
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Semantic segmentation for Remote sensing
imagery with distributed deep learning

pipeline

Author: Tung Nguyen (12012963, 2611152)

1st supervisor: Dr. Adam Belloum
daily supervisor: Dr. Berend Weel

A thesis submitted in fulfillment of the requirements for

the joint UvA-VU Master of Science degree in Computer Science

August 10, 2019

“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley

ii

Abstract

Deep Learning has become one of the fastest-growing trends in Remote Sens-
ing field since it enables Remote-sensing experts as well as non-experts to
exploit feature representations learned exclusively from satellite imagery in-
stead of handcrafted features extracted primarily on domain-specific knowl-
edge. Unfortunately, training deep learning model requires enormous amount
of computational e↵ort, usually provided by GPU. Scaling up computation
from one CPU or GPU to many can enable much faster training and research
progress and make it feasible to cope with very big datasets. Existing ap-
proaches for facilitating multi-GPU/CPU training under current platforms
bring about considerable communication overhead and require users to heav-
ily adapt their local-built training model to distributed one, prompting many
researchers to avoid the nuisance and stick with slower single-GPU/CPU
training. Furthermore, to the best of my knowledge, there has been no com-
plete pipeline to acquire, preprocess and analyse datasets with deep learning
models at large scale. This research proposes a comprehensive pipeline for
distributed deep learning with the combination of Apache Spark, the dis-
tributed deep learning framework - Horovod, Tensorflow and shows a proof
of concept for the pipeline by implementing a distributed U-net deep learn-
ing model to solve semantic segmentation problem. We validate our solution
on Inria aerial image dataset. As a result, our pipeline does speed up deep
learning training especially when increasing from 1 to 2 machines. In addi-
tion, the trained model U-net shows great performance in terms of accuracy
and Intersection over Union.

adambelloum1
Highlight

adambelloum1
Highlight

Contents

1 Introduction 6

2 Related work 8

3 Theoretical Background 14

3.1 Remote Sensing . 14

3.1.1 Definition . 14

3.1.2 Image resolution . 15

3.2 Deep Learning . 15

3.3 Convolutional Neuronal Networks 18

3.3.1 Problem space . 18

3.3.2 Convolutional Neuronal Networks architecture 18

3.4 Semantic segmentation with U-net neural network 21

3.4.1 Semantic segmentation 21

3.4.2 U-NET Architecture and Training 21

4 Proposed Distributed Deep Learning pipeline 23

4.1 Input data storage . 23

4.2 Preprocessing . 25

4.3 Training . 25

4.4 Predicting . 26

5 Experiments 27

5.1 Remote Sensing applications 27

5.2 Hardware . 28

5.3 Software . 28

5.4 Input dataset . 29

5.5 Implementation . 30

5.5.1 Preprocessing - Step 2, 3, 4.1 32

5.5.2 Training - Steps 5.1, 6.1 and 6.2 34

5.5.3 Predicting - Step 7 . 38

6 Results 39

1

6.1 Scaling up . 39

6.2 Performance of trained model 40

7 Conclusion 43

2

List of Figures

2.1 Downpour SGD. Model . 9

2.2 Sandblaster L-BFGS . 9

2.3 The ring-allreduce algorithm 10

2.4 Nodes communication in DeepLearning4j framework [1] 11

2.5 CNTK directed graph . 12

2.6 CNTK graph of Reconcurrent Neuron Network 12

2.7 FireCa↵e’s parameter servers and reduction trees 13

3.1 Remote sensing process . 14

3.2 Increasing data consistently yields better performance 16

3.3 Deep Learning neural network structure 16

3.4 Deep Learning neural network mathematical model 17

3.5 Convolution Operation . 19

3.6 E↵ect of convolution filter/kernel 19

3.7 Max Pooling Operation . 20

3.8 Fully Connected Layer . 20

3.9 Transpose Operation . 21

3.10 Semantic Segmentation . 21

3.11 U-net architecture . 22

4.1 Our proposed pipeline for distributed deep learning 24

4.2 Horovod benchmark . 26

5.1 Austin 3-color channel image (left) and Austin reference image
(right) . 30

5.2 Chicago 3-color channel image (left) and Chicago reference
image (right) . 30

5.3 Distributed and local experiments with common steps in the
middle line and di↵erent steps on the di↵erent sides 31

5.4 Continuous slide windows . 33

5.5 Overlapped windows at edges of an image 33

5.6 Modified U-Net deep learning model architecture 35

6.1 Measurements of training time per epoch 40

3

6.2 Intersection of Union . 41

6.3 Comparison between ground truth and our outcome of our
trained model for an Austin’s building 42

6.4 Comparison between ground truth and our outcome of our
trained model for an Chicago’s building 42

4

List of Tables

5.1 Hardware Specification per node 28

5.2 Preprocessed Parquet File Schema 34

6.1 Scaling up training model . 41

6.2 Avarage core usage during training with Horovod 41

6.3 Semantic Segmentation accuracy and IOU of our trained model 41

5

Chapter 1

Introduction

With the development of remote sensing technologies, especially the improve-
ment of spatial, time and spectrum resolution, Remote sensing (RS) data
are characterized by its extreme volume, wide variety of data types and the
explosive velocity at which the data must be processed. Meanwhile, the re-
mote sensing textures of the same ground object present di↵erent features
in various temporal and spatial scales. Therefore, it is di�cult for not only
professionals but also non-experts to the field of remote sensing to manually
describe overall features of remote sensing big data with di↵erent temporal
and spatial resolution.

Deep learning with its unique advantages makes comprehensive features
automatic and ridiculously easy. Di↵erent from traditional machine learning
techniques in which most of the applied features need to be identified by an
domain expert in order to reduce the complexity of the data and make pat-
terns more visible to learning algorithms to work, deep learning algorithms
attempt to learn high-level features from data in an incremental manner.
This eliminates the need of domain expertise and hardcore feature engineer-
ing.

Unfortunately, it is still beyond the ability of a single machine to handle
large-scale data sets as deep learning techniques demands extremely high
computing power to train in reasonable time. Distributing data and learning
process to multiple workstations by leveraging available big data frameworks
is a perceptible method to scale up machine learning tasks. Implementation
of distributed deep learning models generally requires heavy modifications of
local ones in conjunction with taking machine communication overhead into
consideration. This results in a considerable need to build a pipeline that
simplifies model creation process; ideally build one model and train e�ciently
in both local machine and cluster.

To drive our research, we define three main questions and answer them
in next sections:

1. How to scale up deep learning model with less modifications of
current model-building code and utilize power of high-performance
cluster

Motivation: Regarding Tensorflow as the champion among most popular
deep learning frameworks [2] used by data scientists, researchers and big data

6

developers, an evaluation was conducted by Uber engineers to see how deep
learning models need to be adjusted while switching from local mode to clus-
ter mode [3] using Tensorflow API. After following the documentation and
code examples, it was not always clear which code modifications needed to
be made to distribute model training code. The standard distributed Ten-
sorFlow package [4] introduces many new concepts: workers, parameter
servers, tf.Server(), tf.ClusterSpec(), tf.train.replicas() and to
name a few. While this API might suit several certain cases, in many scenar-
ios it would yield subtle, hard-to-diagnose bugs especially when users need to
manually handle connections and di↵erent jobs across nodes/machines. Lo-
cating and fixing these bugs have prompted users to climb a steep learning
curve of concepts they almost never care about. They might only want to
keep existing model and scale it up.

2. How to build a complete pipeline for distributed storage, pre-
processing and training large amount of data?

Motivation: The combination of deep learning and big data frameworks
seems theoretically promising solution to cope with large datasets. How-
ever, to the best of my knowledge, existing approaches, excluding Tensorflow,
merely focus on distributed training phase in which replicated data stored in
head node will be distributed across nodes at run-time. When it comes to
massive data, storing intermediate products after preprocessing at a single
machine/node might be impossible due to the limited volume capacity of a
single node. Even it is feasible, it takes a long time to preprocess repeatedly
while starting training phase. Hence, construction of an all-inclusive pipeline
to streamline processing, storing intermediate product and analyzing data
across di↵erent machines/nodes are virtually inevitable.

3. Can training process of deep learning neural network be accel-
erated by leveraging the pipeline?

Motivation: While distributed Deep Learning can enables to reduce train-
ing time, it is prone to some inherent trade-o↵s from distributed systems,
comprising communication overhead, scalability. Naturally, performance of
distributed deep learning system needs to be evaluated by comparing with
baseline in terms of running time.

In this research, we will propose an end-to-end solution to acquire, store,
preprocess and train deep learning models on big datasets using a set of
big data frameworks: Hdfs, Spark, Petastorm, Tensorflow and Horovod. In
particular, we augment 30GB of images of Inria aerial dataset, transform it to
parquet format with Spark, use petastorm as an adaptor to feed processed
data to Tensorflow dataset and finally train U-net model to do semantic
segmentation at large scale with Horovod.

In the next chapter, related work will be discussed followed by the the-
oretical background for this research. The following chapter explains the
rationale behind our proposed pipeline for distributed deep learning. The
next two chapters will cover implementation of the pipeline and our research
result. The future work and conclusions of this research will be laid out in
the final chapters.

7

Chapter 2

Related work

In this chapter, we chronologically introduce recent distributed deep learning
frameworks that support to build a full pipeline for big-data storage, process-
ing, visualization as well as hard-core feature engineering reduction (in other
words, less expertise in specific domain is demanded). We define four main
criteria entirely driven by our first and second research questions to filter
available frameworks: provision of deep learning algorithms and GPU usage,
support to fetch distributed datasets as training input, less modifications of
source code when switching from local to cluster model, well-organized docu-
ments and support by large developer community (Github repository’s stars)
and big companies.

Apache Hadoop MapReduce and Apache Spark [5] are well-known
frameworks that facilitates the distribution of massive data collections across
multiple nodes within a cluster of commodity servers and keeps track of that
data, enabling big-data processing and analysis far more e↵ectively than
was possible previously. As only Apache Spark supports traditional machine
learning algorithms with MLLib, both lacks the implementation for Deep
Learning.

This shortage has motivated technical students, developers and researchers
to develop distributed deep learning frameworks. Before digging deep into
frameworks, we should know that there is a catch in distributed deep learn-
ing. We can not simply split the data into N partitions and train N separate
models, then combine them at the end nor break the model into small com-
ponents and train on each component separately with all the data. The
neural network has a single set of parameters used to make its predictions.
At training time, we use those parameters to make a set of predictions for a
single batch of training examples, measure our error in the form of a gradi-
ent, then backpropagate our gradients up through the network to adjust the
parameters. For the next batch, our predictions will in theory have improved
and we continue this process until we reach convergence (no more change in
parameters) or we complete some number of epochs.

The Google engineers obviously knew about this problem, and came up
with a system known as DistBelief [6]. To enhance data parallelism, Dis-
tBelief assigns a training process to a subset of the data on each node, but
in order to maintain state consistency, they all send and receive training pa-
rameter updates through a centralized parameter server. The underlying al-

8

gorithm at work here is known as Downpour SGD, a variant of asynchronous
stochastic gradient descent [7], where individual nodes are able to send up-
dates at di↵erent frequencies without waiting on all the other nodes (Figure
2.1). To separate tasks accordingly to heterogeneous machines, an coordina-
tor is employed into what called Sandblaster L-BFGS batch optimization so
that it assigns each of the N model replicas a small portion of work, much
smaller than 1/Nth of the total size of a batch, and assigns replicas new por-
tions whenever they are free (Figure 2.2). With this approach, faster model
replicas do more work than slower replicas. To further manage slow model
replicas at the end of a batch, the coordinator schedules multiple copies of
the outstanding portions and uses the result from whichever model replica
finishes first.

Figure 2.1: Downpour SGD.
Model replicas asynchronously
fetch parameters w and push
gradients �w to the parameter
server [6]

Figure 2.2: Sandblaster L-BFGS.
A single ‘coordinator’ sends small
messages to replicas and the
parameter server to orchestrate
batch optimization [6]

By incorporating this single parameter server, DistBelief imposes a single
bottleneck and a single point of failure. The more nodes you have, the more
requests are going to be sent to that server. In order to tackle the problem,
Baidu researchers proposed a technique from the high-performance comput-
ing community to improve the parameter averaging and communication ef-
ficiency, called ring-allreduce. The algorithm was based on ring-allreduce
algorithm introduced in the 2009 paper by Patarasuk and Yuan [8]. In the
ring-allreduce algorithm, shown on Figure 2.3, each of N nodes communicates
with two of its peers for 2 ⇤ (N � 1) times. During this communication, a
node sends and receives chunks of the data bu↵er. In the first N � 1 itera-
tions, received values are added to the values in the node’s bu↵er. Overall,
the algorithm proceeds in two steps: first, a scatter-reduce, and then, an
all-gather. In the scatter-reduce step, the nodes will exchange data such
that every node ends up with a chunk of the final result. In the all-gather
step, the GPUs will exchange those chunks such that all GPUs end up with
the complete final result. The realization that a ring-allreduce approach can
improve both usability and performance motivated Uber engineers to built
upon it and come up with Horovod framework.

SystemML [9] is a declarative large-scale machine learning (ML) frame-
work based on Apache Spark, which is characterized by automatic algorithm
customization. ML algorithms in SystemML are specified in a high-level,

9

Figure 2.3: The ring-allreduce algorithm allows worker nodes to average
gradients and disperse them to all nodes without the need for a parameter
server [3]

declarative machine learning (DML) language. DML scripts are compiled
into mixed driver and distributed jobs and thus enables data scientists to
run deep learning applications without the presence of the middle jobs of
system programmer. DML’s syntax closely follows R, thereby minimizing the
learning curve to use SystemML. Algorithms specified in DML are automat-
ically optimized based on data and cluster characteristics using rule-based
and cost-based optimization techniques. The optimizer automatically gen-
erates hybrid run time execution plans ranging from in-memory, single-node
execution, to distributed computations on Spark or Hadoop. This ensures
both e�ciency and scalability. Automatic optimization reduces or eliminates
the need to hand-tune distributed run time execution plans and system con-
figurations.

Deeplearning4j [1] is an open source distributed learning framework
running on top of Apache Spark. It was launched by Adam Gibson and
Skymind team in 2014 with the ambition to provide wide support for deep
learning algorithms including distributed and centralized version. Deeplearn-
ing4j has two implementations of distributed training: Parameter averaging,
a synchronous stochastic gradient descent implementation with a single pa-
rameter server implemented entirely in Spark as well as Gradient sharing,
applying an asynchronous stochastic gradient descent based on Strom neural
network training paper by Nikko Stromwith [10]. Users are directed towards
the later implementation which superseded the former implementation. The
key feature of Gradient sharing approach is that opposed to relaying all pa-
rameters across the network, only updates that are above a user specified
threshold are communicated. In other words, we start out with an update
vector (1 entry per parameter) that needs to be communicated. Instead of
passing the vector as-is, only the large elements are transferred in a quantized
way (which is a sparse binary vector). Note that updates below the threshold
are not discarded but accumulated in a “residual” vector to be applied later.
A centralized parameter server is replaced by peer to peer communication as
indicated in Figure 2.4. Overall, DL4J seems to be competitive in terms of
speed and ease of use. However, it is a Java-based, industry-focused, com-
mercially supported, distributed deep-learning framework, which in turn is

10

Figure 2.4: Nodes communication in DeepLearning4j framework [1]

of less interest to researchers.

In 2015, Microsoft introduced CNTK [11], a unified deep-learning frame-
work that describes neural networks as a series of computational steps via
a directed graph. In this directed graph, leaf nodes represent input values
or network parameters, while other nodes represent matrix operations upon
their inputs (Figure 2.5). Also, CNTK supports symbolic loops over sequen-
tial data and automatically unroll the loops. That is to say, CNTK can
describe Recurrent Neural Network model through its programming model
more naturally than other frameworks (Figure 2.6). Another unique feature
is that di↵erent mini batches of data containing sequences of di↵erent lengths
are automatically packed and padded, which are mostly used in speech pro-
cess as batches of speech data have similar structure. Regarding data-parallel
training, CNTK adopts two strategies to improve the performance namely
communicating less each time and communicating less often. The idea of
the first strategy is to apply 1-bit SGD algorithms [12] to quantize gradients
to 1 bit per value and carry over quantization error to next minibatch so
that exchanged package size is significantly reduced. At the same time, the
mini batches incrementally increase to speed up the training process, which
is called Automatic MB sizing algorithm [13].

Apache MXN [14] is designed for both e�ciency and flexibility. It allows
you to mix symbolic and imperative programming to maximize e�ciency
and productivity. It also contains a dynamic dependency scheduler that
automatically parallelizes both symbolic and imperative operations on the
fly. A graph optimization layer on top of that makes symbolic execution fast
and memory e�cient. MXNet supports an e�cient deployment of a trained
model to various devices ranging from low-end devices such as mobile devices,
Internet of things devices, serverless computing and containers to higher-end
GPU based cluster. Despite running on heterogeneous devices, MXNet can
still achieve almost linear scale with multiple GPUs or CPUs.

FireCa↵e [15] has a similar idea to prior frameworks for speed and scal-
ability improvement by reducing overhead of communicating between servers
without accuracy degradation. The framework has three key pillars. First,
reduction trees are selected among a number of communication algorithms
because it is more e�cient and scalable than the traditional parameter server

11

Figure 2.5: CNTK directed graph [11]

Figure 2.6: CNTK graph of Reconcurrent Neuron Network [11]

12

Figure 2.7: How parameter servers and reduction trees communicate weight
gradients [15]

approach. While the parameter server communication overhead scales lin-
early with p (branching factor of a tree), reduction tree communication is
much more e�cient because it scales logarithmically as O(log(p)) (Figure
2.7). Second, authors optionally increase the batch size to cut down the
total quantity of communication during training and determine hyperpa-
rameters that allow to reproduce the small-batch accuracy while training
with large batch sizes. Finally, Infiniband or Cray interconnects are opted to
achieve high bandwidth between GPU servers. When training GoogLeNet
and Network-in-Network on ImageNet, FireCa↵e achieves a 47x and 39x
speedup over a single GPU, respectively, when training on a cluster of 128
GPUs.

13

Chapter 3

Theoretical Background

3.1 Remote Sensing

3.1.1 Definition

Remote sensing is the practice of deriving information about
the Earth’s land and water surfaces using images acquired from
an overhead perspective, using electromagnetic radiation in one or
more regions of the electromagnetic spectrum, reflected or emitted
from the Earth’s surface [16]

The process of remote sensing comprises an interaction between incident
radiation and the targets of interest. This is exemplified by the use of imaging
systems where the following seven elements are involved (Figure 3.1).

Figure 3.1: Remote sensing process [17]

• Energy Source or Illumination (A): Remote sensing requires an
energy source which illuminates or provides electromagnetic energy to
the target of interest.

• Radiation and the Atmosphere (B): the energy will interact with
the atmosphere it passes through while traveling from source to target.
This interaction might repeat as the energy reflects from the target to
the sensor.

14

• Interaction with the Target (C): once the energy reaches to the
target via the atmosphere, it might absorb, go through or reflect de-
pending on the properties of both the target and the radiation.

• Recording of Energy by the Sensor (D): after the energy has been
emitted from the target, sensors which are located remotely from the
target will collect and record the electromagnetic radiation.

• Transmission, Reception, and Processing (E): the energy recorded
by the sensors has to be transmitted, often in electronic form, to a
receiving and processing station where the data are digitalised into
images.

• Interpretation and Analysis (F): the processed image is visualized
and interpreted to extract information about the target.

• Application (G): the final element of the remote sensing process is
achieved when we apply the information we have been able to extract
from the imagery about the target in order to better understand it,
reveal some new information, or assist in solving a particular problem

3.1.2 Image resolution

There are various types of sensors, ranging from on board of airplanes to on
board of satellites, measures the electromagnetic radiation at specific ranges
(usually called bands). Those measures are quantized and converted into
a digital image. The resulting images have di↵erent characteristics (resolu-
tions) depending on the sensor:

• Spatial resolution: refers to the number of pixels utilized in con-
struction of the image. Images having higher spatial resolution are
composed with a greater number of pixels than those of lower spatial
resolution.

• Spectral resolution: the ability to resolve spectral features and bands
into their separate components.

• Radiometric resolution: usually measured in bits (binary digits), is
the range of available brightness values. For example an image with 8
bit resolution has 256 levels of brightness.

For satellites sensors, there is also the temporal resolution, which is the time
required for revisiting the same area of the Earth (NASA, 2013).

3.2 Deep Learning

Deep learning is a subdomain of machine learning that inspired by simulation
of the structure of the human brain, called Artificial Neural Networks (ANN)
and designed to recognise pattern. In 1957, Rosenblatt invented the first
perceptron neural network , for image recognition. However, until the 2010s

15

since vast amount of data and high computing power enables neural networks
to improve the state-of-the-art in many applications, it has become more and
more popular.

Unlike more traditional methods of machine learning techniques, deep
learning classifiers are trained through feature learning rather than task-
specific algorithms. In other words, the machine will learn patterns in input
data without the need for human operation. This in turn helps to overcome
feature engineer di�culties in machine learning process which is expensive in
terms of time and expertise [18].

Another major distinguishing aspect of deep learning compared to more
traditional methods is the ability to enhance the performance of the clas-
sifiers with increases in amount of data. Generally, if we construct larger
neural networks and train them with more and more data, the performance
of algorithm keeps increasing. In contrast, the performance of other machine
learning techniques may reach a plateau even when more data are constantly
fed into the algorithms (Figure 3.2).

Figure 3.2: Increasing data consistently yields better performance

Deep learning algorithms attempts to find associations between a set of
inputs and outputs. The basic structure of a deep learning algorithm is
represented as below:

Figure 3.3: Deep Learning neural network structure [19]

16

A deep neural network is composed of input, hidden, and output layers,
each may contain multiple nodes (also called neurons). Input layers take in
a numerical representation of data (e.g. images with pixel specs), output
layers generate predictions, while hidden layers correspond to most of the
computation. A mathematical representation of such a neuron is displayed
in figure 3.4.

Figure 3.4: Deep Learning neural network mathematical model

Each neuron has a set of inputs x, and each of these inputs is assigned
with a specific weight w and then the neuron first calculates a weighted sum
of these inputs:

y = x1w1 + x2w2 + x3w3 + ...+ xnwn + b (3.1)

After that, this y output will be passed through an activation function
f. This activation function is a non-linear function, introducing non-linearity
into the network and enabling the network to model non-linear dependencies
between the target variable and the input variable(s).

After the neural network passes its inputs all the way to its outputs, the
network evaluates how good its prediction was through a loss function which
might varies in di↵erent applications. For example, one of the most popular
loss functions - the “Mean Squared Error” loss function, is shown below:

loss =
1

n

nX

i=1

(Yi � Ŷi)
2 (3.2)

The goal of deep learning network is ultimately to minimize this loss
by adjusting the weights and biases of the network. This is achieved by a
process called “back propagation”. Through gradient descent, the network
backtracks through all its layers to update the weights and biases of every
node in the opposite direction of the loss function. Simply put, every iteration
of back propagation should result in a smaller loss function than previous.
The continuous updates of the weights and biases of the network basically
turns it into a precise function approximator that models the relationship
between inputs and expected outputs.

17

3.3 Convolutional Neuronal Networks

3.3.1 Problem space

Convolutional Neuronal Network (CNNs) is subcategory of deep learning
neural networks, which was invented to resolve several drawbacks of Multiple
Layer Perceptrons (MLPs), especially when it comes to image processing.
MLPs assigns one perceptron (neuron) to each input (e.g. pixel in an image).
The amount of weights rapidly grows unmanageable for large images. For
a small-size image 128 x 128 pixel image with 3 color channels there are
49152 weights that must be generated. As a result, high computing power is
demanded for training and overfitting [20] can take place.

Another common problem is that MLPs recognizes di↵erently to an input
(images) and its shifted version. For example, if a picture of a cat appears
in the top left of the image in one picture and the bottom right of another
picture, the MLPs will try to correct itself and assume that a cat will always
appear in the bottom right of the image. We therefore need a solution to
find the spatial correlation of the image features (pixels) in such a way that
we can see exactly the cat in our picture no matter of its positions.

3.3.2 Convolutional Neuronal Networks architecture

Convolutional Neuronal Networks (CNNs) takes an image as input, it will
see an array of pixel values. Let’s say we have a color image in PNG form
(3 color channels) and its size is 128 x 128. The representative multiple-
dimensional array will be 128 x 128 x 3. Each of value in the array is given
from 0 to 255 which illustrates the pixel intensity at that point. The idea
is that you give CNNs this array of numbers and it will pass it through a
series of convolutional, pooling (usually max pooling), transposed and fully
connected layers, and an output will be yielded as numbers that describe
image classes or the probability of the image being a certain class.

In the scope of this research, we only provide some brief introduction
about key layers that we adopted in our later neural network. In-depth ar-
chitecture of Convolutional Neuron Networks is available under the context of
the course ”CS231n: Convolutional Neural Networks for Visual Recognition”
[21] from Stanford

3.3.2.1 Convolutional Layer

The primary purpose of Convolutional Layer in case of a Convolutional Neu-
ronal Networks is to extract features from the input image. Convolutional
Layer learns image features by scanning through the entire image with small
squares of input data.

We will take only 1 colour channel of image to explain about convolutional
layer but just keep in mind that generally image includes 3 channels of RGB.
Every image can be considered as a matrix of pixel values. Consider a 5 x 5
image whose pixel values are only 0 and 1 and another 3 x 3 matrix as filter
or kernel in Figure 3.5. We slide the orange matrix over our original image

18

Figure 3.5: Convolution Operation [21]

Figure 3.6: E↵ect of convolution filter/kernel. The image was captured from
the website 1

(green) by 1 pixel, called stride and for every position, we compute element-
wise multiplication between the two matrices and add the multiplication
outputs to get the final value which forms a single element of the output
matrix - a feature map.

Di↵erent values of the filter matrix will produce di↵erent feature maps
for the same input image. In the figure 3.6 , we can see the e↵ect of convolu-
tion on a mice image with a convolution filter/kernel before the convolution
operation. This leads to the detection of di↵erent features from an image
(e.g: lines, edges, curves and etc).

3.3.2.2 Pooling Layer

Pooling layer, also called subsampling or downsampling, reduces the dimen-
sionality of each feature map but retains the most important information.
Pooling layer can be of various types: Max, Average, Sum. In practice, Max
Pooling [22] has been shown to have better accuracy. In case of Max Pooling,
we define a spatial neighborhood (for example, a 2⇥2 window) and take the
maximum value within that window to represent the window value (Figure
3.7).

1https://timdettmers.com/2015/03/26/convolution-deep-learning/

19

Figure 3.7: Max Pooling Operation. The image was captured from the web-
site 2

3.3.2.3 Fully Connected Layer

The output from the previous convolutional and pooling layers represents
high-level features of the input image. The purpose of the Fully Connected
layer is to aggregate these features for classifying the input image into di↵er-
ent classes or corresponding probability of classes (in case softmax activation
function is used after fully connected layer) based on a training dataset. The
term “Fully Connected” indicates that every neuron in the previous layer is
connected to every neuron on the next layer (Figure 3.8).

Figure 3.8: Fully Connected Layer. The image was captured from website 3

3.3.2.4 Transposed Convolution Layer

Transposed convolution is a technique for upscaling an image with learnable
parameters. On a high level, transposed convolution is exactly the opposite
process of a normal convolution (Figure 3.9). As for Transposed convolution
layer, the input volume is a low resolution image and the output volume is a

2https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks
3https://exploreai.org/p/tensorflow-cnn

20

high resolution image. In other words, normal convolution can be expressed
as a matrix multiplication of input image and filter to produce the output
image. By just taking the transpose of the filter matrix, we can reverse the
convolution process.

Figure 3.9: The transpose of convolving a 3 ⇥ 3 kernel over a 4 ⇥ 4 input
using unit strides. It is equivalent to convolving a 3 ⇥ 3 kernel over a 2 ⇥ 2
input padded with a 2 ⇥ 2 border of zeros using unit strides [23].

3.4 Semantic segmentation with U-net neu-
ral network

3.4.1 Semantic segmentation

Semantic image segmentation [24] describes the process of associating each
pixel of an image with a class label such as buildings, cats, dogs and etc.
This task is commonly referred to as dense prediction as we are predicting
for every pixel in the image (Figure 3.10).

Figure 3.10: An original image of a building on the left side and the output
of semantic segmentation process on the other side

The expected output in semantic segmentation are not just labels for an
image or bounding boxes covering objects in the image. The output itself is
a high resolution image (typically of the same size as input image) in which
each pixel is classified to a particular class. Thus semantic segmentation is
categorized as a pixel level image classification.

3.4.2 U-NET Architecture and Training

The U-NET is a convolutional network architecture for fast and precise seg-
mentation of Bio Medical images, which is developed by Olaf Ronneberger

21

et al [25]. The architecture contains two paths with 23 convolutional lay-
ers in total as illustrated in Figure 3.11. The first path is the contraction
path, also called as the encoder which captures “WHAT” is there in the
image. The encoder merely consists of the repeated application of two 3x3
convolution layers (unpadded convolutions), each followed by a rectified lin-
ear unit (ReLU [26]) activation function and a 2x2 max pooling operation
with stride 2 for downsampling. At each downsampling step, the number
of feature channels will be doubled. The second path is a symmetric ex-
pansive path (decoder) which enables accurate localization using transposed
convolutions. Every step in the expanding path involves an upsampling of
the feature map, followed by a 2x2 convolution that halves the number of
feature channels and then a integration with an accordingly cropped feature
map from the contracting path, and two 3x3 convolutions, each followed by
a ReLU. This concatenation builds up the precision of U-net by reducing
errors and rules out blurry borders of combined data in every convolutional
layer. The final layer, a 1x1 convolution, is used to map each feature vector
to the desired number of classes.

Figure 3.11: U-net architecture. Each blue box corresponds to a multi-
channel feature map. The size x-y of feature map is described at the bottom
left of the box. White boxes represent corresponding copies of feature maps.
The arrows denote the di↵erent operations [25]

22

Chapter 4

Proposed Distributed Deep
Learning pipeline

In this chapter, we will propose an end-to-end pipeline for distributed deep
learning and elaborate on the reason why we choose di↵erent components in
the pipeline. Generally, our pipeline contains 4 main phases (Figure 4.1):

• Data storage: At this phase, the input data will be stored and avail-
able across di↵erent nodes/machines since our main objective is to cope
with big data solution for Deep Learning.

• Preprocessing: An integral phase in deep learning as the quality of
data and the useful information that can be derived from it directly
a↵ect the ability of our model to learn and therefore, it is extremely
important that we preprocess our data before feeding it into our model.
For a large dataset, it is logically necessary to devolve preprocessing
tasks on di↵erent machines.

• Training: The training phase will be taken in distributed manner so
that we can utilize the power of high performance cluster. Since the
final trained model only takes up a couple of megabytes, our pipeline
is designed to save it to only one node/machine.

• Predicting: Predicting is the final phase of our pipeline which uses
trained model (usually in hdf5 format) from previous step to yield
predictions.

The detailed implementation of the pipeline will be described in the next
chapter.

4.1 Input data storage

While the actual input data is highly dependent on the application using the
data, we can determine how this data is stored. Hadoop Distributed File
System [27] (HDFS) provides reliability, security, possibly an performance
increase due to locality as well as support for a wide variety of file formats.
It would therefore be logically to use this system for the input data. We

23

Data
Source 3

Data
Source 1 Data

Source 2

Data storage

Preprocessing

HDFS

Spark Standalone Petastorm

Preprocessed
data in parquet

format

HDFS

Process data

Training
Petastorm

Horovod

Convert parquet to
Tensorflow dataset

Trained model stored in a
selected node

Distribute learning
 process

Predicting

Deep Learning Framework
(e.g Tensorflow)

Spark Standalone
(Optional)

Deep Learning Framework
(e.g Tensorflow)

Result

Predict

Test data

Figure 4.1: Our proposed pipeline for distributed deep learning

24

assumed that one machine/node is not able to store entirely a very large
input dataset due to disk volume capability. Therefore, HDFS was deployed
so that the input data was distributed to multiple nodes/machines. We have
provided an easy-to-use scripts 1 to deploy HDFS to cluster environment
as well as uploading input data to HDFS. The script will allocate a certain
number of nodes on DAS-4 run HDFS services on each node, fetch input data
by Http protocol and automatically upload those data to HDFS.

4.2 Preprocessing

This pipeline focuses on applications which are batch-based. While the input
data is constantly generated, new data that is generated will be delivered in
big batches. The applications generate results from the fixed amount of data
that is available at the time of execution.

The fundamental ideas of big data batch processing derive from the map
reduce model [28]. The map reduce model describes a model to analyze large
amounts of data by splitting it up in to key value pairs. The actual processing
in the map reduce model is done in two simple steps: map and reduce. In
the map stage the key/value pair is transformed into intermediate key/value
pairs. In the reduce step, these intermediate pairs are aggregated to create
the output. The strength of this model lies in the fact that the map stage can
be done simultaneously over many machines, which is the same with reduce
stage, thus creating a very scalable system.

Among the various implementations, one of the most widely used is
Apache Spark. Spark [29] is an open source project claiming to be the next
generation of Hadoop Map Reduce as it could outperform predecessor by
leveraging memory computation. The project rapidly reaches maturity, and
is selected by the industry. It could therefore be a very good candidate for
our pipeline.

We associate Spark Standalone [30] with Petastorm [31], a library devel-
oped by Uber to encode and compress input data then save the final product
to Apache Parquet format [32]. The reason that we pick Apache Parquet
as an intermediate product is that it supports fast access to individual data
columns. This facilitates training step as training data are generally split
into feature and label sets which can be matched accordingly to feature and
label columns in parquet files.

4.3 Training

After contemplating the advantages and disadvantages of di↵erent distributed
deep learning frameworks in chapter Related work, we ultimately choose
Horovod as the most suitable distributed deep learning framework for four
key reasons. The first reason is that it has the capability to scale up (both
GPU and CPU usage) almost linearly. Figure 4.22 shows the number of

1https://github.com/ThrowMeForALoop/RemoteSensing
2Image was captured from https://github.com/horovod/horovod

25

Figure 4.2: Horovod benchmark

images processed per second by di↵erent deep learning networks when in-
creasing number of total GPUS across 128 servers. Horovod achieves 90%
scaling e�ciency for both Inception V3 [33] and ResNet-101 [34] model. Sec-
ondly, a few lines of codes needs to be added to local program in order to
make it distributed 3. Horovod also provides horovod.spark package, a conve-
nient wrapper around Open MPI that makes running Horovod jobs in Spark
clusters easy. Finally, it receives strong support from active developers as
well as Uber engineers.

In this step, we first use Petastorm to load and decode data from par-
quet files once it was encoded and compressed in the previous step. This
is followed by another data transformation step depending on the selected
back-end deep learning framework running on top of Horovod. Specifically,
if Tensorflow runs on top of Horovod, we need to convert Parquet files to
Tensorflow Dataset which is later fed to Horovod in order to train deep
learning model. The final trained model will be stored only in a preferable
worker/node to prevents other workers from corrupting them.

To switch from CPU and GPU usage, we only need to install NVIDIA
Collective Communications Library (NCCL) and specify the library path
to LD LIBRARY PATH environment variable. Horovod will automatically
recognize available GPUs and use them up.

4.4 Predicting

This phase is the same as ordinary predicting step in Machine Learning
process when we load the model generated from training step and forecast the
result using test dataset. Generally, test dataset is much smaller in size than
training dataset so we can opt to predict the outcome in a node/machine.
In case that test dataset is big, Spark Standalone can be used to distribute
predicting tasks.

3https://github.com/horovod/horovod#usage

26

Chapter 5

Experiments

Our proposed pipeline is reasonably constructed based on our evaluation of
di↵erent frameworks and tools in chapter 2 and chapter 4. We want to assess
whether our pipeline works as expected and locate the bottlenecks of the
pipeline that can be improved later. Furthermore, we are deeply interested
in the ease of implementing an application which complies with the pipeline.
We therefore have to implement proof of concept applications.

5.1 Remote Sensing applications

The goal of our applications is to do semantic segmentation of aerial imagery.
In particular, given our application an image covering dissimilar urban set-
tlements, it will classify all pixels as building class or not-building class.

Note that as there are limited computing resources on DAS-4 cluster
[35] , we can only obtain 16 nodes/machines with CPUs and 1 node with 1
GPU. Unfortunately, application with deep learning model training requires
enormous amounts of computation which can be only fulfilled by GPUs usage.
To overcome this obstacle, we have to implement two experiments with the
same source code but di↵erent environments: the first one runs on small
dataset with distributed CPUs and the second runs on the whole bigger
dataset with 1 GPU. In that way, we can firstly validate the validity of our
pipeline with CPUs experiment. Secondly, the final result of our pipeline if
using GPUs can be implied based on second experiment when the adopted
distributed deep learning framework, Horovod, demonstrated that training
deep learning model in local or distributed manner will exactly be the same
as long as global mini-batch size is consistent and the model converges 1

Two applications are written in Python and split up into four main parts:
storage, preprocessing, training and predicting. Input data storage as well
as big data frameworks deployment scripts are basically a modified version
of ”Deployment scripts and configuration for launching a variety of Big Data
frameworks on the DAS-4/5” by Amusaafir 2

1https://github.com/horovod/horovod/issues/390
2https://github.com/amusaafir/das-bigdata-deployment

27

5.2 Hardware

Applications have been run on the DAS-4 cluster, which includes 6 clusters
with dual quad-core compute nodes. The hardware specifications of machines
are listed in Table 5.1

Table 5.1: Hardware Specification per node
Component Name
CPU 2 x Intel(R) Xeon(R) CPU,E5620,@ 2.40GHz
Cores 8 (16 threads)
Memory 24 GB
Network IB and GbE

Several machines in DAS-4 come equipped with GPUS which can only
allocated through SLURM [36]. In the GPU experiment, we make use of
one Titan Black GPU with 6144 MB memory. Taking GPU memory into
consideration, we can wisely choose number of data records in later training
batches.

5.3 Software

As regards big data deployment, the whole Hadoop platform, including
HDFS and MapReduce comes in one package. The version installed on the
machines is 2.6.0. For spark, the version installed is 2.4.0. The number of
worker cores and amount of memory allocated for each worker are adjusted
in Spark configuration so that it matches to hardware specification of each
node (Table 5.1).

All dependencies and code environment for our applications are listed
below:

- python=3.6.8
- tensorflow=1.12 or tensorflow-gpu=1.12 in case of GPU use
- horovod=0.16.3
- petastorm=0.7.2
- openmpi=4.0.1
- h5py=2.9.0
- gcc-5=5.2.0
- libgcc=7.2.0
- pillow=6.0.0
- packaging=16.8
- future=0.17.1
- opencv-python=4.1.0.25

Since the tensorflow.keras version 1.12 is unable to automatically de-
termine the shape of image data at transformation step (from Parquet to
Tensorflow Dataset) and throws the error, a hot-fix solution 3 was applied

3https://github.com/tensorflow/tensorflow/issues/24520

28

to bypass the issue. Optionally, updating to newer version of Tensorflow can
entirely fix the issue. However, we will stick to Tensorflow 1.12 when DAS-4
only support it as the latest version. It is also worth noting that DAS-4
CPU with Intel R� AVX instruction support is not compatible with Horovod
versions lower than 0.16.2 4.

5.4 Input dataset

In this research, we choose Inria Aerial images [37] as our input dataset
among high-quality datasets available under repositories 5. There are two
main reasons for the decision. All images of the dataset have high spa-
tial resolution (at a 30 cm resolution) which certainly helps to enhance the
accuracy of deep learning model. Also, the size of the dataset suits our com-
putation resource fairly well. Specifically, our program needs roughly half an
hour to accomplish a training round (epoch) with 1 Titan Black GPU. In
other words, we can su�ciently train our model on approximately 100 epochs
for two days on DAS-4 (Note that all GPU jobs can be only run on DAS-4
for maximum of two days).

Inria Aerial dataset includes 180 image tiles (also called feature data) of
size 5000⇥5000 and 3-color channels (Figure 5.1 and Figure 5.2), covering a
surface of 1500 m⇥ 1500 m each (at a 30 cm resolution). There are 36 tiles for
each of the following regions: Austin, Chicago, Kitsap County, Western Tyrol
and Vienna. Each image is in GeoTIFF format (TIFF with georeferencing,
but the images can be used as any other TIFF). Images are named by a
prefix associated with the region (e.g. austin- or chicago-) followed by the
tile number (1-36). The reference data (also called label data) is in a di↵erent
folder and named correspondingly to those of the color images. In the case of
the reference data, the tiles are single-channel images with values 255 for the
building class and 0 for the not building class. The input dataset will be
divided into three smaller dataset: training (60%), cross validation
(20%), test (20%) that will be fed to according steps. This division
is faithfully followed the rule-of-thumb by renowned data scientist
Andrew Ng [38].

4https://github.com/horovod/horovod/issues/1071
5https://github.com/chrieke/awesome-satellite-imagery-datasets

29

Figure 5.1: Austin 3-color channel image (left) and Austin reference image
(right)

Figure 5.2: Chicago 3-color channel image (left) and Chicago reference image
(right)

5.5 Implementation

In previous chapter, we have addressed the challenges for building a com-
plete pipeline to e�ciently acquire, store, preprocess, process and analyze
big dataset. We have also elaborated on the rationale behind our decision
on picking up di↵erent components in the pipeline. In this chapter, we will
present detailed implementation of two experiments we have applied our pro-
posed solution: one consumes multiple CPUs across machines/nodes (ranging
from 2 to 16 nodes) to train distributed deep learning U-net model, the other
trains the model locally with 1 GPU. We deliberately outline the four phases
of two experiments side-by-side in Figure 5.3. In this way, the common steps
between two experiments will be placed in the middle of the figure. Each
experiment has it own working steps due to the di↵erences between local and
distributed environment, which is marked by postfixes (e.g 2.1 and 2.2 are the
second steps in distributed CPUs and local GPU experiments respectively).
We mainly focus on the illustration of steps 2, 3, 4.1, 5.1, 6 (6.1 and 6.2) and
7 since it enables us to answer our research questions.

30

Data
Source 3

Data
Source 1 Data

Source 2

Data storage

Preprocessing

HDFS

Training

Predicting

Distributed Experiment Local experiment

1

Split big images into
images of size 256x256 2

Data Augmentation 3

Encode and transform
data to parquet files Save images as local files

4.1 4.2

Decode and transform
data to Tensorflow

Dataset Feed to Batch Generator

5.1 5.2

Distributed Local

Training

Predict outcome

6.1 6.2

7

Figure 5.3: Distributed and local experiments with common steps in the
middle line and di↵erent steps on the di↵erent sides

31

5.5.1 Preprocessing - Step 2, 3, 4.1

This phase is certainly driven by the next phase - processing when data have
to be transformed and saved as intermediate products that can facilitate
the processing stage. As mentioned before, the data set used in this research
includes images of size 5000 x 5000 with 3 channels whose volume is relatively
large for a sophisticated deep learning model. We therefore use slide window
of size 128 x 128 (Figure 5.4) to split each big image into smaller pieces in
step 2. There will be overlaps between pieces at edges of each images which is
acceptable because we want to avoid cutting an piece with area out of image
space (Figure 5.5). The pseudo code of splitting algorithm is described in
the algorithm box 1. We apply this algorithm to both feature and reference
images.

Algorithm 1: Split image
Input: Original image
Output: Small pieces of image with size 128 x 128

1 i 0
2 j 0
3 while i is still less than height of original image do
4 while j is still less than width of original image do
5 top left x j

6 top left y i

7 if top left x + 128 is greater than image width then
8 top left x imagewidth� 128

9 if top left y + 128 is greater than image height then
10 top left y imageheight� 128

11 snip an image within the box (top left x, top left y,
top left x+128, top left y+128)

12 save new image to HDFS
/* Slide window to the right */

13 top left x top left x+ 128

/* Slide window to the bottom */

14 top left y top left y + 128

At last of this phase (step 3 and 4.1), all feature and labels images needs
to be augmented and transformed into parquet files that are in appropriate
format for training phase. The detailed steps will be shown below:

1. Read all feature and reference images from HDFS as binary files into
resilient distributed dataset. [39] (RDD)

2. Convert the binary form of images into numpy array, followed by loss-
less data compression (NdarrayCodec class from petastorm package 6).
Optionally, data augmentation of numpy array of each image can be
done at this step.

3. Associate feature images with corresponding reference images by their
names.

6https://petastorm.readthedocs.io/en/latest/api.html

32

Figure 5.4: Continuous slide windows

Figure 5.5: Overlapped windows at edges of an image

33

4. Convert RDD to Dataframe 7 and save as parquet files. The schema of
parquet files is shown in the table 5.2.

Table 5.2: Preprocessed Parquet File Schema
Field Name Field Type Encode algorithm
features (feature data) np.uint8 NdarrayCodec
masks (reference data) np.uint8 NdarrayCodec

5.5.2 Training - Steps 5.1, 6.1 and 6.2

A slightly modified U-Net deep learning architecture will be applied to do
semantic segmentation of feature images in preprocessed input dataset of im-
ages of size 128 x 128 (Figure 5.6). Two drop out layers (rate = 50%) d4 and
d5 will be added to original architecture (Section 3.4.2) right after convolu-
tional layer 4 and 5 respectively to prevent overfitting when the number of
parameters are fairly large. Also, convolutional layer 10 (size 128x128 with
1 filter/kernel) needs to be added at the end of the architecture since the
outcomes of the model are one-color-channel images with size 128 x 128.

The left hand side is the contraction path (Encoder) where we apply reg-
ular convolutional and max pooling layers. In the Encoder, the size of the
image gradually reduces while the depth gradually increases, starting from
128 x 128 x 3 to 8 x 8 x 1024. This basically means the network detects the
“WHAT” information in each image. The right hand side is the expansion
path (Decoder) where we apply upsampling along with regular convolutions.
In the decoder, the size of the image gradually increases and the depth grad-
ually decreases, starting from 8 x 8 x 1024 to 128 x 128 x 1. Intuitively,
the Decoder recovers the “WHERE” information (precise localization) by
gradually applying up-sampling. Below is the detailed explanation of the
architecture:

• c1, c2, . . . , c9 are the output tensors of Convolutional Layers of kernel
size 3x3 using padding to keep the size of input.

• p1, p2, p3 and p4 are the output tensors of Max Pooling Layers of
kernel size 2x2.

• merge 6, merge 7, merge 8 and merge 8 are the output tensors
of Merge Layers of tensors with same size.

• u6, u7, u8 and u9 are the output tensors of up-sampling layers fol-
lowed by convolutional layers of kernel sizes which corresponding with
left merged tensors.

• c10 is the output of tensor of Convolutional Layer of kernel size 1x1 so
that the output of the architect can classify pixels into two categories.

• d4, d5 are the output tensors of Dropout layers (rate = 50%).

7https://spark.apache.org/releases/spark-release-1-3-0.html

34

3 64 64

12
8

x1
28

12
8

x1
28

12
8

x1
28

3x3 Convolution 2D (Same Padding) + ReLU
2x2 MaxPool
Merge
2x2 Upsample + Convolution2D (Same Padding)

c1 c1

64 128 128

64
x6

4

c2 c2

p1

64
x6

4

64
x6

4

128 256

32
x3

2 c3 c3
256

32
x3

2

32
x3

2

p3
256

16
x1

6 512

16
x1

6

16
x1

6 512c4 c4

p2

Dropout 50%

16
x1

6 512

512

8x
8

p4

Contraction Path
Encoder

Expansion Path
Decoder

1024

8x
8

c5 1024

8x
8

c5 1024
8x

8

d4

u6
d5

merge 6

16
x1

6

1024 512

16
x1

6

16
x1

6 512c6 c6

u7

merge 7

32
x3

2

512 256

32
x3

2

256

32
x3

2

u8

64
x6

4

256

c8 c8

64
x6

4

64
x6

4

c7 c7

128 128

u9

merge 8

128

12
8

x1
28

12
8

x1
28

12
8

x1
28

c9 c9

64 64

merge 9

c9

12
8

x1
28

1x1 Convolution 2D
2 1

c9 c10

12
8

x1
28

Figure 5.6: Modified U-Net deep learning model architecture. Additional layers to the original model are marked as red circles

35

The setup of local and distributed U-net model will be described at listing
5.1 and listing 5.2 accordingly. Listing 5.3 and Listing 5.4 present the dif-
ferences between running training model with local and distributed manner.
The additional steps to make local model distributed are highlighted in red;
black paragraphs are steps that are the same in local and distributed ver-
sions; the blue number indicators show the similar steps. Since we focus on
how we can easily distribute deep learning model rather than itself, we will
not dig deep into the construction of deep learning model which is exactly
the same in both approaches. The source code for our model is available
under our repository8.

The training will stop when 30 epochs have accomplished or an early stop
with patience equals 5 occurs. In other words, if the accuracy of model is
not improved by 5 continuous epochs, the training phase will come to a halt.
16 are reasonably chosen as batch size as the total volume of images fits our
available GPU memory. The outcome of training phase of both local and
distributed versions will be saved as unet building.hdf5 file by message
passing interface (MPI) process with rank = 0 [40]

Listing 5.1: Step 6.2 - Local U-net model setup

1 . Def ine image s i z e
2 . Def ine number o f image channe l s

Local model i s a v a i l a b l e a t
h t t p s :// g i t hu b . com/ThrowMeForALoop/RemoteSensing/ b l o b /

master/ t ra in mode l . py

3 . I n i t l o c a l deep l e a rn i ng model .

Use Adam op t imi z e r f o r deep l e a rn ing model
4 . I n i t Adam opt imize r .

5 . Compile l o c a l deep l e a rn i ng model with binary c r o s s
entropy l o s s and accuracy metr ic .

8https://github.com/ThrowMeForALoop/RemoteSensing/blob/master/train model.py

36

Listing 5.2: Step 6.1 - Adapt local U-net model to distributed version by just
modifying local optimizer

1 . Def ine image s i z e
2 . Def ine number o f image channe l s

Local model i s a v a i l a b l e a t
h t t p s :// g i t hu b . com/ThrowMeForALoop/RemoteSensing/ b l o b /

master/ t ra in mode l . py

3 . I n i t l o c a l deep l e a rn i ng model .

Use Adam op t imi z e r f o r deep l e a rn ing model
4 . I n i t Adam opt imize r .

Modify l o c a l to d i s t r i b u t e d op t imi z e r
opt = horovod . Di s t r ibutedOpt imizer (opt)

5 . Compile l o c a l deep l e a rn i ng model with binary c r o s s
entropy l o s s and accuracy metr ic .

Listing 5.3: Step 6.2 - Run local training steps

1 . Conf igure t en so r f l ow with GPUs.

(8) Create l o c a l t r a i n i n g data genera tor to f e ed t r a i n i n g
images to U�net model by batch

(9) Create l o c a l v a l i d a t i o n data generato r to f e ed images
to the model in va l i d a t i o n s t ep s .

(10) Star t t r a i n i n g model with t r a i n i n g and va l i d a t i o n
da ta s e t s

Listing 5.4: Step 6.1 - Run training model in multiple executors to scale it
up

The s t e p s occurs in each execu tor :

1 . Conf igure t en so r f l ow with GPUs

2 . Horovod : i n i t i a l i z e Horovod i n s i d e each t r a i n e r (
executor) .

3 . Horovod : pin GPU to be used to proce s s l o c a l rank (one
GPU per p roc e s s) , i f GPUs are a v a i l a b l e

4 . Horovod : r e s t o r e from checkpoint , use hvd . load model
under the hood

5 . Horovod : ad jus t l e a rn i n g ra t e based on number o f
p r o c e s s e s

37

6 . Add Model Checkpoint c a l l b a ck which s t o r e s temporary
model

7 . Horovod : save checkpo int s only on the f i r s t worker to
prevent other workers from co r rupt ing them

(8) Decode each row o f t r a i n i n g parquet t ab l e and convert
i t to Tensorf low reco rd s

(9) Decode each row o f v a l i d a t i o n parquet t ab l e and convert
i t to Tensorf low reco rd s

(10) Train the model with l o c a l data in each executor

#The s t ep t a k e s p l ace in g l o b a l manner , which i s s t a r t e d by
d r i v e r a p p l i c a t i o n .

1 . S e r i a l i z e l o c a l model to bytes

2 . Create Spark s e s s i o n to d i s t r i b u t e t r a i n i n g ta sk s

3 . Horovod : run t r a i n i n g p r o c e s s e s with \ t e x t t t { t r a i n \ fun }
f unc t i on in spark executo r s .

5.5.3 Predicting - Step 7

There are two ways to predict and classify images using the result from
previous phase (unet building.hdfs file). The first way is to distribute the
predicting function with Spark as we did with training function. The other
is to locally predict outcome of each test image. In this research, we are in
favour of the later approach because it is not only su�cient for small test
dataset (only 20% of big dataset) but also simplify visualization and data
analysis. The output of predicting phase is a numpy array of size 128 x 128
x 1, whose elements indicate the probability of pixels of the input image over
two classes: building or not-building. As general, we select 0.5 as threshold
to distinguish between building or non-building pixel.

38

Chapter 6

Results

In this chapter, we will evaluate our two experiments’ result in terms of
scaling up training model as well as how accurate distributed training model
is, based on inference of local training. In the first experiment, we will scale
up training by increasing number of machines/nodes from 2 to 8 nodes by a
step of 2 (each node uses 8 cores). The scarcity of GPUs forces us to use CPUs
as an alternative and reduce the number of training and validation images
to 128 and 64 post-split images of size 128 x 128 respectively (Images are
collected after splitting process) since it is infeasible to train a complex deep
learning with a big dataset with CPUs. Fortunately, as mentioned before,
the result of the second experiment with 1 GPU on entire big dataset can
provide a supplement to the result of first experiment on the same dataset
because Horovod has already proved that as long as the global-mini batch
remains, there is no di↵erence between the performance of distributed and
local deep learning models.

To scale up a complicated U-net deep learning model, total 30
lines of codes are modified and added, which accounts for roughly
18% of original source code. The outcome of model training will be
introduced in the next two sections.

6.1 Scaling up

In figure 6.1 we can see the measurements of the average training time per
epoch using di↵erent number of nodes/machines. The raw data can be seen in
table 6.1. From first sight, we can see that distributed deep learning does help
to decline training time, especially when increasing number of nodes from 1
to 2 nodes. An interesting observation can be made for the measurements
of 4 nodes and 8 nodes experiments. There are only slight improvement in
terms of training times even if we double the number of nodes.

To further investigate why training time has not been reduced as expected
when more nodes were added to our tests, we implement a script to collect
average CPUs usage in each node in case of 8-node test. Surprisingly as
seen from table 6.2, our training process using Horovod can not utilize the
whole CPU power. Only two cores out of 8 cores in each machine were
stressed out to work at almost full capacity while the others only use around

39

Figure 6.1: Measurements of training time per epoch

30% of their designed capacity. From our point of view, Horovod has not
been optimized for DAS-4 machine’s CPUs with AVX architecture although
Horovod developers have recently had an hot-fix version for this processor
architecture at https://github.com/horovod/horovod/pull/1083

6.2 Performance of trained model

When evaluating a standard deep learning model, we usually classify our
predictions into four categories: true positives, false positives, true negatives,
and false negatives [41]. For the dense prediction task of image segmentation,
it’s not immediately clear what counts as a ”true positive” since classification
of each pixel alone can not entirely reflect how well the model detects separate
segments of an image in a specific context. To reinforce the evaluation of a
deep learning model, Intersection over Union (IoU) [42] is usually used along
with accuracy as two evaluation metrics for semantic segmentation. The
formula of Intersection over Union can be seen in the figure 6.2:

40

Table 6.1: Scaling up training model
Number of nodes Batch Size Average training time for 1 epoch (seconds)
1 16 3204
2 8 2092
4 4 1860
8 2 1709

Table 6.2: Avarage core usage during training with Horovod
Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core 8
87.0% 36.5% 38.0% 32.9% 32.1% 85.4% 20.7% 20.3%

Figure 6.2: Computing the Intersection of Union is a division of the area of
overlap between the bounding boxes by the area of union

As seen from table 6.3, we achieve very high accuracy and IoU. In practice,
an IOU score [43] > 0.5 is normally considered a good prediction. Also, we
examine the ground truth data and predicted data from our model to validate
our result. Figure 6.3 and figure 6.4 show the close similarities in the positions
of white pixels that represent segments of buildings. To put it another way,
our model is able to capture precisely building’s pixels except those around
the edge. This weakness will be improved in the near future.

Table 6.3: Semantic Segmentation accuracy and IOU of our trained model
Mean accuracy Mean IOU
0.95 0.66

41

(a) Ground truth data of
a Austin’s building

(b) Outcome of our trained model for an
Austin’s building

Figure 6.3: Comparison between ground truth and our outcome of our trained
model for an Austin’s building

(a) Ground truth data of
a Chicago’s building

(b) Outcome of our trained model for an
Chicago’s building

Figure 6.4: Comparison between ground truth and our outcome of our trained
model for an Chicago’s building

42

Chapter 7

Conclusion

With this thesis, we initially showed the needs for applying deep learning in
Remote Sensing field as well as obstacles that has slowed down the advance-
ments in distributed deep learning researches and industrial applications.
Unfortunately, as far as we know, there has been no end-to-end solution to
cope with these issues at large scale.

With the interest of overcoming those drawbacks, we proposed a com-
plete pipeline that helps data scientists, researchers and big data developers
to easily scale up their deep learning model by adding several lines of code
without worry about overheads generated by communication between machi-
nes/nodes. For example, to distribute the training of a sophisticated local
U-net deep learning model, we only need to add to and modify 30 lines of
code in total concerning 131 lines of code in local model. In other words, lit-
tle e↵ort need to be made in order to scale up local deep learning model and
this in turn answered our first question. For a simpler deep learning model
to classify handwritten digit MNIST [44], this number is much smaller.

By evaluating di↵erent big data platforms in terms of performance, scala-
bility, distributed learning support, we have chosen Horovod with Tensorflow
as back-end, Apache Spark and Petastorm as core components for our pro-
posed pipeline. Put the matter another way, we have su�cient factors to
build and end-to-end distributed learning pipeline which fulfilled the second
research question. Two applications for Remote Sensing Semantic Segmen-
tation were implemented to prove the validity as well as e�ciency of our
pipeline. The first application followed strictly to our pipeline in order to
store, preprocess and distribute deep learning tasks across multiple comput-
ers. Due to the shortage of GPU resources, we can only run this application
on multiple CPUs to do semantic segmentation on a small dataset of 128
images using modified U-Net architecture. To generalize our result for the
bigger dataset, another application was implemented and run locally on 1
GPU Titan Black.

Testing those applications by using DAS-4 environment showed interest-
ing results. As for distributed training, our proposed pipeline did reduce
the training time especially when increasing number of nodes from 1 to 2.
However, Horovod, a component in our pipeline struggles when adding more
machines/nodes. This is caused by the lack of CPUs optimization in Horovod
implementation for AVX processor architecture. For the performance of

43

trained model, the local application indirectly showed an exceptional result of
distributed version. Accuracy and IoU are around 0.95 and 0.66 respectively
despite of minor issues of misclassifying pixels around the edge of buildings.

The research in this thesis has raised a few new questions which can be
pursued in future research.

Firstly our proposed pipeline is composed of di↵erent software like HDFS,
Spark, Horovod, Petastorm and Tensorflow. These pieces of software were
personally chosen in the architecture based on some important criteria. Maybe
some other software that may be less widely known, or does not fit the as-
pects precisely may end up being better. For example, HDFS was selected
due to its popularity as well as the versatility in storing various file formats
though it has not been an absolutely ideal file system for separate small files
like images. [45]

Since we are not able to run our experiments with multiple GPUs, we won-
der whether our pipeline can achieve as much scaling e�ciency as Horovod’s
benchmark on other deep learning models (Inception V3 and ResNet-101).
If the performance of Horovod is not as good as expected, which platforms
can be used as alternatives ?

In the chapter 4, we mentioned the transformation step which convert
parquet files into Tensorflow dataset. Although it is necessary to make pre-
processed data applicable to training phase, we believe that there will be
better approaches. For example, we can implement a library to convert
images directly to Tensorflow dataset or other types which match to deep
learning framework running on top of Horovod.

The last question is how to improve the performance of our U-net deep
learning model even though our research has not concentrated on deep learn-
ing performance tuning. One of trendy approaches is ”Transfer learning”
where pre-trained models are used as the starting point on computer vision
tasks given the vast compute and time resources required to develop neural
network models on the problem.

44

Bibliography

[1] Skymind. DL4J Distributed Training: Technical Explana-
tion. https://deeplearning4j.org/docs/latest/deeplearning4j-
scaleout-technicalref#parameteravg, 2018. [Online; accessed
13/03/2019].

[2] Je↵ Hale. Deep learning framework power scores 2018.
https://towardsdatascience.com/deep-learning-framework-
power-scores-2018-23607ddf297a, 2018. [Online; accessed
18/06/2019].

[3] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy dis-
tributed deep learning in tensorflow. arXiv preprint arXiv:1802.05799,
2018.

[4] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Je↵rey Dean, Matthieu Devin, Sanjay Ghemawat, Geo↵rey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine learn-
ing. In 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pages 265–283, 2016.

[5] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,
Sean Owen, et al. Mllib: Machine learning in apache spark. The Journal
of Machine Learning Research, 17(1):1235–1241, 2016.

[6] Je↵rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In Advances in neural informa-
tion processing systems, pages 1223–1231, 2012.

[7] Geo↵rey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mo-
hamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Brian Kingsbury, et al. Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal processing magazine, 29,
2012.

[8] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algo-
rithms for clusters of workstations. Journal of Parallel and Distributed
Computing, 69(2):117–124, 2009.

[9] Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold
Reinwald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and

45

Shivakumar Vaithyanathan. Systemml: Declarative machine learning
on mapreduce. In 2011 IEEE 27th International Conference on Data
Engineering, pages 231–242. IEEE, 2011.

[10] Nikko Strom. Scalable distributed dnn training using commodity gpu
cloud computing. In Sixteenth Annual Conference of the International
Speech Communication Association, 2015.

[11] Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-source deep-
learning toolkit. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 2135–2135.
ACM, 2016.

[12] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit
stochastic gradient descent and its application to data-parallel dis-
tributed training of speech dnns. In Fifteenth Annual Conference of
the International Speech Communication Association, 2014.

[13] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. On paral-
lelizability of stochastic gradient descent for speech dnns. In 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 235–239. IEEE, 2014.

[14] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet:
A flexible and e�cient machine learning library for heterogeneous dis-
tributed systems. arXiv preprint arXiv:1512.01274, 2015.

[15] Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt
Keutzer. Fireca↵e: near-linear acceleration of deep neural network train-
ing on compute clusters. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2592–2600, 2016.

[16] James B Campbell and Randolph H Wynne. Introduction to remote
sensing. Guilford Press, 2011.

[17] Natural Resources Canada. Fundamentals of Remote Sensing
- Introduction. https://www.nrcan.gc.ca/earth-sciences/
geomatics/satellite-imagery-air-photos/satellite-imagery-
products/educational-resources/9363, 2015. [Online; accessed
13/03/2019].

[18] Martin Längkvist, Lars Karlsson, and Amy Loutfi. A review of un-
supervised feature learning and deep learning for time-series modeling.
Pattern Recognition Letters, 42:11–24, 2014.

[19] The University of New South Wales. Machine Learning Tutorials.
https://www.cse.unsw.edu.au/~cs9417ml/MLP2/BackPropagation.
html. [Online; accessed 13/03/2019].

[20] Nitish Srivastava, Geo↵rey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural net-
works from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

46

[21] Justin Johnson and Andrej Karpathy Stanford. Cs231n: Convolutional
neural networks for visual recognition.

[22] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Mar-
tin Riedmiller. Striving for simplicity: The all convolutional net. arXiv
preprint arXiv:1412.6806, 2014.

[23] Vincent Dumoulin and Francesco Visin. A guide to convolution arith-
metic for deep learning. arXiv preprint arXiv:1603.07285, 2016.

[24] Shervin Ardeshir, Kofi Malcolm Collins-Sibley, and Mubarak Shah. Geo-
semantic segmentation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2792–2799, 2015.

[25] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convo-
lutional networks for biomedical image segmentation. In International
Conference on Medical image computing and computer-assisted inter-
vention, pages 234–241. Springer, 2015.

[26] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evalu-
ation of rectified activations in convolutional network. arXiv preprint
arXiv:1505.00853, 2015.

[27] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler,
et al. The hadoop distributed file system. In MSST, volume 10, pages
1–10, 2010.

[28] Je↵rey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113,
2008.

[29] Lei Gu and Huan Li. Memory or time: Performance evaluation for iter-
ative operation on hadoop and spark. In 2013 IEEE 10th International
Conference on High Performance Computing and Communications &
2013 IEEE International Conference on Embedded and Ubiquitous Com-
puting, pages 721–727. IEEE, 2013.

[30] Spark standalone mode. https://spark.apache.org/docs/latest/
spark-standalone.html. [Online; accessed 18/06/2019].

[31] Cheng O. Gruener, R. and Y. Litvin. Introducing petastorm: Uber
atg’s data access library for deep learning. https://eng.uber.com/
petastorm/, 2018. [Online; accessed 18/06/2019].

[32] Apache Parquet. https://parquet.apache.org/. [Online; accessed
18/06/2019].

[33] Christian Szegedy, Vincent Vanhoucke, Sergey Io↵e, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

47

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778, 2016.

[35] DAS-4. https://www.cs.vu.nl/das4/. [Online; accessed 18/06/2019].

[36] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple
linux utility for resource management. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 44–60. Springer, 2003.

[37] Emmanuel Maggiori, Yuliya Tarabalka, Guillaume Charpiat, and Pierre
Alliez. Can semantic labeling methods generalize to any city? the in-
ria aerial image labeling benchmark. In 2017 IEEE International Geo-
science and Remote Sensing Symposium (IGARSS), pages 3226–3229.
IEEE, 2017.

[38] Andrew NG. Improving Deep Neural Networks: Hyperparameter tun-
ing, Regularization and Optimization. https://www.coursera.org/
learn/deep-neural-network. [Online; accessed 18/06/2019].

[39] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pages 2–
2. USENIX Association, 2012.

[40] William Gropp, Rajeev Thakur, and Ewing Lusk. Using MPI-2: Ad-
vanced features of the message passing interface. MIT press, 1999.

[41] David Martin Powers. Evaluation: from precision, recall and f-measure
to roc, informedness, markedness and correlation. 2011.

[42] Md Atiqur Rahman and YangWang. Optimizing intersection-over-union
in deep neural networks for image segmentation. In International sym-
posium on visual computing, pages 234–244. Springer, 2016.

[43] Pang-Ning Tan. Introduction to data mining. Pearson Education India,
2018.

[44] Yann LeCun. The mnist database of handwritten digits. http://yann.
lecun. com/exdb/mnist/.

[45] Liu Jiang, Bing Li, and Meina Song. The optimization of hdfs based
on small files. In 2010 3Rd IEEE international conference on broadband
network and multimedia technology (IC-BNMT), pages 912–915. IEEE,
2010.

48

