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Abstract

Privacy-utility tradeoff and fairness on under-represented groups have be-

come central issues in a differentially private federated learning framework.

This thesis aims at measuring the utility and fairness of a distributed learn-

ing system, by investigating the effect of data bias and privacy preserving

mechanism within a federated learning setting.

This thesis considers data bias from two aspects:(1) data imbalance within a

dataset and (2) non-IID data distribution among worker nodes. Specifically,

the effect of data bias is measured in three parts: (1) target class imbalance,

(2) label imbalance, and (3) imbalanced number of samples among worker

nodes.

This thesis designed and implemented a comprehensive experiment scheme

for measuring the effect of data bias in differentially private federated learn-

ing. This thesis simulated 4 types of representative data distributions scenar-

ios based on real-world machine learning problems: (1) fully IID, (2) partial

2-class non-IID, (3) fully 2-class non-IID, and (4) normal distribution. This

thesis chose 9 privacy budgets (ε value) from 0.2 to 100 to simulate different

privacy level required by the worker nodes itself or the legislation.

This thesis conducted 60 experiments with 6 data distribution scenarios and

10 differential privacy settings. Vertical and horizontal comparisons among

experiment results are performed to validate the following hypotheses: (1)

a higher level of data bias leads to a better overall performance and worse

fairness of under-represented groups, and (2) a higher privacy level leads to

a worse overall performance and worse fairness of under-represented groups.

This thesis found that there is a large performance difference between the

target class with most samples and the target class with only a few samples

in a classification task on a highly imbalanced dataset. Also, the model



performance of minority groups is significantly influenced by the changes of

differentially private federated learning setting, compared with the overall

dataset and majority groups.
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1

Introduction

1.1 Context

Driven by the awareness of personal data privacy protection and stricter legislation

of commercial data exchange such as General Data Protection Regulation (GDPR) in

EU (1) and Health Insurance Portability and Accountability Act (HIPAA) in US (2),

privacy-utility tradeoff has become a primary concern of distributed Machine Learning

in the past decade. Collaboration on Machine Learning model training among various

entities have shown its great demand of a privacy-preserving machine learning frame-

work. The type of involved entities are different under various scenarios, such as the

huge amount of end users for a smart device or application, first-hand collected data

organized by different research institutions, internal innovative projects among different

departments within one company, and different branches of an international corporate.

With this context, Federated Learning (FL) was first introduced in 2016 as a de-

centralized approach to leave the training data distributed on the local nodes and learn

a shared model based on the aggregation of locally-computed updates on the server

node (3). Later in 2019, a workshop focused on Federated Learning and Analytics was

held by Google, in which researchers broadened the definition of federated learning and

systematically categorized open problems in the field (4).

In the categorization of federated learning, the most significant difference between

cross-device federated learning and cross-silo federated learning is the type and amount

of involved entities. There is a huge amount of unreliable devices in cross-device fed-

erated learning, but the cross-silo federated learning only involves a small amount of

1



1. INTRODUCTION

reliable organizations. On the basis of these two terms, the definition of federated learn-

ing was broadened to become more applicable in different types of real-world machine

learning problem (4).

Aside from the higher willingness to collaborate in machine learning tasks, the quan-

tity and quality of data have also been largely improved. In the last few decades, the

development of sensor networks has extended its applicability in various fields (5), in-

cluding environmental monitoring based on Internet of Things (IoT) sensors (6), human

activity recognition based on image sensors (7), and disease prediction based on medical

signal sensors (8). Moreover, the global trend of digital transformation in all business

industries have also boosted the amount of data being generated every second. For

example, YouTue uses billions of user browsing history and user persona to improve

their recommendation system (9), and Alibaba uses millions of transactions to detect

fraud (10).

Aforementioned rich data have prompted a surge of interest in utilizing machine

learning techniques to solve real-world problems. These tasks are sometimes interdisci-

plinary applications, ranging from personal credit score prediction using bank transac-

tions and webshop browsing history (11) to length of stay in Intensive Care Units (ICU)

prediction using hospital patient visit records and inventory list (12).

Given that real-world machine learning tasks usually involve multiple parties in a

complex business setting as mentioned above, they need information from multiple data

sources owned by different entities. These data sources have the following character-

istics: (1) variety in sensitivity of the data itself, (2) difference in legislation among

geographical regions, and (3) bottleneck in the communication efficiency of different

data centers. Besides the general differences among various data sources, the perfor-

mance of some deep neural networks is highly depended on the availability of large-scale

and highly-representative datasets (13). With all these constraints, making the use of

modest privacy-preserving mechanisms has become a central issue when training Ma-

chine Learning models in a distributed setting with multiple entities.

In order to train deep neural networks under a proper privacy budget to ensure

the balance between model quality and data privacy, differential privacy integrated

with federated learning was proposed as an appropriate solution to collaboratively train

a model but keeping the data distributed in local entities (13). Within differential

privacy mechanisms, the prevalent Gaussian mechanism protects data privacy by adding
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elaborate Gaussian (normal) distribution as the noise to a mapping function. The noise

is calibrated to the sensitivity of that mapping function from database to real values

(14).

Based on the strong need of a privacy-preserving distributed machine learning frame-

work, differentially private federated learning setting has received increasing attention

because: (1) each local entity (the owner of a data source that participates in the

collaborative training process) is independent and only needs to communicate model

parameters (not data) with the central server, (2) the central server coordinates the

aggregation and broadcast of model parameters, and (3) the noise adding mechanism

within differential privacy offers a great balance between data privacy level, training

efficiency, and model performance (14).

1.2 Motivation

When using the differentially private federated learning framework to solve real-world

problems, data bias is widely regarded as the major limitation of the utility and fair-

ness (4). Being different from famous Machine Learning dataset in use like MNIST

(15), ImageNet (16), and movie review (17), the complicated business background of

real-world Machine Learning problems makes them obliged to deal with highly imbal-

anced dataset with large data bias. In this thesis, we take the classification task within

a privacy-preserving distributed machine learning setting as an example. With this

context, we consider data bias from two aspects: (1) data imbalance within the dataset

and (2) data distribution scheme which is not independent and identical among entities

(non-IID data distribution). Specifically, there are three types of data bias in classifi-

cation tasks under differentially private federated learning framework: (1) imbalanced

number of samples within each target class, (2) imbalanced number of samples within

each label, and (3) imbalanced number of samples among local entities (worker nodes).

Moreover, the data bias issue has even larger impact in situations where under-

represented classes or labels within the dataset are more useful for training a Machine

Learning model. For example, in the beginning of the coronavirus pandemic, the in-

fected patients’ chest X-ray images are highly under-represented classes, known as "long

tails" in the whole chest X-ray image dataset. But those are the ones with greatest im-

portance in the image classification model for pre-diagnoses of Covid-19 (18). This
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scenario has the following characteristics: (1) the number of total (all-type) patients

are different in each hospital, (2) the number of patients within each disease class are

largely different in the whole dataset, (3) the total number of patients with Covid-19

is really small in the dataset, and (4) the number of patients with Covid-19 in each

hospital varies a lot. With constraints (2) and (3), training a medical image classifica-

tion model with high accuracy on Covid-19 is already really hard. Moreover, the high

sensitivity level of medical data does not allow hospitals to share the raw data of their

patients. Together with constraints (1) and (4), the situation is much harder for the

collaboratively trained medical-use classification model. Thus, a mechanism to mea-

sure the effect of data bias is of great importance in federated learning with differential

privacy.

1.3 Problem Statement

Most of the recent studies in federated learning and differential privacy are assuming

that the dataset is in independently identically distribution (IID) among all worker

nodes, but the real-world machine learning tasks are not always that ideal. Hence,

learning the effect of data bias in differentially private federated learning framework

is of great significance and gives it higher practicability and reliability in real-world

machine learning tasks.

This thesis aims at measuring the utility and fairness of a distributed machine learn-

ing system, by investigating the impact of data bias and privacy preserving mechanism

within a federated learning setting. We measure the effect of data bias (data imbal-

ance and non-IID data distribution) specifically from the following three aspects in this

thesis: (1) target class imbalance, (2) label imbalance, and (3) imbalanced number of

samples on each worker node. The utility can be shown by measuring the model per-

formance of the overall dataset. And the fairness of a model can be represented by the

model performance of different subgroups within the whole dataset. Moreover, this the-

sis conducts experiments to validate the following two hypotheses: (1) a higher level of

data bias leads to a better overall performance and worse fairness of under-represented

groups, and (2) a higher privacy level leads to a worse overall performance and worse

fairness of under-represented groups.
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As the scope of this thesis, it puts attention on cross-silo federated learning setting,

in which a small number of reliable organizations are involved as entities (local worker

nodes). This thesis also uses the horizontal federated learning scheme, in which sam-

ples on each worker node share the same feature space but with different sample ID.

Moreover, this thesis focuses on supervised learning, specifically classification tasks in

machine learning problems, under differentially private federated learning framework.

1.4 Contribution

Our contributions are as follows:

• We implemented a differentially private federated learning framework with data

distribution module and testing metrics module for highly imbalanced dataset,

enabling the simulation of various data distribution scenarios and performance

measurement of different subgroups of the data.

• We designed a comprehensive experiment scheme for measuring effect of data bias

in differentially private federated learning, providing a quantitative method to sys-

tematically investigate the effect of data imbalance and non-IID data distribution.

• We conducted series of experiments on a highly imbalanced dataset and performed

in-depth analysis among all experiments results, revealing the impact of various

data distribution scenarios and different privacy budgets on the utility and fairness

of a differentially private federated learning framework.

1.5 Thesis Structure

This thesis is structured as below:

• Chapter 2 provides previous related works about Federated Learning, Differential

Privacy, data imbalance, and non-IID data distribution.

• Chapter 3 explains the data bias in a distributed machine learning task, specifically

the data imbalance and non-IID data distribution.

• Chapter 4 describes the experiment design for measuring the effect of data bias

in differentially private federated learning setting.
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• Chapter 5 analyzes the experiment results and validates hypotheses about the

impact of the higher level of data bias and higher privacy level.

• Chapter 6 shows the conclusion of this thesis.

• Chapter 7 looks forward to the directions of our future work.
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Background

Considering that the purpose of this thesis is to measure the effect of data bias in

differentially private federated learning, it is important to explain main concepts in the

field of Differential Privacy (DP), Federated Learning (FL), and data bias with the

context of this thesis. This chapter introduces definitions, categorizations, and current

research findings of the three aforementioned fields.

2.1 Differential Privacy

Differential privacy is a mathematical framework for quantifying the anonymization of

sensitive data, and it has shown its strong capacity in privacy guarantees for aggregation

on datasets and databases. In this thesis, we use differential privacy as the privacy-

preserving mechanism to protect the privacy of raw datasets stored in each local worker

node.

As a general term, a query function f is used as the mapping from databases to real

entries, and the true answer is the consequence of applying f to the database. In order to

protect the true answers from being recognized by attackers, the values returned to the

users are the true answer plus random noise generated based on a specific distribution.

Until 2005, most of the works in privacy protection focused on using noisy sums.

Blum termed the query with (slightly) noisy reply as Sub-Linear Queries (SuLQ) in

(19). As stated in the paper, the query function is f =
∑

i g(xi), in which xi represents

the ith row of a statistical database and g maps rows in the database to {0,1}. The

paper defined that a database query mechanism is (ε, δ, T )-private when the following
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formula is valid for every data element of index i, for every predicate f : D → {0, 1} in
which element di is drawn from an arbitrary domain D, and for every adversary making

at most T queries, given that the data is extracted from a distribution with enough

generality but without missing much information.

Pr
[
conf(pi,fT )− conf(pi,f0 ) > ε

]
≤ δ

Here (19) assumes that rows of the database are independent. And for any predicate

f : D → {0, 1}, pi,f0 denotes a priori belief that f(di) = 1 and pi,fT denotes a posteriori

belief that f(di) = 1 giving the answers to T queries. As a result, a randomly generated

noise of N(0, R) where R = R(ε, δ, T ) is added to the true answer
∑

i∈S f(di) where

S is a set of rows in the database within mapping g(xi). We can see the power of the

noisy sums query scheme based on the advanced examples of carrying out standard data

mining tasks using SuLQ, such as Principal component analysis (PCA) in dimension

reduction, k-means clustering, ID3 classification, and statistical queries learning model.

However, a more sophisticated privacy preserving scheme is required when the machine

learning task becomes much more complicated.

The term differential privacy was introduced by Dwork as a privacy-preserving mech-

anism for statistical databases in a series of studies (20) (14) (21) (22). Within the initial

concept of differential privacy, it protects data privacy by adding random noise to the

real entries in the database, in which the noise is generated according to a discreetly

selected distribution.

As mentioned in (20), the ultimate goal of a privacy-preserving statistical database

is to empower every user to learn the properties of the whole population but still pro-

tect the privacy of every individual data owner. In 2006, Dwork proposed that when

considering f as the mapping from database to vectors of real entries, they can prove

that the data privacy can be preserved by calibrating the standard deviation of the

noise adding mechanism based on the sensitivity of the function f . In this paper, they

model a database as a vector of n entries from some domain D, and consider domain

of the form ({0, 1})d or Rd. The sensitivity S(f) is defined as an inherent quantity in

f , which is independent of the database. L1 sensitivity of a function f : Dn → Rd is

defined as the smallest number S(f) such that for all x, x′ ∈ Dn which differ in a single

entry, ∥∥f(x)− f
(
x′
)∥∥

1
≤ S(f)
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. According to the theory, if noise Y is a vector of d independent Laplace variables,

the density function at y will be proportional to exp(−‖y‖1/λ). As a consequence, the

random variables z + Y and z′ + Y will be as follows for all t ∈ Rd

Pr(z + Y = t)

Pr (z′ + Y = t)
∈ exp

(
±
‖z − z′‖1

λ

)
. Thus, it is sufficient to add Laplace noise with standard deviation of S(f)/ε in each

coordinate to make sure the returned value is with sufficient privacy.

Moreover, a noise adding mechanism is defined as ε-indistinguishable in (20) if for

all pairs x, x′ ∈ Dn which differ in only one single entry, for all adversaries A, and for

all transcripts t: ∣∣∣∣ln( Pr [TA(x) = t]

Pr [TA (x′) = t]

)∣∣∣∣ ≤ ε
. Sometimes when ε is small, ln(1 + ε) ≈ ε, and the ε-indistinguishable definition will

be approximate equivalent to Pr[TA(x)=t]
Pr[TA(x′)=t] ∈ 1± ε.

In other words, as stated in (14), the definition of ε-indistinguishability can be

defined as follows for two datasets that only differ on one row, if the respective output

random variables of query responses τ and τ ′ satisfy for all sets S of responses :

Pr[τ ∈ S] ≤ exp(ε)× Pr
[
τ ′ ∈ S

]
. Similarly, a noise adding mechanism can be defined as δ-approximate ε-indistinguishable

under the same conditions that:

Pr[τ ∈ S] ≤ exp(ε)× Pr
[
τ ′ ∈ S

]
+ δ

. The non-zero δ allows people to release the strict relative shift when events are not

especially likely to happen.

In the following 10 years, during the rapid development of machine learning tech-

niques with neural networks, privacy-utility issue has become the core when training

complex models with large-scale crowdsourced dataset containing sensitive informa-

tion. In 2016, Google developed a new algorithmic technique to help developers and

researchers better deal with the privacy issue. They implemented differential privacy

within their machine learning framework TensorFlow in Python, which is the differen-

tially private stochastic gradient descent algorithm (DPSGD) (13).
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Within DPSGD, they take the input of: (1) data samples {x1, ..., xN}, (2) loss

function L(θ) = 1
N

∑
i L(θ, xi) in which θ denotes the parameters of the model, and

(3) parameters of learning rate ηt, noise scale σ, group size L, and gradient norm

bound C. After randomly initiating θ0, they do the following steps for every t ∈
T : (1) take a random sample Lt with the sampling probability of L/N , (2) compute

gradient for each i ∈ Lt by calculating gt(xi) ← 5θtL(θt, xi), (3) clip gradient by

calculating gt (xi) ← gt (xi) /max
(

1,
‖gt(xi)‖2

C

)
, (4) add noise by calculating g̃t ←

1
L

(∑
i gt (xi) + N

(
0, σ2C2I

))
, and (5) perform descent by calculating θt+1 ← θt− ηtg̃t.

The output are the parameters θT and the overall privacy cost (ε, δ) calculated using a

privacy accounting method.

Considering the federated learning framework in this thesis is implemented with

PyTorch, we use Opacus, the PyTorch version implementation of DPSGD realeased by

Facebook, to handle the differential privacy part of the experiments.

2.2 Federated Learning

2.2.1 Definition of Federated Learning

The term federated learning was first defined in 2016 by McMahan from Google (3) as

"the learning task is solved by a loose federated of participating devices (which we refer

to as clients) which are coordinated by a central server". On account of the development

of modern mobile devices, the massive amount of data obtained by smart devices is of

great value and importance to machine learning tasks such as text recognition from

audio, image detection from pictures, and disease prediction based on personal medical

records. However, this rich data usually comes with high sensitivity which prevents

uploading all data into a data center and train a model there. Thus, federated learning

framework is proposed to leave the training data on the local mobile devices and learn

a shared model by aggregating the locally computed updates. Within the framework

of federated learning, clients have their own local training dataset and this dataset will

never be uploaded to the central server. The only thing that each client uploads to and

be broadcasted from the central server is the parameters of the model.

Aside form the definition of federated learning mentioned above, (3) also introduced

an algorithm called Federated Averaging (FedAvg), combining local stochastic gradient

descent (SGD) on each client with a central server which performs averaging on model
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parameters. At that time, they also pointed out that the unbalanced and non-identically

and independently distributed (non-IID) data partitioning among a huge number of

unreliable devices together with the limited communication bandwidth were the largest

challenges of federated learning.

2.2.2 Cross-silo and Cross-device Federated Learning

Later in 2019, two types of federated learning settings were introduced, specifically

the "cross-device" federated learning setting and "cross-silo" federated learning setting.

The major difference of these two definitions can be found in Table 2.1.

Features Cross-silo federated learning setting Cross-device federated learning setting
Client type A small number of reliable clients (e.g. 2-100 different medical or financial organizations). A large number of unreliable clients (e.g. 10-million mobile devices or IoT sensors).

Data partition Both possible for example-partitioning (horizontal) and feature-partitioning (vertical). Only possible for example-partitioning (horizontal).
Addressability Each client has its own unique identity. No client identifiers in use.

Client statefulness Stateful (each client can participate in each round of the computation and carry state from previous states). Stateless (each client is more likely to participate only once in a task).

Table 2.1: Major difference between cross-silo and cross-device federated learning setting.

With these two types of setting, (4) proposed a broader definition of federated

learning as "a machine learning setting where multiple entities (clients) collaborate in

solving a machine learning problem, under the coordination of a central server or service

provider. Each client’s raw data is stored locally and not exchanged or transferred;

instead, focused updates intended for immediate aggregation are used to achieve the

learning objective." According to the broader definition, the focused updates narrows

the scope of information being communicated between the central server and clients to

only contains the minimal information which is essential for the learning task. Also,

the aggregation on central server will be performed as early as possible to guarantee the

data minimization.

Considering the cross-silo federated learning, there are plenty of applications in

various fields including financial fraud detection, medical image classification for pre-

diagnosis, and smart manufacturing. A detailed example of cross-silo federated learn-

ing setting in financial field is the collaboration between WeBank and Swiss Re (23).

WeBank is an online lender owned by Chinese high-tech company Tencent, and the

AI team within WeBank has created “Federated AI Technology Enabler (FATE)”, an

industrial-level open-source technical framework. And Swiss Re is a leading company

in the field of reinsurance. After signing the partnership, these two large organizations

would study the efficiency challenges imposed by data silos with the help of federated

11



2. BACKGROUND

learning (24). An example of cross-silo federated learning setting in medical field is the

MesoNet (25). It uses a deep convolutional neural networks (CNN) model to predict

the overall survival of mesothelioma patients. The CNN model MesoNet is validated on

dataset from MESOBANK, which is an international organization provides collection of

high-quality samples from mesothelioma patients around EU. Since MESOBANK offers

dataset to medical researchers from EEA, USA, Canada, Australia and New Zealand,

data retrieved from MESOBANK are preprocessed by adding noise on under a federated

learning setting.

On the other hand, the cross-device federated learning has been widely deployed in

the field of digital customer analysis. For example, Google has introduced federated

learning in their research of mobile keyboard prediction (26) (27) (28) (29). Google

trained a recurrent neural network (RNN) language model in the federated learning

setting for the next-work prediction of virtual keyboard on smartphones (Google Key-

board, also called Gboard). Compared with server-based training, the federated learning

setting with FedAvg algorithm has shown a better performance (precision recall) and

guaranteed the privacy of user sensitive data at the same time (26). Other than nor-

mal characters from more than 600 languages, the RNN model can also predict emoji

from the previous typed text on Gboard. Its great performance shows the feasibility of

implementing federated learning setting as the framework to train a production-quality

model in the field of natural language understanding and keep user data locally to avoid

interfering user data privacy (28). The federated learning setting with the character-

level RNN model has also demonstrated its capability to learn out-of-vocabulary (OOV)

words as stated in (29). Aside from the regular next-word prediction task, Google also

introduced federated learning setting to improve the quality of search suggestion based

on the data from more than 1 billion end users of Gboard (27).

Considering the scope of this thesis, we use the cross-silo federated learning setting

to study the effect of data bias in differentially private federate learning among a small

number of reliable entities.

2.2.3 Horizontal and Vertical Federated Learning

Aside from classifying federated learning settings based on their clients, another impor-

tant concept within federated learning is the feature space and sample ID space accord-

ing to the data distribution characteristics among clients. Based on the difference on
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intersection of feature space and sample space, horizontal federated learning, vertical

federated learning, and federated transfer learning are proposed in (30). Horizontal

federated learning is also called sample-based federated learning since the datasets are

sharing the same feature space but different sample IDs under this scenario. For exam-

ple, the business of several regional banks could be quite similar but their user group

could be largely different. Thus, these banks are sharing the same feature space but

different sample space. On the contrary, vertical federated learning can be named as

feature-based federated learning, in which several datasets share different feature space

but same sample ID space. A real-world use case can be seen in the e-commerce field.

A bank and an e-commerce company in the same region might share the same group

of users, but they definitely do not have the same features in their dataset. However,

the user browsing history and purchasing transactions from the e-commerce company

and the revenue with expenditure behavior records from the bank can be collaboratively

used to predict the next product purchase behavior of a user. In this task, the bank and

the e-commerce company have the same sample space but different feature space. In

between horizontal and vertical federated learning, federated transfer learning depicts

the scenarios that several datasets differ in both sample space and feature space, leading

to a relatively small intersection among entities. Considering one entity as a Chinese

bank and another entity as an American e-commerce company. In this scenario, both

sample space and feature have quite small intersection. Thus, a common representation

is learned based on the limited number of common samples.

Considering the scope of this thesis, we use the horizontal federated learning setting

to study the effect of data bias in differentially private federate learning, in the situation

that different local nodes share the same feature space but own samples with different

sample IDs.

2.2.4 Significant Challenges in Federated Learning

As introduced above, federated learning is a convincing approach for collaboratively

training a model but keep the data decentralized in local clients. However, the model

performance in federated learning is not only influenced by the federated algorithm, but

also largely impacted by the data distribution among clients (4). Two of the most signif-

icant challenges in federated learning are class imbalance and non-IID data distribution
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data. In this paper, we summarize these two challenges as data bias and perform sys-

tematically investigation on the effect of data bias in federated learning with differential

privacy.

2.3 Data Imbalance

2.3.1 Data Imbalance in Classification

In a machine learning problem with classification task, data imbalance refers to the the

uneven number of samples of each class or of each label.

In binary classification tasks, data imbalance is a notable issue especially in cases

where samples with negative label largely outnumber samples with positive label, in-

cluding computer-assisted medical diagnostics using images and test reports, network

attack detection, unreliable telecommunication customer detection, and financial fraud

detection (31).

Common methods dealing with data imbalance of classification tasks in single ma-

chine (without distributed setting) could be categorized as data driven approaches and

algorithm driven approaches (32). Data driven approaches include: (1) under-sampling

by discarding samples from majority class to make an even number of samples between

classes such as random under sampling (33), and (2) oversampling by replicating samples

from the minority class such as synthetic minority over-sampling technique (SMOTE)

(34). Algorithm driven approaches include: (1) cost-sensitive learning by choosing a

class with minimal conditional risk in order to minimize misclassification cost such as

MetaCost (35), and (2) thresholding by adjusting the decision threshold of a sample

according to the class to reduce misclassification cost and improve performance at the

same time (36), and (3) hybrid methods by combining ensemble learning and sampling

to increase the accuracy of minority class while keeping the accuracy of the overall

dataset in a reasonable range such as SMOTEBoost (37).

When there is a class imbalance in the dataset, the proportion and number of samples

of minority classes are significantly lower than the majority classes. In some cases, the

minority classes are undoubtedly playing more important role compared with their

proportion in the whole dataset. For example, the resulting reduction of classification

accuracy on minority classes could lead to a bad consequence when doing a sudden

disease prediction based on abnormal heart rates.
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With the context of this thesis, the data imbalance of classification task is measured

from perspectives of both class imbalance and label imbalance.

2.3.2 Data Imbalance in Federated Learning

When the dataset is distributed among several clients rather than being trained in a

single node, the impact of data imbalance is even worse. For example, in the series of

federated learning framework with next-word prediction task of Gboard from Google,

the SOS typing is quite uncommon among all device (smartphones in this case), but

SOS is much more important than any of the big name restaurants. The minority class

SOS even needs higher prediction accuracy than other majority classes (26).

Considering the strict constraint of communication content in the setting of feder-

ated learning, it is not possible to upload additional information needed for conventional

methods to mitigate the impact of data imbalance (38) (39) (40). Thus, methods men-

tioned above are not suitable for federated learning data imbalance issue since neither

the clients nor the central server has the full access to the complete training set (41).

In real-world machine learning tasks, the class imbalance phenomenon happens quite

often. For example, the number of patients diagnosed with different diseases can vary

significantly in medical image classification tasks (42) (43). Also, the Google research of

predicting emoji with Gboard also pointed out that people could have largely different

personal preferences in their daily use of the virtual keyboard on smartphones (29).

Some studies have proposed methods to be added in local clients in order to solve the

data imbalance issue in federated learning without uploading additional data distribu-

tion information to the central server. Inspired by the observation that minority classes

usually contains very few instances with relatively high degree of visual variability, (44)

proposed to learn a Euclidean embedding f(x) from an image x to the feature space Rd,

so that the embedded features are discriminative without local class imbalance. With

the help of transfer learning, (45) proposed that the knowledge from data-rich classes in

the head of the distribution can be encoded with a meta-network and then be gradually

transferred from head to body and from body to tail. However, these methods would

not work when there is a mismatch between the local data distribution and the global

data distribution. They might even result in a negative side-effect on the model in

central server within a federated learning setting.
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(41) defined the class imbalance as two classes, the local imbalance and the global

imbalance. The local class imbalance γj of client j is defined as the ratio between

number of samples of majority class and minority class, in which N j
p denotes the number

of samples in class p on client j:

γj = maxp{N j
p}/minp{N j

p}

. And the global class imbalance Γ is defined as the ratio between total number of

sampler of majority class and minority class:

Γj = maxp{
∑
j

N j
p}/minp{

∑
j

N j
p}

. In order to quantify the mismatch between local class imbalance and global class

imbalance, they use Q to represent the overall number of classes, use vector vj =

[N j
1 , ..., N

j
Q] to denote the local data composition on client j, and use vector V =

[
∑

j N
j
1 , ...,

∑
j N

j
Q] to denote the global data composition. After that, cosine similarity

(CS) score is used to measure the similarity between two data compositions as:

CSj = (vj · V )/(‖vj‖ ‖V ‖)

.

Aside from quantifying global class imbalance and local class imbalance, they pro-

posed a monitoring scheme which can estimate the composition of training data across

classes during each federated training round. This is designed to alert administrator

when certain imbalanced data composition appears. This paper also designed the Ratio

Loss function to mitigate the impact of class imbalance in federated learning.

With the context of this thesis, we use a highly imbalanced Adult dataset to intro-

duce the data imbalance into the federated learning framework, and create a compre-

hensive mechanism to measure the effect of data imbalance by calculating the model

performance of subgroups in the whole dataset.

2.3.3 Data Imbalance in Differential Privacy

Moreover, there are also studies show that data imbalance also has great influence on

differentially privacy training mechanisms.
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As stated in (46), differential privacy might also deteriorate the existing data bias

in the raw dataset and results in a largely different accuracy on different subgroups of

the dataset. This paper carried out experiments of DP-SGD in a binary classification

task on a single machine. The range of imbalance was set from 0.1% to 30%, and the

privacy budget ε was set from 1.15 to 16.2. Their experiment results demonstrated

that an increasing data imbalance trained with differential privacy mechanism leads to

a significantly increasing disparity of accuracy between 2 classes (subgroups). Thus,

applying differential privacy on dataset with imbalance will result in a huge impact on

the model performance of minority subgroups even with loose guarantees.

In this thesis, we also compare the model performance of subgroups in different

differential privacy settings, so that we can analyze what impact the privacy-preserving

mechanism would introduce when the machine learning task is executed on a highly

imbalanced dataset.

2.4 Non-IID Data Distribution in Federated Learning

As we mentioned in chapter 1, we define data bias from two perspectives, one among

all clients in the federated learning setting, another one within a specific client. Since

the previous section has fully introduced data bias within one specific machine, we will

introduce the data bias from the among-clients perspective in this section as the data

distribution scenarios.

In real-world machine learning tasks, datasets owned by several clients often comes

with various data formats and some unique preferences based on their business back-

ground. Thus, the resulting diversity would slow down the convergence of the global

model in a federated learning setting.

In the experiments of paper (47), they assigned every client exact m classes of the

dataset to mimic the "non-IID (m)" federated learning setting. Their results showed

that models with IID data distribution has a relatively faster convergence than non-IID

ones.

A more comprehensive experimental study on the federated learning with non-IID

data silos showed that nowadays there is no single federated learning algorithm that

could outperform others considering all possible scenarios of the non-IID data distribu-

tion (48). This paper considered 3 types of possible non-IID data distribution cases,
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specifically (1) label distribution skew, (2) feature distribution skew, and (3) quantity

skew. The 6 data partitioning strategies can be seen in Table 2.2.

Distribution type Imbalance type
Label distribution skew Quantity-based label imbalance
Label distribution skew Distribution-based label imbalance
Feature distribution skew Noise-based feature imbalance
Feature distribution skew Synthetic feature imbalance
Feature distribution skew Real-world feature imbalance

Quantity skew

Table 2.2: 6 data partitioning strategies

In label distribution skew, a simple case in practice is that some hospitals have great

specialization in a particular set of disease categories, then the number of patient records

of these diseases within these hospitals would naturally be much higher. The difference

between quantity-based and distribution-based label imbalance is the number of labels in

each client. Quantitiy-based label imbalance assigns a fixed number of labels in a client,

and is considered as an extreme case. Each client in distribution-based label imbalance is

allocated a certain proportion of the samples within each label according to the Dirichlet

distribution, which is normally used as the prior distribution in Bayesian statistics and

as the appropriate method to simulate real-world data distribution scenarios (49).

In feature distribution skew, examples could be different fur colors and various

patterns in different areas for cats. In the noise-based feature imbalance, different levels

of Gussian noise is added to the randomly and equally divided parts of the whole dataset

to simulate different noise level among all clients. In the synthetic feature imbalance,

they divided a cube into 8 equal-volume parts and allocated two symmetric parts in

one client, creating a label-balanced but varied feature data distribution. The real-

world feature imbalance uses the inherent feature of data samples to distribute, such

as distributing the EMNIST dataset of handwritten characters/digits based on their

writers.

In quantity skew, the number of samples within each local dataset are different

among all clients. Dirichlet distribution is also used here to allocate different number

of samples to each client.
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2.4 Non-IID Data Distribution in Federated Learning

In the context of this thesis, we consider the data partition strategies from the label

and class perspectives. Chapter 3 introduces the 4 data distribution scenarios in details

and indicates how we use these scenarios to mimic real-world maching learning task

settings.

19



2. BACKGROUND

20



3

Data Bias

As mentioned in Chapter 1, this thesis measures data bias from the following two as-

pects: (1) data imbalance within the dataset, and (2) data distribution among entities.

This chapter first introduces the highly imbalanced Adult dataset to show the label

imbalance and target class imbalance within a dataset. Next, this chapter shows 4

representative data distribution schemes in detail to illustrate how to mimic data dis-

tribution scenarios in real-world machine learning tasks. With the detailed illustration

of both data imbalance and data distribution scenarios, the data bias is thoroughly de-

fined and chapter 4 can then present the experiment design to systematically measure

the effect of data bias.

3.1 Data Imbalance

3.1.1 Adult Dataset

The most famous datasets in machine learning classification tasks are MNIST (15) and

CIFAR (50). These two image classification dataset are great benchmark for balanced

dataset since they both contain almost even number of sampler per class. However,

a great balance in the number of samples per class is not suitable when we want to

investigate the effect of data bias. Thus, we choose to use the Adult dataset, which is a

multivariate dataset derived from real world, with binary classification task and several

categorical features.

The adult dataset was extracted from the 1994 Census bureau database, and its

task is to classify whether a given adult makes more than $50,000 a year (51).
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The target class is salary in the adult dataset, where every sample’s annual income

is being classified as either >50K or <=50K. Features of the adult dataset include age,

workclass, education level, marital status, occupation, race, sex, capital status, hours

per week, and nationality.

In order to distribute the adult dataset in a federated learning setting and investigate

whether there is difference on performance between minority samples and majority

samples, we made a Sex_Race label by combining Sex feature values and Race feature

values for each sample in the dataset. The Sex_Race label has 10 classes in total given

that the Sex feature is consisted of Female and Male and the Race feature includes

Amer-Indian-Eskimo, Asian-Pac-Islander, Black, Other, and White.

In the following sections of this thesis, dataset refers to the Adult dataset, in which

salary as target class and Sex_Race as label, unless otherwise noted.

3.1.2 Data Imbalance within Adult Dataset

The complete adult dataset had 46033 samples, in which 34611 samples are in the target

class of <=50K and 11422 samples are in the target class of >50K. As a result, the

<=50K class has more than three times of the number of samples of >50K class.

Figure 3.1 shows the number of samples per Sex_Race label of the whole dataset,

and the exact number of samples per Sex_Race label per target class is shown in

table 3.1. It is clear that there is a huge difference on the number of samples between

the majority groups and minority groups. As stated in table 3.1, the Male_White

label contains 27421 samples, and it is almost 60% of the complete dataset. And the

Female_White label contains 12023 samples, which is more than 25% if the complete

dataset. On the contrary, the Female_Other label only has 135 samples, and this is

less than 0.3% of the complete dataset. The Female_Amer-Indian-Eskimo label only

has 166 samples, which is less than 0.4% of the complete dataset.

As a conclusion, the adult dataset is a highly imbalanced dataset considering from

perspectives of the target class and the Sex_Race label. We hereby define "<=50K"

as the majority class and ">50K" as the minority class in adult dataset. Also, samples

of Sex_Race label "Female_Amer-Indian-Eskimo" and "Female_Other" are defined as

under-represented groups within the adult dataset. Likely, samples of Sex_Race label

"Female_White" and "Male_White" are defined as over-represented groups within the

adult dataset.
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Figure 3.1: Number of samples per target class per Sex_Race label in complete adult
dataset

3.1.3 80/20 Train-Test Split of Adult Dataset

Normally we split the whole dataset based on its target class. However, after introducing

Sex_Race label to the Adult dataset, we also need to adjust the train-test split scheme.

We now split the complete adult dataset as train set and test set based on both Salary

target class and Sex_Race label, using a 80/20 proportion. This is to guarantee that the

testing results would be able to show the model performance on the complete dataset,

per target class, and per label. Table 3.2 shows the exact number of samples per

Salary target class after the dataset split. And table 3.3 gives the number of samples

per Sex_Race label on train set and test set. Figure 3.2 and figure 3.3 illustrate the

number of samples per target per class in the train set and test set.
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Sex_Race label & Target class <=50K >50K total total %
Female_Amer-Indian-Eskimo 152 14 166 0.3606 %
Female_Asian-Pac-Islander 401 69 470 1.0210 %

Female_Black 1998 127 2125 4.6163 %
Female_Other 126 9 135 0.2933 %
Female_White 12023 10542 1475 26.1182 %

Male_Amer-Indian-Eskimo 230 39 269 0.35844 %
Male_Asian-Pac-Islander 619 334 953 2.0703 %

Male_Black 1806 425 2231 4.8465 %
Male_Other 202 38 240 0.5214 %
Male_White 18529 8892 27421 59.5681 %

total 34611 11422 46033 100 %

Table 3.1: Number of samples per target class per Sex_Race label in complete adult
dataset

train set test set
<=50K 27684 6927
>50K 9135 2287

Table 3.2: Number of samples per Salary target class on train set and test set

train set test set
Female_Amer-Indian-Eskimo 132 34
Female_Asian-Pac-Islander 375 95

Female_Black 1699 426
Female_Other 107 28
Female_White 9618 2405

Male_Amer-Indian-Eskimo 215 54
Male_Asian-Pac-Islander 762 191

Male_Black 1784 447
Male_Other 191 49
Male_White 21936 5485

Table 3.3: Number of samples per Sex_Race label on train set and test set
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Figure 3.2: Number of samples per tar-
get class per Sex_Race label in adult
train set

Figure 3.3: Number of samples per tar-
get class per Sex_Race label in adult test
set

3.2 Data Distribution Scenarios

We will illustrate how to simulate the various data distribution schemes under a dis-

tributed machine learning setting. The implementation as the data distribution module

within a federated learning framework will be released later on.

As mentioned in chapter 1, the real-world organizations in a distributed machine

learning setting are usually with various data composition, which lead to the non-IID

data distribution among all worker nodes. Thus, in order to measure the effect of data

bias, we choose to simulate 4 types of representative data distributions in this thesis,

which are fully IID data distribution, fully non-IID data distribution, partial IID data

distribution, and statistical distribution.

The real-world machine learning problems have a relatively lower possibility to have

the same number of samples of every target class on every worker node, so we do not

distribute the dataset based on the target class. On the other hand, the label of each

sample is easier to be obtained. For example, the collection date and time of the sensor

data itself could be its label, and the demographic attributes like sex, rage, and age could

also be regarded as the label of the user data. Thus, we distribute the dataset among

worker nodes based on their label, which will also be the scheme in our experiments.
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3.2.1 Fully IID Data Distribution

As describe by its name, fully IID data distribution means that every worker node would

have the same number of samples on each label, inherently creates the same number of

samples in total on every worker node.

Fully IID data distribution is the basic assumption of many studies in distributed

machine learning setting. It is very helpful when creating the benchmark for a specific

machine learning model under collaborative training. However, the complexity of real-

world machine learning problems makes the fully IID data distribution rare. Thus,

this thesis regards the fully IID data distribution as an ideal baseline and puts more

attention on other data distribution scenarios.

3.2.2 Fully N-class Non-IID Data Distribution

On the opposite of having the same number of samples per label on each worker node,

fully non-IID data distribution shows us the extreme data distribution scenarios. In

this paper, we use n-class scheme for the non-IID data distribution scenarios.

The n-class non-IID data distribution means that the number of unique labels in

a worker node is exact n. To achieve this objective, we need to partition all samples

within one label as multiple parts, and arrange the labels in multiple worker nodes.

Details can be found in data.py within the Code folder.

The following formula shows our calculation method for the number of partitions of

samples with the same label.

number of partitions within one label =
number of worker nodes ∗ n

number of labels in complete dataset

Here we take an example to show the fully n-class data distribution scenario. As-

sume that the dataset has 10 labels, and we want to make a 2-class fully non-IID data

distribution of this dataset among 20 worker nodes. Then the number of partitions we

need for each label is 20∗2
10 = 4. Since there is no remainder in this formula, this is a

valid n-class fully non-IID data distribution scheme. This formula means that we need

to partition the samples of each label as 4 parts, and the arrange which labels should

be distributed in which worker nodes.

With the formula above, we can do a validity check before really distribute the

dataset, in order to avoid wasting computing resources. There are several invalid situ-

ations in a n-class fully non-IID data distribution, which are listed as below:
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• There are labels left which are not allocated to any one of the worker nodes.

For example, a 2-class fully non-IID scheme on a 10-label dataset with 3 worker

nodes is invalid since 3∗2
10 = 0 ... 6.

• There are different number of partitions within each label.

For example, a 5-class fully non-IID scheme on a 10-label dataset with 3 worker

nodes is invalid since 3∗5
10 = 1 ... 5. The remainder value of 5 means that the

number of partitions among all labels are not the same, which is not acceptable

in our n-class fully non-IID scenario.

3.2.3 Partial N-class Non-IID Data Distribution

In between the extremely orderly fully IID data distribution and the extremely uneven

n-class fully non-IID data ditribution, there are partial IID data distributions. The

proportion of non-IID part in the complete dataset should be defined before actually

distribute the data. This parameter could be any number between 0 and 100, including

0 and 100 but not limited to integers. During our experiments on the adult dataset,

we will pick up a series of non-IID proportion to investigate the effect of different data

distribution with the gradually increase non-IID percentage.

The IID part of the complete dataset will be distributed using the fully IID scheme,

and the non-IID part of the complete dataset will be distributed based on the fully

n-class non-IID scheme. Thus, we can also do a validity check before the calculation to

ensure it is a valid setting for partial n-class non-IID data distribution.

For example, we want to simulate a 30pct 2-class non-IID data distribution with

10 labels in dataset and 10 worker nodes. The validity check is passed according to
10∗2
10 = 2. The complete dataset will be split as 30% and 70% first. Then apply fully

2-class non-IID data simulation scheme on the first partition of 30%, and distribute the

second partition of 70% under the fully IID data distribution scheme.

3.2.4 Statistical distribution

Some of the real-world classification problems can also be in a statistical distribution,

such as binomial distribution for flipping a coin for thousands of times and normal

distribution for the score of every student in a large course. Considering the real use

cases, we choose to simulate the normal distribution in our experiments. We need to
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set the µ and σ for the normal distribution of each label, and these parameters can

be all different or all the same among all labels. After having the N(µ, σ2) for each

label, we need to run a random simulation to generate as many data points as the

number of samples in this label. Then we equally divide the x-axis as k parts, in which

k is the number of worker nodes in the federated setting. As a result, samples within

one specific label will be distributed among worker nodes according to the number of

randomly generated normal distribution samples that fall in its interval.

For example, we can set N(0, 1) for half of the labels and N(1, 4) for another half

of the labels, and distribute the samples based on the amount of generated data points

fall in a worker node’s interval.

The exact experiment setting of theses 4 types of data distribution scenarios will be

illustrated in detail in the next chapter.
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Experiment Design

This chapter describes the methodology of measuring the effect of data bias in differen-

tially private federated learning. In particular, we propose a comprehensive experiment

scheme considering three dimensions: (1) variation on data distribution scenario, (2)

different privacy budget of differential privacy, and (3) model parameter fusion scheme

in distributed training setting. The 6 data distribution scenarios and 10 differential

privacy setting will be thoroughly explained in this chapter. Also, this chapter illus-

trates the detailed experiment setting including the machine learning problem and the

federated learning setup.

4.1 Measurement of Utility and Fairness

As introduced in chapter 1, this thesis investigates the effect of data bias on differentially

private federated learning, by measuring the impact of privacy and data distribution

mechanism on the utility and fairness of a distributed machine learning system. To

achieve this objective in a classification task, we need to measure the utility using a

series of metrics derived from the confusion matrix, including accuracy, precision, recall,

and F1 score. Moreover, in order to measure the fairness of the classification model, we

also need to compare the overall model performance with the per-class and per-label

model performance to see if there is a large difference between the general utility and

the partial utility.

The details of metrics and testing scheme will be introduced in the following sections.
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Aside from vertically measuring the utility and fairness within one specific experi-

ment, we also need to respectively conduct comparison among experiments to examine

the effect of various data distribution scenarios and different privacy levels. To be more

specific, the first horizontal comparison will be in a fixed data distribution scenario but

with different privacy levels. The second horizontal comparison is conducted with the

fixed differential privacy budget among different data distribution scenarios.

4.2 Basic Experiment Setting

4.2.1 Machine Learning Problem

Dataset As mentioned in chapter 3, data imbalance is quite normal in real-world

machine learning problems, so we choose the Adult dataset with Sex_Race label to

be our dataset for all experiments regarding a classification task. The target class

in adult dataset is Salary, and samples will be classified as "<=50K" or ">50K"

for the annual income. Besides target class, we created Sex_Race label to help us

better simulate different data distribution scenarios. Values in Sex_Race label of

adult dataset are: ’Female_Amer-Indian-Eskimo’, ’Female_Asian-Pac-Islander’, ’Fe-

male_Black’, ’Female_Other’, ’Female_White’, ’Male_Amer-Indian-Eskimo’, ’Male_Asian-

Pac-Islander’, ’Male_Black’, ’Male_Other’, ’Male_White’. We use this adult dataset

with Sex_Race label in all of our following experiment design, result, and analysis.

Task The task is to perform a binary classification on the Salary. Since this thesis

pays most of the attention on the data distribution scenarios and differential privacy

budget, we decided to use a relatively simple Neural Network (NN) classification model

to help us avoid the influence from the machine learning model itself.

Model The NN classification model is consisted of 3 fully connected linear layer. Table

4.1 shows the detailed setting of each layer in the NN model. Figure 4.1 visualizes the

gradients of the simple NN classification model. This figure illustrates the pytorch

operations of the model with the help of package torchviz (52). And the figure is built

during forward propagation and shows which operations can be called on backward

propagation.
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Layer name Layer type Number of in features Number of out features Bias or not
fc1 linear 38 32 True
fc2 linear 32 32 True
fc3 linear 32 2 True

Table 4.1: Details of each layer in the NN binary classification model

4.2.2 Federated Learning Setup

In all of our experiments, we use 11 nodes in total, including 10 worker nodes used

for training and 1 central server being responsible for orchestration. In the training

process, we use 500 rounds with 1 epoch , in order to guarantee the convergence of

the simple NN binary classification model. Also, we use Federated Averaging (FedAvg)

as the fusion scheme in our federated learning framework. The main idea in FedAvg

is that the central server would boradcast the averaged value of each worker node for

every model parameter. With this fusion scheme, the parameter values in the central

server node is a good representative of all worker nodes.

4.3 Data Distribution Scenarios

To show the effect of different data distribution with a certain level of continuity, we

choose 3 non-IID proportions in the partial n-class non-IID data distribution scenario.

With that, we can see the impact that an increasing proportion of non-IID part in the

dataset has on the overall, per-class, and per-label performance.

In our experiment, we simulate the following 6 data distribution scenarios: (1) fully

IID, (2) 30% 2-class non-IID, (3) 50% 2-class non-IID, (4) 70% 2-class non-IID, (5) fully

2-class non-IID, (6) normal distribution.

4.3.1 Scenario 1: Fully IID data distribution

Figure 4.2 shows the fully IID data distribution scenario of adult dataset among 10

worker nodes. In this scenario, each worker node has the same number of samples in

total and per label.
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Figure 4.1: Visualization of binary classification model for adult dataset
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Figure 4.2: Number of samples per label on 10 workers nodes in fully IID data distribution
scenario

4.3.2 Scenario 2: 30% 2-class non-IID data distribution

Figure 4.3 gives the number of sampler per label of both IID and non-IID part of the

adult dataset. The adult dataset is split based on a proportion of 70/30 on IID and

nonIID parts at first. In figure 4.3, worker 0 means IID partition and worker 1 means

non-IID partition of the adult dataset. Figure 4.4 shows the 30% 2-class nonIID data

distribution scenario of adult dataset among 10 worker nodes. In figure 4.4, worker 0-9

means node 1-10 in the whole federated learning setting.

4.3.3 Scenario 3: 50% 2-class nonIID data distribution

Figure 4.5 gives the number of sampler per label of both IID and non-IID part of the

adult dataset. The adult dataset is split based on a proportion of 50/50 on IID and

nonIID parts at first. In figure 4.5, worker 0 means IID partition and worker 1 means

non-IID partition of the adult dataset. Figure 4.6 shows the 50% 2-class IID data

distribution scenario of adult dataset among 10 worker nodes. In figure 4.6, worker 0-9

means node 1-10 in the whole federated learning setting.
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Figure 4.3: Number of samples per label in 30% 2-class nonIID data distribution scenario,
node 0 for IID part and node 1 for non-IID part

Figure 4.4: Number of samples per label on 10 workers nodes in 30% 2-class nonIID data
distribution scenario

4.3.4 Scenario 4: 70% 2-class nonIID data distribution

Figure 4.7 gives the number of sampler per label of both IID and non-IID part of the

adult dataset. The adult dataset is split based on a proportion of 30/70 on IID and

nonIID parts at first. In figure 4.7, worker 0 means IID partition and worker 1 means
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Figure 4.5: Number of samples per label in 50% 2-class nonIID data distribution scenario,
node 0 for IID part and node 1 for non-IID part

Figure 4.6: Number of samples per label on 10 workers nodes in 50% 2-class nonIID data
distribution scenario

non-IID partition of the adult dataset. Figure 4.8 shows the 50% 2-class IID data

distribution scenario of adult dataset among 10 worker nodes. In figure 4.8, worker 0-9

means node 1-10 in the whole federated learning setting.
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Figure 4.7: Number of samples per label in 70% 2-class nonIID data distribution scenario,
node 0 for IID part and node 1 for non-IID part

Figure 4.8: Number of samples per label on 10 workers nodes in 70% 2-class nonIID data
distribution scenario

4.3.5 Scenario 5: Fully 2-class nonIID data distribution

Figure 4.9 shows the fully 2-class nonIID data distribution scenario of adult dataset

among 10 worker nodes. In this extreme scenario, each worker node only has samples

from 2 labels. The number of samples in total and per label are different among worker
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nodes..

Figure 4.9: Number of samples per label on 10 workers nodes in fully 2-class nonIID data
distribution scenarios

4.3.6 Scenario 6: Normal distribution

Table 4.2 shows the µ and σ of each label. The number of samples being allocated on

each worker node is decided by the number of data points that fall the specific interval

of a generated normal distribution.

Figure 4.10 shows the normal distribution scenario of adult dataset among 10 worker

nodes.

4.4 Differential Privacy

Our federated learning framework is developed using PyTorch and PyTorch distributed,

so we introduce Opacus to be in charge of the noise adding scheme of differential privacy.

Opacus is the PyTorch implementation of DPSGD (13) and Opacus is released by

Facebook for high-speed large-scale distributed setting with differential privacy (53).

Within Opacus, users need to define the value of target epsilon ε and target delta δ

on each worker node, and Opacus could compute the noise multiplier and add noise to

the raw data. After each training round, Opacus can calculate the privacy spent. The
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Sex_Race label µ σ

Female_Amer-Indian-Eskimo 0 1
Female_Asian-Pac-Islander 0 0.5

Female_Black 0 0.5
Female_Other 0 0.5
Female_White 0 0.5

Male_Amer-Indian-Eskimo 0 1
Male_Asian-Pac-Islander 0 1

Male_Black 0 1
Male_Other 0 1
Male_White 0 1

Table 4.2: Normal distribution parameters for each label

Figure 4.10: Number of samples per label on 10 workers nodes in normal distribution
scenarios

higher privacy budget we set, the lower privacy level the dataset has. It means that

relatively lower ε indicates that there will be more noise added to the raw data, leading

to a relatively higher privacy level of the dataset. Detailed integration of Opacus and

our federated learning framework can be found in our github repository.

In order to show the impact of privacy in a continuous manner, we performed ex-

periments without Differential Privacy (DP) and conducted experiments with different
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budget of low, mid, and high level. The following values of ε are chosen for our ex-

periments: 0.1, 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2, 10, 100. The detailed ε values within each

privacy budget category is shown in Table 4.3.

Privacy Budget Category ε values
Low 0.1, 0.2, 0.5, 0.8
Mid 1, 1.2, 1.5
High 2, 10, 100

Table 4.3: ε values in privacy budget categories

4.5 Testing Scheme

4.5.1 Measuring Fairness by Performance of Subgroups

In order to see the performance from both local worker nodes and central server node,

the following testing scheme is used in our experiments.

The complete test set of adult dataset contains 9214 samples from 10 labels. Every

worker node will do a test on this to record the overall performance of the model per

round per node. This is to examine the overall performance of each worker node when

they might see some samples which is not included in the feature space of the train set.

Aside from that, the train set distributed on each worker node will also be split as

80/20 for train and validation set. The worker nodes would also do a test on their own

validation set to measure the performance when they only see samples with existing

feature space.

Also, since we want to measure the performance per label and per class, all of the

evaluation metrics will be generated with both overall and per-subgroup values.

4.5.2 Measuring Utility by 4 Metrics

When measuring the performance of a Neural Network classification model based on

the Adult dataset, we use the evaluation metrics which are derived from the confusion

matrix. Within the confusion matrix of a classification task, True Positive (TP), False

Positive (FP), False Negative (FN), and True Negative (TN) are defined as below:
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• True Positive (TP): Number of samples being predicted as positive which are

actually positive.

• False Positive (FP): Number of samples being predicted as positive which are

actually negative.

• False Negative (FN): Number of samples being predicted as negative which are

actually positive.

• True Negative (TN): Number of samples being predicted as negative which are

actually negative.

The evaluation metrics we used in the experiments are defined as below:

• Accuracy: The fraction of samples being correctly classified:

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision: The proportion of the outcomes that are relevant:

Precision =
TP

TP + FP

• Recall: The proportion of total relevant outcomes correctly predicted:

Recall =
TP

TP + FN

• F-score (F1 score): The proportion of the outcomes that are relevant:

F1score = 2 ∗ precision ∗ recall
precision + recall

Since this thesis aims at investigating the effect of data bias, we use the weighted

averaging scheme to calculate the metrics, specifically F1 score, precision, and recall.

The weighted averaging scheme calculates the metrics for each label and find the average

weighted total score based on the support. Here support refers to the number of true

samples for each label. The weighted averaging scheme is an improvement from the

macro averaging scheme, which takes the label imbalance of the dataset into account.

The weighted F1 score could result in a value which is not in between the weighted

precision value and weighted recall value.
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Experiment Results Analysis

Detailed experiment results about overall, per-class, and per-label performance of all

experiments can be found in Appendix A and B. This chapter investigates the effect of

various data distribution scenarios and different privacy budget ε values in a differen-

tially private federated learning (DPFL) framework based on the vertical comparison

and horizontal comparison among all experiment results.

As a reminder of Chapter 4, there are 6 types of data distributions: (1) fully IID,

(2) 30% 2-class non-IID, (3) 50% 2-class non-IID, (4) 70% 2-class non-IID, (5) fuly

2-class non-IID, (6) normal distribution. The 10 ε values chosen for privacy budget of

Differential Privacy (DP) are: 0.1, 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2, 10, 100. We use "worker

nodes" and "local nodes" as the same meaning with the definition of clients in feder-

ated learning. And the final experiment results are aggregated from 10 collaboratively

training worker nodes by FedAvg fusion scheme on the central server node.

As mentioned in Table 3.1, the target classes of adult dataset are consisted of <=50K

and >50K. And the Sex_Race labels in adult dataset refer to the combination of Sex and

Race features. We regard the <=50K target class as the majority class and treat >50K

target class as the minority class in all sections below. Moreover, the term "under-

represented groups" and "minority groups" refer to the minority labels with a small

proportion of samples in the whole dataset, specifically Female_Amer-Indian-Eskimo

and Female_Other. The term "over representative groups" and "majority groups"

refer to the majority labels with a huge percentage of the whole dataset, specifically

Female_White and Male_White.
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When examining the effect of various data distribution scenarios, we consider the

hypothesis that the higher level of data imbalance leads to a better overall performance

and worse fairness of under-represented groups. During the investigation on the effect

of different privacy budget, we consider the hypothesis that the higher privacy level

leads to a better overall performance and worse fairness of under-represented groups.

5.1 Effect of Various Data Distribution Scenarios on Dif-
ferentially Private Federated Learning

Regarding the differential privacy mechanism in a federated learning setting, we chose

one ε value from each privacy budget category to investigate the effect of various data

distributions on that differentially private scenario. Specifically, we chose the no DP

setting, ε = 0.2 in low privacy budget, ε = 1.2 in mid privacy budget, and ε = 100 in high

privacy budget. By diving into the overall, per-class, and per-label model performance

among various data distribution scenarios within each privacy budget category, we can

examine the validity of the hypothesis that a higher level of data bias leads to a better

overall performance and worse fairness of under-represented groups.

5.1.1 Baseline Experiment

Since most studies in federated learning assume that the training data is identically

independent distributed (IID) among all worker nodes, we use the experiment results

of fully IID data distribution with different DP settings as the baseline to investigate

the effect of various data distribution scenarios in DPFL.

Data distribution Figure 4.2 shows the number of samples per Sex_Race label under

the fully IID data distribution. Since the samples of each label is evenly distributed

among 10 worker nodes, this fully IID data distribution scenario has the lowest level of

data bias among all 6 data distribution scenarios.

Performance difference between imbalanced target classes Table 5.1 and 5.2

show the final accuracy and F1 score of the overall dataset and per-class subgroups in

the fully IID data distribution scenario with different DP settings. The performance
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difference between the <=50K target class and >50K target class is also included in

these two tables.

No DP Low (ε = 0.2) Mid (ε = 1.2) High (ε = 100)
Overall 0.832429 0.759171 0.827871 0.831452
<=50K 0.909340 0.885520 0.935326 0.928396
>50K 0.599475 0.376476 0.502405 0.537822

Diff (<=50K, >50K) 0.309865 0.509044 0.432921 0.390574

Table 5.1: Overall and per-class final accuracy in baseline experiments, fully IID data
distribution scenario with 4 representative DP settings

No DP Low (ε = 0.2) Mid (ε = 1.2) High (ε = 100)
Overall 0.828505 0.745091 0.816664 0.822951
<=50K 0.890822 0.846828 0.890952 0.892265
>50K 0.639757 0.436945 0.591658 0.613008

Diff (<=50K, >50K) 0.251065 0.409883 0.299294 0.279257

Table 5.2: Overall and per-class final F1 score in baseline experiments, fully IID data
distribution scenario with 4 representative DP settings

As shown in Table 5.1 and 5.2, there is a huge performance difference between target

class <=50K and >50K. This is caused by the noticeable class imbalance within the

Adult dataset. Since target class <=50K has more than 75% of the samples in the whole

dataset, the neural networks model in the binary classification task tends to recognize

the target class <=50K more, and thus gives less attention to the >50K. As a result,

the model performance of target class <=50K is significantly better than the target

class >50K. Moreover, since the overall accuracy and F1 score are both calculate in a

weighted averaging scheme, we can see the overall model performance lies in between

the performance of these two target classes but obviously inclines more to the model

performance of target class <=50K.

Performance difference between minority and majority groups Table 5.3 and

5.4 show the final accuracy and F1 score of the overall dataset and per-label subgroups

in the fully IID data distribution scenario with different DP settings.
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No DP Low (ε = 0.2) Mid (ε = 1.2) High (ε = 100)
Overall 0.832429 0.759171 0.827871 0.831452

Female_Amer-Indian-Eskimo 0.794118 0.676471 0.735294 0.852941
Female_Other 0.821429 0.821429 0.892857 0.642857
Female_White 0.822453 0.765073 0.819543 0.820374
Male_White 0.836463 0.754786 0.828624 0.833364

Table 5.3: Overall and per-label final accuracy in baseline experiments, fully IID data
distribution scenario with 4 representative DP settings

No DP Low (ε = 0.2) Mid (ε = 1.2) High (ε = 100)
Overall 0.828505 0.745091 0.816664 0.822951

Female_Amer-Indian-Eskimo 0.798155 0.644752 0.719781 0.847130
Female_Other 0.820252 0.805322 0.878419 0.589286
Female_White 0.817943 0.754992 0.804902 0.811914
Male_White 0.832622 0.739257 0.818001 0.824720

Table 5.4: Overall and per-label final F1 score in baseline experiments, fully IID data
distribution scenario with 4 representative DP settings

As illustrated in Table 5.3 and 5.4, it is clear that the model performance of minority

group Sex_Race label Female_Amer-Indian-Eskimo is significantly worse, compared

with the overall and other Sex_Race labels in the no DP, low privacy budget and

mid privacy budget situations. And the model performance is significantly worse of

minority group Sex_Race label Female_Other in the high privacy budget situation.

The worse performance on minority groups, compared with overall and majority groups,

is caused by the noticeable label imbalance within the Adult dataset. Sex_Race label

Female_Amer-Indian-Eskimo and Female_Other only have 0.36% and 0.29% of the

samples in the whole dataset. And their proportion of target class <50K are 8.43% and

6.67%, which are both significantly lower than the overall <50K proportion of 24.8%.

As a result, the model would naturally give worse performance on minority groups. On

the other side, the model performance of majority groups in Sex_Race label does not

show substantial difference compared with the overall model performance.
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5.1.2 Extreme Cases

Here we consider the fully 2-class non-IID and normal data distribution with different

DP settings as extreme cases when investigating the effect of various data distribution

scenarios on DPFL.

Data Distribution Figure 4.9 and 4.10 show the number of samples per Sex_Race

label among all worker nodes in fully 2-class non-IID and normal data distribution

scenarios. The fully 2-class non-IID data distribution scenario only allocates samples of

two Sex_Race labels to each worker node. And the normal data distribution scenario

allocates most of the samples in one Sex_Race in a limited number of worker nodes. As

a result, some Sex_Race labels are even invisible for particular worker nodes, leading

to a substantial high level of data bias.

Performance difference between imbalanced target classes Table 5.5 and 5.6

show the overall and per-class performance difference between extreme cases and base-

line experiments. To be more specific, these two tables present the difference of final

accuracy and F1 score on the overall dataset and per-class subgroups by calculating the

difference value between extreme cases (fully 2-class non-IID and normal data distribu-

tion) and baseline experiments.

No DP Low (ε = 0.2) Mid (ε = 1.2) High (ε = 100)
Diff_overall (fully non-IID, baseline) +0.005861 +0.024745 +0.000868 -0.001953

Diff_overall (normal, baseline) +0.002062 +0.023768 +0.001085 -0.005209
Diff_<=50K (fully non-IID, baseline) +0.014725 -0.023819 -0.009384 -0.000722

Diff_<=50K (normal, baseline) +0.010827 -0.044030 -0.012271 -0.003031
Diff_>50K (fully non-IID, baseline) -0.020988 +0.171841 +0.031919 -0.005684

Diff_>50K (normal, baseline) -0.024486 +0.229121 +0.041539 -0.011805

Table 5.5: Overall and per-class final accuracy in extreme cases compared with baseline
experiments, fully 2-class non-IID and normal data distribution scenario with 4 represen-
tative DP settings

Looking at Table 5.5 and 5.6, it is apparent that the difference of final accuracy

on target class >50K is significantly larger and the overall difference is substantially

lower in all DP settings. And the difference of final F1 score shows a significantly larger

difference on target class >50K with a substantially lower difference on target class
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No DP Low (ε = 0.2) Mid (ε = 1.2) High (ε = 100)
Diff_overall (fully non-IID, baseline) +0.003700 +0.037605 +0.003604 -0.002201

Diff_overall (normal, baseline) +0.000070 +0.040750 +0.004596 -0.005586
Diff_<=50K (fully non-IID, baseline) +0.004924 +0.010233 -0.000490 -0.001188

Diff_<=50K (normal, baseline) +0.002333 +0.006738 -0.000671 -0.003284
Diff_>50K (fully non-IID, baseline) -0.000008 +0.120512 +0.016000 -0.005268

Diff_>50K (normal, baseline) -0.006785 +0.143768 +0.020547 -0.012559

Table 5.6: Overall and per-class final F1 score in extreme cases compared with baseline
experiments, fully 2-class non-IID and normal data distribution scenario with 4 represen-
tative DP settings

<=50K in all privacy budget categories. These results indicate that the change in data

bias level has larger impact on the model performance of target class >50K.

Performance difference between minority and majority groups Table 5.7 and

5.8 show the overall and per-label performance difference between extreme cases and

baseline experiments. To be more specific, these two tables present the difference of final

accuracy and F1 score on the overall dataset and per-class subgroups by calculating the

value difference between these two items: (1) performance difference in an extreme data

distribution (fully 2-class non-IID or normal data distribution) calculated by the per-

label performance value minus overall performance value, and (2) performance difference

in the baseline experiment (fully IID) calculated by the per-label performance value

minus overall performance value. Besides, we use abbreviations to represent Sex_Race

labels in these two tables, specifically FA for Female_Amer-Indian-Eskimo, FO for

Female_Other, FW for Female_White, and MW for Male_White.

Since we compare the FA accuracy and overall accuracy between extreme cases

and the baseline experiments in Table 5.7 and 5.8, it is clear that the difference be-

tween extreme cases and baseline regarding FA-overall and FO-overall accuracy and

F1 score is significantly larger, compared with the FW-overall and MW-overall perfor-

mance difference. Thus, we can see that switch of distribution scheme (from baseline to

extreme cases) has larger impact on the performance of minority groups (Sex_Race la-

bel Female_Amer-Latin-Eskimo and Female_Other). On the other hand, the majority

groups (Sex_Race label Female_White and Male_White) have shown no big change

when the data distribution scenario alters.
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No DP Low (ε = 0.2) Mid (ε = 1.2) High (ε = 100)
Diff_FA-overall (fully non-IID, baseline) +0.111786 +0.181137 +0.146191 -0.115694

Diff_FA-overall (normal, baseline) +0.027349 +0.093879 -0.030497 -0.024203
Diff_FO-overall (fully non-IID, baseline) -0.041576 -0.024745 -0.108011 +0.251953

Diff_FO-overall (normal, baseline) +0.140795 -0.095197 +0.034629 +0.148066
Diff_FW-overall (fully non-IID, baseline) +0.018671 -0.006450 -0.005858 +0.015675

Diff_FW-overall (normal, baseline) +0.015402 -0.007552 +0.008478 +0.009367
Diff_MW-overall (fully non-IID, baseline) -0.008413 +0.004425 +0.002231 -0.004064

Diff_MW-overall (normal, baseline) -0.004979 +0.005038 -0.000356 -0.002266

Table 5.7: Final accuracy difference between overall dataset and per-label subgroups,
comparing extreme cases with baseline experiments, fully 2-class non-IID and normal data
distribution scenario with 4 representative DP settings

No DP Low (ε = 0.2) Mid (ε = 1.2) High (ε = 100)
Diff_FA-overall (fully non-IID, baseline) +0.108488 +0.206221 +0.154785 -0.141266

Diff_FA-overall (normal, baseline) +0.010033 +0.112653 -0.035652 -0.022200
Diff_FO-overall (fully non-IID, baseline) -0.082881 -0.039897 -0.122283 +0.296108

Diff_FO-overall (normal, baseline) +0.142737 -0.102780 +0.043969 +0.202014
Diff_FW-overall (fully non-IID, baseline) +0.019589 -0.011142 -0.004212 +0.015669

Diff_FW-overall (normal, baseline) +0.017117 -0.010286 +0.010947 +0.010203
Diff_MW-overall (fully non-IID, baseline) -0.009254 +0.006319 +0.002101 -0.003906

Diff_MW-overall (normal, baseline) -0.005098 +0.005669 -0.000872 -0.002988

Table 5.8: Final F1 score difference between overall dataset and per-label subgroups,
comparing extreme cases with baseline experiments, fully 2-class non-IID and normal data
distribution scenario with 4 representative DP settings

5.1.3 Middle Cases

After diving into extreme cases of fully 2-class non-IID and normal data distribution,

we also want to analyze the performance difference along with a continuous changing

of the data distribution scenario. Here we use the partial non-IID data distribution

scheme, and compare the overall, per-class, and per-label model performance of 0%,

30%, 50%, 70%, and 100% 2-class non-IID data distribution scenario with different DP

settings.

Data Distribution Figure 4.2, 4.4, 4.6, 4.8, and 4.9 show the number of samples

per Sex_Race label under different data distribution scenarios with different non-IID

proportions. As we can see from the figures, an increasing non-IID proportions of
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the whole training set from 0% to 100% leads to an increasing level of data bias in

experiments.

Performance difference between imbalanced target classes Figure 5.1 and 5.2

present the change of overall and per-class model performance without DP along with an

increasing non-IID proportion in the training set. Likewise, Figure 5.3 and 5.4 present

the performance change with privacy budget ε = 0.2, Figure 5.5 and 5.6 present the

performance change with privacy budget ε = 1.2, and Figure 5.7 and 5.8 present the

change with privacy budget ε = 100 along with an increasing non-IID proportion in the

training set. Aside from the trend shown in figures above, Table 5.9 and 5.10 show the

overall and per-class standard deviation and range in the change of non-IID proportion

in the training set.

Figure 5.1: Overall and per-class ac-
curacy in different non-IID proportion of
the training set, without DP

Figure 5.2: Overall and per-class F1

score in different non-IID proportion of
the training set, without DP

Figure 5.3: Overall and per-class ac-
curacy in different non-IID proportion of
the training set, privacy budget ε = 0.2

Figure 5.4: Overall and per-class F1

score in different non-IID proportion of
the training set, privacy budget ε = 0.2
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Figure 5.5: Overall and per-class ac-
curacy in different non-IID proportion of
the training set, privacy budget ε = 1.2

Figure 5.6: Overall and per-class F1

score in different non-IID proportion of
the training set, privacy budget ε = 1.2

Figure 5.7: Overall and per-class ac-
curacy in different non-IID proportion of
the training set, privacy budget ε = 100

Figure 5.8: Overall and per-class F1

score in different non-IID proportion of
the training set, privacy budget ε = 100

No DP Low (ε = 0.2) Mid (ε = 1.2) High (ε = 100)
StdDev_overall 0.002725 0.016242 0.002500 0.002232
Range_overall 0.008791 0.054265 0.006511 0.007380
StdDev_<=50K 0.005921 0.028584 0.004332 0.001356
Range_<=50K 0.018190 0.075501 0.012271 0.004475
StdDev_>50K 0.012389 0.091695 0.016937 0.008053
Range_>50K 0.041539 0.241802 0.051159 0.024049

Table 5.9: Standard deviation and range of overall and per-label final accuracy in the
change of non-IID proportion in training set, with 4 representative DP settings

As we can see from figures above, the overall and per-class model performance change

are all not monotonic along with the increasing non-IID proportion of the training set.

Besides, the results shown in these figures directly tell us that the huge performance
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No DP Low (ε = 0.2) Mid (ε = 1.2) High (ε = 100)
StdDev_overall 0.002426 0.019547 0.003330 0.002583
Range_overall 0.008368 0.059971 0.009490 0.008509
StdDev_<=50K 0.002067 0.010758 0.001473 0.001341
Range_<=50K 0.006015 0.033489 0.003982 0.004405
StdDev_>50K 0.005711 0.059682 0.010265 0.006494
Range_>50K 0.015504 0.143768 0.031220 0.020939

Table 5.10: Standard deviation and range of overall and per-label final F1 score in the
change of non-IID proportion in training set, with 4 representative DP settings

difference between target class <=50K and >50K always exists no matter how the data

distribution scenario changes with different non-IID proportions in the training set.

As stated in Table 5.9 and 5.10, the change of non-IID proportion in the training set

almost brings no change in the overall model performance in all DP settings except the

low privacy budget category (ε = 0.2). The DP theory clearly explains this phenomenon.

Having an extremely low ε value as the privacy budget in training process leads to a

substantially high level of privacy. As a result, a huge amount of noise is added to the

local raw dataset, making the training set much more indistinguishable to the neural

networks model of this binary classification task. Thus, when the non-IID proportion

changes in this situation, there is a larger reflection on the data samples allocated to

each worker node. Thus, the model performance would significantly change in this high

privacy level compared with other privacy budgets categories. Also, a substantially huge

increase in the overall model performance with ε = 0.2 and 50% non-IID proportion of

the training set can be seen from Figure 5.3 and 5.4. Similarly, ε = 1.2 shows a sudden

increase in 30% non-IID in Figure 5.5 and 5.6, and ε = 1.2 presents a sudden increase

in 50% non-IID in Figure 5.7 and 5.8.

Aside from the overall model performance, Table 5.9 and 5.10 also indicate that

the standard deviation and range of target class >50K is significantly higher than the

overall performance and the target class <=50K. This larger impact of data distribution

scenarios changes on target class >50K can be explained by the high level of class

imbalance within the Adult dataset.
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5.1.4 Performance difference between minority and majority groups

Figure 5.9 and 5.10 present the change of overall and per-label model performance

without DP along with an increasing non-IID proportion in the training set. Likewise,

Figure 5.11 and 5.12 present the performance change with privacy budget ε = 0.2,

Figure 5.13 and 5.14 present the performance change with privacy budget ε = 1.2, and

Figure 5.15 and 5.16 present the change with privacy budget ε = 100 along with an

increasing non-IID proportion in the training set. Aside from the trend shown in figures

above, Table 5.11 and 5.12 show the overall and per-class standard deviation and range

in the change of non-IID proportion in the training set.

Besides, we use abbreviations to represent Sex_Race labels in these two tables,

specifically FA for Female_Amer-Indian-Eskimo, FO for Female_Other, FW for Fe-

male_White, and MW for Male_White.

Figure 5.9: Overall and per-label ac-
curacy in different non-IID proportion of
the training set, without DP

Figure 5.10: Overall and per-label F1

score in different non-IID proportion of
the training set, without DP

Figure 5.11: Overall and per-label ac-
curacy in different non-IID proportion of
the training set, privacy budget ε = 0.2

Figure 5.12: Overall and per-label F1

score in different non-IID proportion of
the training set, privacy budget ε = 0.2

As shown in figures above, we can see that the model performance of overall dataset

and majority groups (Sex_Race label Female_White and Male_White) are quite sim-
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Figure 5.13: Overall and per-label ac-
curacy in different non-IID proportion of
the training set, privacy budget ε = 1.2

Figure 5.14: Overall and per-label F1

score in different non-IID proportion of
the training set, privacy budget ε = 1.2

Figure 5.15: Overall and per-label ac-
curacy in different non-IID proportion of
the training set, privacy budget ε = 100

Figure 5.16: Overall and per-label F1

score in different non-IID proportion of
the training set, privacy budget ε = 100

No DP Low (ε = 0.2) Mid (ε = 1.2) High (ε = 100)
StdDev_FA 0.074825 0.090918 0.068802 0.057376
Range_FA 0.235294 0.235294 0.176471 0.176471
StdDev_FO 0.098888 0.046107 0.084179 0.091636
Range_FO 0.321429 0.142857 0.250000 0.285714
StdDev_FW 0.009180 0.014565 0.006443 0.004823
Range_FW 0.026195 0.043243 0.017464 0.013722
StdDev_MW 0.004104 0.017814 0.003722 0.003215
Range_MW 0.012397 0.060893 0.009480 0.008751

Table 5.11: Standard deviation and range of overall and per-label final accuracy in the
change of non-IID proportion in training set, with 4 representative DP settings

ilar, demonstrating by the very close standard deviation and range value in the change

of non-IID proportions with all DP setting except ε = 1.2.

On the other hand, it is clear that the standard deviation of model performance on

minority groups (Sex_Race label Female_Amer-Indian-Eskimo and Female_Other)
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No DP Low (ε = 0.2) Mid (ε = 1.2) High (ε = 100)
StdDev_FA 0.083373 0.112654 0.072210 0.069522
Range_FA 0.262379 0.302605 0.189445 0.209264
StdDev_FO 0.116924 0.049354 0.080661 0.107188
Range_FO 0.371222 0.139901 0.241618 0.339285
StdDev_FW 0.009000 0.016952 0.007931 0.004935
Range_FW 0.025742 0.048281 0.019653 0.013468
StdDev_MW 0.004129 0.021113 0.003933 0.003631
Range_MW 0.011597 0.068427 0.011373 0.010714

Table 5.12: Standard deviation and range of overall and per-label final F1 score in the
change of non-IID proportion in training set, with 4 representative DP settings

are substantially higher than the overall performance and minority groups. Thus, we ca

see that the change of non-IID proportion has a larger impact on the minority groups

rather than majority groups.

5.1.5 Summary

The validity of the hypothesis that a higher level of data bias leads to a better overall

performance and worse fairness of under-represented groups has been proved based on

the experiment results in this section.

Since we use the fully IID data distribution scenario as the baseline, we can see that

the other 5 data distribution scenarios (30% non-IID, 50% non-IID, 70% non-IID, fully

non-IID, and normal data distribution) all get a better overall performance than the

baseline in all privacy budget categories (low, mid, high). Therefore, we can conclude

that the overall model performance is better when increasing the level of data imbalance.

Also, in the series of partial non-IID experiments, the level of data bias becomes

higher when we increase the non-IID proportion in the training set. Along with the in-

creasing non-IID proportion, we can see a significant impact on the model performance

of minority groups (Sex_Race label Female_Amer-Indian-Eskimo and Female_Other).

At the same time, the model performance of majority groups (Sex_Race label Fe-

male_White and Male_White) is not significantly affected by the changes of non-IID

proportion. Thus, we can conclude that the model performance of minority groups is

largely affected by the variety of data distribution scenarios. In other words, the fairness
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of under-represented groups in the whole dataset is affected by various data distribution

scenarios.

5.2 Effect of Different Privacy Budget on Differentially Pri-
vate Federated Learning

Here we would like to quickly recap the differential privacy (DP) mechanism. A lower

privacy budget ε value results in a higher privacy level. And a higher privacy level leads

to more noise added to the raw dataset. Thus, the low, mid, and high privacy budget

categories represent the high, mid, and low privacy level, leading to large, modest, and

small noise being added to the raw dataset.

Regarding the differential privacy setting in the federated learning setting, we chose

9 several ε values from each privacy budget category, specifically 0.2, 0.5, and 0.8 in low

privacy budget, 1, 1.2, 1.5 in mid privacy budget, and 2, 10, and 100 in high privacy

budget. By diving into the overall, per-class, and per-label model performance difference

among different privacy budget ε values within each type of data distribution scenarios,

we can examine the validity of the hypothesis that a higher privacy level leads to a

worse overall performance and worse fairness of under-represented groups.

5.2.1 Performance difference between imbalanced target classes

5.2.1.1 Baseline Experiment

In order to measure the effect of different privacy budgets (ε values), we hereby use

the experiment results without DP as the baseline. Within the 6 data distribution

scenarios in the experiment design, we choose to use the following three representative

data distribution scenarios to investigate the effect of different privacy budget (ε values):

(1) fully IID, (2) fully 2-class non-IID, and (3) normal data distribution.

Table 5.13 and 5.14 show the final accuracy and F1 score of the overall dataset and

per-class subgroups in the 3 representative data distribution scenario without DP. The

performance difference between the <=50K target class and >50K target class is also

included in these two tables.

As shown in Table 5.13 and 5.14, it is clear that the huge performance difference

between target class <=50K and >50K always exists in the baseline experiments.
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Fully IID Fully non-IID Normal
Overall 0.832429 0.838290 0.834491
<=50K 0.909340 0.924065 0.920167
>50K 0.599475 0.578487 0.574989

Diff (<=50K, >50K) 0.309865 0.345578 0.345178

Table 5.13: Overall and per-class final accuracy in 3 representative data distribution
scenarios (fully IID, fully 2-class non-IID, and normal data distribution) without DP

Fully IID Fully non-IID Normal
Overall 0.828505 0.832205 0.828575
<=50K 0.890822 0.895746 0.893155
>50K 0.639757 0.639749 0.632972

Diff (<=50K, >50K) 0.251065 0.255997 0.260183

Table 5.14: Overall and per-class final F1 score in baseline experiments, fully IID, fully
2-class non-IID, and normal data distribution scenarios without DP

5.2.1.2 Privacy budget (ε value) changes from 0.2 to 100

As we mentioned in Chapter 4, we choose 3 ε values for each privacy budget category,

specifically 0.2, 0.5, 0.8 for low privacy budget, 1, 1.2, 1.5 for mid privacy budget, and

2, 10, 100 for high privacy budget.

Figure 5.17 and 5.18 present the change of overall and per-class model performance

in fully IID data distribution along with an increasing ε value as the privacy budget.

Likewise, Figure 5.19 and 5.20 illustrate the performance change along with increasing

ε values in privacy budget within fully 2-class non-IID data distribution. And Figure

5.21 and 5.22 show the performance change along with increasing ε values in privacy

budget within normal distribution.

Table 5.15 and 5.16 show the final accuracy and F1 score of the overall dataset

and per-class subgroups in 3 representative data distribution scenarios with increasing

privacy budget (ε changes from 0.2 to 100).

As we can see from Table 5.15 and 5.16, it is clear that the standard deviation on

performance of target class >50K is significantly higher in fully IID data distribution.

And standard deviation on performance of target class <=50K is significantly higher in

fully 2-class non-IID data distribution. Given that, we can see that there is no general
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Figure 5.17: Overall and per-label ac-
curacy in 9 different privacy budget ε val-
ues, within fully IID data distribution
scenario

Figure 5.18: Overall and per-label F1

score in 9 different privacy budget ε val-
ues, within fully IID data distribution
scenario

Figure 5.19: Overall and per-label ac-
curacy in 9 different privacy budget ε val-
ues, within fully 2-class non-IID data dis-
tribution scenario

Figure 5.20: Overall and per-label F1

score in 9 different privacy budget ε val-
ues, within fully 2-class non-IID data dis-
tribution scenario

Figure 5.21: Overall and per-label ac-
curacy in 9 different privacy budget ε val-
ues, within normal data distribution sce-
nario

Figure 5.22: Overall and per-label F1

score in 9 different privacy budget ε val-
ues, within normal data distribution sce-
nario
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Fully IID Fully non-IID Normal
Std_overall 0.021527 0.014333 0.014596

Range_overall 0.072281 0.048730 0.051335
Std_<=50K 0.015193 0.020536 0.027280

Range_<=50K 0.055724 0.067706 0.092969
Std_>50K 0.053103 0.006290 0.026783

Range_>50K 0.176650 0.019677 0.098382

Table 5.15: Standard deviation of overall and per-class final accuracy in 3 representative
data distribution scenarios (fully IID, fully 2-class non-IID, and normal data distribution)
with ε value changes from 0.2 to 100

Fully IID Fully non-IID Normal
Std_overall 0.023271 0.012041 0.011047

Range_overall 0.077860 0.041563 0.040467
Std_<=50K 0.013570 0.010668 0.011751

Range_<=50K 0.045437 0.035945 0.040341
Std_>50K 0.053605 0.016319 0.010934

Range_>50K 0.176063 0.058579 0.040848

Table 5.16: Standard deviation of overall and per-class final F1 score in 3 representative
data distribution scenarios (fully IID, fully 2-class non-IID, and normal data distribution)
with ε value changes from 0.2 to 100

pattern on the change of overall and per-class performance among different kinds of

data distributions. However, if we take a deeper look at figure above, it is clear that

when ε value changes from 0.2 to 0.5, the performance of overall dataset and target

class <=50K both has a sudden increase in all of the 3 representative data distribution

scenarios. This phenomenon can be explained by the DP theory. When ε is 0.2, we

have add a huge amount of noise to the dataset, resulting in a highly indistinguishable

dataset to local models. Then when we release the privacy limitation to ε = 0.5, the

local model has a more distinguishable dataset. As a result, the model could have better

performance on the overall dataset and the target class <=50K with more than 75% of

the whole dataset.

Moreover, Figure 5.17 and 5.18 clearly indicate that the change of privacy budget (ε

value) has a substantially larger impact on the target class >50K with less than 25% of
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the dataset in fully IID data distribution, compared with the overall dataset and target

class <=50K.

5.2.2 Performance difference between minority and majority groups

5.2.2.1 Baseline Experiment

In order to measure the effect of different privacy budgets (ε values), we hereby use

the experiment results without DP as the baseline. 3 out of 6 representative data

distribution scenarios are chosen to investigate the effect of different privacy budget (ε

value): (1) fully IID, (2) fully 2-class non-IID, and (3) normal data distribution.

Table 5.17 and 5.18 show the final accuracy and F1 score of the overall dataset and

per-class subgroups in the 3 representative data distribution scenario without DP.

Fully IID Fully non-IID Normal
Overall 0.832429 0.838290 0.834491

Female_Amer-Indian-Eskimo 0.794118 0.911765 0.823529
Female_Other 0.821429 0.785714 0.964286
Female_White 0.822453 0.846985 0.839917
Male_White 0.836463 0.833911 0.833546

Table 5.17: Overall and per-label final accuracy in 3 representative data distribution
scenarios (fully IID, fully 2-class non-IID, and normal data distribution) without DP

Fully IID Fully non-IID Normal
Overall 0.828505 0.832205 0.828575

Female_Amer-Indian-Eskimo 0.798155 0.910343 0.808258
Female_Other 0.820252 0.741071 0.963059
Female_White 0.817943 0.841232 0.835130
Male_White 0.832622 0.827068 0.827594

Table 5.18: Overall and per-label final F1 score in 3 representative data distribution
scenarios (fully IID, fully 2-class non-IID, and normal data distribution) without DP

As presented in Table 5.17 and 5.18, it is clear that the model performance of

Sex_Race label Female_Amer-Indian-Eskimo is significantly worse in the fully IID data

distribution and model performance of Sex_Race label Female_Other is substantially

worse in fully non-IID data distribution. With these results on hand, we can see that
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there is no general pattern on the model performance of minority or majority groups

among different data distribution scenarios.

5.2.2.2 Privacy budget (ε value) changes from 0.2 to 100

Figure 5.23 and 5.24 present the change of overall and per-label model performance

in fully IID data distribution along with an increasing ε value from 0.2 to 100 as the

privacy budget. Likewise, Figure 5.25 and 5.26 present the performance change in fully

2-class non-IID data distribution with an increasing ε value. And Figure 5.27 and 5.28

present the performance change in normal data distribution with an increasing ε value.

Aside from the trend shown in figures above, Table 5.19 and 5.20 show the standard

deviation and range of the overall and per-label model performance in the change of an

increasing ε value as the privacy budget.

Besides, we use abbreviations to represent Sex_Race labels in these two tables,

specifically FA for Female_Amer-Indian-Eskimo, FO for Female_Other, FW for Fe-

male_White, and MW for Male_White.

Figure 5.23: Overall and per-label ac-
curacy in fully IID data distribution, with
increasing ε value from 0.2 to 100

Figure 5.24: Overall and per-label F1

score in fully IID data distribution, with
increasing ε value from 0.2 to 100

As shown in figures above, we can see that the model performance of overall dataset

and majority groups (Sex_Race label Female_White and Male_White) are quite sim-

ilar, demonstrating by the very close standard deviation and range value in the change

of ε value from 0.2 to 100 within all the 3 representative data distribution scenarios.

On the other hand, Table 5.19 and 5.20 clearly shows that the standard deviation of

model performance on minority groups (Sex_Race label Female_Amer-Indian-Eskimo

and Female_Other) are substantially higher than the overall performance and minority
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Figure 5.25: Overall and per-label ac-
curacy in fully 2-class non-IID data dis-
tribution, with increasing ε value from 0.2
to 100

Figure 5.26: Overall and per-label F1

score in fully 2-class non-IID data distri-
bution, with increasing ε value from 0.2
to 100

Figure 5.27: Overall and per-label ac-
curacy in normal data distribution, with
increasing ε value from 0.2 to 100

Figure 5.28: Overall and per-label F1

score in normal data distribution, with
increasing ε value from 0.2 to 100

Fully IID Fully non-IID Normal
StdDev_FA 0.082025 0.063537 0.049561
Range_FA 0.264705 0.235294 0.147059
StdDev_FO 0.087662 0.075292 0.082096
Range_FO 0.285714 0.250000 0.250000
StdDev_FW 0.019542 0.014718 0.014994
Range_FW 0.068607 0.051143 0.050728
StdDev_MW 0.022760 0.015018 0.014598
Range_MW 0.078578 0.052142 0.051048

Table 5.19: Standard deviation and range of overall and per-label final accuracy in 3
representative data distributions (fully IID, fully 2-class non-IID, and normal data distri-
bution), with ε value changes from 0.2 to 100

groups. Thus, we ca see that the change of ε value as the privacy budget has a larger

impact on the minority groups rather than majority groups and overall dataset.
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Fully IID Fully non-IID Normal
StdDev_FA 0.091229 0.070912 0.054218
Range_FA 0.296424 0.266222 0.153672
StdDev_FO 0.092943 0.072208 0.083642
Range_FO 0.333695 0.235877 0.259000
StdDev_FW 0.020179 0.013017 0.011030
Range_FW 0.068979 0.044216 0.037576
StdDev_MW 0.024846 0.012721 0.011289
Range_MW 0.085463 0.045129 0.040857

Table 5.20: Standard deviation and range of overall and per-label final F1 score in 3 repre-
sentative data distributions (fully IID, fully 2-class non-IID, and normal data distribution),
with ε value changes from 0.2 to 100

Moreover, as we can see from the figures, there is no general pattern or monotonic

trend in the model performance of minority groups. However, we can see a clear drop

on the performance of minority groups when the ε decreases from 10 to 100. This

phenomenon can be explained by the DP theory. When ε has been lifted form 10 to

100, it results in a significantly smaller amount of noise being added to the raw dataset.

As a result, less noise in minority groups makes these subgroups with a small number

of samples even harder to be correctly classified by the neural network model. Thus,

we can see a substantial performance drop on minority groups when ε value decreases

from 10 to 100.

5.2.3 Summary

The validity of the hypothesis that a higher privacy level leads to a worse overall per-

formance and worse fairness of under-represented groups has been proved based on the

experiment results in this section.

Since we use the experiment of fully IID, fully 2-class non-IID, and normal data

distribution scenario without DP as the baseline of their own series, we can see that the

model performance is worse after introducing DP. Also, a lower privacy budget means

a higher privacy level. With more noise being added to the raw dataset (larger ε value),

the overall model performance is significantly lower. Therefore, we can conclude that

the overall model performance is worse when increasing the privacy level.
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Also, it is clear that changing privacy budget (ε value) has a significant impact on the

model performance of minority groups (Sex_Race label Female_Amer-Indian-Eskimo

and Female_Other). At the same time, the model performance of majority groups

(Sex_Race label Female_White and Male_White) is not significantly affected by the

changes of privacy level (ε value). Thus, we can conclude that the model performance

of minority groups is largely affected by the variety of data distribution scenarios. In

other words, the fairness of under-represented groups in the whole dataset is affected

by different privacy budgets (ε values).
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Conclusion

In order to investigate the effect of data bias in a differentially private federated learning

setting, we designed a comprehensive experiment scheme in this thesis to show the

impact of data bias and privacy preserving mechanism on the utility and fairness within

the federated learning setting.

Within the experiment scheme, we considered data distribution scenarios, differ-

ential privacy budget, federated learning setting, and testing metrics. Specifically, we

simulated 6 representative data distributions to mimic real-world machine learning prob-

lem situations: (1)fully IID, (2) 30% 2-class non-IID, (3) 50% 2-class non-IID, (4) 70%

2-class non-IID, (5) fully 2-class non-IID, and (6) normal distribution. Aside from the

experiments without DP, we chose 3 ε values from each privacy budget category to

represent different privacy levels required in real-world cases, specifically 0.2, 0.5, and

0.8 in low privacy budget category, 1, 1.2, and 1.5 in mid privacy budget category, and

2, 10, and 100 in high privacy budget category.

In this thesis, 60 experiments are conducted and analyzed, with 6 data distribution

scenarios and 10 differential privacy settings. Based on the experiment results, we could

draw the following conclusions:

• The general utility, which could be represented by the overall model performance,

largely decreases when introducing high privacy level to a differentially private

federated learning setting, especially when training on a highly imbalance dataset.

• The fairness of under-represented groups, which could be represented by the per-

label model performance, largely decreases when introducing a larger non-IID
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proportion in the training set or setting a higher privacy level in a differentially

private federated learning setting, especially when training on a highly imbalance

dataset.

• The overall model performance is more stable than the per-class and per-label

performance in a differentially private federated learning setting.

• When performing a binary classification task on a highly imbalanced dataset,

there is a large performance difference between prominent target class and the

unapparent target class.

• The model performance of under-represented groups (minority groups) is worse

than the majority groups in a highly imbalanced dataset. The larger difference on

the number of samples between minority groups and majority groups, the more

significant difference will be between the model performance of minority groups

and majority groups.
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Future Work

As future work, there are still several directions worth exploring within the topic of

investigating the effect of data bias in differentially private federated learning. The

following aspects could be done in the future as an extension of this thesis:

• Implement different federated learning fusion schemes like Krum, Zeno, and Fed+.

Design and perform experiments on different FL fusion schemes, so as to intro-

duce the fusion scheme as another controlled variable in the differentially private

federated learning setting.

• Design and perform experiments based on other machine learning tasks using

neural networks aside from supervised categorical classification tasks. Image clas-

sification, next-word prediction, and pattern recognition are all possible tasks.

• Apply the different representative data distribution mechanisms on datasets other

than the Adult dataset to see if there are different performance within the dataset

when using the data distribution mechanisms on various data formats.
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Appendices

In order to measure the effect of data bias in differentially private federated learning

setting, we conducted experiments with 6 data distribution scenarios and 11 differential

privacy settings, by performing a binary classification task using NN on the highly

imbalanced Adult dataset.

In order to measure the effect of data bias in differentially private federated learning

setting, we conducted experiments with 6 data distribution scenarios and 11 differential

privacy settings, by performing a binary classification task using NN on the highly

imbalanced Adult dataset.

To be more specific, we performed 66 experiments in total. We use the following

6 data distribution scenarios which have been thoroughly explained in chapter 4: (1)

fully IID, (2) 30% 2-class nonIID, (3) 50% 2-class nonIID, (4) 70% 2-class nonIID, (5)

fully 2-class nonIID, and (6) normal distribution. And we use a no DP setting and 10

different privacy budget values as listed here: 0.1, 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2, 10, 100.

As described in Chapter 3, we define <=50K as the majority class and >50K as

the minority class in adult dataset. Regarding the Sex_Race label, under-represented

groups include label Female_Amer-Indian-Eskimo and Female_Other. And over-represented

groups include Sex_Race label Female_White and Male_White.

The following sections will show the vertical comparison among experiments without

DP and horizontal comparison with fixed privacy budget and fixed data distribution

scenario respectively. For every comparison, we will present the overall, per-class, and

per-label performance of the model. In this chapter, we only consider the final value

of metrics in the last round, specifically the accuracy, F1-score, precision, and recall in

the 500th round. Also, the range of a particular series of metric values is defined by

the maximum value minus the minimum value. The standard deviation (StdDev) is

calculated based on the definition of σ =
√

1
N

∑N
i=1 (xi − x̄)2.
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A Vertical Comparison within Each Experiment

In this section, we only consider 6 experiments of different data distribution scenar-

ios without introducing differential privacy. We will show the overall, per-class, and

per-label model performance of theses 6 experiments. These results are regarded as the

benchmark in our experiments, which will help us see the impact of different data distri-

bution scenarios in a federated learning setting without having any privacy-preserving

mechanism.

A.1 Overall and Per-class Performance

Table 1 shows the overall and per-class final accuracy of the model. As we can see from

the exact values of the per-class accuracy, the accuracy on minority class is significantly

lower than the majority class. Also, based on the range and standard deviation of accu-

racy value among different data distribution scenarios, we can see that the fluctuation

of overall accuracy value is smaller than per-class accuracy values, indicating that the

overall accuracy is less affected by the change of data distribution scenarios. Moreover,

it also shows that under-represented class is more likely to be largely affected by the

different data distribution scenarios.

Data distribution scenario overall accuracy <=50K accuracy >50K accuracy
Fully IID 0.832429 0.909340 0.599475

30% 2-class nonIID 0.833948 0.918002 0.579362
50% 2-class nonIID 0.829499 0.914970 0.570617
70% 2-class nonIID 0.835793 0.927530 0.557936
Fully 2-class nonIID 0.838290 0.924065 0.578487
Normal distribution 0.834491 0.920167 0.574989

Range 0.008791 0.018190 0.041539
StdDev 0.002725 0.005921 0.012389

Table 1: Accuracy of final round among 6 experiments without DP but in different data
distribution scenarios

Table 2 shows the weighted overall and per-class final F1 score of the model. As

we can see from the range and standard deviation of F1 score among different data

distribution scenarios, the fluctuation of minority class F1 score is significantly larger

than the majority class F1 score and overall F1 score. If we see the exact values of
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the F1 score, there is a relatively small difference between the overall F1 score and the

majority class F1 score, but the difference between overall and minority class F1 score

is quite large.

Data distribution scenario overall weighted F1 score <=50K F1 score >50K F1 score
Fully IID 0.828505 0.890822 0.639757

30% 2-class nonIID 0.828418 0.892617 0.633971
50% 2-class nonIID 0.823837 0.889731 0.624253
70% 2-class nonIID 0.828422 0.894660 0.627798
Fully 2-class nonIID 0.832205 0.895746 0.639749
Normal distribution 0.828575 0.893155 0.632972

Range 0.008368 0.006015 0.015504
StdDev 0.002426 0.002067 0.005711

Table 2: F1 score of final round among 6 experiments without DP but in different data
distribution scenarios

Table 3 shows the weighted overall and per-class final precision of the model. As seen

from the range and standard deviation of precision among different data distribution

scenarios, the difference between overall weighted precision and majority class precision

is relatively stable even when the data distribution scenario is changing. When we

look at the exact value of precision, the range and standard deviation of precision in

minority class are almost the same with the majority class precision, indicating that

changes in data distribution scenarios does not have a significant influence difference

between majority and minority subgroups of the adult dataset.

Data distribution scenario overall weighted precision <=50K precision >50K precision
Fully IID 0.826578 0.873042 0.685843

30% 2-class nonIID 0.826737 0.868597 0.699947
50% 2-class nonIID 0.821956 0.865847 0.689018
70% 2-class nonIID 0.827707 0.864040 0.717660
Fully 2-class nonIID 0.830989 0.869111 0.715522
Normal distribution 0.827046 0.867683 0.703961

Range 0.009033 0.009002 0.031817
StdDev 0.002644 0.002811 0.012012

Table 3: Precision of final round among 6 experiments without DP but in different data
distribution scenarios
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Table 4 shows the weighted overall and per-class final recall of the model. As

stated in the range of recall among different data distribution scenarios, the fluctuation

of minority recall is significantly larger compared with the overall and majority class

recall. Thus, it demonstrates that the minority class recall is more likely to fluctuate

along with the difference in data distribution scenarios.

Data distribution scenario overall weighted recall <=50K recall >50K recall
Fully IID 0.832429 0.909340 0.599475

30% 2-class nonIID 0.833948 0.918002 0.579362
50% 2-class nonIID 0.829499 0.914970 0.570617
70% 2-class nonIID 0.835793 0.927530 0.557936
Fully 2-class nonIID 0.838290 0.924065 0.578487
Normal distribution 0.834491 0.920167 0.574989

Range 0.008791 0.018190 0.041539
StdDev 0.002725 0.005921 0.012389

Table 4: Recall of final round among 6 experiments without DP but in different data
distribution scenarios

A.2 Overall and Per-label Performance

Table 5 shows the overall and per-label final accuracy of the model.

Table 6 shows the overall and per-label final weighted F1 score of the model.

Table 7 shows the overall and per-label final weighted precision of the model.

Table 8 shows the overall and per-label final weighted recall of the model.

Based on the results, the fluctuation of minority label metrics (including accuracy, F1

score, precision, and recall) is significantly larger when the data distribution scenarios

changes, compared with the range of majority label metrics. Thus, minority groups

of Sex_Race labels would receive more impact when there is a change in the data

distribution scenario. Also, the per-label metric values within 70% 2-class non-IID data

distribution vary at most, and the per-label metric values with 30% 2-class non-IID

data distribution are the most even ones among all Sex_Race labels.
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B Horizontal Comparison among a series of Experiment

We have conducted 66 experiments in total, with 6 data distribution scenarios and 11

differential privacy settings. The 11 differential privacy settings include a no DP setting

and 10 privacy budget values of 0.1, 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2, 10, 100.

However, when ε is 0.1, Opacus reports an error that the privacy budget is too low

to execute the whole program. Based on the differential privacy theory, this low privacy

budget leads to a really high privacy level in the dataset. As a result, an extremely

high privacy level would make the samples in the dataset too indistinguishable for the

model to perform training. Thus, the experiment with ε of 0.1 will not be included

in the following horizontal comparison. Both the fixed privacy budget horizontal com-

parison and fixed data distribution horizontal comparison will include 60 experiments,

containing 6 data distribution scenarios and 10 DP settings (one no DP setting and 9

different privacy budgets).

B.1 Overall Model Performance

Table 9 shows the overall final accuracy of the model.

Table 10 shows the overall final weighted F1 score of the model.

Table 11 shows the overall final weighted precision of the model.

Table 12 shows the overall final weighted recall of the model.

Tables above show the final overall metric values of the model. It is clear that there

is no monotonic trend in the final model performance. When looking at a particular

data distribution, there is no monotonic trend in the metric values when the privacy

budget goes higher. Likewise, when considering a particular ε value for privacy budget,

there is also no monotonic trend along with the change of data distribution scenarios.

This phenomenon tells us that we can not simply analyze the experiment results with

overall metric values only. We need to dive deeper into the per-class and per-label model

performance to see the impact of various data distribution scenarios and different privacy

budget settings. Since this is a binary classification task, we can investigate the model

performance of the two classes separately. Especially when we conduct experiments on

the highly imbalanced Adult dataset, by looking at the per-class model performance,

we can see how the NN model performs in the class with more than 75% of the samples

and in the class with less than 25% samples of the whole adult dataset. Besides, the
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per-label model performance is also quite important for us to investigate the fairness

of the model. Since the number of samples of each Sex_Race label is largely different

from each other, the per-class model performance can help us see whether the change

in differentially private federated learning setting would show the same impact on the

majority groups and minority groups.

Moreover, since we have performed analysis of different data distributions with no

DP in the vertical comparison section, we will not emphasize the no DP situations in

the following horizontal comparisons.

B.2 Fixed Privacy Budget

Aside from the no DP situation and too-low privacy budget ε = 0.1, we have 9 different

privacy budgets (ε values), specifically with ε values of: 0.2, 0.5, 0.8, 1, 1.2, 1.5, 2, 10,

100.

Table 13 gives the overall, per-class, and per-label accuracy of experiments with

privacy budget ε = 0.2. As shown in the results, the overall accuracy of 6 experi-

ments with a fixed privacy budget ε=0.2 does not show significant fluctuation when the

data distribution scenario is changing. The significant fluctuation phenomenon happens

in target class >50K, Sex_Race label Female_Amer-Indian-Eskimo, Sex_Race label

Female_Other, and Sex_Race label Male_Other. These are the minority classes or

minority labels in the whole adult dataset. On the other side, the relatively small varia-

tion on metric values occur in target class <=50K, Sex_Race label Female_White, and

Sex_Race label Male_White. These three are the majority target classes or majority

labels.

Table 14 gives the overall, per-class, and per-label accuracy of experiments with

privacy budget ε = 0.5. As shown in the results, the significant fluctuation phenomenon

happens in Sex_Race label Female_Amer-Indian-Eskimo, Male_Amer-Indian-Eskimo,

Female_Other, and Male_Other. These are the minority labels in the whole adult

dataset. On the other side, a relatively small variation on metric values occurs in target

class <=50K, Sex_Race label Female_White, and Sex_Race label Male_White. These

three are the majority target classes or majority labels.

Table 15 gives the overall, per-class, and per-label accuracy of experiments with

privacy budget ε = 0.8. As shown in the results, the overall accuracy of the model

does not change so much when the data distribution scheme changes. The significant
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fluctuation phenomenon happens in Sex_Race label Female_Amer-Indian-Eskimo, Fe-

male_Other, andMale_Other. These are the minority labels in the whole adult dataset.

On the other side, a relatively small variation on metric values occurs in Sex_Race la-

bel Female_White and Male_White. These three are the majority labels in the adult

dataset.

Table 16 gives the overall, per-class, and per-label accuracy of experiments with

privacy budget ε = 1.2. As shown in the results, the overall accuracy of the model

does not have a very large change when the data distribution scheme changes. The

significant fluctuation phenomenon happens in Sex_Race label Female_Other. This

is a minority label in the whole adult dataset. On the other side, a relatively small

variation on metric values occurs in Sex_Race label Female_White and Male_White.

These three are the majority labels in the adult dataset.

Table 17 gives the overall, per-class, and per-label accuracy of experiments with

privacy budget ε = 100. As shown in the results, the overall accuracy of the model only

shows a slightly change when the data distribution scheme changes. The significant

fluctuation phenomenon happens in target class >50K, Sex_Race label Female_Other,

and Sex_Race label Male_Other. These are minority labels in the whole adult dataset.

On the other side, a relatively small variation on metric values occurs in target class

<=50K, Sex_Race label Female_White, and Sex_Race labelMale_White. These three

are the majority target classes and majority labels in the adult dataset.

B.3 Fixed Data Distribution scenario

Table 18 gives the overall, per-class, and per-label accuracy of experiments with fully

IID data distribution scenario. As shown in the results, the change of privacy bud-

get (ε value) does not have large reflection on the overall accuracy. The target class

>50K, Sex_Race label Female_Amer-Indian-Eskimo, Sex_Race label Female_Other,

Sex_Race label Male_Amer-Indian-Eskimo, and Sex_Race label Male_Other have

shown a larger fluctuation on metric values when the privacy budget ε changes. These

are minority classes and minority labels in the whole adult dataset. On the other hand,

target class <=50K, Sex_Race label Female_White, and Sex_Race label Male_White

have shown a relatively small shift when ε changes from 0.2 to 100. And these three are

the majority target classes and majority labels.
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Table 19 gives the overall, per-class, and per-label accuracy of experiments with

fully 2-class non-IID data distribution scenario. As shown in the results, the change of

privacy budget ε does not have large reflection on the overall accuracy. The target class

>50K, Sex_Race label Female_Amer-Indian-Eskimo, Sex_Race label Female_Other,

Sex_Race label Male_Amer-Indian-Eskimo, and Sex_Race label Male_Other have

shown a larger fluctuation on metric values when the privacy budget ε changes. These

are minority classes and minority labels in the whole adult dataset. On the other hand,

target class <=50K, Sex_Race label Female_White, and Sex_Race label Male_White

have shown a relatively small shift when ε changes from 0.2 to 100. And these three are

the majority target classes and majority labels.

Table 20 gives the overall, per-class, and per-label accuracy of experiments with nor-

mal data distribution scenario. As shown in the results, the change of privacy budget ε

does not have large reflection on the overall accuracy. The target class >50K, Sex_Race

label Female_Amer-Indian-Eskimo, Sex_Race label Female_Other, Sex_Race label

Male_Amer-Indian-Eskimo, and Sex_Race label Male_Other have shown a larger fluc-

tuation on metric values when the privacy budget ε value changes. These are minority

classes and minority labels in the whole adult dataset. On the other hand, target class

<=50K, Sex_Race label Female_White, and Sex_Race label Male_White have shown

a relatively small shift when ε changes from 0.2 to 100. And these three are the majority

target classes and majority labels.

Table 21 gives the overall, per-class, and per-label accuracy of experiments with

70% 2-class non-IID data distribution scenario. As shown in the results, the overall

accuracy has great change along with the different values of privacy budget ε. The

target class >50K, Sex_Race label Female_Amer-Indian-Eskimo, and Sex_Race label

Female_Other have shown a larger fluctuation on he metric values when the privacy

budget ε changes. These three are the minority classes and minority labels in the whole

adult dataset. On the other hand, target class <=50K, Sex_Race label Female_White,

and Sex_Race label Male_White have shown a relatively small shift when ε changes

from 0.2 to 100. And these three are the majority target classes and majority labels.
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B Horizontal Comparison among a series of Experiment
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B Horizontal Comparison among a series of Experiment
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B Horizontal Comparison among a series of Experiment
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B Horizontal Comparison among a series of Experiment
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B Horizontal Comparison among a series of Experiment
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B Horizontal Comparison among a series of Experiment
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