
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

MLOps Scaling ML in an Industrial Setting

Author: Yizhen Zhao (2658811)

1st supervisor: Dr. Adam S.Z. Belloum University of Amsterdam
daily supervisor: Gonçalo Maia da Costa Dashmote B.V.
2nd reader: Dr. Zhiming Zhao University of Amsterdam

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

July 13, 2021

“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley

ii

Abstract

Machine learning has evolved from an area of academic research to a real-word

applied field. This change comes with challenges, just like any other fields,

gaps and differences exist between how it works in an academic setting and

what is required in a real-word configuration. Following continuous integra-

tion, development and delivery practices in software engineering, similar trends

have happened in rapid development of machine learning (ML) features, called

MLOps. The goal of this paper is to build a MLOps framework and practices

that facilitate and scale the machine learning lifecycle in an industrial setting,

also the reproducibility and traceability of machine learning projects are guar-

anteed. This MLOps framework also acts as a template for people or teams who

are interested in building their own MLOps framework. It inherits practices

from DevOps and introduces other practices that are unique to the machine

learning system, for example, data versioning. Our MLOps practices automate

the entire machine learning lifecycle, bridge the gap between development and

operation, enable better collaboration and communication between different

teams who are operating machine learning systems.

Keyworks: MLOps, DevOps, Machine Learning, Industrial Setting, Data Ver-

sioning, Continuous Development

Acknowledgements

This six-month Master project was carried out as an internship at Dashmote,

in the Data Product team. This internship was a great opportunity for me

to apply both my professional and academic skills. I would like to start by

thanking Dashmote for giving me this opportunity to work with them on this

interesting project. I would like to express my sincere gratitude to my daily

supervisor, Gonçalo Maia da Costa for his trust, guidance, feedback and all the

support during the project. Also my amazing team mates, Samuel Kellerhals,

Evgenia van Rijn, etc., for their inspiration and feedback. I would also like to

thank Dr.Adam S.Z. Belloum for all the opportunities he gave me and guidance

on completion of the Master project. Furthermore, I would like to thank Dr.

Zhiming Zhao for giving the valuable insights for this thesis.

Finally, many thanks to my family and close friends for their encouragement

and support throughout my study.

Contents

List of Figures viii

Glossary ix

1 Introduction 1

2 Background 3

2.1 Machine Learning in Production . 3

2.1.1 Challenges in Machine Learning Projects 3

2.1.2 Importance of MLOps and Difference with DevOps 4

2.2 Problem Statement . 5

2.3 Research Questions . 6

3 Related Work 7

3.1 Data Version Control . 7

3.2 ML Model Deployment in Production Environment 9

3.3 MLOps Framework for Building Integrated ML System in Production . . . 10

4 Project Implementation 12

4.1 Machine Learning Lifecycle Design . 12

4.1.1 Understanding the Requirements . 13

4.1.2 Data Preparation and Data Labeling 13

4.1.3 Feature Engineering, Model Training and Model Evaluation 14

4.1.4 Model Deployment . 14

4.2 MLOps Architecture Design . 15

4.3 Refine ML Development Process . 17

4.3.1 Git Repository Structure . 17

4.3.2 ML Development Workflow . 19

4.4 Data Versioning with DVC . 21

v

CONTENTS

4.4.1 DVC Initialize . 22

4.4.2 DVC Features . 22

4.4.3 DVC Helps Building ML Pipeline . 23

4.5 Model Deployment with AWS Sagemaker Batch Transform 23

4.6 Productize ML Experiment Process Remotely on Cloud 24

4.6.1 Azure Machine Learning . 25

4.6.2 Deploy ML Jobs to AzureML . 25

4.7 Productize MLflow Tracking Server . 27

4.7.1 MLflow Tracking Working Scenarios 29

4.7.2 Azure ML Built-in MLflow Tracking 29

4.7.3 MLflow Tracking Server Local Implementation 30

4.7.3.1 Local Setup for MLflow Server 31

4.7.3.2 Local MLflow Tracking with Azure ML 31

4.7.4 Migrate MLflow Tracking Server to Cloud 33

4.8 Integrate MLflow Tracking and DVC with ML Experiments 35

5 Discussion 36

5.1 Discussion . 36

5.2 Reflection . 37

5.3 Future Work . 38

5.3.1 Automatic Remote Model Training with Jenkins 39

5.3.2 Machine Learning CI/CD Pipeline 39

6 Conclusion 41

Appendix 44

A DVC Code Examples . 44

A.1 DVC Build Pipeline Example . 44

A.2 DVC Pipeline File Examples . 45

B Azure ML Related Code Examples . 47

B.1 ML Jobs with Azure ML Configuration 47

B.2 Retrieving Key Vault . 48

C MLflow Tracking Code Examples . 49

C.1 MLflow User Interface . 49

C.2 MLflow Tracking Server Local Setup 49

C.3 MLflow Logging . 51

vi

CONTENTS

References 53

vii

List of Figures

4.1 Proposed ML lifecycle . 13

4.2 MLOps architecture . 16

4.3 ML development internal workflow . 19

4.4 MLflow tracking server infrastructure . 34

6.1 MLflow Tracking Interface (with different experiments) 49

6.2 One experiment details in MLflow Tracking 49

6.3 MLflow Model, model has been logged into MLflow Tracking. It describes

details of the ML model, prerequisite of Model Registry 50

6.4 Model Registry, registered model will be kept in a centralized place. Shown

in next Figure . 50

6.5 Centralized place for registered models, with stages of each model (e.g.staging,

production). 50

viii

Glossary

AES ECS Amazon Elastic Compute Cloud,
page 37

API Application Programming Interface,
page 8

AWS Amazon Web Services, page 8

Azure ML Azure Machine Learning, a cloud-
based service for creating and manag-
ing machine learning solutions, page 18

Azure ML SDK It can be used for Python to
build and run machine learning work-
flows with Azure ML service, page 25

CI/CD The combined practices of continu-
ous integration, either continuous de-
velopment or continuous deployment,
page 39

CLI Command-Line Interface, page 32

CPU Central processing unit, page 24

DevOps A set of practices that combines soft-
ware development and IT operations,
page 2

DNS Domain Name System, page 33

EC2 Elastic Compute Cloud, a web service
that provides secure, resizable compute
capacity in cloud, one of the services
offered by AWS, page 34

ECR Elastic Container Registry, one of the
services offered by AWS, page 10

ECS Elastic Container Service, a container
orchestration service that helps you de-
ploy, manage and scale containerized
applications, offered by AWS, page 34

ID Identification, page 33

Jenkins A free and open source automation
server. It helps automate the parts of
software development related to build-
ing, testing, and deploying, facilitating
continuous integration and continuous
delivery, page 16

KPI Key performance indicator, page 16

ML Machine Learning, page 1

NL The Netherlands, page 17

PODs The smallest, most basic deployable
objects in Kubernetes. A Pod repre-
sents a single instance of a running pro-
cess in your cluster, page 11

pull request An notification to team members
that a developer completed a feature
and request team members to review
the work, page 21

RDS Relational Database Service, one of the
services offered by AWS, page 16

REST REpresentational State Transfer, is an
architectural style for providing stan-
dards between computer systems on
the web, making it easier for systems to
communicate with each other, page 11

S3 Simple Storage Service, one of the ser-
vices offered by AWS, page 8

SQL A programming language, designed for
managing data held in a relational
database management system, page 7

SQLAlchemy A library that facilitates the com-
munication between Python programs
and databases, page 29

UI User interface, page 9

unit testing A type of software testing where in-
dividual units or components of a soft-
ware are tested, page 16

URI Uniform Resource Identifier, page 30

URL Uniform Resource Locator, page 10

ix

1

Introduction

We live in a data-driven world. The volume of data is exploding, a study1 shows over

2.5 quintillion bytes of the data is generated every day. There is an information explosion

happening in human history. It might be because of the rise of smartphones and all kinds

of digital devices. This explosion of data leads to a circle of data analysis, which in turn

leads to data creation, data analysis and new insights. Organizations and governments

are trying to derive values from these data by adopting advanced analytics. This enables

better decision-making to optimize the value of their services or business.

Artificial Intelligence (AI) and Machine Learning (ML) are projected to become the

mainstream technologies in the coming years. Machine Learning offers a powerful toolkit

for helping us solve complex real-world problems, making use of the massive data, turning

insights into action and providing useful information, either in the academic research field

or in industrial innovation. Machine learning in academic research and in the real-world

machine learning system, may sometimes mean different things. Sculley et al.(1) shared his

point of view in his paper that machine learning code is only a small fraction in the real-

world machine learning system. The required surrounding infrastructure is complex and

usually, it takes longer to deploy ML in production2, compared to developing it. Some other

tasks need to be taken into consideration, such as maintaining the problem of traditional

code plus additional ML-specific issues, integrating the ML system into current industrial

setting, running and maintaining several ML models in production, etc.

Following the slogan of the company, Dashmote3, ”Turn Data into Actions”, we try

to unlock the power of data, provide global brands with computer vision-based services.
1https://www.takeo.ai/can-you-guess-how-much-data-is-generated-every-day/
2By production we mean an environment where code/apps/services are deployed and available for users.
3https://dashmote.com/

1

Through advanced data analytics and making data-driven solutions to help our clients,

like Heineken, Coca-Cola, to better connect with the market around them and win in the

marketplace with what Dashmote offers. We also introduced machine learning to help us

solve complex real-world problems and provide useful information for our clients.

MLOps, or DevOps for machine learning, is becoming a necessary skill set for enterprises

to leverage the benefits of machine learning in the real world. It is a practice for better

collaboration and communication between the data scientists team and data engineers

team to improve the automation of the entire machine learning lifecycle and deploy it in

the production environment. To some extent, MLOps will enable better collaboration and

communication between teams in organizations, speed up the delivery time of projects and

reduce the labor work needed for machine learning projects. For instance, some labor work

like manually training and retraining the model, keeping track of the experiment results,

manual releases and deploying the model, etc.

This thesis aims to take a machine learning project at Dashmote1 and develop a prototype

that applies MLOps practices to the machine learning lifecycle. It helps us to understand

the problems and challenges when applying ML in an industrial environment and to better

manage the entire machine learning lifecycle, which includes model and data versioning,

keeping track of experiment results so that the machine learning project has reproducibility

and traceability, model monitoring and model deployment in production.

The rest of this thesis is organized as follows. In Chapter 2, I present the background

information about machine learning in production and outline the generalized problem

statement regarding the corresponding thesis topic, followed by research questions. In

Chapter 3, I will describe the state-of-art relevant to this thesis. Then, the proposed ML

lifecycle design and MLOps architecture design are introduced in Chapter 4, followed by the

implementation details of this graduation project prototype. In Chapter 5, the discussion,

reflection and future work of this graduation project are presented. The summary of this

paper is in Chapter 6. Last but not the least, terminologies mentioned in this paper are

explained in Glossary and code examples are listed in Appendix.

1https://dashmote.com/

2

2

Background

2.1 Machine Learning in Production

We have conducted a literature review on the machine learning system in production(2),

where we intend to find out challenges and difficulties in building and maintaining ML

systems in a production environment, and why MLOps are introduced into the marketplace.

ML in production focuses more on engineering. Not only focus on implementing ML models

but also build the whole ML-related infrastructure within an industry. We summarize the

importance and the challenges facing Machine Learning in production (MLOps) in the

following section as they are very relevant to the work presented in this thesis.

2.1.1 Challenges in Machine Learning Projects

As a machine learning system is not the same as the traditional software system, a set of

ML-specific challenges needs to be taken into consideration. I summarize the challenges

into following levels:

• Dependency level

Developing ML models relies on several components, such as data, ML algorithm

code and/or parameters. During experimentation, these components might change

overtime which leads to different versions. Different versions will lead to different

model behaviors, a certain version of data, code and parameters generates a certain

model. Having several versions of data, code, parameters in a ML project, but

without certain strategies to handle different versions, can make us lose control of

our ML system. Creating a frozen version of the data and parameters can help us

3

2.1 Machine Learning in Production

keep track of different versions. But versioning carries its own costs, for example,

maintaining multiple versions over time.

Traditional software systems utilize modular design to maintain the whole system,

you can change one part without interfering with others. While compared to tradi-

tional software systems, ML systems have no such clear boundaries between compo-

nents. ML pipelines work with data versions, algorithm code versions and/or different

parameters. Any change in these components mentioned before triggers new model

versions.

• Management level

ML systems in the production environment, usually, the goal is running and main-

taining dozens or hundreds of models simultaneously, which leads to managing chal-

lenges. For example, how to monitor the whole production pipeline? How to update

or assign the power configuration for the model?

To automate and accelerate ML lifecycle management, we need to have a strategy or

workflow that helps us keep tracking the data, hyperparameters, experiment results,

etc. To some extent, it helps better management and collaboration. Manual logging

the experiment process is not efficient and error-prone.

2.1.2 Importance of MLOps and Difference with DevOps

MLOps, which is DevOps for ML. It is a set of practices used to streamline the ML lifecycle.

MLOps and DevOps do have some similarities, they share the same research method

and research cycle. Some DevOps practices are also applied in MLOps. For instance,

they both encourage and facilitate collaborations between data scientists, engineers and

operations. They both emphasize process automation in continuous development and

continuous delivery into production.

DevOps helps data engineers build, maintain and improve the entire service lifecycle.

While MLOps is mainly for data science. MLOps helps data scientists manage and maintain

the iterative ML lifecycle in an efficient and controllable way. ML workflow is more complex

as it includes several ML-specific fields, such as collecting datasets, building models, tuning

hyperparameters, etc. Not only code needs versioning, but also ML artefacts (e.g. data,

models and metrics) so that the ML system has reproducibility.

4

2.2 Problem Statement

2.2 Problem Statement

Machine learning is used in many of the services we are using in our daily activities, and

lots of companies are using ML to find the hidden pattern behind data. However, there

are lots of problems we might encounter when applying machine learning in a production

environment. I summarize the most important problems into the following points (more

details can be found in (3)(4)(5)).

• Machine learning is not only about the code, but also data. One of the characteristics

of machine learning is that ML development is iterative and experimental and data

scientists might need to do different experiments to optimize a metric (e.g. prediction

accuracy), tuning parameters and generating features. This might lead to hundreds

of different versions of ML algorithm code, data, hyper-parameters or experiment

results. Managing all the experiment settings, code versions, results, turns out to be

a big problem.

• Machine learning pipeline contains several steps, namely, collecting data, generating

features, training models, and deploying models that can be used in production.

Without an automated ML pipeline and centralized place where the development

teams keep the ML artefacts and the experiment results, it is difficult for teams,

who are planning to use ML in production, to manage the entire ML pipeline. ML

artefacts might be placed in different places, experiment results are kept and tracked

in personal documentation or logs. Such an approach is problematic when it comes to

manage the communication and collaboration between the teams, and also inefficient

for teams to deliver a product with good quality as fast as it can.

• A machine learning model can only deliver added value to an organization when

it’s available to users or other systems and deployed in production. While machine

learning systems in the real-world are complex and present different sets of chal-

lenges, some of which are shared with traditional software services, and some are

ML-specific challenges. DevOps introduces a set of practices in engineering that fo-

cuses on techniques and tools to maintain and support existing production systems.

While there are still some problems unique to productizing machine learning, for in-

stance, there is no agreed best practice to handle the whole machine learning lifecycle

in production.

5

2.3 Research Questions

2.3 Research Questions

Based on the problems we encountered with ML projects in production, the research ques-

tions I defined and the rational motive for the stated research questions are:

• What are the challenges in developing machine learning projects in production?

– I wish to identify the challenges we might meet when developing and deploying

ML in production.

• Why MLOps? What are the differences between MLOps and DevOps?

– I wish to present the importance of MLOps in ML projects and the difference

between DevOps and MLOps.

• How to handle data versioning issues in machine learning projects and how to deploy

ML models into production efficiently?

– I wish to present the state-of-art relevant to data versioning and model deploy-

ment in ML projects.

• What kind of MLOps frameworks or strategies that we could learn from when inte-

grating ML systems into the industrial setting?

– I wish to identify the frameworks or architectures in the marketplace that apply

MLOps principles.

6

3

Related Work

In this chapter, the state-of-art relevant to this thesis is presented and we discuss the

relevant research work on various subjects. We classify and group the selected literature

based on the topic. Research questions for this paper are listed in Section 2.3. The research

and related work for each research question will be discussed in the following subsections.

3.1 Data Version Control

Git1 is a software version control system that has been widely used on the marketplace.

Inspired by Git, Anant introduced two tightly-integrated systems in their paper(6), an open

source tool2, one is dataset version control system (DSVC) that enables data scientists to

capture their modifications, identify different versions and share datasets. Another one

is DATAHUB, a platform built on top of DSVC, which allows data scientists to perform

data analysis, data cleaning, and visualization. There are some relational database-based

version control mechanisms, but they rely highly on the data schema. While in reality,

datasets often consist of mixed data structures. DSVC is similar to git but supports richer

query languages. Compared to github, datahub also provides more features for working

with data. Their proposed DSVC systems aiming to provide the following features:

• It can handle large datasets (100s of MBs to 100s of GBs) and also a large number

of versions.

• It supports querying specific versions of dataset (e.g.using SQL), analyzing differences

between versions, and exploring information across datasets.
1https://git-scm.com/
2https://datahub.io/

7

3.1 Data Version Control

• It supports data analysis and exploration. For instance, providing information about

when a record was last modified.

• It provides trigger-like functionality, so-called hooks, similar to git hooks, automat-

ically triggers customized actions. For providing features like automated analysis,

keep data products up-to-date, etc.

The core of DSVC is the dataset version control processor (DSVCP), which manages and

processes different versions. DSVCP exposes versioning API for client applications. The

version query processor (VQP) is integrated with DSVCP and exposes VQL, an enhanced

version of SQL that allows users to query datasets, as an interface for clients to use.

Datahub runs on top of VQP and DSVC, as a server that clients used to store the data,

also provides versioning API and VQL to applications. Versioning API provided by DSVC

is similar to Git API, including the commands such as create (create a new dataset),

branch (create a new version of dataset), merge (merge branches), commit (commit

local changes to dataset), rollback (revoke changes) and checkout (create a local copy

of branch). The two tightly-integrated systems, drawing an analogy with git and github,

provides the possibility for users to deal with dataset versioning challenges. It can be used

to manage data in machine learning projects as well.

There are some other competitive data versioning tools mentioned in this online blog(7).

DVC, data version control, will be introduced and used in this graduation project, in Sec-

tion 4.4. Pachyderm1, a data science and processing platform with built-in data versioning

and lineage. The idea of version control in Pachyderm works similarly as Git but with

some exceptions. It deals with plain text, binary files and large datasets. A centralized

repository exists and your data is continuously updated in the master branch of the repos-

itory. You can work with a specific data commit in a separate branch. Unlike Git, we do

not store a copy of the repository in the local projects. Hence, the merge conflicts (like we

meet in Git very often) do not occur.

AWS Sagemaker2 not only provides mode deployment (will be introduced in this gradua-

tion project as well, in Section 4.5) but also data labeling. AWS Sagemaker Ground Truth3

is a data labeling service that provides accurate training dataset for machine learning. It

provides custom or built-in data labeling workflow that supports a variety of use cases

including images, video, text, etc. The original data is stored on AWS S3, then a labeling

job can be created by using custom or built-in workflow. After that, labelers can use the
1https://www.pachyderm.com/
2https://aws.amazon.com/sagemaker/
3https://aws.amazon.com/sagemaker/groundtruth/?nc1=h_ls

8

3.2 ML Model Deployment in Production Environment

labeling UI with assistive labeling feature to label the dataset. Now an accurate training

dataset is ready for use.

3.2 ML Model Deployment in Production Environment

How to deploy ML models into production in an efficient way is another challenge in

ML projects. There are different ways of deploying ML models into production. AWS

Sagemaker1 is a fully managed machine learning service and it is a great place and a reliable

way to start if you want to deploy the ML models into production quickly. Using AWS

Sagemaker for model deployment is also our choice in this graduation project, described in

Section 4.5. There are also many other competitive tools or technologies to deploy models:

Azure2 is another cloud provider, providing its own way of deploying ML models(8).

The workflow is similar no matter where you deploy your models. First is to register the

model that you want deployed. Secondly, the code, an entry script, that will be used in the

web service, for performing the predicting on input data. Thirdly is to define an inference

configuration. It describes the Docker3 container and all the files within your project

source directory to use when deploying the web service. Then it defines a deployment

configuration. It specifies the resources needed for your web service, such as the amount

of memory and cores in order to run the web service. Finally the model is ready to be

deployed and requests can be sent to check the status of your deployed model. Azure

provides a full MLOps cycle for machine learning projects, from training to deploying. We

utilize Azure ML to train the model in this graduation project, described in Section 4.6,

which is the team’s decision. For organizations and teams who use Azure as the main

cloud provider, they can stick with Azure for managing the full ML lifecycle.

MLflow4, an open source for ML lifecycle, also supports model deployment. MLflow is

also introduced in this graduation project, but our main focus is on MLflow tracking, in

Section 4.7, which tracks and keeps all the ML experiment results. Some other features

of MLflow, such as MLflow Model Registry5, and Python APIs6 like mlflow.azureml

and mlflow.sagemaker can be used together to deploy the model to custom serving tools.

MLflow Model Registry allows you to register the trained model in a centralized place, with
1https://aws.amazon.com/sagemaker/
2https://azure.microsoft.com/en-us/
3https://docs.docker.com/get-started/overview/
4https://mlflow.org
5https://www.mlflow.org/docs/latest/model-registry.html
6https://www.mlflow.org/docs/latest/python_api/index.html

9

3.3 MLOps Framework for Building Integrated ML System in Production

model version control. Based on this online blog(9), mlflow.sagemaker1 works similarly

to our Sagemaker batch transform, in Section 4.5. It needs the details of the AWS account

to have the permission set up. The model file can be provided by either MLflow, if model

is registered with MLflow, or stores the model on AWS S3 and provides the S3 path. Then

provide the docker image URL, the docker image hosted by AWS ECR. You can customize

the ML algorithms in the docker image. As shown in these tutorials(10)(11) from Azure2

and Databricks3, mlflow.azureml4 helps to register the MLflow model (model registered

on MLflow, local model path or AWS S3 path) with Azure ML and build a custom image

on Azure ML for model deployment. This image can be deployed as a web service to Azure

Container Instances (ACI) or Azure Kubernetes Service (AKS).

3.3 MLOps Framework for Building Integrated ML System
in Production

Emmanuel(12) introduced an edge MLOps framework for edge Artificial intelligence In-

ternet of Things (AIoT), which is a system that facilitates edge computing5 for AIoT

applications. This MLOps framework enables continuous delivery, development and mon-

itoring of machine learning models at the edge for AIoT applications.

The framework describes an end to end, fully automated machine learning pipeline.

They utilize Azure machine learning6 to execute the end-to-end ML pipeline. Started

from continuous fetching data from edge devices into cloud storage. Azure Blob storage7

is used for storing all the data collected from sensors via each device and ML models.

During the ML experiment, first versioning the data that will be used in training so that

the experiment is reproducible, then model training, evaluation. Finally packaging and

registering the model and waiting for deploying to edge devices (i.e. in production). Azure

DevOps8 is used to maintain and version control the ML algorithm code used for building

ML models, and then build and release ML artefacts, models to edge devices and perform

needed jobs. Every day a release is triggered to monitor the edge devices to check the model
1https://www.mlflow.org/docs/latest/python_api/mlflow.sagemaker.html#module-mlflow.sagemaker
2https://azure.microsoft.com/en-us/
3https://databricks.com
4https://www.mlflow.org/docs/latest/python_api/mlflow.azureml.html
5Edge computing is the process of performing computing tasks physically close to devices, rather than

in cloud.
6https://azure.microsoft.com/en-us/services/machine-learning/
7https://azure.microsoft.com/en-us/services/storage/blobs/
8https://azure.microsoft.com/en-us/services/devops/

10

3.3 MLOps Framework for Building Integrated ML System in Production

performance. Based on the performance to determine whether to deploy an alternate model

or not. Model retaining is also based on the previous output. In the previous step, if an

ML model is replaced with another one, then the replacement model is retained on the

cloud with real-time data. If performance of the new model improves, then the retrained

model will be registered and waiting for future deployments.

In Pölöskei’s paper(13), they described the main idea behind several cloud-based MLOps

pipelines. Cloud technology makes computing more affordable and manageable. MLOps

apply the same approach as DevOps, but mainly focus on the model development for

eliminating the personnel and technology gap in the development.

• Workflow as graph

DAG (directed acyclic graph) can be used to describe the pipeline workflow, and a

pipeline can operate on the cluster. Each job is executed as a DAG node. Each task

can be grouped by components, like python functions. They can interact through

the inputs, outputs and can be reused by other components.

• GPU based pipelines

The training process in ML projects in industry can be resource consuming, but this

resource should be granted on demand. Training a deep learning model might take

some time, local settings might not be able to support the training process efficiently.

Cloud computing is a valid option for this kind of use-case.

• Tensorflow Extended (TFX)

Tensorflow is the state-of-the-art deep learning framework. TFX library helps Tensor-

Flow model development in production. A standard end-to-end TensorFlow pipeline

in TFX provides a high-performance application in cloud-native environments, and

can be managed by Airflow or Kubeflow.

A case study is introduced in this paper(13), where the authors present a prototype of

MLOps pipeline in KubeFlow cloud-native environment. The workflow triggers container

level cloud-native architecture based on the repository. Data preparation is the first and

most time-consuming step, it includes preprocessing, data digestion, etc. Version control is

also required because during experiments, existing models could have better performance

than the new release. Then the model building happens in dedicated PODs. After eval-

uation and model selection, the final model will be deployed to the REST endpoint. The

acceptance of MLOps allows rapid research loops, therefore, the pipeline and model can

be arranged in production efficiently.

11

4

Project Implementation

In this chapter, we first introduce the proposed machine learning lifecycle design, includ-

ing the main function of each component. The idea is to give an overall understanding

about the end-to-end ML pipeline. Then we display the MLOps architecture design for

this graduation project. This prototype helps to automate the ML lifecycle in terms of

model development and model deployment. First we introduce the overall design of the

MLOps architecture, the main function of each part is included and how they work to-

gether as a whole. Then the proposed ML development process is presented in order to

provide a standard workflow for our ML projects to follow. The implementation details

of necessary components within this architecture are described in the following sections.

The reflection on the outcome of each component will be discussed and the metrics we

defined to highlight the contribution of each component and compare the situation before

and after the introducing of this component in our MLOps framework.

4.1 Machine Learning Lifecycle Design

Figure 4.1 presents an overview of the proposed ML development lifecycle. To illustrate

the ML development lifecycle we will use the machine learning use cases developed at

Dashmote, which is called flag-combo. It is a classification task, which tells whether a

meal is a combo meal1 or not. If it is a combo meal (e.g. burger with fries), then set the

value of flag combo as 1 for that meal. In the following sections we will present the main

function of each step of the ML lifecycle.
1A combination meal, often referred as a combo-meal, is a type of meal that typically includes food

items and a beverage

12

4.1 Machine Learning Lifecycle Design

The emphasis on the current project is on the last four steps, model development and

deployment. The prototype of the ML lifecycle design and implementation details is ex-

plained in the next section, Section 4, aiming to address the problems we proposed in

Section 2.2.

Figure 4.1: Proposed ML lifecycle

4.1.1 Understanding the Requirements

The first step is to understand the business requirement, what are the behaviours we

expected from this model and what features are needed. It is important to understand

the requirements of the business side before actually implementing the ML model. In this

case, we wish this model can classify whether a meal is a combo meal or not. Features

like price, name and meal description for that meal are needed since they can tell what

packages are inside that meal.

4.1.2 Data Preparation and Data Labeling

The most time-consuming parts are the data preparation and data labeling. Data scientists

are responsible for creating the dataset for training and validating the ML model, as well

as validating the dataset if there are any requirements on data quality. To some extent,

the data quality decides the quality of the model.

Meal data is collected from various online food delivery platforms, such as Ubereats1,

Deliveroo2 etc. Each record in the dataset represents a single meal, with price, name,

description for that meal, etc. During Data Preparation, the labeling set is created from

the meal data. Then in Data Labeling, we manually label the dataset based on the definition

of combo meal we agreed upon in the last step, Requirements Understanding. Creating

a manual label column which specifies whether it is a combo meal or not. This column

will be included as a feature to train the model. In the real-world scenario, the number

of non-combo meals is way more than the combo meals. In order to have a non-biased

training set, we might need to create more data and label them or create some fake combo
1https://www.ubereats.com/nl-en
2https://deliveroo.nl/nl/

13

4.1 Machine Learning Lifecycle Design

meal data based on the real cases. For instance, a fake combo data can be a combination

of the name and meal description from other two real combo records. The methodology

of making fake data needs to be varied, otherwise the model can be biased and cannot see

the whole picture of the real meal situation.

4.1.3 Feature Engineering, Model Training and Model Evaluation

In Feature Engineering, data scientists or ML developers start working on ML algorithms,

selecting features, tuning parameters, etc. Then during Model Training and Model Evalu-

ation, the model is trained and model performance is evaluated. The whole development

process is iterative and experimental, several experiments are executed until the satisfying

results are obtained. During the process, data and ML artefacts (e.g. trained models) are

versioned so that we can guarantee the reproducibility and traceability of ML projects.

ML experiment results are managed in a good manner. The methodology of versioning

data is described in Section 4.4.

The implementation of this classification model is not the main focus of this graduation

project. The idea is to use price, name and meal description as features to train the model

since we believe, to some extent, these features can tell us whether the meal is a combo

meal or not. We expect the model to classify the unseen data based on those features.

The improvement of the model performance, further feature engineering will continue in

the near future, which will be conducted by other data scientists in the team. Therefore,

in this thesis, we will not explain the details about model development.

Apart from developing the ML models, data engineers are responsible for integrating the

ML systems into current industrial settings. Build an architecture that manages the whole

ML lifecycle with the goal of automating the whole process, guaranteeing the reliability of

ML projects, with at least manual efforts within the process as possible. The prototype of

dealing with the ML development process is presented in Section 4.

4.1.4 Model Deployment

ML model that is not deployed into the industrial environment to generate value is only

a costly experiment. From the last step, we already received the trained model with

satisfying performance, versioned and released a new version for it. Then the model is

ready to be deployed in the production environment and to perform prediction logic on

unseen data. The description of model deployment into production relevant to this thesis

14

4.2 MLOps Architecture Design

project is presented in Section 4.5. With the prototype we proposed, presented in Section

4, no extra handover is required from model development to model deployment.

4.2 MLOps Architecture Design

The overall design of our MLOps architecture is shown in Figure 4.2. This architecture also

describes our MLOps workflow, how we handle the model development process and model

deployment within our industrial settings. With the help of Git1, DVC2 and MLflow3, we

guarantee the traceability and reproducibility of ML projects. Two cloud providers are

introduced to help us scale the model training process and apply prediction logic in the

production environment efficiently.

Before having this MLOps framework, there was no mechanism to manage the whole ML

lifecycle. No mechanism to version control the dataset that has been used in training the

model, which makes our life harder when we are trying to reproduce a model in a certain

state. The ML experiment process and results are different according to the person who

operates the ML experiments. ML models are also not version controlled and released in a

good manner. No standard way of deploying trained models into production at all. After

this MLOps framework is built, the dataset and all ML artefacts (e.g.model) are carefully

tracked and version controlled. The ML experiment process is standardized and results

are kept in a centralized place. No manual handover is required for model deployment as

this MLOps framework bridges the gap between development and operation.

This architecture contains two main parts: ML model development (Step 1, 2, 3, 4) and

model deployment (Step 5, 6). Model development happens on the left side, starting from

the git repository, dash-ml-flag-combo, which contains all necessary ML algorithm code for

developing the model. Within this git repository, DVC is used to help us keep tracking

of the data we used in ML project (Step 1). Features and implementation details of data

versioning with DVC is described in Section 4.4. After that, we build ML models, generate

features, and tune parameters (Step 2). We provide the options to execute ML jobs

(e.g.model training) in a local environment or leverage cloud resources (i.e.Azure Machine

Learning), in case the ML job needs extra compute power. Then, the experiment results

(e.g.metrics, parameters) and any kinds of ML artefacts (e.g.models) for each ML job are

logged and tracked by MLflow tracking, a centralized place where all the experiment results

are kept for each experimental run (Step 3). MLflow tracking provides a user-friendly
1https://git-scm.com/
2https://dvc.org/
3https://mlflow.org/

15

4.2 MLOps Architecture Design

Figure 4.2: MLOps architecture

UI that allows you easily view the experiment details of your ML development process.

The iterative experiment process ends until we receive the satisfying result (e.g.model

performance reaches the teams’ KPI). Then we use DVC to version control the final models

and any other ML artefacts. Finally, using Git version control to release a new version/tag1

for that model in that specific state (Step 4). All the dataset, models and ML artefacts

are stored on AWS S3, experiment results (e.g.metrics, parameters) are stored on RDS2,

as long as they have been tracked by DVC and/or logged into MLflow tracking. During

the development, Jenkins3 is used for code unit testing, automatic building whenever a git

commit is made, pull request is created or branches are merged and continuous deployment.

After obtaining the trained model and necessary artefacts that will be used in production,

we plan to deploy them, the process happens on the right side of Figure 4.2. Another git

repository is used, called dash-docker-flag-combo, which helps us to prepare the docker

image with prediction logic and inference code that will be used in AWS Sagemaker to

start the batch transform job. Then apply the prediction logic on unseen data and finally

store the transformed data into AWS S3 (Step 5, 6). The model and other artefacts (if

any) used in production are loaded during runtime via DVC API4 because of Step 4. Since
1Git tag allows you to identify specific release versions of your code. Official document about Git tag:

https://git-scm.com/book/en/v2/Git-Basics-Tagging
2https://aws.amazon.com/cn/rds/
3https://www.jenkins.io/
4https://dvc.org/doc/api-reference

16

4.3 Refine ML Development Process

models and other artefacts are tracked by DVC using DVC file1, and DVC files are version

controlled by Git, therefore, DVC API allows you to access the models that under DVC and

Git control in repository dash-ml-flag-combo. Implementation details of model deployment

with AWS Sagemaker and DVC API usage for loading models files are in Section 4.5.

Airflow2 is used here to help us automatically triggering the model deployment pipeline.

4.3 Refine ML Development Process

In this section, we describe the details of our ML development workflow. Within our

current strategy, different versions of datasets and models are safely tracked by DVC. All

the experiment runs/results are collected in a centralized place, provided by MLflow. They

are easy to manage and trace. ML development can be done in different environments. It

is normal for developers to develop models in the local environment first and then scale

out to the cloud. Git is responsible for code version control and code, model release. These

three tools work together to guarantee the traceability and reproducibility of ML projects.

Jenkins helps in continuous integration and continuous development, it runs autonomous

tasks we defined, such as code unit testing, data testing, docker image build, etc.

First our Git repository structure is given, with brief introduction of essential com-

ponents. Then our proposed workflow of dealing with the ML development process is

described.

4.3.1 Git Repository Structure

The proposed git repository structure is listed below, the essential components are:

• assets: It includes the country-based (i.e. NL) datasets and all other ML artefacts

(e.g. model). We classify our assets by country.

• dvc_pipeline: Country-based DVC pipelines, DVC pipeline setup has been intro-

duced in Section 4.4.3. Having separate DVC pipelines allow us to work on one of

them, without interfering others.

• scripts/run_pipeline.py: The entry point to trigger the ML pipeline process.

• executor.py: An executor to execute different pipelines, either execute the ML jobs

in a local environment (i.e. local pipeline (local_run.py)) or utilize cloud resources

(i.e. remote Azure pipeline (azure_run.py)).
1https://dvc.org/doc/user-guide/project-structure/dvc-files#dvc-files
2https://airflow.apache.org/

17

4.3 Refine ML Development Process

• pipeline: A place where different pipelines are set up. Current options are local

pipeline and Azure remote pipeline. It provides the flexibility for users to execute

ML jobs in different environments. If another cloud provider is introduced (e.g.

AWS), a python script for configuring the AWS pipeline can be added separately.

• azure_executor.py: The executor for triggering and submitting ML jobs to cloud

environment (i.e. Azure ML).

• ml_pipeline: It contains the python scripts for building and evaluating the ML

model.

• Dockerfile: The customized docker image setup for creating the environment for

running ML jobs on Azure ML. The details are introduced in Section 4.6.2.

dash-ml-flag-combo/

assets

data

NL

NL_training.csv

NL_validation.csv

model

metrcis

dvc_pipeline

NL

dvc.yaml

dvc.lock

params.yaml

src

dash_ml_flag_combo

ml_pipeline

train.py

validate.py

pipeline

local_run.py

azure_run.py

scripts

run_pipeline.py

utils

azure_executor.py

18

4.3 Refine ML Development Process

executor.py

Dockerfile

4.3.2 ML Development Workflow

The relationship and workflow between those components mentioned in Section 4.3.1 is

visualized into Figure 6.2. We use python scripts here to represent each step. The python

script can contain a python class, or a set of python functions.

Figure 4.3: ML development internal workflow

Figure 4.2 and Figure 6.2, display the overall architecture and workflow within the ML

development process. The end-to-end developing workflow is described in the following

steps:

• If you are working with a new Git repository without any DVC setup, the first step

is to install DVC and initialize it in your Git repository. Section 4.4.1 provides the

details about DVC initialize. If you are working with an existing Git repository with

DVC setup, you can follow the Gitflow1 to create your own feature branch and work

on this branch for further implementation. Use dvc pull to synchronize the datasets

and other artefacts, download them from remote storage.

• Use dvc add to add dataset into DVC control if you are adding new datasets or

updating datasets. As mentioned in Section 4.4.2, Section 4.2 Step 1, DVC uses

so-called DVC files to keep track of the data. For example, the DVC command:

dvc add assets/data/NL/NL_training.csv will generate the corresponding DVC

file for the NL training data. The same rules apply for other datasets.

• Create country-based DVC pipelines (in Section 4.4.3) that runs each stage of the

ML project. We create two base stages in DVC pipelines that execute in the local

environment, stage train_validate_local (i.e.full process, train and validate) and

stage validate_local. It is true that in ML development, whenever a model is
1https://guides.github.com/introduction/flow/

19

4.3 Refine ML Development Process

trained, the validation step is always followed so that the model performance is

known. There might also be a case that we only want to re-validate the model (e.g.

a new validation set is added), then we create a separate stage only for validation

purposes. By having country-based DVC pipelines instead of one DVC pipeline that

contains all the stages of different countries, it provides a clear classification between

different sub-projects. We can work on one sub-project (e.g. NL developing) without

interfering with others. The example code of creating stages in DVC pipeline in this

case is presented in Appendix A.1, DVC Build Pipeline Examples. The generated

DVC files (i.e. dvc.yaml, dvc.lock) are presented in Appendix A.2, DVC Pipeline

Examples as well.

• Triggering the ML pipeline process by either directly executing Python script or

using DVC command dvc repro to kick off the stages in DVC pipelines. The process

starts by user, passing necessary arguments to run_pipeline.py. Then it triggers

the executor.py for executing ML pipeline process either in local environment or

utilizing cloud resources (i.e. on Azure) based on the arguments user passed in.

– If it is in a local environment, the local pipeline (i.e.local_run.py) is run. Then

it triggers either a full process (i.e. train first, then validate) or only validate

process.

– If it requests a cloud environment, the azure pipeline (i.e.azure_run.py) is run.

It creates all necessary configuration that will be needed to execute ML jobs on

Azure, then the azure_executor.py will kick off the local pipeline with Azure

setup on cloud environment, execute either full process job or only validate

job. It is always the local pipeline that is run (i.e.local_run.py), since both

local and Azure environments are using the same training and validating python

scripts, Azure just requires different settings. Configure ML jobs to Azure is

described in Section 4.6.

• During each experiment run, MLflow tracking, which will be described in Section 4.7

is responsible for logging all the necessary results, such as metrics, parameters used,

even models and any other artefacts. Using MLflow tracking with ML experiments

will be discussed in Section 4.8.

• The iterative experiment process ends when the developers get the model with sat-

isfying results. Then we use DVC command dvc add to version control the final

version of ML artefacts (e.g. models). Now the model is version controlled by DVC,

as well as the data we used that the model has been trained on.

20

4.4 Data Versioning with DVC

• Before letting Git to version control everything, using dvc commit, dvc push to

commit DVC pipelines, DVC files to DVC and push dataset, artefacts to remote

storage. Then let the Git version control all the changes and results by using git

add, git commit.

• At this point, a pull request can be opened, notifying the team members that a

feature or a ML development process has been completed. After team members’

reviewing, this feature branch is going to be merged into the develop branch and

create a new release. Then a ML development process has been completed.

4.4 Data Versioning with DVC

As mentioned in section 2.1 and 2.2, data versioning is a big challenge in a machine learn-

ing project. Machine learning experimentation is an iterative process, therefore, different

versions of data, code and other ML artefacts (e.g.models) are generated through the

process. How to manage the different versions? How to make sure the traceability and

reproducibility of ML projects?

DVC1 is a tool that makes ML models shareable and reproducible. It works similarly

as Git and designs to handle large files, models and any other ML artefacts. In the

course, Industrial Internship2, I took one of the machine learning projects at Dashmote,

implemented a prototype of data and ML artefacts versioning in the ML project. The

details of the implementation can be found in the report(14) and the online blog(15) I

published. The reasons why we choose DVC are, firstly, it works similarly as Git, providing

easy-to-use commands. We work with Git on a daily basis for traditional software system

development. Secondly, it can easily integrate with Git-based projects, work together with

Git to help us version control the dataset and the code. Last but not the least, it is an

open source tool. The outcome of this course about DVC is summarized in the following

subsections, it builds the foundation for this graduation project as it solves one of the

biggest challenges, data versioning, in machine learning projects.

Before there is no mechanism for us to version control the dataset that has been used

in ML projects. Dataset we used for training some legacy models no longer exists, which

makes us lose the reproducibility of certain models. Now with this data versioning mecha-

nism, the dataset has been taken care of DVC and kept on remote storage. The summary

of implementing data versioning with DVC is presented in the following sections. In this
1https://dvc.org/
2https://studiegids.test.vu.nl/en/2020-2021/courses/XM_405080

21

4.4 Data Versioning with DVC

graduation project, we extend the work to integrate the data versioning and workflow

mechanism we implemented before with other services.

4.4.1 DVC Initialize

In order to use DVC and DVC features properly within your ML projects, the first step is

to install and initialize it1. Then assign a remote storage2 (e.g. Google drive3, AWS S3)

to DVC, where the datasets will be stored. Therefore, all the data files or any other files

can be kept in this remote storage instead of keeping them in the Git repository.

4.4.2 DVC Features

DVC allows you to version control your data files and other ML artefacts. It provides a

so-called *.dvc file4 to version control the data files, which contains a unique md5 hash

that uniquely identifies your data files. Then Git is responsible for version control of the

code and that DVC file. DVC has the following features when versioning the data files:

• Versioning data: It provides a simple command, dvc add, which allows you to add

data files into DVC control. It will generate the *.dvc file for each data file. Then

Git helps you version control that *.dvc file.

• Storing versioned data to remote storage: DVC supports several remote stor-

ages, such as Google Drive5, AWS S36 and etc. Versioned data files can be stored

remotely, instead of keeping them on Git7. By setting remote storage for your ML

project, you can push your data files remotely to the cloud.

• Retrieving data files: Having a DVC-controlled data file stored remotely on the

cloud, it can be downloaded to a local project when needed. Since the DVC file,

which contains a unique hash that uniquely identifies the data file, is located in the

local project, DVC knows where to find the data file and download it to the local

project.

• Making changes on data: When making data changes locally, DVC allows you to

always track the latest version of your data. The command is the same as in the first
1https://dvc.org/doc/command-reference/init
2https://dvc.org/doc/command-reference/remote#remote
3https://www.google.com/drive/
4https://dvc.org/doc/user-guide/project-structure/dvc-files#dvc-files
5https://www.google.com/drive/
6https://aws.amazon.com/s3/
7https://git-scm.com/

22

4.5 Model Deployment with AWS Sagemaker Batch Transform

step, Versioning data, by doing so, DVC will update the unique hash in the DVC

file, then a new hash is generated for the new version of data.

• Switching between versions: You might have different versions of data that are

tracked by DVC and Git. DVC allows you to switch between versions. Each hash

in the DVC file can identify a certain version of data, and Git versions each DVC

file, hence, by checkout a certain state of Git and then DVC checkout to synchronize

data, you can have a certain version of DVC file in your local project.

4.4.3 DVC Helps Building ML Pipeline

DVC also supports building a simple ML pipeline for your ML project. DVC pipelines

allow you better organize projects and reproduce the workflow and results later.

DVC uses stage to represent each single data process. It provides a dvc.yaml file1, in

which one or several stages are presented, for example, training stage, validation stage

etc. Inside each stage, it specifies its dependencies (e.g. input data file), outputs (e.g.

expected output model file) and commands that are used to run the script. Once the

stages are presented in the dvc.yaml file, and located in your ML projects, stages can

easily be reproduced by simple DVC command. According to the stages information in

dvc.yaml file, it knows where to find the input files and what are the output files.

Another file, dvc.lock2, is generated together with dvc.yaml file, which helps to record the

state of the ML pipeline(s) and track its outputs. It is similar to the DVC file mentioned

in Section 4.4.2, which uses md5 hash to link each file that presents in the stage. The hash

for a single file will be updated if that file changed in the project (e.g. update to a new

version).

4.5 Model Deployment with AWS Sagemaker Batch Trans-
form

ML model starts providing value to the enterprise when it has been deployed into the

industrial environment, which means deployed into production. But how to deploy models

in production at scale and how to make prediction more efficient? There are lots of tools or

services that are aiming to deploy ML models into production in an efficient and scalable

way. Amazon Sagemaker3 is a fully managed service that supports ML model building,
1https://dvc.org/doc/user-guide/project-structure/pipelines-files
2https://dvc.org/doc/user-guide/project-structure/pipelines-files#dvclock-file
3https://aws.amazon.com/cn/sagemaker/

23

4.6 Productize ML Experiment Process Remotely on Cloud

training and deploying. One of the features provided by Sagemaker, batch transform1,

is a high-performance and high-throughput method for transforming data and generating

inferences. It is ideal for dealing with large datasets.

The implementation details can be found in the same report(14) and the online blog(16)

I published. We leverage AWS Sagemaker batch transform to deploy our trained models

into production. The idea of Sagemaker batch transform is using a simple API to run

prediction on the large or small batch dataset. There is no need to split the dataset into

multiple chunks or run prediction in real-time, which can be expensive. Sagemaker provides

a set of parameters that allows you to customize your prediction function. For instance, by

customizing the payload size of your batch transform job, it will load as much as records

within that payload size in the dataset and perform prediction on that mini-batch.

Sagemaker batch transform performs efficiently even with a large dataset. Within our

testing, we utilize an instance with 8 CPU, 32 GiB memory to perform prediction on a

1.8G JSON file. It only takes 18 minutes to finish the prediction and this type of instance

costs only $0.461 per hour2.

By standardizing the model deployment workflow, we can have a standard way of de-

ploying model into production environment and it can be used by all our ML projects,

which guarantees consistency. Without this strategy, developers might deploy ML mod-

els into production manually, in their local environment, or using cloud resources but in

his/her own way. It is difficult for teams to monitor the model that has been deployed into

production as there is no standard way of doing it and no KPIs are provided to measure

the process. In this graduation project, we integrate this model deployment process into

the new MLOps architecture. With the help of DVC and Airflow, model deployment can

be executed automatically and without any handover process.

4.6 Productize ML Experiment Process Remotely on Cloud

It is a common thing that ML development first starts in a local environment, and then

scales out to a cloud environment, to utilize cloud resources. One of the advantages of

cloud-based services is that it gives developers or organizations access to high-performance

infrastructure that they can pay for what they use. ML applications require a ton of

compute power that can be very expensive. It is more affordable to rent access to those

cloud-based services than to purchase them outright.
1https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html
2https://aws.amazon.com/sagemaker/pricing/

24

4.6 Productize ML Experiment Process Remotely on Cloud

In this section, we introduce Azure Machine Learning1 to help us scale out our ML

development process. As mentioned in Section 4.2 and 4.3, our infrastructure allows users

to submit ML training jobs to the cloud and leverage cloud resources. The configuration

details of submitting ML jobs to Azure ML will be elaborate in the following subsections.

By having this set up in our ML projects, we provide the option for developers to utilize

the cloud resource. In case the developers have no capability of doing ML developing in

their local environment, they can still use cloud resources to fulfill the requirements of ML

jobs.

4.6.1 Azure Machine Learning

Azure Machine Learning (Azure ML) is a cloud-based service for building and managing

ML solutions. It helps data scientists or ML developers with end-to-end ML lifecycle and

allows you to work with any kinds of machine learning, from classical ML to deep learning,

supervised and unsupervised learning. Azure ML also supports different programming

languages, Python or R, and with options to work with Azure ML SDK2 or Azure ML

studio3.

Azure ML also provides all possible tools that will be needed by data scientists and

ML developers for their machine learning workflows. For instance, it provides Jupyter

notebooks as data scientists might be more familiar working with Jupyter notebooks. But

also it supports deploying your own Python scripts to Azure ML for model building. Many

other services are integrated with Azure ML as well, such as data storage, virtual machines,

MLflow, Kubeflow, etc.

4.6.2 Deploy ML Jobs to AzureML

Azure ML allows you to deploy your own ML jobs to a cloud-based environment. Before

actually submitting your ML jobs to Azure, there are a set of configurations that need to

be created. Basically there are six steps to follow and the prerequisites are having a Azure

subscription and Azure ML SDK installed. These six steps work together to provide an

environment that ML jobs (i.e.model training) can run on with customized requirements.

The main function of each step is described below and the corresponding Python code

example for creating each step is presented in Appendix B.1, Azure ML Configuration

Code Examples.
1https://azure.microsoft.com/en-us/services/machine-learning/
2https://docs.microsoft.com/en-us/python/api/overview/azure/ml/?view=azure-ml-py
3https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-machine-learning-studio

25

4.6 Productize ML Experiment Process Remotely on Cloud

• Azure ML Workspace

Azure MLWorkspace is a logic container that manages all ML assets, such as compute

instances, data storage, pipelines, models, etc. It is the place where your ML jobs

happen and the foundation of running ML jobs. The workspace can be created either

through Azure Portal1 or via Python code, Azure ML SDK.

• Compute target

Compute target is an environment that allows you to train the ML models. It

provides a variety of resources and developers can choose based on their needs. A

compute target can be your local machine or a cloud resource. It is to pay for what

you use. You can request the resource when you need it and stop when you are not

using it anymore. The price varies based on the configuration of the compute target.

There are four different choices of compute target2 and we are using the compute

instance which can be easily created. By choosing the virtual machine type, whether

CPU or GPU, how many cores, how many Gigabytes RAM, and how many Gigabytes

storage, you can customize your own compute instance. Price for that type of virtual

machine per hour is given.

• Experiment

Each ML run or ML job is called an experiment on Azure ML. All the information

related to that run will be logged into one experiment. Experiment runs are identified

by an unique experiment run ID. The purpose of this step is to assign a name to

your ML jobs. By having an experiment name for your ML projects, the ML runs

can be grouped together by the experiment name.

• Environment

Environment is an encapsulation of the environment that includes all the necessary

Python libraries and packages that will be used in ML jobs. It is the place where

machine learning jobs happen. Azure ML provides curated environments that include

common libraries and packages that will be needed in machine learning, but also it

supports you building your own docker image and using that docker image as your

environment.

We use the Dockerfile (mentioned in Section 4.3.1) to install all the Python libraries

and packages needed for machine learning. Then build the docker image locally and
1https://azure.microsoft.com/en-us/features/azure-portal/
2https://docs.microsoft.com/en-us/azure/machine-learning/how-to-create-attach-compute-studio

26

4.7 Productize MLflow Tracking Server

push the docker image to remote container registry (i.e. Azure Container Registry

(ACR)). Then during the ML runs, this docker image will be loaded from ACR as

the environment for machine learning jobs.

• Script Run Configuration

We have Azure ML workspace ready, compute instance created, experiment and

environment are available, then the next step is to connect them all together and tell

Azure ML what are the configuration for the ML job, what is the project folder that

includes all necessary Python scripts, Python classes and where is the Python script

that execute the ML job (e.g model training).

• Submit the Experiment

With all the steps above finished, the final step is to actually submit the ML job

to Azure. When the ML job is submitted to Azure ML, an experiment with the

experiment name we created will display in the Azure ML workspace, inside that

experiment, all the necessary information related to that ML run are clearly logged.

The Python script works as the entry point to trigger the ML job process, a snapshot

of the project folder is created and sent to the compute target, where the machine

learning happens.

When the ML job finishes, there are two special folders ./outputs and ./logs are

created by Azure ML. Any output files (e.g.model) exported from the ML jobs can

be written to the ./outputs folder and the ML artefacts (i.e.model) exported to this

folder can also be downloaded to local projects. ./logs folder keeps the process logs

that allow developers to check.

4.7 Productize MLflow Tracking Server

MLflow is an open source platform for managing machine learning lifecycle. It allows

tracking ML experiments, guaranteeing the reproducibility of ML projects. Also including

model deployment and model registry. It has four main components:

• MLflow Tracking: It is an API and a user-friendly UI that can record and query

ML experiments. It provides a centralized place where keeps all the ML experiments

results. MLflow Tracking is one of the main focuses of this graduation project.

• MLflow Projects: It is a format for packaging data and ML codes into a reusable

and reproducible way. Then it includes an API or command-line tools for executing

27

4.7 Productize MLflow Tracking Server

the ML projects. DVC pipelines, mentioned in Section 4.4.3, have the similar func-

tion as MLflow Projects. The command dvc repro, mentioned in our development

workflow Section 4.3.2, allows us to execute ML pipelines. Hence, we stick with the

DVC for executing ML pipelines.

• MLflow Models: It is a standard format for packaging ML models that can be used

in various downstream tools. It provides a file that describes all the flavors of the

model. For instance, how the model has been saved? which library is used? which

version of the library specifically? (e.g. sklearn with the version 0.19.1). One of the

advantages of using MLflow Model is that the standard flavors describe how to run

or load the model as a Python function in any downstream tools.

• Model Registry: It is a centralized model store and has the similar function as

MLflow Tracking. Model Registry keeps all the models that have been registered by

developers. It provides model lineage, which means each version of model is linked

to the experiment or run that produced this model. Also model versioning and stage

transitions. For example, transferring the model stage from staging to production.

As long as the model has been registered, it can be loaded as a Python function in

any downstream tools by using MLflow API, load_model()1, by providing the model

name and the version.

In this graduation project, we will only use MLflow Tracking. One of the biggest

challenges for us is lacking a centralized place and a strategy to manage and keep all the

experiment results. Without MLflow Tracking, our ML projects require manual logging

or use Git to version control experiment results (e.g.model accuracy) as well, which is not

very user friendly and error-prone. Model Registry is a nice-to-have feature to us and

compared to our ML development workflow, it will lead to a slightly different workflow

methodology. This part will be discussed in Section 5. The UI of MLflow Tracking and

Model Registry is displayed in Appendix C.1.

In this section, the four different MLflow Tracking working scenarios are briefly intro-

duced, together with our choice of implementing MLflow Tracking. We first try to im-

plement it in local environment, after that we migrate to cloud. A short introduction of

Azure ML built-in MLflow tracking service is also presented and followed by the reasons

why we do not choose this option.
1https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.load_model

28

4.7 Productize MLflow Tracking Server

4.7.1 MLflow Tracking Working Scenarios

The first thing is to understand how the MLflow runs or experiment runs are logged and

data are stored. MLflow runs can be recorded to local files, to a SQLAlchemy compatible

database or a remote tracking server(17). There are two components used for storage:

backend store and artifact store. Backend store is mainly for storing MLflow entities

(experiment runs, parameters, metrics, etc), while artifact store is for artifacts (models,

files, images, etc). There are four common scenarios:

• MLflow on localhost (S1): MLflow tracking can be run on a local machine. In this

case, both backend store and artifacts store are local file systems, ./mlruns, all the

ML entities, artifacts related to each run will be stored into this directory. The

advantage of this scenario is that it is easy to use and deploy, there is no extra setup

for integrating MLflow tracking into local ML projects.

• MLflow on localhost with SQLAlchemy compatible database (S2): As mentioned

before, MLflow also supports using databases for storing ML entities. In this scenario,

it runs on a local machine but with a SQLAlchemy compatible database, such as

SQLite, Postgresql, etc.

• MLflow on localhost with tracking server (S3): Similar to the first scenario but a

tracking server is launched on localhost. In this case, the local file directory is the

default file store. However, the command mlflow server <args> can be used to

configure what backend and artifact store are used.

• MLflow with remote tracking server (S4): MLflow also supports distributed archi-

tectures, where the tracking server, backend and artifact store can be remote hosts.

In this case, a remote tracking server can be launched. The advantages of remote

tracking server are that team members can access this tracking server if they have

permission and the experiment runs exist on MLflow Tracking are shareable. We

choose this scenario as a remote MLflow tracking server allows better collaboration

and communication between different teams.

4.7.2 Azure ML Built-in MLflow Tracking

Azure ML provides built-in MLflow Tracking service(18), by installing Python package

azureml-mlflow, it provides the connectivity for MLflow to access Azure ML workspace.

MLflow tracking uses Azure ML workspace as the backend and artifacts store. All the

29

4.7 Productize MLflow Tracking Server

ML entities and artifacts that have been logged into MLflow tracking when running ML

jobs with Azure ML, they will be stored in corresponding Experiment run, one of the

components in deploy ML jobs to Azure ML, Section 4.6.2.

In this scenario, we do not need to follow the four common scenarios mentioned in

Section 4.7.1. MLflow tracking works as part of Azure ML, as long as Azure ML is the

cloud provider for executing ML jobs. The advantages of using Azure ML built-in MLflow

tracking are that it is easy to deploy and requires little effort. But on the opposite site, this

option bundles with Azure ML. If Azure is not used anymore in the future or teams migrate

to another cloud provider (e.g. AWS), the MLflow tracking service will not be available

anymore. In our case, our main cloud provider is AWS, therefore, we choose S4, MLflow

with remote tracking server, Section 4.7.1, as we wish to have a separate MLflow tracking

server and ML experiments are always available on it no matter which cloud provider we

use.

4.7.3 MLflow Tracking Server Local Implementation

We first tried to implement an MLflow tracking server in a local environment using docker,

and tested it with local ML experiment jobs. The purpose is to understand how MLflow

tracking server works and to make sure it can work as a separate service. Then test with

remote ML experiment jobs (i.e. on Azure ML), to make sure it can also integrate with

Azure ML.

As described in S3, Section 4.7.1, a tracking server is launched on localhost and the

command mlflow server <args> is used for configuring backend and artifact store. Since

we use AWS S3 for storing datasets for DVC and it does not require extra setup in local

environment, therefore, for the local implementation, we decided to use AWS S3 as our

artifacts store, a PostgreSQL database running in docker as the backend store and localhost

as the MLflow tracking URI1. The local implementation and testing procedure has two

parts:

• Local setup with local script: The purpose of this step is to set up the MLflow

tracking server in the local environment and use a simple Python script to test if

metrics, parameters and artifacts can be logged into MLflow tracking.

• Local setup with remote ML jobs (i.e.on Azure ML): It is to test if the Azure ML can

work with local MLflow tracking server. There might be some connectivity issues
1It is the URI for a remote server, set by MLflow function mlflow.set_tracking_uri().

30

4.7 Productize MLflow Tracking Server

(e.g. connectivity between two cloud providers) and we plan to tackle those problems

in the local environment first.

4.7.3.1 Local Setup for MLflow Server

The artifact store can be set by providing a S3 path (e.g. s3://my-bucket/artifact_store).

A database can be created using docker, we can directly use the PostgreSQL official docker

image1 and download to the local environment. Build and run the PostgreSQL docker im-

age, create a database for MLflow backend store and a set of credentials to access the

database (e.g.database user, database password and a port) for later use. Then we use

Dockerfile to install all necessary libraries and start the MLflow tracking server on the

local host. The template of this Dockerfile is listed in Appendix C.2. It is an entry point

to execute the mlflow server <args> command, the command example is also listed in

Appendix C.2, it specifies what is the artifact store (i.e.the S3 path) and what is the back-

end store (i.e.PostgreSQL database, and all credentials). MLflow backend store supports

different databases2 and corresponding URL schema can be found as well. Now the MLflow

tracking server should be accessible on localhost, by default it is http://localhost:5000.

Since the MLflow tracking server is up, we can run the simple Python script to try to log

some parameters and artifacts to MLflow tracking. The first step, as mentioned before, is to

set the MLflow URI, using Python API provided by MLflow: mlflow.set_tracking_uri("

http://localhost:5000")3. Now your script knows which MLflow URI to use, the next

steps is to actually log parameters. For instance, mlflow.log_param("params_test",

"success")4. Finally open the localhost to check if the parameter has been logged into

MLflow tracking. If successful, an experiment will show up and inside that experiment,

the parameter we logged "params_test", "success" should exist.

4.7.3.2 Local MLflow Tracking with Azure ML

Now the MLflow tracking server is ready on localhost and the logging function is working

as well. Then we can test if the local tracking server can work with Azure ML. The full

example of MLflow logging function is listed in Appendix C.3. We can use those MLflow

logging functions inside the ML-related scripts (e.g. train.py). Then submit ML jobs to

Azure ML. However, there are three major problems when using separate MLflow tracking
1https://hub.docker.com/_/postgres
2https://docs.sqlalchemy.org/en/14/core/engines_connections.html
3https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.set_tracking_uri
4https://www.mlflow.org/docs/latest/tracking.html#id54

31

4.7 Productize MLflow Tracking Server

with Azure ML:

• The MLflow tracking URI setting inside the ML job cannot access the localhost be-

cause the ML job submitted to Azure ML runs inside the docker container and it

cannot access a local server. Therefore, we use ngork1 to expose the local server to

the public internet over secure tunnels. Making our localhost as public so that

it can be accessed by the docker container on Azure ML. This is also the final

goal of our remote MLflow tracking server that will be introduced in the next

section, Section 4.7.4. When the localhost is exposed to the public internet, use

mlflow.set_tracking_uri() to set the tracking URI, use the URI provided by

ngrok. Then the logging function is working, MLflow tracking server is working

with Azure ML.

• The MLflow tracking server runs inside the Azure ML cannot access its artifact store

(i.e.AWS S3). Our storage service provided by AWS is not public. We can access

it in the local environment because we have AWS credentials setup in our local

environment while Azure (another cloud provider) cannot. To solve this problem, we

utilise Azure Key Vault2 to keep AWS S3 access credentials (i.e.access key and secret

key). Then when creating an environment for running ML jobs on Azure ML, which

is via Dockerfile, mentioned in Section 4.6.2, we retrieve the AWS credentials via

Azure CLI3 and pass the credentials to Dockerfile when building the docker image.

Hence, the environment where the ML job happens can have access to AWS S3. The

example code of retrieving key vault from Azure is displayed in Appendix B.2.

• MLflow logging function we used inside ML-related Python scripts (i.e.train.py,

validate.py), which are running on Azure ML, cannot log parameters and artifacts

to local MLflow tracking. The way MLflow logging works is that MLflow will start

an experiment run first when calling the Python API mlflow.start_run()4, like

the code example listed in Appendix C.3, then it generates a random run_id that

uniquely identifies that run. Parameters and artifacts will be logged into correspond-

ing experiment run on MLflow tracking UI based on that run_id.

As mentioned before in Section 4.7.2, Azure ML built-in MLflow tracking will log

ML entities to Azure ML workspace, directly into the correspond ML experiment
1https://ngrok.com/
2https://azure.microsoft.com/enau/services/keyvault/
3https://docs.microsoft.com/enus/azure/keyvault/secrets/quickcreatecli#retrieveasecretfromkeyvault
4https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.start_run

32

4.7 Productize MLflow Tracking Server

run (one of the components when deploying ML jobs to Azure ML, Section 4.6.2.),

instead of launching a separate MLflow tracking UI. They are connected by Azure ML

experiment run ID so that MLflow knows where to log the ML entities and artifacts.

However, we are trying to use a separate MLflow tracking that runs outside the Azure

ML. If an MLflow run starts inside Azure ML, then it creates a run that does not

exist on our MLflow tracking UI. MLflow logging will complain when we are trying

to use a logging function because it cannot find the corresponding run on tracking

UI, therefore, it cannot log entities or artifacts to MLflow tracking. To solve this

problem, we start a MLflow run locally and get the MLflow experiment run_id. Since

the Python script we used to submit ML jobs to Azure ML (i.e.azure_executor.py,

in Section 4.3.1) runs in local environment, we can get the run_id first and then pass

it as the global variable to our ML scripts (e.g.train.py) that will be run on Azure

ML. By sharing the same MLflow run_id, the logging that happens on Azure ML

can also be logged into our MLflow tracking UI. The code example is presented in

Appendix C.3.

After solving the above three problems, our local MLflow tracking server can work with

Azure ML. The logging function works properly as well. It provides a good example and

foundation for our remote implementation. Local implementation helps us to understand

what kind of problems we might meet and what are the configuration issues between

different technologies, services or even cloud providers and how to solve them.

4.7.4 Migrate MLflow Tracking Server to Cloud

The final goal of MLflow tracking is not using the local file system or docker as storage

and the localhost as the URI of the tracking server. Based on the previous experience from

the team, the overall design of the MLflow tracking remote server is shown in Fig 4.4. The

main technologies and services are:

• AWS Route 53: It provides the custom domain name and DNS settings for our

MLflow tracking server. We follow the similar experience of creating our custom

server as we did before for our other services (e.g.Jenkins). It is the entry point for

users to access our MLflow tracking server.

• Application Load Balancer: It helps to automatically distribute the incoming

traffic across multiple targets. Load balancer acts like the traffic police, handles the

requests from outside (i.e.through AWS Route 53) and coordinates the traffic on the

road. It increases the availability and scalability of our tracking server.

33

4.7 Productize MLflow Tracking Server

Figure 4.4: MLflow tracking server infrastructure

Then the load balancer directs the traffic to the EC2 target group1 we specified.

After that the target group routes requests to the registered target, which is our

MLflow server that runs on ECS. During the process, EC2 security group is used and

acts as a virtual firewall for our application. Because we do not want to open our

MLflow server to the world, we add certain IPs into the security group so that they

can access our MLflow server.

• MLflow tracking server set up: We introduced local setup for MLflow server in

Section 4.7.3.1, the remote setup works similarly. We still use AWS S3 as the artifact

store as it is our main storage service, but we change the database-based backend

store from local docker to cloud, using AWS RDS. AWS RDS provides the easy to set

up relational database service in the cloud. Price2 for each database on RDS varies

based on the settings of the database. Developers can choose different settings based

on their needs. For instance, a selection of instance types is provided to fit different

relational database use cases. A database can be created via AWS console, choose

the database type and create a set of credentials to access the database (e.g.database

user, database password and a port). The same Dockerfile is used (listed in Appendix

C.2) but changing the backend setup, the database credentials, to the one we created
1https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-target-

groups.html
2https://aws.amazon.com/rds/postgresql/pricing/

34

4.8 Integrate MLflow Tracking and DVC with ML Experiments

on AWS RDS. Then instead of running the docker image locally, we push it to AWS

ECR and run it on AWS ECS.

• AWS CloudWatch: Collecting logs, metrics and events from MLflow tracking server.

With all the settings above and the local implementation experience we got, now the

MLflow server is running remotely, acting as a separate service that can be accessed by

the team. The MLflow logging works both locally and remotely (i.e.on Azure ML).

4.8 Integrate MLflow Tracking and DVC with ML Experi-
ments

DVC helps us to version control the dataset and ML artefacts (e.g.model), MLflow tracking

helps us to keep all the ML experiment results (e.g.metrics, parameters, artefacts). To

some extent, they can both version control the ML entities(i.e. metrics) and models. The

question is how to define the proper roles for them and the corresponding strategies.

In our case, we decided to use DVC as the main version control tool for ML entities

and artefacts. It works similarly to Git and we follow the same Git release strategy, which

we used for traditional software systems, for our ML model releases. MLflow tracking is

mainly for tracking and managing each ML experiment. They work together to guarantee

the traceability of our ML projects. The strategy we used for ML development workflow

regarding this scenario is described in Section 4.3.2.

If the ML experiment runs in a local environment, we can directly use DVC pipelines

(in Section 4.4.3) to version control the outputs (e.g.models) by adding them into DVC

pipeline outs, then they will be tracked by DVC automatically. Finally using Git to version

control relevant DVC files. DVC pipeline code examples are presented in Appendix A.2. If

ML experiment happens remotely on Azure ML, those artefacts (e.g.model) are exported

to Azure ML workspace after the ML algorithms run, in a special folder ./outputs (in

Section 4.6.2). We need to download them from Azure ML workspace to local project first,

and then add them into DVC pipeline outs as well so that they can be tracked by DVC.

The download code example is already listed in Appendix B.1.

35

5

Discussion

The ML lifecycle and MLOps architecture we proposed combined the research work we

found in academic areas, technical tutorials on the marketplace and personal or the team’s

experience. Due to the time limit and the team’s plan, there is some future work that

can be done to enhance the whole infrastructure, which will be introduced in this section.

We use several tools and technologies within this MLOps architecture. There are some

other competitive tools that can do the same thing. The decision can be made based on

the team’s experience and requirements, research work about that service or tool. The

discussion is also presented in this section.

5.1 Discussion

We used three different tools or technologies within our MLOps architecture. DVC (Section

4.4) is used to version control the different versions of datasets. Other data versioning

tools are mentioned in Section 3.1. We choose DVC because it is an open source and it can

integrate with Git easily. It does not require complicated set up and within our proposed

workflow, it can handle the data versioning lifecycle for our ML projects. An important

takeaway message for it is no matter what tools are used, it is important to come up with

a workflow that handles the data versioning lifecycle. For instance, it should support data

versioning, storing and retrieving.

For model deployment, we stick with AWS services, our main cloud provider, Sagemaker

batch transform (Section 4.1.4). It is a high-performance and affordable service that is

suitable for dealing with large datasets. Other approaches of deploying models into pro-

duction environments are introduced in Section 3.2. MLflow can be a good candidate,

since it supports the whole ML lifecycle management. We implemented model deployment

36

5.2 Reflection

before implementing MLflow, therefore, for model deployment we stick with AWS Sage-

maker. MLflow provides model registry, version control the model and specifies the stage of

the model (e.g.staging, production). Then it provides API to deploy the registered model

into downstream services (e.g.Sagemaker). Azure, as another cloud provider, provides all

necessary services to manage the ML lifecycle. If Azure is your main cloud provider, all

the ML-related services can be provided by Azure. For example, Azure ML model training

we used in this graduation project (Section 4.6.2), model deployment with Azure (Section

3.2), and Azure ML also provides built-in MLflow tracking that allows you to manage all

the ML experiment results (Section 4.7.2).

We choose Azure ML to help us execute the ML experiments with cloud resources. This

is the team decision because of the budget but AWS also can do the same thing. One

option is to use AWS Sagemaker. We use Sagemaker batch transform to help us de-

ploy the trained model into the production environment, however, it also supports model

training(19). Sagemaker model training works similarly as the Sagemaker batch trans-

form. By providing the docker image, which contains the ML algorithm code for training

the model, to Sagemaker training job, and choose the compute resources based on the

requirements, Sagemaker can train the model and export the output files to AWS S3. An-

other option is to run the model training on ECS. We can create and build a docker image

locally, which contains the ML algorithms to train the model. Then push the image to

AWS ECR, and create a task definition on AWS ECS. Task definition defines which Docker

image to use, how much CPU and memory to use for the task, and where to launch the

task (e.g. AWS EC2). ECS makes it easy to deploy and scale Docker containers running

applications, services, etc.

5.2 Reflection

This graduation project was able to successfully build a foundation for us to operational-

ize ML in production. As we mentioned in Section 4.1 that we emphasize on the ML

development and deployment process, the data preparation and collection is out of scope.

However, data plays an important role in ML projects and there are some other different

use cases and challenges that are worth mentioning.

Federated learning1, which differs from traditional large-scale machine learning. It is a

technique that has multiple decentralized edge devices or servers holding local data sam-

ples. Data might spread across multiple sites. While the traditional centralized machine
1https://en.wikipedia.org/wiki/Federated_learning

37

5.3 Future Work

learning techniques, all the datasets are uploaded to one server. In our case, we collect data

from different online food platforms (e.g.Ubereats1, Deliveroo2) and we make checkpoints

for those data and keep them in a centralized place, AWS S3. However, for federated

learning, the situation is different. How to manage and collect data that comes from dif-

ferent sites for federated machine learning use cases? Tian mentioned several challenges

and methods for federated learning in their paper(20) and online blog(21). For instance,

federated networks might comprise a lot of end devices (e.g.millions of smart phones),

therefore communication in such networks can be expensive. A solution for this is to

develop communication-efficient methods that iteratively send small messages as part of

the model training process. Another issue is related to data privacy. Data generated

from different sites (e.g.smartphone) might contain sensitive information. There are some

methods to enhance the privacy of federated learning, using tools such as secure multi-

party computation of differential privacy. However these approaches bring trade-offs, for

instance, reduce model performance or system efficiency. It is important to understand

these challenges and the trade-offs of bringing new approaches to solve these challenges.

In federated learning, data comes from multiple sites and can lead to a growth of data

size. Even in traditional machine learning use cases, the data size can also explode. Another

challenge related to this is how to automatically scale the ML development and deploy-

ment process when data size grows? Because it is hard to estimate how much resources are

needed. In our case, we utilize cloud resources to help out scale the ML development and

deployment process, and those cloud services have their own way of automatic scaling. For

example, we use AWS Sagemaker to help us deploy the trained model into production and

perform prediction logic on unseen data (Section 4.5). There could be a case that the data

size grows and we are not sure how large cloud instances are needed for that ML job. How-

ever, Sagemaker supports automatic scaling for hosted models(22). Sagemaker can adjust

the number of instances for the ML job based on the workload. If workload increases, this

auto-scaling will bring more instances online. On the opposite site, if workload decreases,

auto-scaling will reduce the number of instances to avoid wasting resources.

5.3 Future Work

We use a so-called machine learning operations maturity model provided by Azure(23) to

evaluate our own MLOps framework. Based on the highlights of different levels in this
1https://www.ubereats.com
2https://deliveroo.com

38

5.3 Future Work

maturity model and our own circumstances, we almost fulfilled the requirements of level

4. But few parts are missing and can be improved in this graduation project.

5.3.1 Automatic Remote Model Training with Jenkins

Our remote model training on Azure ML (Section 4.6) is triggered manually, by a local

Python script (i.e.azurre_executor.py). It submits the necessary configuration of deploy-

ing custom ML models on Azure to Azure ML workspace, where the ML jobs happen and

cloud resources (e.g.compute instance) can be used by ML jobs. Now, with our current

setting, developers have to manually trigger it and wait in front of their laptop until the

model training is done. This is not ideal for the scenario where the model training might

take hours to finish. This manual triggering can be automated by adding this action into

Jenkins1 pipeline, our test automation tool used for continuous integration (CI) in software

systems. We customized our own testing in Jenkins for our other software systems, such as

automate building, testing library install, code unit testing, deploying, etc. Whenever a git

commit is made, a pull request is opened, or a new version is released, it will automatically

build the library and execute the unit tests we defined for our software systems, to ensure

everything works as expected. We can automate these remote ML jobs deploying with

Jenkins. Once a git commit is made, which means the ML job is ready to be deployed into

Azure ML and wait for training. The whole project is packed together and submitted to

Jenkins. Jenkins triggers the entry point, the Python script we used to kick off the ML

pipeline, then the ML job is executed on Azure ML. During the experimentation, the same

workflow happens, experiment results are logged into MLflow tracking, the ML artefacts

(e.g.model) are downloaded to local once the training is done and version controlled by

DVC. After that, developers can decide whether the results are satisfying enough or not.

If yes, a pull request can be opened for other team members to review. If not, the same

process can be executed until the satisfying results are received. By doing so, the remote

ML jobs deployment is automated by Jenkins, developers do not need to manually trigger

the ML pipeline and wait in front of their laptops until the ML job is done.

5.3.2 Machine Learning CI/CD Pipeline

Based on the MLOps maturity model, the CI/CD pipeline is missing in this graduation

project, and it is necessary to have this CI/CD pipeline. This CI/CD pipeline forces

automation in building, testing, training, retraining and even deploying. Based on the
1https://www.jenkins.io/

39

5.3 Future Work

research work in Section 3.3, the report and our own MLOps framework, the CI/CD

pipeline can be designed as follows.

There is an extra step before introducing CI/CD pipeline, which is a data validation

test. The data validation can be done before data version control in our ML development

pipeline. Data scientists are responsible for dataset creation and collecting. The data

quality, for example the data distribution, can be checked by the data scientist team and

then deliver the qualified dataset to the data engineer team.

Then during ML development, we work on git feature branch, it is a branch where you

used for developing features for the ML model. For example, try out different combinations

of parameters. Once a git commit is made, the code unit tests are executed, to make

sure the basic function of ML algorithms is working as expected. The same tests are

executed when a pull request is opened from that feature branch and wants to merge into

the develop branch. Once the feature branch is merged into the develop branch, the CI

pipeline triggers. It runs the same code unit tests and model training. The whole ML

project is packed together and submitted to Azure ML for model training. After that, CD

pipeline runs the model validation on Azure ML as well. The validation results, such as

metrics, parameters will be published on MLflow tracking. Once a milestone is created, a

release branch is published which means a new version of the model is released. Then the

same CI/CD pipeline is triggered against the code based in the release branch. Now the

model is ready to be used in production.

The similar CI/CD pipeline is used in our software systems, provided by Jenkins, but

more focused on code unit testing. Whenever a git commit is made, a pull request is

opened from feature branch, feature branch merges into the develop branch, or a release

branch is published, the CI/CD pipeline will be triggered to validate the code quality.

While in ML projects, an extra component needs to be taken care of, which is the ML

model. Jenkins can also provide the automation testing. In this designed CI/CD pipeline,

it supports continuous training, re-training, evaluating, and re-evaluating of ML models.

At the same time, ML algorithm code is handled by this CI/CD pipeline as well.

40

6

Conclusion

In this thesis, we present the design of our MLOps framework and associated services

or infrastructures that help us to automate and facilitate the ML lifecycle in production

environments in terms of model development and model deployment. In the model de-

velopment process, we utilize DVC for version control of the dataset and ML artefacts

(e.g.models) that will be used or generated during ML experiments. Git is responsible

for version control of the ML algorithm code and model releases. During the iterative

ML development process, a separate server, MLflow Tracking, is used for managing and

keeping all ML experiment results (e.g.metrics, parameters). We provide the options for

users to execute their ML experiments in local environment or using cloud resources (i.e.

Azure ML). They can choose based on their needs, whether the ML experiment requires

more powerful compute instances or not. These services and infrastructures guaranteed

the reproducibility and reliability of ML projects. Then in model deployment process, after

the ML model is trained and released, we use AWS Sagemaker Batch Transform to deploy

the trained model into production, its own batch strategy and the custom settings use the

model we released and apply prediction logic on small or large batch dataset, which is

efficient and also the price is acceptable. During this process, the released model is loaded

into AWS Sagemaker during runtime, via DVC API. Since we have datasets and ML arte-

facts (e.g.model) under DVC control in model development process, they can be loaded

into production by using DVC API, therefore, we do not need to manually handover the

model and use it in production environment.

The goal of this graduation project is to establish a MLOps framework and corresponding

ML development and deployment strategy that facilitate and scale ML in an industrial

setting. The four research questions are revised based on the result of this thesis.

• Q1: What are the challenges in developing machine learning projects in production?

41

Challenges can be summarized into two aspects: dependency level and management

level. At the dependency level, the internal dependency happens within the ML

systems. ML models rely on different parts, such as data, parameters, ML algorithm

code, etc. And in ML systems, unlike traditional software system, which use modular

design, ML systems have no such clear boundaries. It works with data versions,

algorithm code versions and different versions, different combinations of parameters

will lead to different model results. The external dependency happens within the

whole industrial setting. When integrating ML systems into the current industrial

setting, the components around the ML system need to be taken care of. At the

management level, usually in production environments, we have dozens or hundreds

of models running simultaneously, the challenge is how to manage and monitor all of

them? As mentioned before, ML models rely on data versions, parameter versions,

and how to manage all those different versions in an efficient and reliable way is

another challenge.

• Q2: Why MLOps? What are the differences between MLOps and DevOps?

MLOps is a set of practices used to streamline the ML end-to-end lifecycle, designed

to automate it as much as possible. MLOps and DevOps, they do share some similar-

ities. For instance, they both encourage and facilitate collaborations between people

who develop, people who manage the infrastructure and operations. They both em-

phasize on process automation. But for some ML-specific issues, like data versions,

DevOps cannot fulfill all the requirements. That is why MLOps is introduced.

• Q3: How to handle data versioning issues in machine learning projects and how to

deploy ML models into production efficiently?

Data versioning is a big challenge in ML projects. There are different tools on the

marketplace to help us solve this problem. As mentioned in Section 3.1, and the

one we used, DVC, they can help us version the data overtime and keep them in a

reliable place (e.g.remote storage). The challenge is to find the proper tool, integrate

with current industrial settings and create relevant strategies for data versioning.

Model is deployed into production environments utilizing cloud resources. Different

cloud providers have their own way of deploying ML models. In our case, we use AWS

Sagemaker Batch Transform. The decision can be made based on the team’s previous

experience and requirements. Using cloud resources are more reliable and scalable

since cloud can provides the compute power that your local environment might not

42

equipped. Within a team, it also defines the standard way of deploying models into

production, otherwise, team members might have their own ways of deploying which

lead to inconsistency.

• Q4: What kind of MLOps frameworks or strategies that we could learn from when

integrating ML systems into the industrial setting?

The MLOps framework is aiming to automate and facilitate the entire machine learn-

ing lifecycle, which enables continuous development and continuous delivery. We

emphasize on the model development and model deployment process. We present

a framework and strategies that allow us to continuously develop ML models and

release them into production. Different versions of data are properly handled and

saved. The iterative ML development process generates a lot of experiment results,

which are also carefully tracked and managed. This enables us to continuous de-

velop and release in a reliable and efficient way. Our MLOps framework also builds

a bridge between model development and model deployment. Released models can

be deployed into production environments regarding the model version, without any

manual handover steps.

The purpose of this graduation project and thesis is to provide a template framework

and workflow strategy for those people or teams who are interested in MLOps and trying

to build their own MLOps framework. We started with no MLOps at all, now we have a

standard and basic MLOps architecture and workflow strategy that help us manage our

ML development and deployment process, also the similar architecture and workflow are

applied to our other ML projects. This MLOps architecture fulfilled our key objectives.

A standard ML lifecycle has been established. Our data scientist team and data engineer

team can have a better collaboration on ML projects. Data, ML artefacts lifecycle, and

the ML experiment details have been carefully tracked and saved. No manual handover

is needed when deploying models into production. It streamlines and automates the ML

lifecycle, reduces the delivery time and labour work, makes the ML development process

more reliable, traceable and scalable.

43

Appendix

A DVC Code Examples

A.1 DVC Build Pipeline Example

This code examples are for Section 4.3.2. The full process (i.e. train and validate) stage in

DVC pipeline can be created by following code. It specifies the dependencies (-d), outputs

(-o), metrics (-M) and plots (-plots-no-cache). Run the command from the directory

dvc_pipeline/NL:

dvc run train_validate_local \

-d ../../src/dash_ml_flag_combo/scripts/run_pipeline.py \

-d ../../assets/data/NL/NL_training.csv \

-d ../../assets/data/NL/NL_validation.csv \

-o ../../assets/model/NL/NL_flag_combo.pkl \

-M ../../assets/metrics/NL/NL_scoring.json \

-plots-no-cache ../../assets/metrics/NL/NL_confusion_matrix.png \

python ../../src/dash_ml_flag_combo/scripts/run_pipeline.py ${params.country} \

${mode.train_validate} ${pipeline.local}

The validate stage can be created by the following code, following the same rules:

dvc run validate_local \

-d ../../src/dash_ml_flag_combo/scripts/run_pipeline.py \

-d ../../assets/data/NL/NL_validation.csv \

-o ../../assets/data/NL/NL_validated.csv \

python ../../src/dash_ml_flag_combo/scripts/run_pipeline.py ${params.country} \

${mode.validate} ${pipeline.local}

44

A DVC Code Examples

A.2 DVC Pipeline File Examples

The generated DVC pipeline related files, creating by the code above in Section A.1, are

presented here, along with the params.yaml file.

• dvc.yaml1 file:

stages:

train_validate_local:

cmd: python ../../src/dash_ml_flag_combo/scripts/run_pipeline.py ${params.country} \

${mode.train_validate} ${pipeline.local}

deps:

- ../../assets/data/NL/NL_training.csv

- ../../assets/data/NL/NL_validation.csv

- ../../src/dash_ml_flag_combo/scripts/run_pipeline.py

outs:

- ../../assets/model/NL/NL_flag_combo.pkl

metrics:

- ../../assets/metrics/NL/NL_scoring.json:

cache: false

plots:

- ../../assets/metrics/NL/NL_confusion_matrix.png:

cache: false

validate_local:

cmd: python ../../src/dash_ml_flag_combo/scripts/run_pipeline.py ${params.country} \

${mode.validate} ${pipeline.local}

deps:

- ../../assets/data/NL/NL_validation.csv

- ../../src/dash_ml_flag_combo/scripts/run_pipeline.py

outs:

- ../../assets/data/NL/NL_validated.csv

• dvc.lock2 file:

schema: '2.0'

stages:

train_validate_local:
1https://dvc.org/doc/user-guide/project-structure/pipelines-files#pipelines-files-dvcyaml
2https://dvc.org/doc/user-guide/how-to/merge-conflicts#dvclock

45

A DVC Code Examples

cmd: python ../../src/dash_ml_flag_combo/scripts/run_pipeline.py NL train_validate \

local_run

deps:

- path: ../../assets/data/NL/NL_training.csv

md5: 60b27ce834dad76825fn96b26edacc9b

size: 68595

- path: ../../assets/data/NL/NL_validation.csv

md5: 0c80660e4eaaea3b7337y13de2097506

size: 35666

- path: ../../src/dash_ml_flag_combo/scripts/run_pipeline.py

md5: ef1658ob652138pd0125d14983de6809

size: 602

outs:

- path: ../../assets/metrics/NL/NL_confusion_matrix.png

md5: d60480r7a5c2f9033k534660b5d631eb

size: 14634

- path: ../../assets/metrics/NL/NL_scoring.json

md5: 5d1ad161l06df2ecdd778d8fab79f760

size: 128

- path: ../../assets/model/NL/NL_flag_combo.pkl

md5: 48b8516yh274927617a985v8540915ea

size: 693806

validate_local:

cmd: python ../../src/dash_ml_flag_combo/scripts/run_pipeline.py NL validate \

local_run

deps:

- path: ../../assets/data/NL/NL_validation.csv

md5: 0c84360e4loefa3b7398e13de2097506

size: 35666

- path: ../../src/dash_ml_flag_combo/scripts/run_pipeline.py

md5: ef1047ac052138fs0425d14983de6809

size: 602

outs:

- path: ../../assets/data/NL/NL_validated.csv

md5: 7ed1d0g18b66b6e4d9577c7b20c6a2dd1

size: 20694

46

B Azure ML Related Code Examples

• params.yaml1 file:

params:

country: "NL"

mode:

train_validate: "train_validate"

validate: "validate"

pipeline:

local: "local_run"

remote: "azure_run"

B Azure ML Related Code Examples

B.1 ML Jobs with Azure ML Configuration

• Create Azure ML Workspace:

from azureml.core import Workspace

ws = Workspace.create(name='myworkspace',

subscription_id='<azure-subscription-id>',

resource_group='myresourcegroup',

create_resource_group=True,

location='eastus2'

)

• Create compute instance:

from azureml.core.compute import ComputeTarget, ComputeInstance

from azureml.core.compute_target import ComputeTargetException

compute_name = "mycomputeinstance"

Check if the instance already exist

try:

instance = ComputeInstance(workspace=ws, name=compute_name)

print('Found existing instance, use it.')

except ComputeTargetException:

compute_config = ComputeInstance.provisioning_configuration(

vm_size='STANDARD_D3_V2',

ssh_public_access=False

)
1https://dvc.org/doc/command-reference/params#params

47

B Azure ML Related Code Examples

compute_instance = ComputeInstance.create(ws, compute_name, compute_config)

compute_instance.wait_for_completion(show_output=True)

• Create experiment:

from azureml.core import Experiment

experiment_name = 'myexperiment'

experiment = Experiment(workspace=ws, name=experiment_name)

• Using custom docker image from ACR as environment:

from azureml.core import Environment

load existing image from ACR

my_env = Environment(name='docker_image_environment')

my_env.docker.base_image = IMAGE_PATH_ON_ACR

my_env.python.user_managed_dependencies = True

• Script run configuration and submit job:

from azureml.core import ScriptRunConfig

src = ScriptRunConfig(

source_directory=project_folder,

script=python_script,

compute_target=compute_instance,

environment=my_env,

arguments=[arg_1, arg_2, arg_n])

run = experiment.submit(config=src)

run.wait_for_completion(show_output=True)

• Download ML artefacts from ./outputs folder to local:

model_output_path = "PATH_IN_LOCAL"

run.download_file(

name="./outputs/model.pkl",

output_file_path=model_output_path,

)

B.2 Retrieving Key Vault

az keyvault secret show --name "aws-s3-access-key" \

--vault-name "<your-unique-keyvault-name>" --query "value"

48

C MLflow Tracking Code Examples

C MLflow Tracking Code Examples

C.1 MLflow User Interface

Figure 6.1: MLflow Tracking Interface (with different experiments)

Figure 6.2: One experiment details in MLflow Tracking

C.2 MLflow Tracking Server Local Setup

• Dockerfile:

49

C MLflow Tracking Code Examples

Figure 6.3: MLflow Model, model has been logged into MLflow Tracking. It describes details
of the ML model, prerequisite of Model Registry

Figure 6.4: Model Registry, registered model will be kept in a centralized place. Shown in
next Figure

Figure 6.5: Centralized place for registered models, with stages of each model (e.g.staging,
production).

50

C MLflow Tracking Code Examples

FROM python:3.7

RUN pip install mlflow==1.13 &&

pip install awscli --upgrade --user &&

pip install boto3==1.16.46 &&

pip install psycopg2-binary

defining workdir

WORKDIR /home/ubuntu

COPY files/run.sh /home/ubuntu

RUN chmod +x /home/ubuntu/run.sh

ENTRYPOINT ["/home/ubuntu/run.sh"]

• MLflow configration command (inside the file run.sh):

mlflow server \

--backend-store-uri postgresql://DB_USER:DB_PASSWORD@localhost/DB_name \

--default-artifact-root s3://my-bucket/artifact_store \

--host 0.0.0.0

C.3 MLflow Logging

• MLflow logging functions:

mlflow.set_tracking_uri("http://localhost:5000")

Start a MLflow run/experiment

with mlflow.start_run():

mlflow.log_param("data_url", data_url)

mlflow.log_metrics(metrics)

mlflow.log_artifact(data_path)

• MLflow logging sharing same run_id:

mlflow.set_tracking_uri("<mlflow-server-uri>")

Start a MLflow run/experiment in a local script (e.g.azure_executor.py)

with mlflow.start_run():

Get active run_id

run = mlflow.active_run()

mlflow_run_id = run.info.run_id

src = ScriptRunConfig(

source_directory=project_folder,

51

C MLflow Tracking Code Examples

script="train.py",

compute_target=compute_instance,

environment=my_env,

arguments=[mlflow_run_id]) # Pass run_id to train.py as global variable

run = experiment.submit(config=src)

run.wait_for_completion(show_output=True)

Using MLflow logging in train.py, which runs on Azure ML

with mlflow.start_run(run_id=mlflow_run_id):

mlflow.log_param("data_url", data_url)

mlflow.log_metrics(metrics)

mlflow.log_artifact(data_path)

52

References

[1] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,

Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Cre-

spo, and Dan Dennison. Hidden Technical Debt in Machine Learning Sys-

tems. In Proceedings of the 28th International Conference on Neural Information

Processing Systems - Volume 2, NIPS’15, page 2503–2511, Cambridge, MA, USA,

2015. MIT Press. 1

[2] Yizhen Zhao. Machine Learning in Production: A Literature Review. 3

[3] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D. Lawrence. Challenges

in Deploying Machine Learning: a Survey of Case Studies. arXiv e-prints,

page arXiv:2011.09926, November 2020. 5

[4] Adarsh Shah. Challenges Deploying Machine Learning Models to Produc-

tion. 5

[5] Luigi. 5 Challenges to Running Machine Learning Systems in Production.

5

[6] Anant Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Desh-

pande, Aaron J. Elmore, Samuel Madden, and Aditya G. Parameswaran.

DataHub: Collaborative Data Science Dataset Version Management at

Scale, 2014. 7

[7] Vimarsh Karbhari. MLOps: Data Science Version Control. 8

[8] Azure. Deploy machine learning models to Azure. 9

[9] Kyle Gallatin. Deploying Models to Production with Mlflow and Amazon

Sagemaker. 10

[10] Azure. Deploy MLflow models as Azure web services. 10

53

https://staff.fnwi.uva.nl/a.s.z.belloum/LiteratureStudies/Reports/2021-LiteratureStudy-report-Yizhen.pdf
https://towardsdatascience.com/challenges-deploying-machine-learning-models-to-production-ded3f9009cb3
https://towardsdatascience.com/challenges-deploying-machine-learning-models-to-production-ded3f9009cb3
https://mlinproduction.com/5-challenges-to-ml-in-production-solve-them-with-aws-sagemaker/
https://medium.com/acing-ai/ml-ops-data-science-version-control-5935c49d1b76
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-and-where?tabs=azcli
https://towardsdatascience.com/deploying-models-to-production-with-mlflow-and-amazon-sagemaker-d21f67909198
https://towardsdatascience.com/deploying-models-to-production-with-mlflow-and-amazon-sagemaker-d21f67909198
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-mlflow-models

REFERENCES

[11] Databricks. MLflow Quick Start Part 2: Serving Models with Microsoft

Azure ML. 10

[12] Emmanuel Raj. Edge MLOps framework for AIoT applications, Continuous

delivery for AIoT, Big Data and 5G applications. June 2020. 10

[13] István Pölöskei. MLOps approach in the cloud-native data pipeline design.

Acta Technica Jaurinensis, 04 2021. 11

[14] Yizhen Zhao. MLOps and data versioning in machine learning project. 21,

24

[15] Yizhen Zhao. MLOps: Data versioning with DVC — Part I. 21

[16] Yizhen Zhao. MLOps: Deploy custom model with AWS Sagemaker batch

transform — Part II. 24

[17] MLflow. How Runs and Artifacts are Recorded. 29

[18] Azure. Track ML models with MLflow and Azure Machine Learning. 29

[19] AWS. Train a Model with Amazon SageMaker. 37

[20] Tian Li, Anit Kumar Sahu, Ameet S. Talwalkar, and Virginia Smith. Fed-

erated Learning: Challenges, Methods, and Future Directions. IEEE Signal

Processing Magazine, 37:50–60, 2020. 38

[21] Tian Li. Federated Learning: Challenges, Methods, and Future Directions.

38

[22] AWS. Automatically Scale Amazon SageMaker Models. 38

[23] Azure. Machine Learning Operations maturity model. 38

54

https://docs.azuredatabricks.net/_static/notebooks/mlflow/mlflow-quick-start-deployment-azure.html
https://docs.azuredatabricks.net/_static/notebooks/mlflow/mlflow-quick-start-deployment-azure.html
https://staff.fnwi.uva.nl/a.s.z.belloum/LiteratureStudies/Reports/2020-Internship_report-Yizhen.pdf
https://yizhenzhao.medium.com/mlops-data-versioning-with-dvc-part-%E2%85%B0-8b3221df8592
https://yizhenzhao.medium.com/mlops-deploy-custom-model-with-aws-sagemaker-batch-transform-part-%E2%85%B1-54263ec711ce
https://yizhenzhao.medium.com/mlops-deploy-custom-model-with-aws-sagemaker-batch-transform-part-%E2%85%B1-54263ec711ce
https://mlflow.org/docs/latest/tracking.html#how-runs-and-artifacts-are-recorded
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-use-mlflow
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html
https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-future-directions/
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-model

	List of Figures
	Glossary
	1 Introduction
	2 Background
	2.1 Machine Learning in Production
	2.1.1 Challenges in Machine Learning Projects
	2.1.2 Importance of MLOps and Difference with DevOps

	2.2 Problem Statement
	2.3 Research Questions

	3 Related Work
	3.1 Data Version Control
	3.2 ML Model Deployment in Production Environment
	3.3 MLOps Framework for Building Integrated ML System in Production

	4 Project Implementation
	4.1 Machine Learning Lifecycle Design
	4.1.1 Understanding the Requirements
	4.1.2 Data Preparation and Data Labeling
	4.1.3 Feature Engineering, Model Training and Model Evaluation
	4.1.4 Model Deployment

	4.2 MLOps Architecture Design
	4.3 Refine ML Development Process
	4.3.1 Git Repository Structure
	4.3.2 ML Development Workflow

	4.4 Data Versioning with DVC
	4.4.1 DVC Initialize
	4.4.2 DVC Features
	4.4.3 DVC Helps Building ML Pipeline

	4.5 Model Deployment with AWS Sagemaker Batch Transform
	4.6 Productize ML Experiment Process Remotely on Cloud
	4.6.1 Azure Machine Learning
	4.6.2 Deploy ML Jobs to AzureML

	4.7 Productize MLflow Tracking Server
	4.7.1 MLflow Tracking Working Scenarios
	4.7.2 Azure ML Built-in MLflow Tracking
	4.7.3 MLflow Tracking Server Local Implementation
	4.7.3.1 Local Setup for MLflow Server
	4.7.3.2 Local MLflow Tracking with Azure ML

	4.7.4 Migrate MLflow Tracking Server to Cloud

	4.8 Integrate MLflow Tracking and DVC with ML Experiments

	5 Discussion
	5.1 Discussion
	5.2 Reflection
	5.3 Future Work
	5.3.1 Automatic Remote Model Training with Jenkins
	5.3.2 Machine Learning CI/CD Pipeline

	6 Conclusion
	Appendix
	A DVC Code Examples
	A.1 DVC Build Pipeline Example
	A.2 DVC Pipeline File Examples

	B Azure ML Related Code Examples
	B.1 ML Jobs with Azure ML Configuration
	B.2 Retrieving Key Vault

	C MLflow Tracking Code Examples
	C.1 MLflow User Interface
	C.2 MLflow Tracking Server Local Setup
	C.3 MLflow Logging

	References

