
Universiteit van Amsterdam

Vrije Universiteit Amsterdam

Master thesis

Computer Science

Assessment of using big data software
for remote sensing applications

Author:
Tom Peerdeman

Supervisor:
Adam Belloum (UvA)

February 28, 2017

Abstract

The ""Downstream platform"" is the name given to the infrastructure of software, tools
and servers to develop services. These services use data generated by earth observing
satellites. The current implementation of this platform is not very scalable. This research
will asses the usage of big data software, to create a platform which can scale better with
the large amount of data generated by the satellites. In order to do so an architecture will
be designed and evaluated. To select the right software three processing platforms will
be compared: Hadoop MapReduce 2, Apache Spark and Apache Flink. The comparison
will be made by implementing an existing application for all three processing platforms,
and evaluating the various aspects of those processing platforms.

Contents

1 Introduction 3
1.1 What is big data? . 4
1.2 Related work . 4

1.2.1 Related architectures . 4
1.2.2 Comparing big data processing platforms 6

2 User needs 8
2.1 Applications . 8
2.2 Creating new applications . 9
2.3 Administration . 9
2.4 Security . 9
2.5 Performance . 10
2.6 Scalability . 10
2.7 Portability/Mobility . 10
2.8 Reliability . 11
2.9 Cost . 11

3 Architecture 12
3.1 Identifying the components of the architecture 12
3.2 Software . 13

3.2.1 Interface . 14
3.2.2 Processing platform . 15
3.2.3 Intermediate storage . 17
3.2.4 Input data . 19
3.2.5 Generalized geo processing library 19

3.3 Hardware . 20
3.3.1 Types of the nodes in the cluster 20
3.3.2 CPU scaling . 21
3.3.3 Storage . 22

4 Implementation of the air quality application 23
4.1 The air quality application . 24
4.2 Improvements over the original implementation 26
4.3 Introducing the map reduce model . 28
4.4 Differences between the processing platforms 31

4.4.1 Hadoop MapReduce 2 . 31
4.4.2 Spark . 31
4.4.3 Flink . 32
4.4.4 Data storage in memory . 32

1

CONTENTS CONTENTS

4.5 Data granularity . 33
4.6 Transforming the application into map reduce operations 33

4.6.1 Transforming the pre-processing 33
4.6.2 Transforming the on demand processing 36

4.7 Translation of map reduce operators to the processing API's 38
4.8 Problems . 38

4.8.1 Python . 38
4.8.2 The Hadoop MapReduce fixed structure 39
4.8.3 Polymorphism and Hadoop MapReduce writable 39
4.8.4 Hashcode inconsistencies . 40

4.9 Reading HDF5 files . 41
4.10 Interaction with Avro . 42
4.11 Scaling up to TROPOMI data . 43

5 Results 45
5.1 Testing environment . 45

5.1.1 Hardware . 45
5.1.2 Software . 46

5.2 Additional tests . 48
5.3 Stability of measurements . 48
5.4 Application footprint . 50
5.5 Comparison to original implementation 51
5.6 Pre-processing . 52

5.6.1 Scaling the number of cores . 52
5.6.2 Scaling the number of nodes . 57
5.6.3 Using HDFS as input source . 59
5.6.4 Moving from HDD to SSD . 60

5.7 On demand . 63
5.7.1 Scaling the number of cores . 63
5.7.2 Scaling the number of nodes . 65

5.8 Scaling to TROPOMI . 66

6 Evaluation 68
6.1 Qualitative aspects . 68

6.1.1 Reliability . 69
6.1.2 Creating applications . 69
6.1.3 Cost . 70

6.2 Scalability . 70
6.2.1 TROPOMI level data . 71

6.3 Performance . 71

7 Future work 73

8 Conclusion 75

2

Chapter 1

Introduction

Airbus Defence and Space Netherlands is a company located in Leiden that provides
products and services for the international aerospace industry. The company works on
the development and assembly of solar arrays, structures, instruments and other various
systems for space. One of the projects currently being worked on at Airbus Defence
and Space Netherlands is the Downstream platform. The ""Downstream platform"" is
the name given to the infrastructure of software, tools and servers to develop and run a
specific class of applications. These applications implement various services that provide
access to aggregated data. This data is gathered by measuring devices present in earth
orbiting satellites. This is also known as remote sensing or earth observation.

The applications that are currently implemented for the Downstream platform work
fine as is, however, the platform itself was not really designed to cope with future expan-
sions. It is expected that the earth observing instruments will improve over the years,
this causes these instruments to generate much bigger data sets. This means that the
applications need to be able to scale to handle the increase of data. Currently the plat-
form and the applications have no or limited means of scaling. As the applications on
the Downstream platform provide services, a fast response time is critical. If the data
set size would increase too much, and due to limited scalability, thus the response time
of this applications, the services would become useless.
A solution to this problem would be utilizing existing tools and software for big data,
as they are built for scalability. In this research we will try to answer how and if we can
utilize these big data platforms to enhance the Downstream platform. In order to do so
we need to create an architecture based on these big data platforms. Some architectures
already exists, as discussed in section 1.2.1. The problem with those architectures is that
they can not be used as they use focus on different types of data or do not match in the
scale of the data. Some of these platforms are also built around software which is now
considered older. By creating an architecture from scratch, we can design a better one
based on different software. To select the software that will be used, we shall compare
the platforms based on the needs of the Downstream platform for Airbus Defence and
Space Netherlands. To finalize the selection, the question how the software performs
and if it scales has to be answered. Some benchmarks for big data processing platforms
exists, as discussed in section 1.2.2. The problem with those benchmarks is that they
where not created for remote sensing applications. The benchmarks focus on synthetic
data and statistical analysis. To get an impression of the performance and scalability
for remote sensing applications an existing application of the Downstream platform will

3

1.1. WHAT IS BIG DATA? CHAPTER 1. INTRODUCTION

be used.

1.1 What is big data?

To be able to use software designed for big data we first need to know what big data
actually is. A widely used definition is given by a big data study by the McKinsey Global
Institute:
""Big data"" refers to datasets whose size is beyond the ability of typical database software
tools to capture, store, manage, and analyze [1].

They acknowledge that the definition of ""beyond the ability"" can vary by sector, de-
pending on what kinds of software tools are commonly available. This leaves us in the
dark about the remote sensing sector. To check if we can speak of big data for the
applications on the Downstream platform, we use the characteristics of big data. In a
2001 paper by Doug Laney three characteristics are discussed: Volume, Velocity and
Variety [2]. These properties are still used today to characterize big data.

Volume refers to the amount of data. Big data is not called big without a reason. As
mentioned before it is hard to define what amount of data qualifies as big. The amount
ranges from terabytes to exabytes. Currently the Downstream platform houses appli-
cations that use input data that sum up to the range of terabytes. It is expected that
future improvements to the remote sensing instruments will greatly increase this amount.

Velocity refers to the speed new data is generated. Besides the large volume of data
already available, data in a big data environment is also generated very fast. This lead
to the creation of streaming big data platforms. The difference between traditional batch
and streaming systems is discussed in section 3. Data for the Downstream platform is
also generated very fast. The earth observing satellites continuously generate new data.

Variety refers to the many forms the data can take. For example a dataset can be in the
form of an unstructured text document. A different dataset can be a semi structured
XML document. Big data can also be in the form of a completely structured database
table. The applications of the Downstream platform all use some form of satellite data.
This data is usually semi structured, and doesn't have much variety in that sense. The
data however does differ quite for each earth observation instrument. Each instrument
provides different data, and thus requires a completely different data structure.

We can see that these three characteristics indeed indicate that the remote sensing
data from the Downstream platform qualifies as big data.

1.2 Related work

1.2.1 Related architectures

Most of the generated data by earth observing satellites are publicly available. Since
most of these data sets are very large, it comes to no surprise that using big data soft-
ware for exploiting such data is not a new idea.

4

1.2. RELATED WORK CHAPTER 1. INTRODUCTION

An example of such an architecture is the PROBA-V mission exploration platform [3].
The architecture described is created and implemented to make use of the PROBA-V
data archive. This data archive consist of measurements of the vegetation for climate
impact assessment, surface water resource management, agricultural monitoring, and
food security purposes. Besides this data the mission exploration platform also contains
the SPOT vegetation data and is planned to also contain the data for Landsat 7 and 8,
and Sentinel 2 and 3. The goal is to allow the user to access the data, an derive products
from it to increase the use of the data. Any of this data or products can be accessed via
a web portal as well as standardized discovery, viewing and data access interfaces.

The architecture of the PROBA-V mission exploration platform is based on Hadoop.
The data is stored on either a shared storage, which is accessible via the network, or via
the Hadoop distributed file system.
The processing is done using Hadoop MapReduce and Spark. A work flow engine called
Oozie is used. This system allows the data to be processed as if it were a work flow,
and starts the MapReduce and Spark processing platforms to do the actual processing
in the flow as needed.

The next project is the German data access and exploitation infrastructure [4]. The
system was built for the Copernicus data. This is also one of the data sets of which the
Downstream platform is aimed at. The architecture features a portal to access the data,
and its processed products. This system is similar to the PROBA-V mission exploration
platform in that it is also based on the Hadoop software. The platform makes use of
the Calvalus environment [5]. This environment uses the Hadoop distributed file system
to store the data and provide data locality. The processing itself is done via Hadoop
MapReduce. Note that this environment was introduced around 2009. This means that
at the time no other mature systems other than the Hadoop software existed. This
leads to the environment being built around MapReduce. Today many more processing
systems exists and are being developed. This allows us to compare those systems, and
see if MapReduce is still a sensible choice.

A project different from the PROBA-V mission exploration platform and the German
data access and exploitation infrastructure is the processing of Euclid data. The Euclid
mission is a survey mission developed in order to study the Dark Energy and the Dark
Matter [6, 7]. This mission results in about 175 PB of data to be processed. While
this processing is technically not processing of earth observation data, the processing
of patches of sky can be related to processing patches of earth. The architecture can
be related to the PROBA-V and German system, but is not based on Hadoop. The
Euclid system also differs hugely in scale. Where the PROBA-V and German system
are built to scale to multiple servers, the Euclid architecture scales to the magnitude of
data centers.
The storage of the Euclid system is handled by a custom storage solution. The data is
distributed over the various data centers. To access this system, the location of a data
item has to be looked up. The locations of the data are stored in a central meta data
repository.
The processing is again a custom system which is based on the map reduce model. It
acts just like the Hadoop MapReduce system just as the PROBA-V and German system
use. The difference between those systems is that the Euclid mission operates on a much

5

1.2. RELATED WORK CHAPTER 1. INTRODUCTION

larger scale. The first step is to split up the data on a very large scale. The measured sky
is split up in patches. Each patch is assigned to a data center, which is now responsible
for the full process of processing that patch. The data centers itself can then split up
those patches up to single observations in order to process them.

1.2.2 Comparing big data processing platforms

The second part of the research is to compare the processing platforms to pick the best
one. One of the criteria are performance and scalability.

A rough comparison between the performance of various processing platforms can be
given by the Daytona GraySort challenge. The goal of this benchmark is to measure the
performance of a whole system by sorting large amounts of randomly generated data [8].
The minimum amount of data to be sorted is 100 TB. The performance is measured in
TB per minute sorted. When looking at the winners in the result we can see the big data
processing platforms Apache Spark [9] and Hadoop MapReduce [10]. The MapReduce
implementation won in 2013 with 1.42 TB of data per minute sorted. The Spark sub-
mission beat this result in 2014 with 4.27 TB/min. This would indicate that the Apache
Spark processing platform does perform much better. Comparing these results is difficult
however. The hardware used to achieve those results differs in many ways. The MapRe-
duce submission uses a lot of servers, while the Spark submission uses way less servers.
The Spark submission uses more cores per server, more memory per server and SSD's.
Also we have to keep in mind that the development of the platforms is still very much ac-
tive. This means that the MapReduce implementation could be a lot faster a year later,
when the Spark submission was made, than when the MapReduce submission was made.

The Big Data Benchmark by the AMPLab of the university Berkeley is a performance
benchmark where the hardware is kept the same [11]. This benchmark measures the
performance of running queries on data warehouse solutions. The Hive data warehouse
uses Hadoop MapReduce to execute these queries. The Shark warehouse is built on top
of Spark. While the processing platforms are not directly tested themselves, the queries
that are being ran to be tested are eventually executed by the processing platforms.
This thus allows for a comparison between Spark and MapReduce.
The results of this benchmark show that the Shark warehouse beats the Hive system
by a lot for each query ran. These results of course include the overhead of Shark and
Hive over the raw Spark and MapReduce performance. It may be clear though that the
Spark system is much faster than the MapReduce system.

A benchmark that measures performance which does use the processing platforms itself
is BigDataBench [12]. This benchmark consist of 19 applications. These applications
work on data that is structured, semi-structured and unstructured. This means that the
benchmark does contain applications that run queries on data using Hive and Shark,
just like the Berkeley benchmark did. Other applications are directly implemented in
Hadoop MapReduce and Spark. This allows for a direct comparison in performance for
those systems.
The data itself that is used for testing is synthetic. It is generated using a tool called
Big Data Generator Suite [13]. This tool generates the various synthetic data sets from
real collected data sets.

6

1.2. RELATED WORK CHAPTER 1. INTRODUCTION

Skipping forward to the description of the architecture in section 3.2.2 we see that
besides Spark and MapReduce we will also make use of Apache Flink as one of the can-
didates for the processing platform. This platform is much younger, and therefore not
yet considered in the previous mentioned benchmarks. A more recent paper called Spark
versus Flink: Understanding Performance in Big Data Analytics Frameworks compares
Spark and Flink in terms of performance and scaling [14]. It does so by running 6 differ-
ent batch based applications which cover the various aspects of the processing platforms.
The results of the paper show that Apache Flink is faster in most applications. Only
the grep application shows a result where Apache Spark performs slightly better.

7

Chapter 2

User needs

To be able to define a proper architecture that makes use of existing big data platforms,
we first have to define what are the important aspects of this architecture. Using these
aspects we can select the appropriate software for the architecture that fit the best.

2.1 Applications

The Downstream platform houses a wide variety of applications. The obvious difference
between the applications is the processing steps taken. A difference that is just as im-
portant for the architecture is the amount of data that has to be processed. For example
some applications use data sets with a resolution of 25 by 25 kilometer, however there
are also applications that use 100 by 100 meter as resolution. The latter application will
have a much bigger data set to process. The architecture should be generalized to cope
with such differences.
Since the many applications run on the same architecture, it is likely that the applica-
tions will be ran at the same time. The architecture should therefore support multiple
applications being able to run independently (not counting inter application dependen-
cies) from each other.

The applications implement services, this means that the end product is created on
the fly as the user requests it. Some processing can be done via offline processing. The
term offline processing refers to processing of the data via automation, that is the end
user did not explicitly ask for the result. This offline processing could be the processing
of end results, as this for example might speed up on demand processing. A different
form of offline processing is pre-processing of the whole data set. An example of such
pre-processing is filtering, interpolating and combining the various data sets. The online
processing can then use the offline results to generate their result.
These various data sets might not be just data generated by satellites. For some appli-
cations it is feasible to use and process additional data sources apart from the remote
sensing data. An example of such data is ground data. This ground data can be used,
for example, as means to verify satellite measurements. The ground data can also be
used to generate additional insights on top of the satellite data.

8

2.2. CREATING NEW APPLICATIONS CHAPTER 2. USER NEEDS

2.2 Creating new applications

Besides the aspects of running the applications, creating new applications is also very
important. In order to do so it is important for the developers that the programming is
a simple as it can be. This is mainly influenced by the programming API's and program-
ming model of the processing and storage platform. Another factor is the programming
language used. Most of the existing applications are written in Python, as the main pro-
gramming language used at Airbus Defence and Space is Python. It is therefore useful
for the application developers that the architecture will support applications written in
Python.

2.3 Administration

The platform can be used by multiple users. This means that multiple users can request
on demand processing at the same time. The architecture should therefore support
running multiple applications, and multiple processing jobs of the same application next
to each other.
Not every user should be able to start a processing job though. Through the accounting
interface the administrator can modify what end products can be accessed by each user.
The usage of those products by the individual end users should also be able to be
monitored via this accounting module.

2.4 Security

Since the products are only available to certain users, it is important that the accounts
are only accessible via a strong authentication mechanism. If the user account were to
be compromised unauthorized access to the products could occur, or wrongful charges
of usage be applied.
Some products or data sources might need stronger protection from unauthorized access.
One of the methods of protection is encryption. This means that input data sets are
possibly encrypted, and need decryption before they can be used. It is also possible that
the intermediate data sets also need encryption and decryption. A second enhancement
for stronger protection is the separation of the data. This means that not all applications
can access all data sources or intermediate products. Instead the architecture should
separate these data sets and only allow access to the applications that need it.

A different security measure is required for the applications. Some of the applications
generating the end products are closed source. Therefore the architecture should hide
the actual application logic from the end users. The code or compiled versions of the
code should not be accessible by the end users. However as the applications are created
as services, this aspect will very likely be fulfilled, as services only return results. When
using a service the end user never sees an executable, or any form of the application
code.

9

2.5. PERFORMANCE CHAPTER 2. USER NEEDS

2.5 Performance

One of the goals of using a big data platform for the Downstream platform is to improve
the processing time by utilizing more nodes. It is therefore expected that the architecture
delivers a reasonable processing time. The expected upper limit of the processing time
of course depends on the application. The processing time itself depends on the scale
of the cluster running the architecture. To give an indication of an expected processing
time: The on demand processing should return a result in terms of seconds, as it is a
service, and they require short latency's. The processing time of the pre-processing is
less important as it should only be done once. It is expected that new data arrives with
intervals of hours. The maximum processing time should therefore also be in terms of
hours.

As multiple users are using the system, it is likely that multiple users will use the system
at the same time. It is however unwanted that the performance, and thus the processing
time will suffer from the multiple users. The architecture should therefore be designed
to allow multiple jobs running simultaneously without impacting the performance, and
thus the processing time, too much.

2.6 Scalability

Due to increased data size, more users or even more applications more processing power
may be required. The architecture should therefore be designed to scale in the amount
of processing power. The preferred scaling factor is linear, meaning with n times more
nodes, the processing time decreases by 1

c \times n times, where c is a constant greater than
0. The perfect linear scaling would be a situation where c equals 1.

Due to this increased data size, the storage capability of the system also needs to in-
crease. The architecture should therefore be able to scale its storage. The scaling can
be done be either scaling up via adding more storage to each node, or via scaling out by
adding more nodes. Initially the system will store hundreds of terabytes of data.

2.7 Portability/Mobility

After the creation of the architecture it may be, due to various reasons, that the chosen
big data platform has to be replaced with a different platform. Therefore it is important
that the impact of the chosen platform is minimal to the application. This means that
the applications can easily be ported to a different platform if needed. It is also possible
that this new platform is deployed next to the existing one. In such a case the platforms
should not interfere with the workings of each other.

It may be beneficial to Airbus Defence and Space to move the applications to an existing
other cluster, or even the cloud. Also due to scaling the cluster may grow or shrink in
number of nodes. The architecture should therefore be easily movable between hard-
ware configurations. This means that the applications can not have hard coded server
addresses, paths or even requirements for the amount of nodes.

10

2.8. RELIABILITY CHAPTER 2. USER NEEDS

2.8 Reliability

Since copying hundreds of terabytes of data, or worse, losing irreplaceable data is a
horrible situation, a form of data reliability is needed. The architecture should support
some form of reliability, which allows the data to be recovered in case of partial data
failure.

The same principle should apply for the processing. If an processing node happens
to fail, and become unresponsive, the processing system as a whole should continue to
work. If possible it would be beneficial if the system could detect the failure and redo
any work that had been lost. This allows for execution jobs to still finish, even when
node failure occurs, instead of failing the execution due to lost processing work.

2.9 Cost

The final important aspect for the architecture is the cost in terms of money of running
it. It makes sense that if the architecture is perfect except for the cost of running it
being very high, it won't be used. The running cost includes any licences and hardware
requirements. The goal is to design the architecture in a way too keep the running cost
as low as possible.

11

Chapter 3

Architecture

3.1 Identifying the components of the architecture

Now that we have identified the important aspects of this architecture, we can start
shaping the architecture. The first step is to identify the components that are required.
Let us start with the processing. In section 2.1 we identified that some applications
may need some form of pre-processing besides the on demand processing. We can thus
already identify two important components of the architecture: The pre-processing and
the on demand processing.
The pre-processing step generates intermediate results, that can later be used by the
on demand processing. But what happens with these intermediate results in the mean-
while? It is expected that due to the size these intermediate results do not fit in memory.
Note that this hypothesis is tested in section 5.4. The alternate solution is to store these
results in an intermediate storage. The intermediate storage component stores the result
on disk, which is usually much larger than the memory.

The next component is also storage related. The architecture needs a component that
allows the storage of the input data. As the input data is likely to span multiple Ter-
abytes, a simple single (shared) disk solution will not work.

The final component that we can identify is the interface to the user. The interface
should be the only means that any user can interact with the system. This includes the
managing of the users, that is any accounting is also done via the interface.
In figure 3.1 we can see the interaction between the components when a regular user
requests a new product on demand. We can also see the interactions when new data
arrives, and the pre-processing is started.

12

3.2. SOFTWARE CHAPTER 3. ARCHITECTURE

User Interface On demand processing Intermediate storage Pre processing Input data

New data

Store intermediates

Request product

Request processing

Fetch intermediates

Fetch input data

Figure 3.1: Sequence diagram of interactions between the components of the architecture

From this diagram we can also spot an interesting problem. The point in time where the
on demand processing and the pre-processing are started are independent. This means
that they also could overlap. This can create a situation where the on demand processing
is reading intermediate data while the pre-processing is in the process of writing to that
same intermediate storage, and could be writing the exact same dataset the on demand
processing is currently using. This could lead to wrong results, or even crashes, as the
on demand processing might use a partition of new data, while the pre-processing did
not finish the complete updated data set.

3.2 Software

Now that we have identified the components, we can start fulfilling these components
by selecting software. In figure 3.2 we can see that the architecture is split into three
parts. The application layer represents the interface and the application code. The
actual contents of this layer is application specific. Each application of course requires
different application code, but it may also require a different interface.
The processing layer contains most of the components we identified. It contains the
software for storage and processing. This layer is shared by all applications.
The final layer is the infrastructure layer. The infrastructure contains the hardware
which is used by the processing layer.

13

3.2. SOFTWARE CHAPTER 3. ARCHITECTURE

Application

Front end

HTTP Server

Processing platform

Hadoop MapReduce 2,

Spark or Flink

Data serialization

Avro

File system

HDFS
Resource manager

YARN

Servers Infrastructure

Generalized geo processing library

Application

Processing

Figure 3.2: Diagram of the software of the proposed architecture

3.2.1 Interface

The interface is the bridge between the user and the processing system. The interface
can, based on requests, start new processing jobs. The interface also serves as means
for accounting. It should therefore measure the usage of the users. It should also deny
any access if the user has no permissions. As mentioned before the actual interface is
application dependent, however some general statements can be made. Since the user
interface has to reach a broad spectrum of clients, an internet, via HTTP, based interface
would be the easiest to use, as it allows for simple access. Every user which has access
to the internet is very likely to have a browser installed. Any visual product, being
graphs or pictures, can thus be shown in the form of web pages. No additional software
is required for the clients. Results that consist of numerical data are often used by
applications. Web based services that provide such data often use a REST API, which

14

3.2. SOFTWARE CHAPTER 3. ARCHITECTURE

is based upon HTTP. This allows for easy building of the applications, as libraries for
interactions with REST API's already exist. Such HTTP based interfaces however rely
on the fact that the on demand processing should complete and return a result within
seconds. If a HTTP requests takes more than a couple of seconds usually the browser
issuing it will time out, and show an error message to the user.

The interface only exists to pass along the end results, it does not do any heavy process-
ing on large data sets. Therefore the scalability of the software is not too important. The
interface can therefore be implemented by a very simple web server backed by a (rela-
tional) database. In this database the users with their login credentials and permissions
are stored. This database can also contain the usage of each user.

3.2.2 Processing platform

Let us start with the main software component of the architecture, the processing plat-
form. This platform will execute the functions of the pre-processing and the on demand
processing. To determine the platform we first have to know the difference between
streaming processing platforms and batch platforms. Streaming systems assume that
the data provided as input is infinite, whereas batch systems require finite data. Pro-
cessing batch data is thus known to terminate, while processing streaming data may
not terminate at all. These systems also have slightly different performance metrics.
Batch system are focused on throughput, how long will it take to process all the data in
the batch? For streaming systems this metric is also important, however latency is even
more important. Applications utilizing streaming platforms usually operate on live data.
It is thus important for the application to have the data as fast as possible processed
starting from the time the data was created.

This architecture focuses on applications which are batch based. While the input data is
constantly generated, and thus looks to be an infinite stream, new data that is generated
is delivered in big batches. The applications generate results from the fixed amount of
data that is available at the time of execution. An application that would use an infinite
stream would constantly generate results and never stop doing so, which none of the
applications used do. The processing is thus applied on batches of data, and not on an
infinite stream. Therefore we can ignore all the stream processing platforms that are
available for this architecture.

The basics ideas of big data batch processing originate from the map reduce model,
created in 2004. The map reduce model describes a model to analyze large amounts of
data by splitting it up in to key value pairs. The actual processing in the map reduce
model is done in two simple steps: map and reduce. In the map stage the key/value
pair is processed to produce (multiple) intermediate key/value pairs. In the reduce step
these intermediate pairs are merged to create the output. The strength of this model
lies in the fact that the map stage can be spread over many machines, same with reduce,
thus creating a very scalable system.

Among the various implementations, one of the most widely used implementations of
this model is called Apache Hadoop. Hadoop is an open source project and is, after
years, still being actively developed. It could therefore be a very good candidate for our
architecture. Since the project has no dependencies on legacy versions, it would be wise

15

3.2. SOFTWARE CHAPTER 3. ARCHITECTURE

to use the latest stable version. The latest recommended version of Hadoop is, at the
time of writing, 2.7.2 [15]. Note that releases in the 2.6.x line are also available The 2.6
line is maintained due to major API changes in the 2.7 line. It would therefore not be
wise to use the 2.6 API, which may become obsolete at some time in the future. A 3.x
line is also available, however these releases are still in alpha phase. Since we want a
stable system it would not be wise to use the alpha releases.

Of course the developments of big data processing platforms has not stopped in the
years since the map reduce model was introduced. In 2010 a project now called Apache
Spark was made open source. Spark is claimed to be the next generation as it could
outperform Hadoop by utilizing in memory computation. It is a project that is slowly
reaching maturity, and is being picked up by the industry. The programming model of
spark is a bit more extensive than the map reduce model. Spark still has the map and
reduce functions which operate on key/value pairs. However Spark also supports a range
of other functions like joining data, filtering data, and much more other transformations.
It can do so on scalar data and tuples with two or more values. This makes this platform
very interesting for the architecture. The version used is Spark 2.0.0, which was released
July 2016. The 2.x releases come with a bunch of improvements, including performance,
over the 1.x releases [16].

A similar system is called Apache Flink. Flink uses a programming model similar to
Spark in that it knows the same transformations and also can use tuple data. Flink is
different from Spark as it is a streaming platform. For the architecture streaming is not
very useful. However Flink was designed very well, and can process batch jobs as well.
It does so by treating the batch data as if it were a stream. These streams are however
special, since normal streams are infinite.

The nice thing about these systems is that they are very interchangeable. Both Spark
and Flink can directly use the input and output formats to and from disk that Hadoop
uses. Hadoop comes with a resource management system to schedule jobs, called YARN.
Both Spark and Flink support this system. This and the fact that the programming mod-
els are fairly similar make these platforms quite interchangeable, which is a requirement
of the architecture. The latest stable version of Flink is 1.1.0 [17].

Besides these three systems other systems do exists. For example many other imple-
mentations of the map reduce model exists. However these systems have not broken
through in popularity like Hadoop, Spark and Flink. This leads to questions if the sup-
port is good enough, and if the platform is stable enough. Other systems not based on
map reduce also exist, for example GraphLab and HPCC [18]. The problem with such
system is that they have a very different programming model that does not match the
map reduce model. This leads to very poor portability. Due to this, and the fact that
a lot of systems do not support python as programming language these platforms are
rejected as candidates for the architecture.

This leads us to three candidates as platform for the processing. To test these plat-
forms better a example application is implemented. After this implementation is done
an evaluation can be made to determine the best big data processing platform for this
architecture.

16

3.2. SOFTWARE CHAPTER 3. ARCHITECTURE

3.2.3 Intermediate storage

The important aspects of the intermediate storage are scalability and performance. Since
it is very likely that the intermediate storage will contain many terabytes of data, it has
to be scalable in the amount of storage. When this storage has to feed the many parallel
processes that are executing on-demand jobs, it is also very important that the system
can scale. A central storage solution will not work very well. A single server isnt very
likely to perform well while reading multiple data pieces at the same time, while sending
them to the appropriate processing nodes.

Let us look at the kind of data the storage will actually hold. Since most of the input
data is based around satellite data we can expect the input data to have coordinates,
a measurement and other meta data. The pre-processing will likely filter, and combine
these measurements, resulting in data types for coordinates, measurements and meta
data. This structured data format closely resembles a row in a table. This leads to the
possibility of using traditional relational databases for the architecture. The problem
with these databases is that they do not really scale very well. Traditional databases
often scale by mirroring or splitting up the data. This can lead to performance issues due
to maintaining consistency and row locking overheads [19, 20]. These kinds of problems
lead to the increase of popularity of NoSQL databases. A NoSQL database is related to
the traditional databases, but can drop some features like the relations between tables,
atomicity, a fixed data schema, and more. This allows them to scale better. Since the
data does not have relations between tables, and the architecture does not need those
extra features, NoSQL databases seem to be a good fit for the architecture.

If we look back at the requirements we see that this solution does not fit perfectly.
If we look at the performance there is a slight issue. Let us imagine we have used a
NoSQL database, for example Cassandra. The data stored in this database is spread
out over all the nodes, as the database scales. If we now start a new processing job,
running on those same machines, we would like the process on each node to start pro-
cessing the data that is local to that server. Using a NoSQL database the job scheduler
has no idea where the data actually is located. Thus this step to improve data locality,
and thus performance is not possible.
The second requirement that can not be fulfilled is security. Only a few NoSQL database
implement multi tenancy. That means that multiple users can use the database, but their
data is inaccessible to other users. Encryption of the data is only available in a very
few of the available databases. This leads to a different solution which is not based on
a database.

The first step of this solution is finding a piece of software that can store our data
in a reliable way, but also be scalable. This software is already present in the form of
HDFS. HDFS, Hadoop distributed file system, is a part of the Hadoop ecosystem. It
facilitates distributes storage by splitting up files into blocks and spreading those blocks
over the nodes. It can achieve reliability by creating redundant copies of all the blocks.
It can meet the security requirements as it has built in support for data separation by
access control and possibilities for encryption [21, 22].
While HDFS can run independent from MapReduce, MapReduce does require HDFS.
Hadoop MapReduce is built on top of HDFS, and uses it by default as temporary inter-
mediate storage. This means that it has built in support for the reading and writing to

17

3.2. SOFTWARE CHAPTER 3. ARCHITECTURE

and from HDFS. It also allows Hadoop to directly query the location of the data, and
thus schedule accordingly. The means of translating in memory objects to storage, in
this case HDFS, is called serialization. MapReduce requires that each implementation of
a key or value object has a method to write itself to, and read a new object from a byte
stream. In this way a long list of serialized objects can be generated by concatenating
the bytes generated by each write call of all the objects. This list of serialized objects
plus some extra meta data is called the sequence file format.
This support can also be used in Spark and Flink. However while Hadoop only uses
key/value pairs, Spark and Flink can (and will) also use other data types. For example
in the air quality application we have records of latitude, longitude, time, measurement
and other meta data. A tuple of 5 or more values would be a better fit instead of a
key value pair. Since the sequence file format only supports key/value pair reading and
writing, this format cannot be used. Instead a different solution has to be found to
translate the software representation of the data into a format that can be stored in
HDFS.

Quite a few serialization libraries exist. However not all of them are suitable. Some
of them do not have Python bindings, and can thus not be used. The first decision that
has to be made is row oriented storage versus column oriented storage. Row oriented
storage stores each row, which is a combination of latitude, longitude, measurement,
meta data, in a long list. Column oriented storage stores each column in a list. Thus
the latitude of each row is stored together, next follows a list of longitudes, etc. The
benefit of column oriented storage is that if only a certain column is required, the data
access can be very fast [23]. In the case of this architecture this will not happen very
often. The on demand processing, who reads from the intermediate storage, often needs
more than one column, and very likely the whole row.

Three of the popular row oriented serialization systems are Apache Avro, Google Proto-
buf and Thrift. Performance wise Protobuf is the fastest, followed by Thrift and finally
Avro [24]. The benefit of Avro is that is uses a predetermined schema to indicate the
structure of the data. While Protobuf and Thrift also have such a schema to define the
data structure, it is only used when writing the data. This means that when reading the
data the structure has to be extracted from the stored serialized data. This processes
needs additional data to be available in the serialized data, and thus extra storage capac-
ity [25]. This means that very often the final serialized data size is smaller when using
Avro than Protobuf or Thrift [26, 27]. For this reason Avro is chosen as serialization sys-
tem for the architecture. The version used is the latest stable version, which is 1.8.1 [28].

When we identified the components in section 3.1, we noticed a potential race con-
dition in figure 3.1. It is possible that the pre-processing of an application is running
while the on demand processing is called at the same time. This may lead to incorrect
results of the on demand processing. A very simple solution to this problem is writing
the pre-processing output to a temporary location in HDFS. When the pre-processing
finishes, its final step is to move the output data to the correct location, where the on-
demand processing expects new pre-processed data to be. This move is very cheap in
terms of performance due to the set up of HDFS. A file is simply a string location which
points to a block of data, which is distributed over one of the nodes. When moving this
location string is altered, but the actual data can stay exactly where it was.

18

3.2. SOFTWARE CHAPTER 3. ARCHITECTURE

3.2.4 Input data

While the actual input data is highly dependent on the application using the data, we
can determine how this data is stored. As said before HDFS provides reliability, security
and possibly an performance increase due to locality. It would therefore be logically to
also use this system for the input data.

The data of the air quality application is usually stored in HDF5 format [29]. This
format uses a hierarchy to store the various data components that the data sets may
provide. An implementation for reading HDF5 files directly into systems like Hadoop is
not available. However Python has as package called tables that can read them. Var-
ious HDF5 libraries are also available for Java and Scala. A wrapper can therefore be
written to get the data into the big data processing platform. Other applications may
use different data formats, these formats can be loaded into the processing systems via
the same process, via a library wrapper.

3.2.5 Generalized geo processing library

It is very likely that the people who create and maintain the applications for the Down-
stream platform are not big data experts. The application developers do not know the
programming models of the processing frameworks, or how they work. They do not
know Avro, and do not know how to use HDFS. To help these application developers
an additional component should be added to the architecture. A programming library
is needed that can abstract the various architecture details away, and simplify creating
applications that utilize satellite data. This library should specialized to satellite data
based applications, but also be generalized for those applications, so it can cater to the
various needs of the range of applications. This library should handle the mapping of
application code to the chosen processing platform, simplify the intermediate data stor-
age, and integrate the accounting into applications.
A platform that abstracts the processing is already available, and is called Apache Beam.
Apache Beam provides an API that allows the user to provide a pipeline of transfor-
mations. This pipeline is then executed by a runner, which maps this pipeline on the
processing platform for that runner. At the moment of writing a runner for both Spark
and Flink exists. The first problem with Beam is that no MapReduce 2 runner exists.
This is because the pipeline model does not map easily to the MapReduce model. The
second problem is that this pipeline model is not specialized in satellite data, and closely
resembled the Spark and Flink API, which we tried to abstract away. In this way Beam
does not abstract away the programming model, it just unifies the programming API's of
the various processing platforms. To create the full geo processing library, the remaining
solution is a custom library that can handle all the requirements. Apache Beam could
be used as a layer below this library, to mask the actual processing platform used, and
thus allow for a simpler implementation of the custom library. The actual hiding of the
processing model, to allow for easier application development, has to be implemented in
this custom library itself.

19

3.3. HARDWARE CHAPTER 3. ARCHITECTURE

3.3 Hardware

An aspect of the architecture just as important as the software is the hardware require-
ment. The actual number of servers, known as nodes in a cluster, and the composition
of these servers depend on the requirements of the application [30]. For example if the
application is compute intensive it would benefit more from more CPU cores. If the
application does very little processing, it makes sense to speed up the disk I/O by using
more or faster disks.
In the case of the Downstream platform it is still unknown which application types are
going to be ran. It would therefore make sense to focus on a general machine type which
is not focuses on either compute or disk I/O alone.

3.3.1 Types of the nodes in the cluster

Assuming we have multiple machines to use, the arrangement of them is very simple.
Map reduce platforms use a simple master slave structure to control the cluster. One
machine is more powerful than the others. In older versions of Hadoop MapReduce this
machine becomes the master. This node accepts jobs and controls the execution of that,
and all the jobs. All the other nodes are slaves, also known as workers. These workers
execute code as instructed by the master.
The problem with this structure is that one node has to track all the jobs sent to it.
This can be quite a lot of work, an thus does not scale very well. Hence YARN, yet
another resource negotiator, was created. YARN replaces the single master node with a
resource manager node. The jobs still arrive at this resource manager node. The actual
job master, which tracks the status of the jobs, is then delegated to a slave by the re-
source manager. This slave thus becomes a temporary master node, just for that one job.

When HDFS is used, an entry point is needed. This is called the namenode. This
namenode keeps the directory structure of the whole distributed file system in memory.
The actual data is stored in datanodes. A logical mapping would be a datanode on
each slave. That way the system can schedule jobs so that most of the data needed for
a particular task is already present in the same node. The namenode can be ran on
either the resource manager node, or a separate machine. An example overview of a
deployment of nodes can be seen in figure 3.3. In this example 3 slave machines exists,
the resource manager and namenode run on the same machine. Note that the namenode
and the resource manager can have standby instances that immediately can take over if
the original fails. If such high availability is required, another identical resource manager
machine is needed. The same counts for the namenode, if it does not share a machine
with the resource manager.

20

3.3. HARDWARE CHAPTER 3. ARCHITECTURE

Head node

Slave 1

Worker

Slave 2

Worker

Slave 3

Worker

Resource manager

Job worker Job worker Job master

NameNode

DataNode DataNode DataNodeJob master

Figure 3.3: Example node overview of a 3 slave cluster running 2 jobs

3.3.2 CPU scaling

When the power required for processing your application surpasses the power you have
available you have to scale your existing solution. This process of scaling can be done
using two methods: scaling up and scaling out. The scaling up method consists of
acquiring more powerful hardware to replace your existing hardware. This usually means
getting a CPU with more cores or having a higher clock speed. The method of scaling
out means keeping your old hardware, and adding new hardware. This new hardware
does not have to be better than the old hardware.
This leaves us with an interesting question for the architecture: Should one get a better
CPU with more cores, a faster CPU, or more machines with a less impressive CPU? The
processing platforms used in this architecture make use of YARN, which allocates virtual
cores and memory to an application. Each virtual core usually represents one physical
core. The allocation of virtual cores simply represent a percentage of the physical CPU's
processing power. The execution of code is handled by the operating system, which
guaranties no core affinity. This means that for example an application with a one
vCPU allocation running on a quad core, may at one point run on core 1, and a second
later on core 3.
The mapping of tasks to virtual cores depends on the processing platform used. However
task always requires at least a single virtual core. Therefore more machines, and a CPU
with more cores, will give more task slots. This leads to faster processing, as more
processing can be done at the same time. However faster cores also lead to better
performance, as each task requires less time to complete. In a lot of applications there
will come a point where the data can not be processed parallel anymore, and has to be
redistributed. Generally the reduce part of map reduce require a redistribution of data.
One of the slower parts of a computer is still the network. It would therefore make more
sense to use workers with more cores, as some of the data, if not all, then does not need
to be pushed to different machines, but can be redistributed in between the tasks in the
same machine. However more cores or faster CPU's come at a cost. It may be cheaper
to get two cheaper machines than one high end one, while the two may outperform the
high end one together. It is therefore a balance between the CPU power per machine,

21

3.3. HARDWARE CHAPTER 3. ARCHITECTURE

and the number of machines.

3.3.3 Storage

The requirements on the size of the storage are very simple. HDFS splits every file into
fixed size blocks. These blocks are then distributed over the datanodes. Each block
is also replicated on different datanodes for reliability and performance reasons. The
default replication factor, which is configurable, is three times. This means that the
actual storage requirements are at least three times the expected data size. The storage
capacity on the namenode also needs to be of reasonable size. The namenode stores the
whole file system tree, which holds the information which file and blocks are located on
which datanode. This tree is also stored on disk, in case the one in memory one gets
lost due to unexpected stops of the namenode process.

22

Chapter 4

Implementation of the air quality
application

The processing platforms where chosen based on some of the important aspects we de-
fined in chapter 2. Some important aspects were not mentioned when choosing though.
For example scalability and performance are barely mentioned. We still want to evaluate
our architecture on these aspects. The problem with these aspects is that they are qual-
itative. Developers can claim that their processing platform is faster than the other, but
they can't give an exact number, as it differs for each application and implementation.
Another aspect is the ease of implementing new applications. While the documentation
may claim the the programming API is very simple, only trying it can prove that. To
complete our evaluation of our architecture we therefore have to implement an proof of
concept application. This way we can also evaluate the performance and scalability. As
we have three version of the architecture, using MapReduce 2, Spark and Flink, we can
use the performance and scalability to help us decide which processing platform is the
best suited for this architecture.

Note that as this application is only a proof of concept not the whole architecture was
implemented. This was done because the goal of this research was to assess the usage
of big data tools for the Downstream platform. The goal is not to deliver a running
full version of the architecture that can be immediately used for business means. This
means that less interesting parts such as the front end, including administration are not
created nor used. Instead the applications are directly started via the command line,
and the results are manually retrieved.
Another important omission is the absence of the generalized satellite data processing
library, which allows for easy programming of satellite data based applications on top of
the components of the architecture. Implementing such a library would require at least
lots of application domain knowledge, precise requirements, integration tests and lots
of time to implement. While such a project is very interested as future research, such
resources are not available for this project

23

4.1. THE AIR QUALITY APPLICATION CHAPTER 4. IMPLEMENTATION

4.1 The air quality application

The application we will be using is the air quality application. This application is an
existing application of the Downstream platform. The goal of this application is to gen-
erate a trend analysis of air quality over a specific area. The application can generate
these trend analyses for five gas types. The user can then derive the air quality from
those trend analyses. The gas types supported are nitrogen dioxide (NO2), sulfur diox-
ide (SO2), ozone (O3), formaldehyde (HCHO) and aerosols.

The application makes use of the dataset generated by OMI, Ozone Monitoring In-
strument [31]. This instrument is aboard the eos aura satellite which was launched July
15th 2004 and is operated by NASA [32]. This satellite makes 14 to 15 orbits per day.
This way OMI can cover the whole earth each day, as each orbit only a section of the
earth can be covered.
The data generated by OMI is publicly available and comes in the HDF5 format [29].
Many data products are available. The level 1 dataset contains the calibrated geo lo-
cated measurements derived from the raw data. In this product the individual gasses
are not split up yet. The level 2 dataset contains the data for each individual track over
the earth for each gas. It is derived from the level 1 dataset. The level 2 gridded (L2G)
dataset combines the tracks of each gas in full daily orbits. The measurements are put
onto a grid of 0.25 by 0.25 degrees latitude and longitude [33]. The air quality applica-
tion makes use of the level 2 gridded data product. The datasets selected are OMTO3G
for ozone, OMNO2G for nitrogen dioxide, OMSO2G for sulfur dioxide, OMHCHOG for
formaldehyde and OMAERUVG for the aerosols.
The L2G dataset consists of a single HDF5 file per day per gas. The OMI datasets start
from 1 October 2004 and are still generated to this day.

This application is a good match to base the evaluation on as it has an important
change coming up. A new instrument called TROPOMI, TROPOspheric Monitoring In-
strument, will be launched. This instrument is aboard the Sentinel-5 precursor satellite
which will launch somewhere in 2017. This instrument can measure the same gasses as
OMI did and more. The difference is that TROPOMI can provide a much larger resolu-
tion compared to OMI. This means that the area for each measurement is much smaller.
This of course leads to much more data to process. As previously there was one mea-
surement for an area, and now there are multiple measurements for that same area. It is
very likely that the existing (original) application cannot cope with such an amount of
data within a reasonable processing time. This makes the application ideal for big data
processing, as it can scale out if the data amount, and thus the processing need increases.

The application itself is fairly simple. The application is written in Python and is
split up into two parts, closely resembling the pre-processing with an on demand part
structure we used for the architecture. The goal of the pre-processing step is to trans-
form the HDF5 L2G files that OMI provides into a more simple format, and leave all
the unnecessary data out. The first step of the pre-processing is to read the HDF5
L2G files. These files contain a lot of data besides the data we want to extract. For
example the files contain data about the satellite for each measurement. If the data is
processed using multiple algorithms, the files will contain the measurements for all those
algorithms. Finally a lot of quality flags are present. While some quality flags are used,
many of them can be ignored. Using some of these flags we can apply additional filters

24

4.1. THE AIR QUALITY APPLICATION CHAPTER 4. IMPLEMENTATION

to the data to mark some measurements as unreliable. A lot of the measurements are
also filtered out in this step due to missing measurements. These missing measurements
can be caused by environmental conditions causing the instrument to fail to measure,
but mainly due to the structure of the HDF5 file. The HDF5 file contains data for each
0.25 by 0.25 degree cell for each orbit. As each orbit only covers a section of the earth
most of this data grid will be empty.
Due to some of this filtering it may be possible that there are no measurements for a grid
cell for a day. This may cause unwanted outliers in the final product, the trend analysis.
Therefore the temporal resolution of this trend analysis is brought down. The third step
in the pre-processing is to combine each measurement of each grid cell for a single week.
That means that instead of potentially 7 measurements per week per grid cell, a single
measurement per grid cell is produced. The week system used are ISO weeks. An ISO
week is a week which is defined to start on Monday. The first ISO week of the year is
defined to contain the 4th of January. Therefore each year contains 52 or 53 ISO weeks.
It is likely that when no measurement can be made for one day to environmental condi-
tions this condition will also be present for the whole week. It is therefore still possible
that a 7 day reduction to a single week still has no data. To solve this the application
does an interpolation over the grid cells that do have data to come up with a data point
for a cell that has no data.
The final step is to store these weekly measurements into an intermediate storage. Note
that this process is repeated 5 times, one time for each gas type.

OMNO2G OMSO2G OMTO3G OMHCHOG OMAERUVG

Filter daily
measurements

Put measurements
 on the grid

Combine measurements
to weekly average

Avro
NO2

Avro
SO2

Avro
O3

Avro
HCHO

Avro
Aerosol

Figure 4.1: Pre-processing step of the improved air quality application

25

4.2. IMPROVEMENTS CHAPTER 4. IMPLEMENTATION

Due to the pre-processing the on demand processing is very simple. The on demand
processing has three parameters, the coordinates of the grid cell, the range of weeks
and the gas type. The application will read in the appropriate intermediate weekly files
according to the range of weeks and the gas type. The next step is to select the grid
cell from this loaded data, and discard all the other cells. Finally the measurements
are passed to the trend analysis algorithm. Note that in this final step we only have a
number of measurements equal to the number of weeks we specified. The result of the
trend analysis is plotted, and the plot is saved in a fixed location.

Avro
NO2

Avro
SO2

Avro
O3

Avro
HCHO

Avro
Aerosol

Filter out areaUser defined
area

Trend plot

Trend analysis

Figure 4.2: On demand step of the improved air quality application

4.2 Improvements over the original implementation

Since we are re-implementing the application for our big data processing platforms, we
can adapt this application to simplify the implementation process and enhance the user
experience a bit. All the enhancements are summarized in table 4.1.
The user experience is enhanced by combining the pre-processing calls into one. The
original pre-processing processes one gas at a time. Since these gasses have no data
dependency on each other, they can be processed at the same time. The new implemen-
tation of the pre-processing will read all the gas types at the same time, process them and
output the results in gas separated directories. This way the end user only has to start
the pre-processing one time instead of running it 5 times on the different gas types. Note
that the on demand processing still does one gas at a time. If we would do the on demand
processing for all 5 gasses at the same time, we might create a product that the end user

26

4.2. IMPROVEMENTS CHAPTER 4. IMPLEMENTATION

does not want, as he only requested one gas, this would therefore waste processing power.

The application is simplified for the implementation process in two ways. The first
simplification is the resolution of the sulfur dioxide dataset. We mentioned that the
level 2 gridded datasets contains data for each 0.25 by 0.25 degree cell. The OMSO2G
(sulfur dioxide) dataset differs slightly in that it has an 0.125 by 0.125 grid cell size.
That means it has four times more cells in the grid than the other datasets. The original
implementation acknowledges this by having a separate processing line that does this
processing on the four times larger grid. Since we now do the pre-processing over all
gasses at the same time we want to generalize the process as much as possible. To do
this we simplify the application by ignoring the higher resolution of the sulfur dioxide.
We do this by reading the four measurements for the four 0.125 by 0.125 degree cells as
if they were four measurements for one 0.25 by 0.25 degree cell. This doesn't cause any
problems as the temporal reduction to a weekly measurement now reduces (up to) 7\times 4
measurements instead of (up to) 7.
Note that this means that the results of the application may differ for sulfur dioxide de-
pending on which implementation is used. Is this a problem? No, this implementation
is meant as a proof of concept, and not as an application that can go live at any moment.

The second simplification enhances the fact that the implementations are going to be
different, and the results may thus vary. The original implementation does an interpo-
lation over the grid cells to fill in a measurement for grid cells that have missing data.
While this sounds good in theory, it doesn't really work in practice. In practice it is quite
common that large sections of the world have no data points. With the interpolation
solution grid cells in the middle of such a section get assigned a value that is based on
actual measurements of grid cells that lie very far away from them. This is of course
incorrect. To solve such problems, and simplify the application the interpolation process
is removed from the new implementation. Note that this indeed gives different results
versus the original implementation, as we now have grid cell that have no measurements,
whereas in the original implementation all cells had a measurement.
This leaves us with the problem of grid cells having no measurement. We simply cannot
solve this problem, as there is simply no data. We can make up some data as the inter-
polation basically did, but this will lead to incorrect data. The only thing we can do is
try to avoid the missing points in the end trend analysis. We can do this by enlarging
the area the trend analysis is done over. The on demand processing is adapted to instead
of doing a trend analysis over on single grid cell over a period to a trend analysis over an
area over a time period. We introduce a fourth parameter for the on demand processing,
the area. In the new implementation we will define this area as a simple rectangle. The
on demand processing will average the measurements of the grid cells in the given area
to come up with a single trend analysis that represents that area. This will hopefully
mask some of the grid cells in such an area having no measurement.

27

4.3. THE MAP REDUCE MODEL CHAPTER 4. IMPLEMENTATION

Table 4.1: Improvements of the new implementation for the air quality application

Original New implementation

Ability to
process
multiple
gasses

Support 5 gasses.
Processing one gas
type per execution

Supports 5 gasses. Pre-processing of 5 gasses
at the same time. On demand processing one
gas type per execution.

Resolution
of the data
set

0.25 degree cells.
0.125 degree cells
for sulfur dioxide

0.25 degree cells for all gasses.

Missing
data points

Interpolate over the
whole grid.

Remove the missing points. On demand
processing works over an area instead of a
single grid cell, to mask these missing points.

4.3 Introducing the map reduce model

Now that we have identified the steps of the application we can move towards the im-
plementation. However before we can start implementing we first need to know the
programming model used. As mentioned in section 3.2.2 the processing platforms use
the programming model which is or based on map reduce. This model is inherently
different from usual programming models as it focuses on scalability by exploiting data
parallelism. This means that this model does processing on tiny amounts of data, but
tries to do as much as possible of this processing on tiny amounts of data at the same
time. In this way large datasets can be processed in a time that is very likely faster than
by using a sequential processing platform.

So how does this work? The programming model has two main operations: map and
reduce. The model assumes that we start off with a set of individual data elements. The
map operation does exactly as described, it processes one single of this data elements
to generate zero, one or more new data elements. The map operation is applied to all
elements. This leads to a new set of individual data elements with a size that may be
unequal to the original set. This process can be repeated multiple times.

At some point it is very likely that some data dependency is introduced in an appli-
cation. That means that some of the individual data elements needs one or more of the
other data elements to generate a new value. For example if you want to create a sum of
a bunch of numbers, and each element is a number. You need a step where in order to
create the sum element you need all the number elements, and not just one. The map
function does not allow for such data dependencies as the input is only the single data
element. The solution to this is the reduce function. Before the reduce function is called
the data elements are grouped to form a set of groups from the set of data elements.
The group a data element belongs to is defined by the contents of the data element,
and is specified by the code. After grouping the reduce function is called. This function
receives all the data elements of a single group and again produces zero, one or more
new data elements. This process is repeated for each group in the set.

If we take all the map operations that generate the set of data elements B from set
of elements A we see that none of those map operations have a dependency on each

28

4.3. THE MAP REDUCE MODEL CHAPTER 4. IMPLEMENTATION

other. This means we can exploit the data parallelism. Each of those map operation
can run at exact the same time. The whole process of generating set B from set A can
take up as little time as the maximum time of one of those map operations. The same
principle applies for the reduce operation, as the groups do not have dependencies on
each other.

In figure 4.3 we can see the map reduce model with a single map operation when run-
ning on multiple servers. As the map operations have no dependencies on each other
we can distribute the data elements in a random order over the servers, and schedule
the map operation for that element on that server. The results of those operations are
then stored on that particular server. The set of data elements that is produces by all
the map operations is now distributed over all the servers. Here we see the potential of
scalability. We can simply add another server, and when the processing is resubmitted
some map operations that where earlier scheduled on of of the existing servers are now
scheduled on the new server. Now the existing servers have less work to do, and the
expected time to process becomes lower.

29

4.3. THE MAP REDUCE MODEL CHAPTER 4. IMPLEMENTATION

Dataset

Server 1 Server 2

Server 3

Map Map Map

New dataset

Server 1

data

elements

Server 3

data

elements

Server 2

data

elements

Reduce

Reduce

Reduce

Final dataset

Grouping

Figure 4.3: The map reduce model running on multiple servers

In the next step in the figure the elements are grouped. The reduce operations do not
have dependencies on each other, and can thus run on any random servers. However we
see the major performance slowdown here. Lets say an reduce operation is scheduled to
be running on server 1. This operation requires all the elements in the group of that
specific reduce operation. The data elements that belong to this group might however
not be present on server 1. The map operations are potentially scheduled randomly, and
so the resulting data can be present on random servers. To be able to start the reduce
operation server 1 first needs to receive all data elements from the other server that
belong to that group. This means that the reduce operation is much more performance
intensive than the map operation.

30

4.4. DIFFERENCES BETWEEN THE
PROCESSING PLATFORMS CHAPTER 4. IMPLEMENTATION

4.4 Differences between the processing platforms

The original map reduce model that was introduced in 2004, which is implemented in
Hadoop MapReduce, and later Hadoop MapReduce 2. Spark and Flink were introduced
much later around 2014. It therefore makes sense that Spark and Flink try to fix any
flaws that Hadoop MapReduce may have.

4.4.1 Hadoop MapReduce 2

Hadoop MapReduce 2 purely implements the map reduce model. It therefore has two
operations, the map and reduce functions. What we did not discuss yet is that this
original model also enforces the format of the data elements. The model requires that
the data elements come in tuple format by using a key and a value pair. This means
that the map operation takes a key-value pair and transforms that into zero, one or more
key-value pairs. The generated key-value pairs all have to be of the same data type. The
input key-value pair data type does not have to match the data type of the generated
key-value pairs. The grouping process of the data elements for the reduce is done by
grouping all key-value pairs together that have identical keys. The reduce function then
receives the common key and all the value for that group. The reducer again produces
zero, one or more key-value pairs.
Note that this model does not always fit the application. For example in our summing of
numbers application we do not have a key-value pair, we just have numbers. In Hadoop
MapReduce this is usually solved by using the single data value as key and make the
value of type NullWritable. The NullWritable is a special type that indicates that there
is no data. However we can agree that this circumvents limitations in the model.

Another limitation of this model is that the order of the two operations is fixed. First a
single map operation is started, then the reduce operation and the application should be
finished by then. Hadoop MapReduce does allow you to skip either the map or reduce
phase, but you cannot issue more than 1 reduce operation, or do a map operation after
a reduce.

4.4.2 Spark

The limitation on the programming model are solved in Apache Spark. The program-
ming model, or API, of Spark is based on, but not limited by the map reduce model.
The Spark API still supports the key-value pair map and reduce operation in some form.
The reduce equivalent grouping is done explicitly in spark by issuing a group by key op-
eration on a paired dataset. This results in a dataset consisting of pairs of keys and their
corresponding set of values. On this dataset a map operation can be done to imitate the
reduce operation. The paired dataset is only one of the options of data sets available
in Spark. Spark supports data sets of a single type, so not only key-value pairs. Spark
also supports data sets of tuples in the form of a single type data set where the type is
a tuple. The tuples can be of any length, so it is possible to have complete records as
data elements that make up a data set. Grouping for such data types is still possible as
Spark also has a group function that relies on a user based function.
The second problem of the map reduce model was the fixed structure of the map and
reduce operation. We already hinted that a reduce in Spark can be done by a grouping

31

4.4. DIFFERENCES BETWEEN THE
PROCESSING PLATFORMS CHAPTER 4. IMPLEMENTATION

followed by a map operation. This would make a map-group-map structure. However
Spark is not limited to such a fixed structure. Spark allows for the chaining of any
operations, as long as the data types match the operation. For example you cannot do
a group by key on a set consisting of numbers, as they do not have a key type.
Since there is no required structure in the operators, Spark can also introduce a lot of
new operators. For example Spark has operators for joining different data sets, returning
the distinct elements of a data set and a simpler operator for filtering data sets.

4.4.3 Flink

The API of Apache Flink for batch processing is very similar to the API of Spark. The
Flink API supports most of the operations of Spark and also uses the grouping operator.
The small difference between the API's is the absence of an explicit paired data type
for Flink. Flink only supports data sets with a single data type. Note that this data
type may be a tuple, so a tuple of length 2 still implies a paired set. So why is this
different from Spark then? The Spark API has a method groupByKey that only exist
for paired data sets. This method assumes that the first value of the pair is the key, and
can thus group on that value. Flink does not have such a method, but can group data
elements together. The grouping is done by a user defined function, which is applied to
every element and returns a value. Every element that has the same function value is
grouped together. In Spark a group resulted in a paired data set of key and the set of
values. In Flink there is no real notion of the key, so the result of the group is just a
data set of the sets of grouped together values. Note that grouping of a key-value pair is
still possible, but a bit harder. We can group a data set with data type tuple of length
2. The grouping function simply returns the first value of the tuple, which we said is
the key. The key-value pairs are now grouped by our key. Next we can apply a map
function to imitate the reduce function of map reduce. This function will receive a set
of grouped tuples. If we need the key of that group we can just take the first value of
one of the tuples, as they should all have the same first value, as that is our key.

4.4.4 Data storage in memory

Another interesting difference between the platform is how they deal with data that is
larger than the available memory. For big data processing it is very common that the
size of the data set is much larger than the available memory. Still sometimes the data
has dependencies on other data elements, so that the complete data set is required in
the system. The solution is to store the partially processed data on disk. Disks are
usually much bigger than the available memory, and can thus store the data. Hadoop
MapReduce writes in between the map and reduce operation the data back to disk. The
reduce operation then reads back those partially processed data sections as needed. Of
course this can harm the performance as disks are usually much slower that the memory.
Spark and Flink try to store as much of the partially processed data in memory. This is
also why they claim that their system is much faster. If the data exceeds the memory
available, the remainder is spilled to disk.
Related to this is the way that the partially processed data is written to disk. The
processing platforms need a way to get the data that is in memory to a format on disk
and back. This serialization and deserialization in Spark is done by either the built
in serializer of the programming language, or the Kryo serializer. Flink uses a custom

32

4.5. DATA GRANULARITY CHAPTER 4. IMPLEMENTATION

serializer. Note that these serializer do an automatic translation of the in memory objects
to bytes, which can be written to disk. Hadoop MapReduce has a different solution. It
has a Writable interface, which has methods for reading the object from bytes, and
writing the object to bytes. All key and value data types are required to implement this
interface. Then the system can simply call the write method on the object to generate
bytes that represent that object, and write those to disk. In reverse the bytes from disk
can be passed to the read method, which fills in the data for that data type. MapReduce
has a lot of standard writable implementations for data types such as numbers, text,
booleans and many others. However if the user defines it's own data types he has to
implement this interface itself.

4.5 Data granularity

An important consideration when implementing an application on a big data platform
is the granularity of the data. The term granularity refers here to the size of the data
elements we pass to the processing algorithm. For example the air quality application
we can pass each individual measurement to the map operation. We can also adapt the
algorithm to take in all the measurements of a section of the world at a time. Note that
still all the measurements will be passed to the processing algorithm, just the size of the
batches will be increased. When a bigger granularity is chosen, and thus bigger chunks
of data are passed to the processing at a time the amount of overhead that is caused
by having many data elements is likely to decrease. On the other hand when dividing
the data into larger chunks, the total amount of chunks decreases. If the granularity
gets too big, there comes a point where there are not enough chunks to be distributed
among the processing tasks, and thus some processing power remains unused. From a
programming point of view the granularity requirement is application dependent. For
example if the goal is to filter out a specific area, a low granularity may be easier. Using
a low granularity you can filter out each data element at a time, instead of having to
check each measurement in each chunk that is passed. Other applications may prefer a
high granularity.
The air quality application that is implemented using the various processing platforms
makes use of a very small granularity. We take the smallest data element we can find,
which is the individual measurement per grid cell. This means that a single record of
position, measurement and time is passed to a mapping task at a time.

4.6 Transforming the application into map reduce
operations

It is clear that all three the processing platforms can in some shape of form perform the
map and reduce operations. It would therefore make sense to try to transform the steps
of the processing of the application into those operations.

4.6.1 Transforming the pre-processing

Let us start with the pre-processing steps. We have identified the steps taken by the
application. When we apply the improvements we will make to the algorithm we get the

33

4.6. TRANSFORMING THE APPLICATION
INTO MAP REDUCE OPERATIONS CHAPTER 4. IMPLEMENTATION

following steps:

1. Read the HDF5 data files for all gasses

2. Filter out grid cell that have no measurement

3. Filter out low quality data

4. Generate grid coordinates

5. Combine all measurements in an ISO week per cell

6. Write the result to an Avro file for each week and gas

Note that step 4 was not mentioned before. All cells in the grid have coordinates of
their location in the whole grid. We can read this coordinates from the HDF5 files. We
also can read the exact latitude and longitude of the measurement from this file. Note
that these coordinates do not always perfectly match the centers of the grid cells. This
extra step ignores the grid coordinates from the input file and creates its own by deriving
them from the latitude and longitude. Note that the latitude has a range of -90 to 90
degrees and the longitude -180 to 180 degrees. The method of doing so is specified by
the following pseudo code:

glat = floor((latitude+ 90)/0.25)
glon = floor((longitude+ 180)/0.25)

This should give grid coordinates roughly equal to the original. So why is this used,
and not just the original coordinates? In section 4.11 we will adapt the algorithm to use
a different grid cell size. We do this in a very simple way by only having to adjust the
coordinate calculations we specified by the pseudo code.

Now let us get back to the translation of those steps. Step 1 is the way to get the
data into the processing platform. This is neither a map or reduce operation, but de-
pends on the capabilities of the processing platform to read files. The process of reading
the HDF5 files is explained in section 4.9.
Step 2 and 3 can be easily translated into map operations. The map function takes the
measurement and quality data as data element that is produced by step 1. If a value
is not passing the filter the map function outputs no new data element. If it does pass
the filter the same data element it received as input is returned as output. Most of the
quality flags are not used any more in the next steps, so they may be omitted from this
new output data element.
Step 4 can also be represented as map operation. This map function requires the lat-
itude and longitude from the measurement. Using this coordinates and the method of
calculating the grid coordinates discussed before this map operation can output these
grid coordinates.

In step 5 the first data dependency is introduced and should therefore be handled by a
reduce function. In order to generate the weekly combined measurement for a cell we
require all the measurements of that cell that have a time that lies in that ISO week.
The obvious grouping would therefore be based on the combination of the cell coordi-
nates and the ISO week the measurement was generated by OMI. However we should
not forget that all the gasses are processed at the same time. We do not want to create
a weekly measurement for all gasses combined per cell, but a weekly measurement per
cell per gas. Therefore we need to add the gas type to the grouping key. The grouping
is thus based on the combination of the cell coordinates, the week and the gas type.

34

4.6. TRANSFORMING THE APPLICATION
INTO MAP REDUCE OPERATIONS CHAPTER 4. IMPLEMENTATION

In the original applications the reduction of multiple day measurements to a single weekly
measurement was done by the same interpolation that handled the cells without mea-
surement. Since we removed that part of the algorithm we have to come up with a new
combination algorithm. The original interpolation was a weighted linear interpolation
where the weight depended on the distance of the center of the cell to the latitude and
longitude of the measurement. This concept is copied to the new algorithm. The new
algorithm is basically a weighted average, where the weight is again dependent on the
distance of the center of the cell to the latitude and longitude of the measurement. This
averaging is described in pseudo code in listing 4.1.

Listing 4.1: Combining measurements into a weekly average with a weighted average

1 func t i on reduce (g lat , glon , week , group) \{
2 centerLat = g l a t \ast 0 .25 + 0.125 - 90 ;
3 centerLon = glon \ast 0 .25 + 0.125 - 180 ;
4
5 sumWeight = 0
6 sum = 0
7 f o r (l a t i t ude , long i tude , measurement in group) \{
8 weight = 0 .3 - (abs (centerLat - l a t i t u d e) +
9 abs (centerLon - l ong i tude))

10 sum += weight \ast measurement
11 sumWeight += weight
12 \}
13 return sum / sumWeight
14 \}

Note that the constant 0.3 on line 8 was picked semi random. The maximum deviation
of the center of the grid cell in degrees is 0.125 for the latitude and 0.125 for the longi-
tude. This makes a total maximum deviation of 0.25 degrees. Since we do not want to
give these edge measurements a weight of 0 the constant 0.3 was picked. The more this
constant comes closer to 0.25 the harder deviations from the center of the cell will be
punished with a lower weight. The actual value of this constant does not matter though,
as again, this application is a proof of concept, and the results do not match with the
original implementation anyway.

In this processing step another type of weight is also produced. Besides the measure-
ment per week per cell per gas a weight is also given for each cell for each week for each
gas. This weight is independent from the weighted average weight and represent the
trustworthiness of this weekly measurement. This trustworthiness is derived from the
number of measurements in that week and the uncertainty of the measurements given
for each measurement in the HDF5 files. Note that only nitrogen dioxide and formalde-
hyde have those uncertainties. For all other gasses only the number of measurements is
used. The algorithm for this weight calculation is copied from the original implementa-
tion. Let us say that in eq. 4.1 N is the number of measurements and u is the set of
uncertainties.

w =
N\sum N

i=1 ui \times ui
(4.1)

For all the other gasses that do not have uncertainties eq. 4.2 is valid.

w = N (4.2)

35

4.6. TRANSFORMING THE APPLICATION
INTO MAP REDUCE OPERATIONS CHAPTER 4. IMPLEMENTATION

In the final step, step 6 we write the weekly measurement and weight for each cell in the
whole grid for each gas to the Avro based intermediate storage. For clarity each Avro
file will contain all the measurements in the grid. A file will be generated for each week
and each gas. The process of writing the Avro files is described in section 4.10. What we
are still missing for this process to happen is the transformation of the data set of weekly
measurements per cell to a data set that contains weekly grids of measurements. It is
possible that grid cells that belong to the same week and same gas type were processed
on a different server. Therefore we first need to issue a reduce step to group the mea-
surements together that will be stored in a single Avro file. We can do this by grouping
on the week and gas type. The reduce function will output these groups, so that they
can be stored as the Avro files.

To determine what data we need in every step we backtrack the flow of the data. Note
that as the week is represented as an ISO week and the data spans multiple years, the
data type used for a week is a combination of the week number with range 1 to 53 and
the year. Any further mention of the week data type is this combination.
Step 6 requires the week, the gas type, the grid coordinates, the (weekly) measurement
and the weight.
Step 5 requires in addition to the data of step 6 the latitude, longitude and the mea-
surement uncertainties. This step generates the weight needed in the next step. The
uncertainties are no longer needed in the next step.
The process of putting the measurements back on the grid of step 4 only needs the lat-
itude and longitude. This step generates the grid coordinates. Since the next step also
requires the measurement, uncertainties, week and gas type these are also a requirement
for this step.
The second filter of step 3 only needs the quality flags. It also requires all the require-
ments of the next step.
The first filter of step 2 only requires the measurement to detect if the actual value is
missing. It also requires the quality flags, uncertainties, latitude and longitude, week
and gas type for the next steps.
This leads to a translation to the following steps:

1. Read data
Output: (latitude, longitude, week, gas, measurement, quality flags, uncertainty)

2. Filter (map)
Output: (latitude, longitude, week, gas, measurement, quality flags, uncertainty)

3. Filter (map)
Output: (latitude, longitude, week, gas, measurement, uncertainty)

4. Grid (map)
Output: (latitude, longitude, week, gas, measurement, uncertainty, glat, glon)

5. Combine (reduce, group on (week, gas, glat, glon))
Output: (week, gas, glat, glon, measurement, weight)

6. Output as Avro (reduce, group on (week, gas))

4.6.2 Transforming the on demand processing

We can apply the same process to do the transformation to map reduce steps for the on
demand processing. The algorithm has the following steps:

36

4.6. TRANSFORMING THE APPLICATION
INTO MAP REDUCE OPERATIONS CHAPTER 4. IMPLEMENTATION

1. Read the weekly measurements and weights for the range of weeks and the specific
gas type specified by the algorithm parameters.

2. Filter out any grid cells that do not lie within the area specified by the algorithm
parameters.

3. Average all measurements and weights in the area to a single value per week.

4. Do a trend analysis over the averaged values and output the plot.

In step 1 the weekly Avro files are read. The process of doing so is described in section
4.10. Where in the pre-processing we passed the complete grid to the Avro writing
process, we read the individual grid cells back in the on demand process.
In step 2 we again have a filter. Since the Avro reading process outputs a single grid
cell as data element we can use a map function that uses the grid coordinates of this
grid cell to determine if the cell is within the specified area.
The first data dependency is introduced in step 3. In this step we combine all the mea-
surements and weights that where not filtered away in the previous step by week. We
can do this by using a reduce operation. First the data elements are grouped on the
week. Now we can do a simple average of both the measurements and the weight in
the reduce function. Note that the weight is averaged, and has nothing to do with an
weighted average. The weight is only used in the trend analysis itself.

The final step is the trend analysis itself in step 4. To implement this we have to
make an important decision. Can we, and would it be useful, to implement the trend
analysis using map and reduce functions? The algorithm for creating a trend analy-
sis requires all the data points to be available. The algorithm itself is also sequential.
Theoretically it is possible by grouping the whole dataset together and doing the trend
analysis in a reduce function. However implementing such an algorithm is not an easy
job. We already have an implementation which does the trend analysis (using a library)
and creates the end result plot, which is the original implementation. The trend analysis
is therefore implemented as an output for the big data system that simply pipes all the
weekly averaged values to an external Python script, which contains the analysis and
plot code from the original. So is this piping process not very expensive in terms of
performance? No, the result of the averaging step is just one measurement and one
weight for each week. Let us make an estimation of the data. The OMI data starts from
2004. Let us ignore that some years have 53 ISO weeks, and say each year has 52 week.
For 2016 we then have a maximum amount of 52 \times 12 = 624 weeks. We can thus say
that the amount of week, measurement and weight pairs passed to the external python
process will stay well under a thousand. With modern hardware this is not a problem.

The backtracking process to determine the data types is very simple for the on de-
mand processing. The trend analysis output of step 4 requires the measurement, weight
and week. The averaging of step 3 has the same requirements. The filtering step requires
in addition the grid coordinates of the cell. Note that the indication of the week still
refers to the combination of week number and year. This leads to a translation to the
following steps:

1. Read the weekly measurements.
Output: (glat, glon, week, measurement, weight)

2. Filter area (map).
Output: (week, measurement, weight)

3. Average (reduce, group on week).

37

4.7. TRANSLATION OF MAP REDUCE OPERATORS
TO THE PROCESSING API'S CHAPTER 4. IMPLEMENTATION

Output: (week, measurement, weight)

4. Output to trend analysis.

4.7 Translation of map reduce operators to the processing
API's

Now we have the description of the application in map and reduce operations we trans-
late them into the correct API calls of the processing platforms. This will create the
major part of the implementations. The other part is the interaction with the HDF5
and Avro files, which are explained in section 4.9 and 4.10.

The map operator can be translated into API calls called map and flatmap in Spark
and Flink. The difference between these calls is that flatmap resembles the map op-
erator we described which return zero, one or more new elements. The map API call
always returns one new element. Some of the map operators can also be translated into
the filter API call, which acts as the filter we described. When the data element passed
to the filter function may pass the filter it is returned as new data element. When the
data element does not pass the filter no new data element is generated.
The map operator can be implemented in MapReduce 2 by implementing the Mapper
interface. This interface acts exactly as the description of the map operator.

The reduce operator can be, as described earlier, implemented in Spark and Flink by
issuing the group API call and then a map API call. In MapReduce 2 we use the Re-
ducer interface. This function this interface describes acts again as the description of
the reduce operator. Note that for MapReduce 2 we need to define the key-value pairs.
The reducer groups on the key values of the input pairs. We can therefore define the
key types as the combination of the values we wanted to group on. The value of the
key-value input pair of the reducers can be the remaining fields.
Note that we also need to define the key-value input and output pairs for the mappers.
The actual data used for key and value does not really matter in the mappers, as the
key is not used for anything special like with the grouping of the reducer. It makes sense
to try to keep the key and value constant over the operations, as that might save some
data copying and is easier to implement.

4.8 Problems

4.8.1 Python

When implementing the application some problems were encountered. Let us start with
the biggest problem: Python. One of the important aspects we defined in section 2.2
was that is should be easy to implement new applications. One of the measures to do
so would be the use of the Python programming language. Each processing platform we
picked supports Python in some shape or form. However when implementing it became
clear that this support was a bit lacking. For example MapReduce 2 is based on Java.
It supports Python by allowing the Mapper and Reducer to be implemented in among
others Python. The runtime itself is still Java, this means that you still need a Java

38

4.8. PROBLEMS CHAPTER 4. IMPLEMENTATION

implementation to tell the system you are using a Python script as mapper or reducer.
The data itself is also situated in the Java memory space. This means that a translation
is needed to a format that Python can understand, and therefore copy all the data to
the Python script. This process is of course not good for the performance. Also this
does not make it easier to create new applications, it only makes it harder versus a pure
Java implementation.

Spark and Flink have an API that is pure Python. However it looks like that the
Java versions are better optimized. When testing the implementation of reading in the
HDF5 files in Spark it looked like Java was much faster. The testing set up consisted of
a single HDF5 file containing the OMNO2G data set. All measurements where read in,
and as result a simple count of the amount of measurements was made. The Python im-
plementation took over a minute, where the Java implementation took only 10 seconds.
Due to these problems with Python it was decided to do the implementation in Java for
each platform.

4.8.2 The Hadoop MapReduce fixed structure

We already mentioned the second problem before. Hadoop MapReduce 2 only supports
applications that follow the strict format of a map operation followed by a single reduce.
If we look back at our map and reduce operations for the pre-processing step we see that
we have a structure of three map operations followed by two reduce operations. The three
map operations can be dealt with. Hadoop MapReduce 2 has a method of calling multiple
map operations from a single mapper by chaining the calls to the map operations. The
reduce part however is problematic. The only way to create an application with multiple
reducers in MapReduce is to chain two applications together. The first application does
the reading of the data, the filtering and the process of putting back the measurements
on the grid. Finally this application does the temporal reduction to a single week. The
results, that is the individual pairs of measurement, grid coordinates, gas type, week
and weight for each week and grid cell, are stored on disk. The second application reads
these pairs from disk, and does a reduce to group those pairs by week and gas type.
Then finally the grouped results are sent to the Avro writing process. Note that the
second application also needs to follow the map reduce structure, and therefore needs a
mapper. To do so a map operation is used that outputs all the input data elements it
gets, also known as the identity mapper.

4.8.3 Polymorphism and Hadoop MapReduce writable

In section 4.4 we already discussed how MapReduce requires user defined objects to
implement the Writable interface. For the air data, being the measurements, week and
quality flags combination such a object was used. The measurements and week is used
for all gasses, where the data types for the quality flags depends on the gas type. As
mentioned before we use Java to implement the application, which is object oriented.
This allows us to define a parent class which defines the measurement and week data
fields. A class for all the gasses exists which extends this class and adds new data fields,
as required for the gas type. Due to the polymorphism of Java we can address the
gas specific instances as if they were the generic parent class. Let us say the parent
class is called AirData and two of the gas specific child classes are called NO2AirData

39

4.8. PROBLEMS CHAPTER 4. IMPLEMENTATION

and SO2AirData. Let us look at a map operation. The map operation requires that the
input and output types are defined. Only one type can be defined. This means that if we
would define the input type as NO2AirData we would not be able to pass SO2AirData
to it. In, for example, the first filter of the pre-processing we want to filter all gas types.
Due to this polymorphism we can define the input type as AirData, while the actual
instances may be of type NO2AirData or SO2AirData.
The challenge lies in the fact that Hadoop MapReduce requires the classes to implement
the writable interface. This means that the object should be able to write itself to a
byte stream, and read its contents from a byte stream. If we define an output type
as AirData the platform expects that the AirData type can read and write itself. The
actual instance type is however not AirData by the gas specific types. The writing part
is not the problem here. The specific classes can overwrite the writing method of the
AirData class to also write their gas specific data fields. This can also be done for the
reading method, but this will never be called. The platform expects that a AirData
type is written and later read back. It does not know which specific instance type is
written. When reading back the data it therefore creates an AirData instance and calls
the read method. As the instance types are lost, the generic AirData type can not
read the gas specific fields. As the gas specific fields are written as bytes, the reading
process will interpret those bytes wrongly as if they where of the AirData fields, and
thus read back incorrect data. Note that this is not a problem in Flink and Spark, as
those serialization mechanism do store the actual class that was written, and can thus
correctly create instances of the correct child classes. The solution is not very elegant. A
wrapper class is used that contains the AirData class as field. This wrapper implements
Writable. When the write is called a byte is added to indicate which gas type the
wrapper contains. When reading back the platform creates an instance of the wrapper
and calls the read method. This method reads the gas type byte and creates the correct
instance type for that gas itself. Finally it calls the read method on that new instance
to read the actual data.

4.8.4 Hashcode inconsistencies

The final interesting problem is that of hashcode inconsistencies. For the reduce operator
a grouping of values is done. As mentioned, to do such a grouping often a key value is
used. Any values having the same key are grouped together. In Java the equals function
exists, which is implemented by the user. Implementing such a function is very simple,
as it only has to compare the fields of the object. As you can imagine calling the equals
function for each object is not very fast though. To check on a whole set to see if any
of the elements are equal to each other you require 1

2 \times N \times N - 1 operations on a
set of length N . As data sets in big data often overpass billion of elements, this would
take way to long. Processing platforms solve this by using a hash code. A hash code
is the result of a function, the hash function, that can convert an object to a number.
The conversion is constant, so each object where equals would return true results in the
same hash code. Note that the result is not unique, so different objects may map to the
same hash code. If the platform first applies the hash function, we can do a quick rough
grouping on that number. Finally we have to call the equals function for each object
within the group, as different objects may result in the same hash code. These groups
are much smaller, so calling equals for all objects does not nearly take as long as on the
whole data set.
The interesting part here is that it is very important to implement this function, even

40

4.9. READING HDF5 FILES CHAPTER 4. IMPLEMENTATION

when the default implementation would usually suffice. The default implementation
generates a hash code that is derived from the memory address of the object. For
objects such as the AirData this does not suffice, as the many instances of these objects
do not have the same memory address. The object that does define the type of the
gas in the grouping on the week and gas type this should suffice. The gas type object
can be constant, and reused in every week and gas type combination. As it is reused
the memory address also stays the same, and the default implementation should suffice.
What we forgot here is that we can, and will, use multiple machines. While the gas type
is constant, each machine has its own instance and thus a different memory address.
Mistakes like these lead to hash codes being different on different machines for the same
object. This caused objects not being grouped together, and therefore giving inconsistent
and wrong results.

4.9 Reading HDF5 files

We have determined how the data is processed, but not how the data is read into the
system. The HDF5 file format is an hierarchical format containing groups, data sets
and meta data [29]. The whole file itself is one group. Each group can hold both other
groups and data sets. The data sets can be accessed via the names of the groups, just
as if its was a UNIX directory tree. In the data sets we can find meta data describing
the properties of the data data and a (multi dimensional) array containing the actual
data. As we need multiple values like the latitude, longitude and measurement, we need
to read multiple data sets and combine them into individual pairs that can be used in
the processing chain. We already defined all the values we needed: latitude, longitude,
week, gas, measurement, quality flags and uncertainty. The actual names of the groups
and data sets for those values differ for each gas type. However they can be extracted
from the original implementation.

Since the actual format of the file is quite complicated an external library is used to
do the reading of these HDF5 files. The HDF group provides a Java library that can
be used. The problem with this library is that it is basically a wrapper around the
C HDF5 library. This means that a native library needs to be accessible by the Java
virtual machine on each machine running a worker. This limits the portability quite a
bit. The other problem is that this native C library uses the standard C library to read
the raw bytes of the HDF5 files. We want to use the Hadoop Distributed File System
as a storage solution for the HDF5 files. The standard C library does not have support
for this file system.
A better library is the NetCDF library [34]. The NetCDF4 file format is based on HDF5,
so any library that can read NetCDF4 can read HDF5. The library does not require
any external native libraries. While the library does have its own byte reading model, it
does provide reading HDF5 (or NetCDF4) from a byte array. With some adjustments
this was transformed into an implementation that forwards the raw byte read calls to
the Hadoop Distributed File System API.

The implementation of reading the data elements is done using the Hadoop MapReduce
InputFormat. The implementation of the InputFormat specifies which RecordReader
should be used. A new RecordReader is created for each input file. The RecordReader
has three main functions: nextKeyValue, getCurrentKey and getCurrentValue. The

41

4.10. INTERACTION WITH AVRO CHAPTER 4. IMPLEMENTATION

nextKeyValue function should read the next key and value pair from the format this
RecordReader implements, in our case the OMI HDF5 files. The getCurrentKey and
value functions then return the key and value of the pair that was just read.
The OMI HDF5 reader parses the whole file when created. The correct groups and data
sets are loaded. Each nextKeyValue call the next value from the various data sets we
selected is retrieved and combined to form the key and value. Note that as the groups
and data sets differ for each gas, each gas has its own RecordReader implementation.
The correct RecordReader is selected by the name of the HDF5 file, which contains the
name of the data set as a whole. This can be used to trace back to the gas type. For
example the data set name OMNO2G leads to the nitrogen dioxide gas type. The other
names are mentioned in section 4.1.
The nice thing about the InputFormat implementation is that it is also supported by
Flink and Spark. This way we only need one implementation for all systems. This also
means that the performance influence of reading in the data should be stable for the
three systems.

4.10 Interaction with Avro

The final part of the application is the serialization and deserialization of the interme-
diate data between the pre-process and the on demand processing. For this process we
are using the Avro file format. From the transformation of the application to the map
and reduce operators we can see what data will be stored in the intermediate format.
The final step of the pre-processing is to take the combination of week, gas, glat, glon,
measurement and weight and group on the combination week and gas. We therefore get
groups of glat, glon, measurement and weight which we can store in a file per week and
gas combination. This means that the on demand processing can select the weeks and
gas by loading the respective files.

Apache Avro has built in support for Hadoop MapReduce [35]. This support is however
lacking and is not used. For the on demand to be able to only load the files it needs,
we need the output process being able to write multiple files. These files should also
be named so that it contains the week and gas type. The built in Avro support follows
the default output mechanism. Each file created is named part-r-xxxxx where xxxxx
is the number of the task of the reducer that created the data. This also means that
each reducer only creates one file. In this file the set of key-value pairs outputted by
the reducer will be written. In our case the output of the reducer is a key with type
(week, gas) and the value is the set of grouped (glat, glon, measurement, weight) pairs.
The behaviour of writing all key-value pairs to a single file is thus definitely not what
we require.
The solution is to write a custom OutputFormat that writes a file per (week, gas)
key it receives. The file path and name of this file is equal to [output folder]/[gas
type]/[year]/[gas-type]-[week number]-[year].avro. The writing process itself is done via
the Avro Java API.

To be able to read and write data in Avro, a description of the structure of the data
is required. In Avro this is called a schema. For the intermediate data the schema in
listing 4.2 is used.

Listing 4.2: Avro schema for the intermediate data

42

4.11. SCALING UP TO TROPOMI DATA CHAPTER 4. IMPLEMENTATION

1 \{
2 ""namespace "" : "" n l . a i rbusds . a i r q u a l i t y . common . data "" ,
3 "" type "" : "" record "" ,
4 ""name"" : ""ProcessedAirData "" ,
5 "" f i e l d s "" : [
6 \{ ""name"" : "" gr idx "" , "" type "" : "" i n t ""\} ,
7 \{ ""name"" : "" gr idy "" , "" type "" : "" i n t ""\} ,
8 \{ ""name"" : ""measurement "" , "" type "" : "" f l o a t ""\} ,
9 \{ ""name"" : ""weight "" , "" type "" : "" f l o a t ""\}

10]
11 \}

From this schema a Java class is generated using the name as class name and the
namespace as package. This class contains the data fields described, and the functions
to build the object, which are used by the Avro reading process. The problem with
this generated class is that it is required to implement Writable for MapReduce. As
this class is generated, adding code to implement Writable would be bad, as it would be
overwritten every time the class is regenerated. The solution to this is again a wrapper
around the class that implements Writable.
Both Spark and Flink also support this custom OutputFormat, therefore the implemen-
tation can be shared for all the implementations.

The reading back in of the data in the on demand processing is again done using a
shared custom InputFormat and RecordReader. This implementation reads for each file
the week from the file name to create a key value. Note that the gas type is ignored from
the file name as the on demand processing only can do one gas at a time. The selection
of the input intermediate files determines which gas is used. The implementation next
reads all the values of (glat, glon, measurement, weight) pairs from the file using the
Avro API as the generated ProcessedAirData class. The output of the implementation
is pairs of week and ProcessedAirData. Note that the week can be reused for each
key-value pair for that file, as the week is constant for the whole file.

4.11 Scaling up to TROPOMI data

The current air quality application makes use of the satellite data generated by OMI,
Ozone Monitoring Instrument. It is expected that this data set will be replaced by
the one generated by the successor of OMI: TROPOMI. TROPOMI has a much bigger
resolution compared to OMI, this means much more data to process. In order to see
if the architecture can handle data sets with much higher resolutions the behavior of
the application with respect to OMI versus TROPOMI data should be tested. The
problem with this method is that the TROPOMI data is not yet available. The solution
to this problem is duplicating the OMI input data. The resolution of TROPOMI is
about 4 times larger in both the latitude and longitude directions compared to OMI.
To emulate this the OMI data is duplicated about 16 times. The HDF5 files are read
16 times to simulate reading larger data files. For each cycle an additional data field
containing the number of the cycle is added to the data elements. This cycle number is
later used to determine which of the 16 sub cells of the OMI sized cell this data element
will represent. This leads to the values of each OMI sized cell being copied 16 times to

43

4.11. SCALING UP TO TROPOMI DATA CHAPTER 4. IMPLEMENTATION

create the TROPOMI sized cells. This gives an indication of the expected processing
time of the real TROPOMI data.
Note that for simplicity the scaling up to TROPOMI is only implemented for the pre-
processing and only for Spark.

44

Chapter 5

Results

5.1 Testing environment

5.1.1 Hardware

To be able to test we first need to figure out the hardware that will be used. Since no
cluster is available that can be dedicated to testing, a cloud solution is used for testing
the implementations. The Google cloud is is picked, as Airbus Defence and Space has
already used this solution in previous projects.
Since the Google cloud is used, it makes sense to map the testing parameters on the
available instance types. The standard instance types are available with 1, 2, 4, 8, 16
and 32 (virtual) CPU cores. In terms of scalability therefore two factors can be tested:
The scalability in the number of cores, and in the number of nodes. For each implemen-
tation the following scalability tests are done: The effect of scaling by using more cores
will be tested by running the test on a single instance. Each next test the instance type
is changed to increase the amount of cores. This will be done up to 16 cores.
The scaling out will be tested by starting with a test on a single 4 core instance. Each
test the amount of instances is increased by one, up to 16 instances. Note that both
scaling methods will also increase the amount of available memory. The Google cloud
instances come with 3.75 GB of memory per core. Increasing the core count, therefore
increases the memory with 3.75 GB per added core. The 4 core instances contain 15 GB
of memory. Scaling the amount of instances thus increases the total amount of memory
with 15 GB per added node.

Besides the amount of cores, and therefore the amount of memory, a storage struc-
ture is also required. Each instance used for testing has it's own root disk. This disk
is of the standard hard drive type and has a size of 200 GB. This disk is used for the
operating system and the storage of the HDFS blocks. For the processing platforms this
disk is also used to store the logs and temporary files, such as the files generated by
spilling the data to disk when the memory is insufficient. Next to that disk a 500 GB
standard hard disk exists. This disk contains a section of the data set generated by OMI.
This disk is shared among all the instances. The Google cloud only allows the disk to
be shared, if it cannot be written to the same time from multiple instances. Therefore
this disk is attached as read only on all the instances. This doesn't matter as the input
OMI data is only read, and never written by the workers.

45

5.1. TESTING ENVIRONMENT CHAPTER 5. RESULTS

Besides the worker nodes we have one other instance we need to create which is the
head node. The task of the head node is to run the resource manager for YARN and the
name node for HDFS. These tasks are not very heavy in terms of performance, as long
as it is more or less constant for all tests. The head node is therefore ran on an single
core instance type.
Note that in the description of the storage one component is missing. None of the
disks contain the processing platforms themselves, their configuration and the imple-
mentations. The software of the processing platforms should be accessible by all nodes.
However the configuration should be flexible in the way that it can change. In the im-
plementation phase, and testing the implementation, it is possible that you would want
to quickly change a configuration option. Therefore a read only solution does not work.
The solution is to store the processing software, the configurations and the implementa-
tions on the root disk of the head node. The other worker nodes attach those directories
via the notwork via the NFS protocol. As the files shared can be cached, this does not
impact the performance in any significant way.

5.1.2 Software

All the instances, being the worker nodes and the head node, run on Linux using Ubuntu
16.04.1 LTS as the operating system. A small adaptation to the operating system was
required to get a correct working system. Ubuntu, just as many Linux distributions
comes with the kill command default installed. The kill command can terminate a pro-
cess given its process id [36]. At the time of testing Ubuntu shipped with a faulty version
of the kill command. Hadoop MapReduce 2 uses this kill command to terminate all the
map reduce processes of a job after it finishing that job. It does so by issuing the kill
command with process id -pid. This special syntax for the process id means kill all
processes in the same group as that pid. The bug being that if the pid would start with
a 1 the kill command interprets that as -1 and not as the full pid. For example kill -s 9
-1234 would be interpreted as kill -s 9 -1. The -1 option indicates to the kill command
that all processes with a PID larger than 1 are signaled, and thus terminated. So if the
process id of a map or reduce process happens to start with a 1, all processes on the
machine are killed. Of course a normal user can not kill essential processes, but still the
YARN and HDFS services are killed, which is unwanted. Debugging this problem is also
difficult, as any ssh sessions and debugging programs are also killed. This problem was
solved by replacing the kill command with a patched version.

All the software makes use of Java. It is therefore essential that that Java JRE and
JDK are installed. The air quality indicator makes use of language features only avail-
able in the Java SE version 8. For example lambda expressions, which allows for easier
declaration of the mapping and reducing functions, are used. To be able to compile and
run the air quality indicator application therefore Java 8 or higher is required. Hadoop,
Spark and Flink by themselves only require Java 7 or higher. The testing machines run
OpenJDK-8-jdk update 111.

The whole Hadoop platform, including HDFS, YARN and MapReduce 2 comes in one
package. The version installed on the testing machines is 2.7.3. Besides the configuration
changes required to run MapReduce on YARN two other properties were changed. The
property yarn.scheduler.capacity.resource-calculator is used to determine which resource

46

5.1. TESTING ENVIRONMENT CHAPTER 5. RESULTS

scheduler should be used by YARN. The default resource scheduler ignores the amount
of cores available, and schedules purely on the available memory. This means that if
only 1 GB of RAM is available an allocation of a worker requiring 2 GB will be denied
by the resource scheduler. Since we want to increase the amount of cores in the tests,
we also want to limit the allocations by the amount of cores available. Therefore this
was changed to org.apache.hadoop.yarn.util.resource.DominantResourceCalculator. This
scheduler limits allocations based on both memory and the amount of cores.
The second property changed is yarn.nodemanager.vmem-pmem-ratio. By default YARN
monitors both the physical memory and the virtual memory a process uses. Since the
worker process will have many input files open at the same time, the virtual memory
limit is reached very fast. When this limit is reached YARN kills the worker. To prevent
this this limit is increased from 2.1 times the physical memory to 5.1 times the physical
memory.

For spark the version installed is 2.0.1. The only configuration change required is the
serializer as mentioned before in section 4.4. The property spark.serializer is set to
org.apache.spark.serializer.KryoSerializer.

For Flink version 1.1.2 is installed on the testing machines. No additional configura-
tion is required.

While testing some additional problems related to the memory allocations showed up.
The default configuration for Spark and MapReduce 2 is a maximum total memory allo-
cation of 1 GB for both the job master and workers. For Flink this limit is set even lower,
the default maximum total memory allocation is 256 MB for the application master and
512 MB for the worker. This is simply not enough, and when processing enough data the
workers would frequently crash with an OutOfMemoryError or the YARN monitoring
killing the worker for allocating more memory than allowed.
Both Flink and Spark spill their results to disk if they do not fit in memory, so shouldn't
they be fine with less memory? Indeed the processing part is fine with less memory. The
problem lies in the reading of the data. The reading of the HDF5 files requires a lot of
memory to parse the files and keeps lots of the data in memory.
Since the process of reading in the data is very crucial for the application, this problem
can not be circumvented. The only solution is to increase the amount of memory that
is available to the processing. To make a fair comparison the memory of all the systems
was increased to the same amount. All the application workers get a limit of 2 GB of
memory per core. The memory for the application masters is not that important. The
only job of these masters is to control the workers. Since this function is not impacted
by the implementation or the actual application running, the default amount of memory
should suffice. This memory size also fits with the instance types. The single core in-
stance has 3.75 GB of memory. With a single worker running of 2 GB and an application
master using 1 GB, 0.75 GB is left for the operating system. Any larger limits on the
allocation for the worker will probably stop the system from working correctly, as not
enough may be left for the operating system and the application master.

47

5.2. ADDITIONAL TESTS CHAPTER 5. RESULTS

5.2 Additional tests

It is expected that the processing time slightly depends on non deterministic factors like
for example process and network scheduling. Since the Google cloud is used, some influ-
ence from other users on the same physical node is expected. It is therefore likely that
the processing time will differ slightly each run. To test the influence of these factors the
pre-processing is ran a couple of times spread out over multiple days. This gives us an
estimation of the expected error percentage of the measurements. Note that running all
the tests multiple times can not be done. The tests run in terms of hours, this is simply
too long, so repeating them all will take way too long.

The input data is stored on a single drive that is accessible from all worker nodes.
While this is easier for administration, as all data is in one central place, this may harm
performance. The goal is to have many worker instances do parallel computing. This
also means that the workers will be reading in the data in parallel. This leads to many
instances asking for data from the same disk, which leads to poor performance. A better
solution is to store the input data closer to the worker nodes. By using the same HDFS
installation used for the intermediate results, we can distribute the data over the worker
nodes. We can test the difference between the HDFS input data, and single disk solution
by running the pre-processing applications for both situations.

As mentioned in section 4.1, the application that will be used for testing, the air quality
application, is based on an existing application. An important aspect for Airbus De-
fence and Space Netherlands is the comparison of the new architecture to the existing
solution, being the existing Downstream platform. The goal for Airbus Defence and
Space Netherlands is to improve the existing solution. To see if the new architecture
is indeed an improvement, the air quality applications on both platforms can be com-
pared. Comparing these two based on the qualitative user needs may be useless, as the
user needs where not around when the first implementation was made, and thus will
this implementation very likely not comply to these needs. A comparison will be made
on the quantitative needs. Those needs are performance and scalability. It is however
important to note that the implementations of the existing and new implementation
differ. Some errors in the existing solution were fixed in the new implementation. This
also means that the algorithm executed by both implementations differs, and can thus
perform differently. We have to keep this in mind when comparing the quantitative
needs.

5.3 Stability of measurements

The first tests measures the stability of the measurements. This is tested by running the
pre-processing step for the OMI data of all gasses. The range of the input data is limited
from ISO week 1 of 2014 to week 52 of 2014. The resulting intermediate files are stored
in HDFS. As mentioned in chapter 4 no front end is implemented. The processing is
therefore started by executing the appropriate commands for the processing platforms
from the command line. The processing time is measured from the start of the execution
of the command to the command returning a value of 0. The return value 0 indicates
the command ran successfully, and thus the processing ran without encountering any
problems. This set up and data range is used in most of the tests.

48

5.3. STABILITY OF MEASUREMENTS CHAPTER 5. RESULTS

For the stability test this pre-processing step is executed three times per day for three
days for the Spark implementation. After each day the worker nodes are shut down, and
new fresh instances are created for those workers each morning. The Google cloud service
is popular, therefore it is likely that Google has many servers that host the instances.
It is also expected that many instances are created and destroyed by other users. It is
therefore likely that when the stability testing instance is destroyed, and later recreated,
it will be running on a different physical server than before. Using this we can see if the
performance changes when running on different servers. As the exact inner workings of
the Google cloud are hidden, we cannot be certain that this happens though.
The three parts of the day, morning midday and afternoon, where chosen to see if the
performance differs depending on the part of the day. Web based services often use the
most processing power in peaks. This is usually when the targeted audience is the most
active. If the physical server is shared with such an application the performance may
vary for the three parts of the day. The tests are executed using a single node using
a single core. This gives us the largest change that the physical machine is shared, as
more smaller (less core) virtual instances fit on a physical machine. The results can be
seen in figure 5.1a and table 5.1.

 0

 2000

 4000

 6000

 8000

 10000

 12000

08-11-2016 09-11-2016 10-11-2016

Ti
m

e
 (

s)

Day

Preprocessing, one core one node, week 1-52 2014

Morning
Midday

Afternoon

(a) Measurements on different days and times

 0

 100

 200

 300

 400

 500

 600

08-11-2016 09-11-2016 10-11-2016

D
iff

e
re

n
ce

 i
n
 t

im
e
 v

s
a
v
e
ra

g
e
 (

s)

Day

Preprocessing, one core one node, week 1-52 2014

Morning
Midday

Afternoon

(b) Difference in time versus the average

Figure 5.1: Stability of measurements

As we can see the processing most of the time takes over 11000 seconds, which is over
three hours. One measurement sticks out, which is midday on 08-11-2016. This mea-
surement is much lower than all the other measurements. Note that 09-11-2016 has no
afternoon measurement. This was caused by accidentally killing the process. As there
was no more time for another measurement that day, this field was left blank.

Table 5.1: Measurements on different days and times

Day Morning Midday Afternoon

08-11-2016 11390.24 10814.91 11081.56

09-11-2016 11463.59 11475.46

10-11-2016 11572.31 11369.95 11522.28

In figure 5.1b we can see the difference in time of the measurement versus the average,

49

5.4. APPLICATION FOOTPRINT CHAPTER 5. RESULTS

calculated as abs(measurement - average). Again we see the spike of midday on 08-
11-2016. This measurement differs 521.38 seconds from the average of 11336.29 seconds.
This does sound a lot, as it differs almost 10 minutes. However compared to the mea-
surement this is only 4.82 percent of the measurement itself. From these measurements
we can conclude that the performance of the pre-processing on the Google cloud is rela-
tively stable. As mentioned before, due to time constraints, measurements for the tests
cannot be repeated. Running the tests repeated times to average the measurements will
simply take too much time. Therefore in the results of the remaining tests we have to
keep in mind that the measurements have about a 5 percent error margin.

5.4 Application footprint

Using the implementation we can retrieve some interesting numbers while testing. For
example we can see how much data elements are in the data set at each processing step
using these numbers and the estimated size in memory of those elements we can make an
estimation of the application footprint in memory. In table 5.3 we can see these numbers
for the pre-processing as extracted from Spark for the year 2014 for all gasses.

Table 5.2: Size of the data elements in memory

Field Type Size (bytes)
lat double 8
long double 8
measurement float 4
week byte 1
year short 2
gas specific 6
Input element 29

glat int 4
glon int 4
gastype byte 1
Filtered element 38

glat int 4
glon int 4
measurement float 4
weight float 4
Reduced element 16

Table 5.3: Number of data elements present after each step, week 1-52 2014

Number of input elements 34,434,201,600

Number of present elements 1,045,546,181

Number of filtered elements 571,142,343

Number of reduced elements 129,620,738

Using the estimated size of the elements in memory of table 5.2 we can see that the input
elements for 2014 take up an estimated 34434201600 \times 29 = 998591846400 bytes. This

50

5.5. COMPARISON TO ORIGINAL IMPLEMENTATION CHAPTER 5. RESULTS

roughly equals 930 GB for just one year. It is very likely that this amount of memory
does not fit in memory, so spilling to disk is necessary.
Using these numbers we can also see hoe effective the filtering is. The number of present
elements represent the amount of elements after the filtering of step 2 of section 4.6.1.
We can see that over 90 percent of the input elements are actually not usable data. From
those elements only a little over 50 percent of the elements survive the filter based on
the quality flags of step 3. This leads to only 1.66 percent of the original input data
being used.
After the filtering and putting back the measurements on the grid we have a memory
footprint of 571142343 \times 38 = 21703409034 bytes. This is about 20 GB of data for a
single year.

The temporal reduction reduces the amount of elements to 129,620,738. These elements
only contain the grid coordinates, the weekly measurement and the weight. The interme-
diate data, which is the output of the pre-processing contains these elements. Using table
5.2 we can see that these elements will take up an estimated 129620738\times 16 = 2073931808
bytes. This roughly equals 1.9 GB of data. This does not sound like a lot of data. Is the
intermediate storage necessary? Could we not keep this data in memory? We have to
keep in mind that this is just for the year 2014, if we say the whole data set is about 10
years we get about 19 GB of data. This still does sound reasonable. However we have to
keep in mind that this is just one application, if we had multiple applications that kept
19 GB of data in memory, this would fill up the memory very fast. It is also likely that
some applications have a much bigger footprint. For example if we would look at the
scaling up from OMI to TROPOMI data we would expect an increase of 16 times the
data, and thus 16 times the intermediate data. Suddenly we have an application with a
memory requirement of over 300 GB of memory for 10 years of intermediate data. These
amount of data are very likely to not fit in memory.
A second reason why the intermediate results can not be kept in memory is due to the
way the processing platforms execute jobs. A soon as a job is finished, the processes
that where executing the job are killed. Any results in memory are thus lost, as soon
as the processing stops. Even if the processes where kept alive, the platforms separates
jobs, so an on demand job can not access the memory of a pre-processing job. This
is of course logical in a security sense of way, but stops applications sharing results in
memory.

5.5 Comparison to original implementation

The next test we will run is comparing the performance of the old sequential implemen-
tation to the new big data based implementation. To be able to compare the imple-
mentations, a slight different parameter set compared to the Stability test is used. Both
implementations select the data files by year and ISO week. The difference is that the
original implementation requires the data files, whereas the new implementation silently
ignores missing daily files. On the testing server the data for years 2014 and 2015 is
present. Week 1 of 2014 however contains days that lie in 2013 due to the definition of
an ISO week. When running the original implementation on the input data range of the
stability test, it will notice that some data files for ISO week 1 of 2014 are missing and
therefore return an error. To solve this the range of the input data is changed for both
implementations from week 2 of 2014 to week 1 of 2015. As the testing environment

51

5.6. PRE-PROCESSING CHAPTER 5. RESULTS

contains all the input files for these weeks, the original implementation can run. Since
the input range is changed for both implementations, the amount of data read and pro-
cessed is exactly the same for both.
Another requirement for running the original implementation is the gas selection. The
original implementation can only process one gas at a time, where the new implemen-
tation can process all 5 gasses at the same time. To make a fair comparison both
implementations only process NO2. As the original implementation is purely sequential,
the test is done using a single core on a single node. In figure 5.2 we can see the results
of running both implementations.

 0

 500

 1000

 1500

 2000

 2500

 3000

Original Spark

Ti
m

e
 (

s)

Preprocessing, one core one node, week 2 2014 - week 1 2015, NO2 only

Figure 5.2: Comparison of performance versus the original

From this data it is very clear that the new implementation is faster than the original
with a speedup of over 1.3 without even scaling up or out. This speedup is caused by
two things. The first one being the new implementation is much more optimized than
the old one. The old implementation was much more focused on getting the application
working, rather than optimizing. The second part is the improvements made in the new
implementation as mentioned in section 4.2. The old implementation used an interpo-
lation over the whole grid, which is removed in the new implementation.
It is expected that new implementation can achieve an even greater speedup by applying
the scaling it was designed for.

5.6 Pre-processing

5.6.1 Scaling the number of cores

In figure 5.3a and 5.3b we can see the measurements of the pre-processing for the three
processing platforms. The set up for this test is almost identical to the stability test.
The processing time is measured for all gasses for the ISO week 1 of 2014 to week 52 of
2014. The raw data can be seen in table 5.4.
From first sight we can see that the implementation running on Spark is the fastest for

52

5.6. PRE-PROCESSING CHAPTER 5. RESULTS

all number of cores. The MapReduce implementation seems to be by far the slowest.
The single core test shows the MapReduce implementation being almost 3.5 times slower
as the Spark implementation.
An interesting observation can be made for the measurements of the Flink implementa-
tion. The processing time for the 16 core test is higher than the 8 core test. Even if we
would apply the 5 percent error rate in the best possible outcome for Flink, being the
8 core being 5 percent too low and the 16 core test 5 percent too high, the times would
be around the same.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 2 4 8 16

Ti
m

e
 (

s)

Number of cores

Preprocessing, single node, week 1-52 2014

Flink
Spark

MR2

(a) Measurements for different core counts

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 1 2 4 8 16

Ti
m

e
 (

s)

Number of cores

Preprocessing, single node week, 1-52 2014

Flink
Spark

MR2

(b) Measurements for different core counts on a log2 scale

Figure 5.3

Table 5.4: Measurements for different core counts in seconds

\#cores Flink Spark MR2

1 15364.82 10419.43 35411.05

2 10422.82 8141.46 25886.46

4 6674.34 4065.48 14676.54

8 5361.92 2303.52 7626.45

16 5732.85 1354.09 3863.56

In figure 5.4 and table 5.5 we can see the speedup that occurred when using more cores.
For Spark and MapReduce we see a line that looks straight. This indicates that the
speedup is linear within error margins. Note that the speedup is by no means perfectly
linear, meaning that doubling the amount of cores does not decrease the processing time
by two. The tests show only a maximum speedup of 9.2 when using 16 cores.

Table 5.5: Speedup for different core counts

\#cores Flink Spark MR2

1 1 1 1

2 1.47 1.28 1.37

4 2.30 2.56 2.41

8 2.87 4.52 4.64

16 2.68 7.69 9.17

53

5.6. PRE-PROCESSING CHAPTER 5. RESULTS

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of cores

Preprocessing, single node, week 1-52 2014

Flink
Spark

MR2

Figure 5.4: Speedup for different core counts

This figure also shows the strange behaviour of Flink. While the speedup seems to be
linear for 1 to 4 cores, it flattens out when more cores are added. This can be caused
by two things. The first possibility is either the processing platform or the implemen-
tation of the application does not scale as expected. The second possibility is that the
processing is limited by a resource that does not scale with the amount of cores.

To further investigate the issue with Flink, we can look at the machine usage as provided
by the Google cloud.

(a) CPU usage (b) Disk usage, blue is read speed, green is write speed

Figure 5.5: Worker machine usage for pre-processing in Spark using 16 cores

Machine usage for Spark

In figure 5.5a and 5.5b we can see the CPU and disk throughput of the Spark imple-
mentation running the same test as the core scaling using 16 cores. For the CPU usage
a average of all cores is shown meaning that a 100 percent usage means all 16 cores are
working 100 percent.

54

adambelloum
Highlight

adambelloum
Highlight

5.6. PRE-PROCESSING CHAPTER 5. RESULTS

From the I/O graph we can see that Spark splits the processing into three parts. The
first part is the reading of the HDF5 files, filtering and putting the measurements on the
grid. The second part is the temporal reduction. The final part is the grouping for and
writing of the intermediate files. After each phase the results are spilled to disk, as we
can see in the spikes of the write speed.

(a) CPU usage

(b) Disk usage, blue is read speed, green is write speed

Figure 5.6: Worker machine usage for pre-processing in MapReduce 2 using 16 cores

Machine usage for MapReduce 2

In figure 5.6a and 5.6b we can see the CPU and disk throughput of the MapReduce 2
implementation. We can clearly see a big difference versus the Spark implementation.
Note that as the processing time is over an hour the start is cut off.

To explain the difference we first have to look at how tasks are executed on both pro-
cessing platforms. Spark requests resources from YARN, then starts an executor process
with those resources. Tasks are pushed to this executor process from the application
master. The executor does the work and asks for more work. In MapReduce 2 each
task is a separate process. This means that the application manager requests resources
for each task process. As the resources are limited only a couple tasks get granted the
resources they need. All the other tasks are queued, so when a tasks finishes YARN
allocates those resources for a new (queued) task, which can then start doing its work.
Two tasks exists for MapReduce 2 being a map task and a reduce task. The MapReduce
2 system starts issuing reduce tasks after it figures that enough map operations have
finished. The reduce tasks get priority in the queue, probably to get the final results out

55

adambelloum
Highlight

adambelloum
Highlight

adambelloum
Highlight

adambelloum
Highlight

5.6. PRE-PROCESSING CHAPTER 5. RESULTS

as fast as possible.

The problem with this structure is figuring out when enough map operations have ex-
ecuted to start the reducers. In the CPU graph we see that over time more reducers
are allocated. These reducers apparently did not have enough input yet, as they remain
fairly idle, and thus the CPU usage goes down. The spikes in CPU usage (and I/O) are
the moments where the reducer starts processing. The final spike in CPU and disk usage
is the secondary application which groups and writes the intermediate output.

(a) CPU usage

(b) Disk usage, blue is read speed, green is write speed

Figure 5.7: Worker machine usage for pre-processing in Flink using 16 cores

Machine usage for Flink

In figure 5.7a and 5.7b we can see a section of the CPU and disk throughput of the Flink
implementation. We can see strange pattern of the CPU usage and disk throughput
spiking. It seems like the CPU usage spikes roughly at the same time the disk write
throughput spikes. The disk read throughput is slightly increased when the CPU is
mostly idle.
This pattern appears at the first stages of the processing, so the platform is most likely
reading the input data and doing the filtering and spilling the data to disk. This indicates
that the system can function at high usage when it has data for a while, next it has to
wait for data from the disk, and the usage drops to minimum. This means that very
likely the input disk reading throughput is limiting Flink. As the disk throughput does
not scale with the amount of cores, this limiting factor becomes larger and larger, which
can be seen in the speedup graph of figure 5.4.

56

adambelloum
Highlight

5.6. PRE-PROCESSING CHAPTER 5. RESULTS

5.6.2 Scaling the number of nodes

The next step is testing the scalability for scaling out. The testing parameters are al-
most identical to the test of scalability in the amount of cores. The amount of nodes is
doubled up to 16. The worker nodes each have 4 cores. This was chosen because most
modern CPU's have 4 cores. The results can be seen in figure 5.8 and table 5.6.

We can see that the scaling for Spark and Flink is much better for scaling the amount
of nodes than the amount of cores. If we compare the result of Spark in the graph with
log2 time scale in figure 5.3b with figure 5.8b we see a big difference. The cores graph
has a clear bend, the scaling in nodes gives a straight line.
The line for MapReduce 2 is not straight at all, which indicates that it does not scale as
well as Spark.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 4 8 16

Ti
m

e
 (

s)

Number of nodes

Preprocessing, four cores per node, week 1-52 2014

Flink
Spark

MR2

(a) Measurements for different node counts

 256

 512

 1024

 2048

 4096

 8192

 16384

 1 2 4 8 16

Ti
m

e
 (

s)

Number of nodes

Preprocessing, four cores per node, week 1-52 2014

Flink
Spark

MR2

(b) Measurements for different node counts on a log2 scale

Figure 5.8

Table 5.6: Measurements for different node counts in seconds

\#nodes Flink Spark MR2

1 6674.34 4065.48 14676.54

2 3446.79 1976.32 7042.25

4 1746.11 1032.75 3518.02

8 893.05 559.92 2428.21

16 483.25 308.26 2186.52

This is confirmed in the speedup in figure 5.9 and table 5.7. Where Spark and Flink
seem to scale very well MapReduce 2 seems to flatten out in the speedup graph. This can
be explained by an observation made while testing. It was mentioned before that each
map task is an individual process in MapReduce 2. With 16 nodes, each having 4 cores,
we have a potential 64 tasks running at the same time. In MapReduce 2 each input file
results in one map task. Processing the reading, filtering and putting the measurements
onto the grid takes about 10 to 15 seconds for a single file. With 64 potential tasks
running at the same time, on average the system has to allocate resources for 256 map
processes per minute. From observation of the resources allocated the system struggled

57

5.6. PRE-PROCESSING CHAPTER 5. RESULTS

to do so. A lot of the time cores were left not allocated, and thus idle. Of course this
leads to severely diminished performance which can be seen in the testing results.

Besides the MapReduce 2 speedup we can also see that the speedup for Spark and Flink
is not perfectly linear, as the line is not perfectly straight. It seems like the speedup
per added node decreases slightly with the amount of nodes. This can be explained by
the communication overhead. More nodes means more communication required, which
leads to more overhead, and thus slightly decreased performance.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16

S
p

e
e
d

u
p

Number of nodes

Preprocessing, four cores per node, week 1-52 2014

Flink
Spark

MR2

Figure 5.9: Speedup for different node counts

Table 5.7: Speedup for different node counts

\#nodes Flink Spark MR2

1 1 1 1

2 1.94 2.06 2.08

4 3.82 3.94 4.17

8 7.47 7.26 6.04

16 13.81 13.19 6.71

When comparing the speedup of the scaling of the cores versus the nodes we also see much
higher speedups when scaling the amount of nodes. This goes against the prediction of
section 3.3.2. We indeed see that the speedup goes down due to the network overhead,
which the scaling in cores does not have. The scaling in cores however only gives a
speedup of about 9 versus the single core solution. The scaling in nodes gives a maximum
speedup of almost 14 times versus the single node (4 core) solution.
The explanation to this strange phenomena can be explained by the way the input data
is stored. As mentioned before the input data is stored and read from a single disk.
This disk is attached to all the worker instances as read only in the Google cloud. In
the Google cloud the throughput of a disk is dependent on the size of the disk [37]. The
default disk has a throughput of 0.12 MB/s per GB. This gives us a throughput of 60
MB/s. One would expect that when such a disk is shared among many instances, so

58

5.6. PRE-PROCESSING CHAPTER 5. RESULTS

is the throughput. The tests in table 5.8 shows the opposite. For this test the Linux
command sudo hdparm -t /dev/sda1 was used. After each test all read caches were
dropped using the commandos sync and echo 3 > /proc/sys/vm/drop caches.

Table 5.8: Disk throughput for shared disk on different nodes

Read speed in MB/s Node 1 Node 2

Not simultaneous 122.43 122.10

Simultaneous 122.49 125.39

The test shows that both nodes can read from the same shared disk at the same time at
full speed. Therefore adding more cores does not increase the disk read speed, adding
more nodes does increase the accumulated disk reading speed.

This also confirms the presumption that the Flink implementation was being limited
by the disk reading speed. In the scaling nodes test the Flink implementation seems to
scale slightly better than the Spark implementation. There is no more flattening of the
speedup after adding more nodes, like the speedup of the scaling in the amount of cores
did.

5.6.3 Using HDFS as input source

Another input source that we can use is HDFS, the Hadoop Distributed File System.
HDFS is designed to store the data on the disks of the worker nodes. This can be used
to have the data as close as possible to the machine where it will be processed, and thus
lower data access time. This should result in lower processing times.

In figure 5.10 we can see that, surprisingly, using HDFS as input source does not result
in a lower processing time. In contrary, the processing time is higher for all amounts of
nodes when using HDFS versus the shared input disk. For the Google cloud this makes
sense. HDFS tries to improve two things: access time by having the data more local to
the processing nodes, and throughput by not having all the nodes share the throughput
of one disk. In the Google cloud both are unnecessary. The access time to both the local
root disk and the shared input data disk is the same, as they are both the same type of
disks. The throughput is also unnecessary as the throughput of one disk is not shared
by multiple nodes, as tested which gave the results stated in table 5.8. The processing
times are higher for HDFS, as it has some overhead to keep track of the blocks. Also if
a data block is not on the worker node's disk in HDFS, the block has to be transferred
via the network from the node that has this block. This causes more time spent in
communication, which slows down the processing.

59

5.6. PRE-PROCESSING CHAPTER 5. RESULTS

 0

 200

 400

 600

 800

 1000

 1200

4 8 16

Ti
m

e
 (

s)

Number of nodes

Preprocessing, four cores per node, week 1-52 2014

Spark (disk)
Spark (HDFS)

Figure 5.10: Pre-processing using HDFS as input source

5.6.4 Moving from HDD to SSD

Besides the standard hard drive disks, the Google cloud also offers SSD (solid state drive)
disks. It is claimed that these disks have a much higher throughput and can handle more
operations per second [37]. This is an interesting option to look at since we determined
that the Flink implementation is limited by the disk speed.
Let us first starts with the root disk of each worker instance. This disk is used to spill
the results when the memory is full. Replacing this with an SSD could therefore speed
up the spilling and therefore the processing.

 0

 5000

 10000

 15000

 20000

 25000

 30000

Flink Spark MR2

Ti
m

e
 (

s)

Preprocessing, single node two cores, week 1-52 2014

HDD
SSD

Figure 5.11: Pre-processing using an SSD as root disk

In figure 5.11 we can see the results when replacing the worker root disk with an SSD.

60

5.6. PRE-PROCESSING CHAPTER 5. RESULTS

The test was executed on a two core machine to be sure that the Flink implementation
is not, or in lesser ways, limited by the input disk.
The results dot not show the improvement as was expected. The Flink implementation
seems to perform worse with an SSD. The MapReduce 2 implementation seems to per-
form slightly better. Both are however well within the 5 percent error margin equal to
the HDD performance. The Spark performance seems to have improved the most.

To explain the results we again look at the disk I/O throughput. In figure 5.12 and
table 5.9 the results of testing the disk I/O is given. The read speed is tested the same
as in table 5.8 was used. The write speed is tested by writing 2 GB of data to a file
using the dd command. The command is called as dd if=/dev/zero of=test.dat bs=512
conv=fdatasync count=4000000. After each test the caches are cleared to make sure the
read and write speeds are disk bound and not memory bound.

The first observation we can make is that the write speed for HDD's and SSD's does not
differ that much. The HDD's have a maximum write speed of 120 MB/s. The SSD's
only have a write speed of 145 MB/s maximum. This can explain why the SSD root
disk did not make much of a difference. The root disk is used for spilling, which is based
on writing the data. Since the write speed did not increase that much, neither did the
processing speed.

 0

 50

 100

 150

 200

 250

Read Write 512 Write 4K Write 1M

M
B

/s

Google cloud disk I/O throughput

HDD (50GB)
HDD (200GB)
SSD (200GB)
SSD (500GB)

Figure 5.12: Google cloud disk throughput

Table 5.9: Google cloud disk throughput in MB/s

Speed HDD (200GB) SSD (200GB) SSD (500GB) HDD (50GB)

Read 122.06 244.92 247.84 85.63

Write 512 101 131 130 111

Write 4K 119 144 143 122

Write 1M 120 145 145 123

The second interesting observation we can make is the difference between the promised

61

5.6. PRE-PROCESSING CHAPTER 5. RESULTS

throughput and the achieved throughput. The Google cloud documentation states that
normal hard drive disks have a maximum sustained throughput related to the size of the
disk. The maximum throughput is 0.12 MB/s per GB for both read and write speeds.
The throughput is limited to a maximum of 180 MB/s for reading and 120 MB/s for
writing [37]. For SSD's 0.48 MB/s per GB throughput with a maximum of 240 MB/s for
both reading an writing is listed. Using these numbers the calculated maximum speeds
for the disks tested should then be as stated in table 5.10.
Clearly those speeds do not even come close to the tested values.

Table 5.10: Claimed Google cloud maximum disk throughput in MB/s

Speed HDD (200GB) SSD (200GB) SSD (500GB) HDD (50GB)

Maximum read 24 96 240 6

Maximum write 24 96 240 6

What we do see is that the actual read throughput is much higher for the SSD's compared
to the hard drives, where the write speed lacks. This sounds good for the input disk, as
that only relies on the read speed. In figure 5.13 and table 5.11 we can see the results of
replacing the input hard drive with an SSD. This test was done using 16 cores, to take
the situation where the cores should fight the most for the disk.

 0

 1000

 2000

 3000

 4000

 5000

 6000

Spark Flink MR2

Ti
m

e
 (

s)

Preprocessing, single node 16 cores, week 1-52 2014

HDD (500GB)
SSD (500GB)

Figure 5.13: Pre-processing using an SSD as input source

Table 5.11: Pre-processing using an SSD as input source in seconds

HDD (500GB) SSD (500GB)

Spark 1354.09 1187.02

Flink 5732.85 4460.35

MR2 3863.56 3671.16

We can see that using an SSD as input disk does speed up the processing time for all
implementations. The speed up for Spark and MapReduce 2 is minimal though. The

62

5.7. ON DEMAND CHAPTER 5. RESULTS

real speedup can be seen for the Flink implementation. The processing time when using
an SSD as input disk is more than 20 percent faster than the hard drive processing time.
This again confirms the hypothesis that the Flink implementation was limited by the
input disk speed in the core scaling test.

5.7 On demand

The tests of the on demand processing picks up where the pre-processing left. The
testing for the on demand processing uses the intermediate files as generated by the
pre-processing and stored in HDFS. This means that the temporal range is week 1 of
2014 to week 52 of 2014. The spatial range for which the trend analysis is done is set to
the rectangle from 0 to 90 degrees for both latitude and longitude.

5.7.1 Scaling the number of cores

In figure 5.14 and table 5.12 we can see the results of scaling the amount of cores up for
the on demand processing.

The first thing to notice is that the processing times are much lower than the pre-
processing. Where the time of the pre-processing could be expressed in hours, the on
demand processing should be expressed in seconds.
In the pre-processing tests the Spark platform was usually the fastest. From the figure
it seems like the Flink implementation is faster for the on demand processing. It seems
like MapReduce 2 is still the slowest, however the processing time decreases fast as the
amount of cores increases. For Spark and Flink the processing time does decrease, but
seems to flatten out.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 4 8 16

Ti
m

e
 (

s)

Number of cores

On demand, single node, week 1-52 2014

Flink
Spark

MR2

Figure 5.14: Measurements for different core counts

63

5.7. ON DEMAND CHAPTER 5. RESULTS

Table 5.12: Measurements for different core counts for on demand in seconds

\#cores Flink Spark MR2

1 69.33 74.31 351.80

2 46.54 64.59 278.84

4 31.64 53.22 156.86

8 25.38 42.13 87.96

16 22.91 40.09 62.45

In figure 5.15 and table 5.13 we see the speedup of the scaling of the cores. We see here
again that the speedup decreases fast as the amount of cores increases. This can be
explained by the structure of the application. The application reads the intermediate
results, filters out for the spatial range, and averages the data to one measurement per
week. Finally the trend analysis is done over those weekly measurements. The trend
analysis is done as a sequential process, the remaining steps can be done in parallel.
This means that the processing time cannot decrease in a linear way, as there is a
sequential part which is not affected by the amount of cores. Another big impact in
the processing time is the start up time. The processing platform needs some time to
distribute the code, allocate the resources and start the application. The application
master also needs some initialization time before any workers are started. This process
takes about 20 seconds. This time is also not affected by the amount of cores.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of cores

On demand, single node, week 1-52 2014

Flink
Spark

MR2

Figure 5.15: Speedup for different core counts

Table 5.13: Speedup for different core counts for on demand

\#cores Flink Spark MR2

1 1 1 1

2 1.49 1.15 1.26

4 2.19 1.40 2.24

8 2.73 1.76 4.00

16 3.03 1.85 5.63

64

5.7. ON DEMAND CHAPTER 5. RESULTS

5.7.2 Scaling the number of nodes

The same pattern appears for the scaling out with the amount of nodes in figure 5.16
and table 5.14. MapReduce 2 is again the slowest, but the processing time decreases
fast. The Flink implementation is the fastest, and has a processing time that stays quite
consistent. It is clear that the sequential parts of the trend analysis and the start up
time takes the overhand in the processing time.

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 4 8 16

Ti
m

e
 (

s)

Number of nodes

On demand, four cores per node, week 1-52 2014

Flink
Spark

MR2

Figure 5.16: Measurements for different node counts

Table 5.14: Measurements for different node counts for on demand in seconds

\#nodes Flink Spark MR2

1 31.64 53.22 156.86

2 33.48 46.71 88.99

4 31.62 37.50 56.37

8 33.67 41.24 51.63

16 31.01 36.23 36.30

From the speedup of figure 5.17 and table 5.15 we can also see this. The speedup for
MapReduce 2 goes up with the amount of cores, but is all but linear. The speedup
for Spark and Flink seems quite constant within margin of error. This means that the
Spark and Flink implementations do not scale at all for the on demand processing. The
MapReduce 2 implementation does speed up with the amount of nodes, but scales very
bad.

65

5.8. SCALING TO TROPOMI CHAPTER 5. RESULTS

Table 5.15: Speedup for different node counts for on demand

\#nodes Flink Spark MR2

1 1 1 1

2 0.95 1.14 1.76

4 1.00 1.42 2.78

8 0.94 1.29 3.04

16 1.02 1.47 4.32

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of nodes

On demand, four cores per node, week 1-52 2014

Flink
Spark

MR2

Figure 5.17: Speedup for different node counts

5.8 Scaling to TROPOMI

The final experiment is the pre-processing when scaling up of the input data to TROPOMI
level. As the processing is expected to take a long time the test is only done for 4, 8
and 16 nodes. The test is done using the same range of input data as the tests using the
OMI data. The amount of cores per node is set to 4, just like the OMI tests. Since the
TROPOMI implementation is based on the Spark OMI implementation, we can compare
the TROPOMI results to the OMI results based on the results of the Spark implemen-
tation.
The results can be seen in figure 5.18a and table 5.16. It is very clear that the processing
time for the TROPOMI implementation is much longer than the Spark OMI version, as
expected.

66

5.8. SCALING TO TROPOMI CHAPTER 5. RESULTS

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 4 8 16

Ti
m

e
 (

s)

Number of nodes

TROPOMI preprocessing, four cores per node, week 1-52 2014

OMI
TROPOMI

(a) Measurements for TROPOMI for different node counts

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

4 8 16

R
a
ti

o

Number of nodes

TROPOMI preprocessing, four cores per node, week 1-52 2014

TROPOMI/OMI

(b) Ratio of processing time TROPOMI versus OMI

Figure 5.18

In figure 5.18b we can see how the TROPOMI implementation performs compared to
the OMI version. As expected the ratio comes out at around 16, which makes sense as
we are using 16 times more data. The ratio is not a perfect 16 times, as the TROPOMI
has a bit more overhead on the measurements. The TROPOMI version has to keep
track of which of the 16 reading iterations a measurement was generated in. This causes
a larger elements size in memory. As the memory size is limited the spilling phase is
reached earlier that with the OMI version. This can also be seen by the ratio being
slightly higher with less nodes. As more nodes are added, also more memory is added,
the spilling phase is thus hit later, and the ratio becomes lower.

Table 5.16: Measurements for TROPOMI for different node counts in seconds

\#nodes OMI TROPOMI

4 1746.11 30809.85

8 893.05 15007.84

16 483.25 7721.83

67

Chapter 6

Evaluation

Now that we have implemented and tested an application, we can move to the evaluation
of the architecture. The goal of this evaluation is to discuss if the proposed architecture,
which is based on the chosen software, matches the needs for the Downstream platform.
This includes the qualitative aspects as well as the performance and scalability. As we
have three versions of the architecture, based on Hadoop MapReduce 2, Apache Spark
and Apache Flink, we can compare these three architectures.

6.1 Qualitative aspects

Let us start with some of the more qualitative aspects. The first aspect of the architec-
ture is the needs for the applications. We have shown by implementing an application
that all the processing platforms can be used for both pre-processing and on demand
processing jobs. The YARN resource scheduler ensures than multiple applications can
be used at the same time. If not enough resources are available, the applications are
queued until the resources are available.

The portability aspect is also handled by YARN. As multiple processing platforms can
run on top of YARN, we are not bound to the chosen processing platform.

The administration and a big part of the security aspect is handled by the interface.
The actual requirements for the interface are dependent on the application. The second
part of the security aspect is protection of the data from unauthorized access. This is
done by encrypting the data. This encryption part is handled by HDFS, which has built
in encryption [22]. Therefore we can use HDFS to store our input and intermediate data
in an encrypted form.
When using the Google Cloud platform, as used for the testing environment, another
form of encryption can be used. The disks in the Google cloud are by default encrypted
on the server side [38]. This encryption is not noticeable when using the disks, and does
not require any configuration. The keys are managed by the Google cloud, but does
allow you to use your own keys. The downside is that you always have to share your
keys with the Google cloud servers, as the encryption is always server side.

68

6.1. QUALITATIVE ASPECTS CHAPTER 6. EVALUATION

6.1.1 Reliability

Another aspect of the architecture is the reliability of the system. A mechanism for the
reliability of the data is built into HDFS. HDFS replicates all data over the nodes. By
default the replication is set to 3. This means that if a node in the cluster fails, at least
two other nodes also have the same data.

The second part of the reliability, is the reliability of the processing platform. If a
node fails, the system should be able to continue without that node. All three pro-
cessing platforms have a form of reliability. The Hadoop MapReduce 2 system relies
on YARN. As described in Apache Hadoop yarn:Yet another resource negotiator [39],
YARN monitors all the nodes, and signals the application if any node fails. Hadoop
MapReduce 2 picks up these signals and reschedules any tasks. Any work done by a
map task on a failed node has to be re done, as the output is stored locally on the now
failed node. The output of a reduce task is not stored locally, but on HDFS. Therefore
the reduce tasks do not need to be executed again.

The Spark fault tolerance system also can use YARN to detect failed nodes. To de-
tect missing data Spark uses a mechanism called Resilient distributed data sets [40]. A
Resilient distributed data set, RDD, contains the data and the operation used to gen-
erate that data. When the operations are chained a directed acyclic graph of RDD's is
created. When a node fails, the data it stored in memory and spilled on the local disk
gets lost. Eventually when the next operation in the graph starts, the missing data is
required. To restore this data the processing platform looks as the graph, it traces back
into the graph to see which operation failed. This operation is repeated to regenerate the
missing data. Note that the operation is only executed for the missing pieces of data. If
that operation depends on data of a previous operation, which is not in memory anymore
that operation also has to be repeated. This relies on the fact that the input data is also
reliable, as the operations might have to be repeated up to the reading of the input data.

The Flink system is built for streaming. The batch processing is built on top of this
streaming structure. The fault tolerance mechanism is therefore built for streaming. The
fault tolerance system relies on a check pointing system [41]. Every so often a checkpoint
is made of the state of the system. When a node goes down due to failure, it is detected
by Flink. The system is reverted to the last checkpoint. Any tasks that were scheduled
on the now absent node is done on a different node. The input that is also treated as a
stream is also reset to the point of the checkpoint. This way the exact same data flows
trough the processing, as it did originally after the checkpoint.

6.1.2 Creating applications

A important qualitative aspect is the creation of new applications. A part of this as-
pect is the programming language. The preferred language is Python. However when
implementing the application using Python for all processing platforms, some problems
where encountered, as described in section 4.8.1. Due to this Java was chosen as main
programming language. This may be a problem for the application developers, as they
are not used to program in Java.

Besides the programming language, the programming model may also be a hurdle. The

69

6.2. SCALABILITY CHAPTER 6. EVALUATION

programming model of the big data processing platforms is radically different from usual
programming models. For developers that have not used this model, creating applica-
tions may become difficult. In chapter 4 we described the method used to implement the
air quality application. This kind of method can be used as a guide line for developers
to create other applications.

Related to the programming model is the programming API of the processing plat-
forms. The proposal of the architecture contains the generalized processing library to
smooth out the API for development of API's. This component however is not imple-
mented yet.
When comparing the programming API's itself we can see the differences in the ease of
implementation. The programming API of Hadoop MapReduce 2 is much more com-
plicated than the Spark and Flink one. Due to the limited freedom of the MapReduce
2 API, the implementation of the air quality application pre-processing required to be
split into two parts. Also the custom data types that are used to define the data, for
example the combination of measurements, week and quality flags combination as de-
scribed in section 4.8.3, requires a workaround in MapReduce 2. The exact same classes
for those data types are used for Spark and Flink, however no workaround is required
for those API's. Small problems like these may give developers, certainly those who are
not experienced with the programming model, big problems. Therefore Spark and Flink
are better for creating new applications.

6.1.3 Cost

The cost aspect in terms of money of running the architecture can be split up in two
parts. The first part is the cost of the software used. In most cases software requires
a license to be used. Often this license will cost a sum of money, either a single time
payment or a monthly payment. A license for the software used, being Spark, Flink,
HDFS, YARN, MapReduce 2 and Avro, is also required. All these pieces of software are
published by the Apache Software Foundation. This means that all the used software is
published under the open source Apache 2.0 license. The Apache 2.0 license is free for
both personal and commercial use, so the cost of the software is non existent.

The second part of the cost of running the architecture is the hardware requirement.
The architecture runs on top of hardware being either physical or virtual when clouds
are used. This hardware costs money to run, and depends on the amount of servers
and composition of those servers. Due to the set up of YARN and HDFS as described
in section 3.3.1, a minimum of one head node and one worker node is required. The
architecture is designed to scale, thus the performance scales with the amount of worker
nodes. The performance is also influenced by the power of the individual nodes. This
means that the cost is dependent on the required performance. If a better performance
is required, a larger amount or more powerful nodes can be used, which will cost more
money.

6.2 Scalability

One of the most important quantitative aspects, if not the most important one, is the
scalability. The reason the new architecture makes use of big data software is their

70

6.3. PERFORMANCE CHAPTER 6. EVALUATION

claimed ability to scale. This is required as the expected processing time will be too
high if the architecture can not scale. We tested the scaling abilities for both scaling up
in the amount of cores and scaling out in the amount of nodes in the cluster.

Of course these results are specifically for this implementation of the air quality ap-
plication. Other applications may yield different results, as they for example might be
more I/O bound. In such a case adding more cores might give a worse scaling than found
in the results. It might also be that the application can not scale at all due to many data
dependencies. For example the actual trend analysis process is a sequential algorithm,
which is not parallelized in the implementation of the air quality application. The ac-
tual scalability results also depend on the quality of the implementation. If a developer
makes a wrong choice, the system could be busy most of the execution time passing data
around the nodes instead of processing. In such a case a sequential implementation can
be better than a bad parallel implementation on big data processing platforms.

The results for the pre-processing show a near linear scaling for both the amount of
cores and the amount of nodes for almost all the platforms. The exception being Flink
in the scaling of the cores and MapReduce 2 in the scaling of the amount of nodes. This
indicates that the architecture can indeed scale. An interesting result is the architecture
scaling better with the amount of nodes than scaling the amount of cores. This is caused
by the usage of the Google cloud, as it provides the disk resources in a way different
than expected.
The on demand processing shows a different image. While the processing time of the
execution of the on demand processing goes down with the amount of cores and nodes,
the speedup is not even close to linear.

6.2.1 TROPOMI level data

The test with TROPOMI data shows if the architecture can not only scale with the
amount of cores and nodes, but also with the amount of data. The TROPOMI data is
about 16 times larger than the OMI data, the expected slowdown is therefore 16 times.
From the results we can see that the slowdown is indeed about 16 times. The measured
slowdown is a bit bigger than 16 due to the process of imitating the TROPOMI data
with 16 times the OMI data. This shows us that the processing does scale linear with
the amount of the data.

6.3 Performance

For the scalability aspect we looked at the speedups when increasing the cores and nodes.
For the performance aspect we will look at the processing time itself. From the results
we can see that the pre-processing time to process is indeed in the range of hours. The
Spark implementation beats the other implementations on pure processing time. The
processing time for the Spark implementation for a single year worth of data ranges
from a little less than 3 hours for a single core to a bit over 5 minutes for the 16 node
cluster. If we would extend that result to 10 years we would get a processing time of
about one hour for the 16 node cluster. This certainly fulfills the need for the processing
to complete within hours.

71

6.3. PERFORMANCE CHAPTER 6. EVALUATION

The MapReduce 2 implementation is by far the worst performing. The single core pro-
cessing takes almost 10 hours on its own. The 16 node test took about 40 minutes to
complete. If we scale that to 10 years worth of data we would get 6,67 hours of pro-
cessing. While this processing time is within the range of hours, it is quite a bit longer
than the Spark implementation. Note however that the any newly generated data does
not have dependencies on the old data. This allows the processing to only process any
newly generated data. This means that the actual data processing can be on a much
smaller data set, and thus have a processing time that is well within an hour.

The on demand processing has some similarities with the pre-processing. The MapRe-
duce 2 implementation is again the slowest by far. The difference being Flink is the
fastest for the on demand processing. With enough nodes to process the data, the Flink
implementation seems to average to about 30 seconds. The Spark implementation shows
the same behaviour, but averages to about 40 seconds. The result of the processing time
staying about the same with enough nodes, is caused by the start up overhead of the
processing platform. It is unclear if the Spark implementation having a larger processing
time than Flink is caused by being slower in the processing, or just having more start
up overhead. The overhead leads to the on demand processing time being indeed in the
range of seconds, just as mentioned in the user needs. However for a web based interface,
a processing time of about 40 seconds is way too long. The user will click away long
before the processing returns a result, thinking the page has become unresponsive.

72

Chapter 7

Future work

The research in this thesis has raised a few new questions which can be pursued in future
research.

Firstly this research only covered software like HDFS, Avro, MapReduce 2, Spark and
Flink. These pieces of software were chosen in the architecture based on some aspects
deemed important. Maybe some other software that may be less widely known, or does
not fit the aspects precisely may end up being better. These other software platforms
may be a very strong candidate on some aspect, but being just less fit in another aspect,
and thus not considered.
This leads to the question if the chosen programming model is indeed the correct one.
The three processing platforms, MapReduce 2, Spark and Flink were chosen partially
because they are quite popular. Those platforms use (a derivative of) the map reduce
model to parallelize the processing of the data. Maybe some other programming model,
which can be used to parallelize the processing of the data, may fit the applications even
better. A couple of example software platforms which have a different programming
model are given in section 3.2.2.

A question related to the programming model is the granularity of the processing, as
covered in section 4.5. In the implementation of the air quality application a granu-
larity of one measurement is used, as it is assumed to be the easiest to implement. A
future line of research could be to find out the effect of increasing the granularity. Does
it make the implementation harder, and is the performance impacted by said granularity?

In the chapter describing the architecture we mentioned the generalized geo process-
ing library in section 3.2.5. This library was not implemented due to time constraints.
This library however is an interesting research topic. It requires the collection of require-
ments and ideas, which are then translated to an API. The second part is figuring out
if implementing this geo library is actually possible. The processing model of the map
reduce processing platforms is very different from general programming. It may not be
possible, or feasible due to extreme overheads, to make a mapping from the API to the
map reduce model.

The final question that arose is the solution to the on demand processing time. The
on demand processing is severely limited by the start up time of the processing frame-
works. This causes the processing time to be way too high to be usable as a service. A

73

CHAPTER 7. FUTURE WORK

solution could be looking in to keeping the processes that execute the processing alive
after a job has finished. When this is achieved, one could also look in to keeping the
intermediate results in memory to speed up the on demand processing even more. To
do that the problem of the separated memory spaces, as described in section 5.4 has to
be solved.

74

Chapter 8

Conclusion

In this research we have assessed the usage of big data software for remote sensing ap-
plications on the Downstream platform. We have answered the question how big data
software can be used to enhance the Downstream platform by creating an architecture
built on this software. The software chosen is HDFS and Apache Avro for storage and
Hadoop MapReduce 2, Apache Spark and Apache Flink being the candidates for the
processing platform. The processing platforms were compared by implementing the air
quality application on them. This application is split in a time consuming pre-processing
step, and a lightweight on demand step.

Testing this application, by using the Google cloud for the (virtual) machines, showed
an interesting result. For the pre-processing Flink struggles when adding more cores due
to lacking disk performance. Hadoop MapReduce 2, being the slowest, starts to struggle
when more nodes are added. This is caused by the tasks finishing to fast, and the start
up overhead of starting tasks in MapReduce 2 being too high. Spark performs without
struggle when adding more cores and nodes.

For the on demand processing no platform seems to struggle when more cores or nodes
are added. The MapReduce 2 platform is again the slowest of the three. The perfor-
mance of Flink and Spark seems to be limited by a start up overhead, which really harms
the scalability of the application. This also makes any service based on the processing
slow, and therefore possibly unusable.

From these results, being that Spark does not seem to struggle in the pre-processing
and the comparison on the other aspects, Apache Spark seems to be the best process-
ing platform. We can conclude that the usage of big data software as described in the
architecture can indeed be used for applications that do pre-processing like processing.
For applications that provide services, just like the on demand processing of the air
quality application, the architecture as of now may not be the best solution yet. To
make the architecture usable for these class of applications, the problem with the start
up overhead has to be fixed first.

75

Bibliography

[1] Manyika James, Chui Michael, Brown Brad, Bughin Jacques, D Richard, R Charles,
and HB Angela. Big data: The next frontier for innovation, competition, and
productivity. The McKinsey Global Institute, 2011.

[2] Doug Laney. 3D data management: Controlling data volume, velocity and variety.
META Group Research Note, 6:70, 2001.

[3] Erwin Goor, Jeroen Dries, and Dirk Daems. Mission exploitation platform proba-v.
In Soille and Marchetti [42], pages 50--51.

[4] Christoph Reck, Gina Campuzano, Klaus Dengler, Torsten Heinen, and Mario Win-
kler. German copernicus data access and exploitation collaborative infrastructure.
In Soille and Marchetti [42], pages 52--55.

[5] Norman Fomferra. Cal/Val and User Services - Calvalus Final report. Brockmann
Consult GmbH, October 2011. http://www.brockmann-consult.de/calvalus/

pub/docs/Calvalus-Final\.Report-Public-1.0-20111031.pdf.

[6] Dabin Christophe, Holliman Mark, Melchior Martin, Belikov Andrey, and Hoar
John. Euclid: Orchestrating the software development and the scientific data pro-
duction in a map reduce paradigm. In Soille and Marchetti [42], pages 5--8.

[7] Fabio Pasian, John Hoar, Marc Sauvage, Christophe Dabin, Maurice Poncet, and
Oriana Mansutti. Science ground segment for the esa euclid mission. In SPIE Astro-
nomical Telescopes+ Instrumentation, pages 845104--845104. International Society
for Optics and Photonics, 2012.

[8] Sort FAQ. http://sortbenchmark.org/FAQ-2016.html, May 2016.

[9] Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, and Matei Zaharia.
GraySort on Apache Spark by Databricks. November 2014.

[10] Thomas Graves. GraySort and MinuteSort at Yahoo on Hadoop 0.23. May 2013.

[11] Machines Algorithms and People Lab UC Berkeley. Big Data Benchmark. https:
//amplab.cs.berkeley.edu/benchmark/, Februari 2014.

[12] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He,
Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, et al. Bigdatabench: A big data
benchmark suite from internet services. In High Performance Computer Architecture
(HPCA), 2014 IEEE 20th International Symposium on, pages 488--499. IEEE, 2014.

[13] Zijian Ming, Chunjie Luo, Wanling Gao, Rui Han, Qiang Yang, Lei Wang, and
Jianfeng Zhan. Bdgs: A scalable big data generator suite in big data benchmarking.
In Workshop on Big Data Benchmarks, pages 138--154. Springer, 2013.

76

http://www.brockmann-consult.de/calvalus/pub/docs/Calvalus-Final_Report-Public-1.0-20111031.pdf
http://www.brockmann-consult.de/calvalus/pub/docs/Calvalus-Final_Report-Public-1.0-20111031.pdf
http://sortbenchmark.org/FAQ-2016.html
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/

BIBLIOGRAPHY BIBLIOGRAPHY

[14] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, and Mar\'{\i}a S P\'erez-
Hern\'andez. Spark versus flink: Understanding performance in big data analytics
frameworks. In Cluster Computing (CLUSTER), 2016 IEEE International Confer-
ence on, pages 433--442. IEEE, 2016.

[15] The Apache Software Foundation. Welcome to apache hadoop. http://hadoop.

apache.org/\#Download+Hadoop, March 2016. Acessed 10 August 2016.

[16] The Apache Software Foundation. Spark release 2.0.0. http://spark.apache.

org/releases/spark-release-2-0-0.html, July 2016. Acessed 10 August 2016.

[17] The Apache Software Foundation. Apache flink: Downloads. http://flink.

apache.org/downloads.html, Augustus 2016. Acessed 10 August 2016.

[18] Sagar Nikam. Projects - other than hadoop! https://azadparinda.wordpress.

com/2013/10/11/projects-other-than-hadoop/, October 2011. Acessed 5 Au-
gust 2016.

[19] James Golick. What does ""scalable database"" mean? http://jamesgolick.com/

2010/3/30/what-does-scalable-database-mean.html, March 2010. Acessed 5
August 2016.

[20] Matt Allen. Relational databases are not designed for scale. http://www.

marklogic.com/blog/relational-databases-scale/, November 2014. Acessed
5 August 2016.

[21] The Apache Software Foundation. HDFS permissions guide. https:

//hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-

hdfs/HdfsPermissionsGuide.html, January 2016. Acessed 5 August 2016.

[22] The Apache Software Foundation. Transparent encryption in HDFS.
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-

hdfs/TransparentEncryption.html, January 2016. Acessed 5 August 2016.

[23] Abhishek Jain. Parquet file format. http://bigdata.devcodenote.com/2015/04/
parquet-file-format.html, April 2015. Acessed 5 August 2016.

[24] Pascal S. de Kloe. jvm-serializers. https://github.com/eishay/jvm-

serializers/wiki, July 2016.

[25] Martin Kleppman. Schema evolution in Avro, Protocol Buffers and
Thrift. https://martin.kleppmann.com/2012/12/05/schema-evolution-in-

avro-protocol-buffers-thrift.html, December 2012.

[26] DataXu. Three reasons why apache avro data serialization is a good choice for
OpenRTB. http://blog.cloudera.com/blog/2011/05/three-reasons-why-

apache-avro-data-serialization-is-a-good-choice-for-openrtb/, May
2011. Acessed 5 August 2016.

[27] Michael Wetzel, Tamir Melamed, Mark Vayman, and Denny Lee. Using avro
with hdinsight on azure at 343 industries. https://dennyglee.com/2013/03/

12/using-avro-with-hdinsight-on-azure-at-343-industries/, March 2013.
Acessed 5 August 2016.

[28] The Apache Software Foundation. Apache avro releases. http://avro.apache.

org/releases.html, April 2016. Acessed 10 August 2016.

77

http://hadoop.apache.org/#Download+Hadoop
http://hadoop.apache.org/#Download+Hadoop
http://spark.apache.org/releases/spark-release-2-0-0.html
http://spark.apache.org/releases/spark-release-2-0-0.html
http://flink.apache.org/downloads.html
http://flink.apache.org/downloads.html
https://azadparinda.wordpress.com/2013/10/11/projects-other-than-hadoop/
https://azadparinda.wordpress.com/2013/10/11/projects-other-than-hadoop/
http://jamesgolick.com/2010/3/30/what-does-scalable-database-mean.html
http://jamesgolick.com/2010/3/30/what-does-scalable-database-mean.html
http://www.marklogic.com/blog/relational-databases-scale/
http://www.marklogic.com/blog/relational-databases-scale/
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
http://bigdata.devcodenote.com/2015/04/parquet-file-format.html
http://bigdata.devcodenote.com/2015/04/parquet-file-format.html
https://github.com/eishay/jvm-serializers/wiki
https://github.com/eishay/jvm-serializers/wiki
https://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
https://martin.kleppmann.com/2012/12/05/schema-evolution-in-avro-protocol-buffers-thrift.html
http://blog.cloudera.com/blog/2011/05/three-reasons-why-apache-avro-data-serialization-is-a-good-choice-for-openrtb/
http://blog.cloudera.com/blog/2011/05/three-reasons-why-apache-avro-data-serialization-is-a-good-choice-for-openrtb/
https://dennyglee.com/2013/03/12/using-avro-with-hdinsight-on-azure-at-343-industries/
https://dennyglee.com/2013/03/12/using-avro-with-hdinsight-on-azure-at-343-industries/
http://avro.apache.org/releases.html
http://avro.apache.org/releases.html

BIBLIOGRAPHY BIBLIOGRAPHY

[29] The HDF Group. High Level Introduction to HDF5. https://support.hdfgroup.
org/HDF5/Tutor/HDF5Intro.pdf, September 2016.

[30] Kevin O'Dell. How-to: Select the right hardware for your new hadoop clus-
ter. http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-

hardware-for-your-new-hadoop-cluster/, August 2013. Acessed 23 August
2016.

[31] Pieternel F Levelt, Gijsbertus HJ van den Oord, Marcel R Dobber, Anssi Malkki,
Huib Visser, Johan de Vries, Piet Stammes, Jens OV Lundell, and Heikki Saari.
The ozone monitoring instrument. IEEE Transactions on geoscience and remote
sensing, 44(5):1093--1101, 2006.

[32] National Aeronautics and Space Administration. Aura. https://aura.gsfc.nasa.
gov/about.html. Acessed 10 August 2016.

[33] National Aeronautics and Space Administration. OMI User's Guide. https:

//disc.gsfc.nasa.gov/Aura/data-holdings/additional/documentation/

README.OMI\.DUG.pdf. Acessed 10 August 2016.

[34] Unidata, UCAR Community Programs. NetCDF-Java Library. http:

//www.unidata.ucar.edu/software/thredds/current/netcdf-java/

documentation.htm, May 2015.

[35] The Apache Software Foundation. Apache avro 1.8.1 hadoop mapreduce guide.
http://avro.apache.org/docs/1.8.1/mr.html, May 2016.

[36] Salvatore Valente and Karel Zak. kill(1) - Linux manual page. http://man7.org/
linux/man-pages/man1/kill.1.html, July 2014.

[37] Google. Optimizing Persistent Disk and Local SSD Performance. https://cloud.
google.com/compute/docs/disks/performance, January 2017.

[38] Google. Managing Data Encryption --- Cloud Storage Documentation --- Google
Cloud Platform. https://cloud.google.com/storage/docs/encryption, Jan-
uary 2017.

[39] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. Apache hadoop yarn: Yet another resource negotiator. In Proceedings
of the 4th annual Symposium on Cloud Computing, page 5. ACM, 2013.

[40] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
2012.

[41] Apache Software Foundation. Apache Flink 1.1.3 Documentation: Data Stream-
ing Fault Tolerance. https://ci.apache.org/projects/flink/flink-docs-

release-1.1/internals/stream\.checkpointing.html. Acessed 31 January
2017.

[42] Pierre Soille and Pier Giorgio Marchetti, editors. Proc. of the 2016 conference on
Big Data from Space (BiDS16). Publications Office of the European Union, 2016.

78

https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf
https://support.hdfgroup.org/HDF5/Tutor/HDF5Intro.pdf
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
https://aura.gsfc.nasa.gov/about.html
https://aura.gsfc.nasa.gov/about.html
https://disc.gsfc.nasa.gov/Aura/data-holdings/additional/documentation/README.OMI_DUG.pdf
https://disc.gsfc.nasa.gov/Aura/data-holdings/additional/documentation/README.OMI_DUG.pdf
https://disc.gsfc.nasa.gov/Aura/data-holdings/additional/documentation/README.OMI_DUG.pdf
http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/documentation.htm
http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/documentation.htm
http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/documentation.htm
http://avro.apache.org/docs/1.8.1/mr.html
http://man7.org/linux/man-pages/man1/kill.1.html
http://man7.org/linux/man-pages/man1/kill.1.html
https://cloud.google.com/compute/docs/disks/performance
https://cloud.google.com/compute/docs/disks/performance
https://cloud.google.com/storage/docs/encryption
https://ci.apache.org/projects/flink/flink-docs-release-1.1/internals/stream_checkpointing.html
https://ci.apache.org/projects/flink/flink-docs-release-1.1/internals/stream_checkpointing.html

	Introduction
	What is big data?
	Related work
	Related architectures
	Comparing big data processing platforms

	User needs
	Applications
	Creating new applications
	Administration
	Security
	Performance
	Scalability
	Portability/Mobility
	Reliability
	Cost

	Architecture
	Identifying the components of the architecture
	Software
	Interface
	Processing platform
	Intermediate storage
	Input data
	Generalized geo processing library

	Hardware
	Types of the nodes in the cluster
	CPU scaling
	Storage

	Implementation of the air quality application
	The air quality application
	Improvements over the original implementation
	Introducing the map reduce model
	Differences between the processing platforms
	Hadoop MapReduce 2
	Spark
	Flink
	Data storage in memory

	Data granularity
	Transforming the application into map reduce operations
	Transforming the pre-processing
	Transforming the on demand processing

	Translation of map reduce operators to the processing API's
	Problems
	Python
	The Hadoop MapReduce fixed structure
	Polymorphism and Hadoop MapReduce writable
	Hashcode inconsistencies

	Reading HDF5 files
	Interaction with Avro
	Scaling up to TROPOMI data

	Results
	Testing environment
	Hardware
	Software

	Additional tests
	Stability of measurements
	Application footprint
	Comparison to original implementation
	Pre-processing
	Scaling the number of cores
	Scaling the number of nodes
	Using HDFS as input source
	Moving from HDD to SSD

	On demand
	Scaling the number of cores
	Scaling the number of nodes

	Scaling to TROPOMI

	Evaluation
	Qualitative aspects
	Reliability
	Creating applications
	Cost

	Scalability
	TROPOMI level data

	Performance

	Future work
	Conclusion

