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Abstract

This study focuses on developing and implementing an evaluation benchmark

designed to assess the performance of INFO, an intelligent agent to answer

engineering-related questions based on Retrieval-Augmented Generation (RAG)

systems. By moving beyond traditional metrics and adopting innovative meth-

ods, we created a domain-specific dataset for benchmarking and developed

4 metrics to comprehensively evaluate INFO. The evaluation results provide

deeper insights into the system’s effectiveness and performance in real-world

scenarios. The result of INFO reveals high accuracy and relevance in answer

generation. Through evaluation, we found areas for improvement, like in the

retrieval phase and document parsing methods. The benchmark has high scala-

bility since it is adaptable to other systems, and can guide future enhancements,

making it a significant tool for ongoing development and optimization.
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1

Introduction

Large Language Models (LLMs) have revolutionized various applications across fields from

academic achievements to industry scenarios. Even while these models have demonstrated

impressive overall ability, they still face several difficulties, such as factual hallucinations

(1) and the lack of domain-specific expertise (2).

Retrieval Augmented Generation (RAG) (3) empowers LLM models by incorporating

external knowledge to enhance the relevance of the results and the availability in indus-

trial scenarios. Especially for industries that need domain-specific expertise and to keep

data confidential, embedding relevant data sources is crucial to let LLMs generate more

accurate and reliable responses. For example, consider an engineer who needs to inquire

about a company’s internal documents. A conventional LLM trained solely on open-source

data would struggle to provide an accurate response due to the lack of specific internal

knowledge. However, integrating RAG can equip the LLM with essential context, thereby

enabling it to generate more precise and reliable responses while ensuring data security.

To address this, we have developed an intelligent question-answer system named INFO,

utilizing GPT-3.5-Turbo enhanced with RAG to integrate external engineering knowledge

specifically. This system allows engineers to use natural language to efficiently query and

retrieve necessary information, bypassing the traditional method of manually searching

through extensive datasets or relying on inefficient search techniques. Consequently, this

innovation not only conserves valuable labor time but also significantly improves the engi-

neers’ experience.

Despite the assistance provided by RAG, Large Language Models (LLMs) continue to

face challenges related to unreliable generation. Bian et al. (4) note that LLMs may

generate responses that deviate from external information due to the influence of inaccurate

contextual data. As a result, LLMs struggle to consistently deliver accurate and reliable
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1. INTRODUCTION

responses. A comprehensive study that examines the impact of these factors on RAG,

as well as strategies to enhance model resilience against such setbacks, remains lacking.

Therefore, there is a pressing need to develop an evaluation framework for RAG that

effectively assesses both the utilization of external information and the robustness against

its inherent limitations.

Despite the extensive development of benchmarks for evaluating Large Language Models

(LLMs), current efforts largely focus on constructing benchmarks suited for generic LLM

applications. For example, the comprehensive evaluation framework developed by Liang

et al. (5) constructs benchmarks across multiple languages, various scenarios, and diverse

tasks. While such approaches broaden the scope of LLM evaluation, they frequently do

not meet the specific requirements of domain-specific tasks, particularly within industrial

settings.

Industrial applications of RAG systems often necessitate integration with specialized

databases containing proprietary or niche information that is typically absent from general-

purpose databases like Wikipedia. This requirement for specificity demands benchmarks

that are customized not only to the query format but also to the unique content specific to

the domain. Such tailored benchmarks ensure that evaluations truly reflect the system’s

effectiveness in practical industrial scenarios, thus addressing the nuanced needs of these

applications.

1.1 Problem and Research Question

Consequently, there is a pronounced need for an evaluation framework that accommodates

both the general capabilities of LLMs and the specific challenges presented by domain-

specific applications. Developing such a framework would permit a more precise assessment

of RAG-enhanced systems, furnishing valuable insights into their operational effectiveness

and informing necessary refinements. This becomes particularly vital for systems where the

accuracy and relevance to the domain are critical, highlighting the necessity for benchmarks

that match the sophistication and specificity of the technologies they aim to evaluate.

From this perspective, the research question is what type of metrics and how can the

evaluation tool quantify the performance of infoWiz?

INFO has substantially enhanced the efficiency of engineers by enabling rapid access to

accurate and relevant information, thereby revolutionizing the traditional method whereby

engineers relied solely on manual searches guided by memory. However, no system is
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infallible, and INFO has not yet achieved 100% accuracy. This limitation raises two critical

questions:

Performance Assessment:

• How can we accurately scale the performance of INFO?

System Enhancement:

• What strategies can be employed to refine INFO further?

For the system to provide reliable service, it is crucial to establish a quantitative per-

formance score prior to deployment in real-world scenarios. Moreover, employing a multi-

dimensional evaluation framework will not only pinpoint current limitations but also guide

targeted enhancements, ensuring that improvements are both purposeful and effective.

1.2 Contribution

This research makes several pivotal contributions to the field of retrieval-augmented gener-

ation for Large Language Models (LLMs), specifically within domain-specific applications:

• Establish a product-specific benchmark for INFO: We created a tailored dataset for

the INFO system which specifically contains domain-related questions and golden

answers.

• Bring insights for future improvements based on quantitative assessment: This method

extends beyond traditional evaluations by multidimensional qualitative analyses, thus

providing a thorough understanding of the system’s performance across multiple as-

pects.

• Develop a reusable evaluation pipeline for similar products: Our framework is de-

signed for adaptability across various domain-specific RAG systems, offering a scal-

able solution for evaluating performance metrics in diverse settings.

This study is organized as follows: Section 2 introduces the background for the study,

including LLM, RAG and other related techniques. Section 3 introduces and compares

related works of our study. Section 4 introduces the methodology we have used and the

experiment. Then, Section 5 displays the result and visualizes it to analyze it. Section 6

will discuss the findings in the result and discuss some remaining problems for future work.

Finally, we draw a brief conclusion in Section 7 by summarizing the main contributions.
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Background

2.1 Large Language Models (LLMs)

LLMs are large-scale, pre-trained, language models based on artificial intelligence tech-

nology. With language modeling, machines can understand and communicate in human

language. This research has gained wide attention and can be regarded as 4 main phrases

as in Figure 2.1. (6) We set the time mostly based on the publication date of the most

representative research at each step, therefore the period for each stage may not be entirely

correct.

• Statistical language models (SLMs). Originating in the 1990s, SLMs are primarily

built on the principles of statistics. The dominating idea is based on Markov chain

models, e.g., predicting subsequent words based on recent contextual history. The

SLMs with a fixed context length n are typically known as n-gram models (7). It

predicts the next word based on the likelihood of occurrence of a sequence of words

and estimates the probability of text as the product of their word probabilities.

SLMs have been widely used in many information retrieval (IR) and natural language

processing (NLP) tasks. However, natural language is always sparse so n-gram models

can not efficiently capture the pattern in diverse and various texts. N-gram models

also face the curse of dimensionality where estimation of high-order models becomes

computationally infeasible due to the exponential growth in the number of possible

word combinations.

• Neural language models (NLM). NLMs represent a more advanced phase in the de-

velopment of language models, where neural networks such as multi-layer perceptron

5



2. BACKGROUND

Figure 2.1: Language models (LM) path of evolution

(MLP) and recurrent neural networks (RNNs) (8) are employed. For the shortcom-

ings in n-gram models, the work in (9) solves the curse of dimensionality by introduc-

ing a distributed representation of words (commonly referred to as word embeddings).

This technique fundamentally changed the way context is processed by aggregating

features into distributed word vectors. Building on the idea of distributed represen-

tations, word2vec framework (10) was introduced specifically designed to efficiently

compute word embeddings using neural networks. These researchers first introduced

the use of language models for representation learning (beyond word sequence mod-

eling) and had a huge impact on NLP field.

• Pre-trained language models (PLM). Pre-trained Language Models (PLM) have set

a new benchmark in language processing with the advent of ELMo (11). Different

from word2vec where one word corresponds to one fixed vector, ELMo utilizes a bidi-

rectional LSTM network to generate dynamic contextualized word representations.

Furthermore, BERT was invented (12) with transformer (13) architecture, mark-

ing a significant evolution by enabling bidirectional training on extensive unlabeled

datasets. These models serve as general-purpose semantic features that significantly

boost the performance of NLP tasks. Following this study, various models like GPT-

2 (14) and BART (15) emerged, establishing a robust "pre-training and fine-tuning"

paradigm widely embraced in the field. It is often necessary to fine-tune the PLM to

accommodate different downstream tasks.

• Large language models (LLM). In PLMs, scaling model size or data size usually

improves model ability on downstream tasks following scaling law (16). Even though
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2.2 Retrieval Augmented Generation (RAG)

just increasing model and data sizes and maintaining similar structure, these models

achieve unprecedented processing capabilities. They exhibit unique emergent abilities

that surpass their predecessors in handling complex tasks, including effective few-shot

learning. Consequently, the academic circles decided to name these large PLMs as

"large language models". LLMs now specifically refer to these extensive models (17)

(18), which continue to attract substantial research interest. Notably, applications

like ChatGPT showcase remarkable conversational skills with humans, highlighting

the practical potential of LLMs. This surge in research and development is reflected

in the increasing volume of related academic publications post the release of such

models.

In summary, Large Language Models (LLMs) derive from years of language modeling

research than a brand-new concept. Now LLMs show significant problem-solving ability.

These days, the AI community is being greatly impacted by LLMs. The problem-solving

ability and development of LLMs are revolutionizing the fields of AI research. To a certain

extent, LLMs can be used as general-purpose language task solvers in NLP, and the research

paradigm is moving in favor of LLM utilization.

2.2 Retrieval Augmented Generation (RAG)

However, despite the success of LLMs, they still face challenges. The issues are, e.g., LLMs

knowledge is usually out of date (19), sometimes generates hallucination content (1), also

the lack of domain-specific expertise (2).

To address these limitations, The concept of Retrieval-Augmented Generation (RAG)

(3) was proposed in 2020 and combines a pre-trained retriever for the first time with a

pre-trained seq2seq model with end-to-end fine-tuning. It was after NLP moved into the

era of LLMs in 2022 that RAG emerged as a compelling solution, especially after ChatGPT

was proposed as shown in Figure 2.2 (20).

In common definition, RAG has two main phases: retrieval and generation. The retriever

utilizes an embedding model to retrieve relevant documents based on the problem. The

retriever is the core component of the RAG framework, responsible for retrieving relevant

information from an extensive knowledge base. The retriever analyzes the user’s input

query and retrieves the most relevant paragraphs. The generator then uses these retrieved

contexts to generate answers based on the LLM. It is responsible for transforming the

search results into natural and fluent text. Its input includes not only traditional contextual

7



2. BACKGROUND

Figure 2.2: Technology tree of RAG research

information but also relevant text snippets obtained by the retriever. This helps LLMs to

deepen their understanding of the context of the question and generate richer responses.

Because of the high cost of training high-performance large models, academia and in-

dustry have attempted to enhance model generation by incorporating RAG modules in

the inference phase to integrate external knowledge in a more cost-effective way. RAG

provides a more efficient solution for complex knowledge-intensive tasks in large models

by optimizing key parts such as retrievers and generators. RAG improves the relevancy of

the answers while decreasing the rate of mistakes in LLMs.

The scope of RAG search is also gradually expanding. Early RAG focused on open-

source, unstructured knowledge, e.g., Wikipedia. As the scope of search expands, struc-

tured, high-quality data can also be used as a knowledge source. Besides RAG development

timeline, in Figure 2.2, the tree illustrates two more aspects of RAG development:

• Augmentation data: Data sources include unstructured data, structured data and

LLM-generated content.

• Augmentation stage: Retrieval-Augmented Generation (RAG) can enhance perfor-

mance at three stages: pre-training, fine-tuning, and inference, represented as three

branches in the tree.
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2.3 Prompt Engineering

Pre-training involves initially training a model on a large-scale generalized dataset to

learn a wide range of linguistic patterns and knowledge. The inception of RAG coincided

with the rise of the Transformer architecture, aiming to combine broader knowledge with

pre-training models for more robust representations. Inference occurs when a trained model

generates predictions based on new input data. With the advent of LLMs, RAG research

has focused on exploiting the powerful in-context learning (ICL) capabilities of LLMs to

tackle knowledge-intensive tasks. By providing better information, RAG enhances LLMs’

abilities to handle more complex tasks during inference. Fine-tuning is the further training

of a pre-trained model for a specific task or domain to optimize its performance in that

particular application. As LLMs have developed and found widespread use, domain-specific

retrieval has improved accuracy and relevance by tailoring information to specific tasks.

Overall, RAG ensures that the generated content is not only contextually accurate but

also deeply aligned with specialized knowledge, making it particularly suitable for industry

scenarios. Moreover, RAG models have achieved great results in multiple tasks such as

domain-specific question answering (21), which will be discussed in the following chapter.

2.3 Prompt Engineering

Prompt engineering has been an important method for improving LLM performance. This

method makes clear, task-specific clues for computers in natural language, and represen-

tative examples are chosen with care to be included in the prompt. Without changing the

parameters, the output of LLMs can improved by strategically designed prompts, enabling

them to excel across diverse tasks and domains. It is important because of its ability to

steer responses. Therefore LLMs can be more flexible and applicable in a wider range

of industries. Next, we will provide a brief overview of prompt engineering techniques,

spanning from basic to some latest advanced ones.

• Zero-Shot Prompting. No need for training on massive amounts of data, LLMs can

perform some zero-shot tasks (22). In the prompt, there are no additional examples

to guide the model. The model will only leverage its knowledge to produce output

based on the prompt.

• Few-Shot Prompting. Few-shot prompting enhances model understanding by provid-

ing a limited number of examples (23). This technique is particularly effective for

complex tasks, where even a small number of high-quality examples can significantly

improve performance. However, longer inputs lead to increased token consumption,

9



2. BACKGROUND

and the impact of prompt selection and composition on the results is still not fully

understood.

• Chain-of-Thought (CoT) Prompting. The two techniques mentioned above belong to

In-Context Learning (ICL). The core idea of ICL is to learn from analogies, mimicking

the human learning process. Initially, ICL is given some examples that form the

context of the task. These examples are written in natural language templates. Then,

ICL connects the query question (i.e., the input) with a contextual presentation (some

relevant cases) to form the input with hints, and feeds it into the language model for

prediction. However, this method has limitations such as unstable. To compensate

for these shortcomings, Chain-of-Thought (CoT) adds thoughts in the middle, in each

step (24). Unlike traditional ICL, which provides more input to generate output, CoT

involves predicting the "thought process" (referred to as rationale in academic fields)

along with the answer. These thought processes are used as hints to get better

answers and do not need to be shown for actual use. Instead of rigidly providing

sample questions and answers, intermediate reasoning sessions are given so that the

model learns the logic of reasoning and thinking in the intermediate process. This

method not only mimics human learning process as learning from examples but more

closely to the core of human intelligence, human cognitive processes.

However, high-quality examples which needed in CoT usually involve manual efforts.

These could lead to suboptimal results. To mitigate this limitation, Auto-CoT (25)

was introduced. As the name suggests, Auto-CoT automatically generates rationales

by instructing LLMs with a "Let’s think step-by-step" prompt. This automatic

process may contain errors, so it is important to build diverse demonstrations. First,

Auto-CoT divides questions into clusters. Then it selects a representative question

from each cluster to generate its reasoning chain. The process is illustrated in Figure

2.3.

Auto-CoT has even better results than manual methods. One interpretation is that

Auto-CoT does not apply a fixed template. Instead, each task generates its own set

of examples. This is because the problem sets differ, leading to more various results.

• Self-Consistency. One of the more advanced techniques than CoT prompting is self-

consistency (26). First, it uses a set of huamn set CoT examples as prompt as LLMs

input. Then it samples a set of candidate outputs from the LLM to generate a

set of different candidate inference paths. Eventually, it selects the most consistent

10



2.4 Question-Answer System

Figure 2.3: Overview of the Auto-CoT method

answer among multiple reasoning paths. By aggregating multiple responses to the

same prompt, self-consistency ensures that the final answer to an input represents

a consensus vote, which tends to be more reliable and accurate than simple CoT

completions on their own. Even when regular CoT is ineffective, self-consistency still

be able to improve results.

2.4 Question-Answer System

Question Answering System (QA system) is a NLP technology designed to automatically

answer users’ questions. These systems utilize various techniques and algorithms to under-

stand the users and extract relevant answers from databases, documents, or other sources

of information.

According to the type of implementation, the QA system can be categorized into different

approaches (27) as shown in Figure 2.4.

• Information retrieval-based QA. These systems answer questions by utilizing search

engines to exploit the relevant documents or paragraphs that contain the target

answers. It leverages information retrieval (IR) techniques, e.g. keyword search to

identify the most likely relevant context.

• Knowledge-based QA. These systems search for answers from structured data sources

(as a knowledge base) and exploit database queries to find accurate responses. Be-

cause the knowledge is well-curated, this approach is generally more dependable than

11
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Figure 2.4: Types of QA system

other QA procedures. However, the depth of the knowledge base and the efficiency

of the techniques employed to search and retrieve data may be factors limiting its

performance. Furthermore, creating and keeping up a knowledge base can be highly

costly.

• Generative QA. These systems directly generate answers based on users’ questions

using advanced natural language processing techniques. Because they can provide

answers that are more human-like and cover a wide range of queries, generative

quality assurance systems are quite strong, making them ideal for use in chatbots.

However, the complexity of the model and the caliber and variety of the training data

may have an impact on how well they work. It is also important to remember that,

to enhance the overall effectiveness, generative QA systems are frequently used in

conjunction with other QA methodologies, such as knowledge-based or information

retrieval-based QA.

• Hybrid QA. These systems use a mix of resources, and they often represent the

combination of the previous three listed approaches. Hybrid QA systems leverage

the strengths of each method to improve accuracy and response quality. Additionally

adaptable, it can adjust to various inquiry kinds and degrees of complexity. However,

12



2.4 Question-Answer System

compared to employing a single QA approach, planning and deploying a hybrid QA

system might be more difficult and resource-intensive.

In addition to classifying QA systems based on their implementation approach, their

foundational features can be presented from three perspectives: domain type, system type,

and question type.

If classified by domain type, QA systems can be close-domain or open-domain. Open-

domain systems convert all-natural language questions into structured queries, while closed-

domain systems are pre-defined to accept just specific sorts of questions.

From a system-type perspective, analysis shows that whereas open systems are generally

accessible and widely used due to their enormous base of global contributors, closed systems

are dependent on internal knowledge bases.

When it comes to question types, QA systems can be divided into three categories:

chat systems, answer-type systems, and task-oriented systems. Chat systems are designed

to provide fun and personalized replies, engaging users in casual and often entertaining

conversations. Answer-type systems provide responses based on a knowledge base, deliv-

ering specific answers to user queries. Task-oriented systems are used to complete specific

user tasks by utilizing semantics ability. Task-based and answer-based systems often fea-

ture single-round interactions, while chat systems are characterized by unlimited, ongoing

replies. Our INFO system is a domain-specific hybrid QA system based on Retrieval-

Augmented Generation (RAG) with Large Language Models (LLMs), typically capable of

solving users’ problems in single-round interactions.

13
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Related Work

As we mentioned before, RAG can alleviate the challenges of LLMs that they have out-

of-date knowledge and hallucinate content. However, in real-world scenarios, the retrieved

text inevitably contains noise. And lead to inaccurate answers in output. To avoid that

and improve the RAG target, we need a comprehensive and systematic evaluation and

analysis of RAG with LLM.

Several studies have focused on evaluating the performance of RAG systems in various

contexts. For instance, ReQA by Ahmad et al. (2019) (28) offers an open-source, end-

to-end testbed for evaluating RAG systems’ performance on QA tasks, providing valuable

insights into how these systems perform in practical applications.

When evaluating RAG pipelines under white box conditions, it is often useful to assess

each component’s performance separately. For example, eRAG (29) provides a focused

evaluation on the retrieval part of the RAG system, allowing for targeted improvements in

this area. provides a separate evaluation only on the retrieval part. However, the structure

of RAG is not stable and easy to change. So it is more practical to evaluate in a black

box way. However, since the structure of RAG systems can be quite dynamic, it is often

more practical to conduct evaluations in a black-box manner, assessing the overall system

performance rather than individual components.

Detecting hallucinations in LLM-generated content is a significant area of research. Ji et

al. (2023) studied methods to detect hallucinations in LLMs (30). Similarly, Zhang et al.

(2023) introduced a method using few-shot prompts to predict the faithfulness of generated

content (31). However, standard prompt templates often struggle to detect hallucinations

effectively. Advanced models like GPT-4 can be used to enhance this process. For instance,

SelfCheckGPT (32) by Manakul et al. (2023) evaluates faithfulness by sampling multiple

15
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answers, operating on the principle that factual answers are more stable and semantically

similar across different samples.

Evaluation of RAG systems can also be approached from different angles. Chen et al.

proposed the RGB framework (33), which includes four assessment dimensions, providing

a more nuanced evaluation of RAG systems’ performance.

Quantitative evaluation methods are often more robust than purely semantic ones. For

example, GPT can be directly prompted to assess specific aspects of an answer by providing

a score between 0 and 100 or using a 5-star scale. Wang et al. (2023) demonstrated

this method, highlighting its sensitivity to prompt design (34). Seungone et al. (2024)

addressed this issue by developing customizable prompt templates, enabling comprehensive

evaluations across different aspects of RAG systems(35).

Most approaches rely on the availability of one or more reference answers. RAGAS

(36) leverages reference answers to calculate correctness, providing a structured way to

assess the accuracy of generated answers. And ARES (37) is an automated evaluation

framework that incorporates reference answers to offer a detailed analysis of RAG systems’

performance.

16
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Methodology

We want to evaluate the performance of INFO and design an evaluation pipeline to achieve

this goal. We built a benchmark to measure INFO’s performance using several quantitative

metrics. This chapter outlines the steps involved in creating the benchmark and dataset,

implementing the evaluation metrics, and conducting the experiments.

4.1 System Architecture of INFO

Before diving into the evaluation details, it’s essential to understand the structure of INFO.

INFO leverages a combination of the GPT-3.5 model and a Retrieval-Augmented Genera-

tion (RAG) pipeline to answer user queries. INFO’s structure is shown in 4.1. The system

consists of two main components: the Retriever, which retrieves the most relevant nodes

from the knowledge base. And the Generator, which generates answers based on the con-

text provided by the retriever. Additionally, other components also support these main

functions. We will introduce each component in detail in the following sections.

• Pre-processing phase. Before querying the system, it is necessary to convert the

engineering-relevant support documents into a format suitable for efficient retrieval.

The first step in the procedure is to divide the supporting documents into "chunks",

which are equal-sized sections. To ensure that each chunk has necessary context

information, chunks overlap with each other. The overlap helps to keep context

information continuous between adjacent chunks.

Then we embed these chunks into vector representations, and store them in a vector

database, enabling quick and efficient similarity searches.
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Figure 4.1: INFO structure

• Retrieval phase. When using this system, a user should submit a query via the

user interface (UI). First, the query is embedded into a vector. The retriever then

compares this query vector with all the vectors in the vector database. By calculating

the similarity score between vectors, the retriever identifies and retrieves the top-k

most relevant document chunks.

• Generation phase. The pipeline then feeds the retrieved chunks into LLM along with

the user query. To get better performance of LLM, some certain, pre-defined prompt

is automatically added to the input. The prompt can include specific instructions

such as role setting and format control.

• Response phase. With all the mentioned materials, the LLM processes the combined

input and generates a final response. This response is then delivered back to the user

through the UI.

Table 4.1 are hyperparameters that have been set in advance in the pipeline.

Considering the maximum limits of 4096 tokens of the text input of INFO LLM model

GPT-3.5-Turbo (38), we set the chunk size as 1024 tokens to allow the model to process

multiple chunks simultaneously. Additionally, we set a 20% overlapping rate which means

each chunk shares 20% of its content with the previous one. This overlap ensures that

INFO maintains a continuous understanding of the provided text.

18



4.2 Dataset Generation

Table 4.1: Hyperparameters and their values

Hyperparameter Value
Chunk size 1024
Overlapping rate 20%
Retrieve top k 3
Embedding model text-embedding-ada-002
LLM Microsoft Azure OpenAI GPT

3.5-turbo

For INFO, retrieving more chunks (k) increases the likelihood of capturing the relevant

context and obtaining comprehensive information. However, increasing k also consumes

more resources. Therefore, to balance performance and efficiency, we set k=3 to retrieve

the top 3 most relevant chunks with the highest similarity scores.

Moreover, we choose the text-embedding-ada-002 model as the embedding model. Em-

bedding models are designed to convert text, such as words or paragraphs, into numer-

ical vectors, enabling computers to process and understand natural language. The text-

embedding-ada-002 model was published in December 2022. It is particularly efficient,

assuming approximately 800 tokens per page and offering 12,500 pages per dollar. It out-

performs all old embedding models on multiple tasks such as sentence similarity tasks

till December 2023. This makes it the most cost-effective state-of-the-art (SOTA) model

available at the time.

Notably, the hyperparameters we selected are preliminary and subject to future opti-

mization. For example, we can increase the number of retrieved chunks (k) to improve the

performance of the retrieval phrase. Therefore, we desperately need a robust benchmark

to provide quantitative feedback, which will facilitate the evaluation of future adjustments

and guide the continuous evolution of INFO. This benchmark will enable us to measure the

impact of various parameter changes systematically, ensuring that INFO’s performance is

optimized for real-world scenarios.

4.2 Dataset Generation

To quantify the performance of INFO, it is essential to build a benchmark, which requires

a dataset. However, because INFO is currently in the testing stage, we do not have a real

user dialogue history. Thus, we create a tailored dataset derived from specific domain-

related documents called Unifi ICT. We need to generate both ground truth QA pairs and
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INFO-generated answers for evaluation use. Unifi is the company’s internal management

system. It is the central nexus for policies, processes, and procedures that define how

engineers perform daily work. The formats are a mixture of DOCX and PDF, featuring a

blend of textual and tabular content.

It contains 3 different topics: CL, GL and WI. GL stands for guideline, which guides

to determine a course of action. Guidelines are supporting documents intended to provide

information or commentary on any procedure or process for the completion of a task or an

activity identified in procedures or processes. WI means Work Instruction which contains

detailed instructions on how to perform a task or an activity. CL means Checklist, which is

provided to ensure completeness of a task, activity, or deliverable and is part of the quality

control procedure.

In total, there are 58 DOCX files in the source files, and we list 5 example files in the

data source in Table 4.2.

Table 4.2: Example names of files

Document Type Filename Description
Checklist ENG-ICT-CL-

00001.83_Maintenance
Checklist for routine main-
tenance inspections

Guideline ENG-ICT-GL-
00001.03_Engineering Procedures

Document outlining
standard engineering pro-
cedures and practices

Guideline ENG-ICT-GL-00101.29_Safety
Compliance

Document outlining safety
standards and compliance
protocols

Work Instruction ENG-ICT-WI-00001.77_Assembly
Procedures

Detailed instructions for
the assembly of compo-
nents used

Work Instruction ENG-ICT-WI-00101.05_Quality
Inspection

Instruction for quality
inspection of engineering
components

Given INFO’s typical one-round question-answer (QA) interaction in real scenarios,

building question-answer pairs is both efficient and sufficient for evaluating its perfor-

mance. Generating these QA pairs manually is not feasible due to the extensive time

and cost involved, so we use automated generation. GPT-4.0 has notable performance

in text generation. It can understand context and generate coherent, contextually accu-
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rate responses, making it an ideal model to generate relevant questions and corresponding

answers from the source files.

Table 4.3 shows the number of QA pairs derived from each topic of the documents.

Table 4.3: Dataset Compose

Document Type QA Pair Number
Checklist 105
Guideline 237
Work Instruction 222
Total 564

Therefore, we decided to utilize GPT-4.0 to generate query-answer pairs from the cor-

porate support documents. These pairs, generated by GPT-4.0, serve as the ground truth

for evaluation. On the one hand, the ground truth QA pairs are crucial for establishing

a reference standard. On the other hand, INFO-generated answers serve as the primary

subjects of evaluation. By comparing these responses to the ground truth QA pairs, we

can quantitatively assess INFO’s performance on different aspects.

1. Input Documents: The corporate support documents, primarily in DOCX format,

are input into GPT-4.0.

2. Generate Golden QA Pairs: GPT-4.0 processes these documents to generate several

QA pairs relevant to the content of each document. For each document, GPT-

4.0 creates queries (questions) based on the information within the document and

provides corresponding answers. And these answers are served as ground truth. They

are used as the reference standard to evaluate the performance of INFO.

3. Get INFO Answer: The queries are then fed into INFO, and INFO’s responses are

collected.

The detailed dataset generation pipeline is shown in Figure 4.2.

Combining all the golden QA pairs and answers generated by INFO together, we could

get a comprehensive dataset with features prepared for evaluation. The features are shown

in Table 4.4.
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Figure 4.2: Dataset generation pipeline

Table 4.4: Features and Meaning

Column Name Meaning
query generated query based on input file
referencecontexts specific paragraph in input file
referenceanswer golden answer
referenceanswerby generate golden answer by GPT-4-32k
queryby generate query by GPT-4-32k
querysourcef ilename the input file name
generatedanswer generate answer by InfoWiz
top1context context with top 1 relevancy score
INFOcontextrelevancy relevancy score of the context used for generating

answer

4.3 Evaluation Strategy

Benchmarking is crucial for iterating over RAG systems. Having already created a dataset,

the next step is to design suitable metrics to measure the system’s performance. As we

mentioned in INFO system architecture, for a given question, the system first retrieves

some context and then uses it to generate an answer. We focus on particular 3 quality

aspects, which are the most important (36). These three aspects can be measured in a

fully automated way by prompting an LLM. In our implementation and experiments, all

prompts are evaluated using GPT-4.0, which has proven to be a reliable and unbiased

evaluator (39).

These three quality aspects form the RAG Triad, which combines three metrics to com-

prehensively assess a RAG system:

First, Faithfulness refers to the consistency of the generated answer with the facts as

measured against the given context. This is essential to detect and avoid hallucination,
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making sure that the retrieved context can serve as a trustworthy resource for the answer.

This aspect is crucial in applications where factual consistency is paramount, such as in

engineering domains.

Second, Answer Relevancy focuses on assessing the relevance of the generated answers

to the original query. It ensures that the response can satisfy the user’s query, enhancing

user experience.

Finally, Context Relevancy measures the relevance of the retrieved contexts and calcu-

lates the relevancy based on the questions and contexts. It is used to identify how much

irrelevant information is in the retried context. This is important due to the cost spent

during processing long context in LLMs. Additionally, long passages can reduce the ef-

fectiveness of LLMs in utilizing the provided information, particularly for details that are

buried in the middle of the passage (40).

Diagrammatically, the RAG Triad (41) looks like Figure 4.3.

Figure 4.3: Evaluation Triad

Moreover, we choose another metric Correctness which measures the accuracy of the

generated answers compared to the ground truth.

Together, these metrics measure if the RAG system retrieves accurate and relevant infor-

mation and generates coherent, contextually appropriate, and factually reliable responses.

This comprehensive evaluation strategy helps in identifying strengths and areas for im-

provement in INFO, guiding future iterations and enhancements.
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4.4 Evaluation Tool

We automate the measurement of metrics implemented by prompting GPT-4.0. However,

it is challenging to find the optimal prompt template for the evaluation.

We need to consider several key aspects to create efficient prompts. First of all, the

prompt should contain more reference materials, such as scoring rubrics and examples. To

prevent length bias, the prompt should maintain a uniform length among the reference an-

swers for each score. Last but not least, the score should follow a uniform score distribution

to prevent decision bias.

To address these challenges, we use llama-index build-in evaluation tools which gain

insights from Prometheus (35). Prometheus provides valuable perspectives on the impor-

tance of metrics and Chain-of-Thought (CoT) methods. While there are other evaluation

frameworks like RAGAS (36), Prometheus prompt templates are designed for detailed and

granular evaluation with human-like judgments, making them more intuitive. As we give

more attention to the final performance of evaluation than easy implementation, we choose

llama-index build-in evaluation tools.

We build each metric evaluation prompt to include four components for the input and

two components for the output.

• Input Instruction: This component provides the necessary context and directions for

the task, including the inputs such as the query or answer. Evaluation Questions:

These are specific tasks designed to guide the LLM’s evaluation process. Customized

Score Rubric: This rubric includes a description of the evaluation criteria and detailed

explanations for each scoring decision, such as binary scores or a scale (e.g., 1-5).

Reference Answer : Example answers that illustrate the scoring range from lowest to

highest, allowing the evaluator to compare the response with the reference to make

a scoring decision.

• Output Feedback : This provides a rationale for the given score, including a step-by-

step Chain-of-Thought (CoT) explanation to enhance the evaluation explainability.

Score: An integer score for the response, based on the specified criteria.

Faithfulness metrics are a typical example of implementing the template, shown in Figure

4.4.

The first two lines serve as evaluation questions, telling the LLM to determine whether

a given piece of information is supported by the provided context.
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Figure 4.4: Faithfulness prompt
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The scoring rubric is presented after. Since this is a binary scoring system, the rubric is

straightforward, requiring the model to output "YES" if any part of the context supports

the information, even if most of the context is unrelated, and "NO" otherwise.

To help LLM understand the task, the prompt includes examples. These examples

illustrate how to apply the criteria correctly by providing the concrete materials with

"YES" or "NO" answers. For example, the statement "Apple pie is generally double-

crusted" is supported by the context and thus correctly answered with "YES." Conversely,

the statement "Apple pies taste bad" is not supported by the context, leading to a "NO"

answer.

Finally, the prompt template concludes with placeholders for the input query and con-

text. These placeholders are where the actual query and context will be inserted during

evaluation.

4.5 Experiment Setup

The experiments were conducted on a Dell laptop with an Intel i7-8650U CPU and 16GB

RAM. The development environment included Visual Studio Code (VS Code) and Ana-

conda for version control. INFO utilized the GPT-3.5-Turbo model from Azure OpenAI

API, which has a 4096-token input context window. The embedding model used was text-

embedding-ada-002. For the evaluation, we used GPT-4.0-32k, which supports a 32.8K

token input context window, also utilizing text-embedding-ada-002.

We implemented Python scripts to automate from dataset generation to metrics evalua-

tion. In addition to the four primary metrics, we tracked the processing time for each step

to ensure traceability.

Each query-answer pair was evaluated using the defined metrics. We provide detailed

explanations for each metric using the prompt template below.

4.5.1 Answer Relevancy

This metric evaluates how well a response aligns with the user’s query. It assesses if the

response addresses the subject matter and the specific perspective or focus of the query.

Its evaluation questions are as follows:

• Does the provided response match the subject matter of the user’s query?

• Does the provided response attempt to address the focus or perspective of the user’s

query?
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Each aspect is scored on a binary scale, contributing to a maximum score of 2 points.

This scoring system enables a structured and quantifiable assessment of how relevant and

targeted the system’s answers are to the initial queries.

4.5.2 Context Relevancy

This metric measures how well the retrieved context from documents matches the user’s

query and whether it can independently provide a complete answer. Its evaluation ques-

tions are as follows:.

• Does the retrieved context match the subject matter of the user’s query?

• Can the retrieved context be used exclusively to provide a full answer to the user’s

query?

Each question is worth 1 point, with a detailed feedback mechanism that guides the

evaluator in providing a numeric score and written feedback. Meanwhile, this metric

allows for partial marks, so the score scales from 0.125 to 1.

4.5.3 Faithfulness

This metric assesses whether the information provided in a response is supported by the

given context, ensuring that the response does not include hallucinated or irrelevant de-

tails. Evaluators answer with "YES" or "NO" to indicate whether any part of the context

supports the information given in the response.

By utilizing these metrics, we can provide a comprehensive and automated evaluation of

INFO’s performance.

4.5.4 Correctness

This metric evaluates the accuracy and relevance of the generated answers relative to a

reference answer or the factual correctness inferred from context documents.

• Please tell if a given piece of information is supported by the context.

The evaluation process involves a holistic scoring system ranging from 1 to 5. Scores

of 1 indicate irrelevance or incorrect information. Intermediate scores (2-3) are given for

responses that are relevant but contain factual inaccuracies. Scores of 4 and 5 are reserved

for answers that are both relevant and factually accurate, with higher scores indicating

greater precision and completeness.
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Result

5.1 Process Time

In addition to the metrics, we also tracked processing time to reflect the efficiency and

scalability of this benchmark.

The query-answer generation phase by GPT-4.0 took 1 hour, 32 minutes, and 1 second.

Generating answers by INFO took 41 minutes and 3 seconds. The generation of four metrics

involved inputting all 564 QA pairs, with an execution time of 7 hours, 19 minutes, and

40 seconds.

The generation of answers by INFO is relatively fast compared to the overall evalua-

tion process. This suggests that while generating answers is efficient, the evaluation phase

requires more computational resources. However, in general, automation still saves a con-

siderable amount of time and money compared to manual efforts.

For instance, generating 564 QA pairs manually would require several human experts,

each spending hours reading documents, formulating questions, and crafting accurate an-

swers. Assuming an expert takes an average of 10 minutes to generate a high-quality QA

pair, it would take approximately 94 hours of human labor. This does not include the

additional time required for quality checks, which could make the whole generation take

more than 100 hours.

Additionally, the evaluation phase needs more human resources. Experts would need to

assess metrics like correctness and faithfulness of each set. Assuming an evaluation time of

5 minutes per set, this process would require approximately 47 hours. Combined with the

generation phase, the total manual effort would amount to around 167 hours, compared to

the automated processing time of just around 9 hours.
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Figure 5.1: Correlation of Metrics

Moreover, human experts are very expensive. If we estimate an hourly rate of €50

for a domain expert, the manual generation and evaluation process would cost around

€8,350 (167 hours x €50/hour). In contrast, the automated process would be substantially

cheaper, especially considering that the cost of running models like GPT-4.0 is significantly

lower, especially considering the scalability of different solutions.

5.2 Metrics Analysis

The evaluation of INFO’s performance is depicted in the following figures and analyses. We

utilized four metrics: Answer Relevancy, Context Relevancy, Correctness, and Faithfulness

to measure different aspects of the performance.

Firstly, we checked the correlation between the different metrics to understand their

interrelationships. The correlation matrix is shown in Figure 5.1. The scores indicate

that the metrics are not highly correlated with each other, implying that they can provide

unique insights into different aspects of the performance.

The metrics are representative, and to provide a more detailed view, we visualize the

results of each metric using box plots in Figure 5.2. These plots show different metrics

across different topics (CL, GL, and WI).
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[1] [2]

[3] [4]

Figure 5.2: Visualization of Results

• Answer Relevancy: This metric evaluates how well the responses align with queries.

As shown, the scores are consistent across the groups with minimal variation. So this

indicates that INFO provides uniformly relevant answers regardless of the topic.

• Context Relevancy: This metric assesses the relevance of the retrieved context to

the user’s queries. The box plot reveals greater variability in scores, particularly in

CL topic. This suggests that the retrieval phase may need improvement to capture

relevant contexts better.

• Correctness: This metric measures the accuracy of the generated answers. The scores

are generally high across all topics, indicating that INFO performs well in generating
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factually correct answers.

• Faithfulness: This metric ensures that the answers are grounded in the provided

context, avoiding hallucinations. The high scores across all topics indicate that INFO

can generate very accurate responses.

5.3 Comprehensive Score

These metrics scores are evaluated individually. However, to gauge overall performance, we

need a comprehensive score. In theory, Answer Relevancy, Correctness, and Faithfulness

are metrics to evaluate the generation phase, whereas Context Relevancy is for the retrieval

phase. If we set the full score as 1, we can split it evenly between the generation and

retrieval phases, assigning 0.5 to each. Within the generation phase, we distribute the

score evenly among the three metrics. Thus, the full score formula is shown in Equation

5.1.

fullscore =
answerrelevancy + correctness+ faithfulness

3
+ contextrelevancy (5.1)

Using this formula, the total score of INFO is 0.85, indicating a strong performance.

32



6

Discussion

The INFO evaluation benchmark shows large potential in leveraging AI’s ability to auto-

mate the process of evaluation. This discussion explores the implications of our findings

and the broader applicability of our benchmark.

The benchmark is designed to evolve alongside INFO, allowing it to be reapplied to

assess the effects of new features and improvements. By fine-tuning hyperparameters, such

as chunk size and overlapping rate, we can optimize context preservation and retrieval

accuracy based on specific document structures and query types.

The results of our evaluation have revealed several areas for potential improvement,

particularly in the retrieval phase and document parsing:

• Retrieval Phase: The lower scores in Context Relevancy suggest that the retrieval

phase needs enhancement. A possible way to improve that is by implementing ad-

vanced retrieval techniques, such as rerankers (42) or Hypothetical Document Em-

beddings (HyDE) (43) or others (44).

Rerankers: When using vector libraries for approximate semantic searches, re-

sults often capture only superficial semantics, prioritizing similarity in character se-

quences rather than deeper relevance. Rerankers within RAG can further evaluate

the relevance, refining results to ensure they are contextually pertinent. This method

evaluates the similarity beyond mere character matching, focusing on the contextual

relevance of the retrieved documents.

HyDE is particularly beneficial in this context because it addresses the challenge

of zero-shot dense retrieval. It involves generating hypothetical documents that cap-

ture the essence of a query, enhancing the retrieval system’s ability to find truly

relevant information rather than just semantically similar text.
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• Document Parsing: The lower scores for the CL topic indicate a need for a better way

to solve documents with many tables. Improving parsing methods for documents with

complex formats, such as those containing tables, can significantly enhance INFO’s

ability to process and understand these documents. One potential solution is the

implementation of llama-parse, a state-of-the-art tool for parsing tabular data. This

enhancement can be quantitatively assessed using the benchmark, providing clear

metrics for evaluating improvements.

The benchmark developed for evaluating INFO has broader implications beyond this

specific system. It can be generalized to different RAG systems with various datasets,

providing a standardized method for performance assessment. This flexibility ensures that

the benchmark remains relevant as INFO evolves and new systems are developed.
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Conclusion

We implemented a benchmark to evaluate INFO’s performance and establish a baseline

model result, aiding in identifying both strengths and areas for improvement. This bench-

mark provides valuable insights, particularly highlighting the need for enhancements in the

retrieval phase and document parsing methods.

The comprehensive evaluation of INFO using the designed benchmark has yielded signif-

icant insights into its performance. The analysis revealed high accuracy and relevance in

answer generation while identifying areas requiring enhancement, notably in the retrieval

phase. The benchmark’s adaptability to other systems and its potential for guiding future

improvements underscore its importance as a tool for the ongoing development and op-

timization of INFO and similar systems. This iterative approach ensures that INFO can

continuously evolve, leveraging advanced techniques and fine-tuning parameters to meet

the ever-changing demands of its user base.
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