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Abstract

Privacy-utility tradeoff and fairness on under-represented groups have be-
come central issues in a differentially private federated learning framework.
This thesis aims at measuring the utility and fairness of a distributed learn-
ing system, by investigating the effect of data bias and privacy preserving

mechanism within a federated learning setting.

This thesis considers data bias from two aspects:(1) data imbalance within a
dataset and (2) non-IID data distribution among worker nodes. Specifically,
the effect of data bias is measured in three parts: (1) target class imbalance,
(2) label imbalance, and (3) imbalanced number of samples among worker

nodes.

This thesis designed and implemented a comprehensive experiment scheme
for measuring the effect of data bias in differentially private federated learn-
ing. This thesis simulated 4 types of representative data distributions scenar-
ios based on real-world machine learning problems: (1) fully IID, (2) partial
2-class non-1ID, (3) fully 2-class non-IID, and (4) normal distribution. This
thesis chose 9 privacy budgets (e value) from 0.2 to 100 to simulate different

privacy level required by the worker nodes itself or the legislation.

This thesis conducted 60 experiments with 6 data distribution scenarios and
10 differential privacy settings. Vertical and horizontal comparisons among
experiment results are performed to validate the following hypotheses: (1)
a higher level of data bias leads to a better overall performance and worse
fairness of under-represented groups, and (2) a higher privacy level leads to

a worse overall performance and worse fairness of under-represented groups.

This thesis found that there is a large performance difference between the
target class with most samples and the target class with only a few samples

in a classification task on a highly imbalanced dataset. Also, the model



performance of minority groups is significantly influenced by the changes of
differentially private federated learning setting, compared with the overall

dataset and majority groups.
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Introduction

1.1 Context

Driven by the awareness of personal data privacy protection and stricter legislation
of commercial data exchange such as General Data Protection Regulation (GDPR) in
EU (1) and Health Insurance Portability and Accountability Act (HIPAA) in US (2)),
privacy-utility tradeoff has become a primary concern of distributed Machine Learning
in the past decade. Collaboration on Machine Learning model training among various
entities have shown its great demand of a privacy-preserving machine learning frame-
work. The type of involved entities are different under various scenarios, such as the
huge amount of end users for a smart device or application, first-hand collected data
organized by different research institutions, internal innovative projects among different
departments within one company, and different branches of an international corporate.

With this context, Federated Learning (FL) was first introduced in 2016 as a de-
centralized approach to leave the training data distributed on the local nodes and learn
a shared model based on the aggregation of locally-computed updates on the server
node (3)). Later in 2019, a workshop focused on Federated Learning and Analytics was
held by Google, in which researchers broadened the definition of federated learning and
systematically categorized open problems in the field (4)).

In the categorization of federated learning, the most significant difference between
cross-device federated learning and cross-silo federated learning is the type and amount
of involved entities. There is a huge amount of unreliable devices in cross-device fed-

erated learning, but the cross-silo federated learning only involves a small amount of
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reliable organizations. On the basis of these two terms, the definition of federated learn-
ing was broadened to become more applicable in different types of real-world machine
learning problem (4)).

Aside from the higher willingness to collaborate in machine learning tasks, the quan-
tity and quality of data have also been largely improved. In the last few decades, the
development of sensor networks has extended its applicability in various fields (5), in-
cluding environmental monitoring based on Internet of Things (IoT) sensors (€)), human
activity recognition based on image sensors (7)), and disease prediction based on medical
signal sensors (8). Moreover, the global trend of digital transformation in all business
industries have also boosted the amount of data being generated every second. For
example, YouTue uses billions of user browsing history and user persona to improve
their recommendation system (9), and Alibaba uses millions of transactions to detect
fraud (10).

Aforementioned rich data have prompted a surge of interest in utilizing machine
learning techniques to solve real-world problems. These tasks are sometimes interdisci-
plinary applications, ranging from personal credit score prediction using bank transac-
tions and webshop browsing history (11)) to length of stay in Intensive Care Units (ICU)
prediction using hospital patient visit records and inventory list (12).

Given that real-world machine learning tasks usually involve multiple parties in a
complex business setting as mentioned above, they need information from multiple data
sources owned by different entities. These data sources have the following character-
istics: (1) variety in sensitivity of the data itself, (2) difference in legislation among
geographical regions, and (3) bottleneck in the communication efficiency of different
data centers. Besides the general differences among various data sources, the perfor-
mance of some deep neural networks is highly depended on the availability of large-scale
and highly-representative datasets (I3)). With all these constraints, making the use of
modest privacy-preserving mechanisms has become a central issue when training Ma-
chine Learning models in a distributed setting with multiple entities.

In order to train deep neural networks under a proper privacy budget to ensure
the balance between model quality and data privacy, differential privacy integrated
with federated learning was proposed as an appropriate solution to collaboratively train
a model but keeping the data distributed in local entities (I3). Within differential

privacy mechanisms, the prevalent Gaussian mechanism protects data privacy by adding
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elaborate Gaussian (normal) distribution as the noise to a mapping function. The noise
is calibrated to the sensitivity of that mapping function from database to real values
(14).

Based on the strong need of a privacy-preserving distributed machine learning frame-
work, differentially private federated learning setting has received increasing attention
because: (1) each local entity (the owner of a data source that participates in the
collaborative training process) is independent and only needs to communicate model
parameters (not data) with the central server, (2) the central server coordinates the
aggregation and broadcast of model parameters, and (3) the noise adding mechanism
within differential privacy offers a great balance between data privacy level, training

efficiency, and model performance (14).

1.2 Motivation

When using the differentially private federated learning framework to solve real-world
problems, data bias is widely regarded as the major limitation of the utility and fair-
ness (4). Being different from famous Machine Learning dataset in use like MNIST
(15), ImageNet (I6]), and movie review (I7)), the complicated business background of
real-world Machine Learning problems makes them obliged to deal with highly imbal-
anced dataset with large data bias. In this thesis, we take the classification task within
a privacy-preserving distributed machine learning setting as an example. With this
context, we consider data bias from two aspects: (1) data imbalance within the dataset
and (2) data distribution scheme which is not independent and identical among entities
(non-IID data distribution). Specifically, there are three types of data bias in classifi-
cation tasks under differentially private federated learning framework: (1) imbalanced
number of samples within each target class, (2) imbalanced number of samples within
each label, and (3) imbalanced number of samples among local entities (worker nodes).

Moreover, the data bias issue has even larger impact in situations where under-
represented classes or labels within the dataset are more useful for training a Machine
Learning model. For example, in the beginning of the coronavirus pandemic, the in-
fected patients’ chest X-ray images are highly under-represented classes, known as "long
tails" in the whole chest X-ray image dataset. But those are the ones with greatest im-

portance in the image classification model for pre-diagnoses of Covid-19 (I8). This
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scenario has the following characteristics: (1) the number of total (all-type) patients
are different in each hospital, (2) the number of patients within each disease class are
largely different in the whole dataset, (3) the total number of patients with Covid-19
is really small in the dataset, and (4) the number of patients with Covid-19 in each
hospital varies a lot. With constraints (2) and (3), training a medical image classifica-
tion model with high accuracy on Covid-19 is already really hard. Moreover, the high
sensitivity level of medical data does not allow hospitals to share the raw data of their
patients. Together with constraints (1) and (4), the situation is much harder for the
collaboratively trained medical-use classification model. Thus, a mechanism to mea-
sure the effect of data bias is of great importance in federated learning with differential

privacy.

1.3 Problem Statement

Most of the recent studies in federated learning and differential privacy are assuming
that the dataset is in independently identically distribution (IID) among all worker
nodes, but the real-world machine learning tasks are not always that ideal. Hence,
learning the effect of data bias in differentially private federated learning framework
is of great significance and gives it higher practicability and reliability in real-world
machine learning tasks.

This thesis aims at measuring the utility and fairness of a distributed machine learn-
ing system, by investigating the impact of data bias and privacy preserving mechanism
within a federated learning setting. We measure the effect of data bias (data imbal-
ance and non-I1ID data distribution) specifically from the following three aspects in this
thesis: (1) target class imbalance, (2) label imbalance, and (3) imbalanced number of
samples on each worker node. The utility can be shown by measuring the model per-
formance of the overall dataset. And the fairness of a model can be represented by the
model performance of different subgroups within the whole dataset. Moreover, this the-
sis conducts experiments to validate the following two hypotheses: (1) a higher level of
data bias leads to a better overall performance and worse fairness of under-represented
groups, and (2) a higher privacy level leads to a worse overall performance and worse

fairness of under-represented groups.
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As the scope of this thesis, it puts attention on cross-silo federated learning setting,
in which a small number of reliable organizations are involved as entities (local worker
nodes). This thesis also uses the horizontal federated learning scheme, in which sam-
ples on each worker node share the same feature space but with different sample ID.
Moreover, this thesis focuses on supervised learning, specifically classification tasks in

machine learning problems, under differentially private federated learning framework.

1.4 Contribution

Our contributions are as follows:

e We implemented a differentially private federated learning framework with data
distribution module and testing metrics module for highly imbalanced dataset,
enabling the simulation of various data distribution scenarios and performance

measurement of different subgroups of the data.

e We designed a comprehensive experiment scheme for measuring effect of data bias
in differentially private federated learning, providing a quantitative method to sys-

tematically investigate the effect of data imbalance and non-I1D data distribution.

e We conducted series of experiments on a highly imbalanced dataset and performed
in-depth analysis among all experiments results, revealing the impact of various
data distribution scenarios and different privacy budgets on the utility and fairness

of a differentially private federated learning framework.

1.5 Thesis Structure

This thesis is structured as below:

e Chapter 2 provides previous related works about Federated Learning, Differential

Privacy, data imbalance, and non-IID data distribution.

e Chapter 3 explains the data bias in a distributed machine learning task, specifically

the data imbalance and non-I1ID data distribution.

e Chapter 4 describes the experiment design for measuring the effect of data bias

in differentially private federated learning setting.
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e Chapter 5 analyzes the experiment results and validates hypotheses about the

impact of the higher level of data bias and higher privacy level.
e Chapter 6 shows the conclusion of this thesis.

e Chapter 7 looks forward to the directions of our future work.



Background

Considering that the purpose of this thesis is to measure the effect of data bias in
differentially private federated learning, it is important to explain main concepts in the
field of Differential Privacy (DP), Federated Learning (FL), and data bias with the
context of this thesis. This chapter introduces definitions, categorizations, and current

research findings of the three aforementioned fields.

2.1 Differential Privacy

Differential privacy is a mathematical framework for quantifying the anonymization of
sensitive data, and it has shown its strong capacity in privacy guarantees for aggregation
on datasets and databases. In this thesis, we use differential privacy as the privacy-
preserving mechanism to protect the privacy of raw datasets stored in each local worker
node.

As a general term, a query function f is used as the mapping from databases to real
entries, and the true answer is the consequence of applying f to the database. In order to
protect the true answers from being recognized by attackers, the values returned to the
users are the true answer plus random noise generated based on a specific distribution.

Until 2005, most of the works in privacy protection focused on using noisy sums.
Blum termed the query with (slightly) noisy reply as Sub-Linear Queries (Sul.Q) in
(19). As stated in the paper, the query function is f =) . g(z;), in which x; represents
the i'" row of a statistical database and g maps rows in the database to {0,1}. The

paper defined that a database query mechanism is (e, d, T)-private when the following
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formula is valid for every data element of index 4, for every predicate f : D — {0,1} in
which element d; is drawn from an arbitrary domain D, and for every adversary making
at most T queries, given that the data is extracted from a distribution with enough

generality but without missing much information.
Pr conf(pékf) - conf(pé’f) > e} <4

Here (19) assumes that rows of the database are independent. And for any predicate
f:D —{0,1}, pé’f denotes a priori belief that f(d;) = 1 and piT’f denotes a posteriori
belief that f(d;) = 1 giving the answers to T" queries. As a result, a randomly generated
noise of N (0, R) where R = R(¢,9,T) is added to the true answer ) . s f(d;) where
S is a set of rows in the database within mapping g(z;). We can see the power of the
noisy sums query scheme based on the advanced examples of carrying out standard data
mining tasks using SuL.Q, such as Principal component analysis (PCA) in dimension
reduction, k-means clustering, ID3 classification, and statistical queries learning model.
However, a more sophisticated privacy preserving scheme is required when the machine
learning task becomes much more complicated.

The term differential privacy was introduced by Dwork as a privacy-preserving mech-
anism for statistical databases in a series of studies (20) (14)) (21) (22)). Within the initial
concept of differential privacy, it protects data privacy by adding random noise to the
real entries in the database, in which the noise is generated according to a discreetly
selected distribution.

As mentioned in (20), the ultimate goal of a privacy-preserving statistical database
is to empower every user to learn the properties of the whole population but still pro-
tect the privacy of every individual data owner. In 2006, Dwork proposed that when
considering f as the mapping from database to vectors of real entries, they can prove
that the data privacy can be preserved by calibrating the standard deviation of the
noise adding mechanism based on the sensitivity of the function f. In this paper, they
model a database as a vector of n entries from some domain D, and consider domain
of the form ({0,1})% or R?. The sensitivity S(f) is defined as an inherent quantity in
f, which is independent of the database. L sensitivity of a function f : D" — R% is
defined as the smallest number S(f) such that for all z, 2" € D™ which differ in a single

entry,

[f(0) = f ()|, < S(f)
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. According to the theory, if noise Y is a vector of d independent Laplace variables,
the density function at y will be proportional to exp(—||y|[1/A). As a consequence, the
random variables z + Y and 2’ + Y will be as follows for all t € R?

Pr(z+Y =1t) lz — 2|,
===l
Pr(z’+Y:t)€eXp( A

. Thus, it is sufficient to add Laplace noise with standard deviation of S(f)/e in each
coordinate to make sure the returned value is with sufficient privacy.
Moreover, a noise adding mechanism is defined as e-indistinguishable in (20)) if for

all pairs x, 2’ € D™ which differ in only one single entry, for all adversaries A, and for

'1“ (zf [[f:f Ej;tg])’ =€

all transcripts ¢:

. Sometimes when € is small, In(1 + €) = €, and the e-indistinguishable definition will
be approximate equivalent to % €l*te

In other words, as stated in (14), the definition of e-indistinguishability can be
defined as follows for two datasets that only differ on one row, if the respective output

random variables of query responses 7 and 7/ satisfy for all sets S of responses :
Pr(r € S] < exp(e) x Pr [t € 5]

. Similarly, a noise adding mechanism can be defined as §-approximate e-indistinguishable

under the same conditions that:
Prir € S] <exp(e) x Pr[r' € 5] +4

. The non-zero ¢ allows people to release the strict relative shift when events are not
especially likely to happen.

In the following 10 years, during the rapid development of machine learning tech-
niques with neural networks, privacy-utility issue has become the core when training
complex models with large-scale crowdsourced dataset containing sensitive informa-
tion. In 2016, Google developed a new algorithmic technique to help developers and
researchers better deal with the privacy issue. They implemented differential privacy
within their machine learning framework TensorFlow in Python, which is the differen-

tially private stochastic gradient descent algorithm (DPSGD) (13)).
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Within DPSGD, they take the input of: (1) data samples {z1,...,xn}, (2) loss
function L(f) = + >, L(#,z;) in which 6 denotes the parameters of the model, and
(3) parameters of learning rate 7, noise scale o, group size L, and gradient norm
bound C. After randomly initiating 6y, they do the following steps for every t &
T: (1) take a random sample L; with the sampling probability of L/N, (2) compute
gradient for each i € L; by calculating g:(x;) < /o, L(0¢, %), (3) clip gradient by
calculating g, (z;) « g (x;) / max (1, Hgt(%), (4) add noise by calculating g; <«
% (ZZ g, (z;) + N (0, 02021)), and (5) perform descent by calculating 0y11 < 6 — ;8.
The output are the parameters 07 and the overall privacy cost (€,9) calculated using a
privacy accounting method.

Considering the federated learning framework in this thesis is implemented with
PyTorch, we use Opacus, the PyTorch version implementation of DPSGD realeased by

Facebook, to handle the differential privacy part of the experiments.

2.2 Federated Learning

2.2.1 Definition of Federated Learning

The term federated learning was first defined in 2016 by McMahan from Google (3) as
"the learning task is solved by a loose federated of participating devices (which we refer
to as clients) which are coordinated by a central server". On account of the development
of modern mobile devices, the massive amount of data obtained by smart devices is of
great value and importance to machine learning tasks such as text recognition from
audio, image detection from pictures, and disease prediction based on personal medical
records. However, this rich data usually comes with high sensitivity which prevents
uploading all data into a data center and train a model there. Thus, federated learning
framework is proposed to leave the training data on the local mobile devices and learn
a shared model by aggregating the locally computed updates. Within the framework
of federated learning, clients have their own local training dataset and this dataset will
never be uploaded to the central server. The only thing that each client uploads to and
be broadcasted from the central server is the parameters of the model.

Aside form the definition of federated learning mentioned above, (3) also introduced
an algorithm called Federated Averaging (FedAvg), combining local stochastic gradient

descent (SGD) on each client with a central server which performs averaging on model

10
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parameters. At that time, they also pointed out that the unbalanced and non-identically
and independently distributed (non-IID) data partitioning among a huge number of
unreliable devices together with the limited communication bandwidth were the largest

challenges of federated learning.

2.2.2 Cross-silo and Cross-device Federated Learning

Later in 2019, two types of federated learning settings were introduced, specifically
the "cross-device" federated learning setting and "cross-silo" federated learning setting.

The major difference of these two definitions can be found in Table 2.1}

Features Cross-silo federated learning setting Cross-device federated learning setting

Client type A small number of reliable clients (e.g. 2-100 different medical or financial organizations) A large number of unreliable clients (e.g. 10-million mobile devices or IoT sensors)

Data partition Both possible for example-partitioning (horizontal) and feature-partitioning (vertical). Only possible for example-partitioning (horizontal)

Addressability Each client has its own unique identity. No client identifiers in use.

Client statefulness | Stateful (each client can participate in cach round of the computation and carry state from previous states). Stateless (each client is more likely to participate only once in a task)

Table 2.1: Major difference between cross-silo and cross-device federated learning setting.

With these two types of setting, (4) proposed a broader definition of federated
learning as "a machine learning setting where multiple entities (clients) collaborate in
solving a machine learning problem, under the coordination of a central server or service
provider. Each client’s raw data is stored locally and not exchanged or transferred;
instead, focused updates intended for immediate aggregation are used to achieve the
learning objective." According to the broader definition, the focused updates narrows
the scope of information being communicated between the central server and clients to
only contains the minimal information which is essential for the learning task. Also,
the aggregation on central server will be performed as early as possible to guarantee the
data minimization.

Considering the cross-silo federated learning, there are plenty of applications in
various fields including financial fraud detection, medical image classification for pre-
diagnosis, and smart manufacturing. A detailed example of cross-silo federated learn-
ing setting in financial field is the collaboration between WeBank and Swiss Re (23)).
WeBank is an online lender owned by Chinese high-tech company Tencent, and the
AT team within WeBank has created “Federated AI Technology Enabler (FATE)”, an
industrial-level open-source technical framework. And Swiss Re is a leading company
in the field of reinsurance. After signing the partnership, these two large organizations

would study the efficiency challenges imposed by data silos with the help of federated

11



2. BACKGROUND

learning (24). An example of cross-silo federated learning setting in medical field is the
MesoNet (25). It uses a deep convolutional neural networks (CNN) model to predict
the overall survival of mesothelioma patients. The CNN model MesoNet is validated on
dataset from MESOBANK, which is an international organization provides collection of
high-quality samples from mesothelioma patients around EU. Since MESOBANK offers
dataset to medical researchers from EEA, USA, Canada, Australia and New Zealand,
data retrieved from MESOBANK are preprocessed by adding noise on under a federated
learning setting.

On the other hand, the cross-device federated learning has been widely deployed in
the field of digital customer analysis. For example, Google has introduced federated
learning in their research of mobile keyboard prediction (26)) (27) (28) (29). Google
trained a recurrent neural network (RNN) language model in the federated learning
setting for the next-work prediction of virtual keyboard on smartphones (Google Key-
board, also called Gboard). Compared with server-based training, the federated learning
setting with FedAvg algorithm has shown a better performance (precision recall) and
guaranteed the privacy of user sensitive data at the same time (26)). Other than nor-
mal characters from more than 600 languages, the RNN model can also predict emoji
from the previous typed text on Gboard. Its great performance shows the feasibility of
implementing federated learning setting as the framework to train a production-quality
model in the field of natural language understanding and keep user data locally to avoid
interfering user data privacy (28). The federated learning setting with the character-
level RNN model has also demonstrated its capability to learn out-of-vocabulary (OOV)
words as stated in (29). Aside from the regular next-word prediction task, Google also
introduced federated learning setting to improve the quality of search suggestion based
on the data from more than 1 billion end users of Gboard (27]).

Considering the scope of this thesis, we use the cross-silo federated learning setting
to study the effect of data bias in differentially private federate learning among a small

number of reliable entities.

2.2.3 Horizontal and Vertical Federated Learning

Aside from classifying federated learning settings based on their clients, another impor-
tant concept within federated learning is the feature space and sample ID space accord-

ing to the data distribution characteristics among clients. Based on the difference on

12



2.2 Federated Learning

intersection of feature space and sample space, horizontal federated learning, vertical
federated learning, and federated transfer learning are proposed in (30). Horizontal
federated learning is also called sample-based federated learning since the datasets are
sharing the same feature space but different sample IDs under this scenario. For exam-
ple, the business of several regional banks could be quite similar but their user group
could be largely different. Thus, these banks are sharing the same feature space but
different sample space. On the contrary, vertical federated learning can be named as
feature-based federated learning, in which several datasets share different feature space
but same sample ID space. A real-world use case can be seen in the e-commerce field.
A bank and an e-commerce company in the same region might share the same group
of users, but they definitely do not have the same features in their dataset. However,
the user browsing history and purchasing transactions from the e-commerce company
and the revenue with expenditure behavior records from the bank can be collaboratively
used to predict the next product purchase behavior of a user. In this task, the bank and
the e-commerce company have the same sample space but different feature space. In
between horizontal and vertical federated learning, federated transfer learning depicts
the scenarios that several datasets differ in both sample space and feature space, leading
to a relatively small intersection among entities. Considering one entity as a Chinese
bank and another entity as an American e-commerce company. In this scenario, both
sample space and feature have quite small intersection. Thus, a common representation
is learned based on the limited number of common samples.

Considering the scope of this thesis, we use the horizontal federated learning setting
to study the effect of data bias in differentially private federate learning, in the situation
that different local nodes share the same feature space but own samples with different

sample IDs.

2.2.4 Significant Challenges in Federated Learning

As introduced above, federated learning is a convincing approach for collaboratively
training a model but keep the data decentralized in local clients. However, the model
performance in federated learning is not only influenced by the federated algorithm, but
also largely impacted by the data distribution among clients (4). Two of the most signif-

icant challenges in federated learning are class imbalance and non-IID data distribution

13
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data. In this paper, we summarize these two challenges as data bias and perform sys-
tematically investigation on the effect of data bias in federated learning with differential

privacy.

2.3 Data Imbalance

2.3.1 Data Imbalance in Classification

In a machine learning problem with classification task, data imbalance refers to the the
uneven number of samples of each class or of each label.

In binary classification tasks, data imbalance is a notable issue especially in cases
where samples with negative label largely outnumber samples with positive label, in-
cluding computer-assisted medical diagnostics using images and test reports, network
attack detection, unreliable telecommunication customer detection, and financial fraud
detection (31)).

Common methods dealing with data imbalance of classification tasks in single ma-
chine (without distributed setting) could be categorized as data driven approaches and
algorithm driven approaches (32)). Data driven approaches include: (1) under-sampling
by discarding samples from majority class to make an even number of samples between
classes such as random under sampling (33)), and (2) oversampling by replicating samples
from the minority class such as synthetic minority over-sampling technique (SMOTE)
(34). Algorithm driven approaches include: (1) cost-sensitive learning by choosing a
class with minimal conditional risk in order to minimize misclassification cost such as
MetaCost (35), and (2) thresholding by adjusting the decision threshold of a sample
according to the class to reduce misclassification cost and improve performance at the
same time (36), and (3) hybrid methods by combining ensemble learning and sampling
to increase the accuracy of minority class while keeping the accuracy of the overall
dataset in a reasonable range such as SMOTEBoost (37).

When there is a class imbalance in the dataset, the proportion and number of samples
of minority classes are significantly lower than the majority classes. In some cases, the
minority classes are undoubtedly playing more important role compared with their
proportion in the whole dataset. For example, the resulting reduction of classification
accuracy on minority classes could lead to a bad consequence when doing a sudden

disease prediction based on abnormal heart rates.
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With the context of this thesis, the data imbalance of classification task is measured

from perspectives of both class imbalance and label imbalance.

2.3.2 Data Imbalance in Federated Learning

When the dataset is distributed among several clients rather than being trained in a
single node, the impact of data imbalance is even worse. For example, in the series of
federated learning framework with next-word prediction task of Gboard from Google,
the SOS typing is quite uncommon among all device (smartphones in this case), but
SOS is much more important than any of the big name restaurants. The minority class
SOS even needs higher prediction accuracy than other majority classes (26).
Considering the strict constraint of communication content in the setting of feder-
ated learning, it is not possible to upload additional information needed for conventional
methods to mitigate the impact of data imbalance (38)) (39) (40)). Thus, methods men-
tioned above are not suitable for federated learning data imbalance issue since neither
the clients nor the central server has the full access to the complete training set (41).
In real-world machine learning tasks, the class imbalance phenomenon happens quite
often. For example, the number of patients diagnosed with different diseases can vary
significantly in medical image classification tasks (42]) (43). Also, the Google research of
predicting emoji with Gboard also pointed out that people could have largely different
personal preferences in their daily use of the virtual keyboard on smartphones (29).
Some studies have proposed methods to be added in local clients in order to solve the
data imbalance issue in federated learning without uploading additional data distribu-
tion information to the central server. Inspired by the observation that minority classes
usually contains very few instances with relatively high degree of visual variability, (44])
proposed to learn a Euclidean embedding f(z) from an image  to the feature space R?,
so that the embedded features are discriminative without local class imbalance. With
the help of transfer learning, (45) proposed that the knowledge from data-rich classes in
the head of the distribution can be encoded with a meta-network and then be gradually
transferred from head to body and from body to tail. However, these methods would
not work when there is a mismatch between the local data distribution and the global
data distribution. They might even result in a negative side-effect on the model in

central server within a federated learning setting.
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(41) defined the class imbalance as two classes, the local imbalance and the global
imbalance. The local class imbalance v; of client j is defined as the ratio between
number of samples of majority class and minority class, in which Ng denotes the number

of samples in class p on client j:
Vi = mamp{Nﬁ}/minp{Ng}

And the global class imbalance I' is defined as the ratio between total number of

sampler of majority class and minority class:
I = maa;p{z Ng}/minp{z Ng}
J J

In order to quantify the mismatch between local class imbalance and global class
imbalance, they use @ to represent the overall number of classes, use vector v; =
[Nf,...,Ng?] to denote the local data composition on client j, and use vector V =
D N5 y Nég] to denote the global data composition. After that, cosine similarity

(CS) score is used to measure the similarity between two data compositions as:

CSj = (vj - V)/(lvsll VD)

Aside from quantifying global class imbalance and local class imbalance, they pro-
posed a monitoring scheme which can estimate the composition of training data across
classes during each federated training round. This is designed to alert administrator
when certain imbalanced data composition appears. This paper also designed the Ratio
Loss function to mitigate the impact of class imbalance in federated learning.

With the context of this thesis, we use a highly imbalanced Adult dataset to intro-
duce the data imbalance into the federated learning framework, and create a compre-
hensive mechanism to measure the effect of data imbalance by calculating the model

performance of subgroups in the whole dataset.

2.3.3 Data Imbalance in Differential Privacy

Moreover, there are also studies show that data imbalance also has great influence on

differentially privacy training mechanisms.
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As stated in (40)), differential privacy might also deteriorate the existing data bias
in the raw dataset and results in a largely different accuracy on different subgroups of
the dataset. This paper carried out experiments of DP-SGD in a binary classification
task on a single machine. The range of imbalance was set from 0.1% to 30%, and the
privacy budget e was set from 1.15 to 16.2. Their experiment results demonstrated
that an increasing data imbalance trained with differential privacy mechanism leads to
a significantly increasing disparity of accuracy between 2 classes (subgroups). Thus,
applying differential privacy on dataset with imbalance will result in a huge impact on
the model performance of minority subgroups even with loose guarantees.

In this thesis, we also compare the model performance of subgroups in different
differential privacy settings, so that we can analyze what impact the privacy-preserving
mechanism would introduce when the machine learning task is executed on a highly

imbalanced dataset.

2.4 Non-IID Data Distribution in Federated Learning

As we mentioned in chapter 1, we define data bias from two perspectives, one among
all clients in the federated learning setting, another one within a specific client. Since
the previous section has fully introduced data bias within one specific machine, we will
introduce the data bias from the among-clients perspective in this section as the data
distribution scenarios.

In real-world machine learning tasks, datasets owned by several clients often comes
with various data formats and some unique preferences based on their business back-
ground. Thus, the resulting diversity would slow down the convergence of the global
model in a federated learning setting.

In the experiments of paper (47)), they assigned every client exact m classes of the
dataset to mimic the "non-IID (m)" federated learning setting. Their results showed
that models with IID data distribution has a relatively faster convergence than non-II1D
ones.

A more comprehensive experimental study on the federated learning with non-IID
data silos showed that nowadays there is no single federated learning algorithm that
could outperform others considering all possible scenarios of the non-IID data distribu-

tion (48). This paper considered 3 types of possible non-IID data distribution cases,
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specifically (1) label distribution skew, (2) feature distribution skew, and (3) quantity
skew. The 6 data partitioning strategies can be seen in Table

Distribution type Imbalance type

Label distribution skew Quantity-based label imbalance

Label distribution skew | Distribution-based label imbalance

Feature distribution skew Noise-based feature imbalance
Feature distribution skew Synthetic feature imbalance
Feature distribution skew Real-world feature imbalance

Quantity skew

Table 2.2: 6 data partitioning strategies

In label distribution skew, a simple case in practice is that some hospitals have great
specialization in a particular set of disease categories, then the number of patient records
of these diseases within these hospitals would naturally be much higher. The difference
between quantity-based and distribution-based label imbalance is the number of labels in
each client. Quantitiy-based label imbalance assigns a fixed number of labels in a client,
and is considered as an extreme case. Each client in distribution-based label imbalance is
allocated a certain proportion of the samples within each label according to the Dirichlet
distribution, which is normally used as the prior distribution in Bayesian statistics and
as the appropriate method to simulate real-world data distribution scenarios (49).

In feature distribution skew, examples could be different fur colors and various
patterns in different areas for cats. In the noise-based feature imbalance, different levels
of Gussian noise is added to the randomly and equally divided parts of the whole dataset
to simulate different noise level among all clients. In the synthetic feature imbalance,
they divided a cube into 8 equal-volume parts and allocated two symmetric parts in
one client, creating a label-balanced but varied feature data distribution. The real-
world feature imbalance uses the inherent feature of data samples to distribute, such
as distributing the EMNIST dataset of handwritten characters/digits based on their
writers.

In quantity skew, the number of samples within each local dataset are different
among all clients. Dirichlet distribution is also used here to allocate different number

of samples to each client.
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In the context of this thesis, we consider the data partition strategies from the label
and class perspectives. Chapter 3 introduces the 4 data distribution scenarios in details
and indicates how we use these scenarios to mimic real-world maching learning task

settings.
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As mentioned in Chapter 1, this thesis measures data bias from the following two as-
pects: (1) data imbalance within the dataset, and (2) data distribution among entities.
This chapter first introduces the highly imbalanced Adult dataset to show the label
imbalance and target class imbalance within a dataset. Next, this chapter shows 4
representative data distribution schemes in detail to illustrate how to mimic data dis-
tribution scenarios in real-world machine learning tasks. With the detailed illustration
of both data imbalance and data distribution scenarios, the data bias is thoroughly de-
fined and chapter 4 can then present the experiment design to systematically measure

the effect of data bias.

3.1 Data Imbalance

3.1.1 Adult Dataset

The most famous datasets in machine learning classification tasks are MNIST (I5) and
CIFAR (50). These two image classification dataset are great benchmark for balanced
dataset since they both contain almost even number of sampler per class. However,
a great balance in the number of samples per class is not suitable when we want to
investigate the effect of data bias. Thus, we choose to use the Adult dataset, which is a
multivariate dataset derived from real world, with binary classification task and several
categorical features.

The adult dataset was extracted from the 1994 Census bureau database, and its

task is to classify whether a given adult makes more than $50,000 a year (51J).
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The target class is salary in the adult dataset, where every sample’s annual income
is being classified as either >50K or <=50K. Features of the adult dataset include age,
workclass, education level, marital status, occupation, race, sex, capital status, hours
per week, and nationality.

In order to distribute the adult dataset in a federated learning setting and investigate
whether there is difference on performance between minority samples and majority
samples, we made a Sex Race label by combining Sex feature values and Race feature
values for each sample in the dataset. The Sex Race label has 10 classes in total given
that the Sex feature is consisted of Female and Male and the Race feature includes
Amer-Indian-Eskimo, Asian-Pac-Islander, Black, Other, and White.

In the following sections of this thesis, dataset refers to the Adult dataset, in which

salary as target class and Sex Race as label, unless otherwise noted.

3.1.2 Data Imbalance within Adult Dataset

The complete adult dataset had 46033 samples, in which 34611 samples are in the target
class of <=50K and 11422 samples are in the target class of >50K. As a result, the
<=b50K class has more than three times of the number of samples of >50K class.

Figure shows the number of samples per Sex Race label of the whole dataset,
and the exact number of samples per Sex Race label per target class is shown in
table It is clear that there is a huge difference on the number of samples between
the majority groups and minority groups. As stated in table the Male White
label contains 27421 samples, and it is almost 60% of the complete dataset. And the
Female White label contains 12023 samples, which is more than 25% if the complete
dataset. On the contrary, the Female Other label only has 135 samples, and this is
less than 0.3% of the complete dataset. The Female Amer-Indian-Eskimo label only
has 166 samples, which is less than 0.4% of the complete dataset.

As a conclusion, the adult dataset is a highly imbalanced dataset considering from
perspectives of the target class and the Sex Race label. We hereby define "<=50K"
as the majority class and ">50K" as the minority class in adult dataset. Also, samples
of Sex Race label "Female Amer-Indian-Eskimo" and "Female Other" are defined as
under-represented groups within the adult dataset. Likely, samples of Sex Race label
"Female White" and "Male White" are defined as over-represented groups within the
adult dataset.
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Number of samples of adult dataset per label per target class
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Figure 3.1: Number of samples per target class per Sex Race label in complete adult
dataset

3.1.3 80/20 Train-Test Split of Adult Dataset

Normally we split the whole dataset based on its target class. However, after introducing
Sex Race label to the Adult dataset, we also need to adjust the train-test split scheme.
We now split the complete adult dataset as train set and test set based on both Salary
target class and Sex_ Race label, using a 80,/20 proportion. This is to guarantee that the
testing results would be able to show the model performance on the complete dataset,
per target class, and per label. Table shows the exact number of samples per
Salary target class after the dataset split. And table [3.3] gives the number of samples
per Sex_Race label on train set and test set. Figure [3.2] and figure [3.3] illustrate the

number of samples per target per class in the train set and test set.
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Sex Race label & Target class | <=50K | >50K | total total %
Female Amer-Indian-Eskimo 152 14 166 0.3606 %
Female Asian-Pac-Islander 401 69 470 1.0210 %
Female Black 1998 127 | 2125 | 4.6163 %
Female Other 126 9 135 0.2933 %
Female White 12023 | 10542 | 1475 | 26.1182 %
Male Amer-Indian-Eskimo 230 39 269 | 0.35844 %
Male Asian-Pac-Islander 619 334 953 | 2.0703 %
Male Black 1806 425 2231 | 4.8465 %
Male Other 202 38 240 0.5214 %
Male White 18529 8892 | 27421 | 59.5681 %
total 34611 | 11422 | 46033 100 %
Table 3.1: Number of samples per target class per Sex Race label in complete adult
dataset
train set | test set
<=b0K | 27684 6927
>50K 9135 2287
Table 3.2: Number of samples per Salary target class on train set and test set
train set | test set
Female Amer-Indian-Eskimo 132 34
Female Asian-Pac-Islander 375 95
Female Black 1699 426
Female Other 107 28
Female White 9618 2405
Male Amer-Indian-Eskimo 215 54
Male Asian-Pac-Islander 762 191
Male Black 1784 447
Male Other 191 49
Male White 21936 5485

Table 3.3: Number of samples per Sex Race label on train set and test set
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Number of samples of adult dataset per label per target class Number of samples of adult dataset per label per target class
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Figure 3.2: Number of samples per tar- Figure 3.3: Number of samples per tar-
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train set set

3.2 Data Distribution Scenarios

We will illustrate how to simulate the various data distribution schemes under a dis-
tributed machine learning setting. The implementation as the data distribution module

within a federated learning framework will be released later on.

As mentioned in chapter 1, the real-world organizations in a distributed machine
learning setting are usually with various data composition, which lead to the non-IID
data distribution among all worker nodes. Thus, in order to measure the effect of data
bias, we choose to simulate 4 types of representative data distributions in this thesis,
which are fully IID data distribution, fully non-IID data distribution, partial IID data

distribution, and statistical distribution.

The real-world machine learning problems have a relatively lower possibility to have
the same number of samples of every target class on every worker node, so we do not
distribute the dataset based on the target class. On the other hand, the label of each
sample is easier to be obtained. For example, the collection date and time of the sensor
data itself could be its label, and the demographic attributes like sex, rage, and age could
also be regarded as the label of the user data. Thus, we distribute the dataset among

worker nodes based on their label, which will also be the scheme in our experiments.
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3.2.1 Fully IID Data Distribution

As describe by its name, fully IID data distribution means that every worker node would
have the same number of samples on each label, inherently creates the same number of
samples in total on every worker node.

Fully IID data distribution is the basic assumption of many studies in distributed
machine learning setting. It is very helpful when creating the benchmark for a specific
machine learning model under collaborative training. However, the complexity of real-
world machine learning problems makes the fully IID data distribution rare. Thus,
this thesis regards the fully IID data distribution as an ideal baseline and puts more

attention on other data distribution scenarios.

3.2.2 Fully N-class Non-IID Data Distribution

On the opposite of having the same number of samples per label on each worker node,
fully non-IID data distribution shows us the extreme data distribution scenarios. In
this paper, we use n-class scheme for the non-IID data distribution scenarios.

The n-class non-1ID data distribution means that the number of unique labels in
a worker node is exact n. To achieve this objective, we need to partition all samples
within one label as multiple parts, and arrange the labels in multiple worker nodes.
Details can be found in data.py within the Code folder.

The following formula shows our calculation method for the number of partitions of
samples with the same label.

number of worker nodes * n

number of partitions within one label =
fr number of labels in complete dataset

Here we take an example to show the fully n-class data distribution scenario. As-
sume that the dataset has 10 labels, and we want to make a 2-class fully non-1ID data
distribution of this dataset among 20 worker nodes. Then the number of partitions we

need for each label is 2%2 = 4. Since there is no remainder in this formula, this is a

valid n-class fully non-IID data distribution scheme. This formula means that we need
to partition the samples of each label as 4 parts, and the arrange which labels should
be distributed in which worker nodes.

With the formula above, we can do a validity check before really distribute the
dataset, in order to avoid wasting computing resources. There are several invalid situ-

ations in a n-class fully non-1ID data distribution, which are listed as below:
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e There are labels left which are not allocated to any one of the worker nodes.
For example, a 2-class fully non-IID scheme on a 10-label dataset with 3 worker

nodes is invalid since 31—*02 =0..6.

e There are different number of partitions within each label.
For example, a 5-class fully non-IID scheme on a 10-label dataset with 3 worker
nodes is invalid since % =1 ... 5. The remainder value of 5 means that the
number of partitions among all labels are not the same, which is not acceptable

in our n-class fully non-IID scenario.

3.2.3 Partial N-class Non-IID Data Distribution

In between the extremely orderly fully IID data distribution and the extremely uneven
n-class fully non-I1ID data ditribution, there are partial IID data distributions. The
proportion of non-IID part in the complete dataset should be defined before actually
distribute the data. This parameter could be any number between 0 and 100, including
0 and 100 but not limited to integers. During our experiments on the adult dataset,
we will pick up a series of non-IID proportion to investigate the effect of different data
distribution with the gradually increase non-IID percentage.

The IID part of the complete dataset will be distributed using the fully IID scheme,
and the non-IID part of the complete dataset will be distributed based on the fully
n-class non-I1D scheme. Thus, we can also do a validity check before the calculation to
ensure it is a valid setting for partial n-class non-IID data distribution.

For example, we want to simulate a 30pct 2-class non-IID data distribution with
10 labels in dataset and 10 worker nodes. The validity check is passed according to

1(1)82 = 2. The complete dataset will be split as 30% and 70% first. Then apply fully

2-class non-IID data simulation scheme on the first partition of 30%, and distribute the

second partition of 70% under the fully IID data distribution scheme.

3.2.4 Statistical distribution

Some of the real-world classification problems can also be in a statistical distribution,
such as binomial distribution for flipping a coin for thousands of times and normal
distribution for the score of every student in a large course. Considering the real use

cases, we choose to simulate the normal distribution in our experiments. We need to
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set the p and o for the normal distribution of each label, and these parameters can
be all different or all the same among all labels. After having the N(u,o?) for each
label, we need to run a random simulation to generate as many data points as the
number of samples in this label. Then we equally divide the x-axis as k parts, in which
k is the number of worker nodes in the federated setting. As a result, samples within
one specific label will be distributed among worker nodes according to the number of
randomly generated normal distribution samples that fall in its interval.

For example, we can set N(0, 1) for half of the labels and N(1,4) for another half
of the labels, and distribute the samples based on the amount of generated data points
fall in a worker node’s interval.

The exact experiment setting of theses 4 types of data distribution scenarios will be

illustrated in detail in the next chapter.
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This chapter describes the methodology of measuring the effect of data bias in differen-
tially private federated learning. In particular, we propose a comprehensive experiment
scheme considering three dimensions: (1) variation on data distribution scenario, (2)
different privacy budget of differential privacy, and (3) model parameter fusion scheme
in distributed training setting. The 6 data distribution scenarios and 10 differential
privacy setting will be thoroughly explained in this chapter. Also, this chapter illus-
trates the detailed experiment setting including the machine learning problem and the

federated learning setup.

4.1 Measurement of Utility and Fairness

As introduced in chapter 1, this thesis investigates the effect of data bias on differentially
private federated learning, by measuring the impact of privacy and data distribution
mechanism on the utility and fairness of a distributed machine learning system. To
achieve this objective in a classification task, we need to measure the utility using a
series of metrics derived from the confusion matrix, including accuracy, precision, recall,
and F} score. Moreover, in order to measure the fairness of the classification model, we
also need to compare the overall model performance with the per-class and per-label
model performance to see if there is a large difference between the general utility and
the partial utility.

The details of metrics and testing scheme will be introduced in the following sections.
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Aside from vertically measuring the utility and fairness within one specific experi-
ment, we also need to respectively conduct comparison among experiments to examine
the effect of various data distribution scenarios and different privacy levels. To be more
specific, the first horizontal comparison will be in a fixed data distribution scenario but
with different privacy levels. The second horizontal comparison is conducted with the

fixed differential privacy budget among different data distribution scenarios.

4.2 Basic Experiment Setting

4.2.1 Machine Learning Problem

Dataset As mentioned in chapter 3, data imbalance is quite normal in real-world
machine learning problems, so we choose the Adult dataset with Sex Race label to
be our dataset for all experiments regarding a classification task. The target class
in adult dataset is Salary, and samples will be classified as "<=50K" or ">50K"
for the annual income. Besides target class, we created Sex Race label to help us
better simulate different data distribution scenarios. Values in Sex Race label of
adult dataset are: 'Female Amer-Indian-Eskimo’, 'Female Asian-Pac-Islander’, "Fe-
male Black’, 'Female Other’, 'Female White’, 'Male Amer-Indian-Eskimo’, 'Male Asian-
Pac-Islander’, "Male Black’, ’Male Other’, 'Male White’. We use this adult dataset

with Sex Race label in all of our following experiment design, result, and analysis.

Task The task is to perform a binary classification on the Salary. Since this thesis
pays most of the attention on the data distribution scenarios and differential privacy
budget, we decided to use a relatively simple Neural Network (NN) classification model

to help us avoid the influence from the machine learning model itself.

Model The NN classification model is consisted of 3 fully connected linear layer. Table
shows the detailed setting of each layer in the NN model. Figure visualizes the
gradients of the simple NN classification model. This figure illustrates the pytorch
operations of the model with the help of package torchviz (52). And the figure is built
during forward propagation and shows which operations can be called on backward

propagation.
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Layer name | Layer type | Number of in features | Number of out features | Bias or not
fcl linear 38 32 True
fc2 linear 32 32 True
fc3 linear 32 2 True

Table 4.1: Details of each layer in the NN binary classification model

4.2.2 Federated Learning Setup

In all of our experiments, we use 11 nodes in total, including 10 worker nodes used
for training and 1 central server being responsible for orchestration. In the training
process, we use 500 rounds with 1 epoch , in order to guarantee the convergence of
the simple NN binary classification model. Also, we use Federated Averaging (FedAvg)
as the fusion scheme in our federated learning framework. The main idea in FedAvg
is that the central server would boradcast the averaged value of each worker node for
every model parameter. With this fusion scheme, the parameter values in the central

server node is a good representative of all worker nodes.

4.3 Data Distribution Scenarios

To show the effect of different data distribution with a certain level of continuity, we
choose 3 non-IID proportions in the partial n-class non-IID data distribution scenario.
With that, we can see the impact that an increasing proportion of non-IID part in the
dataset has on the overall, per-class, and per-label performance.

In our experiment, we simulate the following 6 data distribution scenarios: (1) fully
IID, (2) 30% 2-class non-1ID, (3) 50% 2-class non-IID, (4) 70% 2-class non-IID, (5) fully
2-class non-1ID, (6) normal distribution.

4.3.1 Scenario 1: Fully IID data distribution

Figure shows the fully IID data distribution scenario of adult dataset among 10
worker nodes. In this scenario, each worker node has the same number of samples in

total and per label.
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fcl.weight
(32, 38)
fel.bi Y
cl.bias
(32) | AccumulateGrad |
AccumulateGradl TBackward | fc(:géwe;g};t
\ / r
fcfélz:u;as AddmmBackward | |Accumu1ateGrad|
AccumulateGradl | ReluBackward0 | TBackward | fc{32. we;zg)ht
\\ / r
fcg{ zb)las | AddmmBackward |Accumulatec-}rad|
|AccumulateGrad | |Re1uBackward0 | TBackward
4
| AddmmBackward |
| LogSoftmaxBackward |
4
(1, 2)

Figure 4.1: Visualization of binary classification model for adult dataset
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Figure 4.2: Number of samples per label on 10 workers nodes in fully IID data distribution

scenario

4.3.2 Scenario 2: 30% 2-class non-IID data distribution

Figure [4.3] gives the number of sampler per label of both IID and non-IID part of the
adult dataset. The adult dataset is split based on a proportion of 70/30 on IID and
nonlID parts at first. In figure [£.3] worker 0 means IID partition and worker 1 means
non-IID partition of the adult dataset. Figure shows the 30% 2-class nonlID data
distribution scenario of adult dataset among 10 worker nodes. In figure worker 0-9

means node 1-10 in the whole federated learning setting.

4.3.3 Scenario 3: 50% 2-class nonlID data distribution

Figure gives the number of sampler per label of both IID and non-IID part of the
adult dataset. The adult dataset is split based on a proportion of 50/50 on IID and
nonlID parts at first. In figure [£.5] worker 0 means IID partition and worker 1 means
non-IID partition of the adult dataset. Figure [4.6] shows the 50% 2-class IID data
distribution scenario of adult dataset among 10 worker nodes. In figure worker 0-9

means node 1-10 in the whole federated learning setting.
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Figure 4.3: Number of samples per label in 30% 2-class nonIID data distribution scenario,
node 0 for IID part and node 1 for non-I1ID part
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Figure 4.4: Number of samples per label on 10 workers nodes in 30% 2-class nonlIID data

distribution scenario

4.3.4 Scenario 4: 70% 2-class nonIID data distribution

Figure gives the number of sampler per label of both IID and non-IID part of the
adult dataset. The adult dataset is split based on a proportion of 30/70 on IID and

nonlID parts at first. In figure [£.7, worker 0 means IID partition and worker 1 means

34



4.3 Data Distribution Scenarios
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Figure 4.5: Number of samples per label in 50% 2-class nonlIID data distribution scenario,
node 0 for IID part and node 1 for non-I1ID part
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Figure 4.6: Number of samples per label on 10 workers nodes in 50% 2-class nonlIID data

distribution scenario

non-IID partition of the adult dataset. Figure [4.§] shows the 50% 2-class IID data
distribution scenario of adult dataset among 10 worker nodes. In figure worker 0-9

means node 1-10 in the whole federated learning setting.
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Figure 4.7: Number of samples per label in 70% 2-class nonIID data distribution scenario,
node 0 for IID part and node 1 for non-I1ID part
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Figure 4.8: Number of samples per label on 10 workers nodes in 70% 2-class nonlIID data

distribution scenario

4.3.5 Scenario 5: Fully 2-class nonlID data distribution

Figure [4.9 shows the fully 2-class nonlID data distribution scenario of adult dataset
among 10 worker nodes. In this extreme scenario, each worker node only has samples

from 2 labels. The number of samples in total and per label are different among worker
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nodes..
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Figure 4.9: Number of samples per label on 10 workers nodes in fully 2-class nonlID data

distribution scenarios

4.3.6 Scenario 6: Normal distribution

Table shows the p and o of each label. The number of samples being allocated on
each worker node is decided by the number of data points that fall the specific interval
of a generated normal distribution.

Figure[4.10]shows the normal distribution scenario of adult dataset among 10 worker

nodes.

4.4 Differential Privacy

Our federated learning framework is developed using PyTorch and PyTorch distributed,
so we introduce Opacus to be in charge of the noise adding scheme of differential privacy.
Opacus is the PyTorch implementation of DPSGD (I3) and Opacus is released by
Facebook for high-speed large-scale distributed setting with differential privacy (53)).
Within Opacus, users need to define the value of target epsilon € and target delta ¢
on each worker node, and Opacus could compute the noise multiplier and add noise to

the raw data. After each training round, Opacus can calculate the privacy spent. The
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Sex_Race label uwl o
Female Amer-Indian-Eskimo | 0 | 1
Female Asian-Pac-Islander | 0 | 0.5
Female Black 0105
Female Other 0105
Female White 0105

Male Amer-Indian-Eskimo | 0 | 1
Male Asian-Pac-Islander 0] 1
Male Black 0] 1

Male Other 0] 1

Male White 0] 1

Table 4.2: Normal distribution parameters for each label
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Figure 4.10: Number of samples per label on 10 workers nodes in normal distribution

scenarios

higher privacy budget we set, the lower privacy level the dataset has. It means that
relatively lower € indicates that there will be more noise added to the raw data, leading
to a relatively higher privacy level of the dataset. Detailed integration of Opacus and
our federated learning framework can be found in our github repository.

In order to show the impact of privacy in a continuous manner, we performed ex-

periments without Differential Privacy (DP) and conducted experiments with different
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budget of low, mid, and high level. The following values of € are chosen for our ex-
periments: 0.1, 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2, 10, 100. The detailed € values within each
privacy budget category is shown in Table

Privacy Budget Category € values
Low 0.1, 0.2, 0.5, 0.8
Mid 1,1.2,1.5
High 2, 10, 100

Table 4.3: € values in privacy budget categories

4.5 Testing Scheme

4.5.1 Measuring Fairness by Performance of Subgroups

In order to see the performance from both local worker nodes and central server node,
the following testing scheme is used in our experiments.

The complete test set of adult dataset contains 9214 samples from 10 labels. Every
worker node will do a test on this to record the overall performance of the model per
round per node. This is to examine the overall performance of each worker node when
they might see some samples which is not included in the feature space of the train set.

Aside from that, the train set distributed on each worker node will also be split as
80/20 for train and validation set. The worker nodes would also do a test on their own
validation set to measure the performance when they only see samples with existing
feature space.

Also, since we want to measure the performance per label and per class, all of the

evaluation metrics will be generated with both overall and per-subgroup values.

4.5.2 Measuring Utility by 4 Metrics

When measuring the performance of a Neural Network classification model based on
the Adult dataset, we use the evaluation metrics which are derived from the confusion
matrix. Within the confusion matrix of a classification task, True Positive (TP), False

Positive (FP), False Negative (FN), and True Negative (TN) are defined as below:
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e True Positive (TP): Number of samples being predicted as positive which are

actually positive.

e False Positive (FP): Number of samples being predicted as positive which are

actually negative.

e False Negative (FN): Number of samples being predicted as negative which are

actually positive.

e True Negative (TN): Number of samples being predicted as negative which are

actually negative.
The evaluation metrics we used in the experiments are defined as below:

e Accuracy: The fraction of samples being correctly classified:

TP + TN
TP + TN + FP + FN

Accuracy =

e Precision: The proportion of the outcomes that are relevant:

TP

Precision = m

e Recall: The proportion of total relevant outcomes correctly predicted:

TP

Recall = m

e F-score (F score): The proportion of the outcomes that are relevant:

precision * recall

Fiscore = 2 % —
precision + recall

Since this thesis aims at investigating the effect of data bias, we use the weighted
averaging scheme to calculate the metrics, specifically F} score, precision, and recall.
The weighted averaging scheme calculates the metrics for each label and find the average
weighted total score based on the support. Here support refers to the number of true
samples for each label. The weighted averaging scheme is an improvement from the
macro averaging scheme, which takes the label imbalance of the dataset into account.
The weighted Fj score could result in a value which is not in between the weighted

precision value and weighted recall value.
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Detailed experiment results about overall, per-class, and per-label performance of all
experiments can be found in Appendix A and B. This chapter investigates the effect of
various data distribution scenarios and different privacy budget € values in a differen-
tially private federated learning (DPFL) framework based on the vertical comparison
and horizontal comparison among all experiment results.

As a reminder of Chapter 4, there are 6 types of data distributions: (1) fully IID,
(2) 30% 2-class non-IID, (3) 50% 2-class non-I1ID, (4) 70% 2-class non-IID, (5) fuly
2-class non-IID, (6) normal distribution. The 10 € values chosen for privacy budget of
Differential Privacy (DP) are: 0.1, 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2, 10, 100. We use "worker
nodes" and "local nodes" as the same meaning with the definition of clients in feder-
ated learning. And the final experiment results are aggregated from 10 collaboratively
training worker nodes by FedAwvg fusion scheme on the central server node.

As mentioned in Table[3.1] the target classes of adult dataset are consisted of <=50K
and >50K. And the Sex Race labels in adult dataset refer to the combination of Sex and
Race features. We regard the <=50K target class as the majority class and treat >50K
target class as the minority class in all sections below. Moreover, the term "under-
represented groups" and "minority groups" refer to the minority labels with a small
proportion of samples in the whole dataset, specifically Female_ Amer-Indian-Eskimo
and Female_ Other. The term "over representative groups" and "majority groups"
refer to the majority labels with a huge percentage of the whole dataset, specifically
Female  White and Male_ White.
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When examining the effect of various data distribution scenarios, we consider the
hypothesis that the higher level of data imbalance leads to a better overall performance
and worse fairness of under-represented groups. During the investigation on the effect
of different privacy budget, we consider the hypothesis that the higher privacy level

leads to a better overall performance and worse fairness of under-represented groups.

5.1 Effect of Various Data Distribution Scenarios on Dif-

ferentially Private Federated Learning

Regarding the differential privacy mechanism in a federated learning setting, we chose
one € value from each privacy budget category to investigate the effect of various data
distributions on that differentially private scenario. Specifically, we chose the no DP
setting, € = 0.2 in low privacy budget, ¢ = 1.2 in mid privacy budget, and € = 100 in high
privacy budget. By diving into the overall, per-class, and per-label model performance
among various data distribution scenarios within each privacy budget category, we can
examine the validity of the hypothesis that a higher level of data bias leads to a better

overall performance and worse fairness of under-represented groups.

5.1.1 Baseline Experiment

Since most studies in federated learning assume that the training data is identically
independent distributed (IID) among all worker nodes, we use the experiment results
of fully IID data distribution with different DP settings as the baseline to investigate

the effect of various data distribution scenarios in DPFL.

Data distribution Figure[.2]shows the number of samples per Sex _Race label under
the fully IID data distribution. Since the samples of each label is evenly distributed
among 10 worker nodes, this fully IID data distribution scenario has the lowest level of

data bias among all 6 data distribution scenarios.
Performance difference between imbalanced target classes Table [5.1] and

show the final accuracy and F} score of the overall dataset and per-class subgroups in

the fully IID data distribution scenario with different DP settings. The performance
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difference between the <=50K target class and >50K target class is also included in

these two tables.

No DP | Low (e =0.2) | Mid (e = 1.2) | High (e = 100)
Overall 0.832429 0.759171 0.827871 0.831452
<=50K 0.909340 0.885520 0.935326 0.928396
>bH0K 0.599475 0.376476 0.502405 0.537822
Diff (<=50K, >50K) | 0.309865 0.509044 0.432921 0.390574

Table 5.1: Overall and per-class final accuracy in baseline experiments, fully IID data

distribution scenario with 4 representative DP settings

No DP | Low (e =0.2) | Mid (e = 1.2) | High (e = 100)
Overall 0.828505 |  0.745091 0.816664 0.822951
<—50K 0.800822 |  0.846828 0.890952 0.892265
~50K 0.639757 |  0.436945 0.591658 0.613008
Diff (<=50K, >50K) | 0.251065 |  0.409883 0.299294 0.279257

Table 5.2: Overall and per-class final F} score in baseline experiments, fully IID data

distribution scenario with 4 representative DP settings

As shown in Table[5.T]and there is a huge performance difference between target
class <=50K and >50K. This is caused by the noticeable class imbalance within the
Adult dataset. Since target class <=50K has more than 75% of the samples in the whole
dataset, the neural networks model in the binary classification task tends to recognize
the target class <=50K more, and thus gives less attention to the >50K. As a result,
the model performance of target class <=50K is significantly better than the target
class >50K. Moreover, since the overall accuracy and F} score are both calculate in a
weighted averaging scheme, we can see the overall model performance lies in between
the performance of these two target classes but obviously inclines more to the model

performance of target class <=50K.

Performance difference between minority and majority groups Table[5.3]and
show the final accuracy and Fj score of the overall dataset and per-label subgroups
in the fully IID data distribution scenario with different DP settings.
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No DP | Low (e =0.2) | Mid (e = 1.2) | High (e = 100)
Overall 0.832429 0.759171 0.827871 0.831452
Female Amer-Indian-Eskimo | 0.794118 0.676471 0.735294 0.852941
Female Other 0.821429 0.821429 0.892857 0.642857
Female White 0.822453 0.765073 0.819543 0.820374
Male White 0.836463 0.754786 0.828624 0.833364

Table 5.3: Overall and per-label final accuracy in baseline experiments, fully IID data

distribution scenario with 4 representative DP settings

No DP | Low (e =0.2) | Mid (e = 1.2) | High (e = 100)
Overall 0.828505 0.745091 0.816664 0.822951
Female Amer-Indian-Eskimo | 0.798155 0.644752 0.719781 0.847130
Female Other 0.820252 0.805322 0.878419 0.589286
Female White 0.817943 0.754992 0.804902 0.811914
Male White 0.832622 0.739257 0.818001 0.824720

Table 5.4: Overall and per-label final F; score in baseline experiments, fully IID data

distribution scenario with 4 representative DP settings

As illustrated in Table[5.3|and it is clear that the model performance of minority
group Sex Race label Female Amer-Indian-Eskimo is significantly worse, compared
with the overall and other Sex Race labels in the no DP, low privacy budget and
mid privacy budget situations. And the model performance is significantly worse of
minority group Sex Race label Female Other in the high privacy budget situation.
The worse performance on minority groups, compared with overall and majority groups,
is caused by the noticeable label imbalance within the Adult dataset. Sex Race label
Female_ Amer-Indian-Eskimo and Female  Other only have 0.36% and 0.29% of the
samples in the whole dataset. And their proportion of target class <50K are 8.43% and
6.67%, which are both significantly lower than the overall <50K proportion of 24.8%.
As a result, the model would naturally give worse performance on minority groups. On
the other side, the model performance of majority groups in Sex Race label does not

show substantial difference compared with the overall model performance.
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5.1.2 Extreme Cases

Here we consider the fully 2-class non-IID and normal data distribution with different
DP settings as extreme cases when investigating the effect of various data distribution

scenarios on DPFL.

Data Distribution Figure and show the number of samples per Sex Race
label among all worker nodes in fully 2-class non-IID and normal data distribution
scenarios. The fully 2-class non-IID data distribution scenario only allocates samples of
two Sex Race labels to each worker node. And the normal data distribution scenario
allocates most of the samples in one Sex Race in a limited number of worker nodes. As
a result, some Sex Race labels are even invisible for particular worker nodes, leading

to a substantial high level of data bias.

Performance difference between imbalanced target classes Table and
show the overall and per-class performance difference between extreme cases and base-
line experiments. To be more specific, these two tables present the difference of final
accuracy and Fj score on the overall dataset and per-class subgroups by calculating the
difference value between extreme cases (fully 2-class non-IID and normal data distribu-

tion) and baseline experiments.

No DP | Low (e =0.2) | Mid (e = 1.2) | High (e = 100)
Diff overall (fully non-IID, baseline) | +0.005861 +0.024745 -+0.000868 -0.001953
Diff overall (normal, baseline) -+0.002062 | +40.023768 +0.001085 -0.005209
Diff <=50K (fully non-IID, baseline) | +0.014725 -0.023819 -0.009384 -0.000722
Diff <=50K (normal, baseline) -+0.010827 -0.044030 -0.012271 -0.003031
Diff >50K (fully non-I1ID, baseline) | -0.020988 +0.171841 +0.031919 -0.005684
Diff >50K (normal, baseline) -0.024486 +0.229121 +0.041539 -0.011805

Table 5.5: Overall and per-class final accuracy in extreme cases compared with baseline

experiments, fully 2-class non-IID and normal data distribution scenario with 4 represen-

tative DP settings

Looking at Table and it is apparent that the difference of final accuracy
on target class >50K is significantly larger and the overall difference is substantially
lower in all DP settings. And the difference of final I} score shows a significantly larger

difference on target class >50K with a substantially lower difference on target class
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No DP | Low (e =0.2) | Mid (e = 1.2) | High (e = 100)
Diff overall (fully non-IID, baseline) | +0.003700 -+0.037605 +0.003604 -0.002201
Diff overall (normal, baseline) -+0.000070 +0.040750 +0.004596 -0.005586
Diff <=50K (fully non-IID, baseline) | +0.004924 | +0.010233 -0.000490 -0.001188
Diff <=50K (normal, baseline) -+0.002333 | +0.006738 -0.000671 -0.003284
Diff >50K (fully non-IID, baseline) | -0.000008 +0.120512 +0.016000 -0.005268
Diff >50K (normal, baseline) -0.006785 +0.143768 +0.020547 -0.012559

Table 5.6: Overall and per-class final Fj score in extreme cases compared with baseline
experiments, fully 2-class non-IID and normal data distribution scenario with 4 represen-
tative DP settings

<=50K in all privacy budget categories. These results indicate that the change in data

bias level has larger impact on the model performance of target class >50K.

Performance difference between minority and majority groups Table and
(5.8 show the overall and per-label performance difference between extreme cases and
baseline experiments. To be more specific, these two tables present the difference of final
accuracy and Fj score on the overall dataset and per-class subgroups by calculating the
value difference between these two items: (1) performance difference in an extreme data
distribution (fully 2-class non-IID or normal data distribution) calculated by the per-
label performance value minus overall performance value, and (2) performance difference
in the baseline experiment (fully IID) calculated by the per-label performance value
minus overall performance value. Besides, we use abbreviations to represent Sex Race
labels in these two tables, specifically FA for Female Amer-Indian-Eskimo, FO for
Female Other, FW for Female_ White, and MW for Male_ White.

Since we compare the FA accuracy and overall accuracy between extreme cases
and the baseline experiments in Table and it is clear that the difference be-
tween extreme cases and baseline regarding FA-overall and FO-overall accuracy and
Iy score is significantly larger, compared with the FW-overall and MW-overall perfor-
mance difference. Thus, we can see that switch of distribution scheme (from baseline to
extreme cases) has larger impact on the performance of minority groups (Sex Race la-
bel Female Amer-Latin-Eskimo and Female Other). On the other hand, the majority
groups (Sex Race label Female White and Male White) have shown no big change

when the data distribution scenario alters.

46



5.1 Effect of Various Data Distribution Scenarios on Differentially Private
Federated Learning

No DP | Low (¢ =0.2) | Mid (e =1.2) | High (e = 100)
Diff FA-overall (fully non-IID, baseline) | +0.111786 +0.181137 +0.146191 -0.115694
Diff FA-overall (normal, baseline) +0.027349 | 1+0.093879 -0.030497 -0.024203
Diff FO-overall (fully non-IID, baseline) | -0.041576 -0.024745 -0.108011 +0.251953
Diff FO-overall (normal, baseline) +0.140795 -0.095197 +0.034629 -+0.148066
Diff FW-overall (fully non-IID, baseline) | +0.018671 -0.006450 -0.005858 +0.015675
Diff FW-overall (normal, baseline) +0.015402 -0.007552 +0.008478 +0.009367
Diff MW-overall (fully non-IID, baseline) | -0.008413 +0.004425 +0.002231 -0.004064
Diff MW-overall (normal, baseline) -0.004979 +0.005038 -0.000356 -0.002266

Table 5.7: Final accuracy difference between overall dataset and per-label subgroups,
comparing extreme cases with baseline experiments, fully 2-class non-IID and normal data
distribution scenario with 4 representative DP settings

No DP | Low (¢ =0.2) | Mid (e =1.2) | High (e = 100)
Diff FA-overall (fully non-IID, baseline) | +0.108488 +0.206221 +0.154785 -0.141266
Diff FA-overall (normal, baseline) +0.010033 | +0.112653 -0.035652 -0.022200
Diff FO-overall (fully non-IID, baseline) | -0.082881 -0.039897 -0.122283 -+0.296108
Diff FO-overall (normal, baseline) +0.142737 -0.102780 +0.043969 -+0.202014
Diff FW-overall (fully non-IID, baseline) | +0.019589 -0.011142 -0.004212 +0.015669
Diff FW-overall (normal, baseline) +0.017117 -0.010286 +0.010947 +0.010203
Diff MW-overall (fully non-IID, baseline) | -0.009254 +0.006319 +0.002101 -0.003906
Diff MW-overall (normal, baseline) -0.005098 +0.005669 -0.000872 -0.002988

Table 5.8: Final F) score difference between overall dataset and per-label subgroups,
comparing extreme cases with baseline experiments, fully 2-class non-IID and normal data
distribution scenario with 4 representative DP settings

5.1.3 Middle Cases

After diving into extreme cases of fully 2-class non-IID and normal data distribution,
we also want to analyze the performance difference along with a continuous changing
of the data distribution scenario. Here we use the partial non-IID data distribution
scheme, and compare the overall, per-class, and per-label model performance of 0%,
30%, 50%, 70%, and 100% 2-class non-I1ID data distribution scenario with different DP

settings.

Data Distribution Figure [4.2] and show the number of samples

per Sex Race label under different data distribution scenarios with different non-IID

proportions. As we can see from the figures, an increasing non-IID proportions of
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the whole training set from 0% to 100% leads to an increasing level of data bias in

experiments.

Performance difference between imbalanced target classes Figure and
present the change of overall and per-class model performance without DP along with an
increasing non-IID proportion in the training set. Likewise, Figure and present
the performance change with privacy budget ¢ = 0.2, Figure [5.5] and [5.6] present the
performance change with privacy budget ¢ = 1.2, and Figure [5.7] and [5.8| present the
change with privacy budget e = 100 along with an increasing non-IID proportion in the
training set. Aside from the trend shown in figures above, Table and show the
overall and per-class standard deviation and range in the change of non-I1ID proportion

in the training set.
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No DP | Low (e =0.2) | Mid (e = 1.2) | High (e = 100)
StdDev__overall | 0.002725 0.016242 0.002500 0.002232
Range overall | 0.008791 0.054265 0.006511 0.007380
StdDev_ <=50K | 0.005921 0.028584 0.004332 0.001356
Range <=50K | 0.018190 0.075501 0.012271 0.004475
StdDev_ >50K | 0.012389 0.091695 0.016937 0.008053
Range >50K | 0.041539 0.241802 0.051159 0.024049

Table 5.9: Standard deviation and range of overall and per-label final accuracy in the

change of non-IID proportion in training set, with 4 representative DP settings

As we can see from figures above, the overall and per-class model performance change

are all not monotonic along with the increasing non-IID proportion of the training set.

Besides, the results shown in these figures directly tell us that the huge performance
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No DP | Low (e =0.2) | Mid (¢ = 1.2) | High (e = 100)
StdDev_overall | 0.002426 |  0.019547 0.003330 0.002583
Range overall | 0.008368 |  0.059971 0.009490 0.008509
StdDev_ <—50K | 0.002067 |  0.010758 0.001473 0.001341
Range <—=50K | 0.006015 |  0.033489 0.003982 0.004405
StdDev_ >50K | 0.005711 |  0.059682 0.010265 0.006494
Range >50K | 0.015504 |  0.143768 0.031220 0.020939

Table 5.10: Standard deviation and range of overall and per-label final F; score in the

change of non-IID proportion in training set, with 4 representative DP settings

difference between target class <=50K and >50K always exists no matter how the data
distribution scenario changes with different non-IID proportions in the training set.

As stated in Table[5.9)and [5.10] the change of non-IID proportion in the training set
almost brings no change in the overall model performance in all DP settings except the
low privacy budget category (e = 0.2). The DP theory clearly explains this phenomenon.
Having an extremely low € value as the privacy budget in training process leads to a
substantially high level of privacy. As a result, a huge amount of noise is added to the
local raw dataset, making the training set much more indistinguishable to the neural
networks model of this binary classification task. Thus, when the non-IID proportion
changes in this situation, there is a larger reflection on the data samples allocated to
each worker node. Thus, the model performance would significantly change in this high
privacy level compared with other privacy budgets categories. Also, a substantially huge
increase in the overall model performance with € = 0.2 and 50% non-IID proportion of
the training set can be seen from Figure and Similarly, e = 1.2 shows a sudden
increase in 30% non-IID in Figure [5.5 and and € = 1.2 presents a sudden increase
in 50% non-IID in Figure |5.7 and

Aside from the overall model performance, Table [5.9] and [5.10] also indicate that
the standard deviation and range of target class >50K is significantly higher than the
overall performance and the target class <=50K. This larger impact of data distribution
scenarios changes on target class >50K can be explained by the high level of class

imbalance within the Adult dataset.
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5.1.4 Performance difference between minority and majority groups

Figure [5.9] and present the change of overall and per-label model performance
without DP along with an increasing non-IID proportion in the training set. Likewise,
Figure and present the performance change with privacy budget ¢ = 0.2,
Figure and present the performance change with privacy budget e = 1.2, and
Figure and present the change with privacy budget ¢ = 100 along with an
increasing non-I1ID proportion in the training set. Aside from the trend shown in figures
above, Table and [5.12 show the overall and per-class standard deviation and range
in the change of non-IID proportion in the training set.

Besides, we use abbreviations to represent Sex Race labels in these two tables,
specifically FA for Female Amer-Indian-Eskimo, FO for Female Other, FW for Fe-
male_ White, and MW for Male White.
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As shown in figures above, we can see that the model performance of overall dataset

and majority groups (Sex Race label Female White and Male White) are quite sim-
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No DP | Low (e =0.2) | Mid (e = 1.2) | High (e = 100)
StdDev_FA | 0.074825 0.090918 0.068802 0.057376
Range FA | 0.235294 0.235294 0.176471 0.176471
StdDev_FO | 0.098888 0.046107 0.084179 0.091636
Range FO | 0.321429 0.142857 0.250000 0.285714
StdDev_FW | 0.009180 0.014565 0.006443 0.004823
Range FW | 0.026195 0.043243 0.017464 0.013722
StdDev_ MW | 0.004104 0.017814 0.003722 0.003215
Range MW | 0.012397 0.060893 0.009480 0.008751

Table 5.11: Standard deviation and range of overall and per-label final accuracy in the

change of non-IID proportion in training set, with 4 representative DP settings

ilar, demonstrating by the very close standard deviation and range value in the change
of non-1ID proportions with all DP setting except € = 1.2.
On the other hand, it is clear that the standard deviation of model performance on

minority groups (Sex Race label Female Amer-Indian-Eskimo and Female Other)
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No DP | Low (e =0.2) | Mid (e = 1.2) | High (e = 100)
StdDev_FA | 0.083373 |  0.112654 0.072210 0.069522
Range FA | 0.262379 |  0.302605 0.189445 0.209264
StdDev_FO | 0.116924 |  0.049354 0.080661 0.107188
Range FO | 0.371222 |  0.139901 0.241618 0.339285
StdDev_ FW | 0.009000 |  0.016952 0.007931 0.004935
Range FW | 0.025742 |  0.048281 0.019653 0.013468
StdDev_ MW | 0.004129 |  0.021113 0.003933 0.003631
Range MW | 0.011597 |  0.068427 0.011373 0.010714

Table 5.12: Standard deviation and range of overall and per-label final F; score in the

change of non-IID proportion in training set, with 4 representative DP settings

are substantially higher than the overall performance and minority groups. Thus, we ca
see that the change of non-IID proportion has a larger impact on the minority groups

rather than majority groups.

5.1.5 Summary

The validity of the hypothesis that a higher level of data bias leads to a better overall
performance and worse fairness of under-represented groups has been proved based on
the experiment results in this section.

Since we use the fully IID data distribution scenario as the baseline, we can see that
the other 5 data distribution scenarios (30% non-I1ID, 50% non-1ID, 70% non-IID, fully
non-I1ID, and normal data distribution) all get a better overall performance than the
baseline in all privacy budget categories (low, mid, high). Therefore, we can conclude
that the overall model performance is better when increasing the level of data imbalance.

Also, in the series of partial non-IID experiments, the level of data bias becomes
higher when we increase the non-IID proportion in the training set. Along with the in-
creasing non-IID proportion, we can see a significant impact on the model performance
of minority groups (Sex Race label Female Amer-Indian-Eskimo and Female Other).
At the same time, the model performance of majority groups (Sex Race label Fe-
male_ White and Male  White) is not significantly affected by the changes of non-I1ID
proportion. Thus, we can conclude that the model performance of minority groups is

largely affected by the variety of data distribution scenarios. In other words, the fairness
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of under-represented groups in the whole dataset is affected by various data distribution

scenarios.

5.2 Effect of Different Privacy Budget on Differentially Pri-

vate Federated Learning

Here we would like to quickly recap the differential privacy (DP) mechanism. A lower
privacy budget € value results in a higher privacy level. And a higher privacy level leads
to more noise added to the raw dataset. Thus, the low, mid, and high privacy budget
categories represent the high, mid, and low privacy level, leading to large, modest, and
small noise being added to the raw dataset.

Regarding the differential privacy setting in the federated learning setting, we chose
9 several e values from each privacy budget category, specifically 0.2, 0.5, and 0.8 in low
privacy budget, 1, 1.2, 1.5 in mid privacy budget, and 2, 10, and 100 in high privacy
budget. By diving into the overall, per-class, and per-label model performance difference
among different privacy budget € values within each type of data distribution scenarios,
we can examine the validity of the hypothesis that a higher privacy level leads to a

worse overall performance and worse fairness of under-represented groups.

5.2.1 Performance difference between imbalanced target classes

5.2.1.1 Baseline Experiment

In order to measure the effect of different privacy budgets (e values), we hereby use
the experiment results without DP as the baseline. Within the 6 data distribution
scenarios in the experiment design, we choose to use the following three representative
data distribution scenarios to investigate the effect of different privacy budget (e values):
(1) fully IID, (2) fully 2-class non-IID, and (3) normal data distribution.

Table and show the final accuracy and F} score of the overall dataset and
per-class subgroups in the 3 representative data distribution scenario without DP. The
performance difference between the <=50K target class and >50K target class is also
included in these two tables.

As shown in Table and it is clear that the huge performance difference

between target class <=50K and >50K always exists in the baseline experiments.
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Fully IID | Fully non-IID | Normal

Overall 0.832429 0.838290 0.834491
<=50K 0.909340 0.924065 0.920167

>50K 0.599475 0.578487 0.574989

Diff (<=50K, >50K) | 0.309865 0.345578 0.345178

Table 5.13: Overall and per-class final accuracy in 3 representative data distribution

scenarios (fully IID, fully 2-class non-IID, and normal data distribution) without DP

Fully IID | Fully non-IID | Normal

Overall 0.828505 0.832205 0.828575
<=h0K 0.890822 0.895746 0.893155

>50K 0.639757 0.639749 0.632972

Diff (<=50K, >50K) | 0.251065 0.255997 0.260183

Table 5.14: Overall and per-class final F} score in baseline experiments, fully IID, fully

2-class non-IID, and normal data distribution scenarios without DP

5.2.1.2 Privacy budget (e value) changes from 0.2 to 100

As we mentioned in Chapter 4, we choose 3 € values for each privacy budget category,
specifically 0.2, 0.5, 0.8 for low privacy budget, 1, 1.2, 1.5 for mid privacy budget, and
2, 10, 100 for high privacy budget.

Figure and present the change of overall and per-class model performance
in fully IID data distribution along with an increasing e value as the privacy budget.
Likewise, Figure and illustrate the performance change along with increasing
€ values in privacy budget within fully 2-class non-IID data distribution. And Figure
and show the performance change along with increasing e values in privacy
budget within normal distribution.

Table and show the final accuracy and Fj score of the overall dataset
and per-class subgroups in 3 representative data distribution scenarios with increasing
privacy budget (e changes from 0.2 to 100).

As we can see from Table and it is clear that the standard deviation on
performance of target class >50K is significantly higher in fully IID data distribution.
And standard deviation on performance of target class <=50K is significantly higher in

fully 2-class non-IID data distribution. Given that, we can see that there is no general
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5.2 Effect of Different Privacy Budget on Differentially Private Federated
Learning

Fully IID | Fully non-IID | Normal
Std _overall 0.021527 0.014333 0.014596
Range overall | 0.072281 0.048730 0.051335
Std  <=50K 0.015193 0.020536 0.027280
Range <=50K | 0.055724 0.067706 0.092969
Std_>50K 0.053103 0.006290 0.026783
Range >50K | 0.176650 0.019677 0.098382

Table 5.15: Standard deviation of overall and per-class final accuracy in 3 representative
data distribution scenarios (fully IID, fully 2-class non-IID, and normal data distribution)
with e value changes from 0.2 to 100

Fully IID | Fully non-IID | Normal
Std_overall 0.023271 0.012041 0.011047
Range overall | 0.077860 0.041563 0.040467
Std  <=50K 0.013570 0.010668 0.011751
Range <=50K | 0.045437 0.035945 0.040341
Std_>5H0K 0.053605 0.016319 0.010934
Range >50K | 0.176063 0.058579 0.040848

Table 5.16: Standard deviation of overall and per-class final F; score in 3 representative
data distribution scenarios (fully IID, fully 2-class non-I1ID, and normal data distribution)
with e value changes from 0.2 to 100

pattern on the change of overall and per-class performance among different kinds of
data distributions. However, if we take a deeper look at figure above, it is clear that
when € value changes from 0.2 to 0.5, the performance of overall dataset and target
class <=50K both has a sudden increase in all of the 3 representative data distribution
scenarios. This phenomenon can be explained by the DP theory. When € is 0.2, we
have add a huge amount of noise to the dataset, resulting in a highly indistinguishable
dataset to local models. Then when we release the privacy limitation to ¢ = 0.5, the
local model has a more distinguishable dataset. As a result, the model could have better
performance on the overall dataset and the target class <=50K with more than 75% of
the whole dataset.

Moreover, Figure and clearly indicate that the change of privacy budget (e
value) has a substantially larger impact on the target class >50K with less than 25% of
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the dataset in fully IID data distribution, compared with the overall dataset and target
class <=50K.

5.2.2 Performance difference between minority and majority groups

5.2.2.1 Baseline Experiment

In order to measure the effect of different privacy budgets (e values), we hereby use
the experiment results without DP as the baseline. 3 out of 6 representative data
distribution scenarios are chosen to investigate the effect of different privacy budget (e
value): (1) fully IID, (2) fully 2-class non-IID, and (3) normal data distribution.

Table and show the final accuracy and F} score of the overall dataset and

per-class subgroups in the 3 representative data distribution scenario without DP.

Fully IID | Fully non-IID | Normal

Overall 0.832429 0.838290 0.834491

Female Amer-Indian-Eskimo | 0.794118 0.911765 0.823529
Female Other 0.821429 0.785714 0.964286
Female White 0.822453 0.846985 0.839917

Male White 0.836463 0.833911 0.833546

Table 5.17: Overall and per-label final accuracy in 3 representative data distribution
scenarios (fully IID, fully 2-class non-IID, and normal data distribution) without DP

Fully IID | Fully non-IID | Normal

Overall 0.828505 0.832205 0.828575

Female Amer-Indian-Eskimo | 0.798155 0.910343 0.808258
Female Other 0.820252 0.741071 0.963059
Female White 0.817943 0.841232 0.835130

Male White 0.832622 0.827068 0.827594

Table 5.18: Overall and per-label final F; score in 3 representative data distribution

scenarios (fully IID, fully 2-class non-1ID, and normal data distribution) without DP

As presented in Table and [5.18 it is clear that the model performance of
Sex Race label Female_ Amer-Indian-Eskimo is significantly worse in the fully IID data
distribution and model performance of Sex Race label Female Other is substantially

worse in fully non-I1ID data distribution. With these results on hand, we can see that
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there is no general pattern on the model performance of minority or majority groups

among different data distribution scenarios.

5.2.2.2 Privacy budget (¢ value) changes from 0.2 to 100

Figure [5.23] and present the change of overall and per-label model performance
in fully IID data distribution along with an increasing e value from 0.2 to 100 as the
privacy budget. Likewise, Figure [5.25] and [5.26] present the performance change in fully
2-class non-IID data distribution with an increasing e value. And Figure [5.27] and
present the performance change in normal data distribution with an increasing e value.
Aside from the trend shown in figures above, Table and show the standard
deviation and range of the overall and per-label model performance in the change of an
increasing € value as the privacy budget.

Besides, we use abbreviations to represent Sex Race labels in these two tables,
specifically FA for Female  Amer-Indian-Eskimo, FO for Female Other, FW for Fe-
male_ White, and MW for Male White.

Accuracy in various data distribution scenarios Fy score in various data distribution scenarios

—— overall —— overall

—— Female_Amer-Indian-Eskimo —— Female_Amer-Indian-Eskimo

—— Female_Other —e— Female_Other
Female_White 0.85 Female_White

0.85 —— Male_White —e— Male_White

0.80
0.80 \
0.75
0.75
0.70

02 05 08 1 12 15 2 10 100 02 05 08 1 12 15 2 10 100
Privacy budget & value Privacy budget & value

Figure 5.23: Overall and per-label ac- Figure 5.24: Overall and per-label F}
curacy in fully ITD data distribution, with score in fully IID data distribution, with

increasing e value from 0.2 to 100 increasing e value from 0.2 to 100

As shown in figures above, we can see that the model performance of overall dataset
and majority groups (Sex_Race label Female White and Male White) are quite sim-
ilar, demonstrating by the very close standard deviation and range value in the change
of € value from 0.2 to 100 within all the 3 representative data distribution scenarios.

On the other hand, Table and clearly shows that the standard deviation of
model performance on minority groups (Sex Race label Female Amer-Indian-Eskimo

and Female_ Other) are substantially higher than the overall performance and minority
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tribution, with increasing e value from 0.2
to 100

Accuracy in various data distribution scenarios

—e— overall

0.90 —— Female_Amer-Indian-Eskimo

—— Female_Other
Female_White

085 —— Male_White

°
®
g

02 05 08 1 12 15 2
Privacy budget ¢ value

10 100

Figure 5.27: Overall and per-label ac-
curacy in normal data distribution, with
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Figure 5.26: Overall and per-label F}
score in fully 2-class non-IID data distri-
bution, with increasing e value from 0.2
to 100
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Figure 5.28: Overall and per-label F
score in normal data distribution, with

increasing e value from 0.2 to 100

Fully IID | Fully non-I1ID | Normal

StdDev_FA | 0.082025 0.063537 0.049561
Range FA 0.264705 0.235294 0.147059
StdDev_FO | 0.087662 0.075292 0.082096
Range FO 0.285714 0.250000 0.250000
StdDev_ FW | 0.019542 0.014718 0.014994
Range  FW | 0.068607 0.051143 0.050728
StdDev. MW | 0.022760 0.015018 0.014598
Range MW | 0.078578 0.052142 0.051048

Table 5.19: Standard deviation and range of overall and per-label final accuracy in 3
representative data distributions (fully IID, fully 2-class non-I1ID, and normal data distri-
bution), with € value changes from 0.2 to 100

groups. Thus, we ca see that the change of € value as the privacy budget has a larger

impact on the minority groups rather than majority groups and overall dataset.
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Fully IID | Fully non-IID | Normal
StdDev_FA | 0.091229 0.070912 0.054218
Range FA 0.296424 0.266222 0.153672
StdDev_FO | 0.092943 0.072208 0.083642
Range FO 0.333695 0.235877 0.259000
StdDev_ FW | 0.020179 0.013017 0.011030
Range FW | 0.068979 0.044216 0.037576
StdDev. MW | 0.024846 0.012721 0.011289
Range MW | 0.085463 0.045129 0.040857

Table 5.20: Standard deviation and range of overall and per-label final F} score in 3 repre-
sentative data distributions (fully IID, fully 2-class non-IID, and normal data distribution),

with e value changes from 0.2 to 100

Moreover, as we can see from the figures, there is no general pattern or monotonic
trend in the model performance of minority groups. However, we can see a clear drop
on the performance of minority groups when the e decreases from 10 to 100. This
phenomenon can be explained by the DP theory. When € has been lifted form 10 to
100, it results in a significantly smaller amount of noise being added to the raw dataset.
As a result, less noise in minority groups makes these subgroups with a small number
of samples even harder to be correctly classified by the neural network model. Thus,
we can see a substantial performance drop on minority groups when e value decreases

from 10 to 100.

5.2.3 Summary

The validity of the hypothesis that a higher privacy level leads to a worse overall per-
formance and worse fairness of under-represented groups has been proved based on the
experiment results in this section.

Since we use the experiment of fully IID, fully 2-class non-IID, and normal data
distribution scenario without DP as the baseline of their own series, we can see that the
model performance is worse after introducing DP. Also, a lower privacy budget means
a higher privacy level. With more noise being added to the raw dataset (larger e value),
the overall model performance is significantly lower. Therefore, we can conclude that

the overall model performance is worse when increasing the privacy level.
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Also, it is clear that changing privacy budget (e value) has a significant impact on the
model performance of minority groups (Sex Race label Female Amer-Indian-FEskimo
and Female Other). At the same time, the model performance of majority groups
(Sex Race label Female White and Male White) is not significantly affected by the
changes of privacy level (e value). Thus, we can conclude that the model performance
of minority groups is largely affected by the variety of data distribution scenarios. In
other words, the fairness of under-represented groups in the whole dataset is affected

by different privacy budgets (e values).
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Conclusion

In order to investigate the effect of data bias in a differentially private federated learning
setting, we designed a comprehensive experiment scheme in this thesis to show the
impact of data bias and privacy preserving mechanism on the utility and fairness within
the federated learning setting.

Within the experiment scheme, we considered data distribution scenarios, differ-
ential privacy budget, federated learning setting, and testing metrics. Specifically, we
simulated 6 representative data distributions to mimic real-world machine learning prob-
lem situations: (1)fully IID, (2) 30% 2-class non-IID, (3) 50% 2-class non-1ID, (4) 70%
2-class non-IID, (5) fully 2-class non-IID, and (6) normal distribution. Aside from the
experiments without DP, we chose 3 € values from each privacy budget category to
represent different privacy levels required in real-world cases, specifically 0.2, 0.5, and
0.8 in low privacy budget category, 1, 1.2, and 1.5 in mid privacy budget category, and
2, 10, and 100 in high privacy budget category.

In this thesis, 60 experiments are conducted and analyzed, with 6 data distribution
scenarios and 10 differential privacy settings. Based on the experiment results, we could

draw the following conclusions:

e The general utility, which could be represented by the overall model performance,
largely decreases when introducing high privacy level to a differentially private

federated learning setting, especially when training on a highly imbalance dataset.

e The fairness of under-represented groups, which could be represented by the per-

label model performance, largely decreases when introducing a larger non-IID
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proportion in the training set or setting a higher privacy level in a differentially
private federated learning setting, especially when training on a highly imbalance

dataset.

e The overall model performance is more stable than the per-class and per-label

performance in a differentially private federated learning setting.

e When performing a binary classification task on a highly imbalanced dataset,
there is a large performance difference between prominent target class and the

unapparent target class.

e The model performance of under-represented groups (minority groups) is worse
than the majority groups in a highly imbalanced dataset. The larger difference on
the number of samples between minority groups and majority groups, the more
significant difference will be between the model performance of minority groups

and majority groups.

64



7

Future Work

As future work, there are still several directions worth exploring within the topic of
investigating the effect of data bias in differentially private federated learning. The

following aspects could be done in the future as an extension of this thesis:

e Implement different federated learning fusion schemes like Krum, Zeno, and Fed+-.
Design and perform experiments on different FL fusion schemes, so as to intro-
duce the fusion scheme as another controlled variable in the differentially private

federated learning setting.

e Design and perform experiments based on other machine learning tasks using
neural networks aside from supervised categorical classification tasks. Image clas-

sification, next-word prediction, and pattern recognition are all possible tasks.

e Apply the different representative data distribution mechanisms on datasets other
than the Adult dataset to see if there are different performance within the dataset

when using the data distribution mechanisms on various data formats.
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Appendices

In order to measure the effect of data bias in differentially private federated learning
setting, we conducted experiments with 6 data distribution scenarios and 11 differential
privacy settings, by performing a binary classification task using NN on the highly
imbalanced Adult dataset.

In order to measure the effect of data bias in differentially private federated learning
setting, we conducted experiments with 6 data distribution scenarios and 11 differential
privacy settings, by performing a binary classification task using NN on the highly
imbalanced Adult dataset.

To be more specific, we performed 66 experiments in total. We use the following
6 data distribution scenarios which have been thoroughly explained in chapter 4: (1)
fully IID, (2) 30% 2-class nonlID, (3) 50% 2-class nonlID, (4) 70% 2-class nonIID, (5)
fully 2-class nonlID, and (6) normal distribution. And we use a no DP setting and 10
different privacy budget values as listed here: 0.1, 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2, 10, 100.

As described in Chapter 3, we define <=50K as the majority class and >50K as
the minority class in adult dataset. Regarding the Sex Race label, under-represented
groups include label Female_ Amer-Indian-FEskimo and Female Other. And over-represented
groups include Sex Race label Female White and Male White.

The following sections will show the vertical comparison among experiments without
DP and horizontal comparison with fixed privacy budget and fixed data distribution
scenario respectively. For every comparison, we will present the overall, per-class, and
per-label performance of the model. In this chapter, we only consider the final value
of metrics in the last round, specifically the accuracy, Fi-score, precision, and recall in
the 500th round. Also, the range of a particular series of metric values is defined by
the maximum value minus the minimum value. The standard deviation (StdDev) is
calculated based on the definition of o = \/% Zfil (z; — )%
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A Vertical Comparison within Each Experiment

In this section, we only consider 6 experiments of different data distribution scenar-
ios without introducing differential privacy. We will show the overall, per-class, and
per-label model performance of theses 6 experiments. These results are regarded as the
benchmark in our experiments, which will help us see the impact of different data distri-
bution scenarios in a federated learning setting without having any privacy-preserving

mechanism.

A.1 Overall and Per-class Performance

Table [1] shows the overall and per-class final accuracy of the model. As we can see from
the exact values of the per-class accuracy, the accuracy on minority class is significantly
lower than the majority class. Also, based on the range and standard deviation of accu-
racy value among different data distribution scenarios, we can see that the fluctuation
of overall accuracy value is smaller than per-class accuracy values, indicating that the
overall accuracy is less affected by the change of data distribution scenarios. Moreover,
it also shows that under-represented class is more likely to be largely affected by the

different data distribution scenarios.

Data distribution scenario | overall accuracy | <=50K accuracy | >50K accuracy

Fully IID 0.832429 0.909340 0.599475

30% 2-class nonlID 0.833948 0.918002 0.579362
50% 2-class nonlID 0.829499 0.914970 0.570617
70% 2-class nonlID 0.835793 0.927530 0.557936
Fully 2-class nonlID 0.838290 0.924065 0.578487
Normal distribution 0.834491 0.920167 0.574989
Range 0.008791 0.018190 0.041539

StdDev 0.002725 0.005921 0.012389

Table 1: Accuracy of final round among 6 experiments without DP but in different data

distribution scenarios

Table [2| shows the weighted overall and per-class final I} score of the model. As
we can see from the range and standard deviation of F; score among different data
distribution scenarios, the fluctuation of minority class F} score is significantly larger

than the majority class F; score and overall I} score. If we see the exact values of

74



A Vertical Comparison within Each Experiment

the F} score, there is a relatively small difference between the overall F} score and the

majority class Fj score, but the difference between overall and minority class Fj score

is quite large.

Data distribution scenario | overall weighted F} score | <=50K F} score | >50K F} score

Fully 11D 0.828505 0.890822 0.639757

30% 2-class nonlID 0.828418 0.892617 0.633971
50% 2-class nonlID 0.823837 0.889731 0.624253
70% 2-class nonlID 0.828422 0.894660 0.627798
Fully 2-class nonlID 0.832205 0.895746 0.639749
Normal distribution 0.828575 0.893155 0.632972
Range 0.008368 0.006015 0.015504

StdDev 0.002426 0.002067 0.005711

Table 2: F} score of final round among 6 experiments without DP but in different data

distribution scenarios

Table [3|shows the weighted overall and per-class final precision of the model. As seen

from the range and standard deviation of precision among different data distribution

scenarios, the difference between overall weighted precision and majority class precision

is relatively stable even when the data distribution scenario is changing. When we

look at the exact value of precision, the range and standard deviation of precision in

minority class are almost the same with the majority class precision, indicating that

changes in data distribution scenarios does not have a significant influence difference

between majority and minority subgroups of the adult dataset.

Data distribution scenario

overall weighted precision

<=50K precision

>5H0K precision

Fully IID 0.826578 0.873042 0.685843

30% 2-class nonlID 0.826737 0.868597 0.699947
50% 2-class nonlID 0.821956 0.865847 0.689018
70% 2-class nonlID 0.827707 0.864040 0.717660
Fully 2-class nonIID 0.830989 0.869111 0.715522
Normal distribution 0.827046 0.867683 0.703961
Range 0.009033 0.009002 0.031817
StdDev 0.002644 0.002811 0.012012

Table 3: Precision of final round among 6 experiments without DP but in different data

distribution scenarios
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Table {] shows the weighted overall and per-class final recall of the model. As
stated in the range of recall among different data distribution scenarios, the fluctuation
of minority recall is significantly larger compared with the overall and majority class
recall. Thus, it demonstrates that the minority class recall is more likely to fluctuate

along with the difference in data distribution scenarios.

Data distribution scenario | overall weighted recall | <=b50K recall | >50K recall

Fully IID 0.832429 0.909340 0.599475

30% 2-class nonlID 0.833948 0.918002 0.579362
50% 2-class nonlID 0.829499 0.914970 0.570617
70% 2-class nonlID 0.835793 0.927530 0.557936
Fully 2-class nonlID 0.838290 0.924065 0.578487
Normal distribution 0.834491 0.920167 0.574989
Range 0.008791 0.018190 0.041539

StdDev 0.002725 0.005921 0.012389

Table 4: Recall of final round among 6 experiments without DP but in different data
distribution scenarios

A.2 Overall and Per-label Performance

Table [5] shows the overall and per-label final accuracy of the model.

Table [6] shows the overall and per-label final weighted Fj score of the model.

Table [7] shows the overall and per-label final weighted precision of the model.

Table [8] shows the overall and per-label final weighted recall of the model.

Based on the results, the fluctuation of minority label metrics (including accuracy, Fy
score, precision, and recall) is significantly larger when the data distribution scenarios
changes, compared with the range of majority label metrics. Thus, minority groups
of Sex Race labels would receive more impact when there is a change in the data
distribution scenario. Also, the per-label metric values within 70% 2-class non-IID data
distribution vary at most, and the per-label metric values with 30% 2-class non-I1ID

data distribution are the most even ones among all Sex Race labels.
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B Horizontal Comparison among a series of Experiment

We have conducted 66 experiments in total, with 6 data distribution scenarios and 11
differential privacy settings. The 11 differential privacy settings include a no DP setting
and 10 privacy budget values of 0.1, 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2, 10, 100.

However, when € is 0.1, Opacus reports an error that the privacy budget is too low
to execute the whole program. Based on the differential privacy theory, this low privacy
budget leads to a really high privacy level in the dataset. As a result, an extremely
high privacy level would make the samples in the dataset too indistinguishable for the
model to perform training. Thus, the experiment with € of 0.1 will not be included
in the following horizontal comparison. Both the fixed privacy budget horizontal com-
parison and fixed data distribution horizontal comparison will include 60 experiments,
containing 6 data distribution scenarios and 10 DP settings (one no DP setting and 9

different privacy budgets).

B.1 Overall Model Performance

Table [9 shows the overall final accuracy of the model.

Table 10| shows the overall final weighted F} score of the model.

Table [11] shows the overall final weighted precision of the model.

Table [I2] shows the overall final weighted recall of the model.

Tables above show the final overall metric values of the model. It is clear that there
is no monotonic trend in the final model performance. When looking at a particular
data distribution, there is no monotonic trend in the metric values when the privacy
budget goes higher. Likewise, when considering a particular e value for privacy budget,
there is also no monotonic trend along with the change of data distribution scenarios.
This phenomenon tells us that we can not simply analyze the experiment results with
overall metric values only. We need to dive deeper into the per-class and per-label model
performance to see the impact of various data distribution scenarios and different privacy
budget settings. Since this is a binary classification task, we can investigate the model
performance of the two classes separately. Especially when we conduct experiments on
the highly imbalanced Adult dataset, by looking at the per-class model performance,
we can see how the NN model performs in the class with more than 75% of the samples

and in the class with less than 25% samples of the whole adult dataset. Besides, the
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per-label model performance is also quite important for us to investigate the fairness
of the model. Since the number of samples of each Sex Race label is largely different
from each other, the per-class model performance can help us see whether the change
in differentially private federated learning setting would show the same impact on the
majority groups and minority groups.

Moreover, since we have performed analysis of different data distributions with no
DP in the vertical comparison section, we will not emphasize the no DP situations in

the following horizontal comparisons.

B.2 Fixed Privacy Budget

Aside from the no DP situation and too-low privacy budget € = 0.1, we have 9 different
privacy budgets (e values), specifically with € values of: 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2, 10,
100.

Table [I3] gives the overall, per-class, and per-label accuracy of experiments with
privacy budget ¢ = 0.2. As shown in the results, the overall accuracy of 6 experi-
ments with a fixed privacy budget e=0.2 does not show significant fluctuation when the
data distribution scenario is changing. The significant fluctuation phenomenon happens
in target class >50K, Sex Race label Female Amer-Indian-Eskimo, Sex Race label
Female_ Other, and Sex Race label Male Other. These are the minority classes or
minority labels in the whole adult dataset. On the other side, the relatively small varia-
tion on metric values occur in target class <=50K, Sex Race label Female White, and
Sex Race label Male White. These three are the majority target classes or majority
labels.

Table gives the overall, per-class, and per-label accuracy of experiments with
privacy budget € = 0.5. As shown in the results, the significant fluctuation phenomenon
happens in Sex Race label Female_ Amer-Indian-Eskimo, Male  Amer-Indian-Eskimo,
Female Other, and Male_ Other. These are the minority labels in the whole adult
dataset. On the other side, a relatively small variation on metric values occurs in target
class <=50K, Sex Race label Female_ White, and Sex_Race label Male White. These
three are the majority target classes or majority labels.

Table gives the overall, per-class, and per-label accuracy of experiments with
privacy budget ¢ = 0.8. As shown in the results, the overall accuracy of the model

does not change so much when the data distribution scheme changes. The significant
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fluctuation phenomenon happens in Sex Race label Female  Amer-Indian-Eskimo, Fe-
male_ Other, and Male_ Other. These are the minority labels in the whole adult dataset.
On the other side, a relatively small variation on metric values occurs in Sex Race la-
bel Female White and Male White. These three are the majority labels in the adult
dataset.

Table gives the overall, per-class, and per-label accuracy of experiments with
privacy budget ¢ = 1.2. As shown in the results, the overall accuracy of the model
does not have a very large change when the data distribution scheme changes. The
significant fluctuation phenomenon happens in Sex Race label Female Other. This
is a minority label in the whole adult dataset. On the other side, a relatively small
variation on metric values occurs in Sex_Race label Female White and Male White.
These three are the majority labels in the adult dataset.

Table gives the overall, per-class, and per-label accuracy of experiments with
privacy budget ¢ = 100. As shown in the results, the overall accuracy of the model only
shows a slightly change when the data distribution scheme changes. The significant
fluctuation phenomenon happens in target class >50K, Sex Race label Female Other,
and Sex_Race label Male_ Other. These are minority labels in the whole adult dataset.
On the other side, a relatively small variation on metric values occurs in target class
<=50K, Sex_Race label Female White, and Sex _Race label Male_ White. These three

are the majority target classes and majority labels in the adult dataset.

B.3 Fixed Data Distribution scenario

Table [I§ gives the overall, per-class, and per-label accuracy of experiments with fully
IID data distribution scenario. As shown in the results, the change of privacy bud-
get (e value) does not have large reflection on the overall accuracy. The target class
>50K, Sex_Race label Female  Amer-Indian-Eskimo, Sex _Race label Female Other,
Sex Race label Male  Amer-Indian-FEskimo, and Sex Race label Male Other have
shown a larger fluctuation on metric values when the privacy budget € changes. These
are minority classes and minority labels in the whole adult dataset. On the other hand,
target class <=50K, Sex Race label Female White, and Sex Race label Male White
have shown a relatively small shift when e changes from 0.2 to 100. And these three are

the majority target classes and majority labels.
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Table gives the overall, per-class, and per-label accuracy of experiments with
fully 2-class non-I1ID data distribution scenario. As shown in the results, the change of
privacy budget € does not have large reflection on the overall accuracy. The target class
>50K, Sex_Race label Female  Amer-Indian-Eskimo, Sex Race label Female Other,
Sex Race label Male Amer-Indian-Eskimo, and Sex Race label Male Other have
shown a larger fluctuation on metric values when the privacy budget ¢ changes. These
are minority classes and minority labels in the whole adult dataset. On the other hand,
target class <=50K, Sex Race label Female White, and Sex Race label Male White
have shown a relatively small shift when e changes from 0.2 to 100. And these three are
the majority target classes and majority labels.

Table[20] gives the overall, per-class, and per-label accuracy of experiments with nor-
mal data distribution scenario. As shown in the results, the change of privacy budget €
does not have large reflection on the overall accuracy. The target class >50K, Sex Race
label Female Amer-Indian-Eskimo, Sex Race label Female Other, Sex Race label
Male  Amer-Indian-Eskimo, and Sex Race label Male_ Other have shown a larger fluc-
tuation on metric values when the privacy budget e¢ value changes. These are minority
classes and minority labels in the whole adult dataset. On the other hand, target class
<=50K, Sex_Race label Female White, and Sex Race label Male White have shown
a relatively small shift when e changes from 0.2 to 100. And these three are the majority
target classes and majority labels.

Table gives the overall, per-class, and per-label accuracy of experiments with
70% 2-class non-IID data distribution scenario. As shown in the results, the overall
accuracy has great change along with the different values of privacy budget e. The
target class >50K, Sex Race label Female Amer-Indian-FEskimo, and Sex Race label
Female Other have shown a larger fluctuation on he metric values when the privacy
budget € changes. These three are the minority classes and minority labels in the whole
adult dataset. On the other hand, target class <=50K, Sex Race label Female White,
and Sex Race label Male White have shown a relatively small shift when e changes

from 0.2 to 100. And these three are the majority target classes and majority labels.
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