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“History, as Hegel said, moves upward in a spiral of negations”

ii



Abstract

Resource management is no doubt one of the key problems that all clusters
have to face. The LOFAR telescopes observe the sky and archive the records.
Though there are computation facilities to process the observation data, the
quantity of data is far beyond their capability. Therefore, the data is fetched
and processed through a multiple-step pipeline when it is needed. Each step
may take a long time and consume a significant amount of computation power.
Currently, we have horizontally scalable implementations in MPI and Spark
The computation power is positively correlated to the numbers of involved
computing units. However, both of them have an intrinsic drawback on re-
source utilizing. To promote the utilization of the resources, we propose an
auto-provisioning distributed computing system. The auto-scaling mechanism
enables the applications to dynamically fetch and release resources, and as the
consequence, the resources of the cluster are used to the maximum extent. The
results show that the nominal resource utilization of a cluster can be improved
up to 99.9%. With idle resources being used, users may take less time to wait.
In our busy cluster scenario test case, users take 10% less time on average to
wait for the job to be finished at the submission of the jobs.
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Introduction

1.1 Context

The Low Frequency Array(LOFAR) telescope1 consists of 51 stations across Europe, and
a typical LOFAR observation has the size of 100 TB which can be reduced to 16 TB
after frequency averaging(1). Collectively, there are over 5 PB of data to be stored each
year(2). In the case that the data-collecting speed exceeds the processing capability, the
data will be stored and archived first, and then processed at the request of the researchers
on astronomy, physics, and computer science. The pipeline is divided into multiple steps,
and in this thesis, we focus on the calibration which is available to reduce the noise of
observation. The Netherlands eScience Center2 has developed solutions for calibrating
imaged observation collected by LOFAR. As one of the implementations for image cali-
bration, SAGECaL is designed and implemented to calibrate the observation by a given
sky map(3). Based on the sky map, SAGECaL is able to process data in parallel.

Using the given pre-processed observation data, sky model, and parameters for com-
putation i.e. number of iterations, the input data can be processed in parallel, which is,
however still a computationally intensive application. Currently, GPU-MPI3, and Spark4

versions of SAGECaL are developed by eScience Center to speed up the data processing,
which all have achieved high acceleration compared with the naive version. The GPU
provides great acceleration which expands the computation capability of single nodes.
However, it only scales by adding more power (CPU, RAM, GPU) to an existing machine
(vertical scaling) where the growth of computation capability can not catch up with the

1http://www.lofar.org/
2https://www.esciencecenter.nl/
3https://github.com/nlesc-dirac/sagecal
4https://github.com/nlesc-dirac/sagecal-on-spark
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1. INTRODUCTION

Figure 1.1: Resource utilization by
Spark - Spark occupies fixed resources, but
it would not release the idle resources

Figure 1.2: Resource utilization by
MPI - Too large jobs make resource waste

growth of data. On the other hand, MPI and Spark implementations can scale by adding
more machines to the resource pool (horizontal scaling), and the entire computational
power increases via adding more resources. Of course, we can also enable GPU features
to MPI and Spark implementations to make worker nodes more powerful. However, all
these three solutions show their own limitations, in the following few paragraphs, we will
outline these limitations.

LOFAR is one of the applications of ASTRON1and will likely run on ASTRON cluster
which is designed to meet the demands of data processing applications. Therefore, the
resource utilization of its infrastructures is also essential. The current implementations
focus on the efficiency and utilization of assigned resources. In theory, MPI and Spark
solutions may lead to a potential waste of resources of the whole cluster. Fig. 1.1 shows
an example of computing resource waste of the Spark implementation when the required
computation resources decrease, Spark does not release idle resources(compute nodes).
On the other hand, a pure batch-job system may get easily in a situation that a big job is
waiting for the resource while idle resources cannot fulfill the requirement, an example is
shown in Fig. 1.2. The figure shows the possible resource waste represented by the blank
area.

In this work, we will develop a dynamic resource management system that is able to
adapt the resource used by an application to the backfill scheduling mechanism. To achieve
this goal we will use Xenon2 a middleware which aims to provide a uniformed and simple
interface to enable application program to access both computation and storage resources.

1https://www.astron.nl/
2https://xenon-middleware.github.io/xenon/
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1.2 Objective

Using Xenon interfaces, it is possible to submit jobs and access the status of jobs and
the cluster without parsing the output of control commands from the resource manager.
We will also use Ibis1 a platform for distributed computing developed by the computer
system group of VU Amsterdam. The Ibis Portability Layer, a sub-module of Ibis, enables
computing entities to communicate with each other in a reliable cluster environment.

1.2 Objective

The main objective of this project is to achieve higher resource utilization of the cluster.
At the same time, as a secondary objective, we aim to accelerate the calibration process-
ing. In theory, higher resource utilization may lead to more active computation resources
involved. To achieve these goals, we develop a system that reduces the waiting time of
large distributed jobs.

1.3 Research Question

The overall research question is how to design and implement a distributed resource man-
agement system which can reduce the waste of resources.

1.4 Research Method

In this research, firstly, we briefly describe the commonly used resource management
techniques in HPC clusters and analyse the MPI and Spark implementations to identify
bottlenecks or limitations. Secondly, we will implement a resource management system
that is able to scale up and down the computing resources dynamically according to
the application workloads, so that the whole cluster can achieve overall higher resource
utilization. Finally, we will test the performance of the system by comparing the resource
utilization before and after the employment of this system. To validate our results, we will
use the LOFAR calibration pipeline(SAGECaL). Calibration jobs independent and thus
well-suited help validating our approach to application-centric resource management.

1https://www.cs.vu.nl/ibis/
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2

Technical backgrounds

In this chapter, we firstly describe the detail for two implementations of LOFAR pipeline.
And then, we briefly describe resource management techniques in HPC clusters, focusing
on high resource utilization for cluster computing environment.

2.1 MPI and Spark implementation of SAGECal

MPI version

SAGECaL native supports multi-threads parallelization and GPU. The MPI version of
SAGECaL1 employs a master/worker architecture to manage the task distribution among
nodes. The task division is based on data partitioning. Each worker node process a file at
a time. The master tries to equally distribute tasks, but the workload can not be adjusted
during the runtime. Besides, this MPI version does not support fault tolerance in case the
worker nodes fail during the processing.

Spark version

To make better use of resources, eScience Center also developed a spark version of SAGE-
CaL2. The SAGECaL is compiled as a dynamic library and utilized by Java native inter-
face. The tasks are divided by file as well and managed by Spark. Compared to the MPI
version, Spark provides better resource management and fault tolerance. Besides, with
the help of container technology and container orchestras like Kubernetes, we can scale
the running Spark environment manually.

1https://github.com/nlesc-dirac/sagecal/tree/master/src/MPI
2https://github.com/nlesc-dirac/sagecal-on-spark/tree/master/excon/JAVA
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2. TECHNICAL BACKGROUNDS

2.2 System dependency

2.2.1 SLURM

SLURM, formerly known as Simple Linux Utility for Resource Management, is a clus-

ter management and job scheduling system for large and small Linux clusters which are

open-source, fault-tolerant, and highly scalable. There are three critical functions, as it

is stated, that is, allocating resources to users for a duration of time, providing a job

management framework over-allocated node, and arbitrating contention for resources by

a queue. SLURM can be configured with multiple kinds of queuing strategies, by default

backfilling set up to maximize resource utilization in universal cases.

In our project, scaling relies on the submission and cancellation of jobs. To make a

decision, the status of the cluster will also be periodically collected. The status includes

the resource occupation and information of jobs in the queue. According to these statuses,

the resource manager makes decisions to scale the calibration jobs. The SLURM receives

instructions from the Resource manager of our system and allocates/retrieves resources

by commands. And in the same time, it provides the status of the cluster to the Resource

manager.

2.2.2 Xenon

Xenon1, a middleware abstraction library, is utilized to manage the information and re-

sources in an organized way, which enables our resource managers to communicate with

the cluster in a more robust way, instead of parsing the output of command lines. It is

designed for simple access to distributed computing and storage resources, which provides

a single programming interface to many types of remote resources.

2.2.3 Shared file system

One of the fundamental requirements for our proposed system lies in the shared file system

which allows us to achieve fault tolerance in a simple way. The shared file system can

be accessed by all nodes, including head nodes and work nodes. It stores the container

images of modules and processing environments for different kinds of jobs. The executors

will read the raw data obtained from it, and generate a result which will be sent back.

1https://xenon-middleware.github.io/xenon/
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2.3 Traditional resource management strategies

2.3 Traditional resource management strategies

Batch scheduling has a long history covering the entire computer systems field from the
mainframe age, up to today’s computing systems. Batch scheduling is still the default
scheduling method for modern computer systems. The simple FIFO batch scheduling
systems turned to be quite inefficient and a number of optimization were proposed like
preemption, backfill, and heuristics. In the following sections, we will explore these tech-
niques in more details.

2.3.1 Preemption based resource management systems

Preemption is usually used to avoid job delays and resource starvation. Furthermore,
apparently, resuming the execution of preempted jobs is the most time-consuming part.
At the resources level, the preemption strategy is not common to be directly used on job
scheduling along, instead, it is combined with other additional techniques. Sajjapongse
et al. (4) proposed a run-time system based on a preemption strategy to increase GPU
utilization on heterogeneous clusters. The paper describes the performance of hybrid MPI-
CUDA applications showing the efficiency of preemption-based mechanisms. To overcome
the drawbacks related to preemption, including the waste of resources, many adaptions
are proposed. Lu Cheng et al. (5) proposed a solution inspired by MapReduce. They
introduced a component Global Preemption to trade short-term fairness for better effi-
ciency. Another approach is the checkpoint/restart mechanisms used by Berkely lab(6) in
their Linux cluster. However, in the real environment, people use preemption strategies
very carefully. Unless all jobs are equipped with a caching mechanism, otherwise, the cost
of canceling running jobs will be unaffordable.

2.3.2 Backfill based resource management systems

The backfill algorithm is currently the default schedule algorithm to achieve high resource
utilization in the production environment, which gives small jobs a higher priority. In
Section 3.1, a backfill algorithm will be addressed in detail. Suresh et al. used a bal-
anced spiral method for cloud metaschedules(7), which improves the performance and,
at the same time, meets the requirement of QoS requirement of cloud systems. While
Nayak et al. proposed a novel backfilling-based task scheduling algorithm to schedule
deadline-based tasks(8). It aims to break the performance limit of the default backfill-
ing algorithm of OpenNebula. This VM-based solution achieved a minor improvement in

7



2. TECHNICAL BACKGROUNDS

resource utilization. Backfilling scheduling shows great generic and the ability for using
resource utilization.

Several variations of the backfill technique have been proposed for different system
configurations. EASY-backfill and conservative backfill hold the restriction not delay the
job ahead(9). EASY-backfill is more aggressive, that is, for any job pending in the queue,
backfill happens only when a small job does not delay the job at the head of the queue.
However, in a conservative setting, a jobs backfill requires that the filling does not delay
any job before it. Additionally, Flexible(10) and Multi-queue backfilling(11) are proposed
to meet the requirements of more dynamic scenarios and reduce the response time for
some jobs. Flexible tries to introduce slack factor to raise the priorities of big jobs in the
queue. For multi-queue backfill, the partition will adapt as the workload change.

However, in terms of resource utilization, this algorithm still has some performance
limitations, if there is no job that requires fewer processors than free processors, the free
processors will remain idle. In (12), Hafshejani et al. turned to schedule jobs on the thread
instead of on the processor. They tried to improve resource utilization via finer-granularity
allocation. The results show that less response time on average is achieved compared with
FCFS and traditional Backfilling.

2.4 Resource management strategies in research

2.4.1 Heuristics based resource management systems

Heuristics algorithms are usually more efficient, which takes less time to decide as the
scheduling problem is NP-Hard. Xhafa and Abraham did a survey(13) and explored the
application of heuristics algorithms in job scheduling. The most common and straightfor-
ward approach is local search, and the methods in this family include Hill Climbing (HC),
Simulated Annealing (SA), and Tabu Search (TS), etc. In (14), local search facilitates the
shortening of schedule on benchmark problems. Though the population-based approaches
are more efficient, they require a longer time to convergence. In (15), the Genetic Algo-
rithm approach allows the sufficient utilization of the resources. Moreover, of course, in
this work, the above two approaches show that they can be combined to achieve better
performance.

2.4.2 Machine learning based resource management systems

Machine/deep learning was greatly improved during the last few years, a couple of re-
cent studies applied ML/DL approaches to resource management. Research made by Mao

8



2.4 Resource management strategies in research

et al.(16) shows that (deep)reinforcement learning is able to outperform the traditional
state-of-art approaches. It translates the problem of packing tasks with multiple resources
(herein referred to as CPU and memory) demands into a learning problem. Another similar
study(17) also shows that the RL-based approach has great potential for resource manage-
ment. However, the approach was only tested in simulation with synthetic load generated
using well-known probability distribution like Bernoulli process, Uniform distribution, and
Beta distribution.

ML/DL techniques have also been used to improve more traditional resource manage-
ment algorithms. For instance, Gaussier et al.(18) used machine learning to improve
backfilling. Backfill strategy relies on the estimated execution time which is normally
assigned by users. Through predicting the execution time, better by ML model, backfill
mechanism is available to make better decisions.

9
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Backfilling and scaling policy

In this chapter, we first explain the backfill mechanism in more detail. Then we will

describe a specialized scaling policy to maximize resource utilization .

3.1 Backfill mechanism

The backfill scheduling plug-in is loaded by default in the SLURM cluster. In the previous

chapter, we have listed a few works related to backfill policy. Therefore, currently, we only

consider the dynamic provision of CPU resources via SLURM job submission/canceling.

By the setting of job submission and canceling, we designed the scaling policy of the

resource manager to adapt to the backfill mechanism.

As an optimization for the basic priority queue, the backfilling scheduling starts the

lower priority jobs provided it does not delay the expected start time of any higher priority

jobs. In other words, the backfilling mechanism under discussion refers to the conservative

backfill because standard configurations of clusters using in research aim to achieve a fair

share of the computing resource among the users. An intuitive interpretation is shown in

Fig. 3.1 and Fig. 3.2.

According to the configuration of SLURM, the backfilling scheduling is triggered when

jobs are submitted/finished. Besides, the scheduler periodically checks whether a job in

the queue is available to run. The decisions for backfilling depend on the number of

resources, and the time limits of the jobs.

As shown in Fig. 3.1, Job 4 is pending in the queue due to the lack of resources. When

Job 5 is appended to the queue, the scheduler estimates that Job 5 can be finished before

Job 4 gets adequate resources. Therefore, the resource is allocated to Job 5.

11



3. BACKFILLING AND SCALING POLICY

Figure 3.1: Job 5 is backfilled - Job
4 is estimated to start after the finishing
of Job 2

Figure 3.2: Job 7 is backfilled -
Running Job 7 will not impact Job 4
and Job 6

Another scenario is shown in Fig. 3.2. Job 7 is added to the queue while it requires

minimal resources, which will last when Job 4 is on the run by the estimation. Besides, it

still gets the assigned resource as it does not affect the jobs ahead of it(by the estimation

of starting time and priority).

The typical cases above show how the backfill mechanism works. In practice, the sched-

uler considers pending jobs in priority orders, that is, once a pending job fulfills the

requirements of the backfill condition, it can start immediately. The resource manager

of our system employs an adaptive algorithm that utilizes the backfilling mechanism to

achieve high resource utilization.

3.2 An approach to maximize resource utilization

In the previous section, we discussed how backfilling mechanism enlarges resource utiliza-

tion. In the default setting, users may submit any kind of job. However, in some cases like

LOFAR use case, the users may execute the same program for different datasets. There-

fore, we propose a resource management system that reorganizes one or more kinds of job

execution and manages resources in a dynamic way. The system can retrieve and release

resources according to scaling policy so that the overall resource can be fully used.

3.3 Scaling policy

The scaling policy aims to harvest every idle resource, which requires continuous monitor-

ing of the status of the cluster and the running or pending jobs. The resource manager

12



3.3 Scaling policy

periodically fetches status information, and makes decisions based on a scaling algorithm
which acts according to the following figures:

• I - The number of idle nodes in a (partition of) cluster

• T - The total number of nodes in a (partition of) cluster

• R - The number of nodes reserved for our system

• Ji - The pending or running job with ID i

• Ni - The number of required nodes of Ji

• TLi - The time limit of Ji

• RTi - The running time of Ji

• MiniNode - The minimum number of nodes reserved for our system

In the following, we demonstrate three cases that explain what will happen under the
given conditions. Note that we describe background jobs as Jobi which are submitted by
other users. At the same time, we will name The resources reserved for our system as
Calibration as we will use the LOFAR calibration pipeline as the test use case.

3.3.1 Case 1: RM harvest idle resources

First, considering that sometimes there is no job pending in the queue, there are I nodes
remaining idle. To increase the overall resource utilization, the resource manager will
submit I one-node jobs, thereby sharing the calibration application workload, which is
the basic strategy for any auto-scaling system. The distributed jobs will be accelerated,
benefiting from more resources allocated.

3.3.2 Case 2: RM give free resources

To be friendly with other users, the system release resources when it gets sufficient
resources(R >= MiniNode), and other jobs are pending. In the case that the extra
part of resources exceeds the requirement of the first pending job, resources will be re-
leased in our case from the set of resources needed for the LOFAR Calibration application.
In other words, the system is trying to let as many jobs as possible run, provided that the
giving out of resources will not slow down the calibration application(R < MiniNode).
Example:

13



3. BACKFILLING AND SCALING POLICY

At a time, the resource manager collected the information from the cluster and jobs.

Let T = 21,MiniNode = 10. And there two jobs J1 and J2 are running, where N1 = 5,

N2 = 5, TL1 = 20min and TL2 = 15min. Assume that both RT1 and RT2 are equal to

1min. And there are two pending jobs J3 and J4 with N3 = 10, N4 = 6, TL3 = 25min

and TL4 = 10min. Now, the system has taken the rest 11 nodes in the cluster, which

means R = 11. If J2 is canceled somehow, then I = 5. It is easy to find that if the

resource manager shares one more node, plus five idle nodes, J6 can start according to the

backfilling policy. After that, R is still not less than MiniNode. A graphic illustration is

displayed in 3.3, where the dotted line represents the number of MiniNode. Please be

Figure 3.3: Scaling policy Case 2 - J2 canceled, the system gives way, J4 is backfilled

noted that if the job on top of the queue, herein refers to J3, is able to start once getting

sufficient resources, the resource manager will give way for it. And in the implementation,

the job on the head of the queue will be considered first, which is followed by the jobs

behind.

3.3.3 Case 3: RM does not free resources

The prerequisite of giving way for other jobs is that giving out resources would not break

down the MiniNode, and the time limit is appropriate. In the case that there are no

suitable jobs available to be backfilled, the resource manager takes those idle resources.

It first calculates the maximum time necessary to ensure that a job can be backfilled.

If no job can be backfilled, the resource manager submits I one-node jobs with TL =

maxTime − 2mins. The reason to subtract 2 minutes is to ensure that the jobs can be

backfilled correctly so that we make them redundant. The backfilling scheduling takes a

long time, especially when there are many jobs on the cluster(running and pending).

Example:

14



3.3 Scaling policy

The setting and jobs are the same as the previous example, however, we changed the time
limit of J4 to 25 minutes. Thus, the resource manager submits jobs with TL = 17mins

to take 5 idle nodes. This scenario is illustrated in Fig. 3.4.

Figure 3.4: Scaling policy Case 3 - J2 canceled, calibration application takes the idle
resources because backfilling J4 will delay J3. Then calibration application takes them

15
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4

Architecture and implementation

4.1 Overview design

Based on the review of the previous works and the scaling policy described in previous
chapter, a system is proposed for the research questions: a user-side solution for overall
resource utilization of batch job clusters. The system consists of two layers, i.e., the
management layer and the computation layer. The overview design is illustrated in Fig.4.1.
At the management layer, the resource layer is responsible for deciding resource allocation
at runtime; therefore, the computation layer is enabled to scale on demand, which is
responsible for parallel job execution. The computation layer is composed of multiple
executors on arbitrary working nodes by the demand. All nodes can access the shared
file system which is provided by the cluster. In the following sections, we first explain the
functionality of each component and how these components interact with each other. And
then, we explore the detailed implementations of this system.

17
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Figure 4.1: Three components are placed in two layers with a shared file system at button

4.2 Components

4.2.1 Resource manager

The Resource Manager(RM) is mainly responsible for deciding to change the number
of resources allocated to this system. The decision-making is based on the information
obtained from SLURM and WebService. The RM continuously queries the status of the
available resources via the Xenon interface.

Besides, the RM also fetches information about the status of users jobs from Web-
Service(Web server in Fig.4.1) through Restful API. These statistics help the resource
manager to make decisions.

4.2.2 Service module

Consisted of two sub-components, the service module is a container instance hosting a web
server and an Ibis server. In this project, we assume that the head node never crashes,
and the processes are not terminated by external action.

The web server is based on Flask Restful framework. The end-users can submit jobs via
Restful API, and the webserver temporally stores the configuration of those jobs. Besides,
this webserver also allows the master of executors to update the recommended minimal
working nodes. This number can be used for RM to make scaling decisions. Note that
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Figure 4.2: Master-worker architecture, red boxes indicate the batch size

the term job herein refers to application-related jobs. The other server is the Ibis server.
In the computation layer, Ibis Portability Layer(IPL)(19) is employed for communication.
The IPL requires an Ibis server as a centralized hub for managing the communication and
events among Ibis instances. Considering the requirement for stabilization, we choose to
run the Ibis server on the head node to mitigate the risk of crashing.

4.2.3 Executors

The executors are the main power for data processing. In this project, every time RM
decides to scale up the computation ability of the system, it will submit a new pre-defined
job to SLURM. Once this job is executed, a new executor is added to the pool of application
executors.

By exploiting IPL interfaces, the computation layer is designed as shown in Fig. 4.2.
Every executor creates an Ibis instance for communication, and all the instances, after
initialization, will poll an election to select the master. As a result, one executor is acting
as the master and the rest of the executors are tasked with processing the data. In our
project, the executors process data based on containers, which enables our system to
handle multiple types of jobs for different kinds of data set.

The master periodically fetches jobs from the WebService (a simple Flask Restful API
service). The information returned by WebService includes data directory, user, job id,
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and parameter list. In this system, the objective is to process a data set that can be
divided into multiple sub-data sets. Therefore, as shown in Fig, 4.2, a job is represented
by a data folder that consists of subfolders(as shown by the yellow blocks in the figure).
The master reads the information of the data folder and creates a job object. Job object
is defined as an abstraction of jobs submitted by end-users, which carries information,
including the data directory, batch size, and parameters for processing. It also maintains
a queue storing the tasks to be delivered to workers. The numbers of running and waiting
tasks are recorded for task-redoing and job-finishing checks. In the case that a Job object
is initialized, it lists the sub-directories under the directory where job data is stored.
According to the given batch size, the Task objects are created and loaded to the queue.
Task Task object stores the paths of sub-dataset, job id, and parameters. Moreover,
executors send an acknowledgment to master every time they enter the idle state and wait
for a new task. After that, the master delivers tasks to idle executors when there are
unfinished tasks/jobs.

4.3 Implementation in detail

4.3.1 Actions of executors

Taking the advantages of Ibis, all executors run the same Java code, and take different
actions according to the result of election. The first action of executors is to join the
election for master. The Ibis service ensures that there is only one master in a pool. For
both master and workers, the Upcall mechanism is utilized to receive incoming messages,
which allows asynchronous message communication.

The master maintains three variables, i.e.

• (BTreeMap <Integer, Job>) runningJobMap;

• (Queue <IbisIdentifier>) idleWorkerQueue;

• (BTreeMap <IbisIdentifier, Task>) runningNodes.

runningJobMap stores the jobs with job ID as the key. And idleWorkerQueue is filled by
IbisIdentifiers of executors, which send acknowledgment reporting that they are idle. When
entering a master code block, the master firstly initializes an HTTPClient, the variables for
statuses caching, a job fetcher, and the sending/receiving ports. After initialization, the
master keep waits for notification from idle executors to assign the next task for execution.
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Figure 4.3: Users submit jobs to web service, Job fetcher parses JSON data pack and push
Job objects to runningJobMap

The job fetcher runs asynchronously on another thread, communicating with the master

main thread via managing runningJobMap and runningNodes which are accessible to

two threads. It gets the jobs from web service, creates and initializes Job objects, and

then pushes them to the runningJobMap. The submission process can be visualized as

shown in Fig. 4.3.

The runningJobMap is locked when either main thread or job fetcher try to access and

modify it. Besides, runningJobMap is a treemap, which is automatically sorted every

time the elements inside are changed. Since the key is job ID, jobs are ordered by the job

ID. In this manner, the order is kept, and jobs are processed in FIFO.

To assign tasks to executors, the master fetches a Task and an IbisIdentifier from

runningJobMap and idleWorkerQueue. In general, If both Task and IbisIdentifier ob-

jects are not null, the Task object is sent to a node by the ID. Moreover, the Task and

ID are stored in runningNodes. The detailed procedure is specified in Algo. 3. The

actions when one of them is null are shown in this Pseudocode. Note that if the master

instance only takes the role of management, the computation resource is wasted because

of the fact that the management does not require too much computation. Therefore, in

the initialization state, the master creates a process to launch a new instance aside. This
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side executor will be a worker which also processing tasks.
At last, the master handles acknowledgment from workers. The upcall method is em-

ployed to process the incoming messages for both master and workers. In Algo. 4, the
instances should take different actions to handle the incoming messages according to their
roles. The master receives a control message which indicates whether this is the first time
to join in the pool. Regardless of whether this is the first message of the worker, worker
IbisIdentifier is filled into the idleWorkerQueue, indicating that this executor is waiting
for the task. However, if this worker is in runningNodes while the control message shows
it is a new worker, the task in runningNodes will be fetched and redone. According to
the job ID, the master updates the job status to indicate that a task is done. When all
tasks of this job are accomplished, the job will be popped out from runningJobMap and
logged. In the previous section, we mentioned that the MiniNode should be dynamically
changed based on the workload. Therefore, a recommended MiniNode is sent to the Web-
Service at the end of each round by the master, which is defined at the computation layer
and based on the resource manager scaling policy. Now, the MiniNode of the resource
manager is strictly the same as the recommended MiniNode uploaded by the master.

The workers are simpler than the master, a worker first sends an acknowledgment to the
master, and waits for a task to be processed. The main thread of the worker constantly tries
to fetch the Task object from (BlockingQueue<Task>) workerTaskQueue and processes
it. The Task Task object contains paths to sub-datasets, and the worker processes sub-
datasets referred to in task objects. Once all data are processed, the worker sends a control
message to the master as acknowledgment. Workers also are enabled with Upcall function
as it is shown in Algo. 4. The Task objects are read and loaded to workerTaskQueue.

4.3.2 Decision flow of scaling policy

In the previous section, we described what the system should do in different scenarios.
There is still a lot of detailed implementations to make it more robust to the environment.
The pseudo-code showed in Algo. 1 describe the scaling policy in a formal way.

To ensure the stabilization of the system, in lines 14-16, the scaling is delayed because,
within a particular time, some jobs will be finished. Besides, in practice, the scheduler
will take much time(few seconds to 1 min) for backfilling. To avoid incorrect action, when
a pending job has the possibility to be backfilled, the scaling procedure waits for the
scheduler to handle it. This checking mechanism is specified in the lines from 20-22.

Note that, according to the limit of Xenon, the interface which is provided for querying
the status of jobs does not contain the information about the starting time (for reservation
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in advance), and preference on GPU nodes. Therefore, this system is not configured to
deal with the GPU requirement, job array, and reservation in advance (start at a certain
time).

4.3.3 Scaling up and down

Besides, when we should scale our system, it is also important to define how to scale via
communicating with SLURM. In the implementation, scaling up relies on the submission
of one-node SLURM jobs, and scaling down is done by canceling those jobs. In these
actions, the jobs time-related features are significant; here is RT (real time) and TL(time
limit).

A job that can be backfilled needs an appropriate time limit configuration. The maxTime,
mentioned in Algo. 1, refers to the time duration to the estimated time when JTop starts,
that is, the maximum time limit within which those one-node jobs should be configured.
A visual interpretation of maxTime is displayed in Fig. 4.4.

Figure 4.4: Max time for backfilling - J4 is on top of the queue, according to the
requirement for resources, it will start when J2 finishes.

By applying Algo. 2, the resource manager can ensure the jobs expected to be backfilled
start immediately.

Note that in SLURM, jobs can be configured with a UNLIMITED time limit1. The
sorting of runningJobs is based on the left time of each job, which is calculated as TLi−
RTi. Therefore, when a job has a UNLIMITED time limit, this algorithm returns
UNLIMITED.

1https://slurm.schedmd.com/scontrol.html
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4. ARCHITECTURE AND IMPLEMENTATION

Besides of calculation of maxTime, time-out is added to scaling up, thereby preventing
status changes on the cluster during the scaling. If other jobs take the resources, the
time-out will be triggered as it cannot run at this particular time. However, in practice,
sometimes submission still suffers from time-out even if there are idle resources, and the
time limit is set correctly, due to the time taken by the backfill algorithm to complete its
task. We introduce an initial time-out value of 5 seconds. Once a job submission triggers
time-out, the scaling algorithm exits, and a time-out increment of 5 seconds is achieved.
Then in the next round, the resource manager can still submit jobs to take idle resources
while time-out is extended by 5 more seconds. In the case that the resources are taken by
others, in the next round, it will not ask for scaling up again. Also, once a job is submitted
successfully, the time-out is reset to 5 seconds again.

Scaling down requires sorting of calibrationJobs. Given a number N of resources to
release, the top N jobs that are estimated to be almost close to finish will be canceled. In
practice, the calibration jobs depend not only on the left time but also on the job id as-
signed by the SLURM because their left time is all infinite for jobs with a UMLIMITED

time limit. It is possible to cancel any jobs with the same left time randomly, and in
principle, this will not cause any harm to the system. However, taking into consideration
the master-worker of the structure computation layer, among the jobs with the same left
time, jobs with larger job-ids will be killed first. This will make the old jobs last longer,
and the node functioning as master will not be canceled frequently.

4.3.4 Fault tolerance

For the computation layer, it is very important to achieve fault tolerance. The dynamic
scaling relies on the continuous creation and cancellation of jobs. Besides, the program
does not have information about the time limit of SLURM jobs, therefore, when the time
is out, those jobs will be terminated. In other words, the executors may be terminated by
themselves without notice.

In the SLURM documentation, the job cancellation will result in the signals sent to the
programs for cleaning up. According to the document1, by default, a job will first send a
SIGCONT to wake all steps up when it is canceled, which is followed by a SIGTERM sent
to terminate programs. In the case that, after a duration, some steps are not terminated,
a SIGKILL will be sent. This will also happen when the time limit is reached. Therefore,
at the beginning of the setup of executor, and after the registration of the Ibis instance,

1https://slurm.schedmd.com/scancel.html
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a signal handler is created to handle the SIGTERM and SIGKILL. Once a SIGTERM or
SIGKILL is received, the Ibis instance is terminated, and the Ibis server is notified. Then,
other instances will notice that the node was left or terminated, thereby taking actions
according to their roles.

To handle the termination of instances better, the event handler provided by IPL is
utilized. Once the Ibis server notices that an instance is left or was terminated, it will
forward an event to all alive instances. An instance is able to handle the events which
indicate the termination of other instances by the implementation of the member functions
died(IbisIdentifier corpse) and left(IbisIdentifier leftIbis). Therefore, instances react
to the events implicitly apart from the main logic.

For the master, in the case that a work node fails, it is important to ensure the running
task of which this executor is in charge will not be lost. Here, the tasks should be processed
at least once. As shown in Fig. 4.5, the master first fetches and removes the key-value

Figure 4.5: Master redoes task by failed node - Fetch task and load it back for redo

pair which belongs to runningNodes, and reloads the failed task. Thus, the tasks assigned
to failed nodes can be re-computed, and the fault tolerance for workers is guaranteed.

The cases that the master fails are more complicated. On the one hand, the system
requires a new master among executors, which may lead to a new round of the election.
On the other hand, the new master should restore the jobs statuses, and continue with the
unfinished jobs. To fulfill the requirements, the MapDB1 is introduced into our system
for lightweight persistence, which is an embedded Java database engine and collection

1https://jankotek.gitbooks.io/mapdb/content/
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framework. The runningJobMap and runningNodes are constructed as BTreeMap; every
time the change is committed, this update will be stored to off-heap storage. Therefore,
a new master can read the caching file to restore these two variables, and then continue
to process the unfinished jobs. Besides, to make the system simpler, every time a new
master restores runningNodes, all running tasks will be reloaded to be processed again.
This means, theoretically, the failed master leads to the redoing of all running tasks.

Another fault tolerance concept lies in the failure of the Ibis server. In this system, the
Ibis server is assumed not to fail in any case. And in the future, it will be extended with
fault tolerance at this level.
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5

Experiments, results and analysis

In this chapter, we describe and analyze the results of a few experiments we have done to
test the performance of the proposed system. The performance of this system includes

• The efficiency of scheduling algorithm - measured by resource utilization of the
experiment cluster.

• The efficiency of parallel computation among executors - measured by drawing its
speedup line and comparing it with the theoretical speedup.

In the following sections, first, we describe the test scenarios we have used to evaluate
the performance of the proposed system. After that, we show how data processing jobs can
be accelerated by adding more computation resources. In the last part, we test the overall
performance of the proposed system by comparing the resource utilization of the cluster
and the user waiting time before and after we introduced the proposed user-level resource
scheduling. All experiments are performed on the DAS-5 Leiden site which contains 24
computation nodes, and each has dual 8-core CPUs with 2.4GHz speed and 64 GB memory.

5.1 SAGECal calibration use case

To test the proposed user-level resource management system, we use the calibration data
pipeline of the LOFAR to process and calibrate the data collected by the LOFAR telescope.
The latest radio astronomical calibration package in use is SAGECal (Space Alternating
Generalized Expectation Maximization Calibration)1. It is fast and enabled with distri-
bution and GPU acceleration features. In the test set, all worker nodes exploit SAGECal
to process data in parallel by given configuration.

1http://sagecal.sourceforge.net/
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To run SAGECal we need to provide a number of parameters, we discuss here only the
one that is relevant to our tests, namely the number of threads. The number of threads
is equal to the physical cores, it is based on the logic core number collected from the
JVM runtime. However, as mentioned before in Section 4.3.1, there is a side executor
alongside the master to maximize the resource utilization. To prevent the side executor
from exhausting all the computation ability of the physical machine shared with the master
executor, the number of threads for this worker executor is configured by subtracting 2
from the physical core number.

The SAGECal is well-encapsulated, and a typical use on a single node can be done by
the command line below.

$ sagecal -d myData.MS -s mySkymodel -c myClustering -n no.of.threads \
-t 60 -p mySolutions -e 3 -g 2 -l 10 -m 7 -w 1 -b 1

SAGECal is deployed as singularity container, and can be run as follows:

$ singularity exec Sagecal.simg /opt/sagecal/bin/sagecal PARAMETERS

The way worker executors exploit SAGECal to process data is to create a new process
inside the Java program and use system call to launch data processing.

5.2 Distributed parallel computation

A test data set is created by duplicating a sample data set 150 times and each of them is
a sub-data set. For each sub-data set, the size is 67 MB, and it takes about 20 seconds
for computation.

We performed four experiments and recorded the execution time of each test in the
function of the number of computing nodes. The results are shown in Table. 5.1 and the
speed-up is visualized in Fig.5.1.

Num of Nodes 1 2 4 8
Time consumption(ms) 3,584,484 1,772,311 890,327 458,169

Acceleration 1 2.022 4.026 7.823
Theoretical speed-up 1 2.333 5.000 10.333

Efficiency rate 100% 86.7% 80.5% 75.7%

Table 5.1: Execution time by the different number of node
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Figure 5.1: Performance of computation layer with different number of nodes -
The ideal speed-up should follow y = 8

6x−
1
3 instead of y = x
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In most cases, the curve of theoretical speed-up should be lower than that of linear

speedup. However, as it can be seen from Fig. 5.1, the speed-up is super-linear. This

super-linear speed-up originates from the inequality of computation speed between the side

executor and the following additional worker executors. When there is only one physical

node assigned to the system, it only uses full minus 2 cores to process data. In an 8-core

cluster, every new involved physical node contributes 8/6 ≈ 1.33 times of computation

power to the system in theory. Therefore, an adjusted theoretical linear speed-up should

follow the line y = 8
6x−

1
3 .

After the adjustment of the theoretical linear speed-up, the problem of inefficiency is

revealed. It can be seen from Table. 5.1 that, by calculating the ratio between the real

acceleration and theoretical speed-up, the efficiency keeps dropping with the increase of

the resource introduced. According to the detailed performance metrics, the performance

loss comes from connection build-up. In the implementation, the connection between

ports is configured as an exclusive one-to-one connection. This means that every time the

master sends a task to an idle worker, it has to disconnect to the previous workers port and

connect to a new worker. This overhead cost is around one second per connection. In the

experiment setting, with 150 tasks, connection takes 150 seconds for constant connecting,

sending, and disconnecting. Of course, For long executions (hours) this overhead can be

negligible Another optimization is to increase the batch size, which reduces the number

of tasks and connections.

Besides the computation performance, we also tested the fault tolerance feature. The

crash of either workers or the master will not result in the crash of the entire system. The

jobs will be finished eventually as long as not all the resources are released. The dynamic

scaling of the system depends on the fault tolerance mechanism. The completion of jobs

in a dynamic scaling setting can support the conclusion that the fault tolerance feature is

enabled.

5.3 Resource utilization optimization

For the user of this system, resource utilization is the key metric. In this section, the

overall performance of the system is tested. We observe and consider two key metrics for

performance.

• Nominal utilization: A/T ; for cluster, it measures the resource utilization.
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• User waiting time: FinishT ime − SubmitT ime; for calibration users, it represents

the time they should wait.

The nominal utilization is called Nominal because it does not reflect the real utilization.

For example, when there is no calibration job running, the system still tries to fully use

the resource of the system. Besides the nominal utilization, the average resource usages

of each kind of job are also monitored. One of the key features of the proposed use level

resource management is not to be greedy and lead to being harmful to other users jobs,

which means the average resource usage of other jobs should not drop too much.

5.3.1 Simulation settings

To test the systems performance, and measure its efficiency, a program to simulate various

loads on the cluster has been implemented. We wrote an application that simulates multi-

user jobs submission.

The application submits jobs including SAGECal jobs at various times to simulate the

different load of the clusters. Each job submission specifies the time limit, real running

time, submission time (from the start of the simulation), and other job-specific parameters.

The application has two modes: SLURM-only mode where all jobs are considered as a

batch job submitted by SLURM interface; and the scale mode where the resource manager

is on, and the calibration jobs will be submitted to the web service instead of SLURM.

The application will end 30 minutes after the last submission of the job.

The calibration jobs in SLURM-only mode are not real processing, instead, they are

the same as normal jobs, i.e., executing the sleep command. With the configuration, the

calibration jobs in SLURM-only mode will take five nodes for 240 minutes, which is close

to the real case where the test data is processed using five nodes.

Besides, there is a monitor process that records the status of the cluster. The monitor

records the resource occupation of different jobs (e.g., calibration, normal, others, and

pending). The simulation program logs the submission time of the calibration jobs, and

the calibration application itself logs the finishing of calibration jobs. Thus, the waiting

time can be calculated. Additionally, the simulation application also records two internal

values: the miniNodes and leftTasks, which is the number of pending and running

tasks. Monitoring these two values helps us to validate whether the scaling policy acts

as expected. The mapping between miniNodes and leftTasks can be formulized as Eq.
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Figure 5.2: Resource utilization on
SLURM-only mode ,non busy case -
The overall resource utilization is 82.47%

Figure 5.3: Gantt chart of calibration
jobs - Benefit from adequate resources jobs
start once they are submitted, the vertical
line is the time simulation ends

(5.1).

miniNodes =



2 leftTasks < 5

4 5 < leftTasks < 20

leftTasks/20 + 3 20 < leftTasks < 100

10 else

(5.1)

The mapping function is also part of the performance parameters where we can configure
the proposed system how greedy on resources for the calibration use case.

5.3.2 Scenario 1: Not heavily loaded cluster

First, we consider the scenario of the Non-busy cluster. In this case, most of the time, the
cluster is not fully utilized due to a lack of jobs. The synthetic workload is described in
Submit list 1, which consists of 19 jobs, including four calibration jobs and 15 other jobs.
With this workload, the test takes about 11 hours, and during the test, in the SLURM-
only mode, the resource usage is not optimal in Fig. 5.2 this idle resource is shown by
the white area under the horizontal line. The cluster has 24 working modes, and during
the experiments, the average resource occupation is 19.79(nodes), which means the overall
resource utilization rate is 82.47%. The calibration jobs take 5.81 nodes on average, and
other users take 13.99 nodes. According to Fig. 5.3 and Submit list 1, each job almost
starts immediately after submitted due to the enough resources. In the second part of the
test, we switch to scale mode. Fig. 5.4 comparing to Fig. 5.2, the white area under the
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Figure 5.4: Resource utilization af-
ter introducing this system ,non busy
case - The overall resource utilization is
99.83%

Figure 5.5: Gantt chart of calibration
jobs - Job 47 is accelerated due to extra
resources

horizontal line shows the idle resources has completely disappeared. The nominal overall
resource utilization is 99.83%. The average resource occupation of normal jobs is 13.97
nodes, and for calibration applications, it increases to 9.99 nodes. In terms of waiting
time, Fig. 5.5 shows that jobs cost less time to finish the same task. The waiting time is
reduced from 240 minutes to 121 minutes.

Note that the waiting time reduction of Job 45 is not completely due to the auto-scaling.
As within the proposed system, the execution order follows First come, first served(FCFS).
Job 45 takes 10 nodes which is double the number in SLURM mode. Job 46 waits for Job
45 to finish instead of processing data at the same time.

This simulation shows in a non-busy scenario, the system can help to accelerate jobs for
every user.

5.3.3 Scenario 2: Heavily loaded cluster

In a non-busy scenario, the overall resource utilization is not high. The proposed user-level
resource management system initially aims to solve the problems of the limitations of the
backfilling scheduling policy. Therefore, we create a heavy synthetic workload to study the
resource utilization taking into account the backfill scheduling algorithm. There will be
24 jobs submitted to the cluster/system which includes 8 calibration jobs and 16 normal
jobs in this busy scenario. The workload is listed in Submit list 2. It can be seen from Fig.
5.6, the utilization can be measured, and on average 90.57% of the resources are occupied.
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Figure 5.6: Resource utilization on
SLURM-only mode, busy case - The
overall resource utilization is 90.57%

Figure 5.7: Gantt chart of calibration
jobs - Jobs need to take a while waiting for
resources

However, during the test, part of the resources is idle due to the limit of scheduling policy,
even though there are plenty of jobs on the pending. Fig. 5.7 shows that that calibration
jobs take a longer time to complete compared to scenario 1 (non-busy scenario).

Figure 5.8: Resource utilization after
introducing this system ,busy case -
The overall resource utilization is 99.86%

Figure 5.9: Gantt chart of calibration
jobs - Users need less time for waiting

In the second part of the test we switched to scale mode, the overall nominal utilization
climbs to 99.86%. In Fig. 5.8, the pink curve represents the number of pending and
running tasks. During the entire simulation, the curve stays at a high position, which
indicates there is no wasted resource taken by the system. Therefore, the nominal resource
utilization is close to the real resource utilization of physical computation capability.
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5.3 Resource utilization optimization

Job ID 0 1 2 3 4 5 6 7
SLURM-only mode(Min) 240.01 240.01 402.60 335.53 414.91 316.52 206.51 49.17

Scale mode(Min) 118.15 251.99 191.73 328.04 332.95 281.57 206.51 49.18

Table 5.2: Waiting time of jobs comparison on SLURM-only mode and Scale mode

The calibration applications, by comparing the waiting time of calibration jobs, the
extra resources also benefit the calibration jobs. It can be observed from Table. 5.2 and
Fig. 5.9 that, except for the jobs of 0 and 1, they are affected by the queue strategy and
the jobs of 6 and 7, which are not finished at the end of the simulation. All other jobs,
the jobs from 2-5, take less time after the introduction of this system.

Besides the scenario experiments, we also performed a test in the production environ-
ment hoping to measure the resource utilization under different workload patterns. The
experiment was performed in the DAS5-Leiden site with full 23 available working nodes in
seven days. But unfortunately, due to the lack of other users, the workload is lighter than
our non-busy scenario. Therefore, we were not able to test the performance in different
environments.
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6

Discussions

In previous chapters, we purposed a user-level resource management system and performed
experiments to evaluate how it impacts the overall cluster resource management. There
are still some points not covered in the previous chapters, which can help readers to
understand our system.

The system is driven by the idea to improve the calibration of the LOFAR use case.
As mentioned, there are already two existed implementations for image calibration. The
main reason for not following and extending the current MPI and Spark versions lies in
the cluster setting. We can let our executors carry out the MPI program and process data.
However, the MPI application expects much work to fulfill the requirements of fault toler-
ance features and dynamic settings. With IPL and Xenon, the workload and difficulty for
development are reduced significantly. Moreover, it is possible to extend the current Spark
version of the implementation. One possible solution on top of Spark implementation may
be Kubernetes plus docker container so that it can support the dynamic scaling setting.
Unfortunately, our test platform DAS-5, as a scientific cluster, does not support Docker
containers, therefore, we cannot follow this path.

There are a few points in the core algorithm that we would also like to discuss. First, as
mentioned in Chapter 3, this system does not support GPU features and the job array of
the SLURM. The barriers originate from the middleware Xenon. For the GPU information,
different clusters follow different ways to indicate which node carries the GPUs. Since
Xenon intends to provide uniformed interfaces adapted to multiple resource management
tools, it cannot provide the cluster-specified information. For the job array, Xenon has a
problem in extracting the information of the job array. The job array can be configured
with maximum running tasks, so there are a fixed number of tasks running at a specific
time. Once a task is finished, a new task is submitted to the queue. Job array is a useful
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feature that ensures a consistent workload and highly predictable. We are not fully capable
to adapt to GPUs and job array until Xenon provides a solution to the issues.

The performance of the computation layer is affected by many parameters. For example,
the batch size is the one that end-user can make choices, which determines the granularity
of sub-tasks of calibration jobs. The longer a task to execute, the more performance lost
when the node fails or gets released by the system. However, on the other hand, finer
granularity leads to larger communication overhead. Considering the dynamic change of
cluster, an appropriate batch size should be determined based on the environments char-
acteristics. Another critical parameter is the minimum number of nodes. It is determined
by the mapping function and the real-time workload of calibration jobs. An example is
shown in Eq. (5.1). The mapping function can be modified to coordinate with other
features and aspects.

38



7

Conclusion

In this report, we proposed a self-adjusted auto-provision system that aims to achieve
as high resource utilization as possible through making adapting to the cluster backfill
scheduling algorithm. The system tries to harvest all the idle resources, and be friendly to
other users in the meantime. In general, with more resources putting in use, the cluster
is available to process more jobs.

We choose the LOFAR image calibration process as our test use case, and the calibration
process is implemented in a distributed form. The overall goal is to increase resource
utilization and, at the same time, speed up the calibration jobs. After the adaption of
the system, the results show that the calibration jobs get accelerated by more resources
assigned, and the time which end-users have to wait is shortened. Besides, the resources
allocated to other users jobs do not change a lot. In general, no user receives bad effects
after introducing this system in our test cases.

For future work, the GPU and job array should be supported because they are very
common to modern clusters. Since the GPU features are cluster-specified, we also need to
provide an interface to collect the related information. Additionally, the core algorithm
has room for improvement as well. For instance, to reduce the scheduling time of SLURM,
we should enable this system to request resources with a larger size when needed.

The results of experiments and simulations show that the cluster can reach the nominal
resource utilization of 99.8%, and users save waiting time ranging from 5%(busy workload)
to 50%(idle workload) compared with the baseline(SLURM-only). In general, this system
has achieved its objective to increase resource utilization and accelerate parallel jobs.
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Appendix

8.1 Algoritms
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8. APPENDIX

Algorithm 1 Scaling policy
1: procedure Scaling
2: if No pending job then
3: Submit I one-node calibration jobs with RT ← UMLIMITED;
4: else
5: Get the pending job on top of the queue JTop

6: Get the maxTime for backfilling
7: if R < MiniNode then
8: Take I nodes, return
9: end if

10: if NTop − I <= R−MiniNode then
11: Release NTop − I nodes, return;give a way to job waiting for resource
12: end if
13: for Ji in runningJobs do
14: if TLi −RTi < miniT ime then
15: A job will finish soon, not change, return
16: end if
17: end for
18: for Ji in pendingJobs do
19: if TLi < maxTime then
20: if Ni <= I then
21: SLURM will schedule it, not change, return
22: end if
23: if Ni − I <= R−MiniNode then
24: Release Ni − I nodes, return; give a way for Ji

25: end if
26: end if
27: end for
28: end if
29: No job can be filled in; take I nodes, return
30: end procedure
Back to the content

42



8.1 Algoritms

Algorithm 2 Calculate maxTime

1: procedure getMaxTime
2: Get the job JTop on top of the queue
3: requiredNode← I −NTop

4: MaxTime← UNLIMITED

5: for Ji in Sorted(runningJobs) do
6: MaxTime← (TLI −RTi)

7: requiredNode← requiredNode−Ni

8: if requiredNode <= 0 then
9: Return MaxTime

10: end if
11: end for
12: end procedure
Back to the content
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Algorithm 3 Send tasks to worker
1: procedure deliverTask
2: Lock idleWorkerQueue and runningJobMap

3: for Jobi in runningJobMap.valueSet() do
4: if Jobi.isEmpty() then
5: All tasks sent, continue
6: end if
7: taskj ← Jobi.PopTask()
8: srcId ← idleWorkerQueue.poll()
9: while srcId !=null do

10: masterSendPort connect to worker by srcId

11: Write message and send taskj

12: if sending succeed then
13: Break while loop
14: else
15: Fetch a new srcId

16: end if
17: end while
18: if srcId == null then
19: Jobi.loadRedo(taskj)
20: end if
21: end for
22: end procedure
Back to the content
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8.1 Algoritms

Algorithm 4 Upcall Procedure
1: procedure UpCall(readMassage)
2: if readMassage from worker then
3: message←(ControlMessage) readMessage.readObject()
4: Lock idleWorkerQueue,runningJobMap and runningNodes

5: runningTask ← runningNodes.remove(readMessage.origin().ibisIdentifier())
6: if message.isEmptyRequest() == true then ▷ First request
7: if runningTask !=null then
8: Insert runningTask to the job in runningJobMap according to Job ID
9: end if

10: else
11: job ← runningJobMap.get(message.getJobID())
12: job.finishOneTask()
13: if job.isFinished() then
14: This job is finished; log results and remove it from runningJobMap

15: end if
16: end if
17: idleWorkerQueue.offer(readMessage.origin().ibisIdentifier())
18: else ▷ worker gets task from the master
19: task ← (Task) readMessage.readObject()
20: Lock workerTaskQueue

21: workerTaskQueue.offer(task)
22: end if
23: end procedure
Back to the content
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8.2 SubmitLists

8.2.1 Submit list 1

NodeNum=4 Type=Normal TimeLimit=1:57:57 RealTime=7077 SubmitTimeStamp=3405

NodeNum=2 Type=Normal TimeLimit=0:58:50 RealTime=3530 SubmitTimeStamp=6744

NodeNum=5 Type=Calibration TimeLimit=4:00:01 RealTime=14400 SubmitTimeS-
tamp=13125 Parameter

NodeNum=7 Type=Normal TimeLimit=3:17:42 RealTime=11862 SubmitTimeS-
tamp=21556

NodeNum=5 Type=Calibration TimeLimit=4:00:01 RealTime=14400 SubmitTimeS-
tamp=27934 Parameter

NodeNum=3 Type=Normal TimeLimit=3:22:25 RealTime=12145 SubmitTimeS-
tamp=3995500

NodeNum=4 Type=Normal TimeLimit=3:20:2 RealTime=12002 SubmitTimeStamp=6235156

NodeNum=6 Type=Normal TimeLimit=UNLIMITED RealTime=5017 SubmitTimeS-
tamp=11996676

NodeNum=4 Type=Normal TimeLimit=UNLIMITED RealTime=10373 Submit-
TimeStamp=12551230

NodeNum=5 Type=Calibration TimeLimit=4:00:01 RealTime=14400 SubmitTimeS-
tamp=14016994 Parameter

NodeNum=7 Type=Normal TimeLimit=2:28:50 RealTime=8930 SubmitTimeStamp=18259084

NodeNum=9 Type=Normal TimeLimit=2:19:19 RealTime=8359 SubmitTimeStamp=24192376

NodeNum=9 Type=Normal TimeLimit=2:39:51 RealTime=9591 SubmitTimeStamp=25775085

NodeNum=9 Type=Normal TimeLimit=2:37:27 RealTime=9447 SubmitTimeStamp=36696690

NodeNum=5 Type=Normal TimeLimit=2:37:39 RealTime=9459 SubmitTimeStamp=36697980

NodeNum=5 Type=Calibration TimeLimit=4:00:01 RealTime=14400 SubmitTimeS-
tamp=36767426 Parameter
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8.2 SubmitLists

NodeNum=5 Type=Normal TimeLimit=3:22:26 RealTime=12146 SubmitTimeS-
tamp=36771775

NodeNum=8 Type=Normal TimeLimit=3:11:24 RealTime=11484 SubmitTimeS-
tamp=36773060

NodeNum=5 Type=Normal TimeLimit=2:43:18 RealTime=9798 SubmitTimeStamp=37318439

8.2.2 Submit list 2

NodeNum=4 Type=Normal TimeLimit=1:57:57 RealTime=7077 SubmitTimeStamp=3405

NodeNum=2 Type=Normal TimeLimit=0:58:50 RealTime=3530 SubmitTimeStamp=6744

NodeNum=5 Type=Calibration TimeLimit=4:00:01 RealTime=13500 SubmitTimeS-
tamp=13125 Parameter

NodeNum=7 Type=Normal TimeLimit=3:17:42 RealTime=11862 SubmitTimeS-
tamp=21556

NodeNum=5 Type=Calibration TimeLimit=4:00:01 RealTime=13500 SubmitTimeS-
tamp=27934 Parameter

NodeNum=7 Type=Normal TimeLimit=UNLIMITED RealTime=12412 Submit-
TimeStamp=1241591

NodeNum=3 Type=Normal TimeLimit=3:22:25 RealTime=12145 SubmitTimeS-
tamp=3995500

NodeNum=5 Type=Calibration TimeLimit=4:00:01 RealTime=13500 SubmitTimeS-
tamp=4658139 Parameter

NodeNum=4 Type=Normal TimeLimit=3:20:2 RealTime=12002 SubmitTimeStamp=6235156

NodeNum=5 Type=Calibration TimeLimit=4:00:01 RealTime=13500 SubmitTimeS-
tamp=8696543 Parameter

NodeNum=6 Type=Normal TimeLimit=UNLIMITED RealTime=5017 SubmitTimeS-
tamp=11996676

NodeNum=4 Type=Normal TimeLimit=UNLIMITED RealTime=10373 Submit-
TimeStamp=12551230
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NodeNum=5 Type=Calibration TimeLimit=4:00:01 RealTime=13500 SubmitTimeS-
tamp=14016994 Parameter

NodeNum=7 Type=Normal TimeLimit=2:28:50 RealTime=8930 SubmitTimeStamp=18259084

NodeNum=5 Type=Calibration TimeLimit=4:00:01 RealTime=13500 SubmitTimeS-
tamp=20726878 Parameter

NodeNum=9 Type=Normal TimeLimit=2:19:19 RealTime=8359 SubmitTimeStamp=24192376

NodeNum=9 Type=Normal TimeLimit=2:39:51 RealTime=9591 SubmitTimeStamp=25775085

NodeNum=5 Type=Calibration TimeLimit=4:00:01 RealTime=13500 SubmitTimeS-
tamp=27327961 Parameter

NodeNum=9 Type=Normal TimeLimit=2:37:27 RealTime=9447 SubmitTimeStamp=32015325

NodeNum=5 Type=Normal TimeLimit=2:37:39 RealTime=9459 SubmitTimeStamp=36697980

NodeNum=5 Type=Calibration TimeLimit=4:00:01 RealTime=13500 SubmitTimeS-
tamp=36767426 Parameter

NodeNum=5 Type=Normal TimeLimit=3:22:26 RealTime=12146 SubmitTimeS-
tamp=36771775

NodeNum=8 Type=Normal TimeLimit=3:11:24 RealTime=11484 SubmitTimeS-
tamp=36773060

NodeNum=5 Type=Normal TimeLimit=2:43:18 RealTime=9798 SubmitTimeStamp=37318439

8.3 Terminology table

Term Description
Horizontal scaling Scale by adding more machines into your pool of resources.
Vertical scaling Scale by adding more power (CPU, RAM, GPU) to an existing machine.

Table 8.1: Terminology table
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