution in DDFacet, two algorithms are available.For both
algorithms, the deconvolution is split into a major and a minor cycle. The
minor cycle operates in the image domain. In the minor cycle the PSF is
deconvolved from the residual image to create the model. In the major cycle
the contribution of the model defined during the minor cycle is subtracted
from the visibilities. The result is used to form a new residual image. For
HMP, a variation of the MTMS-CLEAN/MS-MFS [13] algorithm, the minor
cycle is inherently serial. For more information about this algorithm we refer
to [18].

An alternative approach is offered with the SSD (Sub Space Deconvo-
lution) algorithm. In SSD, regions with bright sources are processed in
parallel. In the first step of the algorithm these regions, called islands, are
isolated and deconvolved independently from each other. As a second step
the models are combined and subtracted from the visibilities, which are then



4.1. DDFACET 21

re-imaged. When performing deconvolution on a single island, this will lead
to inaccuracies in the flux level estimations as the contributions of other
islands are ignored. However, with the combination of the models from in-
dividual islands and correction for those in the visibilities, the corrections
for an individual island are also applied to the other islands. This still leads
to good results over multiple iterations [18].

4.1.2 Parallelization

DDFacet is written with the assumption that it is running on a single node.
It makes heavy use of shared memory for sharing data between main thread
and the worker threads to reduce the overhead of copying data between
different memory spaces.

Previous work has been done in making DDFacet run in parallel. The
gridder code, written in C, has support for running in parallel using an
OpenMP parallel for loop. However this parallelization is disabled in prac-
tice. Instead parallelization is achieved using Python multiprocessing. The
deconvolution process has been made to run in parallel over multiple nodes
using MPI. This implementation is also unused and has not released to the
public.

MS1 · · · MSn

Node 1 · · · Node n

(XD1 , PSF1) · · · (XDn , PSFn)

+

(XD, PSF )

Major Cycle

X̂
Minor

Cycle

Figure 4.2: ddf-parallel design: with XD the ‘dirty’ sky, X̂ the sky model,
and PSF the point spread function.

In our case we opted for a design where minimal work was expected to



22 CHAPTER 4. ARCHITECTURE OF THE DDF-PIPELINE

be done on the DDFacet code. We would like to make use of the exist-
ing flexibility of DDFacet. The code that handles parallelism over nodes
can be written as a separate script that calls DDFacet. In the design (Fig-
ure 4.2) each node gets one or more MeasurementSets as input. So, each
node handles one or more subbands. These are located on a filesystem that
is assumed to be local to the node. The nodes perform the major cycle of
the algorithm on their locally available data. The results of the major cycle,
the dirty sky XD and the PSF get transported to a central node where
they get combined. The minor cycle is performed by the central node on
the combined sky and PSF. The resulting sky model is shared with all nodes
which then can perform the next major cycle.

4.2 killMS

killMS is a package that can perform direction-dependent calibration.

Various steps in the calibration can be performed in parallel per direction
and station. These jobs are performed using worker pools, like is done in
DDFacet. From this we can see that an option for multi-node parallelism
would be to distribute batches of station / directions to different nodes,
however a much simpler approach is possible.

In [16], the algorithms employed in killMS are discussed. The description
includes the specification of solution intervals over time and frequency as a
means to achieve a higher signal to noise ratio. In practice killMS runs
sequentially over the individual MeasurementSets.

The input has already been averaged in time and frequency as part of
the pre-processing steps. Further combining multiple MeasurementSets is
not nessecary to reach good calibration solutions. So, all that needs to be
done to make it work on multiple nodes is create a wrapper around killMS
that runs the calibration jobs for individual MeasurementSets in parallel.
For this we do not need the MeasurementSets to be available on a shared
filesystem. Each worker node can process the data that is available locally.

4.3 Time is short

In killMS we see that the data is kept separated whereas in DDFacet the
data is merged before imaging. In principle the imaging process can also
be designed to work with individual MeasurementSets. Then an image is
created from the data in each subband, allowing the imaging processes to
happen in parallel. Only to create the final image, the images from the
individual frequency bands need to be combined together. However, this
results in a lower image quality due to the lower signal to noise ratio. Ba-
sically, combining the visibilities from multiple subbands and imaging gives
better image quality then imaging each subband individually and combining
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the images. For Factor a similar thing holds, the facetsub operation that
removes the effects of the sources in a facet from the visibilities runs on a
single node. Even though most of the operations run on multiple nodes, this
single operation that is performed for every facet can only run on a single
node.

After getting experience with the ddf-pipeline, we started working on
the parallel implementation of DDFacet. Due to the time constraints of this
project, we decided to switch to implementing the parallel version of killMS
instead. In DDFacet we are always limited by the centralized minor cycle,
while in killMS all subbands can be processed in parallel. Additionally in a
ddf-pipeline run on a full LOFAR dataset, both DDFacet and killMS take
approximately equal shares of the total execution time. So the speedup that
can be achieved by working on killMS is greater than what can be gained
from work on DDFacet. We did not have enough time to work on DDFacet
anymore. So, in the next chapter we will discuss the implementation details
and show a performance analysis of the parallel implementation of killMS
only.
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Chapter 5

Implementation and testing

We will first describe some of the details of the parallel implementation for
killMS. Then we test the performance of the implementation and extrapolate
to the performance on a full dataset. The interesting sections of the code
have been included in Appendix A.

5.1 Input

The input data, the MeasurementSets to be processed by DDFacet or killMS,
can either be specified as the path to a single MeasurementSet, or as the
path to an mslist file. This is a text file containing on each line the path
to a MeasurementSet. If an mslist is used, killMS will run in batch mode,
running itself for each MeasurementSet in the list. The batch mode includes
options for skipping already existing solutions, and cleaning of the DDFacet
cache that is created during calibration. These options are not available
when running killMS on a single MeasurementSet at a time.

For the parallel implementation of killMS the mslist format has been
extended to include hostnames next to the MeasurementSet filenames. The
fields are separated by a semicolon. The user is responsible for acquiring
and distributing the data over the nodes. The filesystem can either be
local or shared. Then the user creates an mslist containing the paths to
the MeasurementSets and the hosts that store them. Example: ‘node103:
/data/L232875/01.MS’. Each node is responsible for processing the data
local to that node.

5.2 Design decisions

The parallel implementation of killMS is designed to be used as an in-
place upgrade. In the command that is used we can replace ‘kMS.py’
with ‘kMS parallel.py’. All arguments are passed through to the underlying
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killMS processes. The only other change needed is to create the mslist spec-
ifying hosts and data. When running killMS within a pipeline, we assume
the full pipeline is parallelized. When this is the case, the data (images and
visibilities) on the individual nodes are kept up to date by the components
of the pipeline. When only killMS is parallelized and the rest of the pipeline
runs on a single node, data still needs be moved between nodes. This can
either be done in killMS or in the pipeline.

We specifically designed the implementation to work on a non-shared
filesystem, as code designed for such an environment will also function on a
cluster with a shared filesystem. The code is more flexible and thus can run
on a more varied set of systems.

A task can be deployed to nodes in many ways. For example on the
DAS5 cluster that we used for testing, SLURM is used to schedule jobs.
Integrating with a scheduler has the advantage of only allocating nodes when
they are needed. However, as the data is assumed to be available only to a
specific node, the dynamic nature of the scheduler makes less sense. It also
puts a requirement on the infrastructure to provide the specific scheduler
we implement for, which we prefer to avoid. So, we decided to use SSH
for running jobs, as it does not require any special setup on the nodes and
should be compatible with most if not all compute infrastructure. With
SSH also comes support for SFTP. The SSH library we used, Paramiko, also
allows us to use SFTP to copy configuration files and results back and forth
between nodes.

5.3 Workers

The implementation makes use of a worker pool. For each distinct node
we keep a queue of MeasurementSets to be process. These queues are filled
with the respective entries from the mslist. The code has the same fea-
tures as batch mode. These features are only enabled when the respective
flags are set, as they are in batch mode. We can skip MeasurementSets for
which solutions already exist and we can remove the cache for DDFacet after
processing of an individual MeasurementSet has completed.

The main loop of the application consists of scheduling a round of
processing on the worker nodes, and waiting for them to complete. As
kMS parallel starts we store the configuration, specified in a parset file and
in the arguments passed when calling the application, to a new parset file.
When a killMS job is about to run on a node, we copy the configuration file
to the respective node over SFTP. The killMS process on the node can read
the desired configuration from this file. When a worker node finished, we
store the output of the process to a log file. We also copy the solutions to
the master node, and clean up the DDFacet cache if requested.

The output of the parallel implementation has been verified to be equal
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Node
Running kMS_parallel

Q1

MSa

MSb

Qn

MSx

MSy

'Run kMS on MSa'
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Running kMS

'Run kMS on MSx'
via SSH
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Worker Node n
Running kMS
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MSa

MSb

Local Storage
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Figure 5.1: killMS parallel: For each worker a queue is maintained of the
MeasurementSets that still need to be processed. From each queue a item
is removed, and processed on the respective worker node. When the worker
finishes, a log file is saved and the solutions are copied to the kMS parallel
node.

to the solutions generated by a linear run on the same data.

5.4 Performance testing

For the first test we run killMS and the parallel version on the small dataset
mentioned in section 3.1. We run both versions on a single system. For the
parallel version, we create two entries in the system hosts file that point to
the loopback address. This way both jobs are run on the same system in
parallel.

MS0 MS1 Total

Linear 317.4 ± 1.0 425.2 ± 4.6 742.6 ± 5.0
Parallel 452.8 ± 3.4 745.4 ± 7.1 748.0 ± 7.3

Table 5.1: Average killMS runtime in seconds over 10 runs for the small
dataset on a personal system. The parallel version runs all worker processes
on the same system.

In Table 5.1 we see that the linear and parallel versions take approx-
imately the same total time to finish when the parallel version runs both
processes on the same system. From this we can deduce that the paralleliza-
tion within a single killMS instance is good enough to make full use of the
system capabilities. Running multiple instances of killMS on the same node
has no benefit.

In Table 5.2 we see that with two nodes the total processing time is
slightly longer than the longest time for the individual MeasurementSets.
That the parallel version takes two to three seconds longer per Measure-
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MS0 MS1 Total

Linear 178.0 ± 0.4 338.4 ± 0.9 516.4 ± 0.9
Parallel 181.1 ± 0.5 340.3 ± 0.8 343.6 ± 1.0

Table 5.2: Average killMS runtime in seconds over 10 runs for the small
dataset on DAS5. The parallel version runs the worker processes on separate
systems.

mentSet can be at least partially explained by the fact that we run the code
inside containers. In the linear version we are already running within the
container, and so no additional loading is needed. In the parallel version the
measured time includes the time needed for startup and shutdown of the
container.

Overall this means we can cut the processing time for killMS by a factor
N , where N is the number of MeasurementSets or subbands available. For a
standard LOFAR observation, after direction-independent calibration, this
number is 24 subbands. For the LoTSS surveys, currently the main focus
of the ddf-pipeline, this improvement is not important. They have enough
data coming in to be able to fill a number of nodes each with individual ob-
servations. There is also no need to process observations within a short time
frame, all observations are archived and can be retrieved for the foreseeable
future. For a smaller scale, when only one or a couple of observations are
needed, or when a specific observation needs to be imaged quickly, running
the parallel version can make more sense.
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Conclusions and Future
Work

We described the steps involved in creating an image from a LOFAR observa-
tion. From pre-processing to calibration to imaging. We explored factor and
the ddf-pipeline. Factor has been designed from the ground up to be paral-
lelized over multiple nodes. The ddf-pipeline has been gaining in parallelism
in smaller steps. We presented a parallel design for the major components
of the ddf-pipeline, DDFacet and killMS. We implemented and tested the
parallel design for killMS. The linear version of killMS already makes good
use of the performance available on a single node. The parallel version of
killMS can scale out linearly over the available number of MeasurementSets,
assuming enough nodes are available to handle each MeasurementSet sep-
arately. The processing takes as long as it takes to process the largest
MeasurementSet. The processing of individual MeasurementSets takes ap-
proximately the same as processing them one by one. We have succeeded
only partly in parallelizing the ddf-pipeline, but also provide a starting point
for continued effort to do so.

For future work we can suggest the implementation of parallelism in
DDFacet, to further speed up the ddf-pipeline. We hope that our work can
help with this.

The killMS parallel code can also be extended to better support the
shared filesystem use case. For a shared filesystem it does not matter which
node works on which data, so a single queue can be used instead of the
queue per node strategy currently used. This allows for better utilization of
the available nodes. As soon as a node finishes a job processing of any of
the other MeasurementSets can be scheduled on that node.
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Appendix A

Code samples

31
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1 # While there are still MS to process

2 for ThisNodeName in DicoNodes.keys():

3 # If thisNode has more MS to process

4 if len(DicoNodes[ThisNodeName]["ListMS"]) > 0:

5 MSName = DicoNodes[ThisNodeName]["ListMS"].pop()

6 MSBaseName = os.path.basename(os.path.normpath(MSName))

7

8 SolsFilename = None

9 if options.SolsDir is None:

10 SolsFilename = os.path.join(MSName, "killMS.%s.sols.npz" %

self.SolsName)↪→

11 else:

12 SolsFilename = os.path.join(options.SolsDir,

13 MSBaseName, "killMS.%s.sols.npz" %

self.SolsName)↪→

14

15 if options.SkipExistingSols:

16 print>> log, "Checking %s" % SolsFilename

17 if os.path.isfile(SolsFilename):

18 print>> log, ModColor.Str("Solution file %s exists" %

SolsFilename)↪→

19 print>> log, ModColor.Str(" SKIPPING")

20 continue

21

22 if options.RemoveDDFCache:

23 CleanupPath = "%s*ddfcache" % MSName

24 else:

25 CleanupPath = None

26

27 Command = "kMS.py %s --MSName=%s" % (BaseParset, MSName)

28 PP.AppendCommand(

29 "killMS_%s_%s" % (ThisNodeName, MSBaseName), Command,

ParsetPath=BaseParset,↪→

30 NodeName=ThisNodeName, CheckFile=SolsFilename,

CleanupPath=CleanupPath↪→

31 )

32

33 PP.WaitJob("killMS_*")

Listing 1: Main loop of killMS parallel
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1 print>> log, "Connecting to: %s" % NodeName

2 ssh.connect(NodeName)

3 atexit.register(ssh.close)

4

5 sftp = ssh.open_sftp()

6 sftp_mkdir(sftp, self.WorkDir)

7

8 # Copy parset file to node

9 if ParsetPath is not None and not sftp_path_exists(sftp, ParsetPath):

10 ParsetDir = os.path.split(os.path.normpath(ParsetPath))[0]

11 sftp_mkdir(sftp, ParsetDir)

12 sftp.chdir(self.WorkDir)

13 sftp.put(ParsetPath, ParsetPath)

14

15 sftp.close()

16

17 S = "cd '%s'; %s" % (self.WorkDir, Command)

18 print>> log, ModColor.Str("[%s] %s" % (NodeName, S), col="blue")

19

20 stdin, stdout, stderr = ssh.exec_command(S)

Listing 2: Connecting to a node, copying the configuration file and running
the command
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1 # Wait for job to finish

2 print>> log, ModColor.Str("Waiting for %s..." % Job, col="blue")

3 STDOUT = self.JobPool[Job]["stdout"].read()

4 STDERR = self.JobPool[Job]["stderr"].read()

5 STDERROUT = STDOUT + STDERR

6

7 # Write job log to file

8 LogFilename = "%s_%s.log" % (Job, datetime.now().strftime("%Y%m%d-%H%M%S"))

9 LogFile = open(os.path.join(self.NodeLogDir, LogFilename), "w")

10 print>> LogFile, STDERROUT

11 LogFile.close()

12

13 # Report status

14 Condition0 = self.JobPool[Job]["stdin"].channel.recv_exit_status() != 0

15 Condition1 = "There was a problem after" in STDERROUT

16

17 if Condition0 or Condition1:

18 print>> log, ModColor.Str("killMS has produced an error")

19 print>> log, STDERROUT

20 raise RuntimeError("killMS crashed")

21 else:

22 print>> log, ModColor.Str(" Job %s has finished sucessfully" % Job,

col="green")↪→

23

24 # Transfer solutions to this node

25 SolsFilename = self.JobPool[Job]["CheckFile"]

26 sftp = self.JobPool[Job]["ssh"].open_sftp()

27 sftp.get(SolsFilename, SolsFilename)

28 sftp.close()

29

30 # Cleanup

31 CleanupPath = self.JobPool[Job]["CleanupPath"]

32 if CleanupPath is not None:

33 print>> log, ModColor.Str("Cleaning up after command")

34 s = "cd %s; rm -rf '%s'" % (self.WorkDir, CleanupPath)

35 stdin, stdout, stderr = self.JobPool[Job]["ssh"].exec_command(s)

36 # Make sure command is done, rm -rf will not print output

37 stdout.read()

38

39 self.JobPool[Job]["ssh"].close()

40 print>> log, " [done] %s" % Job

Listing 3: Waiting for a job to finish, and the work done afterwards
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